1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/ext4/extents_status.c 4 * 5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 6 * Modified by 7 * Allison Henderson <achender@linux.vnet.ibm.com> 8 * Hugh Dickins <hughd@google.com> 9 * Zheng Liu <wenqing.lz@taobao.com> 10 * 11 * Ext4 extents status tree core functions. 12 */ 13 #include <linux/list_sort.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include "ext4.h" 17 18 #include <trace/events/ext4.h> 19 20 /* 21 * According to previous discussion in Ext4 Developer Workshop, we 22 * will introduce a new structure called io tree to track all extent 23 * status in order to solve some problems that we have met 24 * (e.g. Reservation space warning), and provide extent-level locking. 25 * Delay extent tree is the first step to achieve this goal. It is 26 * original built by Yongqiang Yang. At that time it is called delay 27 * extent tree, whose goal is only track delayed extents in memory to 28 * simplify the implementation of fiemap and bigalloc, and introduce 29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 30 * delay extent tree at the first commit. But for better understand 31 * what it does, it has been rename to extent status tree. 32 * 33 * Step1: 34 * Currently the first step has been done. All delayed extents are 35 * tracked in the tree. It maintains the delayed extent when a delayed 36 * allocation is issued, and the delayed extent is written out or 37 * invalidated. Therefore the implementation of fiemap and bigalloc 38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 39 * 40 * The following comment describes the implemenmtation of extent 41 * status tree and future works. 42 * 43 * Step2: 44 * In this step all extent status are tracked by extent status tree. 45 * Thus, we can first try to lookup a block mapping in this tree before 46 * finding it in extent tree. Hence, single extent cache can be removed 47 * because extent status tree can do a better job. Extents in status 48 * tree are loaded on-demand. Therefore, the extent status tree may not 49 * contain all of the extents in a file. Meanwhile we define a shrinker 50 * to reclaim memory from extent status tree because fragmented extent 51 * tree will make status tree cost too much memory. written/unwritten/- 52 * hole extents in the tree will be reclaimed by this shrinker when we 53 * are under high memory pressure. Delayed extents will not be 54 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 55 */ 56 57 /* 58 * Extent status tree implementation for ext4. 59 * 60 * 61 * ========================================================================== 62 * Extent status tree tracks all extent status. 63 * 64 * 1. Why we need to implement extent status tree? 65 * 66 * Without extent status tree, ext4 identifies a delayed extent by looking 67 * up page cache, this has several deficiencies - complicated, buggy, 68 * and inefficient code. 69 * 70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 71 * block or a range of blocks are belonged to a delayed extent. 72 * 73 * Let us have a look at how they do without extent status tree. 74 * -- FIEMAP 75 * FIEMAP looks up page cache to identify delayed allocations from holes. 76 * 77 * -- SEEK_HOLE/DATA 78 * SEEK_HOLE/DATA has the same problem as FIEMAP. 79 * 80 * -- bigalloc 81 * bigalloc looks up page cache to figure out if a block is 82 * already under delayed allocation or not to determine whether 83 * quota reserving is needed for the cluster. 84 * 85 * -- writeout 86 * Writeout looks up whole page cache to see if a buffer is 87 * mapped, If there are not very many delayed buffers, then it is 88 * time consuming. 89 * 90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 91 * bigalloc and writeout can figure out if a block or a range of 92 * blocks is under delayed allocation(belonged to a delayed extent) or 93 * not by searching the extent tree. 94 * 95 * 96 * ========================================================================== 97 * 2. Ext4 extent status tree impelmentation 98 * 99 * -- extent 100 * A extent is a range of blocks which are contiguous logically and 101 * physically. Unlike extent in extent tree, this extent in ext4 is 102 * a in-memory struct, there is no corresponding on-disk data. There 103 * is no limit on length of extent, so an extent can contain as many 104 * blocks as they are contiguous logically and physically. 105 * 106 * -- extent status tree 107 * Every inode has an extent status tree and all allocation blocks 108 * are added to the tree with different status. The extent in the 109 * tree are ordered by logical block no. 110 * 111 * -- operations on a extent status tree 112 * There are three important operations on a delayed extent tree: find 113 * next extent, adding a extent(a range of blocks) and removing a extent. 114 * 115 * -- race on a extent status tree 116 * Extent status tree is protected by inode->i_es_lock. 117 * 118 * -- memory consumption 119 * Fragmented extent tree will make extent status tree cost too much 120 * memory. Hence, we will reclaim written/unwritten/hole extents from 121 * the tree under a heavy memory pressure. 122 * 123 * 124 * ========================================================================== 125 * 3. Performance analysis 126 * 127 * -- overhead 128 * 1. There is a cache extent for write access, so if writes are 129 * not very random, adding space operaions are in O(1) time. 130 * 131 * -- gain 132 * 2. Code is much simpler, more readable, more maintainable and 133 * more efficient. 134 * 135 * 136 * ========================================================================== 137 * 4. TODO list 138 * 139 * -- Refactor delayed space reservation 140 * 141 * -- Extent-level locking 142 */ 143 144 static struct kmem_cache *ext4_es_cachep; 145 static struct kmem_cache *ext4_pending_cachep; 146 147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes, 148 struct extent_status *prealloc); 149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 150 ext4_lblk_t end, int *reserved, 151 struct extent_status *prealloc); 152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); 153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 154 struct ext4_inode_info *locked_ei); 155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, 156 ext4_lblk_t len, 157 struct pending_reservation **prealloc); 158 159 int __init ext4_init_es(void) 160 { 161 ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT); 162 if (ext4_es_cachep == NULL) 163 return -ENOMEM; 164 return 0; 165 } 166 167 void ext4_exit_es(void) 168 { 169 kmem_cache_destroy(ext4_es_cachep); 170 } 171 172 void ext4_es_init_tree(struct ext4_es_tree *tree) 173 { 174 tree->root = RB_ROOT; 175 tree->cache_es = NULL; 176 } 177 178 #ifdef ES_DEBUG__ 179 static void ext4_es_print_tree(struct inode *inode) 180 { 181 struct ext4_es_tree *tree; 182 struct rb_node *node; 183 184 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 185 tree = &EXT4_I(inode)->i_es_tree; 186 node = rb_first(&tree->root); 187 while (node) { 188 struct extent_status *es; 189 es = rb_entry(node, struct extent_status, rb_node); 190 printk(KERN_DEBUG " [%u/%u) %llu %x", 191 es->es_lblk, es->es_len, 192 ext4_es_pblock(es), ext4_es_status(es)); 193 node = rb_next(node); 194 } 195 printk(KERN_DEBUG "\n"); 196 } 197 #else 198 #define ext4_es_print_tree(inode) 199 #endif 200 201 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 202 { 203 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 204 return es->es_lblk + es->es_len - 1; 205 } 206 207 /* 208 * search through the tree for an delayed extent with a given offset. If 209 * it can't be found, try to find next extent. 210 */ 211 static struct extent_status *__es_tree_search(struct rb_root *root, 212 ext4_lblk_t lblk) 213 { 214 struct rb_node *node = root->rb_node; 215 struct extent_status *es = NULL; 216 217 while (node) { 218 es = rb_entry(node, struct extent_status, rb_node); 219 if (lblk < es->es_lblk) 220 node = node->rb_left; 221 else if (lblk > ext4_es_end(es)) 222 node = node->rb_right; 223 else 224 return es; 225 } 226 227 if (es && lblk < es->es_lblk) 228 return es; 229 230 if (es && lblk > ext4_es_end(es)) { 231 node = rb_next(&es->rb_node); 232 return node ? rb_entry(node, struct extent_status, rb_node) : 233 NULL; 234 } 235 236 return NULL; 237 } 238 239 /* 240 * ext4_es_find_extent_range - find extent with specified status within block 241 * range or next extent following block range in 242 * extents status tree 243 * 244 * @inode - file containing the range 245 * @matching_fn - pointer to function that matches extents with desired status 246 * @lblk - logical block defining start of range 247 * @end - logical block defining end of range 248 * @es - extent found, if any 249 * 250 * Find the first extent within the block range specified by @lblk and @end 251 * in the extents status tree that satisfies @matching_fn. If a match 252 * is found, it's returned in @es. If not, and a matching extent is found 253 * beyond the block range, it's returned in @es. If no match is found, an 254 * extent is returned in @es whose es_lblk, es_len, and es_pblk components 255 * are 0. 256 */ 257 static void __es_find_extent_range(struct inode *inode, 258 int (*matching_fn)(struct extent_status *es), 259 ext4_lblk_t lblk, ext4_lblk_t end, 260 struct extent_status *es) 261 { 262 struct ext4_es_tree *tree = NULL; 263 struct extent_status *es1 = NULL; 264 struct rb_node *node; 265 266 WARN_ON(es == NULL); 267 WARN_ON(end < lblk); 268 269 tree = &EXT4_I(inode)->i_es_tree; 270 271 /* see if the extent has been cached */ 272 es->es_lblk = es->es_len = es->es_pblk = 0; 273 es1 = READ_ONCE(tree->cache_es); 274 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { 275 es_debug("%u cached by [%u/%u) %llu %x\n", 276 lblk, es1->es_lblk, es1->es_len, 277 ext4_es_pblock(es1), ext4_es_status(es1)); 278 goto out; 279 } 280 281 es1 = __es_tree_search(&tree->root, lblk); 282 283 out: 284 if (es1 && !matching_fn(es1)) { 285 while ((node = rb_next(&es1->rb_node)) != NULL) { 286 es1 = rb_entry(node, struct extent_status, rb_node); 287 if (es1->es_lblk > end) { 288 es1 = NULL; 289 break; 290 } 291 if (matching_fn(es1)) 292 break; 293 } 294 } 295 296 if (es1 && matching_fn(es1)) { 297 WRITE_ONCE(tree->cache_es, es1); 298 es->es_lblk = es1->es_lblk; 299 es->es_len = es1->es_len; 300 es->es_pblk = es1->es_pblk; 301 } 302 303 } 304 305 /* 306 * Locking for __es_find_extent_range() for external use 307 */ 308 void ext4_es_find_extent_range(struct inode *inode, 309 int (*matching_fn)(struct extent_status *es), 310 ext4_lblk_t lblk, ext4_lblk_t end, 311 struct extent_status *es) 312 { 313 es->es_lblk = es->es_len = es->es_pblk = 0; 314 315 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 316 return; 317 318 trace_ext4_es_find_extent_range_enter(inode, lblk); 319 320 read_lock(&EXT4_I(inode)->i_es_lock); 321 __es_find_extent_range(inode, matching_fn, lblk, end, es); 322 read_unlock(&EXT4_I(inode)->i_es_lock); 323 324 trace_ext4_es_find_extent_range_exit(inode, es); 325 } 326 327 /* 328 * __es_scan_range - search block range for block with specified status 329 * in extents status tree 330 * 331 * @inode - file containing the range 332 * @matching_fn - pointer to function that matches extents with desired status 333 * @lblk - logical block defining start of range 334 * @end - logical block defining end of range 335 * 336 * Returns true if at least one block in the specified block range satisfies 337 * the criterion specified by @matching_fn, and false if not. If at least 338 * one extent has the specified status, then there is at least one block 339 * in the cluster with that status. Should only be called by code that has 340 * taken i_es_lock. 341 */ 342 static bool __es_scan_range(struct inode *inode, 343 int (*matching_fn)(struct extent_status *es), 344 ext4_lblk_t start, ext4_lblk_t end) 345 { 346 struct extent_status es; 347 348 __es_find_extent_range(inode, matching_fn, start, end, &es); 349 if (es.es_len == 0) 350 return false; /* no matching extent in the tree */ 351 else if (es.es_lblk <= start && 352 start < es.es_lblk + es.es_len) 353 return true; 354 else if (start <= es.es_lblk && es.es_lblk <= end) 355 return true; 356 else 357 return false; 358 } 359 /* 360 * Locking for __es_scan_range() for external use 361 */ 362 bool ext4_es_scan_range(struct inode *inode, 363 int (*matching_fn)(struct extent_status *es), 364 ext4_lblk_t lblk, ext4_lblk_t end) 365 { 366 bool ret; 367 368 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 369 return false; 370 371 read_lock(&EXT4_I(inode)->i_es_lock); 372 ret = __es_scan_range(inode, matching_fn, lblk, end); 373 read_unlock(&EXT4_I(inode)->i_es_lock); 374 375 return ret; 376 } 377 378 /* 379 * __es_scan_clu - search cluster for block with specified status in 380 * extents status tree 381 * 382 * @inode - file containing the cluster 383 * @matching_fn - pointer to function that matches extents with desired status 384 * @lblk - logical block in cluster to be searched 385 * 386 * Returns true if at least one extent in the cluster containing @lblk 387 * satisfies the criterion specified by @matching_fn, and false if not. If at 388 * least one extent has the specified status, then there is at least one block 389 * in the cluster with that status. Should only be called by code that has 390 * taken i_es_lock. 391 */ 392 static bool __es_scan_clu(struct inode *inode, 393 int (*matching_fn)(struct extent_status *es), 394 ext4_lblk_t lblk) 395 { 396 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 397 ext4_lblk_t lblk_start, lblk_end; 398 399 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 400 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 401 402 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); 403 } 404 405 /* 406 * Locking for __es_scan_clu() for external use 407 */ 408 bool ext4_es_scan_clu(struct inode *inode, 409 int (*matching_fn)(struct extent_status *es), 410 ext4_lblk_t lblk) 411 { 412 bool ret; 413 414 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 415 return false; 416 417 read_lock(&EXT4_I(inode)->i_es_lock); 418 ret = __es_scan_clu(inode, matching_fn, lblk); 419 read_unlock(&EXT4_I(inode)->i_es_lock); 420 421 return ret; 422 } 423 424 static void ext4_es_list_add(struct inode *inode) 425 { 426 struct ext4_inode_info *ei = EXT4_I(inode); 427 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 428 429 if (!list_empty(&ei->i_es_list)) 430 return; 431 432 spin_lock(&sbi->s_es_lock); 433 if (list_empty(&ei->i_es_list)) { 434 list_add_tail(&ei->i_es_list, &sbi->s_es_list); 435 sbi->s_es_nr_inode++; 436 } 437 spin_unlock(&sbi->s_es_lock); 438 } 439 440 static void ext4_es_list_del(struct inode *inode) 441 { 442 struct ext4_inode_info *ei = EXT4_I(inode); 443 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 444 445 spin_lock(&sbi->s_es_lock); 446 if (!list_empty(&ei->i_es_list)) { 447 list_del_init(&ei->i_es_list); 448 sbi->s_es_nr_inode--; 449 WARN_ON_ONCE(sbi->s_es_nr_inode < 0); 450 } 451 spin_unlock(&sbi->s_es_lock); 452 } 453 454 static inline struct pending_reservation *__alloc_pending(bool nofail) 455 { 456 if (!nofail) 457 return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); 458 459 return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL); 460 } 461 462 static inline void __free_pending(struct pending_reservation *pr) 463 { 464 kmem_cache_free(ext4_pending_cachep, pr); 465 } 466 467 /* 468 * Returns true if we cannot fail to allocate memory for this extent_status 469 * entry and cannot reclaim it until its status changes. 470 */ 471 static inline bool ext4_es_must_keep(struct extent_status *es) 472 { 473 /* fiemap, bigalloc, and seek_data/hole need to use it. */ 474 if (ext4_es_is_delayed(es)) 475 return true; 476 477 return false; 478 } 479 480 static inline struct extent_status *__es_alloc_extent(bool nofail) 481 { 482 if (!nofail) 483 return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 484 485 return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL); 486 } 487 488 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es, 489 ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) 490 { 491 es->es_lblk = lblk; 492 es->es_len = len; 493 es->es_pblk = pblk; 494 495 /* We never try to reclaim a must kept extent, so we don't count it. */ 496 if (!ext4_es_must_keep(es)) { 497 if (!EXT4_I(inode)->i_es_shk_nr++) 498 ext4_es_list_add(inode); 499 percpu_counter_inc(&EXT4_SB(inode->i_sb)-> 500 s_es_stats.es_stats_shk_cnt); 501 } 502 503 EXT4_I(inode)->i_es_all_nr++; 504 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 505 } 506 507 static inline void __es_free_extent(struct extent_status *es) 508 { 509 kmem_cache_free(ext4_es_cachep, es); 510 } 511 512 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 513 { 514 EXT4_I(inode)->i_es_all_nr--; 515 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 516 517 /* Decrease the shrink counter when we can reclaim the extent. */ 518 if (!ext4_es_must_keep(es)) { 519 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); 520 if (!--EXT4_I(inode)->i_es_shk_nr) 521 ext4_es_list_del(inode); 522 percpu_counter_dec(&EXT4_SB(inode->i_sb)-> 523 s_es_stats.es_stats_shk_cnt); 524 } 525 526 __es_free_extent(es); 527 } 528 529 /* 530 * Check whether or not two extents can be merged 531 * Condition: 532 * - logical block number is contiguous 533 * - physical block number is contiguous 534 * - status is equal 535 */ 536 static int ext4_es_can_be_merged(struct extent_status *es1, 537 struct extent_status *es2) 538 { 539 if (ext4_es_type(es1) != ext4_es_type(es2)) 540 return 0; 541 542 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { 543 pr_warn("ES assertion failed when merging extents. " 544 "The sum of lengths of es1 (%d) and es2 (%d) " 545 "is bigger than allowed file size (%d)\n", 546 es1->es_len, es2->es_len, EXT_MAX_BLOCKS); 547 WARN_ON(1); 548 return 0; 549 } 550 551 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 552 return 0; 553 554 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 555 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 556 return 1; 557 558 if (ext4_es_is_hole(es1)) 559 return 1; 560 561 /* we need to check delayed extent is without unwritten status */ 562 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) 563 return 1; 564 565 return 0; 566 } 567 568 static struct extent_status * 569 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 570 { 571 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 572 struct extent_status *es1; 573 struct rb_node *node; 574 575 node = rb_prev(&es->rb_node); 576 if (!node) 577 return es; 578 579 es1 = rb_entry(node, struct extent_status, rb_node); 580 if (ext4_es_can_be_merged(es1, es)) { 581 es1->es_len += es->es_len; 582 if (ext4_es_is_referenced(es)) 583 ext4_es_set_referenced(es1); 584 rb_erase(&es->rb_node, &tree->root); 585 ext4_es_free_extent(inode, es); 586 es = es1; 587 } 588 589 return es; 590 } 591 592 static struct extent_status * 593 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 594 { 595 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 596 struct extent_status *es1; 597 struct rb_node *node; 598 599 node = rb_next(&es->rb_node); 600 if (!node) 601 return es; 602 603 es1 = rb_entry(node, struct extent_status, rb_node); 604 if (ext4_es_can_be_merged(es, es1)) { 605 es->es_len += es1->es_len; 606 if (ext4_es_is_referenced(es1)) 607 ext4_es_set_referenced(es); 608 rb_erase(node, &tree->root); 609 ext4_es_free_extent(inode, es1); 610 } 611 612 return es; 613 } 614 615 #ifdef ES_AGGRESSIVE_TEST 616 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ 617 618 static void ext4_es_insert_extent_ext_check(struct inode *inode, 619 struct extent_status *es) 620 { 621 struct ext4_ext_path *path = NULL; 622 struct ext4_extent *ex; 623 ext4_lblk_t ee_block; 624 ext4_fsblk_t ee_start; 625 unsigned short ee_len; 626 int depth, ee_status, es_status; 627 628 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); 629 if (IS_ERR(path)) 630 return; 631 632 depth = ext_depth(inode); 633 ex = path[depth].p_ext; 634 635 if (ex) { 636 637 ee_block = le32_to_cpu(ex->ee_block); 638 ee_start = ext4_ext_pblock(ex); 639 ee_len = ext4_ext_get_actual_len(ex); 640 641 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; 642 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 643 644 /* 645 * Make sure ex and es are not overlap when we try to insert 646 * a delayed/hole extent. 647 */ 648 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 649 if (in_range(es->es_lblk, ee_block, ee_len)) { 650 pr_warn("ES insert assertion failed for " 651 "inode: %lu we can find an extent " 652 "at block [%d/%d/%llu/%c], but we " 653 "want to add a delayed/hole extent " 654 "[%d/%d/%llu/%x]\n", 655 inode->i_ino, ee_block, ee_len, 656 ee_start, ee_status ? 'u' : 'w', 657 es->es_lblk, es->es_len, 658 ext4_es_pblock(es), ext4_es_status(es)); 659 } 660 goto out; 661 } 662 663 /* 664 * We don't check ee_block == es->es_lblk, etc. because es 665 * might be a part of whole extent, vice versa. 666 */ 667 if (es->es_lblk < ee_block || 668 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 669 pr_warn("ES insert assertion failed for inode: %lu " 670 "ex_status [%d/%d/%llu/%c] != " 671 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 672 ee_block, ee_len, ee_start, 673 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 674 ext4_es_pblock(es), es_status ? 'u' : 'w'); 675 goto out; 676 } 677 678 if (ee_status ^ es_status) { 679 pr_warn("ES insert assertion failed for inode: %lu " 680 "ex_status [%d/%d/%llu/%c] != " 681 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 682 ee_block, ee_len, ee_start, 683 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 684 ext4_es_pblock(es), es_status ? 'u' : 'w'); 685 } 686 } else { 687 /* 688 * We can't find an extent on disk. So we need to make sure 689 * that we don't want to add an written/unwritten extent. 690 */ 691 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 692 pr_warn("ES insert assertion failed for inode: %lu " 693 "can't find an extent at block %d but we want " 694 "to add a written/unwritten extent " 695 "[%d/%d/%llu/%x]\n", inode->i_ino, 696 es->es_lblk, es->es_lblk, es->es_len, 697 ext4_es_pblock(es), ext4_es_status(es)); 698 } 699 } 700 out: 701 ext4_free_ext_path(path); 702 } 703 704 static void ext4_es_insert_extent_ind_check(struct inode *inode, 705 struct extent_status *es) 706 { 707 struct ext4_map_blocks map; 708 int retval; 709 710 /* 711 * Here we call ext4_ind_map_blocks to lookup a block mapping because 712 * 'Indirect' structure is defined in indirect.c. So we couldn't 713 * access direct/indirect tree from outside. It is too dirty to define 714 * this function in indirect.c file. 715 */ 716 717 map.m_lblk = es->es_lblk; 718 map.m_len = es->es_len; 719 720 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 721 if (retval > 0) { 722 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 723 /* 724 * We want to add a delayed/hole extent but this 725 * block has been allocated. 726 */ 727 pr_warn("ES insert assertion failed for inode: %lu " 728 "We can find blocks but we want to add a " 729 "delayed/hole extent [%d/%d/%llu/%x]\n", 730 inode->i_ino, es->es_lblk, es->es_len, 731 ext4_es_pblock(es), ext4_es_status(es)); 732 return; 733 } else if (ext4_es_is_written(es)) { 734 if (retval != es->es_len) { 735 pr_warn("ES insert assertion failed for " 736 "inode: %lu retval %d != es_len %d\n", 737 inode->i_ino, retval, es->es_len); 738 return; 739 } 740 if (map.m_pblk != ext4_es_pblock(es)) { 741 pr_warn("ES insert assertion failed for " 742 "inode: %lu m_pblk %llu != " 743 "es_pblk %llu\n", 744 inode->i_ino, map.m_pblk, 745 ext4_es_pblock(es)); 746 return; 747 } 748 } else { 749 /* 750 * We don't need to check unwritten extent because 751 * indirect-based file doesn't have it. 752 */ 753 BUG(); 754 } 755 } else if (retval == 0) { 756 if (ext4_es_is_written(es)) { 757 pr_warn("ES insert assertion failed for inode: %lu " 758 "We can't find the block but we want to add " 759 "a written extent [%d/%d/%llu/%x]\n", 760 inode->i_ino, es->es_lblk, es->es_len, 761 ext4_es_pblock(es), ext4_es_status(es)); 762 return; 763 } 764 } 765 } 766 767 static inline void ext4_es_insert_extent_check(struct inode *inode, 768 struct extent_status *es) 769 { 770 /* 771 * We don't need to worry about the race condition because 772 * caller takes i_data_sem locking. 773 */ 774 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 775 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 776 ext4_es_insert_extent_ext_check(inode, es); 777 else 778 ext4_es_insert_extent_ind_check(inode, es); 779 } 780 #else 781 static inline void ext4_es_insert_extent_check(struct inode *inode, 782 struct extent_status *es) 783 { 784 } 785 #endif 786 787 static int __es_insert_extent(struct inode *inode, struct extent_status *newes, 788 struct extent_status *prealloc) 789 { 790 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 791 struct rb_node **p = &tree->root.rb_node; 792 struct rb_node *parent = NULL; 793 struct extent_status *es; 794 795 while (*p) { 796 parent = *p; 797 es = rb_entry(parent, struct extent_status, rb_node); 798 799 if (newes->es_lblk < es->es_lblk) { 800 if (ext4_es_can_be_merged(newes, es)) { 801 /* 802 * Here we can modify es_lblk directly 803 * because it isn't overlapped. 804 */ 805 es->es_lblk = newes->es_lblk; 806 es->es_len += newes->es_len; 807 if (ext4_es_is_written(es) || 808 ext4_es_is_unwritten(es)) 809 ext4_es_store_pblock(es, 810 newes->es_pblk); 811 es = ext4_es_try_to_merge_left(inode, es); 812 goto out; 813 } 814 p = &(*p)->rb_left; 815 } else if (newes->es_lblk > ext4_es_end(es)) { 816 if (ext4_es_can_be_merged(es, newes)) { 817 es->es_len += newes->es_len; 818 es = ext4_es_try_to_merge_right(inode, es); 819 goto out; 820 } 821 p = &(*p)->rb_right; 822 } else { 823 BUG(); 824 return -EINVAL; 825 } 826 } 827 828 if (prealloc) 829 es = prealloc; 830 else 831 es = __es_alloc_extent(false); 832 if (!es) 833 return -ENOMEM; 834 ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len, 835 newes->es_pblk); 836 837 rb_link_node(&es->rb_node, parent, p); 838 rb_insert_color(&es->rb_node, &tree->root); 839 840 out: 841 tree->cache_es = es; 842 return 0; 843 } 844 845 /* 846 * ext4_es_insert_extent() adds information to an inode's extent 847 * status tree. 848 */ 849 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 850 ext4_lblk_t len, ext4_fsblk_t pblk, 851 unsigned int status) 852 { 853 struct extent_status newes; 854 ext4_lblk_t end = lblk + len - 1; 855 int err1 = 0, err2 = 0, err3 = 0; 856 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 857 struct extent_status *es1 = NULL; 858 struct extent_status *es2 = NULL; 859 struct pending_reservation *pr = NULL; 860 bool revise_pending = false; 861 862 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 863 return; 864 865 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", 866 lblk, len, pblk, status, inode->i_ino); 867 868 if (!len) 869 return; 870 871 BUG_ON(end < lblk); 872 873 if ((status & EXTENT_STATUS_DELAYED) && 874 (status & EXTENT_STATUS_WRITTEN)) { 875 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " 876 " delayed and written which can potentially " 877 " cause data loss.", lblk, len); 878 WARN_ON(1); 879 } 880 881 newes.es_lblk = lblk; 882 newes.es_len = len; 883 ext4_es_store_pblock_status(&newes, pblk, status); 884 trace_ext4_es_insert_extent(inode, &newes); 885 886 ext4_es_insert_extent_check(inode, &newes); 887 888 revise_pending = sbi->s_cluster_ratio > 1 && 889 test_opt(inode->i_sb, DELALLOC) && 890 (status & (EXTENT_STATUS_WRITTEN | 891 EXTENT_STATUS_UNWRITTEN)); 892 retry: 893 if (err1 && !es1) 894 es1 = __es_alloc_extent(true); 895 if ((err1 || err2) && !es2) 896 es2 = __es_alloc_extent(true); 897 if ((err1 || err2 || err3) && revise_pending && !pr) 898 pr = __alloc_pending(true); 899 write_lock(&EXT4_I(inode)->i_es_lock); 900 901 err1 = __es_remove_extent(inode, lblk, end, NULL, es1); 902 if (err1 != 0) 903 goto error; 904 /* Free preallocated extent if it didn't get used. */ 905 if (es1) { 906 if (!es1->es_len) 907 __es_free_extent(es1); 908 es1 = NULL; 909 } 910 911 err2 = __es_insert_extent(inode, &newes, es2); 912 if (err2 == -ENOMEM && !ext4_es_must_keep(&newes)) 913 err2 = 0; 914 if (err2 != 0) 915 goto error; 916 /* Free preallocated extent if it didn't get used. */ 917 if (es2) { 918 if (!es2->es_len) 919 __es_free_extent(es2); 920 es2 = NULL; 921 } 922 923 if (revise_pending) { 924 err3 = __revise_pending(inode, lblk, len, &pr); 925 if (err3 != 0) 926 goto error; 927 if (pr) { 928 __free_pending(pr); 929 pr = NULL; 930 } 931 } 932 error: 933 write_unlock(&EXT4_I(inode)->i_es_lock); 934 if (err1 || err2 || err3) 935 goto retry; 936 937 ext4_es_print_tree(inode); 938 return; 939 } 940 941 /* 942 * ext4_es_cache_extent() inserts information into the extent status 943 * tree if and only if there isn't information about the range in 944 * question already. 945 */ 946 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, 947 ext4_lblk_t len, ext4_fsblk_t pblk, 948 unsigned int status) 949 { 950 struct extent_status *es; 951 struct extent_status newes; 952 ext4_lblk_t end = lblk + len - 1; 953 954 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 955 return; 956 957 newes.es_lblk = lblk; 958 newes.es_len = len; 959 ext4_es_store_pblock_status(&newes, pblk, status); 960 trace_ext4_es_cache_extent(inode, &newes); 961 962 if (!len) 963 return; 964 965 BUG_ON(end < lblk); 966 967 write_lock(&EXT4_I(inode)->i_es_lock); 968 969 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); 970 if (!es || es->es_lblk > end) 971 __es_insert_extent(inode, &newes, NULL); 972 write_unlock(&EXT4_I(inode)->i_es_lock); 973 } 974 975 /* 976 * ext4_es_lookup_extent() looks up an extent in extent status tree. 977 * 978 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 979 * 980 * Return: 1 on found, 0 on not 981 */ 982 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 983 ext4_lblk_t *next_lblk, 984 struct extent_status *es) 985 { 986 struct ext4_es_tree *tree; 987 struct ext4_es_stats *stats; 988 struct extent_status *es1 = NULL; 989 struct rb_node *node; 990 int found = 0; 991 992 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 993 return 0; 994 995 trace_ext4_es_lookup_extent_enter(inode, lblk); 996 es_debug("lookup extent in block %u\n", lblk); 997 998 tree = &EXT4_I(inode)->i_es_tree; 999 read_lock(&EXT4_I(inode)->i_es_lock); 1000 1001 /* find extent in cache firstly */ 1002 es->es_lblk = es->es_len = es->es_pblk = 0; 1003 es1 = READ_ONCE(tree->cache_es); 1004 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { 1005 es_debug("%u cached by [%u/%u)\n", 1006 lblk, es1->es_lblk, es1->es_len); 1007 found = 1; 1008 goto out; 1009 } 1010 1011 node = tree->root.rb_node; 1012 while (node) { 1013 es1 = rb_entry(node, struct extent_status, rb_node); 1014 if (lblk < es1->es_lblk) 1015 node = node->rb_left; 1016 else if (lblk > ext4_es_end(es1)) 1017 node = node->rb_right; 1018 else { 1019 found = 1; 1020 break; 1021 } 1022 } 1023 1024 out: 1025 stats = &EXT4_SB(inode->i_sb)->s_es_stats; 1026 if (found) { 1027 BUG_ON(!es1); 1028 es->es_lblk = es1->es_lblk; 1029 es->es_len = es1->es_len; 1030 es->es_pblk = es1->es_pblk; 1031 if (!ext4_es_is_referenced(es1)) 1032 ext4_es_set_referenced(es1); 1033 percpu_counter_inc(&stats->es_stats_cache_hits); 1034 if (next_lblk) { 1035 node = rb_next(&es1->rb_node); 1036 if (node) { 1037 es1 = rb_entry(node, struct extent_status, 1038 rb_node); 1039 *next_lblk = es1->es_lblk; 1040 } else 1041 *next_lblk = 0; 1042 } 1043 } else { 1044 percpu_counter_inc(&stats->es_stats_cache_misses); 1045 } 1046 1047 read_unlock(&EXT4_I(inode)->i_es_lock); 1048 1049 trace_ext4_es_lookup_extent_exit(inode, es, found); 1050 return found; 1051 } 1052 1053 struct rsvd_count { 1054 int ndelonly; 1055 bool first_do_lblk_found; 1056 ext4_lblk_t first_do_lblk; 1057 ext4_lblk_t last_do_lblk; 1058 struct extent_status *left_es; 1059 bool partial; 1060 ext4_lblk_t lclu; 1061 }; 1062 1063 /* 1064 * init_rsvd - initialize reserved count data before removing block range 1065 * in file from extent status tree 1066 * 1067 * @inode - file containing range 1068 * @lblk - first block in range 1069 * @es - pointer to first extent in range 1070 * @rc - pointer to reserved count data 1071 * 1072 * Assumes es is not NULL 1073 */ 1074 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk, 1075 struct extent_status *es, struct rsvd_count *rc) 1076 { 1077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1078 struct rb_node *node; 1079 1080 rc->ndelonly = 0; 1081 1082 /* 1083 * for bigalloc, note the first delonly block in the range has not 1084 * been found, record the extent containing the block to the left of 1085 * the region to be removed, if any, and note that there's no partial 1086 * cluster to track 1087 */ 1088 if (sbi->s_cluster_ratio > 1) { 1089 rc->first_do_lblk_found = false; 1090 if (lblk > es->es_lblk) { 1091 rc->left_es = es; 1092 } else { 1093 node = rb_prev(&es->rb_node); 1094 rc->left_es = node ? rb_entry(node, 1095 struct extent_status, 1096 rb_node) : NULL; 1097 } 1098 rc->partial = false; 1099 } 1100 } 1101 1102 /* 1103 * count_rsvd - count the clusters containing delayed and not unwritten 1104 * (delonly) blocks in a range within an extent and add to 1105 * the running tally in rsvd_count 1106 * 1107 * @inode - file containing extent 1108 * @lblk - first block in range 1109 * @len - length of range in blocks 1110 * @es - pointer to extent containing clusters to be counted 1111 * @rc - pointer to reserved count data 1112 * 1113 * Tracks partial clusters found at the beginning and end of extents so 1114 * they aren't overcounted when they span adjacent extents 1115 */ 1116 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len, 1117 struct extent_status *es, struct rsvd_count *rc) 1118 { 1119 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1120 ext4_lblk_t i, end, nclu; 1121 1122 if (!ext4_es_is_delonly(es)) 1123 return; 1124 1125 WARN_ON(len <= 0); 1126 1127 if (sbi->s_cluster_ratio == 1) { 1128 rc->ndelonly += (int) len; 1129 return; 1130 } 1131 1132 /* bigalloc */ 1133 1134 i = (lblk < es->es_lblk) ? es->es_lblk : lblk; 1135 end = lblk + (ext4_lblk_t) len - 1; 1136 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end; 1137 1138 /* record the first block of the first delonly extent seen */ 1139 if (!rc->first_do_lblk_found) { 1140 rc->first_do_lblk = i; 1141 rc->first_do_lblk_found = true; 1142 } 1143 1144 /* update the last lblk in the region seen so far */ 1145 rc->last_do_lblk = end; 1146 1147 /* 1148 * if we're tracking a partial cluster and the current extent 1149 * doesn't start with it, count it and stop tracking 1150 */ 1151 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) { 1152 rc->ndelonly++; 1153 rc->partial = false; 1154 } 1155 1156 /* 1157 * if the first cluster doesn't start on a cluster boundary but 1158 * ends on one, count it 1159 */ 1160 if (EXT4_LBLK_COFF(sbi, i) != 0) { 1161 if (end >= EXT4_LBLK_CFILL(sbi, i)) { 1162 rc->ndelonly++; 1163 rc->partial = false; 1164 i = EXT4_LBLK_CFILL(sbi, i) + 1; 1165 } 1166 } 1167 1168 /* 1169 * if the current cluster starts on a cluster boundary, count the 1170 * number of whole delonly clusters in the extent 1171 */ 1172 if ((i + sbi->s_cluster_ratio - 1) <= end) { 1173 nclu = (end - i + 1) >> sbi->s_cluster_bits; 1174 rc->ndelonly += nclu; 1175 i += nclu << sbi->s_cluster_bits; 1176 } 1177 1178 /* 1179 * start tracking a partial cluster if there's a partial at the end 1180 * of the current extent and we're not already tracking one 1181 */ 1182 if (!rc->partial && i <= end) { 1183 rc->partial = true; 1184 rc->lclu = EXT4_B2C(sbi, i); 1185 } 1186 } 1187 1188 /* 1189 * __pr_tree_search - search for a pending cluster reservation 1190 * 1191 * @root - root of pending reservation tree 1192 * @lclu - logical cluster to search for 1193 * 1194 * Returns the pending reservation for the cluster identified by @lclu 1195 * if found. If not, returns a reservation for the next cluster if any, 1196 * and if not, returns NULL. 1197 */ 1198 static struct pending_reservation *__pr_tree_search(struct rb_root *root, 1199 ext4_lblk_t lclu) 1200 { 1201 struct rb_node *node = root->rb_node; 1202 struct pending_reservation *pr = NULL; 1203 1204 while (node) { 1205 pr = rb_entry(node, struct pending_reservation, rb_node); 1206 if (lclu < pr->lclu) 1207 node = node->rb_left; 1208 else if (lclu > pr->lclu) 1209 node = node->rb_right; 1210 else 1211 return pr; 1212 } 1213 if (pr && lclu < pr->lclu) 1214 return pr; 1215 if (pr && lclu > pr->lclu) { 1216 node = rb_next(&pr->rb_node); 1217 return node ? rb_entry(node, struct pending_reservation, 1218 rb_node) : NULL; 1219 } 1220 return NULL; 1221 } 1222 1223 /* 1224 * get_rsvd - calculates and returns the number of cluster reservations to be 1225 * released when removing a block range from the extent status tree 1226 * and releases any pending reservations within the range 1227 * 1228 * @inode - file containing block range 1229 * @end - last block in range 1230 * @right_es - pointer to extent containing next block beyond end or NULL 1231 * @rc - pointer to reserved count data 1232 * 1233 * The number of reservations to be released is equal to the number of 1234 * clusters containing delayed and not unwritten (delonly) blocks within 1235 * the range, minus the number of clusters still containing delonly blocks 1236 * at the ends of the range, and minus the number of pending reservations 1237 * within the range. 1238 */ 1239 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end, 1240 struct extent_status *right_es, 1241 struct rsvd_count *rc) 1242 { 1243 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1244 struct pending_reservation *pr; 1245 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 1246 struct rb_node *node; 1247 ext4_lblk_t first_lclu, last_lclu; 1248 bool left_delonly, right_delonly, count_pending; 1249 struct extent_status *es; 1250 1251 if (sbi->s_cluster_ratio > 1) { 1252 /* count any remaining partial cluster */ 1253 if (rc->partial) 1254 rc->ndelonly++; 1255 1256 if (rc->ndelonly == 0) 1257 return 0; 1258 1259 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk); 1260 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk); 1261 1262 /* 1263 * decrease the delonly count by the number of clusters at the 1264 * ends of the range that still contain delonly blocks - 1265 * these clusters still need to be reserved 1266 */ 1267 left_delonly = right_delonly = false; 1268 1269 es = rc->left_es; 1270 while (es && ext4_es_end(es) >= 1271 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) { 1272 if (ext4_es_is_delonly(es)) { 1273 rc->ndelonly--; 1274 left_delonly = true; 1275 break; 1276 } 1277 node = rb_prev(&es->rb_node); 1278 if (!node) 1279 break; 1280 es = rb_entry(node, struct extent_status, rb_node); 1281 } 1282 if (right_es && (!left_delonly || first_lclu != last_lclu)) { 1283 if (end < ext4_es_end(right_es)) { 1284 es = right_es; 1285 } else { 1286 node = rb_next(&right_es->rb_node); 1287 es = node ? rb_entry(node, struct extent_status, 1288 rb_node) : NULL; 1289 } 1290 while (es && es->es_lblk <= 1291 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) { 1292 if (ext4_es_is_delonly(es)) { 1293 rc->ndelonly--; 1294 right_delonly = true; 1295 break; 1296 } 1297 node = rb_next(&es->rb_node); 1298 if (!node) 1299 break; 1300 es = rb_entry(node, struct extent_status, 1301 rb_node); 1302 } 1303 } 1304 1305 /* 1306 * Determine the block range that should be searched for 1307 * pending reservations, if any. Clusters on the ends of the 1308 * original removed range containing delonly blocks are 1309 * excluded. They've already been accounted for and it's not 1310 * possible to determine if an associated pending reservation 1311 * should be released with the information available in the 1312 * extents status tree. 1313 */ 1314 if (first_lclu == last_lclu) { 1315 if (left_delonly | right_delonly) 1316 count_pending = false; 1317 else 1318 count_pending = true; 1319 } else { 1320 if (left_delonly) 1321 first_lclu++; 1322 if (right_delonly) 1323 last_lclu--; 1324 if (first_lclu <= last_lclu) 1325 count_pending = true; 1326 else 1327 count_pending = false; 1328 } 1329 1330 /* 1331 * a pending reservation found between first_lclu and last_lclu 1332 * represents an allocated cluster that contained at least one 1333 * delonly block, so the delonly total must be reduced by one 1334 * for each pending reservation found and released 1335 */ 1336 if (count_pending) { 1337 pr = __pr_tree_search(&tree->root, first_lclu); 1338 while (pr && pr->lclu <= last_lclu) { 1339 rc->ndelonly--; 1340 node = rb_next(&pr->rb_node); 1341 rb_erase(&pr->rb_node, &tree->root); 1342 __free_pending(pr); 1343 if (!node) 1344 break; 1345 pr = rb_entry(node, struct pending_reservation, 1346 rb_node); 1347 } 1348 } 1349 } 1350 return rc->ndelonly; 1351 } 1352 1353 1354 /* 1355 * __es_remove_extent - removes block range from extent status tree 1356 * 1357 * @inode - file containing range 1358 * @lblk - first block in range 1359 * @end - last block in range 1360 * @reserved - number of cluster reservations released 1361 * @prealloc - pre-allocated es to avoid memory allocation failures 1362 * 1363 * If @reserved is not NULL and delayed allocation is enabled, counts 1364 * block/cluster reservations freed by removing range and if bigalloc 1365 * enabled cancels pending reservations as needed. Returns 0 on success, 1366 * error code on failure. 1367 */ 1368 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1369 ext4_lblk_t end, int *reserved, 1370 struct extent_status *prealloc) 1371 { 1372 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 1373 struct rb_node *node; 1374 struct extent_status *es; 1375 struct extent_status orig_es; 1376 ext4_lblk_t len1, len2; 1377 ext4_fsblk_t block; 1378 int err = 0; 1379 bool count_reserved = true; 1380 struct rsvd_count rc; 1381 1382 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC)) 1383 count_reserved = false; 1384 1385 es = __es_tree_search(&tree->root, lblk); 1386 if (!es) 1387 goto out; 1388 if (es->es_lblk > end) 1389 goto out; 1390 1391 /* Simply invalidate cache_es. */ 1392 tree->cache_es = NULL; 1393 if (count_reserved) 1394 init_rsvd(inode, lblk, es, &rc); 1395 1396 orig_es.es_lblk = es->es_lblk; 1397 orig_es.es_len = es->es_len; 1398 orig_es.es_pblk = es->es_pblk; 1399 1400 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 1401 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 1402 if (len1 > 0) 1403 es->es_len = len1; 1404 if (len2 > 0) { 1405 if (len1 > 0) { 1406 struct extent_status newes; 1407 1408 newes.es_lblk = end + 1; 1409 newes.es_len = len2; 1410 block = 0x7FDEADBEEFULL; 1411 if (ext4_es_is_written(&orig_es) || 1412 ext4_es_is_unwritten(&orig_es)) 1413 block = ext4_es_pblock(&orig_es) + 1414 orig_es.es_len - len2; 1415 ext4_es_store_pblock_status(&newes, block, 1416 ext4_es_status(&orig_es)); 1417 err = __es_insert_extent(inode, &newes, prealloc); 1418 if (err) { 1419 if (!ext4_es_must_keep(&newes)) 1420 return 0; 1421 1422 es->es_lblk = orig_es.es_lblk; 1423 es->es_len = orig_es.es_len; 1424 goto out; 1425 } 1426 } else { 1427 es->es_lblk = end + 1; 1428 es->es_len = len2; 1429 if (ext4_es_is_written(es) || 1430 ext4_es_is_unwritten(es)) { 1431 block = orig_es.es_pblk + orig_es.es_len - len2; 1432 ext4_es_store_pblock(es, block); 1433 } 1434 } 1435 if (count_reserved) 1436 count_rsvd(inode, orig_es.es_lblk + len1, 1437 orig_es.es_len - len1 - len2, &orig_es, &rc); 1438 goto out_get_reserved; 1439 } 1440 1441 if (len1 > 0) { 1442 if (count_reserved) 1443 count_rsvd(inode, lblk, orig_es.es_len - len1, 1444 &orig_es, &rc); 1445 node = rb_next(&es->rb_node); 1446 if (node) 1447 es = rb_entry(node, struct extent_status, rb_node); 1448 else 1449 es = NULL; 1450 } 1451 1452 while (es && ext4_es_end(es) <= end) { 1453 if (count_reserved) 1454 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc); 1455 node = rb_next(&es->rb_node); 1456 rb_erase(&es->rb_node, &tree->root); 1457 ext4_es_free_extent(inode, es); 1458 if (!node) { 1459 es = NULL; 1460 break; 1461 } 1462 es = rb_entry(node, struct extent_status, rb_node); 1463 } 1464 1465 if (es && es->es_lblk < end + 1) { 1466 ext4_lblk_t orig_len = es->es_len; 1467 1468 len1 = ext4_es_end(es) - end; 1469 if (count_reserved) 1470 count_rsvd(inode, es->es_lblk, orig_len - len1, 1471 es, &rc); 1472 es->es_lblk = end + 1; 1473 es->es_len = len1; 1474 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 1475 block = es->es_pblk + orig_len - len1; 1476 ext4_es_store_pblock(es, block); 1477 } 1478 } 1479 1480 out_get_reserved: 1481 if (count_reserved) 1482 *reserved = get_rsvd(inode, end, es, &rc); 1483 out: 1484 return err; 1485 } 1486 1487 /* 1488 * ext4_es_remove_extent - removes block range from extent status tree 1489 * 1490 * @inode - file containing range 1491 * @lblk - first block in range 1492 * @len - number of blocks to remove 1493 * 1494 * Reduces block/cluster reservation count and for bigalloc cancels pending 1495 * reservations as needed. 1496 */ 1497 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1498 ext4_lblk_t len) 1499 { 1500 ext4_lblk_t end; 1501 int err = 0; 1502 int reserved = 0; 1503 struct extent_status *es = NULL; 1504 1505 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1506 return; 1507 1508 trace_ext4_es_remove_extent(inode, lblk, len); 1509 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 1510 lblk, len, inode->i_ino); 1511 1512 if (!len) 1513 return; 1514 1515 end = lblk + len - 1; 1516 BUG_ON(end < lblk); 1517 1518 retry: 1519 if (err && !es) 1520 es = __es_alloc_extent(true); 1521 /* 1522 * ext4_clear_inode() depends on us taking i_es_lock unconditionally 1523 * so that we are sure __es_shrink() is done with the inode before it 1524 * is reclaimed. 1525 */ 1526 write_lock(&EXT4_I(inode)->i_es_lock); 1527 err = __es_remove_extent(inode, lblk, end, &reserved, es); 1528 /* Free preallocated extent if it didn't get used. */ 1529 if (es) { 1530 if (!es->es_len) 1531 __es_free_extent(es); 1532 es = NULL; 1533 } 1534 write_unlock(&EXT4_I(inode)->i_es_lock); 1535 if (err) 1536 goto retry; 1537 1538 ext4_es_print_tree(inode); 1539 ext4_da_release_space(inode, reserved); 1540 return; 1541 } 1542 1543 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 1544 struct ext4_inode_info *locked_ei) 1545 { 1546 struct ext4_inode_info *ei; 1547 struct ext4_es_stats *es_stats; 1548 ktime_t start_time; 1549 u64 scan_time; 1550 int nr_to_walk; 1551 int nr_shrunk = 0; 1552 int retried = 0, nr_skipped = 0; 1553 1554 es_stats = &sbi->s_es_stats; 1555 start_time = ktime_get(); 1556 1557 retry: 1558 spin_lock(&sbi->s_es_lock); 1559 nr_to_walk = sbi->s_es_nr_inode; 1560 while (nr_to_walk-- > 0) { 1561 if (list_empty(&sbi->s_es_list)) { 1562 spin_unlock(&sbi->s_es_lock); 1563 goto out; 1564 } 1565 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, 1566 i_es_list); 1567 /* Move the inode to the tail */ 1568 list_move_tail(&ei->i_es_list, &sbi->s_es_list); 1569 1570 /* 1571 * Normally we try hard to avoid shrinking precached inodes, 1572 * but we will as a last resort. 1573 */ 1574 if (!retried && ext4_test_inode_state(&ei->vfs_inode, 1575 EXT4_STATE_EXT_PRECACHED)) { 1576 nr_skipped++; 1577 continue; 1578 } 1579 1580 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { 1581 nr_skipped++; 1582 continue; 1583 } 1584 /* 1585 * Now we hold i_es_lock which protects us from inode reclaim 1586 * freeing inode under us 1587 */ 1588 spin_unlock(&sbi->s_es_lock); 1589 1590 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); 1591 write_unlock(&ei->i_es_lock); 1592 1593 if (nr_to_scan <= 0) 1594 goto out; 1595 spin_lock(&sbi->s_es_lock); 1596 } 1597 spin_unlock(&sbi->s_es_lock); 1598 1599 /* 1600 * If we skipped any inodes, and we weren't able to make any 1601 * forward progress, try again to scan precached inodes. 1602 */ 1603 if ((nr_shrunk == 0) && nr_skipped && !retried) { 1604 retried++; 1605 goto retry; 1606 } 1607 1608 if (locked_ei && nr_shrunk == 0) 1609 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); 1610 1611 out: 1612 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1613 if (likely(es_stats->es_stats_scan_time)) 1614 es_stats->es_stats_scan_time = (scan_time + 1615 es_stats->es_stats_scan_time*3) / 4; 1616 else 1617 es_stats->es_stats_scan_time = scan_time; 1618 if (scan_time > es_stats->es_stats_max_scan_time) 1619 es_stats->es_stats_max_scan_time = scan_time; 1620 if (likely(es_stats->es_stats_shrunk)) 1621 es_stats->es_stats_shrunk = (nr_shrunk + 1622 es_stats->es_stats_shrunk*3) / 4; 1623 else 1624 es_stats->es_stats_shrunk = nr_shrunk; 1625 1626 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, 1627 nr_skipped, retried); 1628 return nr_shrunk; 1629 } 1630 1631 static unsigned long ext4_es_count(struct shrinker *shrink, 1632 struct shrink_control *sc) 1633 { 1634 unsigned long nr; 1635 struct ext4_sb_info *sbi; 1636 1637 sbi = shrink->private_data; 1638 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1639 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); 1640 return nr; 1641 } 1642 1643 static unsigned long ext4_es_scan(struct shrinker *shrink, 1644 struct shrink_control *sc) 1645 { 1646 struct ext4_sb_info *sbi = shrink->private_data; 1647 int nr_to_scan = sc->nr_to_scan; 1648 int ret, nr_shrunk; 1649 1650 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1651 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); 1652 1653 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); 1654 1655 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1656 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); 1657 return nr_shrunk; 1658 } 1659 1660 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) 1661 { 1662 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); 1663 struct ext4_es_stats *es_stats = &sbi->s_es_stats; 1664 struct ext4_inode_info *ei, *max = NULL; 1665 unsigned int inode_cnt = 0; 1666 1667 if (v != SEQ_START_TOKEN) 1668 return 0; 1669 1670 /* here we just find an inode that has the max nr. of objects */ 1671 spin_lock(&sbi->s_es_lock); 1672 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { 1673 inode_cnt++; 1674 if (max && max->i_es_all_nr < ei->i_es_all_nr) 1675 max = ei; 1676 else if (!max) 1677 max = ei; 1678 } 1679 spin_unlock(&sbi->s_es_lock); 1680 1681 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", 1682 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), 1683 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); 1684 seq_printf(seq, " %lld/%lld cache hits/misses\n", 1685 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits), 1686 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses)); 1687 if (inode_cnt) 1688 seq_printf(seq, " %d inodes on list\n", inode_cnt); 1689 1690 seq_printf(seq, "average:\n %llu us scan time\n", 1691 div_u64(es_stats->es_stats_scan_time, 1000)); 1692 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); 1693 if (inode_cnt) 1694 seq_printf(seq, 1695 "maximum:\n %lu inode (%u objects, %u reclaimable)\n" 1696 " %llu us max scan time\n", 1697 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, 1698 div_u64(es_stats->es_stats_max_scan_time, 1000)); 1699 1700 return 0; 1701 } 1702 1703 int ext4_es_register_shrinker(struct ext4_sb_info *sbi) 1704 { 1705 int err; 1706 1707 /* Make sure we have enough bits for physical block number */ 1708 BUILD_BUG_ON(ES_SHIFT < 48); 1709 INIT_LIST_HEAD(&sbi->s_es_list); 1710 sbi->s_es_nr_inode = 0; 1711 spin_lock_init(&sbi->s_es_lock); 1712 sbi->s_es_stats.es_stats_shrunk = 0; 1713 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0, 1714 GFP_KERNEL); 1715 if (err) 1716 return err; 1717 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0, 1718 GFP_KERNEL); 1719 if (err) 1720 goto err1; 1721 sbi->s_es_stats.es_stats_scan_time = 0; 1722 sbi->s_es_stats.es_stats_max_scan_time = 0; 1723 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); 1724 if (err) 1725 goto err2; 1726 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); 1727 if (err) 1728 goto err3; 1729 1730 sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id); 1731 if (!sbi->s_es_shrinker) { 1732 err = -ENOMEM; 1733 goto err4; 1734 } 1735 1736 sbi->s_es_shrinker->scan_objects = ext4_es_scan; 1737 sbi->s_es_shrinker->count_objects = ext4_es_count; 1738 sbi->s_es_shrinker->private_data = sbi; 1739 1740 shrinker_register(sbi->s_es_shrinker); 1741 1742 return 0; 1743 err4: 1744 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1745 err3: 1746 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1747 err2: 1748 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); 1749 err1: 1750 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); 1751 return err; 1752 } 1753 1754 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 1755 { 1756 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); 1757 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); 1758 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1759 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1760 shrinker_free(sbi->s_es_shrinker); 1761 } 1762 1763 /* 1764 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at 1765 * most *nr_to_scan extents, update *nr_to_scan accordingly. 1766 * 1767 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. 1768 * Increment *nr_shrunk by the number of reclaimed extents. Also update 1769 * ei->i_es_shrink_lblk to where we should continue scanning. 1770 */ 1771 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, 1772 int *nr_to_scan, int *nr_shrunk) 1773 { 1774 struct inode *inode = &ei->vfs_inode; 1775 struct ext4_es_tree *tree = &ei->i_es_tree; 1776 struct extent_status *es; 1777 struct rb_node *node; 1778 1779 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); 1780 if (!es) 1781 goto out_wrap; 1782 1783 while (*nr_to_scan > 0) { 1784 if (es->es_lblk > end) { 1785 ei->i_es_shrink_lblk = end + 1; 1786 return 0; 1787 } 1788 1789 (*nr_to_scan)--; 1790 node = rb_next(&es->rb_node); 1791 1792 if (ext4_es_must_keep(es)) 1793 goto next; 1794 if (ext4_es_is_referenced(es)) { 1795 ext4_es_clear_referenced(es); 1796 goto next; 1797 } 1798 1799 rb_erase(&es->rb_node, &tree->root); 1800 ext4_es_free_extent(inode, es); 1801 (*nr_shrunk)++; 1802 next: 1803 if (!node) 1804 goto out_wrap; 1805 es = rb_entry(node, struct extent_status, rb_node); 1806 } 1807 ei->i_es_shrink_lblk = es->es_lblk; 1808 return 1; 1809 out_wrap: 1810 ei->i_es_shrink_lblk = 0; 1811 return 0; 1812 } 1813 1814 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) 1815 { 1816 struct inode *inode = &ei->vfs_inode; 1817 int nr_shrunk = 0; 1818 ext4_lblk_t start = ei->i_es_shrink_lblk; 1819 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1820 DEFAULT_RATELIMIT_BURST); 1821 1822 if (ei->i_es_shk_nr == 0) 1823 return 0; 1824 1825 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && 1826 __ratelimit(&_rs)) 1827 ext4_warning(inode->i_sb, "forced shrink of precached extents"); 1828 1829 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && 1830 start != 0) 1831 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); 1832 1833 ei->i_es_tree.cache_es = NULL; 1834 return nr_shrunk; 1835 } 1836 1837 /* 1838 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove 1839 * discretionary entries from the extent status cache. (Some entries 1840 * must be present for proper operations.) 1841 */ 1842 void ext4_clear_inode_es(struct inode *inode) 1843 { 1844 struct ext4_inode_info *ei = EXT4_I(inode); 1845 struct extent_status *es; 1846 struct ext4_es_tree *tree; 1847 struct rb_node *node; 1848 1849 write_lock(&ei->i_es_lock); 1850 tree = &EXT4_I(inode)->i_es_tree; 1851 tree->cache_es = NULL; 1852 node = rb_first(&tree->root); 1853 while (node) { 1854 es = rb_entry(node, struct extent_status, rb_node); 1855 node = rb_next(node); 1856 if (!ext4_es_must_keep(es)) { 1857 rb_erase(&es->rb_node, &tree->root); 1858 ext4_es_free_extent(inode, es); 1859 } 1860 } 1861 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 1862 write_unlock(&ei->i_es_lock); 1863 } 1864 1865 #ifdef ES_DEBUG__ 1866 static void ext4_print_pending_tree(struct inode *inode) 1867 { 1868 struct ext4_pending_tree *tree; 1869 struct rb_node *node; 1870 struct pending_reservation *pr; 1871 1872 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); 1873 tree = &EXT4_I(inode)->i_pending_tree; 1874 node = rb_first(&tree->root); 1875 while (node) { 1876 pr = rb_entry(node, struct pending_reservation, rb_node); 1877 printk(KERN_DEBUG " %u", pr->lclu); 1878 node = rb_next(node); 1879 } 1880 printk(KERN_DEBUG "\n"); 1881 } 1882 #else 1883 #define ext4_print_pending_tree(inode) 1884 #endif 1885 1886 int __init ext4_init_pending(void) 1887 { 1888 ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT); 1889 if (ext4_pending_cachep == NULL) 1890 return -ENOMEM; 1891 return 0; 1892 } 1893 1894 void ext4_exit_pending(void) 1895 { 1896 kmem_cache_destroy(ext4_pending_cachep); 1897 } 1898 1899 void ext4_init_pending_tree(struct ext4_pending_tree *tree) 1900 { 1901 tree->root = RB_ROOT; 1902 } 1903 1904 /* 1905 * __get_pending - retrieve a pointer to a pending reservation 1906 * 1907 * @inode - file containing the pending cluster reservation 1908 * @lclu - logical cluster of interest 1909 * 1910 * Returns a pointer to a pending reservation if it's a member of 1911 * the set, and NULL if not. Must be called holding i_es_lock. 1912 */ 1913 static struct pending_reservation *__get_pending(struct inode *inode, 1914 ext4_lblk_t lclu) 1915 { 1916 struct ext4_pending_tree *tree; 1917 struct rb_node *node; 1918 struct pending_reservation *pr = NULL; 1919 1920 tree = &EXT4_I(inode)->i_pending_tree; 1921 node = (&tree->root)->rb_node; 1922 1923 while (node) { 1924 pr = rb_entry(node, struct pending_reservation, rb_node); 1925 if (lclu < pr->lclu) 1926 node = node->rb_left; 1927 else if (lclu > pr->lclu) 1928 node = node->rb_right; 1929 else if (lclu == pr->lclu) 1930 return pr; 1931 } 1932 return NULL; 1933 } 1934 1935 /* 1936 * __insert_pending - adds a pending cluster reservation to the set of 1937 * pending reservations 1938 * 1939 * @inode - file containing the cluster 1940 * @lblk - logical block in the cluster to be added 1941 * @prealloc - preallocated pending entry 1942 * 1943 * Returns 0 on successful insertion and -ENOMEM on failure. If the 1944 * pending reservation is already in the set, returns successfully. 1945 */ 1946 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk, 1947 struct pending_reservation **prealloc) 1948 { 1949 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1950 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 1951 struct rb_node **p = &tree->root.rb_node; 1952 struct rb_node *parent = NULL; 1953 struct pending_reservation *pr; 1954 ext4_lblk_t lclu; 1955 int ret = 0; 1956 1957 lclu = EXT4_B2C(sbi, lblk); 1958 /* search to find parent for insertion */ 1959 while (*p) { 1960 parent = *p; 1961 pr = rb_entry(parent, struct pending_reservation, rb_node); 1962 1963 if (lclu < pr->lclu) { 1964 p = &(*p)->rb_left; 1965 } else if (lclu > pr->lclu) { 1966 p = &(*p)->rb_right; 1967 } else { 1968 /* pending reservation already inserted */ 1969 goto out; 1970 } 1971 } 1972 1973 if (likely(*prealloc == NULL)) { 1974 pr = __alloc_pending(false); 1975 if (!pr) { 1976 ret = -ENOMEM; 1977 goto out; 1978 } 1979 } else { 1980 pr = *prealloc; 1981 *prealloc = NULL; 1982 } 1983 pr->lclu = lclu; 1984 1985 rb_link_node(&pr->rb_node, parent, p); 1986 rb_insert_color(&pr->rb_node, &tree->root); 1987 1988 out: 1989 return ret; 1990 } 1991 1992 /* 1993 * __remove_pending - removes a pending cluster reservation from the set 1994 * of pending reservations 1995 * 1996 * @inode - file containing the cluster 1997 * @lblk - logical block in the pending cluster reservation to be removed 1998 * 1999 * Returns successfully if pending reservation is not a member of the set. 2000 */ 2001 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) 2002 { 2003 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2004 struct pending_reservation *pr; 2005 struct ext4_pending_tree *tree; 2006 2007 pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); 2008 if (pr != NULL) { 2009 tree = &EXT4_I(inode)->i_pending_tree; 2010 rb_erase(&pr->rb_node, &tree->root); 2011 __free_pending(pr); 2012 } 2013 } 2014 2015 /* 2016 * ext4_remove_pending - removes a pending cluster reservation from the set 2017 * of pending reservations 2018 * 2019 * @inode - file containing the cluster 2020 * @lblk - logical block in the pending cluster reservation to be removed 2021 * 2022 * Locking for external use of __remove_pending. 2023 */ 2024 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) 2025 { 2026 struct ext4_inode_info *ei = EXT4_I(inode); 2027 2028 write_lock(&ei->i_es_lock); 2029 __remove_pending(inode, lblk); 2030 write_unlock(&ei->i_es_lock); 2031 } 2032 2033 /* 2034 * ext4_is_pending - determine whether a cluster has a pending reservation 2035 * on it 2036 * 2037 * @inode - file containing the cluster 2038 * @lblk - logical block in the cluster 2039 * 2040 * Returns true if there's a pending reservation for the cluster in the 2041 * set of pending reservations, and false if not. 2042 */ 2043 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) 2044 { 2045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2046 struct ext4_inode_info *ei = EXT4_I(inode); 2047 bool ret; 2048 2049 read_lock(&ei->i_es_lock); 2050 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); 2051 read_unlock(&ei->i_es_lock); 2052 2053 return ret; 2054 } 2055 2056 /* 2057 * ext4_es_insert_delayed_extent - adds some delayed blocks to the extents 2058 * status tree, adding a pending reservation 2059 * where needed 2060 * 2061 * @inode - file containing the newly added block 2062 * @lblk - start logical block to be added 2063 * @len - length of blocks to be added 2064 * @lclu_allocated/end_allocated - indicates whether a physical cluster has 2065 * been allocated for the logical cluster 2066 * that contains the start/end block. Note that 2067 * end_allocated should always be set to false 2068 * if the start and the end block are in the 2069 * same cluster 2070 */ 2071 void ext4_es_insert_delayed_extent(struct inode *inode, ext4_lblk_t lblk, 2072 ext4_lblk_t len, bool lclu_allocated, 2073 bool end_allocated) 2074 { 2075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2076 struct extent_status newes; 2077 ext4_lblk_t end = lblk + len - 1; 2078 int err1 = 0, err2 = 0, err3 = 0; 2079 struct extent_status *es1 = NULL; 2080 struct extent_status *es2 = NULL; 2081 struct pending_reservation *pr1 = NULL; 2082 struct pending_reservation *pr2 = NULL; 2083 2084 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 2085 return; 2086 2087 es_debug("add [%u/%u) delayed to extent status tree of inode %lu\n", 2088 lblk, len, inode->i_ino); 2089 if (!len) 2090 return; 2091 2092 WARN_ON_ONCE((EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) && 2093 end_allocated); 2094 2095 newes.es_lblk = lblk; 2096 newes.es_len = len; 2097 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); 2098 trace_ext4_es_insert_delayed_extent(inode, &newes, lclu_allocated, 2099 end_allocated); 2100 2101 ext4_es_insert_extent_check(inode, &newes); 2102 2103 retry: 2104 if (err1 && !es1) 2105 es1 = __es_alloc_extent(true); 2106 if ((err1 || err2) && !es2) 2107 es2 = __es_alloc_extent(true); 2108 if (err1 || err2 || err3) { 2109 if (lclu_allocated && !pr1) 2110 pr1 = __alloc_pending(true); 2111 if (end_allocated && !pr2) 2112 pr2 = __alloc_pending(true); 2113 } 2114 write_lock(&EXT4_I(inode)->i_es_lock); 2115 2116 err1 = __es_remove_extent(inode, lblk, end, NULL, es1); 2117 if (err1 != 0) 2118 goto error; 2119 /* Free preallocated extent if it didn't get used. */ 2120 if (es1) { 2121 if (!es1->es_len) 2122 __es_free_extent(es1); 2123 es1 = NULL; 2124 } 2125 2126 err2 = __es_insert_extent(inode, &newes, es2); 2127 if (err2 != 0) 2128 goto error; 2129 /* Free preallocated extent if it didn't get used. */ 2130 if (es2) { 2131 if (!es2->es_len) 2132 __es_free_extent(es2); 2133 es2 = NULL; 2134 } 2135 2136 if (lclu_allocated) { 2137 err3 = __insert_pending(inode, lblk, &pr1); 2138 if (err3 != 0) 2139 goto error; 2140 if (pr1) { 2141 __free_pending(pr1); 2142 pr1 = NULL; 2143 } 2144 } 2145 if (end_allocated) { 2146 err3 = __insert_pending(inode, end, &pr2); 2147 if (err3 != 0) 2148 goto error; 2149 if (pr2) { 2150 __free_pending(pr2); 2151 pr2 = NULL; 2152 } 2153 } 2154 error: 2155 write_unlock(&EXT4_I(inode)->i_es_lock); 2156 if (err1 || err2 || err3) 2157 goto retry; 2158 2159 ext4_es_print_tree(inode); 2160 ext4_print_pending_tree(inode); 2161 return; 2162 } 2163 2164 /* 2165 * __es_delayed_clu - count number of clusters containing blocks that 2166 * are delayed only 2167 * 2168 * @inode - file containing block range 2169 * @start - logical block defining start of range 2170 * @end - logical block defining end of range 2171 * 2172 * Returns the number of clusters containing only delayed (not delayed 2173 * and unwritten) blocks in the range specified by @start and @end. Any 2174 * cluster or part of a cluster within the range and containing a delayed 2175 * and not unwritten block within the range is counted as a whole cluster. 2176 */ 2177 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start, 2178 ext4_lblk_t end) 2179 { 2180 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 2181 struct extent_status *es; 2182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2183 struct rb_node *node; 2184 ext4_lblk_t first_lclu, last_lclu; 2185 unsigned long long last_counted_lclu; 2186 unsigned int n = 0; 2187 2188 /* guaranteed to be unequal to any ext4_lblk_t value */ 2189 last_counted_lclu = ~0ULL; 2190 2191 es = __es_tree_search(&tree->root, start); 2192 2193 while (es && (es->es_lblk <= end)) { 2194 if (ext4_es_is_delonly(es)) { 2195 if (es->es_lblk <= start) 2196 first_lclu = EXT4_B2C(sbi, start); 2197 else 2198 first_lclu = EXT4_B2C(sbi, es->es_lblk); 2199 2200 if (ext4_es_end(es) >= end) 2201 last_lclu = EXT4_B2C(sbi, end); 2202 else 2203 last_lclu = EXT4_B2C(sbi, ext4_es_end(es)); 2204 2205 if (first_lclu == last_counted_lclu) 2206 n += last_lclu - first_lclu; 2207 else 2208 n += last_lclu - first_lclu + 1; 2209 last_counted_lclu = last_lclu; 2210 } 2211 node = rb_next(&es->rb_node); 2212 if (!node) 2213 break; 2214 es = rb_entry(node, struct extent_status, rb_node); 2215 } 2216 2217 return n; 2218 } 2219 2220 /* 2221 * ext4_es_delayed_clu - count number of clusters containing blocks that 2222 * are both delayed and unwritten 2223 * 2224 * @inode - file containing block range 2225 * @lblk - logical block defining start of range 2226 * @len - number of blocks in range 2227 * 2228 * Locking for external use of __es_delayed_clu(). 2229 */ 2230 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, 2231 ext4_lblk_t len) 2232 { 2233 struct ext4_inode_info *ei = EXT4_I(inode); 2234 ext4_lblk_t end; 2235 unsigned int n; 2236 2237 if (len == 0) 2238 return 0; 2239 2240 end = lblk + len - 1; 2241 WARN_ON(end < lblk); 2242 2243 read_lock(&ei->i_es_lock); 2244 2245 n = __es_delayed_clu(inode, lblk, end); 2246 2247 read_unlock(&ei->i_es_lock); 2248 2249 return n; 2250 } 2251 2252 /* 2253 * __revise_pending - makes, cancels, or leaves unchanged pending cluster 2254 * reservations for a specified block range depending 2255 * upon the presence or absence of delayed blocks 2256 * outside the range within clusters at the ends of the 2257 * range 2258 * 2259 * @inode - file containing the range 2260 * @lblk - logical block defining the start of range 2261 * @len - length of range in blocks 2262 * @prealloc - preallocated pending entry 2263 * 2264 * Used after a newly allocated extent is added to the extents status tree. 2265 * Requires that the extents in the range have either written or unwritten 2266 * status. Must be called while holding i_es_lock. 2267 */ 2268 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, 2269 ext4_lblk_t len, 2270 struct pending_reservation **prealloc) 2271 { 2272 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2273 ext4_lblk_t end = lblk + len - 1; 2274 ext4_lblk_t first, last; 2275 bool f_del = false, l_del = false; 2276 int ret = 0; 2277 2278 if (len == 0) 2279 return 0; 2280 2281 /* 2282 * Two cases - block range within single cluster and block range 2283 * spanning two or more clusters. Note that a cluster belonging 2284 * to a range starting and/or ending on a cluster boundary is treated 2285 * as if it does not contain a delayed extent. The new range may 2286 * have allocated space for previously delayed blocks out to the 2287 * cluster boundary, requiring that any pre-existing pending 2288 * reservation be canceled. Because this code only looks at blocks 2289 * outside the range, it should revise pending reservations 2290 * correctly even if the extent represented by the range can't be 2291 * inserted in the extents status tree due to ENOSPC. 2292 */ 2293 2294 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { 2295 first = EXT4_LBLK_CMASK(sbi, lblk); 2296 if (first != lblk) 2297 f_del = __es_scan_range(inode, &ext4_es_is_delonly, 2298 first, lblk - 1); 2299 if (f_del) { 2300 ret = __insert_pending(inode, first, prealloc); 2301 if (ret < 0) 2302 goto out; 2303 } else { 2304 last = EXT4_LBLK_CMASK(sbi, end) + 2305 sbi->s_cluster_ratio - 1; 2306 if (last != end) 2307 l_del = __es_scan_range(inode, 2308 &ext4_es_is_delonly, 2309 end + 1, last); 2310 if (l_del) { 2311 ret = __insert_pending(inode, last, prealloc); 2312 if (ret < 0) 2313 goto out; 2314 } else 2315 __remove_pending(inode, last); 2316 } 2317 } else { 2318 first = EXT4_LBLK_CMASK(sbi, lblk); 2319 if (first != lblk) 2320 f_del = __es_scan_range(inode, &ext4_es_is_delonly, 2321 first, lblk - 1); 2322 if (f_del) { 2323 ret = __insert_pending(inode, first, prealloc); 2324 if (ret < 0) 2325 goto out; 2326 } else 2327 __remove_pending(inode, first); 2328 2329 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; 2330 if (last != end) 2331 l_del = __es_scan_range(inode, &ext4_es_is_delonly, 2332 end + 1, last); 2333 if (l_del) { 2334 ret = __insert_pending(inode, last, prealloc); 2335 if (ret < 0) 2336 goto out; 2337 } else 2338 __remove_pending(inode, last); 2339 } 2340 out: 2341 return ret; 2342 } 2343