xref: /linux/fs/ext4/extents_status.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 			      ext4_lblk_t end);
150 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
151 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
152 		       struct ext4_inode_info *locked_ei);
153 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
154 			     ext4_lblk_t len);
155 
156 int __init ext4_init_es(void)
157 {
158 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
159 					   sizeof(struct extent_status),
160 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
161 	if (ext4_es_cachep == NULL)
162 		return -ENOMEM;
163 	return 0;
164 }
165 
166 void ext4_exit_es(void)
167 {
168 	kmem_cache_destroy(ext4_es_cachep);
169 }
170 
171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 	tree->root = RB_ROOT;
174 	tree->cache_es = NULL;
175 }
176 
177 #ifdef ES_DEBUG__
178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 	struct ext4_es_tree *tree;
181 	struct rb_node *node;
182 
183 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 	tree = &EXT4_I(inode)->i_es_tree;
185 	node = rb_first(&tree->root);
186 	while (node) {
187 		struct extent_status *es;
188 		es = rb_entry(node, struct extent_status, rb_node);
189 		printk(KERN_DEBUG " [%u/%u) %llu %x",
190 		       es->es_lblk, es->es_len,
191 		       ext4_es_pblock(es), ext4_es_status(es));
192 		node = rb_next(node);
193 	}
194 	printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199 
200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 	return es->es_lblk + es->es_len - 1;
204 }
205 
206 /*
207  * search through the tree for an delayed extent with a given offset.  If
208  * it can't be found, try to find next extent.
209  */
210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 					      ext4_lblk_t lblk)
212 {
213 	struct rb_node *node = root->rb_node;
214 	struct extent_status *es = NULL;
215 
216 	while (node) {
217 		es = rb_entry(node, struct extent_status, rb_node);
218 		if (lblk < es->es_lblk)
219 			node = node->rb_left;
220 		else if (lblk > ext4_es_end(es))
221 			node = node->rb_right;
222 		else
223 			return es;
224 	}
225 
226 	if (es && lblk < es->es_lblk)
227 		return es;
228 
229 	if (es && lblk > ext4_es_end(es)) {
230 		node = rb_next(&es->rb_node);
231 		return node ? rb_entry(node, struct extent_status, rb_node) :
232 			      NULL;
233 	}
234 
235 	return NULL;
236 }
237 
238 /*
239  * ext4_es_find_extent_range - find extent with specified status within block
240  *                             range or next extent following block range in
241  *                             extents status tree
242  *
243  * @inode - file containing the range
244  * @matching_fn - pointer to function that matches extents with desired status
245  * @lblk - logical block defining start of range
246  * @end - logical block defining end of range
247  * @es - extent found, if any
248  *
249  * Find the first extent within the block range specified by @lblk and @end
250  * in the extents status tree that satisfies @matching_fn.  If a match
251  * is found, it's returned in @es.  If not, and a matching extent is found
252  * beyond the block range, it's returned in @es.  If no match is found, an
253  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
254  * are 0.
255  */
256 static void __es_find_extent_range(struct inode *inode,
257 				   int (*matching_fn)(struct extent_status *es),
258 				   ext4_lblk_t lblk, ext4_lblk_t end,
259 				   struct extent_status *es)
260 {
261 	struct ext4_es_tree *tree = NULL;
262 	struct extent_status *es1 = NULL;
263 	struct rb_node *node;
264 
265 	WARN_ON(es == NULL);
266 	WARN_ON(end < lblk);
267 
268 	tree = &EXT4_I(inode)->i_es_tree;
269 
270 	/* see if the extent has been cached */
271 	es->es_lblk = es->es_len = es->es_pblk = 0;
272 	if (tree->cache_es) {
273 		es1 = tree->cache_es;
274 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
275 			es_debug("%u cached by [%u/%u) %llu %x\n",
276 				 lblk, es1->es_lblk, es1->es_len,
277 				 ext4_es_pblock(es1), ext4_es_status(es1));
278 			goto out;
279 		}
280 	}
281 
282 	es1 = __es_tree_search(&tree->root, lblk);
283 
284 out:
285 	if (es1 && !matching_fn(es1)) {
286 		while ((node = rb_next(&es1->rb_node)) != NULL) {
287 			es1 = rb_entry(node, struct extent_status, rb_node);
288 			if (es1->es_lblk > end) {
289 				es1 = NULL;
290 				break;
291 			}
292 			if (matching_fn(es1))
293 				break;
294 		}
295 	}
296 
297 	if (es1 && matching_fn(es1)) {
298 		tree->cache_es = es1;
299 		es->es_lblk = es1->es_lblk;
300 		es->es_len = es1->es_len;
301 		es->es_pblk = es1->es_pblk;
302 	}
303 
304 }
305 
306 /*
307  * Locking for __es_find_extent_range() for external use
308  */
309 void ext4_es_find_extent_range(struct inode *inode,
310 			       int (*matching_fn)(struct extent_status *es),
311 			       ext4_lblk_t lblk, ext4_lblk_t end,
312 			       struct extent_status *es)
313 {
314 	trace_ext4_es_find_extent_range_enter(inode, lblk);
315 
316 	read_lock(&EXT4_I(inode)->i_es_lock);
317 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
318 	read_unlock(&EXT4_I(inode)->i_es_lock);
319 
320 	trace_ext4_es_find_extent_range_exit(inode, es);
321 }
322 
323 /*
324  * __es_scan_range - search block range for block with specified status
325  *                   in extents status tree
326  *
327  * @inode - file containing the range
328  * @matching_fn - pointer to function that matches extents with desired status
329  * @lblk - logical block defining start of range
330  * @end - logical block defining end of range
331  *
332  * Returns true if at least one block in the specified block range satisfies
333  * the criterion specified by @matching_fn, and false if not.  If at least
334  * one extent has the specified status, then there is at least one block
335  * in the cluster with that status.  Should only be called by code that has
336  * taken i_es_lock.
337  */
338 static bool __es_scan_range(struct inode *inode,
339 			    int (*matching_fn)(struct extent_status *es),
340 			    ext4_lblk_t start, ext4_lblk_t end)
341 {
342 	struct extent_status es;
343 
344 	__es_find_extent_range(inode, matching_fn, start, end, &es);
345 	if (es.es_len == 0)
346 		return false;   /* no matching extent in the tree */
347 	else if (es.es_lblk <= start &&
348 		 start < es.es_lblk + es.es_len)
349 		return true;
350 	else if (start <= es.es_lblk && es.es_lblk <= end)
351 		return true;
352 	else
353 		return false;
354 }
355 /*
356  * Locking for __es_scan_range() for external use
357  */
358 bool ext4_es_scan_range(struct inode *inode,
359 			int (*matching_fn)(struct extent_status *es),
360 			ext4_lblk_t lblk, ext4_lblk_t end)
361 {
362 	bool ret;
363 
364 	read_lock(&EXT4_I(inode)->i_es_lock);
365 	ret = __es_scan_range(inode, matching_fn, lblk, end);
366 	read_unlock(&EXT4_I(inode)->i_es_lock);
367 
368 	return ret;
369 }
370 
371 /*
372  * __es_scan_clu - search cluster for block with specified status in
373  *                 extents status tree
374  *
375  * @inode - file containing the cluster
376  * @matching_fn - pointer to function that matches extents with desired status
377  * @lblk - logical block in cluster to be searched
378  *
379  * Returns true if at least one extent in the cluster containing @lblk
380  * satisfies the criterion specified by @matching_fn, and false if not.  If at
381  * least one extent has the specified status, then there is at least one block
382  * in the cluster with that status.  Should only be called by code that has
383  * taken i_es_lock.
384  */
385 static bool __es_scan_clu(struct inode *inode,
386 			  int (*matching_fn)(struct extent_status *es),
387 			  ext4_lblk_t lblk)
388 {
389 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
390 	ext4_lblk_t lblk_start, lblk_end;
391 
392 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
393 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
394 
395 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
396 }
397 
398 /*
399  * Locking for __es_scan_clu() for external use
400  */
401 bool ext4_es_scan_clu(struct inode *inode,
402 		      int (*matching_fn)(struct extent_status *es),
403 		      ext4_lblk_t lblk)
404 {
405 	bool ret;
406 
407 	read_lock(&EXT4_I(inode)->i_es_lock);
408 	ret = __es_scan_clu(inode, matching_fn, lblk);
409 	read_unlock(&EXT4_I(inode)->i_es_lock);
410 
411 	return ret;
412 }
413 
414 static void ext4_es_list_add(struct inode *inode)
415 {
416 	struct ext4_inode_info *ei = EXT4_I(inode);
417 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
418 
419 	if (!list_empty(&ei->i_es_list))
420 		return;
421 
422 	spin_lock(&sbi->s_es_lock);
423 	if (list_empty(&ei->i_es_list)) {
424 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
425 		sbi->s_es_nr_inode++;
426 	}
427 	spin_unlock(&sbi->s_es_lock);
428 }
429 
430 static void ext4_es_list_del(struct inode *inode)
431 {
432 	struct ext4_inode_info *ei = EXT4_I(inode);
433 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
434 
435 	spin_lock(&sbi->s_es_lock);
436 	if (!list_empty(&ei->i_es_list)) {
437 		list_del_init(&ei->i_es_list);
438 		sbi->s_es_nr_inode--;
439 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
440 	}
441 	spin_unlock(&sbi->s_es_lock);
442 }
443 
444 static struct extent_status *
445 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
446 		     ext4_fsblk_t pblk)
447 {
448 	struct extent_status *es;
449 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
450 	if (es == NULL)
451 		return NULL;
452 	es->es_lblk = lblk;
453 	es->es_len = len;
454 	es->es_pblk = pblk;
455 
456 	/*
457 	 * We don't count delayed extent because we never try to reclaim them
458 	 */
459 	if (!ext4_es_is_delayed(es)) {
460 		if (!EXT4_I(inode)->i_es_shk_nr++)
461 			ext4_es_list_add(inode);
462 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
463 					s_es_stats.es_stats_shk_cnt);
464 	}
465 
466 	EXT4_I(inode)->i_es_all_nr++;
467 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
468 
469 	return es;
470 }
471 
472 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
473 {
474 	EXT4_I(inode)->i_es_all_nr--;
475 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
476 
477 	/* Decrease the shrink counter when this es is not delayed */
478 	if (!ext4_es_is_delayed(es)) {
479 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
480 		if (!--EXT4_I(inode)->i_es_shk_nr)
481 			ext4_es_list_del(inode);
482 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
483 					s_es_stats.es_stats_shk_cnt);
484 	}
485 
486 	kmem_cache_free(ext4_es_cachep, es);
487 }
488 
489 /*
490  * Check whether or not two extents can be merged
491  * Condition:
492  *  - logical block number is contiguous
493  *  - physical block number is contiguous
494  *  - status is equal
495  */
496 static int ext4_es_can_be_merged(struct extent_status *es1,
497 				 struct extent_status *es2)
498 {
499 	if (ext4_es_type(es1) != ext4_es_type(es2))
500 		return 0;
501 
502 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
503 		pr_warn("ES assertion failed when merging extents. "
504 			"The sum of lengths of es1 (%d) and es2 (%d) "
505 			"is bigger than allowed file size (%d)\n",
506 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
507 		WARN_ON(1);
508 		return 0;
509 	}
510 
511 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
512 		return 0;
513 
514 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
515 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
516 		return 1;
517 
518 	if (ext4_es_is_hole(es1))
519 		return 1;
520 
521 	/* we need to check delayed extent is without unwritten status */
522 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
523 		return 1;
524 
525 	return 0;
526 }
527 
528 static struct extent_status *
529 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
530 {
531 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
532 	struct extent_status *es1;
533 	struct rb_node *node;
534 
535 	node = rb_prev(&es->rb_node);
536 	if (!node)
537 		return es;
538 
539 	es1 = rb_entry(node, struct extent_status, rb_node);
540 	if (ext4_es_can_be_merged(es1, es)) {
541 		es1->es_len += es->es_len;
542 		if (ext4_es_is_referenced(es))
543 			ext4_es_set_referenced(es1);
544 		rb_erase(&es->rb_node, &tree->root);
545 		ext4_es_free_extent(inode, es);
546 		es = es1;
547 	}
548 
549 	return es;
550 }
551 
552 static struct extent_status *
553 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
554 {
555 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
556 	struct extent_status *es1;
557 	struct rb_node *node;
558 
559 	node = rb_next(&es->rb_node);
560 	if (!node)
561 		return es;
562 
563 	es1 = rb_entry(node, struct extent_status, rb_node);
564 	if (ext4_es_can_be_merged(es, es1)) {
565 		es->es_len += es1->es_len;
566 		if (ext4_es_is_referenced(es1))
567 			ext4_es_set_referenced(es);
568 		rb_erase(node, &tree->root);
569 		ext4_es_free_extent(inode, es1);
570 	}
571 
572 	return es;
573 }
574 
575 #ifdef ES_AGGRESSIVE_TEST
576 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
577 
578 static void ext4_es_insert_extent_ext_check(struct inode *inode,
579 					    struct extent_status *es)
580 {
581 	struct ext4_ext_path *path = NULL;
582 	struct ext4_extent *ex;
583 	ext4_lblk_t ee_block;
584 	ext4_fsblk_t ee_start;
585 	unsigned short ee_len;
586 	int depth, ee_status, es_status;
587 
588 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
589 	if (IS_ERR(path))
590 		return;
591 
592 	depth = ext_depth(inode);
593 	ex = path[depth].p_ext;
594 
595 	if (ex) {
596 
597 		ee_block = le32_to_cpu(ex->ee_block);
598 		ee_start = ext4_ext_pblock(ex);
599 		ee_len = ext4_ext_get_actual_len(ex);
600 
601 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
602 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
603 
604 		/*
605 		 * Make sure ex and es are not overlap when we try to insert
606 		 * a delayed/hole extent.
607 		 */
608 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
609 			if (in_range(es->es_lblk, ee_block, ee_len)) {
610 				pr_warn("ES insert assertion failed for "
611 					"inode: %lu we can find an extent "
612 					"at block [%d/%d/%llu/%c], but we "
613 					"want to add a delayed/hole extent "
614 					"[%d/%d/%llu/%x]\n",
615 					inode->i_ino, ee_block, ee_len,
616 					ee_start, ee_status ? 'u' : 'w',
617 					es->es_lblk, es->es_len,
618 					ext4_es_pblock(es), ext4_es_status(es));
619 			}
620 			goto out;
621 		}
622 
623 		/*
624 		 * We don't check ee_block == es->es_lblk, etc. because es
625 		 * might be a part of whole extent, vice versa.
626 		 */
627 		if (es->es_lblk < ee_block ||
628 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
629 			pr_warn("ES insert assertion failed for inode: %lu "
630 				"ex_status [%d/%d/%llu/%c] != "
631 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
632 				ee_block, ee_len, ee_start,
633 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
634 				ext4_es_pblock(es), es_status ? 'u' : 'w');
635 			goto out;
636 		}
637 
638 		if (ee_status ^ es_status) {
639 			pr_warn("ES insert assertion failed for inode: %lu "
640 				"ex_status [%d/%d/%llu/%c] != "
641 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
642 				ee_block, ee_len, ee_start,
643 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
644 				ext4_es_pblock(es), es_status ? 'u' : 'w');
645 		}
646 	} else {
647 		/*
648 		 * We can't find an extent on disk.  So we need to make sure
649 		 * that we don't want to add an written/unwritten extent.
650 		 */
651 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
652 			pr_warn("ES insert assertion failed for inode: %lu "
653 				"can't find an extent at block %d but we want "
654 				"to add a written/unwritten extent "
655 				"[%d/%d/%llu/%x]\n", inode->i_ino,
656 				es->es_lblk, es->es_lblk, es->es_len,
657 				ext4_es_pblock(es), ext4_es_status(es));
658 		}
659 	}
660 out:
661 	ext4_ext_drop_refs(path);
662 	kfree(path);
663 }
664 
665 static void ext4_es_insert_extent_ind_check(struct inode *inode,
666 					    struct extent_status *es)
667 {
668 	struct ext4_map_blocks map;
669 	int retval;
670 
671 	/*
672 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
673 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
674 	 * access direct/indirect tree from outside.  It is too dirty to define
675 	 * this function in indirect.c file.
676 	 */
677 
678 	map.m_lblk = es->es_lblk;
679 	map.m_len = es->es_len;
680 
681 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
682 	if (retval > 0) {
683 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
684 			/*
685 			 * We want to add a delayed/hole extent but this
686 			 * block has been allocated.
687 			 */
688 			pr_warn("ES insert assertion failed for inode: %lu "
689 				"We can find blocks but we want to add a "
690 				"delayed/hole extent [%d/%d/%llu/%x]\n",
691 				inode->i_ino, es->es_lblk, es->es_len,
692 				ext4_es_pblock(es), ext4_es_status(es));
693 			return;
694 		} else if (ext4_es_is_written(es)) {
695 			if (retval != es->es_len) {
696 				pr_warn("ES insert assertion failed for "
697 					"inode: %lu retval %d != es_len %d\n",
698 					inode->i_ino, retval, es->es_len);
699 				return;
700 			}
701 			if (map.m_pblk != ext4_es_pblock(es)) {
702 				pr_warn("ES insert assertion failed for "
703 					"inode: %lu m_pblk %llu != "
704 					"es_pblk %llu\n",
705 					inode->i_ino, map.m_pblk,
706 					ext4_es_pblock(es));
707 				return;
708 			}
709 		} else {
710 			/*
711 			 * We don't need to check unwritten extent because
712 			 * indirect-based file doesn't have it.
713 			 */
714 			BUG();
715 		}
716 	} else if (retval == 0) {
717 		if (ext4_es_is_written(es)) {
718 			pr_warn("ES insert assertion failed for inode: %lu "
719 				"We can't find the block but we want to add "
720 				"a written extent [%d/%d/%llu/%x]\n",
721 				inode->i_ino, es->es_lblk, es->es_len,
722 				ext4_es_pblock(es), ext4_es_status(es));
723 			return;
724 		}
725 	}
726 }
727 
728 static inline void ext4_es_insert_extent_check(struct inode *inode,
729 					       struct extent_status *es)
730 {
731 	/*
732 	 * We don't need to worry about the race condition because
733 	 * caller takes i_data_sem locking.
734 	 */
735 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
736 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
737 		ext4_es_insert_extent_ext_check(inode, es);
738 	else
739 		ext4_es_insert_extent_ind_check(inode, es);
740 }
741 #else
742 static inline void ext4_es_insert_extent_check(struct inode *inode,
743 					       struct extent_status *es)
744 {
745 }
746 #endif
747 
748 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
749 {
750 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
751 	struct rb_node **p = &tree->root.rb_node;
752 	struct rb_node *parent = NULL;
753 	struct extent_status *es;
754 
755 	while (*p) {
756 		parent = *p;
757 		es = rb_entry(parent, struct extent_status, rb_node);
758 
759 		if (newes->es_lblk < es->es_lblk) {
760 			if (ext4_es_can_be_merged(newes, es)) {
761 				/*
762 				 * Here we can modify es_lblk directly
763 				 * because it isn't overlapped.
764 				 */
765 				es->es_lblk = newes->es_lblk;
766 				es->es_len += newes->es_len;
767 				if (ext4_es_is_written(es) ||
768 				    ext4_es_is_unwritten(es))
769 					ext4_es_store_pblock(es,
770 							     newes->es_pblk);
771 				es = ext4_es_try_to_merge_left(inode, es);
772 				goto out;
773 			}
774 			p = &(*p)->rb_left;
775 		} else if (newes->es_lblk > ext4_es_end(es)) {
776 			if (ext4_es_can_be_merged(es, newes)) {
777 				es->es_len += newes->es_len;
778 				es = ext4_es_try_to_merge_right(inode, es);
779 				goto out;
780 			}
781 			p = &(*p)->rb_right;
782 		} else {
783 			BUG();
784 			return -EINVAL;
785 		}
786 	}
787 
788 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
789 				  newes->es_pblk);
790 	if (!es)
791 		return -ENOMEM;
792 	rb_link_node(&es->rb_node, parent, p);
793 	rb_insert_color(&es->rb_node, &tree->root);
794 
795 out:
796 	tree->cache_es = es;
797 	return 0;
798 }
799 
800 /*
801  * ext4_es_insert_extent() adds information to an inode's extent
802  * status tree.
803  *
804  * Return 0 on success, error code on failure.
805  */
806 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
807 			  ext4_lblk_t len, ext4_fsblk_t pblk,
808 			  unsigned int status)
809 {
810 	struct extent_status newes;
811 	ext4_lblk_t end = lblk + len - 1;
812 	int err = 0;
813 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814 
815 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
816 		 lblk, len, pblk, status, inode->i_ino);
817 
818 	if (!len)
819 		return 0;
820 
821 	BUG_ON(end < lblk);
822 
823 	if ((status & EXTENT_STATUS_DELAYED) &&
824 	    (status & EXTENT_STATUS_WRITTEN)) {
825 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
826 				" delayed and written which can potentially "
827 				" cause data loss.", lblk, len);
828 		WARN_ON(1);
829 	}
830 
831 	newes.es_lblk = lblk;
832 	newes.es_len = len;
833 	ext4_es_store_pblock_status(&newes, pblk, status);
834 	trace_ext4_es_insert_extent(inode, &newes);
835 
836 	ext4_es_insert_extent_check(inode, &newes);
837 
838 	write_lock(&EXT4_I(inode)->i_es_lock);
839 	err = __es_remove_extent(inode, lblk, end);
840 	if (err != 0)
841 		goto error;
842 retry:
843 	err = __es_insert_extent(inode, &newes);
844 	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
845 					  128, EXT4_I(inode)))
846 		goto retry;
847 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
848 		err = 0;
849 
850 	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
851 	    (status & EXTENT_STATUS_WRITTEN ||
852 	     status & EXTENT_STATUS_UNWRITTEN))
853 		__revise_pending(inode, lblk, len);
854 
855 error:
856 	write_unlock(&EXT4_I(inode)->i_es_lock);
857 
858 	ext4_es_print_tree(inode);
859 
860 	return err;
861 }
862 
863 /*
864  * ext4_es_cache_extent() inserts information into the extent status
865  * tree if and only if there isn't information about the range in
866  * question already.
867  */
868 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
869 			  ext4_lblk_t len, ext4_fsblk_t pblk,
870 			  unsigned int status)
871 {
872 	struct extent_status *es;
873 	struct extent_status newes;
874 	ext4_lblk_t end = lblk + len - 1;
875 
876 	newes.es_lblk = lblk;
877 	newes.es_len = len;
878 	ext4_es_store_pblock_status(&newes, pblk, status);
879 	trace_ext4_es_cache_extent(inode, &newes);
880 
881 	if (!len)
882 		return;
883 
884 	BUG_ON(end < lblk);
885 
886 	write_lock(&EXT4_I(inode)->i_es_lock);
887 
888 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
889 	if (!es || es->es_lblk > end)
890 		__es_insert_extent(inode, &newes);
891 	write_unlock(&EXT4_I(inode)->i_es_lock);
892 }
893 
894 /*
895  * ext4_es_lookup_extent() looks up an extent in extent status tree.
896  *
897  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
898  *
899  * Return: 1 on found, 0 on not
900  */
901 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
902 			  struct extent_status *es)
903 {
904 	struct ext4_es_tree *tree;
905 	struct ext4_es_stats *stats;
906 	struct extent_status *es1 = NULL;
907 	struct rb_node *node;
908 	int found = 0;
909 
910 	trace_ext4_es_lookup_extent_enter(inode, lblk);
911 	es_debug("lookup extent in block %u\n", lblk);
912 
913 	tree = &EXT4_I(inode)->i_es_tree;
914 	read_lock(&EXT4_I(inode)->i_es_lock);
915 
916 	/* find extent in cache firstly */
917 	es->es_lblk = es->es_len = es->es_pblk = 0;
918 	if (tree->cache_es) {
919 		es1 = tree->cache_es;
920 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
921 			es_debug("%u cached by [%u/%u)\n",
922 				 lblk, es1->es_lblk, es1->es_len);
923 			found = 1;
924 			goto out;
925 		}
926 	}
927 
928 	node = tree->root.rb_node;
929 	while (node) {
930 		es1 = rb_entry(node, struct extent_status, rb_node);
931 		if (lblk < es1->es_lblk)
932 			node = node->rb_left;
933 		else if (lblk > ext4_es_end(es1))
934 			node = node->rb_right;
935 		else {
936 			found = 1;
937 			break;
938 		}
939 	}
940 
941 out:
942 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
943 	if (found) {
944 		BUG_ON(!es1);
945 		es->es_lblk = es1->es_lblk;
946 		es->es_len = es1->es_len;
947 		es->es_pblk = es1->es_pblk;
948 		if (!ext4_es_is_referenced(es1))
949 			ext4_es_set_referenced(es1);
950 		stats->es_stats_cache_hits++;
951 	} else {
952 		stats->es_stats_cache_misses++;
953 	}
954 
955 	read_unlock(&EXT4_I(inode)->i_es_lock);
956 
957 	trace_ext4_es_lookup_extent_exit(inode, es, found);
958 	return found;
959 }
960 
961 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
962 			      ext4_lblk_t end)
963 {
964 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
965 	struct rb_node *node;
966 	struct extent_status *es;
967 	struct extent_status orig_es;
968 	ext4_lblk_t len1, len2;
969 	ext4_fsblk_t block;
970 	int err;
971 
972 retry:
973 	err = 0;
974 	es = __es_tree_search(&tree->root, lblk);
975 	if (!es)
976 		goto out;
977 	if (es->es_lblk > end)
978 		goto out;
979 
980 	/* Simply invalidate cache_es. */
981 	tree->cache_es = NULL;
982 
983 	orig_es.es_lblk = es->es_lblk;
984 	orig_es.es_len = es->es_len;
985 	orig_es.es_pblk = es->es_pblk;
986 
987 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
988 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
989 	if (len1 > 0)
990 		es->es_len = len1;
991 	if (len2 > 0) {
992 		if (len1 > 0) {
993 			struct extent_status newes;
994 
995 			newes.es_lblk = end + 1;
996 			newes.es_len = len2;
997 			block = 0x7FDEADBEEFULL;
998 			if (ext4_es_is_written(&orig_es) ||
999 			    ext4_es_is_unwritten(&orig_es))
1000 				block = ext4_es_pblock(&orig_es) +
1001 					orig_es.es_len - len2;
1002 			ext4_es_store_pblock_status(&newes, block,
1003 						    ext4_es_status(&orig_es));
1004 			err = __es_insert_extent(inode, &newes);
1005 			if (err) {
1006 				es->es_lblk = orig_es.es_lblk;
1007 				es->es_len = orig_es.es_len;
1008 				if ((err == -ENOMEM) &&
1009 				    __es_shrink(EXT4_SB(inode->i_sb),
1010 							128, EXT4_I(inode)))
1011 					goto retry;
1012 				goto out;
1013 			}
1014 		} else {
1015 			es->es_lblk = end + 1;
1016 			es->es_len = len2;
1017 			if (ext4_es_is_written(es) ||
1018 			    ext4_es_is_unwritten(es)) {
1019 				block = orig_es.es_pblk + orig_es.es_len - len2;
1020 				ext4_es_store_pblock(es, block);
1021 			}
1022 		}
1023 		goto out;
1024 	}
1025 
1026 	if (len1 > 0) {
1027 		node = rb_next(&es->rb_node);
1028 		if (node)
1029 			es = rb_entry(node, struct extent_status, rb_node);
1030 		else
1031 			es = NULL;
1032 	}
1033 
1034 	while (es && ext4_es_end(es) <= end) {
1035 		node = rb_next(&es->rb_node);
1036 		rb_erase(&es->rb_node, &tree->root);
1037 		ext4_es_free_extent(inode, es);
1038 		if (!node) {
1039 			es = NULL;
1040 			break;
1041 		}
1042 		es = rb_entry(node, struct extent_status, rb_node);
1043 	}
1044 
1045 	if (es && es->es_lblk < end + 1) {
1046 		ext4_lblk_t orig_len = es->es_len;
1047 
1048 		len1 = ext4_es_end(es) - end;
1049 		es->es_lblk = end + 1;
1050 		es->es_len = len1;
1051 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1052 			block = es->es_pblk + orig_len - len1;
1053 			ext4_es_store_pblock(es, block);
1054 		}
1055 	}
1056 
1057 out:
1058 	return err;
1059 }
1060 
1061 /*
1062  * ext4_es_remove_extent() removes a space from a extent status tree.
1063  *
1064  * Return 0 on success, error code on failure.
1065  */
1066 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1067 			  ext4_lblk_t len)
1068 {
1069 	ext4_lblk_t end;
1070 	int err = 0;
1071 
1072 	trace_ext4_es_remove_extent(inode, lblk, len);
1073 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1074 		 lblk, len, inode->i_ino);
1075 
1076 	if (!len)
1077 		return err;
1078 
1079 	end = lblk + len - 1;
1080 	BUG_ON(end < lblk);
1081 
1082 	/*
1083 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1084 	 * so that we are sure __es_shrink() is done with the inode before it
1085 	 * is reclaimed.
1086 	 */
1087 	write_lock(&EXT4_I(inode)->i_es_lock);
1088 	err = __es_remove_extent(inode, lblk, end);
1089 	write_unlock(&EXT4_I(inode)->i_es_lock);
1090 	ext4_es_print_tree(inode);
1091 	return err;
1092 }
1093 
1094 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1095 		       struct ext4_inode_info *locked_ei)
1096 {
1097 	struct ext4_inode_info *ei;
1098 	struct ext4_es_stats *es_stats;
1099 	ktime_t start_time;
1100 	u64 scan_time;
1101 	int nr_to_walk;
1102 	int nr_shrunk = 0;
1103 	int retried = 0, nr_skipped = 0;
1104 
1105 	es_stats = &sbi->s_es_stats;
1106 	start_time = ktime_get();
1107 
1108 retry:
1109 	spin_lock(&sbi->s_es_lock);
1110 	nr_to_walk = sbi->s_es_nr_inode;
1111 	while (nr_to_walk-- > 0) {
1112 		if (list_empty(&sbi->s_es_list)) {
1113 			spin_unlock(&sbi->s_es_lock);
1114 			goto out;
1115 		}
1116 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1117 				      i_es_list);
1118 		/* Move the inode to the tail */
1119 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1120 
1121 		/*
1122 		 * Normally we try hard to avoid shrinking precached inodes,
1123 		 * but we will as a last resort.
1124 		 */
1125 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1126 						EXT4_STATE_EXT_PRECACHED)) {
1127 			nr_skipped++;
1128 			continue;
1129 		}
1130 
1131 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1132 			nr_skipped++;
1133 			continue;
1134 		}
1135 		/*
1136 		 * Now we hold i_es_lock which protects us from inode reclaim
1137 		 * freeing inode under us
1138 		 */
1139 		spin_unlock(&sbi->s_es_lock);
1140 
1141 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1142 		write_unlock(&ei->i_es_lock);
1143 
1144 		if (nr_to_scan <= 0)
1145 			goto out;
1146 		spin_lock(&sbi->s_es_lock);
1147 	}
1148 	spin_unlock(&sbi->s_es_lock);
1149 
1150 	/*
1151 	 * If we skipped any inodes, and we weren't able to make any
1152 	 * forward progress, try again to scan precached inodes.
1153 	 */
1154 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1155 		retried++;
1156 		goto retry;
1157 	}
1158 
1159 	if (locked_ei && nr_shrunk == 0)
1160 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1161 
1162 out:
1163 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1164 	if (likely(es_stats->es_stats_scan_time))
1165 		es_stats->es_stats_scan_time = (scan_time +
1166 				es_stats->es_stats_scan_time*3) / 4;
1167 	else
1168 		es_stats->es_stats_scan_time = scan_time;
1169 	if (scan_time > es_stats->es_stats_max_scan_time)
1170 		es_stats->es_stats_max_scan_time = scan_time;
1171 	if (likely(es_stats->es_stats_shrunk))
1172 		es_stats->es_stats_shrunk = (nr_shrunk +
1173 				es_stats->es_stats_shrunk*3) / 4;
1174 	else
1175 		es_stats->es_stats_shrunk = nr_shrunk;
1176 
1177 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1178 			     nr_skipped, retried);
1179 	return nr_shrunk;
1180 }
1181 
1182 static unsigned long ext4_es_count(struct shrinker *shrink,
1183 				   struct shrink_control *sc)
1184 {
1185 	unsigned long nr;
1186 	struct ext4_sb_info *sbi;
1187 
1188 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1189 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1190 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1191 	return nr;
1192 }
1193 
1194 static unsigned long ext4_es_scan(struct shrinker *shrink,
1195 				  struct shrink_control *sc)
1196 {
1197 	struct ext4_sb_info *sbi = container_of(shrink,
1198 					struct ext4_sb_info, s_es_shrinker);
1199 	int nr_to_scan = sc->nr_to_scan;
1200 	int ret, nr_shrunk;
1201 
1202 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1203 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1204 
1205 	if (!nr_to_scan)
1206 		return ret;
1207 
1208 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1209 
1210 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1211 	return nr_shrunk;
1212 }
1213 
1214 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1215 {
1216 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1217 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1218 	struct ext4_inode_info *ei, *max = NULL;
1219 	unsigned int inode_cnt = 0;
1220 
1221 	if (v != SEQ_START_TOKEN)
1222 		return 0;
1223 
1224 	/* here we just find an inode that has the max nr. of objects */
1225 	spin_lock(&sbi->s_es_lock);
1226 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1227 		inode_cnt++;
1228 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1229 			max = ei;
1230 		else if (!max)
1231 			max = ei;
1232 	}
1233 	spin_unlock(&sbi->s_es_lock);
1234 
1235 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1236 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1237 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1238 	seq_printf(seq, "  %lu/%lu cache hits/misses\n",
1239 		   es_stats->es_stats_cache_hits,
1240 		   es_stats->es_stats_cache_misses);
1241 	if (inode_cnt)
1242 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1243 
1244 	seq_printf(seq, "average:\n  %llu us scan time\n",
1245 	    div_u64(es_stats->es_stats_scan_time, 1000));
1246 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1247 	if (inode_cnt)
1248 		seq_printf(seq,
1249 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1250 		    "  %llu us max scan time\n",
1251 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1252 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1253 
1254 	return 0;
1255 }
1256 
1257 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1258 {
1259 	int err;
1260 
1261 	/* Make sure we have enough bits for physical block number */
1262 	BUILD_BUG_ON(ES_SHIFT < 48);
1263 	INIT_LIST_HEAD(&sbi->s_es_list);
1264 	sbi->s_es_nr_inode = 0;
1265 	spin_lock_init(&sbi->s_es_lock);
1266 	sbi->s_es_stats.es_stats_shrunk = 0;
1267 	sbi->s_es_stats.es_stats_cache_hits = 0;
1268 	sbi->s_es_stats.es_stats_cache_misses = 0;
1269 	sbi->s_es_stats.es_stats_scan_time = 0;
1270 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1271 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1272 	if (err)
1273 		return err;
1274 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1275 	if (err)
1276 		goto err1;
1277 
1278 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1279 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1280 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1281 	err = register_shrinker(&sbi->s_es_shrinker);
1282 	if (err)
1283 		goto err2;
1284 
1285 	return 0;
1286 
1287 err2:
1288 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1289 err1:
1290 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1291 	return err;
1292 }
1293 
1294 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1295 {
1296 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1297 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1298 	unregister_shrinker(&sbi->s_es_shrinker);
1299 }
1300 
1301 /*
1302  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1303  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1304  *
1305  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1306  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1307  * ei->i_es_shrink_lblk to where we should continue scanning.
1308  */
1309 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1310 				 int *nr_to_scan, int *nr_shrunk)
1311 {
1312 	struct inode *inode = &ei->vfs_inode;
1313 	struct ext4_es_tree *tree = &ei->i_es_tree;
1314 	struct extent_status *es;
1315 	struct rb_node *node;
1316 
1317 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1318 	if (!es)
1319 		goto out_wrap;
1320 	node = &es->rb_node;
1321 	while (*nr_to_scan > 0) {
1322 		if (es->es_lblk > end) {
1323 			ei->i_es_shrink_lblk = end + 1;
1324 			return 0;
1325 		}
1326 
1327 		(*nr_to_scan)--;
1328 		node = rb_next(&es->rb_node);
1329 		/*
1330 		 * We can't reclaim delayed extent from status tree because
1331 		 * fiemap, bigallic, and seek_data/hole need to use it.
1332 		 */
1333 		if (ext4_es_is_delayed(es))
1334 			goto next;
1335 		if (ext4_es_is_referenced(es)) {
1336 			ext4_es_clear_referenced(es);
1337 			goto next;
1338 		}
1339 
1340 		rb_erase(&es->rb_node, &tree->root);
1341 		ext4_es_free_extent(inode, es);
1342 		(*nr_shrunk)++;
1343 next:
1344 		if (!node)
1345 			goto out_wrap;
1346 		es = rb_entry(node, struct extent_status, rb_node);
1347 	}
1348 	ei->i_es_shrink_lblk = es->es_lblk;
1349 	return 1;
1350 out_wrap:
1351 	ei->i_es_shrink_lblk = 0;
1352 	return 0;
1353 }
1354 
1355 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1356 {
1357 	struct inode *inode = &ei->vfs_inode;
1358 	int nr_shrunk = 0;
1359 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1360 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1361 				      DEFAULT_RATELIMIT_BURST);
1362 
1363 	if (ei->i_es_shk_nr == 0)
1364 		return 0;
1365 
1366 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1367 	    __ratelimit(&_rs))
1368 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1369 
1370 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1371 	    start != 0)
1372 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1373 
1374 	ei->i_es_tree.cache_es = NULL;
1375 	return nr_shrunk;
1376 }
1377 
1378 #ifdef ES_DEBUG__
1379 static void ext4_print_pending_tree(struct inode *inode)
1380 {
1381 	struct ext4_pending_tree *tree;
1382 	struct rb_node *node;
1383 	struct pending_reservation *pr;
1384 
1385 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1386 	tree = &EXT4_I(inode)->i_pending_tree;
1387 	node = rb_first(&tree->root);
1388 	while (node) {
1389 		pr = rb_entry(node, struct pending_reservation, rb_node);
1390 		printk(KERN_DEBUG " %u", pr->lclu);
1391 		node = rb_next(node);
1392 	}
1393 	printk(KERN_DEBUG "\n");
1394 }
1395 #else
1396 #define ext4_print_pending_tree(inode)
1397 #endif
1398 
1399 int __init ext4_init_pending(void)
1400 {
1401 	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1402 					   sizeof(struct pending_reservation),
1403 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1404 	if (ext4_pending_cachep == NULL)
1405 		return -ENOMEM;
1406 	return 0;
1407 }
1408 
1409 void ext4_exit_pending(void)
1410 {
1411 	kmem_cache_destroy(ext4_pending_cachep);
1412 }
1413 
1414 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1415 {
1416 	tree->root = RB_ROOT;
1417 }
1418 
1419 /*
1420  * __get_pending - retrieve a pointer to a pending reservation
1421  *
1422  * @inode - file containing the pending cluster reservation
1423  * @lclu - logical cluster of interest
1424  *
1425  * Returns a pointer to a pending reservation if it's a member of
1426  * the set, and NULL if not.  Must be called holding i_es_lock.
1427  */
1428 static struct pending_reservation *__get_pending(struct inode *inode,
1429 						 ext4_lblk_t lclu)
1430 {
1431 	struct ext4_pending_tree *tree;
1432 	struct rb_node *node;
1433 	struct pending_reservation *pr = NULL;
1434 
1435 	tree = &EXT4_I(inode)->i_pending_tree;
1436 	node = (&tree->root)->rb_node;
1437 
1438 	while (node) {
1439 		pr = rb_entry(node, struct pending_reservation, rb_node);
1440 		if (lclu < pr->lclu)
1441 			node = node->rb_left;
1442 		else if (lclu > pr->lclu)
1443 			node = node->rb_right;
1444 		else if (lclu == pr->lclu)
1445 			return pr;
1446 	}
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * __insert_pending - adds a pending cluster reservation to the set of
1452  *                    pending reservations
1453  *
1454  * @inode - file containing the cluster
1455  * @lblk - logical block in the cluster to be added
1456  *
1457  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1458  * pending reservation is already in the set, returns successfully.
1459  */
1460 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1461 {
1462 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1463 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1464 	struct rb_node **p = &tree->root.rb_node;
1465 	struct rb_node *parent = NULL;
1466 	struct pending_reservation *pr;
1467 	ext4_lblk_t lclu;
1468 	int ret = 0;
1469 
1470 	lclu = EXT4_B2C(sbi, lblk);
1471 	/* search to find parent for insertion */
1472 	while (*p) {
1473 		parent = *p;
1474 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1475 
1476 		if (lclu < pr->lclu) {
1477 			p = &(*p)->rb_left;
1478 		} else if (lclu > pr->lclu) {
1479 			p = &(*p)->rb_right;
1480 		} else {
1481 			/* pending reservation already inserted */
1482 			goto out;
1483 		}
1484 	}
1485 
1486 	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1487 	if (pr == NULL) {
1488 		ret = -ENOMEM;
1489 		goto out;
1490 	}
1491 	pr->lclu = lclu;
1492 
1493 	rb_link_node(&pr->rb_node, parent, p);
1494 	rb_insert_color(&pr->rb_node, &tree->root);
1495 
1496 out:
1497 	return ret;
1498 }
1499 
1500 /*
1501  * __remove_pending - removes a pending cluster reservation from the set
1502  *                    of pending reservations
1503  *
1504  * @inode - file containing the cluster
1505  * @lblk - logical block in the pending cluster reservation to be removed
1506  *
1507  * Returns successfully if pending reservation is not a member of the set.
1508  */
1509 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1510 {
1511 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1512 	struct pending_reservation *pr;
1513 	struct ext4_pending_tree *tree;
1514 
1515 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1516 	if (pr != NULL) {
1517 		tree = &EXT4_I(inode)->i_pending_tree;
1518 		rb_erase(&pr->rb_node, &tree->root);
1519 		kmem_cache_free(ext4_pending_cachep, pr);
1520 	}
1521 }
1522 
1523 /*
1524  * ext4_remove_pending - removes a pending cluster reservation from the set
1525  *                       of pending reservations
1526  *
1527  * @inode - file containing the cluster
1528  * @lblk - logical block in the pending cluster reservation to be removed
1529  *
1530  * Locking for external use of __remove_pending.
1531  */
1532 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1533 {
1534 	struct ext4_inode_info *ei = EXT4_I(inode);
1535 
1536 	write_lock(&ei->i_es_lock);
1537 	__remove_pending(inode, lblk);
1538 	write_unlock(&ei->i_es_lock);
1539 }
1540 
1541 /*
1542  * ext4_is_pending - determine whether a cluster has a pending reservation
1543  *                   on it
1544  *
1545  * @inode - file containing the cluster
1546  * @lblk - logical block in the cluster
1547  *
1548  * Returns true if there's a pending reservation for the cluster in the
1549  * set of pending reservations, and false if not.
1550  */
1551 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
1552 {
1553 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1554 	struct ext4_inode_info *ei = EXT4_I(inode);
1555 	bool ret;
1556 
1557 	read_lock(&ei->i_es_lock);
1558 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
1559 	read_unlock(&ei->i_es_lock);
1560 
1561 	return ret;
1562 }
1563 
1564 /*
1565  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
1566  *                                tree, adding a pending reservation where
1567  *                                needed
1568  *
1569  * @inode - file containing the newly added block
1570  * @lblk - logical block to be added
1571  * @allocated - indicates whether a physical cluster has been allocated for
1572  *              the logical cluster that contains the block
1573  *
1574  * Returns 0 on success, negative error code on failure.
1575  */
1576 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
1577 				 bool allocated)
1578 {
1579 	struct extent_status newes;
1580 	int err = 0;
1581 
1582 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
1583 		 lblk, inode->i_ino);
1584 
1585 	newes.es_lblk = lblk;
1586 	newes.es_len = 1;
1587 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
1588 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
1589 
1590 	ext4_es_insert_extent_check(inode, &newes);
1591 
1592 	write_lock(&EXT4_I(inode)->i_es_lock);
1593 
1594 	err = __es_remove_extent(inode, lblk, lblk);
1595 	if (err != 0)
1596 		goto error;
1597 retry:
1598 	err = __es_insert_extent(inode, &newes);
1599 	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
1600 					  128, EXT4_I(inode)))
1601 		goto retry;
1602 	if (err != 0)
1603 		goto error;
1604 
1605 	if (allocated)
1606 		__insert_pending(inode, lblk);
1607 
1608 error:
1609 	write_unlock(&EXT4_I(inode)->i_es_lock);
1610 
1611 	ext4_es_print_tree(inode);
1612 	ext4_print_pending_tree(inode);
1613 
1614 	return err;
1615 }
1616 
1617 /*
1618  * __es_delayed_clu - count number of clusters containing blocks that
1619  *                    are delayed only
1620  *
1621  * @inode - file containing block range
1622  * @start - logical block defining start of range
1623  * @end - logical block defining end of range
1624  *
1625  * Returns the number of clusters containing only delayed (not delayed
1626  * and unwritten) blocks in the range specified by @start and @end.  Any
1627  * cluster or part of a cluster within the range and containing a delayed
1628  * and not unwritten block within the range is counted as a whole cluster.
1629  */
1630 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
1631 				     ext4_lblk_t end)
1632 {
1633 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1634 	struct extent_status *es;
1635 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1636 	struct rb_node *node;
1637 	ext4_lblk_t first_lclu, last_lclu;
1638 	unsigned long long last_counted_lclu;
1639 	unsigned int n = 0;
1640 
1641 	/* guaranteed to be unequal to any ext4_lblk_t value */
1642 	last_counted_lclu = ~0ULL;
1643 
1644 	es = __es_tree_search(&tree->root, start);
1645 
1646 	while (es && (es->es_lblk <= end)) {
1647 		if (ext4_es_is_delonly(es)) {
1648 			if (es->es_lblk <= start)
1649 				first_lclu = EXT4_B2C(sbi, start);
1650 			else
1651 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
1652 
1653 			if (ext4_es_end(es) >= end)
1654 				last_lclu = EXT4_B2C(sbi, end);
1655 			else
1656 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
1657 
1658 			if (first_lclu == last_counted_lclu)
1659 				n += last_lclu - first_lclu;
1660 			else
1661 				n += last_lclu - first_lclu + 1;
1662 			last_counted_lclu = last_lclu;
1663 		}
1664 		node = rb_next(&es->rb_node);
1665 		if (!node)
1666 			break;
1667 		es = rb_entry(node, struct extent_status, rb_node);
1668 	}
1669 
1670 	return n;
1671 }
1672 
1673 /*
1674  * ext4_es_delayed_clu - count number of clusters containing blocks that
1675  *                       are both delayed and unwritten
1676  *
1677  * @inode - file containing block range
1678  * @lblk - logical block defining start of range
1679  * @len - number of blocks in range
1680  *
1681  * Locking for external use of __es_delayed_clu().
1682  */
1683 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
1684 				 ext4_lblk_t len)
1685 {
1686 	struct ext4_inode_info *ei = EXT4_I(inode);
1687 	ext4_lblk_t end;
1688 	unsigned int n;
1689 
1690 	if (len == 0)
1691 		return 0;
1692 
1693 	end = lblk + len - 1;
1694 	WARN_ON(end < lblk);
1695 
1696 	read_lock(&ei->i_es_lock);
1697 
1698 	n = __es_delayed_clu(inode, lblk, end);
1699 
1700 	read_unlock(&ei->i_es_lock);
1701 
1702 	return n;
1703 }
1704 
1705 /*
1706  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
1707  *                    reservations for a specified block range depending
1708  *                    upon the presence or absence of delayed blocks
1709  *                    outside the range within clusters at the ends of the
1710  *                    range
1711  *
1712  * @inode - file containing the range
1713  * @lblk - logical block defining the start of range
1714  * @len  - length of range in blocks
1715  *
1716  * Used after a newly allocated extent is added to the extents status tree.
1717  * Requires that the extents in the range have either written or unwritten
1718  * status.  Must be called while holding i_es_lock.
1719  */
1720 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
1721 			     ext4_lblk_t len)
1722 {
1723 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1724 	ext4_lblk_t end = lblk + len - 1;
1725 	ext4_lblk_t first, last;
1726 	bool f_del = false, l_del = false;
1727 
1728 	if (len == 0)
1729 		return;
1730 
1731 	/*
1732 	 * Two cases - block range within single cluster and block range
1733 	 * spanning two or more clusters.  Note that a cluster belonging
1734 	 * to a range starting and/or ending on a cluster boundary is treated
1735 	 * as if it does not contain a delayed extent.  The new range may
1736 	 * have allocated space for previously delayed blocks out to the
1737 	 * cluster boundary, requiring that any pre-existing pending
1738 	 * reservation be canceled.  Because this code only looks at blocks
1739 	 * outside the range, it should revise pending reservations
1740 	 * correctly even if the extent represented by the range can't be
1741 	 * inserted in the extents status tree due to ENOSPC.
1742 	 */
1743 
1744 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
1745 		first = EXT4_LBLK_CMASK(sbi, lblk);
1746 		if (first != lblk)
1747 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
1748 						first, lblk - 1);
1749 		if (f_del) {
1750 			__insert_pending(inode, first);
1751 		} else {
1752 			last = EXT4_LBLK_CMASK(sbi, end) +
1753 			       sbi->s_cluster_ratio - 1;
1754 			if (last != end)
1755 				l_del = __es_scan_range(inode,
1756 							&ext4_es_is_delonly,
1757 							end + 1, last);
1758 			if (l_del)
1759 				__insert_pending(inode, last);
1760 			else
1761 				__remove_pending(inode, last);
1762 		}
1763 	} else {
1764 		first = EXT4_LBLK_CMASK(sbi, lblk);
1765 		if (first != lblk)
1766 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
1767 						first, lblk - 1);
1768 		if (f_del)
1769 			__insert_pending(inode, first);
1770 		else
1771 			__remove_pending(inode, first);
1772 
1773 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
1774 		if (last != end)
1775 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
1776 						end + 1, last);
1777 		if (l_del)
1778 			__insert_pending(inode, last);
1779 		else
1780 			__remove_pending(inode, last);
1781 	}
1782 }
1783 
1784 /*
1785  * ext4_es_remove_blks - remove block range from extents status tree and
1786  *                       reduce reservation count or cancel pending
1787  *                       reservation as needed
1788  *
1789  * @inode - file containing range
1790  * @lblk - first block in range
1791  * @len - number of blocks to remove
1792  *
1793  */
1794 void ext4_es_remove_blks(struct inode *inode, ext4_lblk_t lblk,
1795 			 ext4_lblk_t len)
1796 {
1797 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1798 	unsigned int clu_size, reserved = 0;
1799 	ext4_lblk_t last_lclu, first, length, remainder, last;
1800 	bool delonly;
1801 	int err = 0;
1802 	struct pending_reservation *pr;
1803 	struct ext4_pending_tree *tree;
1804 
1805 	/*
1806 	 * Process cluster by cluster for bigalloc - there may be up to
1807 	 * two clusters in a 4k page with a 1k block size and two blocks
1808 	 * per cluster.  Also necessary for systems with larger page sizes
1809 	 * and potentially larger block sizes.
1810 	 */
1811 	clu_size = sbi->s_cluster_ratio;
1812 	last_lclu = EXT4_B2C(sbi, lblk + len - 1);
1813 
1814 	write_lock(&EXT4_I(inode)->i_es_lock);
1815 
1816 	for (first = lblk, remainder = len;
1817 	     remainder > 0;
1818 	     first += length, remainder -= length) {
1819 
1820 		if (EXT4_B2C(sbi, first) == last_lclu)
1821 			length = remainder;
1822 		else
1823 			length = clu_size - EXT4_LBLK_COFF(sbi, first);
1824 
1825 		/*
1826 		 * The BH_Delay flag, which triggers calls to this function,
1827 		 * and the contents of the extents status tree can be
1828 		 * inconsistent due to writepages activity. So, note whether
1829 		 * the blocks to be removed actually belong to an extent with
1830 		 * delayed only status.
1831 		 */
1832 		delonly = __es_scan_clu(inode, &ext4_es_is_delonly, first);
1833 
1834 		/*
1835 		 * because of the writepages effect, written and unwritten
1836 		 * blocks could be removed here
1837 		 */
1838 		last = first + length - 1;
1839 		err = __es_remove_extent(inode, first, last);
1840 		if (err)
1841 			ext4_warning(inode->i_sb,
1842 				     "%s: couldn't remove page (err = %d)",
1843 				     __func__, err);
1844 
1845 		/* non-bigalloc case: simply count the cluster for release */
1846 		if (sbi->s_cluster_ratio == 1 && delonly) {
1847 			reserved++;
1848 			continue;
1849 		}
1850 
1851 		/*
1852 		 * bigalloc case: if all delayed allocated only blocks have
1853 		 * just been removed from a cluster, either cancel a pending
1854 		 * reservation if it exists or count a cluster for release
1855 		 */
1856 		if (delonly &&
1857 		    !__es_scan_clu(inode, &ext4_es_is_delonly, first)) {
1858 			pr = __get_pending(inode, EXT4_B2C(sbi, first));
1859 			if (pr != NULL) {
1860 				tree = &EXT4_I(inode)->i_pending_tree;
1861 				rb_erase(&pr->rb_node, &tree->root);
1862 				kmem_cache_free(ext4_pending_cachep, pr);
1863 			} else {
1864 				reserved++;
1865 			}
1866 		}
1867 	}
1868 
1869 	write_unlock(&EXT4_I(inode)->i_es_lock);
1870 
1871 	ext4_da_release_space(inode, reserved);
1872 }
1873