xref: /linux/fs/ext4/extents_status.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 #include "extents_status.h"
18 
19 #include <trace/events/ext4.h>
20 
21 /*
22  * According to previous discussion in Ext4 Developer Workshop, we
23  * will introduce a new structure called io tree to track all extent
24  * status in order to solve some problems that we have met
25  * (e.g. Reservation space warning), and provide extent-level locking.
26  * Delay extent tree is the first step to achieve this goal.  It is
27  * original built by Yongqiang Yang.  At that time it is called delay
28  * extent tree, whose goal is only track delayed extents in memory to
29  * simplify the implementation of fiemap and bigalloc, and introduce
30  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
31  * delay extent tree at the first commit.  But for better understand
32  * what it does, it has been rename to extent status tree.
33  *
34  * Step1:
35  * Currently the first step has been done.  All delayed extents are
36  * tracked in the tree.  It maintains the delayed extent when a delayed
37  * allocation is issued, and the delayed extent is written out or
38  * invalidated.  Therefore the implementation of fiemap and bigalloc
39  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
40  *
41  * The following comment describes the implemenmtation of extent
42  * status tree and future works.
43  *
44  * Step2:
45  * In this step all extent status are tracked by extent status tree.
46  * Thus, we can first try to lookup a block mapping in this tree before
47  * finding it in extent tree.  Hence, single extent cache can be removed
48  * because extent status tree can do a better job.  Extents in status
49  * tree are loaded on-demand.  Therefore, the extent status tree may not
50  * contain all of the extents in a file.  Meanwhile we define a shrinker
51  * to reclaim memory from extent status tree because fragmented extent
52  * tree will make status tree cost too much memory.  written/unwritten/-
53  * hole extents in the tree will be reclaimed by this shrinker when we
54  * are under high memory pressure.  Delayed extents will not be
55  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
56  */
57 
58 /*
59  * Extent status tree implementation for ext4.
60  *
61  *
62  * ==========================================================================
63  * Extent status tree tracks all extent status.
64  *
65  * 1. Why we need to implement extent status tree?
66  *
67  * Without extent status tree, ext4 identifies a delayed extent by looking
68  * up page cache, this has several deficiencies - complicated, buggy,
69  * and inefficient code.
70  *
71  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
72  * block or a range of blocks are belonged to a delayed extent.
73  *
74  * Let us have a look at how they do without extent status tree.
75  *   --	FIEMAP
76  *	FIEMAP looks up page cache to identify delayed allocations from holes.
77  *
78  *   --	SEEK_HOLE/DATA
79  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
80  *
81  *   --	bigalloc
82  *	bigalloc looks up page cache to figure out if a block is
83  *	already under delayed allocation or not to determine whether
84  *	quota reserving is needed for the cluster.
85  *
86  *   --	writeout
87  *	Writeout looks up whole page cache to see if a buffer is
88  *	mapped, If there are not very many delayed buffers, then it is
89  *	time comsuming.
90  *
91  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
92  * bigalloc and writeout can figure out if a block or a range of
93  * blocks is under delayed allocation(belonged to a delayed extent) or
94  * not by searching the extent tree.
95  *
96  *
97  * ==========================================================================
98  * 2. Ext4 extent status tree impelmentation
99  *
100  *   --	extent
101  *	A extent is a range of blocks which are contiguous logically and
102  *	physically.  Unlike extent in extent tree, this extent in ext4 is
103  *	a in-memory struct, there is no corresponding on-disk data.  There
104  *	is no limit on length of extent, so an extent can contain as many
105  *	blocks as they are contiguous logically and physically.
106  *
107  *   --	extent status tree
108  *	Every inode has an extent status tree and all allocation blocks
109  *	are added to the tree with different status.  The extent in the
110  *	tree are ordered by logical block no.
111  *
112  *   --	operations on a extent status tree
113  *	There are three important operations on a delayed extent tree: find
114  *	next extent, adding a extent(a range of blocks) and removing a extent.
115  *
116  *   --	race on a extent status tree
117  *	Extent status tree is protected by inode->i_es_lock.
118  *
119  *   --	memory consumption
120  *      Fragmented extent tree will make extent status tree cost too much
121  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
122  *      the tree under a heavy memory pressure.
123  *
124  *
125  * ==========================================================================
126  * 3. Performance analysis
127  *
128  *   --	overhead
129  *	1. There is a cache extent for write access, so if writes are
130  *	not very random, adding space operaions are in O(1) time.
131  *
132  *   --	gain
133  *	2. Code is much simpler, more readable, more maintainable and
134  *	more efficient.
135  *
136  *
137  * ==========================================================================
138  * 4. TODO list
139  *
140  *   -- Refactor delayed space reservation
141  *
142  *   -- Extent-level locking
143  */
144 
145 static struct kmem_cache *ext4_es_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 			      ext4_lblk_t end);
150 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
151 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
152 		       struct ext4_inode_info *locked_ei);
153 
154 int __init ext4_init_es(void)
155 {
156 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
157 					   sizeof(struct extent_status),
158 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
159 	if (ext4_es_cachep == NULL)
160 		return -ENOMEM;
161 	return 0;
162 }
163 
164 void ext4_exit_es(void)
165 {
166 	if (ext4_es_cachep)
167 		kmem_cache_destroy(ext4_es_cachep);
168 }
169 
170 void ext4_es_init_tree(struct ext4_es_tree *tree)
171 {
172 	tree->root = RB_ROOT;
173 	tree->cache_es = NULL;
174 }
175 
176 #ifdef ES_DEBUG__
177 static void ext4_es_print_tree(struct inode *inode)
178 {
179 	struct ext4_es_tree *tree;
180 	struct rb_node *node;
181 
182 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
183 	tree = &EXT4_I(inode)->i_es_tree;
184 	node = rb_first(&tree->root);
185 	while (node) {
186 		struct extent_status *es;
187 		es = rb_entry(node, struct extent_status, rb_node);
188 		printk(KERN_DEBUG " [%u/%u) %llu %x",
189 		       es->es_lblk, es->es_len,
190 		       ext4_es_pblock(es), ext4_es_status(es));
191 		node = rb_next(node);
192 	}
193 	printk(KERN_DEBUG "\n");
194 }
195 #else
196 #define ext4_es_print_tree(inode)
197 #endif
198 
199 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
200 {
201 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
202 	return es->es_lblk + es->es_len - 1;
203 }
204 
205 /*
206  * search through the tree for an delayed extent with a given offset.  If
207  * it can't be found, try to find next extent.
208  */
209 static struct extent_status *__es_tree_search(struct rb_root *root,
210 					      ext4_lblk_t lblk)
211 {
212 	struct rb_node *node = root->rb_node;
213 	struct extent_status *es = NULL;
214 
215 	while (node) {
216 		es = rb_entry(node, struct extent_status, rb_node);
217 		if (lblk < es->es_lblk)
218 			node = node->rb_left;
219 		else if (lblk > ext4_es_end(es))
220 			node = node->rb_right;
221 		else
222 			return es;
223 	}
224 
225 	if (es && lblk < es->es_lblk)
226 		return es;
227 
228 	if (es && lblk > ext4_es_end(es)) {
229 		node = rb_next(&es->rb_node);
230 		return node ? rb_entry(node, struct extent_status, rb_node) :
231 			      NULL;
232 	}
233 
234 	return NULL;
235 }
236 
237 /*
238  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
239  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
240  *
241  * @inode: the inode which owns delayed extents
242  * @lblk: the offset where we start to search
243  * @end: the offset where we stop to search
244  * @es: delayed extent that we found
245  */
246 void ext4_es_find_delayed_extent_range(struct inode *inode,
247 				 ext4_lblk_t lblk, ext4_lblk_t end,
248 				 struct extent_status *es)
249 {
250 	struct ext4_es_tree *tree = NULL;
251 	struct extent_status *es1 = NULL;
252 	struct rb_node *node;
253 
254 	BUG_ON(es == NULL);
255 	BUG_ON(end < lblk);
256 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
257 
258 	read_lock(&EXT4_I(inode)->i_es_lock);
259 	tree = &EXT4_I(inode)->i_es_tree;
260 
261 	/* find extent in cache firstly */
262 	es->es_lblk = es->es_len = es->es_pblk = 0;
263 	if (tree->cache_es) {
264 		es1 = tree->cache_es;
265 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
266 			es_debug("%u cached by [%u/%u) %llu %x\n",
267 				 lblk, es1->es_lblk, es1->es_len,
268 				 ext4_es_pblock(es1), ext4_es_status(es1));
269 			goto out;
270 		}
271 	}
272 
273 	es1 = __es_tree_search(&tree->root, lblk);
274 
275 out:
276 	if (es1 && !ext4_es_is_delayed(es1)) {
277 		while ((node = rb_next(&es1->rb_node)) != NULL) {
278 			es1 = rb_entry(node, struct extent_status, rb_node);
279 			if (es1->es_lblk > end) {
280 				es1 = NULL;
281 				break;
282 			}
283 			if (ext4_es_is_delayed(es1))
284 				break;
285 		}
286 	}
287 
288 	if (es1 && ext4_es_is_delayed(es1)) {
289 		tree->cache_es = es1;
290 		es->es_lblk = es1->es_lblk;
291 		es->es_len = es1->es_len;
292 		es->es_pblk = es1->es_pblk;
293 	}
294 
295 	read_unlock(&EXT4_I(inode)->i_es_lock);
296 
297 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
298 }
299 
300 static void ext4_es_list_add(struct inode *inode)
301 {
302 	struct ext4_inode_info *ei = EXT4_I(inode);
303 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
304 
305 	if (!list_empty(&ei->i_es_list))
306 		return;
307 
308 	spin_lock(&sbi->s_es_lock);
309 	if (list_empty(&ei->i_es_list)) {
310 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
311 		sbi->s_es_nr_inode++;
312 	}
313 	spin_unlock(&sbi->s_es_lock);
314 }
315 
316 static void ext4_es_list_del(struct inode *inode)
317 {
318 	struct ext4_inode_info *ei = EXT4_I(inode);
319 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
320 
321 	spin_lock(&sbi->s_es_lock);
322 	if (!list_empty(&ei->i_es_list)) {
323 		list_del_init(&ei->i_es_list);
324 		sbi->s_es_nr_inode--;
325 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
326 	}
327 	spin_unlock(&sbi->s_es_lock);
328 }
329 
330 static struct extent_status *
331 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
332 		     ext4_fsblk_t pblk)
333 {
334 	struct extent_status *es;
335 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
336 	if (es == NULL)
337 		return NULL;
338 	es->es_lblk = lblk;
339 	es->es_len = len;
340 	es->es_pblk = pblk;
341 
342 	/*
343 	 * We don't count delayed extent because we never try to reclaim them
344 	 */
345 	if (!ext4_es_is_delayed(es)) {
346 		if (!EXT4_I(inode)->i_es_shk_nr++)
347 			ext4_es_list_add(inode);
348 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
349 					s_es_stats.es_stats_shk_cnt);
350 	}
351 
352 	EXT4_I(inode)->i_es_all_nr++;
353 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
354 
355 	return es;
356 }
357 
358 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
359 {
360 	EXT4_I(inode)->i_es_all_nr--;
361 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
362 
363 	/* Decrease the shrink counter when this es is not delayed */
364 	if (!ext4_es_is_delayed(es)) {
365 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
366 		if (!--EXT4_I(inode)->i_es_shk_nr)
367 			ext4_es_list_del(inode);
368 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
369 					s_es_stats.es_stats_shk_cnt);
370 	}
371 
372 	kmem_cache_free(ext4_es_cachep, es);
373 }
374 
375 /*
376  * Check whether or not two extents can be merged
377  * Condition:
378  *  - logical block number is contiguous
379  *  - physical block number is contiguous
380  *  - status is equal
381  */
382 static int ext4_es_can_be_merged(struct extent_status *es1,
383 				 struct extent_status *es2)
384 {
385 	if (ext4_es_type(es1) != ext4_es_type(es2))
386 		return 0;
387 
388 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
389 		pr_warn("ES assertion failed when merging extents. "
390 			"The sum of lengths of es1 (%d) and es2 (%d) "
391 			"is bigger than allowed file size (%d)\n",
392 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
393 		WARN_ON(1);
394 		return 0;
395 	}
396 
397 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
398 		return 0;
399 
400 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
401 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
402 		return 1;
403 
404 	if (ext4_es_is_hole(es1))
405 		return 1;
406 
407 	/* we need to check delayed extent is without unwritten status */
408 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
409 		return 1;
410 
411 	return 0;
412 }
413 
414 static struct extent_status *
415 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
416 {
417 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
418 	struct extent_status *es1;
419 	struct rb_node *node;
420 
421 	node = rb_prev(&es->rb_node);
422 	if (!node)
423 		return es;
424 
425 	es1 = rb_entry(node, struct extent_status, rb_node);
426 	if (ext4_es_can_be_merged(es1, es)) {
427 		es1->es_len += es->es_len;
428 		if (ext4_es_is_referenced(es))
429 			ext4_es_set_referenced(es1);
430 		rb_erase(&es->rb_node, &tree->root);
431 		ext4_es_free_extent(inode, es);
432 		es = es1;
433 	}
434 
435 	return es;
436 }
437 
438 static struct extent_status *
439 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
440 {
441 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
442 	struct extent_status *es1;
443 	struct rb_node *node;
444 
445 	node = rb_next(&es->rb_node);
446 	if (!node)
447 		return es;
448 
449 	es1 = rb_entry(node, struct extent_status, rb_node);
450 	if (ext4_es_can_be_merged(es, es1)) {
451 		es->es_len += es1->es_len;
452 		if (ext4_es_is_referenced(es1))
453 			ext4_es_set_referenced(es);
454 		rb_erase(node, &tree->root);
455 		ext4_es_free_extent(inode, es1);
456 	}
457 
458 	return es;
459 }
460 
461 #ifdef ES_AGGRESSIVE_TEST
462 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
463 
464 static void ext4_es_insert_extent_ext_check(struct inode *inode,
465 					    struct extent_status *es)
466 {
467 	struct ext4_ext_path *path = NULL;
468 	struct ext4_extent *ex;
469 	ext4_lblk_t ee_block;
470 	ext4_fsblk_t ee_start;
471 	unsigned short ee_len;
472 	int depth, ee_status, es_status;
473 
474 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
475 	if (IS_ERR(path))
476 		return;
477 
478 	depth = ext_depth(inode);
479 	ex = path[depth].p_ext;
480 
481 	if (ex) {
482 
483 		ee_block = le32_to_cpu(ex->ee_block);
484 		ee_start = ext4_ext_pblock(ex);
485 		ee_len = ext4_ext_get_actual_len(ex);
486 
487 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
488 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
489 
490 		/*
491 		 * Make sure ex and es are not overlap when we try to insert
492 		 * a delayed/hole extent.
493 		 */
494 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
495 			if (in_range(es->es_lblk, ee_block, ee_len)) {
496 				pr_warn("ES insert assertion failed for "
497 					"inode: %lu we can find an extent "
498 					"at block [%d/%d/%llu/%c], but we "
499 					"want to add a delayed/hole extent "
500 					"[%d/%d/%llu/%x]\n",
501 					inode->i_ino, ee_block, ee_len,
502 					ee_start, ee_status ? 'u' : 'w',
503 					es->es_lblk, es->es_len,
504 					ext4_es_pblock(es), ext4_es_status(es));
505 			}
506 			goto out;
507 		}
508 
509 		/*
510 		 * We don't check ee_block == es->es_lblk, etc. because es
511 		 * might be a part of whole extent, vice versa.
512 		 */
513 		if (es->es_lblk < ee_block ||
514 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
515 			pr_warn("ES insert assertion failed for inode: %lu "
516 				"ex_status [%d/%d/%llu/%c] != "
517 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
518 				ee_block, ee_len, ee_start,
519 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
520 				ext4_es_pblock(es), es_status ? 'u' : 'w');
521 			goto out;
522 		}
523 
524 		if (ee_status ^ es_status) {
525 			pr_warn("ES insert assertion failed for inode: %lu "
526 				"ex_status [%d/%d/%llu/%c] != "
527 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
528 				ee_block, ee_len, ee_start,
529 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
530 				ext4_es_pblock(es), es_status ? 'u' : 'w');
531 		}
532 	} else {
533 		/*
534 		 * We can't find an extent on disk.  So we need to make sure
535 		 * that we don't want to add an written/unwritten extent.
536 		 */
537 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
538 			pr_warn("ES insert assertion failed for inode: %lu "
539 				"can't find an extent at block %d but we want "
540 				"to add a written/unwritten extent "
541 				"[%d/%d/%llu/%x]\n", inode->i_ino,
542 				es->es_lblk, es->es_lblk, es->es_len,
543 				ext4_es_pblock(es), ext4_es_status(es));
544 		}
545 	}
546 out:
547 	ext4_ext_drop_refs(path);
548 	kfree(path);
549 }
550 
551 static void ext4_es_insert_extent_ind_check(struct inode *inode,
552 					    struct extent_status *es)
553 {
554 	struct ext4_map_blocks map;
555 	int retval;
556 
557 	/*
558 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
559 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
560 	 * access direct/indirect tree from outside.  It is too dirty to define
561 	 * this function in indirect.c file.
562 	 */
563 
564 	map.m_lblk = es->es_lblk;
565 	map.m_len = es->es_len;
566 
567 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
568 	if (retval > 0) {
569 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
570 			/*
571 			 * We want to add a delayed/hole extent but this
572 			 * block has been allocated.
573 			 */
574 			pr_warn("ES insert assertion failed for inode: %lu "
575 				"We can find blocks but we want to add a "
576 				"delayed/hole extent [%d/%d/%llu/%x]\n",
577 				inode->i_ino, es->es_lblk, es->es_len,
578 				ext4_es_pblock(es), ext4_es_status(es));
579 			return;
580 		} else if (ext4_es_is_written(es)) {
581 			if (retval != es->es_len) {
582 				pr_warn("ES insert assertion failed for "
583 					"inode: %lu retval %d != es_len %d\n",
584 					inode->i_ino, retval, es->es_len);
585 				return;
586 			}
587 			if (map.m_pblk != ext4_es_pblock(es)) {
588 				pr_warn("ES insert assertion failed for "
589 					"inode: %lu m_pblk %llu != "
590 					"es_pblk %llu\n",
591 					inode->i_ino, map.m_pblk,
592 					ext4_es_pblock(es));
593 				return;
594 			}
595 		} else {
596 			/*
597 			 * We don't need to check unwritten extent because
598 			 * indirect-based file doesn't have it.
599 			 */
600 			BUG_ON(1);
601 		}
602 	} else if (retval == 0) {
603 		if (ext4_es_is_written(es)) {
604 			pr_warn("ES insert assertion failed for inode: %lu "
605 				"We can't find the block but we want to add "
606 				"a written extent [%d/%d/%llu/%x]\n",
607 				inode->i_ino, es->es_lblk, es->es_len,
608 				ext4_es_pblock(es), ext4_es_status(es));
609 			return;
610 		}
611 	}
612 }
613 
614 static inline void ext4_es_insert_extent_check(struct inode *inode,
615 					       struct extent_status *es)
616 {
617 	/*
618 	 * We don't need to worry about the race condition because
619 	 * caller takes i_data_sem locking.
620 	 */
621 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
622 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
623 		ext4_es_insert_extent_ext_check(inode, es);
624 	else
625 		ext4_es_insert_extent_ind_check(inode, es);
626 }
627 #else
628 static inline void ext4_es_insert_extent_check(struct inode *inode,
629 					       struct extent_status *es)
630 {
631 }
632 #endif
633 
634 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
635 {
636 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
637 	struct rb_node **p = &tree->root.rb_node;
638 	struct rb_node *parent = NULL;
639 	struct extent_status *es;
640 
641 	while (*p) {
642 		parent = *p;
643 		es = rb_entry(parent, struct extent_status, rb_node);
644 
645 		if (newes->es_lblk < es->es_lblk) {
646 			if (ext4_es_can_be_merged(newes, es)) {
647 				/*
648 				 * Here we can modify es_lblk directly
649 				 * because it isn't overlapped.
650 				 */
651 				es->es_lblk = newes->es_lblk;
652 				es->es_len += newes->es_len;
653 				if (ext4_es_is_written(es) ||
654 				    ext4_es_is_unwritten(es))
655 					ext4_es_store_pblock(es,
656 							     newes->es_pblk);
657 				es = ext4_es_try_to_merge_left(inode, es);
658 				goto out;
659 			}
660 			p = &(*p)->rb_left;
661 		} else if (newes->es_lblk > ext4_es_end(es)) {
662 			if (ext4_es_can_be_merged(es, newes)) {
663 				es->es_len += newes->es_len;
664 				es = ext4_es_try_to_merge_right(inode, es);
665 				goto out;
666 			}
667 			p = &(*p)->rb_right;
668 		} else {
669 			BUG_ON(1);
670 			return -EINVAL;
671 		}
672 	}
673 
674 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
675 				  newes->es_pblk);
676 	if (!es)
677 		return -ENOMEM;
678 	rb_link_node(&es->rb_node, parent, p);
679 	rb_insert_color(&es->rb_node, &tree->root);
680 
681 out:
682 	tree->cache_es = es;
683 	return 0;
684 }
685 
686 /*
687  * ext4_es_insert_extent() adds information to an inode's extent
688  * status tree.
689  *
690  * Return 0 on success, error code on failure.
691  */
692 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
693 			  ext4_lblk_t len, ext4_fsblk_t pblk,
694 			  unsigned int status)
695 {
696 	struct extent_status newes;
697 	ext4_lblk_t end = lblk + len - 1;
698 	int err = 0;
699 
700 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
701 		 lblk, len, pblk, status, inode->i_ino);
702 
703 	if (!len)
704 		return 0;
705 
706 	BUG_ON(end < lblk);
707 
708 	newes.es_lblk = lblk;
709 	newes.es_len = len;
710 	ext4_es_store_pblock_status(&newes, pblk, status);
711 	trace_ext4_es_insert_extent(inode, &newes);
712 
713 	ext4_es_insert_extent_check(inode, &newes);
714 
715 	write_lock(&EXT4_I(inode)->i_es_lock);
716 	err = __es_remove_extent(inode, lblk, end);
717 	if (err != 0)
718 		goto error;
719 retry:
720 	err = __es_insert_extent(inode, &newes);
721 	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
722 					  128, EXT4_I(inode)))
723 		goto retry;
724 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
725 		err = 0;
726 
727 error:
728 	write_unlock(&EXT4_I(inode)->i_es_lock);
729 
730 	ext4_es_print_tree(inode);
731 
732 	return err;
733 }
734 
735 /*
736  * ext4_es_cache_extent() inserts information into the extent status
737  * tree if and only if there isn't information about the range in
738  * question already.
739  */
740 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
741 			  ext4_lblk_t len, ext4_fsblk_t pblk,
742 			  unsigned int status)
743 {
744 	struct extent_status *es;
745 	struct extent_status newes;
746 	ext4_lblk_t end = lblk + len - 1;
747 
748 	newes.es_lblk = lblk;
749 	newes.es_len = len;
750 	ext4_es_store_pblock_status(&newes, pblk, status);
751 	trace_ext4_es_cache_extent(inode, &newes);
752 
753 	if (!len)
754 		return;
755 
756 	BUG_ON(end < lblk);
757 
758 	write_lock(&EXT4_I(inode)->i_es_lock);
759 
760 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
761 	if (!es || es->es_lblk > end)
762 		__es_insert_extent(inode, &newes);
763 	write_unlock(&EXT4_I(inode)->i_es_lock);
764 }
765 
766 /*
767  * ext4_es_lookup_extent() looks up an extent in extent status tree.
768  *
769  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
770  *
771  * Return: 1 on found, 0 on not
772  */
773 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
774 			  struct extent_status *es)
775 {
776 	struct ext4_es_tree *tree;
777 	struct ext4_es_stats *stats;
778 	struct extent_status *es1 = NULL;
779 	struct rb_node *node;
780 	int found = 0;
781 
782 	trace_ext4_es_lookup_extent_enter(inode, lblk);
783 	es_debug("lookup extent in block %u\n", lblk);
784 
785 	tree = &EXT4_I(inode)->i_es_tree;
786 	read_lock(&EXT4_I(inode)->i_es_lock);
787 
788 	/* find extent in cache firstly */
789 	es->es_lblk = es->es_len = es->es_pblk = 0;
790 	if (tree->cache_es) {
791 		es1 = tree->cache_es;
792 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
793 			es_debug("%u cached by [%u/%u)\n",
794 				 lblk, es1->es_lblk, es1->es_len);
795 			found = 1;
796 			goto out;
797 		}
798 	}
799 
800 	node = tree->root.rb_node;
801 	while (node) {
802 		es1 = rb_entry(node, struct extent_status, rb_node);
803 		if (lblk < es1->es_lblk)
804 			node = node->rb_left;
805 		else if (lblk > ext4_es_end(es1))
806 			node = node->rb_right;
807 		else {
808 			found = 1;
809 			break;
810 		}
811 	}
812 
813 out:
814 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
815 	if (found) {
816 		BUG_ON(!es1);
817 		es->es_lblk = es1->es_lblk;
818 		es->es_len = es1->es_len;
819 		es->es_pblk = es1->es_pblk;
820 		if (!ext4_es_is_referenced(es))
821 			ext4_es_set_referenced(es);
822 		stats->es_stats_cache_hits++;
823 	} else {
824 		stats->es_stats_cache_misses++;
825 	}
826 
827 	read_unlock(&EXT4_I(inode)->i_es_lock);
828 
829 	trace_ext4_es_lookup_extent_exit(inode, es, found);
830 	return found;
831 }
832 
833 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
834 			      ext4_lblk_t end)
835 {
836 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
837 	struct rb_node *node;
838 	struct extent_status *es;
839 	struct extent_status orig_es;
840 	ext4_lblk_t len1, len2;
841 	ext4_fsblk_t block;
842 	int err;
843 
844 retry:
845 	err = 0;
846 	es = __es_tree_search(&tree->root, lblk);
847 	if (!es)
848 		goto out;
849 	if (es->es_lblk > end)
850 		goto out;
851 
852 	/* Simply invalidate cache_es. */
853 	tree->cache_es = NULL;
854 
855 	orig_es.es_lblk = es->es_lblk;
856 	orig_es.es_len = es->es_len;
857 	orig_es.es_pblk = es->es_pblk;
858 
859 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
860 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
861 	if (len1 > 0)
862 		es->es_len = len1;
863 	if (len2 > 0) {
864 		if (len1 > 0) {
865 			struct extent_status newes;
866 
867 			newes.es_lblk = end + 1;
868 			newes.es_len = len2;
869 			block = 0x7FDEADBEEFULL;
870 			if (ext4_es_is_written(&orig_es) ||
871 			    ext4_es_is_unwritten(&orig_es))
872 				block = ext4_es_pblock(&orig_es) +
873 					orig_es.es_len - len2;
874 			ext4_es_store_pblock_status(&newes, block,
875 						    ext4_es_status(&orig_es));
876 			err = __es_insert_extent(inode, &newes);
877 			if (err) {
878 				es->es_lblk = orig_es.es_lblk;
879 				es->es_len = orig_es.es_len;
880 				if ((err == -ENOMEM) &&
881 				    __es_shrink(EXT4_SB(inode->i_sb),
882 							128, EXT4_I(inode)))
883 					goto retry;
884 				goto out;
885 			}
886 		} else {
887 			es->es_lblk = end + 1;
888 			es->es_len = len2;
889 			if (ext4_es_is_written(es) ||
890 			    ext4_es_is_unwritten(es)) {
891 				block = orig_es.es_pblk + orig_es.es_len - len2;
892 				ext4_es_store_pblock(es, block);
893 			}
894 		}
895 		goto out;
896 	}
897 
898 	if (len1 > 0) {
899 		node = rb_next(&es->rb_node);
900 		if (node)
901 			es = rb_entry(node, struct extent_status, rb_node);
902 		else
903 			es = NULL;
904 	}
905 
906 	while (es && ext4_es_end(es) <= end) {
907 		node = rb_next(&es->rb_node);
908 		rb_erase(&es->rb_node, &tree->root);
909 		ext4_es_free_extent(inode, es);
910 		if (!node) {
911 			es = NULL;
912 			break;
913 		}
914 		es = rb_entry(node, struct extent_status, rb_node);
915 	}
916 
917 	if (es && es->es_lblk < end + 1) {
918 		ext4_lblk_t orig_len = es->es_len;
919 
920 		len1 = ext4_es_end(es) - end;
921 		es->es_lblk = end + 1;
922 		es->es_len = len1;
923 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
924 			block = es->es_pblk + orig_len - len1;
925 			ext4_es_store_pblock(es, block);
926 		}
927 	}
928 
929 out:
930 	return err;
931 }
932 
933 /*
934  * ext4_es_remove_extent() removes a space from a extent status tree.
935  *
936  * Return 0 on success, error code on failure.
937  */
938 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
939 			  ext4_lblk_t len)
940 {
941 	ext4_lblk_t end;
942 	int err = 0;
943 
944 	trace_ext4_es_remove_extent(inode, lblk, len);
945 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
946 		 lblk, len, inode->i_ino);
947 
948 	if (!len)
949 		return err;
950 
951 	end = lblk + len - 1;
952 	BUG_ON(end < lblk);
953 
954 	/*
955 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
956 	 * so that we are sure __es_shrink() is done with the inode before it
957 	 * is reclaimed.
958 	 */
959 	write_lock(&EXT4_I(inode)->i_es_lock);
960 	err = __es_remove_extent(inode, lblk, end);
961 	write_unlock(&EXT4_I(inode)->i_es_lock);
962 	ext4_es_print_tree(inode);
963 	return err;
964 }
965 
966 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
967 		       struct ext4_inode_info *locked_ei)
968 {
969 	struct ext4_inode_info *ei;
970 	struct ext4_es_stats *es_stats;
971 	ktime_t start_time;
972 	u64 scan_time;
973 	int nr_to_walk;
974 	int nr_shrunk = 0;
975 	int retried = 0, nr_skipped = 0;
976 
977 	es_stats = &sbi->s_es_stats;
978 	start_time = ktime_get();
979 
980 retry:
981 	spin_lock(&sbi->s_es_lock);
982 	nr_to_walk = sbi->s_es_nr_inode;
983 	while (nr_to_walk-- > 0) {
984 		if (list_empty(&sbi->s_es_list)) {
985 			spin_unlock(&sbi->s_es_lock);
986 			goto out;
987 		}
988 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
989 				      i_es_list);
990 		/* Move the inode to the tail */
991 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
992 
993 		/*
994 		 * Normally we try hard to avoid shrinking precached inodes,
995 		 * but we will as a last resort.
996 		 */
997 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
998 						EXT4_STATE_EXT_PRECACHED)) {
999 			nr_skipped++;
1000 			continue;
1001 		}
1002 
1003 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1004 			nr_skipped++;
1005 			continue;
1006 		}
1007 		/*
1008 		 * Now we hold i_es_lock which protects us from inode reclaim
1009 		 * freeing inode under us
1010 		 */
1011 		spin_unlock(&sbi->s_es_lock);
1012 
1013 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1014 		write_unlock(&ei->i_es_lock);
1015 
1016 		if (nr_to_scan <= 0)
1017 			goto out;
1018 		spin_lock(&sbi->s_es_lock);
1019 	}
1020 	spin_unlock(&sbi->s_es_lock);
1021 
1022 	/*
1023 	 * If we skipped any inodes, and we weren't able to make any
1024 	 * forward progress, try again to scan precached inodes.
1025 	 */
1026 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1027 		retried++;
1028 		goto retry;
1029 	}
1030 
1031 	if (locked_ei && nr_shrunk == 0)
1032 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1033 
1034 out:
1035 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1036 	if (likely(es_stats->es_stats_scan_time))
1037 		es_stats->es_stats_scan_time = (scan_time +
1038 				es_stats->es_stats_scan_time*3) / 4;
1039 	else
1040 		es_stats->es_stats_scan_time = scan_time;
1041 	if (scan_time > es_stats->es_stats_max_scan_time)
1042 		es_stats->es_stats_max_scan_time = scan_time;
1043 	if (likely(es_stats->es_stats_shrunk))
1044 		es_stats->es_stats_shrunk = (nr_shrunk +
1045 				es_stats->es_stats_shrunk*3) / 4;
1046 	else
1047 		es_stats->es_stats_shrunk = nr_shrunk;
1048 
1049 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1050 			     nr_skipped, retried);
1051 	return nr_shrunk;
1052 }
1053 
1054 static unsigned long ext4_es_count(struct shrinker *shrink,
1055 				   struct shrink_control *sc)
1056 {
1057 	unsigned long nr;
1058 	struct ext4_sb_info *sbi;
1059 
1060 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1061 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1062 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1063 	return nr;
1064 }
1065 
1066 static unsigned long ext4_es_scan(struct shrinker *shrink,
1067 				  struct shrink_control *sc)
1068 {
1069 	struct ext4_sb_info *sbi = container_of(shrink,
1070 					struct ext4_sb_info, s_es_shrinker);
1071 	int nr_to_scan = sc->nr_to_scan;
1072 	int ret, nr_shrunk;
1073 
1074 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1075 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1076 
1077 	if (!nr_to_scan)
1078 		return ret;
1079 
1080 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1081 
1082 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1083 	return nr_shrunk;
1084 }
1085 
1086 static void *ext4_es_seq_shrinker_info_start(struct seq_file *seq, loff_t *pos)
1087 {
1088 	return *pos ? NULL : SEQ_START_TOKEN;
1089 }
1090 
1091 static void *
1092 ext4_es_seq_shrinker_info_next(struct seq_file *seq, void *v, loff_t *pos)
1093 {
1094 	return NULL;
1095 }
1096 
1097 static int ext4_es_seq_shrinker_info_show(struct seq_file *seq, void *v)
1098 {
1099 	struct ext4_sb_info *sbi = seq->private;
1100 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1101 	struct ext4_inode_info *ei, *max = NULL;
1102 	unsigned int inode_cnt = 0;
1103 
1104 	if (v != SEQ_START_TOKEN)
1105 		return 0;
1106 
1107 	/* here we just find an inode that has the max nr. of objects */
1108 	spin_lock(&sbi->s_es_lock);
1109 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1110 		inode_cnt++;
1111 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1112 			max = ei;
1113 		else if (!max)
1114 			max = ei;
1115 	}
1116 	spin_unlock(&sbi->s_es_lock);
1117 
1118 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1119 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1120 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1121 	seq_printf(seq, "  %lu/%lu cache hits/misses\n",
1122 		   es_stats->es_stats_cache_hits,
1123 		   es_stats->es_stats_cache_misses);
1124 	if (inode_cnt)
1125 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1126 
1127 	seq_printf(seq, "average:\n  %llu us scan time\n",
1128 	    div_u64(es_stats->es_stats_scan_time, 1000));
1129 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1130 	if (inode_cnt)
1131 		seq_printf(seq,
1132 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1133 		    "  %llu us max scan time\n",
1134 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1135 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1136 
1137 	return 0;
1138 }
1139 
1140 static void ext4_es_seq_shrinker_info_stop(struct seq_file *seq, void *v)
1141 {
1142 }
1143 
1144 static const struct seq_operations ext4_es_seq_shrinker_info_ops = {
1145 	.start = ext4_es_seq_shrinker_info_start,
1146 	.next  = ext4_es_seq_shrinker_info_next,
1147 	.stop  = ext4_es_seq_shrinker_info_stop,
1148 	.show  = ext4_es_seq_shrinker_info_show,
1149 };
1150 
1151 static int
1152 ext4_es_seq_shrinker_info_open(struct inode *inode, struct file *file)
1153 {
1154 	int ret;
1155 
1156 	ret = seq_open(file, &ext4_es_seq_shrinker_info_ops);
1157 	if (!ret) {
1158 		struct seq_file *m = file->private_data;
1159 		m->private = PDE_DATA(inode);
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 static int
1166 ext4_es_seq_shrinker_info_release(struct inode *inode, struct file *file)
1167 {
1168 	return seq_release(inode, file);
1169 }
1170 
1171 static const struct file_operations ext4_es_seq_shrinker_info_fops = {
1172 	.owner		= THIS_MODULE,
1173 	.open		= ext4_es_seq_shrinker_info_open,
1174 	.read		= seq_read,
1175 	.llseek		= seq_lseek,
1176 	.release	= ext4_es_seq_shrinker_info_release,
1177 };
1178 
1179 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1180 {
1181 	int err;
1182 
1183 	/* Make sure we have enough bits for physical block number */
1184 	BUILD_BUG_ON(ES_SHIFT < 48);
1185 	INIT_LIST_HEAD(&sbi->s_es_list);
1186 	sbi->s_es_nr_inode = 0;
1187 	spin_lock_init(&sbi->s_es_lock);
1188 	sbi->s_es_stats.es_stats_shrunk = 0;
1189 	sbi->s_es_stats.es_stats_cache_hits = 0;
1190 	sbi->s_es_stats.es_stats_cache_misses = 0;
1191 	sbi->s_es_stats.es_stats_scan_time = 0;
1192 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1193 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1194 	if (err)
1195 		return err;
1196 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1197 	if (err)
1198 		goto err1;
1199 
1200 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1201 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1202 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1203 	err = register_shrinker(&sbi->s_es_shrinker);
1204 	if (err)
1205 		goto err2;
1206 
1207 	if (sbi->s_proc)
1208 		proc_create_data("es_shrinker_info", S_IRUGO, sbi->s_proc,
1209 				 &ext4_es_seq_shrinker_info_fops, sbi);
1210 
1211 	return 0;
1212 
1213 err2:
1214 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1215 err1:
1216 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1217 	return err;
1218 }
1219 
1220 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1221 {
1222 	if (sbi->s_proc)
1223 		remove_proc_entry("es_shrinker_info", sbi->s_proc);
1224 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1225 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1226 	unregister_shrinker(&sbi->s_es_shrinker);
1227 }
1228 
1229 /*
1230  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1231  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1232  *
1233  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1234  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1235  * ei->i_es_shrink_lblk to where we should continue scanning.
1236  */
1237 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1238 				 int *nr_to_scan, int *nr_shrunk)
1239 {
1240 	struct inode *inode = &ei->vfs_inode;
1241 	struct ext4_es_tree *tree = &ei->i_es_tree;
1242 	struct extent_status *es;
1243 	struct rb_node *node;
1244 
1245 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1246 	if (!es)
1247 		goto out_wrap;
1248 	node = &es->rb_node;
1249 	while (*nr_to_scan > 0) {
1250 		if (es->es_lblk > end) {
1251 			ei->i_es_shrink_lblk = end + 1;
1252 			return 0;
1253 		}
1254 
1255 		(*nr_to_scan)--;
1256 		node = rb_next(&es->rb_node);
1257 		/*
1258 		 * We can't reclaim delayed extent from status tree because
1259 		 * fiemap, bigallic, and seek_data/hole need to use it.
1260 		 */
1261 		if (ext4_es_is_delayed(es))
1262 			goto next;
1263 		if (ext4_es_is_referenced(es)) {
1264 			ext4_es_clear_referenced(es);
1265 			goto next;
1266 		}
1267 
1268 		rb_erase(&es->rb_node, &tree->root);
1269 		ext4_es_free_extent(inode, es);
1270 		(*nr_shrunk)++;
1271 next:
1272 		if (!node)
1273 			goto out_wrap;
1274 		es = rb_entry(node, struct extent_status, rb_node);
1275 	}
1276 	ei->i_es_shrink_lblk = es->es_lblk;
1277 	return 1;
1278 out_wrap:
1279 	ei->i_es_shrink_lblk = 0;
1280 	return 0;
1281 }
1282 
1283 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1284 {
1285 	struct inode *inode = &ei->vfs_inode;
1286 	int nr_shrunk = 0;
1287 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1288 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1289 				      DEFAULT_RATELIMIT_BURST);
1290 
1291 	if (ei->i_es_shk_nr == 0)
1292 		return 0;
1293 
1294 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1295 	    __ratelimit(&_rs))
1296 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1297 
1298 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1299 	    start != 0)
1300 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1301 
1302 	ei->i_es_tree.cache_es = NULL;
1303 	return nr_shrunk;
1304 }
1305