1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/ext4/extents_status.c 4 * 5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 6 * Modified by 7 * Allison Henderson <achender@linux.vnet.ibm.com> 8 * Hugh Dickins <hughd@google.com> 9 * Zheng Liu <wenqing.lz@taobao.com> 10 * 11 * Ext4 extents status tree core functions. 12 */ 13 #include <linux/list_sort.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include "ext4.h" 17 18 #include <trace/events/ext4.h> 19 20 /* 21 * According to previous discussion in Ext4 Developer Workshop, we 22 * will introduce a new structure called io tree to track all extent 23 * status in order to solve some problems that we have met 24 * (e.g. Reservation space warning), and provide extent-level locking. 25 * Delay extent tree is the first step to achieve this goal. It is 26 * original built by Yongqiang Yang. At that time it is called delay 27 * extent tree, whose goal is only track delayed extents in memory to 28 * simplify the implementation of fiemap and bigalloc, and introduce 29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 30 * delay extent tree at the first commit. But for better understand 31 * what it does, it has been rename to extent status tree. 32 * 33 * Step1: 34 * Currently the first step has been done. All delayed extents are 35 * tracked in the tree. It maintains the delayed extent when a delayed 36 * allocation is issued, and the delayed extent is written out or 37 * invalidated. Therefore the implementation of fiemap and bigalloc 38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 39 * 40 * The following comment describes the implemenmtation of extent 41 * status tree and future works. 42 * 43 * Step2: 44 * In this step all extent status are tracked by extent status tree. 45 * Thus, we can first try to lookup a block mapping in this tree before 46 * finding it in extent tree. Hence, single extent cache can be removed 47 * because extent status tree can do a better job. Extents in status 48 * tree are loaded on-demand. Therefore, the extent status tree may not 49 * contain all of the extents in a file. Meanwhile we define a shrinker 50 * to reclaim memory from extent status tree because fragmented extent 51 * tree will make status tree cost too much memory. written/unwritten/- 52 * hole extents in the tree will be reclaimed by this shrinker when we 53 * are under high memory pressure. Delayed extents will not be 54 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 55 */ 56 57 /* 58 * Extent status tree implementation for ext4. 59 * 60 * 61 * ========================================================================== 62 * Extent status tree tracks all extent status. 63 * 64 * 1. Why we need to implement extent status tree? 65 * 66 * Without extent status tree, ext4 identifies a delayed extent by looking 67 * up page cache, this has several deficiencies - complicated, buggy, 68 * and inefficient code. 69 * 70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 71 * block or a range of blocks are belonged to a delayed extent. 72 * 73 * Let us have a look at how they do without extent status tree. 74 * -- FIEMAP 75 * FIEMAP looks up page cache to identify delayed allocations from holes. 76 * 77 * -- SEEK_HOLE/DATA 78 * SEEK_HOLE/DATA has the same problem as FIEMAP. 79 * 80 * -- bigalloc 81 * bigalloc looks up page cache to figure out if a block is 82 * already under delayed allocation or not to determine whether 83 * quota reserving is needed for the cluster. 84 * 85 * -- writeout 86 * Writeout looks up whole page cache to see if a buffer is 87 * mapped, If there are not very many delayed buffers, then it is 88 * time consuming. 89 * 90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 91 * bigalloc and writeout can figure out if a block or a range of 92 * blocks is under delayed allocation(belonged to a delayed extent) or 93 * not by searching the extent tree. 94 * 95 * 96 * ========================================================================== 97 * 2. Ext4 extent status tree impelmentation 98 * 99 * -- extent 100 * A extent is a range of blocks which are contiguous logically and 101 * physically. Unlike extent in extent tree, this extent in ext4 is 102 * a in-memory struct, there is no corresponding on-disk data. There 103 * is no limit on length of extent, so an extent can contain as many 104 * blocks as they are contiguous logically and physically. 105 * 106 * -- extent status tree 107 * Every inode has an extent status tree and all allocation blocks 108 * are added to the tree with different status. The extent in the 109 * tree are ordered by logical block no. 110 * 111 * -- operations on a extent status tree 112 * There are three important operations on a delayed extent tree: find 113 * next extent, adding a extent(a range of blocks) and removing a extent. 114 * 115 * -- race on a extent status tree 116 * Extent status tree is protected by inode->i_es_lock. 117 * 118 * -- memory consumption 119 * Fragmented extent tree will make extent status tree cost too much 120 * memory. Hence, we will reclaim written/unwritten/hole extents from 121 * the tree under a heavy memory pressure. 122 * 123 * ========================================================================== 124 * 3. Assurance of Ext4 extent status tree consistency 125 * 126 * When mapping blocks, Ext4 queries the extent status tree first and should 127 * always trusts that the extent status tree is consistent and up to date. 128 * Therefore, it is important to adheres to the following rules when createing, 129 * modifying and removing extents. 130 * 131 * 1. Besides fastcommit replay, when Ext4 creates or queries block mappings, 132 * the extent information should always be processed through the extent 133 * status tree instead of being organized manually through the on-disk 134 * extent tree. 135 * 136 * 2. When updating the extent tree, Ext4 should acquire the i_data_sem 137 * exclusively and update the extent status tree atomically. If the extents 138 * to be modified are large enough to exceed the range that a single 139 * i_data_sem can process (as ext4_datasem_ensure_credits() may drop 140 * i_data_sem to restart a transaction), it must (e.g. as ext4_punch_hole() 141 * does): 142 * 143 * a) Hold the i_rwsem and invalidate_lock exclusively. This ensures 144 * exclusion against page faults, as well as reads and writes that may 145 * concurrently modify the extent status tree. 146 * b) Evict all page cache in the affected range and recommend rebuilding 147 * or dropping the extent status tree after modifying the on-disk 148 * extent tree. This ensures exclusion against concurrent writebacks 149 * that do not hold those locks but only holds a folio lock. 150 * 151 * 3. Based on the rules above, when querying block mappings, Ext4 should at 152 * least hold the i_rwsem or invalidate_lock or folio lock(s) for the 153 * specified querying range. 154 * 155 * ========================================================================== 156 * 4. Performance analysis 157 * 158 * -- overhead 159 * 1. There is a cache extent for write access, so if writes are 160 * not very random, adding space operaions are in O(1) time. 161 * 162 * -- gain 163 * 2. Code is much simpler, more readable, more maintainable and 164 * more efficient. 165 * 166 * 167 * ========================================================================== 168 * 5. TODO list 169 * 170 * -- Refactor delayed space reservation 171 * 172 * -- Extent-level locking 173 */ 174 175 static struct kmem_cache *ext4_es_cachep; 176 static struct kmem_cache *ext4_pending_cachep; 177 178 static int __es_insert_extent(struct inode *inode, struct extent_status *newes, 179 struct extent_status *prealloc); 180 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 181 ext4_lblk_t end, int *reserved, 182 struct extent_status *prealloc); 183 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); 184 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 185 struct ext4_inode_info *locked_ei); 186 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, 187 ext4_lblk_t len, 188 struct pending_reservation **prealloc); 189 190 int __init ext4_init_es(void) 191 { 192 ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT); 193 if (ext4_es_cachep == NULL) 194 return -ENOMEM; 195 return 0; 196 } 197 198 void ext4_exit_es(void) 199 { 200 kmem_cache_destroy(ext4_es_cachep); 201 } 202 203 void ext4_es_init_tree(struct ext4_es_tree *tree) 204 { 205 tree->root = RB_ROOT; 206 tree->cache_es = NULL; 207 } 208 209 #ifdef ES_DEBUG__ 210 static void ext4_es_print_tree(struct inode *inode) 211 { 212 struct ext4_es_tree *tree; 213 struct rb_node *node; 214 215 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 216 tree = &EXT4_I(inode)->i_es_tree; 217 node = rb_first(&tree->root); 218 while (node) { 219 struct extent_status *es; 220 es = rb_entry(node, struct extent_status, rb_node); 221 printk(KERN_DEBUG " [%u/%u) %llu %x", 222 es->es_lblk, es->es_len, 223 ext4_es_pblock(es), ext4_es_status(es)); 224 node = rb_next(node); 225 } 226 printk(KERN_DEBUG "\n"); 227 } 228 #else 229 #define ext4_es_print_tree(inode) 230 #endif 231 232 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 233 { 234 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 235 return es->es_lblk + es->es_len - 1; 236 } 237 238 static inline void ext4_es_inc_seq(struct inode *inode) 239 { 240 struct ext4_inode_info *ei = EXT4_I(inode); 241 242 WRITE_ONCE(ei->i_es_seq, ei->i_es_seq + 1); 243 } 244 245 /* 246 * search through the tree for an delayed extent with a given offset. If 247 * it can't be found, try to find next extent. 248 */ 249 static struct extent_status *__es_tree_search(struct rb_root *root, 250 ext4_lblk_t lblk) 251 { 252 struct rb_node *node = root->rb_node; 253 struct extent_status *es = NULL; 254 255 while (node) { 256 es = rb_entry(node, struct extent_status, rb_node); 257 if (lblk < es->es_lblk) 258 node = node->rb_left; 259 else if (lblk > ext4_es_end(es)) 260 node = node->rb_right; 261 else 262 return es; 263 } 264 265 if (es && lblk < es->es_lblk) 266 return es; 267 268 if (es && lblk > ext4_es_end(es)) { 269 node = rb_next(&es->rb_node); 270 return node ? rb_entry(node, struct extent_status, rb_node) : 271 NULL; 272 } 273 274 return NULL; 275 } 276 277 /* 278 * ext4_es_find_extent_range - find extent with specified status within block 279 * range or next extent following block range in 280 * extents status tree 281 * 282 * @inode - file containing the range 283 * @matching_fn - pointer to function that matches extents with desired status 284 * @lblk - logical block defining start of range 285 * @end - logical block defining end of range 286 * @es - extent found, if any 287 * 288 * Find the first extent within the block range specified by @lblk and @end 289 * in the extents status tree that satisfies @matching_fn. If a match 290 * is found, it's returned in @es. If not, and a matching extent is found 291 * beyond the block range, it's returned in @es. If no match is found, an 292 * extent is returned in @es whose es_lblk, es_len, and es_pblk components 293 * are 0. 294 */ 295 static void __es_find_extent_range(struct inode *inode, 296 int (*matching_fn)(struct extent_status *es), 297 ext4_lblk_t lblk, ext4_lblk_t end, 298 struct extent_status *es) 299 { 300 struct ext4_es_tree *tree = NULL; 301 struct extent_status *es1 = NULL; 302 struct rb_node *node; 303 304 WARN_ON(es == NULL); 305 WARN_ON(end < lblk); 306 307 tree = &EXT4_I(inode)->i_es_tree; 308 309 /* see if the extent has been cached */ 310 es->es_lblk = es->es_len = es->es_pblk = 0; 311 es1 = READ_ONCE(tree->cache_es); 312 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { 313 es_debug("%u cached by [%u/%u) %llu %x\n", 314 lblk, es1->es_lblk, es1->es_len, 315 ext4_es_pblock(es1), ext4_es_status(es1)); 316 goto out; 317 } 318 319 es1 = __es_tree_search(&tree->root, lblk); 320 321 out: 322 if (es1 && !matching_fn(es1)) { 323 while ((node = rb_next(&es1->rb_node)) != NULL) { 324 es1 = rb_entry(node, struct extent_status, rb_node); 325 if (es1->es_lblk > end) { 326 es1 = NULL; 327 break; 328 } 329 if (matching_fn(es1)) 330 break; 331 } 332 } 333 334 if (es1 && matching_fn(es1)) { 335 WRITE_ONCE(tree->cache_es, es1); 336 es->es_lblk = es1->es_lblk; 337 es->es_len = es1->es_len; 338 es->es_pblk = es1->es_pblk; 339 } 340 341 } 342 343 /* 344 * Locking for __es_find_extent_range() for external use 345 */ 346 void ext4_es_find_extent_range(struct inode *inode, 347 int (*matching_fn)(struct extent_status *es), 348 ext4_lblk_t lblk, ext4_lblk_t end, 349 struct extent_status *es) 350 { 351 es->es_lblk = es->es_len = es->es_pblk = 0; 352 353 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 354 return; 355 356 trace_ext4_es_find_extent_range_enter(inode, lblk); 357 358 read_lock(&EXT4_I(inode)->i_es_lock); 359 __es_find_extent_range(inode, matching_fn, lblk, end, es); 360 read_unlock(&EXT4_I(inode)->i_es_lock); 361 362 trace_ext4_es_find_extent_range_exit(inode, es); 363 } 364 365 /* 366 * __es_scan_range - search block range for block with specified status 367 * in extents status tree 368 * 369 * @inode - file containing the range 370 * @matching_fn - pointer to function that matches extents with desired status 371 * @lblk - logical block defining start of range 372 * @end - logical block defining end of range 373 * 374 * Returns true if at least one block in the specified block range satisfies 375 * the criterion specified by @matching_fn, and false if not. If at least 376 * one extent has the specified status, then there is at least one block 377 * in the cluster with that status. Should only be called by code that has 378 * taken i_es_lock. 379 */ 380 static bool __es_scan_range(struct inode *inode, 381 int (*matching_fn)(struct extent_status *es), 382 ext4_lblk_t start, ext4_lblk_t end) 383 { 384 struct extent_status es; 385 386 __es_find_extent_range(inode, matching_fn, start, end, &es); 387 if (es.es_len == 0) 388 return false; /* no matching extent in the tree */ 389 else if (es.es_lblk <= start && 390 start < es.es_lblk + es.es_len) 391 return true; 392 else if (start <= es.es_lblk && es.es_lblk <= end) 393 return true; 394 else 395 return false; 396 } 397 /* 398 * Locking for __es_scan_range() for external use 399 */ 400 bool ext4_es_scan_range(struct inode *inode, 401 int (*matching_fn)(struct extent_status *es), 402 ext4_lblk_t lblk, ext4_lblk_t end) 403 { 404 bool ret; 405 406 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 407 return false; 408 409 read_lock(&EXT4_I(inode)->i_es_lock); 410 ret = __es_scan_range(inode, matching_fn, lblk, end); 411 read_unlock(&EXT4_I(inode)->i_es_lock); 412 413 return ret; 414 } 415 416 /* 417 * __es_scan_clu - search cluster for block with specified status in 418 * extents status tree 419 * 420 * @inode - file containing the cluster 421 * @matching_fn - pointer to function that matches extents with desired status 422 * @lblk - logical block in cluster to be searched 423 * 424 * Returns true if at least one extent in the cluster containing @lblk 425 * satisfies the criterion specified by @matching_fn, and false if not. If at 426 * least one extent has the specified status, then there is at least one block 427 * in the cluster with that status. Should only be called by code that has 428 * taken i_es_lock. 429 */ 430 static bool __es_scan_clu(struct inode *inode, 431 int (*matching_fn)(struct extent_status *es), 432 ext4_lblk_t lblk) 433 { 434 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 435 ext4_lblk_t lblk_start, lblk_end; 436 437 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 438 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 439 440 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); 441 } 442 443 /* 444 * Locking for __es_scan_clu() for external use 445 */ 446 bool ext4_es_scan_clu(struct inode *inode, 447 int (*matching_fn)(struct extent_status *es), 448 ext4_lblk_t lblk) 449 { 450 bool ret; 451 452 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 453 return false; 454 455 read_lock(&EXT4_I(inode)->i_es_lock); 456 ret = __es_scan_clu(inode, matching_fn, lblk); 457 read_unlock(&EXT4_I(inode)->i_es_lock); 458 459 return ret; 460 } 461 462 static void ext4_es_list_add(struct inode *inode) 463 { 464 struct ext4_inode_info *ei = EXT4_I(inode); 465 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 466 467 if (!list_empty(&ei->i_es_list)) 468 return; 469 470 spin_lock(&sbi->s_es_lock); 471 if (list_empty(&ei->i_es_list)) { 472 list_add_tail(&ei->i_es_list, &sbi->s_es_list); 473 sbi->s_es_nr_inode++; 474 } 475 spin_unlock(&sbi->s_es_lock); 476 } 477 478 static void ext4_es_list_del(struct inode *inode) 479 { 480 struct ext4_inode_info *ei = EXT4_I(inode); 481 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 482 483 spin_lock(&sbi->s_es_lock); 484 if (!list_empty(&ei->i_es_list)) { 485 list_del_init(&ei->i_es_list); 486 sbi->s_es_nr_inode--; 487 WARN_ON_ONCE(sbi->s_es_nr_inode < 0); 488 } 489 spin_unlock(&sbi->s_es_lock); 490 } 491 492 static inline struct pending_reservation *__alloc_pending(bool nofail) 493 { 494 if (!nofail) 495 return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); 496 497 return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL); 498 } 499 500 static inline void __free_pending(struct pending_reservation *pr) 501 { 502 kmem_cache_free(ext4_pending_cachep, pr); 503 } 504 505 /* 506 * Returns true if we cannot fail to allocate memory for this extent_status 507 * entry and cannot reclaim it until its status changes. 508 */ 509 static inline bool ext4_es_must_keep(struct extent_status *es) 510 { 511 /* fiemap, bigalloc, and seek_data/hole need to use it. */ 512 if (ext4_es_is_delayed(es)) 513 return true; 514 515 return false; 516 } 517 518 static inline struct extent_status *__es_alloc_extent(bool nofail) 519 { 520 if (!nofail) 521 return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 522 523 return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL); 524 } 525 526 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es, 527 ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) 528 { 529 es->es_lblk = lblk; 530 es->es_len = len; 531 es->es_pblk = pblk; 532 533 /* We never try to reclaim a must kept extent, so we don't count it. */ 534 if (!ext4_es_must_keep(es)) { 535 if (!EXT4_I(inode)->i_es_shk_nr++) 536 ext4_es_list_add(inode); 537 percpu_counter_inc(&EXT4_SB(inode->i_sb)-> 538 s_es_stats.es_stats_shk_cnt); 539 } 540 541 EXT4_I(inode)->i_es_all_nr++; 542 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 543 } 544 545 static inline void __es_free_extent(struct extent_status *es) 546 { 547 kmem_cache_free(ext4_es_cachep, es); 548 } 549 550 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 551 { 552 EXT4_I(inode)->i_es_all_nr--; 553 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 554 555 /* Decrease the shrink counter when we can reclaim the extent. */ 556 if (!ext4_es_must_keep(es)) { 557 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); 558 if (!--EXT4_I(inode)->i_es_shk_nr) 559 ext4_es_list_del(inode); 560 percpu_counter_dec(&EXT4_SB(inode->i_sb)-> 561 s_es_stats.es_stats_shk_cnt); 562 } 563 564 __es_free_extent(es); 565 } 566 567 /* 568 * Check whether or not two extents can be merged 569 * Condition: 570 * - logical block number is contiguous 571 * - physical block number is contiguous 572 * - status is equal 573 */ 574 static int ext4_es_can_be_merged(struct extent_status *es1, 575 struct extent_status *es2) 576 { 577 if (ext4_es_type(es1) != ext4_es_type(es2)) 578 return 0; 579 580 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { 581 pr_warn("ES assertion failed when merging extents. " 582 "The sum of lengths of es1 (%d) and es2 (%d) " 583 "is bigger than allowed file size (%d)\n", 584 es1->es_len, es2->es_len, EXT_MAX_BLOCKS); 585 WARN_ON(1); 586 return 0; 587 } 588 589 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 590 return 0; 591 592 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 593 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 594 return 1; 595 596 if (ext4_es_is_hole(es1)) 597 return 1; 598 599 /* we need to check delayed extent */ 600 if (ext4_es_is_delayed(es1)) 601 return 1; 602 603 return 0; 604 } 605 606 static struct extent_status * 607 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 608 { 609 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 610 struct extent_status *es1; 611 struct rb_node *node; 612 613 node = rb_prev(&es->rb_node); 614 if (!node) 615 return es; 616 617 es1 = rb_entry(node, struct extent_status, rb_node); 618 if (ext4_es_can_be_merged(es1, es)) { 619 es1->es_len += es->es_len; 620 if (ext4_es_is_referenced(es)) 621 ext4_es_set_referenced(es1); 622 rb_erase(&es->rb_node, &tree->root); 623 ext4_es_free_extent(inode, es); 624 es = es1; 625 } 626 627 return es; 628 } 629 630 static struct extent_status * 631 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 632 { 633 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 634 struct extent_status *es1; 635 struct rb_node *node; 636 637 node = rb_next(&es->rb_node); 638 if (!node) 639 return es; 640 641 es1 = rb_entry(node, struct extent_status, rb_node); 642 if (ext4_es_can_be_merged(es, es1)) { 643 es->es_len += es1->es_len; 644 if (ext4_es_is_referenced(es1)) 645 ext4_es_set_referenced(es); 646 rb_erase(node, &tree->root); 647 ext4_es_free_extent(inode, es1); 648 } 649 650 return es; 651 } 652 653 #ifdef ES_AGGRESSIVE_TEST 654 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ 655 656 static void ext4_es_insert_extent_ext_check(struct inode *inode, 657 struct extent_status *es) 658 { 659 struct ext4_ext_path *path = NULL; 660 struct ext4_extent *ex; 661 ext4_lblk_t ee_block; 662 ext4_fsblk_t ee_start; 663 unsigned short ee_len; 664 int depth, ee_status, es_status; 665 666 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); 667 if (IS_ERR(path)) 668 return; 669 670 depth = ext_depth(inode); 671 ex = path[depth].p_ext; 672 673 if (ex) { 674 675 ee_block = le32_to_cpu(ex->ee_block); 676 ee_start = ext4_ext_pblock(ex); 677 ee_len = ext4_ext_get_actual_len(ex); 678 679 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; 680 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 681 682 /* 683 * Make sure ex and es are not overlap when we try to insert 684 * a delayed/hole extent. 685 */ 686 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 687 if (in_range(es->es_lblk, ee_block, ee_len)) { 688 pr_warn("ES insert assertion failed for " 689 "inode: %lu we can find an extent " 690 "at block [%d/%d/%llu/%c], but we " 691 "want to add a delayed/hole extent " 692 "[%d/%d/%llu/%x]\n", 693 inode->i_ino, ee_block, ee_len, 694 ee_start, ee_status ? 'u' : 'w', 695 es->es_lblk, es->es_len, 696 ext4_es_pblock(es), ext4_es_status(es)); 697 } 698 goto out; 699 } 700 701 /* 702 * We don't check ee_block == es->es_lblk, etc. because es 703 * might be a part of whole extent, vice versa. 704 */ 705 if (es->es_lblk < ee_block || 706 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 707 pr_warn("ES insert assertion failed for inode: %lu " 708 "ex_status [%d/%d/%llu/%c] != " 709 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 710 ee_block, ee_len, ee_start, 711 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 712 ext4_es_pblock(es), es_status ? 'u' : 'w'); 713 goto out; 714 } 715 716 if (ee_status ^ es_status) { 717 pr_warn("ES insert assertion failed for inode: %lu " 718 "ex_status [%d/%d/%llu/%c] != " 719 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 720 ee_block, ee_len, ee_start, 721 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 722 ext4_es_pblock(es), es_status ? 'u' : 'w'); 723 } 724 } else { 725 /* 726 * We can't find an extent on disk. So we need to make sure 727 * that we don't want to add an written/unwritten extent. 728 */ 729 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 730 pr_warn("ES insert assertion failed for inode: %lu " 731 "can't find an extent at block %d but we want " 732 "to add a written/unwritten extent " 733 "[%d/%d/%llu/%x]\n", inode->i_ino, 734 es->es_lblk, es->es_lblk, es->es_len, 735 ext4_es_pblock(es), ext4_es_status(es)); 736 } 737 } 738 out: 739 ext4_free_ext_path(path); 740 } 741 742 static void ext4_es_insert_extent_ind_check(struct inode *inode, 743 struct extent_status *es) 744 { 745 struct ext4_map_blocks map; 746 int retval; 747 748 /* 749 * Here we call ext4_ind_map_blocks to lookup a block mapping because 750 * 'Indirect' structure is defined in indirect.c. So we couldn't 751 * access direct/indirect tree from outside. It is too dirty to define 752 * this function in indirect.c file. 753 */ 754 755 map.m_lblk = es->es_lblk; 756 map.m_len = es->es_len; 757 758 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 759 if (retval > 0) { 760 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 761 /* 762 * We want to add a delayed/hole extent but this 763 * block has been allocated. 764 */ 765 pr_warn("ES insert assertion failed for inode: %lu " 766 "We can find blocks but we want to add a " 767 "delayed/hole extent [%d/%d/%llu/%x]\n", 768 inode->i_ino, es->es_lblk, es->es_len, 769 ext4_es_pblock(es), ext4_es_status(es)); 770 return; 771 } else if (ext4_es_is_written(es)) { 772 if (retval != es->es_len) { 773 pr_warn("ES insert assertion failed for " 774 "inode: %lu retval %d != es_len %d\n", 775 inode->i_ino, retval, es->es_len); 776 return; 777 } 778 if (map.m_pblk != ext4_es_pblock(es)) { 779 pr_warn("ES insert assertion failed for " 780 "inode: %lu m_pblk %llu != " 781 "es_pblk %llu\n", 782 inode->i_ino, map.m_pblk, 783 ext4_es_pblock(es)); 784 return; 785 } 786 } else { 787 /* 788 * We don't need to check unwritten extent because 789 * indirect-based file doesn't have it. 790 */ 791 BUG(); 792 } 793 } else if (retval == 0) { 794 if (ext4_es_is_written(es)) { 795 pr_warn("ES insert assertion failed for inode: %lu " 796 "We can't find the block but we want to add " 797 "a written extent [%d/%d/%llu/%x]\n", 798 inode->i_ino, es->es_lblk, es->es_len, 799 ext4_es_pblock(es), ext4_es_status(es)); 800 return; 801 } 802 } 803 } 804 805 static inline void ext4_es_insert_extent_check(struct inode *inode, 806 struct extent_status *es) 807 { 808 /* 809 * We don't need to worry about the race condition because 810 * caller takes i_data_sem locking. 811 */ 812 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 813 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 814 ext4_es_insert_extent_ext_check(inode, es); 815 else 816 ext4_es_insert_extent_ind_check(inode, es); 817 } 818 #else 819 static inline void ext4_es_insert_extent_check(struct inode *inode, 820 struct extent_status *es) 821 { 822 } 823 #endif 824 825 static int __es_insert_extent(struct inode *inode, struct extent_status *newes, 826 struct extent_status *prealloc) 827 { 828 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 829 struct rb_node **p = &tree->root.rb_node; 830 struct rb_node *parent = NULL; 831 struct extent_status *es; 832 833 while (*p) { 834 parent = *p; 835 es = rb_entry(parent, struct extent_status, rb_node); 836 837 if (newes->es_lblk < es->es_lblk) { 838 if (ext4_es_can_be_merged(newes, es)) { 839 /* 840 * Here we can modify es_lblk directly 841 * because it isn't overlapped. 842 */ 843 es->es_lblk = newes->es_lblk; 844 es->es_len += newes->es_len; 845 if (ext4_es_is_written(es) || 846 ext4_es_is_unwritten(es)) 847 ext4_es_store_pblock(es, 848 newes->es_pblk); 849 es = ext4_es_try_to_merge_left(inode, es); 850 goto out; 851 } 852 p = &(*p)->rb_left; 853 } else if (newes->es_lblk > ext4_es_end(es)) { 854 if (ext4_es_can_be_merged(es, newes)) { 855 es->es_len += newes->es_len; 856 es = ext4_es_try_to_merge_right(inode, es); 857 goto out; 858 } 859 p = &(*p)->rb_right; 860 } else { 861 BUG(); 862 return -EINVAL; 863 } 864 } 865 866 if (prealloc) 867 es = prealloc; 868 else 869 es = __es_alloc_extent(false); 870 if (!es) 871 return -ENOMEM; 872 ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len, 873 newes->es_pblk); 874 875 rb_link_node(&es->rb_node, parent, p); 876 rb_insert_color(&es->rb_node, &tree->root); 877 878 out: 879 tree->cache_es = es; 880 return 0; 881 } 882 883 /* 884 * ext4_es_insert_extent() adds information to an inode's extent 885 * status tree. 886 */ 887 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 888 ext4_lblk_t len, ext4_fsblk_t pblk, 889 unsigned int status, bool delalloc_reserve_used) 890 { 891 struct extent_status newes; 892 ext4_lblk_t end = lblk + len - 1; 893 int err1 = 0, err2 = 0, err3 = 0; 894 int resv_used = 0, pending = 0; 895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 896 struct extent_status *es1 = NULL; 897 struct extent_status *es2 = NULL; 898 struct pending_reservation *pr = NULL; 899 bool revise_pending = false; 900 901 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 902 return; 903 904 es_debug("add [%u/%u) %llu %x %d to extent status tree of inode %lu\n", 905 lblk, len, pblk, status, delalloc_reserve_used, inode->i_ino); 906 907 if (!len) 908 return; 909 910 BUG_ON(end < lblk); 911 WARN_ON_ONCE(status & EXTENT_STATUS_DELAYED); 912 913 newes.es_lblk = lblk; 914 newes.es_len = len; 915 ext4_es_store_pblock_status(&newes, pblk, status); 916 917 ext4_es_insert_extent_check(inode, &newes); 918 919 revise_pending = sbi->s_cluster_ratio > 1 && 920 test_opt(inode->i_sb, DELALLOC) && 921 (status & (EXTENT_STATUS_WRITTEN | 922 EXTENT_STATUS_UNWRITTEN)); 923 retry: 924 if (err1 && !es1) 925 es1 = __es_alloc_extent(true); 926 if ((err1 || err2) && !es2) 927 es2 = __es_alloc_extent(true); 928 if ((err1 || err2 || err3 < 0) && revise_pending && !pr) 929 pr = __alloc_pending(true); 930 write_lock(&EXT4_I(inode)->i_es_lock); 931 932 err1 = __es_remove_extent(inode, lblk, end, &resv_used, es1); 933 if (err1 != 0) 934 goto error; 935 /* Free preallocated extent if it didn't get used. */ 936 if (es1) { 937 if (!es1->es_len) 938 __es_free_extent(es1); 939 es1 = NULL; 940 } 941 942 err2 = __es_insert_extent(inode, &newes, es2); 943 if (err2 == -ENOMEM && !ext4_es_must_keep(&newes)) 944 err2 = 0; 945 if (err2 != 0) 946 goto error; 947 /* Free preallocated extent if it didn't get used. */ 948 if (es2) { 949 if (!es2->es_len) 950 __es_free_extent(es2); 951 es2 = NULL; 952 } 953 954 if (revise_pending) { 955 err3 = __revise_pending(inode, lblk, len, &pr); 956 if (err3 < 0) 957 goto error; 958 if (pr) { 959 __free_pending(pr); 960 pr = NULL; 961 } 962 pending = err3; 963 } 964 /* 965 * TODO: For cache on-disk extents, there is no need to increment 966 * the sequence counter, this requires future optimization. 967 */ 968 ext4_es_inc_seq(inode); 969 error: 970 write_unlock(&EXT4_I(inode)->i_es_lock); 971 /* 972 * Reduce the reserved cluster count to reflect successful deferred 973 * allocation of delayed allocated clusters or direct allocation of 974 * clusters discovered to be delayed allocated. Once allocated, a 975 * cluster is not included in the reserved count. 976 * 977 * When direct allocating (from fallocate, filemap, DIO, or clusters 978 * allocated when delalloc has been disabled by ext4_nonda_switch()) 979 * an extent either 1) contains delayed blocks but start with 980 * non-delayed allocated blocks (e.g. hole) or 2) contains non-delayed 981 * allocated blocks which belong to delayed allocated clusters when 982 * bigalloc feature is enabled, quota has already been claimed by 983 * ext4_mb_new_blocks(), so release the quota reservations made for 984 * any previously delayed allocated clusters instead of claim them 985 * again. 986 */ 987 resv_used += pending; 988 if (resv_used) 989 ext4_da_update_reserve_space(inode, resv_used, 990 delalloc_reserve_used); 991 992 if (err1 || err2 || err3 < 0) 993 goto retry; 994 995 trace_ext4_es_insert_extent(inode, &newes); 996 ext4_es_print_tree(inode); 997 return; 998 } 999 1000 /* 1001 * ext4_es_cache_extent() inserts information into the extent status 1002 * tree if and only if there isn't information about the range in 1003 * question already. 1004 */ 1005 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, 1006 ext4_lblk_t len, ext4_fsblk_t pblk, 1007 unsigned int status) 1008 { 1009 struct extent_status *es; 1010 struct extent_status newes; 1011 ext4_lblk_t end = lblk + len - 1; 1012 1013 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1014 return; 1015 1016 newes.es_lblk = lblk; 1017 newes.es_len = len; 1018 ext4_es_store_pblock_status(&newes, pblk, status); 1019 trace_ext4_es_cache_extent(inode, &newes); 1020 1021 if (!len) 1022 return; 1023 1024 BUG_ON(end < lblk); 1025 1026 write_lock(&EXT4_I(inode)->i_es_lock); 1027 1028 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); 1029 if (!es || es->es_lblk > end) 1030 __es_insert_extent(inode, &newes, NULL); 1031 write_unlock(&EXT4_I(inode)->i_es_lock); 1032 } 1033 1034 /* 1035 * ext4_es_lookup_extent() looks up an extent in extent status tree. 1036 * 1037 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 1038 * 1039 * Return: 1 on found, 0 on not 1040 */ 1041 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 1042 ext4_lblk_t *next_lblk, struct extent_status *es, 1043 u64 *pseq) 1044 { 1045 struct ext4_es_tree *tree; 1046 struct ext4_es_stats *stats; 1047 struct extent_status *es1 = NULL; 1048 struct rb_node *node; 1049 int found = 0; 1050 1051 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1052 return 0; 1053 1054 trace_ext4_es_lookup_extent_enter(inode, lblk); 1055 es_debug("lookup extent in block %u\n", lblk); 1056 1057 tree = &EXT4_I(inode)->i_es_tree; 1058 read_lock(&EXT4_I(inode)->i_es_lock); 1059 1060 /* find extent in cache firstly */ 1061 es->es_lblk = es->es_len = es->es_pblk = 0; 1062 es1 = READ_ONCE(tree->cache_es); 1063 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { 1064 es_debug("%u cached by [%u/%u)\n", 1065 lblk, es1->es_lblk, es1->es_len); 1066 found = 1; 1067 goto out; 1068 } 1069 1070 node = tree->root.rb_node; 1071 while (node) { 1072 es1 = rb_entry(node, struct extent_status, rb_node); 1073 if (lblk < es1->es_lblk) 1074 node = node->rb_left; 1075 else if (lblk > ext4_es_end(es1)) 1076 node = node->rb_right; 1077 else { 1078 found = 1; 1079 break; 1080 } 1081 } 1082 1083 out: 1084 stats = &EXT4_SB(inode->i_sb)->s_es_stats; 1085 if (found) { 1086 BUG_ON(!es1); 1087 es->es_lblk = es1->es_lblk; 1088 es->es_len = es1->es_len; 1089 es->es_pblk = es1->es_pblk; 1090 if (!ext4_es_is_referenced(es1)) 1091 ext4_es_set_referenced(es1); 1092 percpu_counter_inc(&stats->es_stats_cache_hits); 1093 if (next_lblk) { 1094 node = rb_next(&es1->rb_node); 1095 if (node) { 1096 es1 = rb_entry(node, struct extent_status, 1097 rb_node); 1098 *next_lblk = es1->es_lblk; 1099 } else 1100 *next_lblk = 0; 1101 } 1102 if (pseq) 1103 *pseq = EXT4_I(inode)->i_es_seq; 1104 } else { 1105 percpu_counter_inc(&stats->es_stats_cache_misses); 1106 } 1107 1108 read_unlock(&EXT4_I(inode)->i_es_lock); 1109 1110 trace_ext4_es_lookup_extent_exit(inode, es, found); 1111 return found; 1112 } 1113 1114 struct rsvd_count { 1115 int ndelayed; 1116 bool first_do_lblk_found; 1117 ext4_lblk_t first_do_lblk; 1118 ext4_lblk_t last_do_lblk; 1119 struct extent_status *left_es; 1120 bool partial; 1121 ext4_lblk_t lclu; 1122 }; 1123 1124 /* 1125 * init_rsvd - initialize reserved count data before removing block range 1126 * in file from extent status tree 1127 * 1128 * @inode - file containing range 1129 * @lblk - first block in range 1130 * @es - pointer to first extent in range 1131 * @rc - pointer to reserved count data 1132 * 1133 * Assumes es is not NULL 1134 */ 1135 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk, 1136 struct extent_status *es, struct rsvd_count *rc) 1137 { 1138 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1139 struct rb_node *node; 1140 1141 rc->ndelayed = 0; 1142 1143 /* 1144 * for bigalloc, note the first delayed block in the range has not 1145 * been found, record the extent containing the block to the left of 1146 * the region to be removed, if any, and note that there's no partial 1147 * cluster to track 1148 */ 1149 if (sbi->s_cluster_ratio > 1) { 1150 rc->first_do_lblk_found = false; 1151 if (lblk > es->es_lblk) { 1152 rc->left_es = es; 1153 } else { 1154 node = rb_prev(&es->rb_node); 1155 rc->left_es = node ? rb_entry(node, 1156 struct extent_status, 1157 rb_node) : NULL; 1158 } 1159 rc->partial = false; 1160 } 1161 } 1162 1163 /* 1164 * count_rsvd - count the clusters containing delayed blocks in a range 1165 * within an extent and add to the running tally in rsvd_count 1166 * 1167 * @inode - file containing extent 1168 * @lblk - first block in range 1169 * @len - length of range in blocks 1170 * @es - pointer to extent containing clusters to be counted 1171 * @rc - pointer to reserved count data 1172 * 1173 * Tracks partial clusters found at the beginning and end of extents so 1174 * they aren't overcounted when they span adjacent extents 1175 */ 1176 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len, 1177 struct extent_status *es, struct rsvd_count *rc) 1178 { 1179 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1180 ext4_lblk_t i, end, nclu; 1181 1182 if (!ext4_es_is_delayed(es)) 1183 return; 1184 1185 WARN_ON(len <= 0); 1186 1187 if (sbi->s_cluster_ratio == 1) { 1188 rc->ndelayed += (int) len; 1189 return; 1190 } 1191 1192 /* bigalloc */ 1193 1194 i = (lblk < es->es_lblk) ? es->es_lblk : lblk; 1195 end = lblk + (ext4_lblk_t) len - 1; 1196 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end; 1197 1198 /* record the first block of the first delayed extent seen */ 1199 if (!rc->first_do_lblk_found) { 1200 rc->first_do_lblk = i; 1201 rc->first_do_lblk_found = true; 1202 } 1203 1204 /* update the last lblk in the region seen so far */ 1205 rc->last_do_lblk = end; 1206 1207 /* 1208 * if we're tracking a partial cluster and the current extent 1209 * doesn't start with it, count it and stop tracking 1210 */ 1211 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) { 1212 rc->ndelayed++; 1213 rc->partial = false; 1214 } 1215 1216 /* 1217 * if the first cluster doesn't start on a cluster boundary but 1218 * ends on one, count it 1219 */ 1220 if (EXT4_LBLK_COFF(sbi, i) != 0) { 1221 if (end >= EXT4_LBLK_CFILL(sbi, i)) { 1222 rc->ndelayed++; 1223 rc->partial = false; 1224 i = EXT4_LBLK_CFILL(sbi, i) + 1; 1225 } 1226 } 1227 1228 /* 1229 * if the current cluster starts on a cluster boundary, count the 1230 * number of whole delayed clusters in the extent 1231 */ 1232 if ((i + sbi->s_cluster_ratio - 1) <= end) { 1233 nclu = (end - i + 1) >> sbi->s_cluster_bits; 1234 rc->ndelayed += nclu; 1235 i += nclu << sbi->s_cluster_bits; 1236 } 1237 1238 /* 1239 * start tracking a partial cluster if there's a partial at the end 1240 * of the current extent and we're not already tracking one 1241 */ 1242 if (!rc->partial && i <= end) { 1243 rc->partial = true; 1244 rc->lclu = EXT4_B2C(sbi, i); 1245 } 1246 } 1247 1248 /* 1249 * __pr_tree_search - search for a pending cluster reservation 1250 * 1251 * @root - root of pending reservation tree 1252 * @lclu - logical cluster to search for 1253 * 1254 * Returns the pending reservation for the cluster identified by @lclu 1255 * if found. If not, returns a reservation for the next cluster if any, 1256 * and if not, returns NULL. 1257 */ 1258 static struct pending_reservation *__pr_tree_search(struct rb_root *root, 1259 ext4_lblk_t lclu) 1260 { 1261 struct rb_node *node = root->rb_node; 1262 struct pending_reservation *pr = NULL; 1263 1264 while (node) { 1265 pr = rb_entry(node, struct pending_reservation, rb_node); 1266 if (lclu < pr->lclu) 1267 node = node->rb_left; 1268 else if (lclu > pr->lclu) 1269 node = node->rb_right; 1270 else 1271 return pr; 1272 } 1273 if (pr && lclu < pr->lclu) 1274 return pr; 1275 if (pr && lclu > pr->lclu) { 1276 node = rb_next(&pr->rb_node); 1277 return node ? rb_entry(node, struct pending_reservation, 1278 rb_node) : NULL; 1279 } 1280 return NULL; 1281 } 1282 1283 /* 1284 * get_rsvd - calculates and returns the number of cluster reservations to be 1285 * released when removing a block range from the extent status tree 1286 * and releases any pending reservations within the range 1287 * 1288 * @inode - file containing block range 1289 * @end - last block in range 1290 * @right_es - pointer to extent containing next block beyond end or NULL 1291 * @rc - pointer to reserved count data 1292 * 1293 * The number of reservations to be released is equal to the number of 1294 * clusters containing delayed blocks within the range, minus the number of 1295 * clusters still containing delayed blocks at the ends of the range, and 1296 * minus the number of pending reservations within the range. 1297 */ 1298 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end, 1299 struct extent_status *right_es, 1300 struct rsvd_count *rc) 1301 { 1302 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1303 struct pending_reservation *pr; 1304 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 1305 struct rb_node *node; 1306 ext4_lblk_t first_lclu, last_lclu; 1307 bool left_delayed, right_delayed, count_pending; 1308 struct extent_status *es; 1309 1310 if (sbi->s_cluster_ratio > 1) { 1311 /* count any remaining partial cluster */ 1312 if (rc->partial) 1313 rc->ndelayed++; 1314 1315 if (rc->ndelayed == 0) 1316 return 0; 1317 1318 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk); 1319 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk); 1320 1321 /* 1322 * decrease the delayed count by the number of clusters at the 1323 * ends of the range that still contain delayed blocks - 1324 * these clusters still need to be reserved 1325 */ 1326 left_delayed = right_delayed = false; 1327 1328 es = rc->left_es; 1329 while (es && ext4_es_end(es) >= 1330 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) { 1331 if (ext4_es_is_delayed(es)) { 1332 rc->ndelayed--; 1333 left_delayed = true; 1334 break; 1335 } 1336 node = rb_prev(&es->rb_node); 1337 if (!node) 1338 break; 1339 es = rb_entry(node, struct extent_status, rb_node); 1340 } 1341 if (right_es && (!left_delayed || first_lclu != last_lclu)) { 1342 if (end < ext4_es_end(right_es)) { 1343 es = right_es; 1344 } else { 1345 node = rb_next(&right_es->rb_node); 1346 es = node ? rb_entry(node, struct extent_status, 1347 rb_node) : NULL; 1348 } 1349 while (es && es->es_lblk <= 1350 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) { 1351 if (ext4_es_is_delayed(es)) { 1352 rc->ndelayed--; 1353 right_delayed = true; 1354 break; 1355 } 1356 node = rb_next(&es->rb_node); 1357 if (!node) 1358 break; 1359 es = rb_entry(node, struct extent_status, 1360 rb_node); 1361 } 1362 } 1363 1364 /* 1365 * Determine the block range that should be searched for 1366 * pending reservations, if any. Clusters on the ends of the 1367 * original removed range containing delayed blocks are 1368 * excluded. They've already been accounted for and it's not 1369 * possible to determine if an associated pending reservation 1370 * should be released with the information available in the 1371 * extents status tree. 1372 */ 1373 if (first_lclu == last_lclu) { 1374 if (left_delayed | right_delayed) 1375 count_pending = false; 1376 else 1377 count_pending = true; 1378 } else { 1379 if (left_delayed) 1380 first_lclu++; 1381 if (right_delayed) 1382 last_lclu--; 1383 if (first_lclu <= last_lclu) 1384 count_pending = true; 1385 else 1386 count_pending = false; 1387 } 1388 1389 /* 1390 * a pending reservation found between first_lclu and last_lclu 1391 * represents an allocated cluster that contained at least one 1392 * delayed block, so the delayed total must be reduced by one 1393 * for each pending reservation found and released 1394 */ 1395 if (count_pending) { 1396 pr = __pr_tree_search(&tree->root, first_lclu); 1397 while (pr && pr->lclu <= last_lclu) { 1398 rc->ndelayed--; 1399 node = rb_next(&pr->rb_node); 1400 rb_erase(&pr->rb_node, &tree->root); 1401 __free_pending(pr); 1402 if (!node) 1403 break; 1404 pr = rb_entry(node, struct pending_reservation, 1405 rb_node); 1406 } 1407 } 1408 } 1409 return rc->ndelayed; 1410 } 1411 1412 1413 /* 1414 * __es_remove_extent - removes block range from extent status tree 1415 * 1416 * @inode - file containing range 1417 * @lblk - first block in range 1418 * @end - last block in range 1419 * @reserved - number of cluster reservations released 1420 * @prealloc - pre-allocated es to avoid memory allocation failures 1421 * 1422 * If @reserved is not NULL and delayed allocation is enabled, counts 1423 * block/cluster reservations freed by removing range and if bigalloc 1424 * enabled cancels pending reservations as needed. Returns 0 on success, 1425 * error code on failure. 1426 */ 1427 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1428 ext4_lblk_t end, int *reserved, 1429 struct extent_status *prealloc) 1430 { 1431 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 1432 struct rb_node *node; 1433 struct extent_status *es; 1434 struct extent_status orig_es; 1435 ext4_lblk_t len1, len2; 1436 ext4_fsblk_t block; 1437 int err = 0; 1438 bool count_reserved = true; 1439 struct rsvd_count rc; 1440 1441 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC)) 1442 count_reserved = false; 1443 1444 es = __es_tree_search(&tree->root, lblk); 1445 if (!es) 1446 goto out; 1447 if (es->es_lblk > end) 1448 goto out; 1449 1450 /* Simply invalidate cache_es. */ 1451 tree->cache_es = NULL; 1452 if (count_reserved) 1453 init_rsvd(inode, lblk, es, &rc); 1454 1455 orig_es.es_lblk = es->es_lblk; 1456 orig_es.es_len = es->es_len; 1457 orig_es.es_pblk = es->es_pblk; 1458 1459 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 1460 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 1461 if (len1 > 0) 1462 es->es_len = len1; 1463 if (len2 > 0) { 1464 if (len1 > 0) { 1465 struct extent_status newes; 1466 1467 newes.es_lblk = end + 1; 1468 newes.es_len = len2; 1469 block = 0x7FDEADBEEFULL; 1470 if (ext4_es_is_written(&orig_es) || 1471 ext4_es_is_unwritten(&orig_es)) 1472 block = ext4_es_pblock(&orig_es) + 1473 orig_es.es_len - len2; 1474 ext4_es_store_pblock_status(&newes, block, 1475 ext4_es_status(&orig_es)); 1476 err = __es_insert_extent(inode, &newes, prealloc); 1477 if (err) { 1478 if (!ext4_es_must_keep(&newes)) 1479 return 0; 1480 1481 es->es_lblk = orig_es.es_lblk; 1482 es->es_len = orig_es.es_len; 1483 goto out; 1484 } 1485 } else { 1486 es->es_lblk = end + 1; 1487 es->es_len = len2; 1488 if (ext4_es_is_written(es) || 1489 ext4_es_is_unwritten(es)) { 1490 block = orig_es.es_pblk + orig_es.es_len - len2; 1491 ext4_es_store_pblock(es, block); 1492 } 1493 } 1494 if (count_reserved) 1495 count_rsvd(inode, orig_es.es_lblk + len1, 1496 orig_es.es_len - len1 - len2, &orig_es, &rc); 1497 goto out_get_reserved; 1498 } 1499 1500 if (len1 > 0) { 1501 if (count_reserved) 1502 count_rsvd(inode, lblk, orig_es.es_len - len1, 1503 &orig_es, &rc); 1504 node = rb_next(&es->rb_node); 1505 if (node) 1506 es = rb_entry(node, struct extent_status, rb_node); 1507 else 1508 es = NULL; 1509 } 1510 1511 while (es && ext4_es_end(es) <= end) { 1512 if (count_reserved) 1513 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc); 1514 node = rb_next(&es->rb_node); 1515 rb_erase(&es->rb_node, &tree->root); 1516 ext4_es_free_extent(inode, es); 1517 if (!node) { 1518 es = NULL; 1519 break; 1520 } 1521 es = rb_entry(node, struct extent_status, rb_node); 1522 } 1523 1524 if (es && es->es_lblk < end + 1) { 1525 ext4_lblk_t orig_len = es->es_len; 1526 1527 len1 = ext4_es_end(es) - end; 1528 if (count_reserved) 1529 count_rsvd(inode, es->es_lblk, orig_len - len1, 1530 es, &rc); 1531 es->es_lblk = end + 1; 1532 es->es_len = len1; 1533 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 1534 block = es->es_pblk + orig_len - len1; 1535 ext4_es_store_pblock(es, block); 1536 } 1537 } 1538 1539 out_get_reserved: 1540 if (count_reserved) 1541 *reserved = get_rsvd(inode, end, es, &rc); 1542 out: 1543 return err; 1544 } 1545 1546 /* 1547 * ext4_es_remove_extent - removes block range from extent status tree 1548 * 1549 * @inode - file containing range 1550 * @lblk - first block in range 1551 * @len - number of blocks to remove 1552 * 1553 * Reduces block/cluster reservation count and for bigalloc cancels pending 1554 * reservations as needed. 1555 */ 1556 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1557 ext4_lblk_t len) 1558 { 1559 ext4_lblk_t end; 1560 int err = 0; 1561 int reserved = 0; 1562 struct extent_status *es = NULL; 1563 1564 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1565 return; 1566 1567 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 1568 lblk, len, inode->i_ino); 1569 1570 if (!len) 1571 return; 1572 1573 end = lblk + len - 1; 1574 BUG_ON(end < lblk); 1575 1576 retry: 1577 if (err && !es) 1578 es = __es_alloc_extent(true); 1579 /* 1580 * ext4_clear_inode() depends on us taking i_es_lock unconditionally 1581 * so that we are sure __es_shrink() is done with the inode before it 1582 * is reclaimed. 1583 */ 1584 write_lock(&EXT4_I(inode)->i_es_lock); 1585 err = __es_remove_extent(inode, lblk, end, &reserved, es); 1586 if (err) 1587 goto error; 1588 /* Free preallocated extent if it didn't get used. */ 1589 if (es) { 1590 if (!es->es_len) 1591 __es_free_extent(es); 1592 es = NULL; 1593 } 1594 ext4_es_inc_seq(inode); 1595 error: 1596 write_unlock(&EXT4_I(inode)->i_es_lock); 1597 if (err) 1598 goto retry; 1599 1600 trace_ext4_es_remove_extent(inode, lblk, len); 1601 ext4_es_print_tree(inode); 1602 ext4_da_release_space(inode, reserved); 1603 } 1604 1605 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 1606 struct ext4_inode_info *locked_ei) 1607 { 1608 struct ext4_inode_info *ei; 1609 struct ext4_es_stats *es_stats; 1610 ktime_t start_time; 1611 u64 scan_time; 1612 int nr_to_walk; 1613 int nr_shrunk = 0; 1614 int retried = 0, nr_skipped = 0; 1615 1616 es_stats = &sbi->s_es_stats; 1617 start_time = ktime_get(); 1618 1619 retry: 1620 spin_lock(&sbi->s_es_lock); 1621 nr_to_walk = sbi->s_es_nr_inode; 1622 while (nr_to_walk-- > 0) { 1623 if (list_empty(&sbi->s_es_list)) { 1624 spin_unlock(&sbi->s_es_lock); 1625 goto out; 1626 } 1627 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, 1628 i_es_list); 1629 /* Move the inode to the tail */ 1630 list_move_tail(&ei->i_es_list, &sbi->s_es_list); 1631 1632 /* 1633 * Normally we try hard to avoid shrinking precached inodes, 1634 * but we will as a last resort. 1635 */ 1636 if (!retried && ext4_test_inode_state(&ei->vfs_inode, 1637 EXT4_STATE_EXT_PRECACHED)) { 1638 nr_skipped++; 1639 continue; 1640 } 1641 1642 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { 1643 nr_skipped++; 1644 continue; 1645 } 1646 /* 1647 * Now we hold i_es_lock which protects us from inode reclaim 1648 * freeing inode under us 1649 */ 1650 spin_unlock(&sbi->s_es_lock); 1651 1652 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); 1653 write_unlock(&ei->i_es_lock); 1654 1655 if (nr_to_scan <= 0) 1656 goto out; 1657 spin_lock(&sbi->s_es_lock); 1658 } 1659 spin_unlock(&sbi->s_es_lock); 1660 1661 /* 1662 * If we skipped any inodes, and we weren't able to make any 1663 * forward progress, try again to scan precached inodes. 1664 */ 1665 if ((nr_shrunk == 0) && nr_skipped && !retried) { 1666 retried++; 1667 goto retry; 1668 } 1669 1670 if (locked_ei && nr_shrunk == 0) 1671 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); 1672 1673 out: 1674 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1675 if (likely(es_stats->es_stats_scan_time)) 1676 es_stats->es_stats_scan_time = (scan_time + 1677 es_stats->es_stats_scan_time*3) / 4; 1678 else 1679 es_stats->es_stats_scan_time = scan_time; 1680 if (scan_time > es_stats->es_stats_max_scan_time) 1681 es_stats->es_stats_max_scan_time = scan_time; 1682 if (likely(es_stats->es_stats_shrunk)) 1683 es_stats->es_stats_shrunk = (nr_shrunk + 1684 es_stats->es_stats_shrunk*3) / 4; 1685 else 1686 es_stats->es_stats_shrunk = nr_shrunk; 1687 1688 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, 1689 nr_skipped, retried); 1690 return nr_shrunk; 1691 } 1692 1693 static unsigned long ext4_es_count(struct shrinker *shrink, 1694 struct shrink_control *sc) 1695 { 1696 unsigned long nr; 1697 struct ext4_sb_info *sbi; 1698 1699 sbi = shrink->private_data; 1700 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1701 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); 1702 return nr; 1703 } 1704 1705 static unsigned long ext4_es_scan(struct shrinker *shrink, 1706 struct shrink_control *sc) 1707 { 1708 struct ext4_sb_info *sbi = shrink->private_data; 1709 int nr_to_scan = sc->nr_to_scan; 1710 int ret, nr_shrunk; 1711 1712 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1713 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); 1714 1715 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); 1716 1717 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1718 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); 1719 return nr_shrunk; 1720 } 1721 1722 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) 1723 { 1724 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); 1725 struct ext4_es_stats *es_stats = &sbi->s_es_stats; 1726 struct ext4_inode_info *ei, *max = NULL; 1727 unsigned int inode_cnt = 0; 1728 1729 if (v != SEQ_START_TOKEN) 1730 return 0; 1731 1732 /* here we just find an inode that has the max nr. of objects */ 1733 spin_lock(&sbi->s_es_lock); 1734 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { 1735 inode_cnt++; 1736 if (max && max->i_es_all_nr < ei->i_es_all_nr) 1737 max = ei; 1738 else if (!max) 1739 max = ei; 1740 } 1741 spin_unlock(&sbi->s_es_lock); 1742 1743 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", 1744 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), 1745 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); 1746 seq_printf(seq, " %lld/%lld cache hits/misses\n", 1747 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits), 1748 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses)); 1749 if (inode_cnt) 1750 seq_printf(seq, " %d inodes on list\n", inode_cnt); 1751 1752 seq_printf(seq, "average:\n %llu us scan time\n", 1753 div_u64(es_stats->es_stats_scan_time, 1000)); 1754 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); 1755 if (inode_cnt) 1756 seq_printf(seq, 1757 "maximum:\n %lu inode (%u objects, %u reclaimable)\n" 1758 " %llu us max scan time\n", 1759 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, 1760 div_u64(es_stats->es_stats_max_scan_time, 1000)); 1761 1762 return 0; 1763 } 1764 1765 int ext4_es_register_shrinker(struct ext4_sb_info *sbi) 1766 { 1767 int err; 1768 1769 /* Make sure we have enough bits for physical block number */ 1770 BUILD_BUG_ON(ES_SHIFT < 48); 1771 INIT_LIST_HEAD(&sbi->s_es_list); 1772 sbi->s_es_nr_inode = 0; 1773 spin_lock_init(&sbi->s_es_lock); 1774 sbi->s_es_stats.es_stats_shrunk = 0; 1775 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0, 1776 GFP_KERNEL); 1777 if (err) 1778 return err; 1779 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0, 1780 GFP_KERNEL); 1781 if (err) 1782 goto err1; 1783 sbi->s_es_stats.es_stats_scan_time = 0; 1784 sbi->s_es_stats.es_stats_max_scan_time = 0; 1785 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); 1786 if (err) 1787 goto err2; 1788 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); 1789 if (err) 1790 goto err3; 1791 1792 sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id); 1793 if (!sbi->s_es_shrinker) { 1794 err = -ENOMEM; 1795 goto err4; 1796 } 1797 1798 sbi->s_es_shrinker->scan_objects = ext4_es_scan; 1799 sbi->s_es_shrinker->count_objects = ext4_es_count; 1800 sbi->s_es_shrinker->private_data = sbi; 1801 1802 shrinker_register(sbi->s_es_shrinker); 1803 1804 return 0; 1805 err4: 1806 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1807 err3: 1808 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1809 err2: 1810 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); 1811 err1: 1812 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); 1813 return err; 1814 } 1815 1816 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 1817 { 1818 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); 1819 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); 1820 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1821 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1822 shrinker_free(sbi->s_es_shrinker); 1823 } 1824 1825 /* 1826 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at 1827 * most *nr_to_scan extents, update *nr_to_scan accordingly. 1828 * 1829 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. 1830 * Increment *nr_shrunk by the number of reclaimed extents. Also update 1831 * ei->i_es_shrink_lblk to where we should continue scanning. 1832 */ 1833 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, 1834 int *nr_to_scan, int *nr_shrunk) 1835 { 1836 struct inode *inode = &ei->vfs_inode; 1837 struct ext4_es_tree *tree = &ei->i_es_tree; 1838 struct extent_status *es; 1839 struct rb_node *node; 1840 1841 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); 1842 if (!es) 1843 goto out_wrap; 1844 1845 while (*nr_to_scan > 0) { 1846 if (es->es_lblk > end) { 1847 ei->i_es_shrink_lblk = end + 1; 1848 return 0; 1849 } 1850 1851 (*nr_to_scan)--; 1852 node = rb_next(&es->rb_node); 1853 1854 if (ext4_es_must_keep(es)) 1855 goto next; 1856 if (ext4_es_is_referenced(es)) { 1857 ext4_es_clear_referenced(es); 1858 goto next; 1859 } 1860 1861 rb_erase(&es->rb_node, &tree->root); 1862 ext4_es_free_extent(inode, es); 1863 (*nr_shrunk)++; 1864 next: 1865 if (!node) 1866 goto out_wrap; 1867 es = rb_entry(node, struct extent_status, rb_node); 1868 } 1869 ei->i_es_shrink_lblk = es->es_lblk; 1870 return 1; 1871 out_wrap: 1872 ei->i_es_shrink_lblk = 0; 1873 return 0; 1874 } 1875 1876 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) 1877 { 1878 struct inode *inode = &ei->vfs_inode; 1879 int nr_shrunk = 0; 1880 ext4_lblk_t start = ei->i_es_shrink_lblk; 1881 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1882 DEFAULT_RATELIMIT_BURST); 1883 1884 if (ei->i_es_shk_nr == 0) 1885 return 0; 1886 1887 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && 1888 __ratelimit(&_rs)) 1889 ext4_warning(inode->i_sb, "forced shrink of precached extents"); 1890 1891 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && 1892 start != 0) 1893 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); 1894 1895 ei->i_es_tree.cache_es = NULL; 1896 return nr_shrunk; 1897 } 1898 1899 /* 1900 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove 1901 * discretionary entries from the extent status cache. (Some entries 1902 * must be present for proper operations.) 1903 */ 1904 void ext4_clear_inode_es(struct inode *inode) 1905 { 1906 struct ext4_inode_info *ei = EXT4_I(inode); 1907 struct extent_status *es; 1908 struct ext4_es_tree *tree; 1909 struct rb_node *node; 1910 1911 write_lock(&ei->i_es_lock); 1912 tree = &EXT4_I(inode)->i_es_tree; 1913 tree->cache_es = NULL; 1914 node = rb_first(&tree->root); 1915 while (node) { 1916 es = rb_entry(node, struct extent_status, rb_node); 1917 node = rb_next(node); 1918 if (!ext4_es_must_keep(es)) { 1919 rb_erase(&es->rb_node, &tree->root); 1920 ext4_es_free_extent(inode, es); 1921 } 1922 } 1923 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 1924 write_unlock(&ei->i_es_lock); 1925 } 1926 1927 #ifdef ES_DEBUG__ 1928 static void ext4_print_pending_tree(struct inode *inode) 1929 { 1930 struct ext4_pending_tree *tree; 1931 struct rb_node *node; 1932 struct pending_reservation *pr; 1933 1934 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); 1935 tree = &EXT4_I(inode)->i_pending_tree; 1936 node = rb_first(&tree->root); 1937 while (node) { 1938 pr = rb_entry(node, struct pending_reservation, rb_node); 1939 printk(KERN_DEBUG " %u", pr->lclu); 1940 node = rb_next(node); 1941 } 1942 printk(KERN_DEBUG "\n"); 1943 } 1944 #else 1945 #define ext4_print_pending_tree(inode) 1946 #endif 1947 1948 int __init ext4_init_pending(void) 1949 { 1950 ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT); 1951 if (ext4_pending_cachep == NULL) 1952 return -ENOMEM; 1953 return 0; 1954 } 1955 1956 void ext4_exit_pending(void) 1957 { 1958 kmem_cache_destroy(ext4_pending_cachep); 1959 } 1960 1961 void ext4_init_pending_tree(struct ext4_pending_tree *tree) 1962 { 1963 tree->root = RB_ROOT; 1964 } 1965 1966 /* 1967 * __get_pending - retrieve a pointer to a pending reservation 1968 * 1969 * @inode - file containing the pending cluster reservation 1970 * @lclu - logical cluster of interest 1971 * 1972 * Returns a pointer to a pending reservation if it's a member of 1973 * the set, and NULL if not. Must be called holding i_es_lock. 1974 */ 1975 static struct pending_reservation *__get_pending(struct inode *inode, 1976 ext4_lblk_t lclu) 1977 { 1978 struct ext4_pending_tree *tree; 1979 struct rb_node *node; 1980 struct pending_reservation *pr = NULL; 1981 1982 tree = &EXT4_I(inode)->i_pending_tree; 1983 node = (&tree->root)->rb_node; 1984 1985 while (node) { 1986 pr = rb_entry(node, struct pending_reservation, rb_node); 1987 if (lclu < pr->lclu) 1988 node = node->rb_left; 1989 else if (lclu > pr->lclu) 1990 node = node->rb_right; 1991 else if (lclu == pr->lclu) 1992 return pr; 1993 } 1994 return NULL; 1995 } 1996 1997 /* 1998 * __insert_pending - adds a pending cluster reservation to the set of 1999 * pending reservations 2000 * 2001 * @inode - file containing the cluster 2002 * @lblk - logical block in the cluster to be added 2003 * @prealloc - preallocated pending entry 2004 * 2005 * Returns 1 on successful insertion and -ENOMEM on failure. If the 2006 * pending reservation is already in the set, returns successfully. 2007 */ 2008 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk, 2009 struct pending_reservation **prealloc) 2010 { 2011 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2012 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 2013 struct rb_node **p = &tree->root.rb_node; 2014 struct rb_node *parent = NULL; 2015 struct pending_reservation *pr; 2016 ext4_lblk_t lclu; 2017 int ret = 0; 2018 2019 lclu = EXT4_B2C(sbi, lblk); 2020 /* search to find parent for insertion */ 2021 while (*p) { 2022 parent = *p; 2023 pr = rb_entry(parent, struct pending_reservation, rb_node); 2024 2025 if (lclu < pr->lclu) { 2026 p = &(*p)->rb_left; 2027 } else if (lclu > pr->lclu) { 2028 p = &(*p)->rb_right; 2029 } else { 2030 /* pending reservation already inserted */ 2031 goto out; 2032 } 2033 } 2034 2035 if (likely(*prealloc == NULL)) { 2036 pr = __alloc_pending(false); 2037 if (!pr) { 2038 ret = -ENOMEM; 2039 goto out; 2040 } 2041 } else { 2042 pr = *prealloc; 2043 *prealloc = NULL; 2044 } 2045 pr->lclu = lclu; 2046 2047 rb_link_node(&pr->rb_node, parent, p); 2048 rb_insert_color(&pr->rb_node, &tree->root); 2049 ret = 1; 2050 2051 out: 2052 return ret; 2053 } 2054 2055 /* 2056 * __remove_pending - removes a pending cluster reservation from the set 2057 * of pending reservations 2058 * 2059 * @inode - file containing the cluster 2060 * @lblk - logical block in the pending cluster reservation to be removed 2061 * 2062 * Returns successfully if pending reservation is not a member of the set. 2063 */ 2064 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) 2065 { 2066 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2067 struct pending_reservation *pr; 2068 struct ext4_pending_tree *tree; 2069 2070 pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); 2071 if (pr != NULL) { 2072 tree = &EXT4_I(inode)->i_pending_tree; 2073 rb_erase(&pr->rb_node, &tree->root); 2074 __free_pending(pr); 2075 } 2076 } 2077 2078 /* 2079 * ext4_remove_pending - removes a pending cluster reservation from the set 2080 * of pending reservations 2081 * 2082 * @inode - file containing the cluster 2083 * @lblk - logical block in the pending cluster reservation to be removed 2084 * 2085 * Locking for external use of __remove_pending. 2086 */ 2087 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) 2088 { 2089 struct ext4_inode_info *ei = EXT4_I(inode); 2090 2091 write_lock(&ei->i_es_lock); 2092 __remove_pending(inode, lblk); 2093 write_unlock(&ei->i_es_lock); 2094 } 2095 2096 /* 2097 * ext4_is_pending - determine whether a cluster has a pending reservation 2098 * on it 2099 * 2100 * @inode - file containing the cluster 2101 * @lblk - logical block in the cluster 2102 * 2103 * Returns true if there's a pending reservation for the cluster in the 2104 * set of pending reservations, and false if not. 2105 */ 2106 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) 2107 { 2108 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2109 struct ext4_inode_info *ei = EXT4_I(inode); 2110 bool ret; 2111 2112 read_lock(&ei->i_es_lock); 2113 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); 2114 read_unlock(&ei->i_es_lock); 2115 2116 return ret; 2117 } 2118 2119 /* 2120 * ext4_es_insert_delayed_extent - adds some delayed blocks to the extents 2121 * status tree, adding a pending reservation 2122 * where needed 2123 * 2124 * @inode - file containing the newly added block 2125 * @lblk - start logical block to be added 2126 * @len - length of blocks to be added 2127 * @lclu_allocated/end_allocated - indicates whether a physical cluster has 2128 * been allocated for the logical cluster 2129 * that contains the start/end block. Note that 2130 * end_allocated should always be set to false 2131 * if the start and the end block are in the 2132 * same cluster 2133 */ 2134 void ext4_es_insert_delayed_extent(struct inode *inode, ext4_lblk_t lblk, 2135 ext4_lblk_t len, bool lclu_allocated, 2136 bool end_allocated) 2137 { 2138 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2139 struct extent_status newes; 2140 ext4_lblk_t end = lblk + len - 1; 2141 int err1 = 0, err2 = 0, err3 = 0; 2142 struct extent_status *es1 = NULL; 2143 struct extent_status *es2 = NULL; 2144 struct pending_reservation *pr1 = NULL; 2145 struct pending_reservation *pr2 = NULL; 2146 2147 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 2148 return; 2149 2150 es_debug("add [%u/%u) delayed to extent status tree of inode %lu\n", 2151 lblk, len, inode->i_ino); 2152 if (!len) 2153 return; 2154 2155 WARN_ON_ONCE((EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) && 2156 end_allocated); 2157 2158 newes.es_lblk = lblk; 2159 newes.es_len = len; 2160 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); 2161 2162 ext4_es_insert_extent_check(inode, &newes); 2163 2164 retry: 2165 if (err1 && !es1) 2166 es1 = __es_alloc_extent(true); 2167 if ((err1 || err2) && !es2) 2168 es2 = __es_alloc_extent(true); 2169 if (err1 || err2 || err3 < 0) { 2170 if (lclu_allocated && !pr1) 2171 pr1 = __alloc_pending(true); 2172 if (end_allocated && !pr2) 2173 pr2 = __alloc_pending(true); 2174 } 2175 write_lock(&EXT4_I(inode)->i_es_lock); 2176 2177 err1 = __es_remove_extent(inode, lblk, end, NULL, es1); 2178 if (err1 != 0) 2179 goto error; 2180 /* Free preallocated extent if it didn't get used. */ 2181 if (es1) { 2182 if (!es1->es_len) 2183 __es_free_extent(es1); 2184 es1 = NULL; 2185 } 2186 2187 err2 = __es_insert_extent(inode, &newes, es2); 2188 if (err2 != 0) 2189 goto error; 2190 /* Free preallocated extent if it didn't get used. */ 2191 if (es2) { 2192 if (!es2->es_len) 2193 __es_free_extent(es2); 2194 es2 = NULL; 2195 } 2196 2197 if (lclu_allocated) { 2198 err3 = __insert_pending(inode, lblk, &pr1); 2199 if (err3 < 0) 2200 goto error; 2201 if (pr1) { 2202 __free_pending(pr1); 2203 pr1 = NULL; 2204 } 2205 } 2206 if (end_allocated) { 2207 err3 = __insert_pending(inode, end, &pr2); 2208 if (err3 < 0) 2209 goto error; 2210 if (pr2) { 2211 __free_pending(pr2); 2212 pr2 = NULL; 2213 } 2214 } 2215 ext4_es_inc_seq(inode); 2216 error: 2217 write_unlock(&EXT4_I(inode)->i_es_lock); 2218 if (err1 || err2 || err3 < 0) 2219 goto retry; 2220 2221 trace_ext4_es_insert_delayed_extent(inode, &newes, lclu_allocated, 2222 end_allocated); 2223 ext4_es_print_tree(inode); 2224 ext4_print_pending_tree(inode); 2225 return; 2226 } 2227 2228 /* 2229 * __revise_pending - makes, cancels, or leaves unchanged pending cluster 2230 * reservations for a specified block range depending 2231 * upon the presence or absence of delayed blocks 2232 * outside the range within clusters at the ends of the 2233 * range 2234 * 2235 * @inode - file containing the range 2236 * @lblk - logical block defining the start of range 2237 * @len - length of range in blocks 2238 * @prealloc - preallocated pending entry 2239 * 2240 * Used after a newly allocated extent is added to the extents status tree. 2241 * Requires that the extents in the range have either written or unwritten 2242 * status. Must be called while holding i_es_lock. Returns number of new 2243 * inserts pending cluster on insert pendings, returns 0 on remove pendings, 2244 * return -ENOMEM on failure. 2245 */ 2246 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, 2247 ext4_lblk_t len, 2248 struct pending_reservation **prealloc) 2249 { 2250 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2251 ext4_lblk_t end = lblk + len - 1; 2252 ext4_lblk_t first, last; 2253 bool f_del = false, l_del = false; 2254 int pendings = 0; 2255 int ret = 0; 2256 2257 if (len == 0) 2258 return 0; 2259 2260 /* 2261 * Two cases - block range within single cluster and block range 2262 * spanning two or more clusters. Note that a cluster belonging 2263 * to a range starting and/or ending on a cluster boundary is treated 2264 * as if it does not contain a delayed extent. The new range may 2265 * have allocated space for previously delayed blocks out to the 2266 * cluster boundary, requiring that any pre-existing pending 2267 * reservation be canceled. Because this code only looks at blocks 2268 * outside the range, it should revise pending reservations 2269 * correctly even if the extent represented by the range can't be 2270 * inserted in the extents status tree due to ENOSPC. 2271 */ 2272 2273 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { 2274 first = EXT4_LBLK_CMASK(sbi, lblk); 2275 if (first != lblk) 2276 f_del = __es_scan_range(inode, &ext4_es_is_delayed, 2277 first, lblk - 1); 2278 if (f_del) { 2279 ret = __insert_pending(inode, first, prealloc); 2280 if (ret < 0) 2281 goto out; 2282 pendings += ret; 2283 } else { 2284 last = EXT4_LBLK_CMASK(sbi, end) + 2285 sbi->s_cluster_ratio - 1; 2286 if (last != end) 2287 l_del = __es_scan_range(inode, 2288 &ext4_es_is_delayed, 2289 end + 1, last); 2290 if (l_del) { 2291 ret = __insert_pending(inode, last, prealloc); 2292 if (ret < 0) 2293 goto out; 2294 pendings += ret; 2295 } else 2296 __remove_pending(inode, last); 2297 } 2298 } else { 2299 first = EXT4_LBLK_CMASK(sbi, lblk); 2300 if (first != lblk) 2301 f_del = __es_scan_range(inode, &ext4_es_is_delayed, 2302 first, lblk - 1); 2303 if (f_del) { 2304 ret = __insert_pending(inode, first, prealloc); 2305 if (ret < 0) 2306 goto out; 2307 pendings += ret; 2308 } else 2309 __remove_pending(inode, first); 2310 2311 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; 2312 if (last != end) 2313 l_del = __es_scan_range(inode, &ext4_es_is_delayed, 2314 end + 1, last); 2315 if (l_del) { 2316 ret = __insert_pending(inode, last, prealloc); 2317 if (ret < 0) 2318 goto out; 2319 pendings += ret; 2320 } else 2321 __remove_pending(inode, last); 2322 } 2323 out: 2324 return (ret < 0) ? ret : pendings; 2325 } 2326