1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/ext4/extents_status.c 4 * 5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 6 * Modified by 7 * Allison Henderson <achender@linux.vnet.ibm.com> 8 * Hugh Dickins <hughd@google.com> 9 * Zheng Liu <wenqing.lz@taobao.com> 10 * 11 * Ext4 extents status tree core functions. 12 */ 13 #include <linux/list_sort.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include "ext4.h" 17 18 #include <trace/events/ext4.h> 19 20 /* 21 * According to previous discussion in Ext4 Developer Workshop, we 22 * will introduce a new structure called io tree to track all extent 23 * status in order to solve some problems that we have met 24 * (e.g. Reservation space warning), and provide extent-level locking. 25 * Delay extent tree is the first step to achieve this goal. It is 26 * original built by Yongqiang Yang. At that time it is called delay 27 * extent tree, whose goal is only track delayed extents in memory to 28 * simplify the implementation of fiemap and bigalloc, and introduce 29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 30 * delay extent tree at the first commit. But for better understand 31 * what it does, it has been rename to extent status tree. 32 * 33 * Step1: 34 * Currently the first step has been done. All delayed extents are 35 * tracked in the tree. It maintains the delayed extent when a delayed 36 * allocation is issued, and the delayed extent is written out or 37 * invalidated. Therefore the implementation of fiemap and bigalloc 38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 39 * 40 * The following comment describes the implemenmtation of extent 41 * status tree and future works. 42 * 43 * Step2: 44 * In this step all extent status are tracked by extent status tree. 45 * Thus, we can first try to lookup a block mapping in this tree before 46 * finding it in extent tree. Hence, single extent cache can be removed 47 * because extent status tree can do a better job. Extents in status 48 * tree are loaded on-demand. Therefore, the extent status tree may not 49 * contain all of the extents in a file. Meanwhile we define a shrinker 50 * to reclaim memory from extent status tree because fragmented extent 51 * tree will make status tree cost too much memory. written/unwritten/- 52 * hole extents in the tree will be reclaimed by this shrinker when we 53 * are under high memory pressure. Delayed extents will not be 54 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 55 */ 56 57 /* 58 * Extent status tree implementation for ext4. 59 * 60 * 61 * ========================================================================== 62 * Extent status tree tracks all extent status. 63 * 64 * 1. Why we need to implement extent status tree? 65 * 66 * Without extent status tree, ext4 identifies a delayed extent by looking 67 * up page cache, this has several deficiencies - complicated, buggy, 68 * and inefficient code. 69 * 70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 71 * block or a range of blocks are belonged to a delayed extent. 72 * 73 * Let us have a look at how they do without extent status tree. 74 * -- FIEMAP 75 * FIEMAP looks up page cache to identify delayed allocations from holes. 76 * 77 * -- SEEK_HOLE/DATA 78 * SEEK_HOLE/DATA has the same problem as FIEMAP. 79 * 80 * -- bigalloc 81 * bigalloc looks up page cache to figure out if a block is 82 * already under delayed allocation or not to determine whether 83 * quota reserving is needed for the cluster. 84 * 85 * -- writeout 86 * Writeout looks up whole page cache to see if a buffer is 87 * mapped, If there are not very many delayed buffers, then it is 88 * time consuming. 89 * 90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 91 * bigalloc and writeout can figure out if a block or a range of 92 * blocks is under delayed allocation(belonged to a delayed extent) or 93 * not by searching the extent tree. 94 * 95 * 96 * ========================================================================== 97 * 2. Ext4 extent status tree impelmentation 98 * 99 * -- extent 100 * A extent is a range of blocks which are contiguous logically and 101 * physically. Unlike extent in extent tree, this extent in ext4 is 102 * a in-memory struct, there is no corresponding on-disk data. There 103 * is no limit on length of extent, so an extent can contain as many 104 * blocks as they are contiguous logically and physically. 105 * 106 * -- extent status tree 107 * Every inode has an extent status tree and all allocation blocks 108 * are added to the tree with different status. The extent in the 109 * tree are ordered by logical block no. 110 * 111 * -- operations on a extent status tree 112 * There are three important operations on a delayed extent tree: find 113 * next extent, adding a extent(a range of blocks) and removing a extent. 114 * 115 * -- race on a extent status tree 116 * Extent status tree is protected by inode->i_es_lock. 117 * 118 * -- memory consumption 119 * Fragmented extent tree will make extent status tree cost too much 120 * memory. Hence, we will reclaim written/unwritten/hole extents from 121 * the tree under a heavy memory pressure. 122 * 123 * 124 * ========================================================================== 125 * 3. Performance analysis 126 * 127 * -- overhead 128 * 1. There is a cache extent for write access, so if writes are 129 * not very random, adding space operaions are in O(1) time. 130 * 131 * -- gain 132 * 2. Code is much simpler, more readable, more maintainable and 133 * more efficient. 134 * 135 * 136 * ========================================================================== 137 * 4. TODO list 138 * 139 * -- Refactor delayed space reservation 140 * 141 * -- Extent-level locking 142 */ 143 144 static struct kmem_cache *ext4_es_cachep; 145 static struct kmem_cache *ext4_pending_cachep; 146 147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes); 148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 149 ext4_lblk_t end); 150 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); 151 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 152 struct ext4_inode_info *locked_ei); 153 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk, 154 ext4_lblk_t len); 155 156 int __init ext4_init_es(void) 157 { 158 ext4_es_cachep = kmem_cache_create("ext4_extent_status", 159 sizeof(struct extent_status), 160 0, (SLAB_RECLAIM_ACCOUNT), NULL); 161 if (ext4_es_cachep == NULL) 162 return -ENOMEM; 163 return 0; 164 } 165 166 void ext4_exit_es(void) 167 { 168 kmem_cache_destroy(ext4_es_cachep); 169 } 170 171 void ext4_es_init_tree(struct ext4_es_tree *tree) 172 { 173 tree->root = RB_ROOT; 174 tree->cache_es = NULL; 175 } 176 177 #ifdef ES_DEBUG__ 178 static void ext4_es_print_tree(struct inode *inode) 179 { 180 struct ext4_es_tree *tree; 181 struct rb_node *node; 182 183 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 184 tree = &EXT4_I(inode)->i_es_tree; 185 node = rb_first(&tree->root); 186 while (node) { 187 struct extent_status *es; 188 es = rb_entry(node, struct extent_status, rb_node); 189 printk(KERN_DEBUG " [%u/%u) %llu %x", 190 es->es_lblk, es->es_len, 191 ext4_es_pblock(es), ext4_es_status(es)); 192 node = rb_next(node); 193 } 194 printk(KERN_DEBUG "\n"); 195 } 196 #else 197 #define ext4_es_print_tree(inode) 198 #endif 199 200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 201 { 202 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 203 return es->es_lblk + es->es_len - 1; 204 } 205 206 /* 207 * search through the tree for an delayed extent with a given offset. If 208 * it can't be found, try to find next extent. 209 */ 210 static struct extent_status *__es_tree_search(struct rb_root *root, 211 ext4_lblk_t lblk) 212 { 213 struct rb_node *node = root->rb_node; 214 struct extent_status *es = NULL; 215 216 while (node) { 217 es = rb_entry(node, struct extent_status, rb_node); 218 if (lblk < es->es_lblk) 219 node = node->rb_left; 220 else if (lblk > ext4_es_end(es)) 221 node = node->rb_right; 222 else 223 return es; 224 } 225 226 if (es && lblk < es->es_lblk) 227 return es; 228 229 if (es && lblk > ext4_es_end(es)) { 230 node = rb_next(&es->rb_node); 231 return node ? rb_entry(node, struct extent_status, rb_node) : 232 NULL; 233 } 234 235 return NULL; 236 } 237 238 /* 239 * ext4_es_find_extent_range - find extent with specified status within block 240 * range or next extent following block range in 241 * extents status tree 242 * 243 * @inode - file containing the range 244 * @matching_fn - pointer to function that matches extents with desired status 245 * @lblk - logical block defining start of range 246 * @end - logical block defining end of range 247 * @es - extent found, if any 248 * 249 * Find the first extent within the block range specified by @lblk and @end 250 * in the extents status tree that satisfies @matching_fn. If a match 251 * is found, it's returned in @es. If not, and a matching extent is found 252 * beyond the block range, it's returned in @es. If no match is found, an 253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components 254 * are 0. 255 */ 256 static void __es_find_extent_range(struct inode *inode, 257 int (*matching_fn)(struct extent_status *es), 258 ext4_lblk_t lblk, ext4_lblk_t end, 259 struct extent_status *es) 260 { 261 struct ext4_es_tree *tree = NULL; 262 struct extent_status *es1 = NULL; 263 struct rb_node *node; 264 265 WARN_ON(es == NULL); 266 WARN_ON(end < lblk); 267 268 tree = &EXT4_I(inode)->i_es_tree; 269 270 /* see if the extent has been cached */ 271 es->es_lblk = es->es_len = es->es_pblk = 0; 272 if (tree->cache_es) { 273 es1 = tree->cache_es; 274 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 275 es_debug("%u cached by [%u/%u) %llu %x\n", 276 lblk, es1->es_lblk, es1->es_len, 277 ext4_es_pblock(es1), ext4_es_status(es1)); 278 goto out; 279 } 280 } 281 282 es1 = __es_tree_search(&tree->root, lblk); 283 284 out: 285 if (es1 && !matching_fn(es1)) { 286 while ((node = rb_next(&es1->rb_node)) != NULL) { 287 es1 = rb_entry(node, struct extent_status, rb_node); 288 if (es1->es_lblk > end) { 289 es1 = NULL; 290 break; 291 } 292 if (matching_fn(es1)) 293 break; 294 } 295 } 296 297 if (es1 && matching_fn(es1)) { 298 tree->cache_es = es1; 299 es->es_lblk = es1->es_lblk; 300 es->es_len = es1->es_len; 301 es->es_pblk = es1->es_pblk; 302 } 303 304 } 305 306 /* 307 * Locking for __es_find_extent_range() for external use 308 */ 309 void ext4_es_find_extent_range(struct inode *inode, 310 int (*matching_fn)(struct extent_status *es), 311 ext4_lblk_t lblk, ext4_lblk_t end, 312 struct extent_status *es) 313 { 314 trace_ext4_es_find_extent_range_enter(inode, lblk); 315 316 read_lock(&EXT4_I(inode)->i_es_lock); 317 __es_find_extent_range(inode, matching_fn, lblk, end, es); 318 read_unlock(&EXT4_I(inode)->i_es_lock); 319 320 trace_ext4_es_find_extent_range_exit(inode, es); 321 } 322 323 /* 324 * __es_scan_range - search block range for block with specified status 325 * in extents status tree 326 * 327 * @inode - file containing the range 328 * @matching_fn - pointer to function that matches extents with desired status 329 * @lblk - logical block defining start of range 330 * @end - logical block defining end of range 331 * 332 * Returns true if at least one block in the specified block range satisfies 333 * the criterion specified by @matching_fn, and false if not. If at least 334 * one extent has the specified status, then there is at least one block 335 * in the cluster with that status. Should only be called by code that has 336 * taken i_es_lock. 337 */ 338 static bool __es_scan_range(struct inode *inode, 339 int (*matching_fn)(struct extent_status *es), 340 ext4_lblk_t start, ext4_lblk_t end) 341 { 342 struct extent_status es; 343 344 __es_find_extent_range(inode, matching_fn, start, end, &es); 345 if (es.es_len == 0) 346 return false; /* no matching extent in the tree */ 347 else if (es.es_lblk <= start && 348 start < es.es_lblk + es.es_len) 349 return true; 350 else if (start <= es.es_lblk && es.es_lblk <= end) 351 return true; 352 else 353 return false; 354 } 355 /* 356 * Locking for __es_scan_range() for external use 357 */ 358 bool ext4_es_scan_range(struct inode *inode, 359 int (*matching_fn)(struct extent_status *es), 360 ext4_lblk_t lblk, ext4_lblk_t end) 361 { 362 bool ret; 363 364 read_lock(&EXT4_I(inode)->i_es_lock); 365 ret = __es_scan_range(inode, matching_fn, lblk, end); 366 read_unlock(&EXT4_I(inode)->i_es_lock); 367 368 return ret; 369 } 370 371 /* 372 * __es_scan_clu - search cluster for block with specified status in 373 * extents status tree 374 * 375 * @inode - file containing the cluster 376 * @matching_fn - pointer to function that matches extents with desired status 377 * @lblk - logical block in cluster to be searched 378 * 379 * Returns true if at least one extent in the cluster containing @lblk 380 * satisfies the criterion specified by @matching_fn, and false if not. If at 381 * least one extent has the specified status, then there is at least one block 382 * in the cluster with that status. Should only be called by code that has 383 * taken i_es_lock. 384 */ 385 static bool __es_scan_clu(struct inode *inode, 386 int (*matching_fn)(struct extent_status *es), 387 ext4_lblk_t lblk) 388 { 389 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 390 ext4_lblk_t lblk_start, lblk_end; 391 392 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 393 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 394 395 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); 396 } 397 398 /* 399 * Locking for __es_scan_clu() for external use 400 */ 401 bool ext4_es_scan_clu(struct inode *inode, 402 int (*matching_fn)(struct extent_status *es), 403 ext4_lblk_t lblk) 404 { 405 bool ret; 406 407 read_lock(&EXT4_I(inode)->i_es_lock); 408 ret = __es_scan_clu(inode, matching_fn, lblk); 409 read_unlock(&EXT4_I(inode)->i_es_lock); 410 411 return ret; 412 } 413 414 static void ext4_es_list_add(struct inode *inode) 415 { 416 struct ext4_inode_info *ei = EXT4_I(inode); 417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 418 419 if (!list_empty(&ei->i_es_list)) 420 return; 421 422 spin_lock(&sbi->s_es_lock); 423 if (list_empty(&ei->i_es_list)) { 424 list_add_tail(&ei->i_es_list, &sbi->s_es_list); 425 sbi->s_es_nr_inode++; 426 } 427 spin_unlock(&sbi->s_es_lock); 428 } 429 430 static void ext4_es_list_del(struct inode *inode) 431 { 432 struct ext4_inode_info *ei = EXT4_I(inode); 433 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 434 435 spin_lock(&sbi->s_es_lock); 436 if (!list_empty(&ei->i_es_list)) { 437 list_del_init(&ei->i_es_list); 438 sbi->s_es_nr_inode--; 439 WARN_ON_ONCE(sbi->s_es_nr_inode < 0); 440 } 441 spin_unlock(&sbi->s_es_lock); 442 } 443 444 static struct extent_status * 445 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, 446 ext4_fsblk_t pblk) 447 { 448 struct extent_status *es; 449 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 450 if (es == NULL) 451 return NULL; 452 es->es_lblk = lblk; 453 es->es_len = len; 454 es->es_pblk = pblk; 455 456 /* 457 * We don't count delayed extent because we never try to reclaim them 458 */ 459 if (!ext4_es_is_delayed(es)) { 460 if (!EXT4_I(inode)->i_es_shk_nr++) 461 ext4_es_list_add(inode); 462 percpu_counter_inc(&EXT4_SB(inode->i_sb)-> 463 s_es_stats.es_stats_shk_cnt); 464 } 465 466 EXT4_I(inode)->i_es_all_nr++; 467 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 468 469 return es; 470 } 471 472 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 473 { 474 EXT4_I(inode)->i_es_all_nr--; 475 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 476 477 /* Decrease the shrink counter when this es is not delayed */ 478 if (!ext4_es_is_delayed(es)) { 479 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); 480 if (!--EXT4_I(inode)->i_es_shk_nr) 481 ext4_es_list_del(inode); 482 percpu_counter_dec(&EXT4_SB(inode->i_sb)-> 483 s_es_stats.es_stats_shk_cnt); 484 } 485 486 kmem_cache_free(ext4_es_cachep, es); 487 } 488 489 /* 490 * Check whether or not two extents can be merged 491 * Condition: 492 * - logical block number is contiguous 493 * - physical block number is contiguous 494 * - status is equal 495 */ 496 static int ext4_es_can_be_merged(struct extent_status *es1, 497 struct extent_status *es2) 498 { 499 if (ext4_es_type(es1) != ext4_es_type(es2)) 500 return 0; 501 502 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { 503 pr_warn("ES assertion failed when merging extents. " 504 "The sum of lengths of es1 (%d) and es2 (%d) " 505 "is bigger than allowed file size (%d)\n", 506 es1->es_len, es2->es_len, EXT_MAX_BLOCKS); 507 WARN_ON(1); 508 return 0; 509 } 510 511 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 512 return 0; 513 514 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 515 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 516 return 1; 517 518 if (ext4_es_is_hole(es1)) 519 return 1; 520 521 /* we need to check delayed extent is without unwritten status */ 522 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) 523 return 1; 524 525 return 0; 526 } 527 528 static struct extent_status * 529 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 530 { 531 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 532 struct extent_status *es1; 533 struct rb_node *node; 534 535 node = rb_prev(&es->rb_node); 536 if (!node) 537 return es; 538 539 es1 = rb_entry(node, struct extent_status, rb_node); 540 if (ext4_es_can_be_merged(es1, es)) { 541 es1->es_len += es->es_len; 542 if (ext4_es_is_referenced(es)) 543 ext4_es_set_referenced(es1); 544 rb_erase(&es->rb_node, &tree->root); 545 ext4_es_free_extent(inode, es); 546 es = es1; 547 } 548 549 return es; 550 } 551 552 static struct extent_status * 553 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 554 { 555 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 556 struct extent_status *es1; 557 struct rb_node *node; 558 559 node = rb_next(&es->rb_node); 560 if (!node) 561 return es; 562 563 es1 = rb_entry(node, struct extent_status, rb_node); 564 if (ext4_es_can_be_merged(es, es1)) { 565 es->es_len += es1->es_len; 566 if (ext4_es_is_referenced(es1)) 567 ext4_es_set_referenced(es); 568 rb_erase(node, &tree->root); 569 ext4_es_free_extent(inode, es1); 570 } 571 572 return es; 573 } 574 575 #ifdef ES_AGGRESSIVE_TEST 576 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ 577 578 static void ext4_es_insert_extent_ext_check(struct inode *inode, 579 struct extent_status *es) 580 { 581 struct ext4_ext_path *path = NULL; 582 struct ext4_extent *ex; 583 ext4_lblk_t ee_block; 584 ext4_fsblk_t ee_start; 585 unsigned short ee_len; 586 int depth, ee_status, es_status; 587 588 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); 589 if (IS_ERR(path)) 590 return; 591 592 depth = ext_depth(inode); 593 ex = path[depth].p_ext; 594 595 if (ex) { 596 597 ee_block = le32_to_cpu(ex->ee_block); 598 ee_start = ext4_ext_pblock(ex); 599 ee_len = ext4_ext_get_actual_len(ex); 600 601 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; 602 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 603 604 /* 605 * Make sure ex and es are not overlap when we try to insert 606 * a delayed/hole extent. 607 */ 608 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 609 if (in_range(es->es_lblk, ee_block, ee_len)) { 610 pr_warn("ES insert assertion failed for " 611 "inode: %lu we can find an extent " 612 "at block [%d/%d/%llu/%c], but we " 613 "want to add a delayed/hole extent " 614 "[%d/%d/%llu/%x]\n", 615 inode->i_ino, ee_block, ee_len, 616 ee_start, ee_status ? 'u' : 'w', 617 es->es_lblk, es->es_len, 618 ext4_es_pblock(es), ext4_es_status(es)); 619 } 620 goto out; 621 } 622 623 /* 624 * We don't check ee_block == es->es_lblk, etc. because es 625 * might be a part of whole extent, vice versa. 626 */ 627 if (es->es_lblk < ee_block || 628 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 629 pr_warn("ES insert assertion failed for inode: %lu " 630 "ex_status [%d/%d/%llu/%c] != " 631 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 632 ee_block, ee_len, ee_start, 633 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 634 ext4_es_pblock(es), es_status ? 'u' : 'w'); 635 goto out; 636 } 637 638 if (ee_status ^ es_status) { 639 pr_warn("ES insert assertion failed for inode: %lu " 640 "ex_status [%d/%d/%llu/%c] != " 641 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 642 ee_block, ee_len, ee_start, 643 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 644 ext4_es_pblock(es), es_status ? 'u' : 'w'); 645 } 646 } else { 647 /* 648 * We can't find an extent on disk. So we need to make sure 649 * that we don't want to add an written/unwritten extent. 650 */ 651 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 652 pr_warn("ES insert assertion failed for inode: %lu " 653 "can't find an extent at block %d but we want " 654 "to add a written/unwritten extent " 655 "[%d/%d/%llu/%x]\n", inode->i_ino, 656 es->es_lblk, es->es_lblk, es->es_len, 657 ext4_es_pblock(es), ext4_es_status(es)); 658 } 659 } 660 out: 661 ext4_ext_drop_refs(path); 662 kfree(path); 663 } 664 665 static void ext4_es_insert_extent_ind_check(struct inode *inode, 666 struct extent_status *es) 667 { 668 struct ext4_map_blocks map; 669 int retval; 670 671 /* 672 * Here we call ext4_ind_map_blocks to lookup a block mapping because 673 * 'Indirect' structure is defined in indirect.c. So we couldn't 674 * access direct/indirect tree from outside. It is too dirty to define 675 * this function in indirect.c file. 676 */ 677 678 map.m_lblk = es->es_lblk; 679 map.m_len = es->es_len; 680 681 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 682 if (retval > 0) { 683 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 684 /* 685 * We want to add a delayed/hole extent but this 686 * block has been allocated. 687 */ 688 pr_warn("ES insert assertion failed for inode: %lu " 689 "We can find blocks but we want to add a " 690 "delayed/hole extent [%d/%d/%llu/%x]\n", 691 inode->i_ino, es->es_lblk, es->es_len, 692 ext4_es_pblock(es), ext4_es_status(es)); 693 return; 694 } else if (ext4_es_is_written(es)) { 695 if (retval != es->es_len) { 696 pr_warn("ES insert assertion failed for " 697 "inode: %lu retval %d != es_len %d\n", 698 inode->i_ino, retval, es->es_len); 699 return; 700 } 701 if (map.m_pblk != ext4_es_pblock(es)) { 702 pr_warn("ES insert assertion failed for " 703 "inode: %lu m_pblk %llu != " 704 "es_pblk %llu\n", 705 inode->i_ino, map.m_pblk, 706 ext4_es_pblock(es)); 707 return; 708 } 709 } else { 710 /* 711 * We don't need to check unwritten extent because 712 * indirect-based file doesn't have it. 713 */ 714 BUG(); 715 } 716 } else if (retval == 0) { 717 if (ext4_es_is_written(es)) { 718 pr_warn("ES insert assertion failed for inode: %lu " 719 "We can't find the block but we want to add " 720 "a written extent [%d/%d/%llu/%x]\n", 721 inode->i_ino, es->es_lblk, es->es_len, 722 ext4_es_pblock(es), ext4_es_status(es)); 723 return; 724 } 725 } 726 } 727 728 static inline void ext4_es_insert_extent_check(struct inode *inode, 729 struct extent_status *es) 730 { 731 /* 732 * We don't need to worry about the race condition because 733 * caller takes i_data_sem locking. 734 */ 735 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 737 ext4_es_insert_extent_ext_check(inode, es); 738 else 739 ext4_es_insert_extent_ind_check(inode, es); 740 } 741 #else 742 static inline void ext4_es_insert_extent_check(struct inode *inode, 743 struct extent_status *es) 744 { 745 } 746 #endif 747 748 static int __es_insert_extent(struct inode *inode, struct extent_status *newes) 749 { 750 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 751 struct rb_node **p = &tree->root.rb_node; 752 struct rb_node *parent = NULL; 753 struct extent_status *es; 754 755 while (*p) { 756 parent = *p; 757 es = rb_entry(parent, struct extent_status, rb_node); 758 759 if (newes->es_lblk < es->es_lblk) { 760 if (ext4_es_can_be_merged(newes, es)) { 761 /* 762 * Here we can modify es_lblk directly 763 * because it isn't overlapped. 764 */ 765 es->es_lblk = newes->es_lblk; 766 es->es_len += newes->es_len; 767 if (ext4_es_is_written(es) || 768 ext4_es_is_unwritten(es)) 769 ext4_es_store_pblock(es, 770 newes->es_pblk); 771 es = ext4_es_try_to_merge_left(inode, es); 772 goto out; 773 } 774 p = &(*p)->rb_left; 775 } else if (newes->es_lblk > ext4_es_end(es)) { 776 if (ext4_es_can_be_merged(es, newes)) { 777 es->es_len += newes->es_len; 778 es = ext4_es_try_to_merge_right(inode, es); 779 goto out; 780 } 781 p = &(*p)->rb_right; 782 } else { 783 BUG(); 784 return -EINVAL; 785 } 786 } 787 788 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, 789 newes->es_pblk); 790 if (!es) 791 return -ENOMEM; 792 rb_link_node(&es->rb_node, parent, p); 793 rb_insert_color(&es->rb_node, &tree->root); 794 795 out: 796 tree->cache_es = es; 797 return 0; 798 } 799 800 /* 801 * ext4_es_insert_extent() adds information to an inode's extent 802 * status tree. 803 * 804 * Return 0 on success, error code on failure. 805 */ 806 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 807 ext4_lblk_t len, ext4_fsblk_t pblk, 808 unsigned int status) 809 { 810 struct extent_status newes; 811 ext4_lblk_t end = lblk + len - 1; 812 int err = 0; 813 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 814 815 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", 816 lblk, len, pblk, status, inode->i_ino); 817 818 if (!len) 819 return 0; 820 821 BUG_ON(end < lblk); 822 823 if ((status & EXTENT_STATUS_DELAYED) && 824 (status & EXTENT_STATUS_WRITTEN)) { 825 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " 826 " delayed and written which can potentially " 827 " cause data loss.", lblk, len); 828 WARN_ON(1); 829 } 830 831 newes.es_lblk = lblk; 832 newes.es_len = len; 833 ext4_es_store_pblock_status(&newes, pblk, status); 834 trace_ext4_es_insert_extent(inode, &newes); 835 836 ext4_es_insert_extent_check(inode, &newes); 837 838 write_lock(&EXT4_I(inode)->i_es_lock); 839 err = __es_remove_extent(inode, lblk, end); 840 if (err != 0) 841 goto error; 842 retry: 843 err = __es_insert_extent(inode, &newes); 844 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), 845 128, EXT4_I(inode))) 846 goto retry; 847 if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) 848 err = 0; 849 850 if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) && 851 (status & EXTENT_STATUS_WRITTEN || 852 status & EXTENT_STATUS_UNWRITTEN)) 853 __revise_pending(inode, lblk, len); 854 855 error: 856 write_unlock(&EXT4_I(inode)->i_es_lock); 857 858 ext4_es_print_tree(inode); 859 860 return err; 861 } 862 863 /* 864 * ext4_es_cache_extent() inserts information into the extent status 865 * tree if and only if there isn't information about the range in 866 * question already. 867 */ 868 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, 869 ext4_lblk_t len, ext4_fsblk_t pblk, 870 unsigned int status) 871 { 872 struct extent_status *es; 873 struct extent_status newes; 874 ext4_lblk_t end = lblk + len - 1; 875 876 newes.es_lblk = lblk; 877 newes.es_len = len; 878 ext4_es_store_pblock_status(&newes, pblk, status); 879 trace_ext4_es_cache_extent(inode, &newes); 880 881 if (!len) 882 return; 883 884 BUG_ON(end < lblk); 885 886 write_lock(&EXT4_I(inode)->i_es_lock); 887 888 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); 889 if (!es || es->es_lblk > end) 890 __es_insert_extent(inode, &newes); 891 write_unlock(&EXT4_I(inode)->i_es_lock); 892 } 893 894 /* 895 * ext4_es_lookup_extent() looks up an extent in extent status tree. 896 * 897 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 898 * 899 * Return: 1 on found, 0 on not 900 */ 901 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 902 struct extent_status *es) 903 { 904 struct ext4_es_tree *tree; 905 struct ext4_es_stats *stats; 906 struct extent_status *es1 = NULL; 907 struct rb_node *node; 908 int found = 0; 909 910 trace_ext4_es_lookup_extent_enter(inode, lblk); 911 es_debug("lookup extent in block %u\n", lblk); 912 913 tree = &EXT4_I(inode)->i_es_tree; 914 read_lock(&EXT4_I(inode)->i_es_lock); 915 916 /* find extent in cache firstly */ 917 es->es_lblk = es->es_len = es->es_pblk = 0; 918 if (tree->cache_es) { 919 es1 = tree->cache_es; 920 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 921 es_debug("%u cached by [%u/%u)\n", 922 lblk, es1->es_lblk, es1->es_len); 923 found = 1; 924 goto out; 925 } 926 } 927 928 node = tree->root.rb_node; 929 while (node) { 930 es1 = rb_entry(node, struct extent_status, rb_node); 931 if (lblk < es1->es_lblk) 932 node = node->rb_left; 933 else if (lblk > ext4_es_end(es1)) 934 node = node->rb_right; 935 else { 936 found = 1; 937 break; 938 } 939 } 940 941 out: 942 stats = &EXT4_SB(inode->i_sb)->s_es_stats; 943 if (found) { 944 BUG_ON(!es1); 945 es->es_lblk = es1->es_lblk; 946 es->es_len = es1->es_len; 947 es->es_pblk = es1->es_pblk; 948 if (!ext4_es_is_referenced(es1)) 949 ext4_es_set_referenced(es1); 950 stats->es_stats_cache_hits++; 951 } else { 952 stats->es_stats_cache_misses++; 953 } 954 955 read_unlock(&EXT4_I(inode)->i_es_lock); 956 957 trace_ext4_es_lookup_extent_exit(inode, es, found); 958 return found; 959 } 960 961 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 962 ext4_lblk_t end) 963 { 964 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 965 struct rb_node *node; 966 struct extent_status *es; 967 struct extent_status orig_es; 968 ext4_lblk_t len1, len2; 969 ext4_fsblk_t block; 970 int err; 971 972 retry: 973 err = 0; 974 es = __es_tree_search(&tree->root, lblk); 975 if (!es) 976 goto out; 977 if (es->es_lblk > end) 978 goto out; 979 980 /* Simply invalidate cache_es. */ 981 tree->cache_es = NULL; 982 983 orig_es.es_lblk = es->es_lblk; 984 orig_es.es_len = es->es_len; 985 orig_es.es_pblk = es->es_pblk; 986 987 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 988 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 989 if (len1 > 0) 990 es->es_len = len1; 991 if (len2 > 0) { 992 if (len1 > 0) { 993 struct extent_status newes; 994 995 newes.es_lblk = end + 1; 996 newes.es_len = len2; 997 block = 0x7FDEADBEEFULL; 998 if (ext4_es_is_written(&orig_es) || 999 ext4_es_is_unwritten(&orig_es)) 1000 block = ext4_es_pblock(&orig_es) + 1001 orig_es.es_len - len2; 1002 ext4_es_store_pblock_status(&newes, block, 1003 ext4_es_status(&orig_es)); 1004 err = __es_insert_extent(inode, &newes); 1005 if (err) { 1006 es->es_lblk = orig_es.es_lblk; 1007 es->es_len = orig_es.es_len; 1008 if ((err == -ENOMEM) && 1009 __es_shrink(EXT4_SB(inode->i_sb), 1010 128, EXT4_I(inode))) 1011 goto retry; 1012 goto out; 1013 } 1014 } else { 1015 es->es_lblk = end + 1; 1016 es->es_len = len2; 1017 if (ext4_es_is_written(es) || 1018 ext4_es_is_unwritten(es)) { 1019 block = orig_es.es_pblk + orig_es.es_len - len2; 1020 ext4_es_store_pblock(es, block); 1021 } 1022 } 1023 goto out; 1024 } 1025 1026 if (len1 > 0) { 1027 node = rb_next(&es->rb_node); 1028 if (node) 1029 es = rb_entry(node, struct extent_status, rb_node); 1030 else 1031 es = NULL; 1032 } 1033 1034 while (es && ext4_es_end(es) <= end) { 1035 node = rb_next(&es->rb_node); 1036 rb_erase(&es->rb_node, &tree->root); 1037 ext4_es_free_extent(inode, es); 1038 if (!node) { 1039 es = NULL; 1040 break; 1041 } 1042 es = rb_entry(node, struct extent_status, rb_node); 1043 } 1044 1045 if (es && es->es_lblk < end + 1) { 1046 ext4_lblk_t orig_len = es->es_len; 1047 1048 len1 = ext4_es_end(es) - end; 1049 es->es_lblk = end + 1; 1050 es->es_len = len1; 1051 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 1052 block = es->es_pblk + orig_len - len1; 1053 ext4_es_store_pblock(es, block); 1054 } 1055 } 1056 1057 out: 1058 return err; 1059 } 1060 1061 /* 1062 * ext4_es_remove_extent() removes a space from a extent status tree. 1063 * 1064 * Return 0 on success, error code on failure. 1065 */ 1066 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1067 ext4_lblk_t len) 1068 { 1069 ext4_lblk_t end; 1070 int err = 0; 1071 1072 trace_ext4_es_remove_extent(inode, lblk, len); 1073 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 1074 lblk, len, inode->i_ino); 1075 1076 if (!len) 1077 return err; 1078 1079 end = lblk + len - 1; 1080 BUG_ON(end < lblk); 1081 1082 /* 1083 * ext4_clear_inode() depends on us taking i_es_lock unconditionally 1084 * so that we are sure __es_shrink() is done with the inode before it 1085 * is reclaimed. 1086 */ 1087 write_lock(&EXT4_I(inode)->i_es_lock); 1088 err = __es_remove_extent(inode, lblk, end); 1089 write_unlock(&EXT4_I(inode)->i_es_lock); 1090 ext4_es_print_tree(inode); 1091 return err; 1092 } 1093 1094 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 1095 struct ext4_inode_info *locked_ei) 1096 { 1097 struct ext4_inode_info *ei; 1098 struct ext4_es_stats *es_stats; 1099 ktime_t start_time; 1100 u64 scan_time; 1101 int nr_to_walk; 1102 int nr_shrunk = 0; 1103 int retried = 0, nr_skipped = 0; 1104 1105 es_stats = &sbi->s_es_stats; 1106 start_time = ktime_get(); 1107 1108 retry: 1109 spin_lock(&sbi->s_es_lock); 1110 nr_to_walk = sbi->s_es_nr_inode; 1111 while (nr_to_walk-- > 0) { 1112 if (list_empty(&sbi->s_es_list)) { 1113 spin_unlock(&sbi->s_es_lock); 1114 goto out; 1115 } 1116 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, 1117 i_es_list); 1118 /* Move the inode to the tail */ 1119 list_move_tail(&ei->i_es_list, &sbi->s_es_list); 1120 1121 /* 1122 * Normally we try hard to avoid shrinking precached inodes, 1123 * but we will as a last resort. 1124 */ 1125 if (!retried && ext4_test_inode_state(&ei->vfs_inode, 1126 EXT4_STATE_EXT_PRECACHED)) { 1127 nr_skipped++; 1128 continue; 1129 } 1130 1131 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { 1132 nr_skipped++; 1133 continue; 1134 } 1135 /* 1136 * Now we hold i_es_lock which protects us from inode reclaim 1137 * freeing inode under us 1138 */ 1139 spin_unlock(&sbi->s_es_lock); 1140 1141 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); 1142 write_unlock(&ei->i_es_lock); 1143 1144 if (nr_to_scan <= 0) 1145 goto out; 1146 spin_lock(&sbi->s_es_lock); 1147 } 1148 spin_unlock(&sbi->s_es_lock); 1149 1150 /* 1151 * If we skipped any inodes, and we weren't able to make any 1152 * forward progress, try again to scan precached inodes. 1153 */ 1154 if ((nr_shrunk == 0) && nr_skipped && !retried) { 1155 retried++; 1156 goto retry; 1157 } 1158 1159 if (locked_ei && nr_shrunk == 0) 1160 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); 1161 1162 out: 1163 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1164 if (likely(es_stats->es_stats_scan_time)) 1165 es_stats->es_stats_scan_time = (scan_time + 1166 es_stats->es_stats_scan_time*3) / 4; 1167 else 1168 es_stats->es_stats_scan_time = scan_time; 1169 if (scan_time > es_stats->es_stats_max_scan_time) 1170 es_stats->es_stats_max_scan_time = scan_time; 1171 if (likely(es_stats->es_stats_shrunk)) 1172 es_stats->es_stats_shrunk = (nr_shrunk + 1173 es_stats->es_stats_shrunk*3) / 4; 1174 else 1175 es_stats->es_stats_shrunk = nr_shrunk; 1176 1177 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, 1178 nr_skipped, retried); 1179 return nr_shrunk; 1180 } 1181 1182 static unsigned long ext4_es_count(struct shrinker *shrink, 1183 struct shrink_control *sc) 1184 { 1185 unsigned long nr; 1186 struct ext4_sb_info *sbi; 1187 1188 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); 1189 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1190 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); 1191 return nr; 1192 } 1193 1194 static unsigned long ext4_es_scan(struct shrinker *shrink, 1195 struct shrink_control *sc) 1196 { 1197 struct ext4_sb_info *sbi = container_of(shrink, 1198 struct ext4_sb_info, s_es_shrinker); 1199 int nr_to_scan = sc->nr_to_scan; 1200 int ret, nr_shrunk; 1201 1202 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1203 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); 1204 1205 if (!nr_to_scan) 1206 return ret; 1207 1208 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); 1209 1210 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); 1211 return nr_shrunk; 1212 } 1213 1214 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) 1215 { 1216 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); 1217 struct ext4_es_stats *es_stats = &sbi->s_es_stats; 1218 struct ext4_inode_info *ei, *max = NULL; 1219 unsigned int inode_cnt = 0; 1220 1221 if (v != SEQ_START_TOKEN) 1222 return 0; 1223 1224 /* here we just find an inode that has the max nr. of objects */ 1225 spin_lock(&sbi->s_es_lock); 1226 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { 1227 inode_cnt++; 1228 if (max && max->i_es_all_nr < ei->i_es_all_nr) 1229 max = ei; 1230 else if (!max) 1231 max = ei; 1232 } 1233 spin_unlock(&sbi->s_es_lock); 1234 1235 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", 1236 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), 1237 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); 1238 seq_printf(seq, " %lu/%lu cache hits/misses\n", 1239 es_stats->es_stats_cache_hits, 1240 es_stats->es_stats_cache_misses); 1241 if (inode_cnt) 1242 seq_printf(seq, " %d inodes on list\n", inode_cnt); 1243 1244 seq_printf(seq, "average:\n %llu us scan time\n", 1245 div_u64(es_stats->es_stats_scan_time, 1000)); 1246 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); 1247 if (inode_cnt) 1248 seq_printf(seq, 1249 "maximum:\n %lu inode (%u objects, %u reclaimable)\n" 1250 " %llu us max scan time\n", 1251 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, 1252 div_u64(es_stats->es_stats_max_scan_time, 1000)); 1253 1254 return 0; 1255 } 1256 1257 int ext4_es_register_shrinker(struct ext4_sb_info *sbi) 1258 { 1259 int err; 1260 1261 /* Make sure we have enough bits for physical block number */ 1262 BUILD_BUG_ON(ES_SHIFT < 48); 1263 INIT_LIST_HEAD(&sbi->s_es_list); 1264 sbi->s_es_nr_inode = 0; 1265 spin_lock_init(&sbi->s_es_lock); 1266 sbi->s_es_stats.es_stats_shrunk = 0; 1267 sbi->s_es_stats.es_stats_cache_hits = 0; 1268 sbi->s_es_stats.es_stats_cache_misses = 0; 1269 sbi->s_es_stats.es_stats_scan_time = 0; 1270 sbi->s_es_stats.es_stats_max_scan_time = 0; 1271 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); 1272 if (err) 1273 return err; 1274 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); 1275 if (err) 1276 goto err1; 1277 1278 sbi->s_es_shrinker.scan_objects = ext4_es_scan; 1279 sbi->s_es_shrinker.count_objects = ext4_es_count; 1280 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; 1281 err = register_shrinker(&sbi->s_es_shrinker); 1282 if (err) 1283 goto err2; 1284 1285 return 0; 1286 1287 err2: 1288 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1289 err1: 1290 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1291 return err; 1292 } 1293 1294 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 1295 { 1296 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1297 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1298 unregister_shrinker(&sbi->s_es_shrinker); 1299 } 1300 1301 /* 1302 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at 1303 * most *nr_to_scan extents, update *nr_to_scan accordingly. 1304 * 1305 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. 1306 * Increment *nr_shrunk by the number of reclaimed extents. Also update 1307 * ei->i_es_shrink_lblk to where we should continue scanning. 1308 */ 1309 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, 1310 int *nr_to_scan, int *nr_shrunk) 1311 { 1312 struct inode *inode = &ei->vfs_inode; 1313 struct ext4_es_tree *tree = &ei->i_es_tree; 1314 struct extent_status *es; 1315 struct rb_node *node; 1316 1317 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); 1318 if (!es) 1319 goto out_wrap; 1320 node = &es->rb_node; 1321 while (*nr_to_scan > 0) { 1322 if (es->es_lblk > end) { 1323 ei->i_es_shrink_lblk = end + 1; 1324 return 0; 1325 } 1326 1327 (*nr_to_scan)--; 1328 node = rb_next(&es->rb_node); 1329 /* 1330 * We can't reclaim delayed extent from status tree because 1331 * fiemap, bigallic, and seek_data/hole need to use it. 1332 */ 1333 if (ext4_es_is_delayed(es)) 1334 goto next; 1335 if (ext4_es_is_referenced(es)) { 1336 ext4_es_clear_referenced(es); 1337 goto next; 1338 } 1339 1340 rb_erase(&es->rb_node, &tree->root); 1341 ext4_es_free_extent(inode, es); 1342 (*nr_shrunk)++; 1343 next: 1344 if (!node) 1345 goto out_wrap; 1346 es = rb_entry(node, struct extent_status, rb_node); 1347 } 1348 ei->i_es_shrink_lblk = es->es_lblk; 1349 return 1; 1350 out_wrap: 1351 ei->i_es_shrink_lblk = 0; 1352 return 0; 1353 } 1354 1355 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) 1356 { 1357 struct inode *inode = &ei->vfs_inode; 1358 int nr_shrunk = 0; 1359 ext4_lblk_t start = ei->i_es_shrink_lblk; 1360 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1361 DEFAULT_RATELIMIT_BURST); 1362 1363 if (ei->i_es_shk_nr == 0) 1364 return 0; 1365 1366 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && 1367 __ratelimit(&_rs)) 1368 ext4_warning(inode->i_sb, "forced shrink of precached extents"); 1369 1370 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && 1371 start != 0) 1372 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); 1373 1374 ei->i_es_tree.cache_es = NULL; 1375 return nr_shrunk; 1376 } 1377 1378 #ifdef ES_DEBUG__ 1379 static void ext4_print_pending_tree(struct inode *inode) 1380 { 1381 struct ext4_pending_tree *tree; 1382 struct rb_node *node; 1383 struct pending_reservation *pr; 1384 1385 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); 1386 tree = &EXT4_I(inode)->i_pending_tree; 1387 node = rb_first(&tree->root); 1388 while (node) { 1389 pr = rb_entry(node, struct pending_reservation, rb_node); 1390 printk(KERN_DEBUG " %u", pr->lclu); 1391 node = rb_next(node); 1392 } 1393 printk(KERN_DEBUG "\n"); 1394 } 1395 #else 1396 #define ext4_print_pending_tree(inode) 1397 #endif 1398 1399 int __init ext4_init_pending(void) 1400 { 1401 ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation", 1402 sizeof(struct pending_reservation), 1403 0, (SLAB_RECLAIM_ACCOUNT), NULL); 1404 if (ext4_pending_cachep == NULL) 1405 return -ENOMEM; 1406 return 0; 1407 } 1408 1409 void ext4_exit_pending(void) 1410 { 1411 kmem_cache_destroy(ext4_pending_cachep); 1412 } 1413 1414 void ext4_init_pending_tree(struct ext4_pending_tree *tree) 1415 { 1416 tree->root = RB_ROOT; 1417 } 1418 1419 /* 1420 * __get_pending - retrieve a pointer to a pending reservation 1421 * 1422 * @inode - file containing the pending cluster reservation 1423 * @lclu - logical cluster of interest 1424 * 1425 * Returns a pointer to a pending reservation if it's a member of 1426 * the set, and NULL if not. Must be called holding i_es_lock. 1427 */ 1428 static struct pending_reservation *__get_pending(struct inode *inode, 1429 ext4_lblk_t lclu) 1430 { 1431 struct ext4_pending_tree *tree; 1432 struct rb_node *node; 1433 struct pending_reservation *pr = NULL; 1434 1435 tree = &EXT4_I(inode)->i_pending_tree; 1436 node = (&tree->root)->rb_node; 1437 1438 while (node) { 1439 pr = rb_entry(node, struct pending_reservation, rb_node); 1440 if (lclu < pr->lclu) 1441 node = node->rb_left; 1442 else if (lclu > pr->lclu) 1443 node = node->rb_right; 1444 else if (lclu == pr->lclu) 1445 return pr; 1446 } 1447 return NULL; 1448 } 1449 1450 /* 1451 * __insert_pending - adds a pending cluster reservation to the set of 1452 * pending reservations 1453 * 1454 * @inode - file containing the cluster 1455 * @lblk - logical block in the cluster to be added 1456 * 1457 * Returns 0 on successful insertion and -ENOMEM on failure. If the 1458 * pending reservation is already in the set, returns successfully. 1459 */ 1460 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk) 1461 { 1462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1463 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 1464 struct rb_node **p = &tree->root.rb_node; 1465 struct rb_node *parent = NULL; 1466 struct pending_reservation *pr; 1467 ext4_lblk_t lclu; 1468 int ret = 0; 1469 1470 lclu = EXT4_B2C(sbi, lblk); 1471 /* search to find parent for insertion */ 1472 while (*p) { 1473 parent = *p; 1474 pr = rb_entry(parent, struct pending_reservation, rb_node); 1475 1476 if (lclu < pr->lclu) { 1477 p = &(*p)->rb_left; 1478 } else if (lclu > pr->lclu) { 1479 p = &(*p)->rb_right; 1480 } else { 1481 /* pending reservation already inserted */ 1482 goto out; 1483 } 1484 } 1485 1486 pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); 1487 if (pr == NULL) { 1488 ret = -ENOMEM; 1489 goto out; 1490 } 1491 pr->lclu = lclu; 1492 1493 rb_link_node(&pr->rb_node, parent, p); 1494 rb_insert_color(&pr->rb_node, &tree->root); 1495 1496 out: 1497 return ret; 1498 } 1499 1500 /* 1501 * __remove_pending - removes a pending cluster reservation from the set 1502 * of pending reservations 1503 * 1504 * @inode - file containing the cluster 1505 * @lblk - logical block in the pending cluster reservation to be removed 1506 * 1507 * Returns successfully if pending reservation is not a member of the set. 1508 */ 1509 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) 1510 { 1511 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1512 struct pending_reservation *pr; 1513 struct ext4_pending_tree *tree; 1514 1515 pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); 1516 if (pr != NULL) { 1517 tree = &EXT4_I(inode)->i_pending_tree; 1518 rb_erase(&pr->rb_node, &tree->root); 1519 kmem_cache_free(ext4_pending_cachep, pr); 1520 } 1521 } 1522 1523 /* 1524 * ext4_remove_pending - removes a pending cluster reservation from the set 1525 * of pending reservations 1526 * 1527 * @inode - file containing the cluster 1528 * @lblk - logical block in the pending cluster reservation to be removed 1529 * 1530 * Locking for external use of __remove_pending. 1531 */ 1532 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) 1533 { 1534 struct ext4_inode_info *ei = EXT4_I(inode); 1535 1536 write_lock(&ei->i_es_lock); 1537 __remove_pending(inode, lblk); 1538 write_unlock(&ei->i_es_lock); 1539 } 1540 1541 /* 1542 * ext4_is_pending - determine whether a cluster has a pending reservation 1543 * on it 1544 * 1545 * @inode - file containing the cluster 1546 * @lblk - logical block in the cluster 1547 * 1548 * Returns true if there's a pending reservation for the cluster in the 1549 * set of pending reservations, and false if not. 1550 */ 1551 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) 1552 { 1553 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1554 struct ext4_inode_info *ei = EXT4_I(inode); 1555 bool ret; 1556 1557 read_lock(&ei->i_es_lock); 1558 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); 1559 read_unlock(&ei->i_es_lock); 1560 1561 return ret; 1562 } 1563 1564 /* 1565 * ext4_es_insert_delayed_block - adds a delayed block to the extents status 1566 * tree, adding a pending reservation where 1567 * needed 1568 * 1569 * @inode - file containing the newly added block 1570 * @lblk - logical block to be added 1571 * @allocated - indicates whether a physical cluster has been allocated for 1572 * the logical cluster that contains the block 1573 * 1574 * Returns 0 on success, negative error code on failure. 1575 */ 1576 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk, 1577 bool allocated) 1578 { 1579 struct extent_status newes; 1580 int err = 0; 1581 1582 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n", 1583 lblk, inode->i_ino); 1584 1585 newes.es_lblk = lblk; 1586 newes.es_len = 1; 1587 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); 1588 trace_ext4_es_insert_delayed_block(inode, &newes, allocated); 1589 1590 ext4_es_insert_extent_check(inode, &newes); 1591 1592 write_lock(&EXT4_I(inode)->i_es_lock); 1593 1594 err = __es_remove_extent(inode, lblk, lblk); 1595 if (err != 0) 1596 goto error; 1597 retry: 1598 err = __es_insert_extent(inode, &newes); 1599 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), 1600 128, EXT4_I(inode))) 1601 goto retry; 1602 if (err != 0) 1603 goto error; 1604 1605 if (allocated) 1606 __insert_pending(inode, lblk); 1607 1608 error: 1609 write_unlock(&EXT4_I(inode)->i_es_lock); 1610 1611 ext4_es_print_tree(inode); 1612 ext4_print_pending_tree(inode); 1613 1614 return err; 1615 } 1616 1617 /* 1618 * __es_delayed_clu - count number of clusters containing blocks that 1619 * are delayed only 1620 * 1621 * @inode - file containing block range 1622 * @start - logical block defining start of range 1623 * @end - logical block defining end of range 1624 * 1625 * Returns the number of clusters containing only delayed (not delayed 1626 * and unwritten) blocks in the range specified by @start and @end. Any 1627 * cluster or part of a cluster within the range and containing a delayed 1628 * and not unwritten block within the range is counted as a whole cluster. 1629 */ 1630 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start, 1631 ext4_lblk_t end) 1632 { 1633 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 1634 struct extent_status *es; 1635 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1636 struct rb_node *node; 1637 ext4_lblk_t first_lclu, last_lclu; 1638 unsigned long long last_counted_lclu; 1639 unsigned int n = 0; 1640 1641 /* guaranteed to be unequal to any ext4_lblk_t value */ 1642 last_counted_lclu = ~0ULL; 1643 1644 es = __es_tree_search(&tree->root, start); 1645 1646 while (es && (es->es_lblk <= end)) { 1647 if (ext4_es_is_delonly(es)) { 1648 if (es->es_lblk <= start) 1649 first_lclu = EXT4_B2C(sbi, start); 1650 else 1651 first_lclu = EXT4_B2C(sbi, es->es_lblk); 1652 1653 if (ext4_es_end(es) >= end) 1654 last_lclu = EXT4_B2C(sbi, end); 1655 else 1656 last_lclu = EXT4_B2C(sbi, ext4_es_end(es)); 1657 1658 if (first_lclu == last_counted_lclu) 1659 n += last_lclu - first_lclu; 1660 else 1661 n += last_lclu - first_lclu + 1; 1662 last_counted_lclu = last_lclu; 1663 } 1664 node = rb_next(&es->rb_node); 1665 if (!node) 1666 break; 1667 es = rb_entry(node, struct extent_status, rb_node); 1668 } 1669 1670 return n; 1671 } 1672 1673 /* 1674 * ext4_es_delayed_clu - count number of clusters containing blocks that 1675 * are both delayed and unwritten 1676 * 1677 * @inode - file containing block range 1678 * @lblk - logical block defining start of range 1679 * @len - number of blocks in range 1680 * 1681 * Locking for external use of __es_delayed_clu(). 1682 */ 1683 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, 1684 ext4_lblk_t len) 1685 { 1686 struct ext4_inode_info *ei = EXT4_I(inode); 1687 ext4_lblk_t end; 1688 unsigned int n; 1689 1690 if (len == 0) 1691 return 0; 1692 1693 end = lblk + len - 1; 1694 WARN_ON(end < lblk); 1695 1696 read_lock(&ei->i_es_lock); 1697 1698 n = __es_delayed_clu(inode, lblk, end); 1699 1700 read_unlock(&ei->i_es_lock); 1701 1702 return n; 1703 } 1704 1705 /* 1706 * __revise_pending - makes, cancels, or leaves unchanged pending cluster 1707 * reservations for a specified block range depending 1708 * upon the presence or absence of delayed blocks 1709 * outside the range within clusters at the ends of the 1710 * range 1711 * 1712 * @inode - file containing the range 1713 * @lblk - logical block defining the start of range 1714 * @len - length of range in blocks 1715 * 1716 * Used after a newly allocated extent is added to the extents status tree. 1717 * Requires that the extents in the range have either written or unwritten 1718 * status. Must be called while holding i_es_lock. 1719 */ 1720 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk, 1721 ext4_lblk_t len) 1722 { 1723 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1724 ext4_lblk_t end = lblk + len - 1; 1725 ext4_lblk_t first, last; 1726 bool f_del = false, l_del = false; 1727 1728 if (len == 0) 1729 return; 1730 1731 /* 1732 * Two cases - block range within single cluster and block range 1733 * spanning two or more clusters. Note that a cluster belonging 1734 * to a range starting and/or ending on a cluster boundary is treated 1735 * as if it does not contain a delayed extent. The new range may 1736 * have allocated space for previously delayed blocks out to the 1737 * cluster boundary, requiring that any pre-existing pending 1738 * reservation be canceled. Because this code only looks at blocks 1739 * outside the range, it should revise pending reservations 1740 * correctly even if the extent represented by the range can't be 1741 * inserted in the extents status tree due to ENOSPC. 1742 */ 1743 1744 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { 1745 first = EXT4_LBLK_CMASK(sbi, lblk); 1746 if (first != lblk) 1747 f_del = __es_scan_range(inode, &ext4_es_is_delonly, 1748 first, lblk - 1); 1749 if (f_del) { 1750 __insert_pending(inode, first); 1751 } else { 1752 last = EXT4_LBLK_CMASK(sbi, end) + 1753 sbi->s_cluster_ratio - 1; 1754 if (last != end) 1755 l_del = __es_scan_range(inode, 1756 &ext4_es_is_delonly, 1757 end + 1, last); 1758 if (l_del) 1759 __insert_pending(inode, last); 1760 else 1761 __remove_pending(inode, last); 1762 } 1763 } else { 1764 first = EXT4_LBLK_CMASK(sbi, lblk); 1765 if (first != lblk) 1766 f_del = __es_scan_range(inode, &ext4_es_is_delonly, 1767 first, lblk - 1); 1768 if (f_del) 1769 __insert_pending(inode, first); 1770 else 1771 __remove_pending(inode, first); 1772 1773 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; 1774 if (last != end) 1775 l_del = __es_scan_range(inode, &ext4_es_is_delonly, 1776 end + 1, last); 1777 if (l_del) 1778 __insert_pending(inode, last); 1779 else 1780 __remove_pending(inode, last); 1781 } 1782 } 1783 1784 /* 1785 * ext4_es_remove_blks - remove block range from extents status tree and 1786 * reduce reservation count or cancel pending 1787 * reservation as needed 1788 * 1789 * @inode - file containing range 1790 * @lblk - first block in range 1791 * @len - number of blocks to remove 1792 * 1793 */ 1794 void ext4_es_remove_blks(struct inode *inode, ext4_lblk_t lblk, 1795 ext4_lblk_t len) 1796 { 1797 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1798 unsigned int clu_size, reserved = 0; 1799 ext4_lblk_t last_lclu, first, length, remainder, last; 1800 bool delonly; 1801 int err = 0; 1802 struct pending_reservation *pr; 1803 struct ext4_pending_tree *tree; 1804 1805 /* 1806 * Process cluster by cluster for bigalloc - there may be up to 1807 * two clusters in a 4k page with a 1k block size and two blocks 1808 * per cluster. Also necessary for systems with larger page sizes 1809 * and potentially larger block sizes. 1810 */ 1811 clu_size = sbi->s_cluster_ratio; 1812 last_lclu = EXT4_B2C(sbi, lblk + len - 1); 1813 1814 write_lock(&EXT4_I(inode)->i_es_lock); 1815 1816 for (first = lblk, remainder = len; 1817 remainder > 0; 1818 first += length, remainder -= length) { 1819 1820 if (EXT4_B2C(sbi, first) == last_lclu) 1821 length = remainder; 1822 else 1823 length = clu_size - EXT4_LBLK_COFF(sbi, first); 1824 1825 /* 1826 * The BH_Delay flag, which triggers calls to this function, 1827 * and the contents of the extents status tree can be 1828 * inconsistent due to writepages activity. So, note whether 1829 * the blocks to be removed actually belong to an extent with 1830 * delayed only status. 1831 */ 1832 delonly = __es_scan_clu(inode, &ext4_es_is_delonly, first); 1833 1834 /* 1835 * because of the writepages effect, written and unwritten 1836 * blocks could be removed here 1837 */ 1838 last = first + length - 1; 1839 err = __es_remove_extent(inode, first, last); 1840 if (err) 1841 ext4_warning(inode->i_sb, 1842 "%s: couldn't remove page (err = %d)", 1843 __func__, err); 1844 1845 /* non-bigalloc case: simply count the cluster for release */ 1846 if (sbi->s_cluster_ratio == 1 && delonly) { 1847 reserved++; 1848 continue; 1849 } 1850 1851 /* 1852 * bigalloc case: if all delayed allocated only blocks have 1853 * just been removed from a cluster, either cancel a pending 1854 * reservation if it exists or count a cluster for release 1855 */ 1856 if (delonly && 1857 !__es_scan_clu(inode, &ext4_es_is_delonly, first)) { 1858 pr = __get_pending(inode, EXT4_B2C(sbi, first)); 1859 if (pr != NULL) { 1860 tree = &EXT4_I(inode)->i_pending_tree; 1861 rb_erase(&pr->rb_node, &tree->root); 1862 kmem_cache_free(ext4_pending_cachep, pr); 1863 } else { 1864 reserved++; 1865 } 1866 } 1867 } 1868 1869 write_unlock(&EXT4_I(inode)->i_es_lock); 1870 1871 ext4_da_release_space(inode, reserved); 1872 } 1873