xref: /linux/fs/ext4/extents_status.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			    ext4_lblk_t len,
157 			    struct pending_reservation **prealloc);
158 
159 int __init ext4_init_es(void)
160 {
161 	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
162 	if (ext4_es_cachep == NULL)
163 		return -ENOMEM;
164 	return 0;
165 }
166 
167 void ext4_exit_es(void)
168 {
169 	kmem_cache_destroy(ext4_es_cachep);
170 }
171 
172 void ext4_es_init_tree(struct ext4_es_tree *tree)
173 {
174 	tree->root = RB_ROOT;
175 	tree->cache_es = NULL;
176 }
177 
178 #ifdef ES_DEBUG__
179 static void ext4_es_print_tree(struct inode *inode)
180 {
181 	struct ext4_es_tree *tree;
182 	struct rb_node *node;
183 
184 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
185 	tree = &EXT4_I(inode)->i_es_tree;
186 	node = rb_first(&tree->root);
187 	while (node) {
188 		struct extent_status *es;
189 		es = rb_entry(node, struct extent_status, rb_node);
190 		printk(KERN_DEBUG " [%u/%u) %llu %x",
191 		       es->es_lblk, es->es_len,
192 		       ext4_es_pblock(es), ext4_es_status(es));
193 		node = rb_next(node);
194 	}
195 	printk(KERN_DEBUG "\n");
196 }
197 #else
198 #define ext4_es_print_tree(inode)
199 #endif
200 
201 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
202 {
203 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
204 	return es->es_lblk + es->es_len - 1;
205 }
206 
207 /*
208  * search through the tree for an delayed extent with a given offset.  If
209  * it can't be found, try to find next extent.
210  */
211 static struct extent_status *__es_tree_search(struct rb_root *root,
212 					      ext4_lblk_t lblk)
213 {
214 	struct rb_node *node = root->rb_node;
215 	struct extent_status *es = NULL;
216 
217 	while (node) {
218 		es = rb_entry(node, struct extent_status, rb_node);
219 		if (lblk < es->es_lblk)
220 			node = node->rb_left;
221 		else if (lblk > ext4_es_end(es))
222 			node = node->rb_right;
223 		else
224 			return es;
225 	}
226 
227 	if (es && lblk < es->es_lblk)
228 		return es;
229 
230 	if (es && lblk > ext4_es_end(es)) {
231 		node = rb_next(&es->rb_node);
232 		return node ? rb_entry(node, struct extent_status, rb_node) :
233 			      NULL;
234 	}
235 
236 	return NULL;
237 }
238 
239 /*
240  * ext4_es_find_extent_range - find extent with specified status within block
241  *                             range or next extent following block range in
242  *                             extents status tree
243  *
244  * @inode - file containing the range
245  * @matching_fn - pointer to function that matches extents with desired status
246  * @lblk - logical block defining start of range
247  * @end - logical block defining end of range
248  * @es - extent found, if any
249  *
250  * Find the first extent within the block range specified by @lblk and @end
251  * in the extents status tree that satisfies @matching_fn.  If a match
252  * is found, it's returned in @es.  If not, and a matching extent is found
253  * beyond the block range, it's returned in @es.  If no match is found, an
254  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
255  * are 0.
256  */
257 static void __es_find_extent_range(struct inode *inode,
258 				   int (*matching_fn)(struct extent_status *es),
259 				   ext4_lblk_t lblk, ext4_lblk_t end,
260 				   struct extent_status *es)
261 {
262 	struct ext4_es_tree *tree = NULL;
263 	struct extent_status *es1 = NULL;
264 	struct rb_node *node;
265 
266 	WARN_ON(es == NULL);
267 	WARN_ON(end < lblk);
268 
269 	tree = &EXT4_I(inode)->i_es_tree;
270 
271 	/* see if the extent has been cached */
272 	es->es_lblk = es->es_len = es->es_pblk = 0;
273 	es1 = READ_ONCE(tree->cache_es);
274 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
275 		es_debug("%u cached by [%u/%u) %llu %x\n",
276 			 lblk, es1->es_lblk, es1->es_len,
277 			 ext4_es_pblock(es1), ext4_es_status(es1));
278 		goto out;
279 	}
280 
281 	es1 = __es_tree_search(&tree->root, lblk);
282 
283 out:
284 	if (es1 && !matching_fn(es1)) {
285 		while ((node = rb_next(&es1->rb_node)) != NULL) {
286 			es1 = rb_entry(node, struct extent_status, rb_node);
287 			if (es1->es_lblk > end) {
288 				es1 = NULL;
289 				break;
290 			}
291 			if (matching_fn(es1))
292 				break;
293 		}
294 	}
295 
296 	if (es1 && matching_fn(es1)) {
297 		WRITE_ONCE(tree->cache_es, es1);
298 		es->es_lblk = es1->es_lblk;
299 		es->es_len = es1->es_len;
300 		es->es_pblk = es1->es_pblk;
301 	}
302 
303 }
304 
305 /*
306  * Locking for __es_find_extent_range() for external use
307  */
308 void ext4_es_find_extent_range(struct inode *inode,
309 			       int (*matching_fn)(struct extent_status *es),
310 			       ext4_lblk_t lblk, ext4_lblk_t end,
311 			       struct extent_status *es)
312 {
313 	es->es_lblk = es->es_len = es->es_pblk = 0;
314 
315 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
316 		return;
317 
318 	trace_ext4_es_find_extent_range_enter(inode, lblk);
319 
320 	read_lock(&EXT4_I(inode)->i_es_lock);
321 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
322 	read_unlock(&EXT4_I(inode)->i_es_lock);
323 
324 	trace_ext4_es_find_extent_range_exit(inode, es);
325 }
326 
327 /*
328  * __es_scan_range - search block range for block with specified status
329  *                   in extents status tree
330  *
331  * @inode - file containing the range
332  * @matching_fn - pointer to function that matches extents with desired status
333  * @lblk - logical block defining start of range
334  * @end - logical block defining end of range
335  *
336  * Returns true if at least one block in the specified block range satisfies
337  * the criterion specified by @matching_fn, and false if not.  If at least
338  * one extent has the specified status, then there is at least one block
339  * in the cluster with that status.  Should only be called by code that has
340  * taken i_es_lock.
341  */
342 static bool __es_scan_range(struct inode *inode,
343 			    int (*matching_fn)(struct extent_status *es),
344 			    ext4_lblk_t start, ext4_lblk_t end)
345 {
346 	struct extent_status es;
347 
348 	__es_find_extent_range(inode, matching_fn, start, end, &es);
349 	if (es.es_len == 0)
350 		return false;   /* no matching extent in the tree */
351 	else if (es.es_lblk <= start &&
352 		 start < es.es_lblk + es.es_len)
353 		return true;
354 	else if (start <= es.es_lblk && es.es_lblk <= end)
355 		return true;
356 	else
357 		return false;
358 }
359 /*
360  * Locking for __es_scan_range() for external use
361  */
362 bool ext4_es_scan_range(struct inode *inode,
363 			int (*matching_fn)(struct extent_status *es),
364 			ext4_lblk_t lblk, ext4_lblk_t end)
365 {
366 	bool ret;
367 
368 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
369 		return false;
370 
371 	read_lock(&EXT4_I(inode)->i_es_lock);
372 	ret = __es_scan_range(inode, matching_fn, lblk, end);
373 	read_unlock(&EXT4_I(inode)->i_es_lock);
374 
375 	return ret;
376 }
377 
378 /*
379  * __es_scan_clu - search cluster for block with specified status in
380  *                 extents status tree
381  *
382  * @inode - file containing the cluster
383  * @matching_fn - pointer to function that matches extents with desired status
384  * @lblk - logical block in cluster to be searched
385  *
386  * Returns true if at least one extent in the cluster containing @lblk
387  * satisfies the criterion specified by @matching_fn, and false if not.  If at
388  * least one extent has the specified status, then there is at least one block
389  * in the cluster with that status.  Should only be called by code that has
390  * taken i_es_lock.
391  */
392 static bool __es_scan_clu(struct inode *inode,
393 			  int (*matching_fn)(struct extent_status *es),
394 			  ext4_lblk_t lblk)
395 {
396 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
397 	ext4_lblk_t lblk_start, lblk_end;
398 
399 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
400 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
401 
402 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
403 }
404 
405 /*
406  * Locking for __es_scan_clu() for external use
407  */
408 bool ext4_es_scan_clu(struct inode *inode,
409 		      int (*matching_fn)(struct extent_status *es),
410 		      ext4_lblk_t lblk)
411 {
412 	bool ret;
413 
414 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
415 		return false;
416 
417 	read_lock(&EXT4_I(inode)->i_es_lock);
418 	ret = __es_scan_clu(inode, matching_fn, lblk);
419 	read_unlock(&EXT4_I(inode)->i_es_lock);
420 
421 	return ret;
422 }
423 
424 static void ext4_es_list_add(struct inode *inode)
425 {
426 	struct ext4_inode_info *ei = EXT4_I(inode);
427 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
428 
429 	if (!list_empty(&ei->i_es_list))
430 		return;
431 
432 	spin_lock(&sbi->s_es_lock);
433 	if (list_empty(&ei->i_es_list)) {
434 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
435 		sbi->s_es_nr_inode++;
436 	}
437 	spin_unlock(&sbi->s_es_lock);
438 }
439 
440 static void ext4_es_list_del(struct inode *inode)
441 {
442 	struct ext4_inode_info *ei = EXT4_I(inode);
443 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
444 
445 	spin_lock(&sbi->s_es_lock);
446 	if (!list_empty(&ei->i_es_list)) {
447 		list_del_init(&ei->i_es_list);
448 		sbi->s_es_nr_inode--;
449 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
450 	}
451 	spin_unlock(&sbi->s_es_lock);
452 }
453 
454 static inline struct pending_reservation *__alloc_pending(bool nofail)
455 {
456 	if (!nofail)
457 		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
458 
459 	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
460 }
461 
462 static inline void __free_pending(struct pending_reservation *pr)
463 {
464 	kmem_cache_free(ext4_pending_cachep, pr);
465 }
466 
467 /*
468  * Returns true if we cannot fail to allocate memory for this extent_status
469  * entry and cannot reclaim it until its status changes.
470  */
471 static inline bool ext4_es_must_keep(struct extent_status *es)
472 {
473 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
474 	if (ext4_es_is_delayed(es))
475 		return true;
476 
477 	return false;
478 }
479 
480 static inline struct extent_status *__es_alloc_extent(bool nofail)
481 {
482 	if (!nofail)
483 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
484 
485 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
486 }
487 
488 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
489 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
490 {
491 	es->es_lblk = lblk;
492 	es->es_len = len;
493 	es->es_pblk = pblk;
494 
495 	/* We never try to reclaim a must kept extent, so we don't count it. */
496 	if (!ext4_es_must_keep(es)) {
497 		if (!EXT4_I(inode)->i_es_shk_nr++)
498 			ext4_es_list_add(inode);
499 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
500 					s_es_stats.es_stats_shk_cnt);
501 	}
502 
503 	EXT4_I(inode)->i_es_all_nr++;
504 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
505 }
506 
507 static inline void __es_free_extent(struct extent_status *es)
508 {
509 	kmem_cache_free(ext4_es_cachep, es);
510 }
511 
512 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
513 {
514 	EXT4_I(inode)->i_es_all_nr--;
515 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
516 
517 	/* Decrease the shrink counter when we can reclaim the extent. */
518 	if (!ext4_es_must_keep(es)) {
519 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
520 		if (!--EXT4_I(inode)->i_es_shk_nr)
521 			ext4_es_list_del(inode);
522 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
523 					s_es_stats.es_stats_shk_cnt);
524 	}
525 
526 	__es_free_extent(es);
527 }
528 
529 /*
530  * Check whether or not two extents can be merged
531  * Condition:
532  *  - logical block number is contiguous
533  *  - physical block number is contiguous
534  *  - status is equal
535  */
536 static int ext4_es_can_be_merged(struct extent_status *es1,
537 				 struct extent_status *es2)
538 {
539 	if (ext4_es_type(es1) != ext4_es_type(es2))
540 		return 0;
541 
542 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
543 		pr_warn("ES assertion failed when merging extents. "
544 			"The sum of lengths of es1 (%d) and es2 (%d) "
545 			"is bigger than allowed file size (%d)\n",
546 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
547 		WARN_ON(1);
548 		return 0;
549 	}
550 
551 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
552 		return 0;
553 
554 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
555 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
556 		return 1;
557 
558 	if (ext4_es_is_hole(es1))
559 		return 1;
560 
561 	/* we need to check delayed extent */
562 	if (ext4_es_is_delayed(es1))
563 		return 1;
564 
565 	return 0;
566 }
567 
568 static struct extent_status *
569 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
570 {
571 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
572 	struct extent_status *es1;
573 	struct rb_node *node;
574 
575 	node = rb_prev(&es->rb_node);
576 	if (!node)
577 		return es;
578 
579 	es1 = rb_entry(node, struct extent_status, rb_node);
580 	if (ext4_es_can_be_merged(es1, es)) {
581 		es1->es_len += es->es_len;
582 		if (ext4_es_is_referenced(es))
583 			ext4_es_set_referenced(es1);
584 		rb_erase(&es->rb_node, &tree->root);
585 		ext4_es_free_extent(inode, es);
586 		es = es1;
587 	}
588 
589 	return es;
590 }
591 
592 static struct extent_status *
593 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
594 {
595 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
596 	struct extent_status *es1;
597 	struct rb_node *node;
598 
599 	node = rb_next(&es->rb_node);
600 	if (!node)
601 		return es;
602 
603 	es1 = rb_entry(node, struct extent_status, rb_node);
604 	if (ext4_es_can_be_merged(es, es1)) {
605 		es->es_len += es1->es_len;
606 		if (ext4_es_is_referenced(es1))
607 			ext4_es_set_referenced(es);
608 		rb_erase(node, &tree->root);
609 		ext4_es_free_extent(inode, es1);
610 	}
611 
612 	return es;
613 }
614 
615 #ifdef ES_AGGRESSIVE_TEST
616 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
617 
618 static void ext4_es_insert_extent_ext_check(struct inode *inode,
619 					    struct extent_status *es)
620 {
621 	struct ext4_ext_path *path = NULL;
622 	struct ext4_extent *ex;
623 	ext4_lblk_t ee_block;
624 	ext4_fsblk_t ee_start;
625 	unsigned short ee_len;
626 	int depth, ee_status, es_status;
627 
628 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
629 	if (IS_ERR(path))
630 		return;
631 
632 	depth = ext_depth(inode);
633 	ex = path[depth].p_ext;
634 
635 	if (ex) {
636 
637 		ee_block = le32_to_cpu(ex->ee_block);
638 		ee_start = ext4_ext_pblock(ex);
639 		ee_len = ext4_ext_get_actual_len(ex);
640 
641 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
642 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
643 
644 		/*
645 		 * Make sure ex and es are not overlap when we try to insert
646 		 * a delayed/hole extent.
647 		 */
648 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
649 			if (in_range(es->es_lblk, ee_block, ee_len)) {
650 				pr_warn("ES insert assertion failed for "
651 					"inode: %lu we can find an extent "
652 					"at block [%d/%d/%llu/%c], but we "
653 					"want to add a delayed/hole extent "
654 					"[%d/%d/%llu/%x]\n",
655 					inode->i_ino, ee_block, ee_len,
656 					ee_start, ee_status ? 'u' : 'w',
657 					es->es_lblk, es->es_len,
658 					ext4_es_pblock(es), ext4_es_status(es));
659 			}
660 			goto out;
661 		}
662 
663 		/*
664 		 * We don't check ee_block == es->es_lblk, etc. because es
665 		 * might be a part of whole extent, vice versa.
666 		 */
667 		if (es->es_lblk < ee_block ||
668 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
669 			pr_warn("ES insert assertion failed for inode: %lu "
670 				"ex_status [%d/%d/%llu/%c] != "
671 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
672 				ee_block, ee_len, ee_start,
673 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
674 				ext4_es_pblock(es), es_status ? 'u' : 'w');
675 			goto out;
676 		}
677 
678 		if (ee_status ^ es_status) {
679 			pr_warn("ES insert assertion failed for inode: %lu "
680 				"ex_status [%d/%d/%llu/%c] != "
681 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
682 				ee_block, ee_len, ee_start,
683 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
684 				ext4_es_pblock(es), es_status ? 'u' : 'w');
685 		}
686 	} else {
687 		/*
688 		 * We can't find an extent on disk.  So we need to make sure
689 		 * that we don't want to add an written/unwritten extent.
690 		 */
691 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
692 			pr_warn("ES insert assertion failed for inode: %lu "
693 				"can't find an extent at block %d but we want "
694 				"to add a written/unwritten extent "
695 				"[%d/%d/%llu/%x]\n", inode->i_ino,
696 				es->es_lblk, es->es_lblk, es->es_len,
697 				ext4_es_pblock(es), ext4_es_status(es));
698 		}
699 	}
700 out:
701 	ext4_free_ext_path(path);
702 }
703 
704 static void ext4_es_insert_extent_ind_check(struct inode *inode,
705 					    struct extent_status *es)
706 {
707 	struct ext4_map_blocks map;
708 	int retval;
709 
710 	/*
711 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
712 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
713 	 * access direct/indirect tree from outside.  It is too dirty to define
714 	 * this function in indirect.c file.
715 	 */
716 
717 	map.m_lblk = es->es_lblk;
718 	map.m_len = es->es_len;
719 
720 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
721 	if (retval > 0) {
722 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
723 			/*
724 			 * We want to add a delayed/hole extent but this
725 			 * block has been allocated.
726 			 */
727 			pr_warn("ES insert assertion failed for inode: %lu "
728 				"We can find blocks but we want to add a "
729 				"delayed/hole extent [%d/%d/%llu/%x]\n",
730 				inode->i_ino, es->es_lblk, es->es_len,
731 				ext4_es_pblock(es), ext4_es_status(es));
732 			return;
733 		} else if (ext4_es_is_written(es)) {
734 			if (retval != es->es_len) {
735 				pr_warn("ES insert assertion failed for "
736 					"inode: %lu retval %d != es_len %d\n",
737 					inode->i_ino, retval, es->es_len);
738 				return;
739 			}
740 			if (map.m_pblk != ext4_es_pblock(es)) {
741 				pr_warn("ES insert assertion failed for "
742 					"inode: %lu m_pblk %llu != "
743 					"es_pblk %llu\n",
744 					inode->i_ino, map.m_pblk,
745 					ext4_es_pblock(es));
746 				return;
747 			}
748 		} else {
749 			/*
750 			 * We don't need to check unwritten extent because
751 			 * indirect-based file doesn't have it.
752 			 */
753 			BUG();
754 		}
755 	} else if (retval == 0) {
756 		if (ext4_es_is_written(es)) {
757 			pr_warn("ES insert assertion failed for inode: %lu "
758 				"We can't find the block but we want to add "
759 				"a written extent [%d/%d/%llu/%x]\n",
760 				inode->i_ino, es->es_lblk, es->es_len,
761 				ext4_es_pblock(es), ext4_es_status(es));
762 			return;
763 		}
764 	}
765 }
766 
767 static inline void ext4_es_insert_extent_check(struct inode *inode,
768 					       struct extent_status *es)
769 {
770 	/*
771 	 * We don't need to worry about the race condition because
772 	 * caller takes i_data_sem locking.
773 	 */
774 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
775 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
776 		ext4_es_insert_extent_ext_check(inode, es);
777 	else
778 		ext4_es_insert_extent_ind_check(inode, es);
779 }
780 #else
781 static inline void ext4_es_insert_extent_check(struct inode *inode,
782 					       struct extent_status *es)
783 {
784 }
785 #endif
786 
787 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
788 			      struct extent_status *prealloc)
789 {
790 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
791 	struct rb_node **p = &tree->root.rb_node;
792 	struct rb_node *parent = NULL;
793 	struct extent_status *es;
794 
795 	while (*p) {
796 		parent = *p;
797 		es = rb_entry(parent, struct extent_status, rb_node);
798 
799 		if (newes->es_lblk < es->es_lblk) {
800 			if (ext4_es_can_be_merged(newes, es)) {
801 				/*
802 				 * Here we can modify es_lblk directly
803 				 * because it isn't overlapped.
804 				 */
805 				es->es_lblk = newes->es_lblk;
806 				es->es_len += newes->es_len;
807 				if (ext4_es_is_written(es) ||
808 				    ext4_es_is_unwritten(es))
809 					ext4_es_store_pblock(es,
810 							     newes->es_pblk);
811 				es = ext4_es_try_to_merge_left(inode, es);
812 				goto out;
813 			}
814 			p = &(*p)->rb_left;
815 		} else if (newes->es_lblk > ext4_es_end(es)) {
816 			if (ext4_es_can_be_merged(es, newes)) {
817 				es->es_len += newes->es_len;
818 				es = ext4_es_try_to_merge_right(inode, es);
819 				goto out;
820 			}
821 			p = &(*p)->rb_right;
822 		} else {
823 			BUG();
824 			return -EINVAL;
825 		}
826 	}
827 
828 	if (prealloc)
829 		es = prealloc;
830 	else
831 		es = __es_alloc_extent(false);
832 	if (!es)
833 		return -ENOMEM;
834 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
835 			    newes->es_pblk);
836 
837 	rb_link_node(&es->rb_node, parent, p);
838 	rb_insert_color(&es->rb_node, &tree->root);
839 
840 out:
841 	tree->cache_es = es;
842 	return 0;
843 }
844 
845 /*
846  * ext4_es_insert_extent() adds information to an inode's extent
847  * status tree.
848  */
849 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
850 			   ext4_lblk_t len, ext4_fsblk_t pblk,
851 			   unsigned int status, int flags)
852 {
853 	struct extent_status newes;
854 	ext4_lblk_t end = lblk + len - 1;
855 	int err1 = 0, err2 = 0, err3 = 0;
856 	int resv_used = 0, pending = 0;
857 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
858 	struct extent_status *es1 = NULL;
859 	struct extent_status *es2 = NULL;
860 	struct pending_reservation *pr = NULL;
861 	bool revise_pending = false;
862 
863 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
864 		return;
865 
866 	es_debug("add [%u/%u) %llu %x %x to extent status tree of inode %lu\n",
867 		 lblk, len, pblk, status, flags, inode->i_ino);
868 
869 	if (!len)
870 		return;
871 
872 	BUG_ON(end < lblk);
873 	WARN_ON_ONCE(status & EXTENT_STATUS_DELAYED);
874 
875 	newes.es_lblk = lblk;
876 	newes.es_len = len;
877 	ext4_es_store_pblock_status(&newes, pblk, status);
878 	trace_ext4_es_insert_extent(inode, &newes);
879 
880 	ext4_es_insert_extent_check(inode, &newes);
881 
882 	revise_pending = sbi->s_cluster_ratio > 1 &&
883 			 test_opt(inode->i_sb, DELALLOC) &&
884 			 (status & (EXTENT_STATUS_WRITTEN |
885 				    EXTENT_STATUS_UNWRITTEN));
886 retry:
887 	if (err1 && !es1)
888 		es1 = __es_alloc_extent(true);
889 	if ((err1 || err2) && !es2)
890 		es2 = __es_alloc_extent(true);
891 	if ((err1 || err2 || err3 < 0) && revise_pending && !pr)
892 		pr = __alloc_pending(true);
893 	write_lock(&EXT4_I(inode)->i_es_lock);
894 
895 	err1 = __es_remove_extent(inode, lblk, end, &resv_used, es1);
896 	if (err1 != 0)
897 		goto error;
898 	/* Free preallocated extent if it didn't get used. */
899 	if (es1) {
900 		if (!es1->es_len)
901 			__es_free_extent(es1);
902 		es1 = NULL;
903 	}
904 
905 	err2 = __es_insert_extent(inode, &newes, es2);
906 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
907 		err2 = 0;
908 	if (err2 != 0)
909 		goto error;
910 	/* Free preallocated extent if it didn't get used. */
911 	if (es2) {
912 		if (!es2->es_len)
913 			__es_free_extent(es2);
914 		es2 = NULL;
915 	}
916 
917 	if (revise_pending) {
918 		err3 = __revise_pending(inode, lblk, len, &pr);
919 		if (err3 < 0)
920 			goto error;
921 		if (pr) {
922 			__free_pending(pr);
923 			pr = NULL;
924 		}
925 		pending = err3;
926 	}
927 error:
928 	write_unlock(&EXT4_I(inode)->i_es_lock);
929 	/*
930 	 * Reduce the reserved cluster count to reflect successful deferred
931 	 * allocation of delayed allocated clusters or direct allocation of
932 	 * clusters discovered to be delayed allocated.  Once allocated, a
933 	 * cluster is not included in the reserved count.
934 	 *
935 	 * When direct allocating (from fallocate, filemap, DIO, or clusters
936 	 * allocated when delalloc has been disabled by ext4_nonda_switch())
937 	 * an extent either 1) contains delayed blocks but start with
938 	 * non-delayed allocated blocks (e.g. hole) or 2) contains non-delayed
939 	 * allocated blocks which belong to delayed allocated clusters when
940 	 * bigalloc feature is enabled, quota has already been claimed by
941 	 * ext4_mb_new_blocks(), so release the quota reservations made for
942 	 * any previously delayed allocated clusters instead of claim them
943 	 * again.
944 	 */
945 	resv_used += pending;
946 	if (resv_used)
947 		ext4_da_update_reserve_space(inode, resv_used,
948 				flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
949 
950 	if (err1 || err2 || err3 < 0)
951 		goto retry;
952 
953 	ext4_es_print_tree(inode);
954 	return;
955 }
956 
957 /*
958  * ext4_es_cache_extent() inserts information into the extent status
959  * tree if and only if there isn't information about the range in
960  * question already.
961  */
962 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
963 			  ext4_lblk_t len, ext4_fsblk_t pblk,
964 			  unsigned int status)
965 {
966 	struct extent_status *es;
967 	struct extent_status newes;
968 	ext4_lblk_t end = lblk + len - 1;
969 
970 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
971 		return;
972 
973 	newes.es_lblk = lblk;
974 	newes.es_len = len;
975 	ext4_es_store_pblock_status(&newes, pblk, status);
976 	trace_ext4_es_cache_extent(inode, &newes);
977 
978 	if (!len)
979 		return;
980 
981 	BUG_ON(end < lblk);
982 
983 	write_lock(&EXT4_I(inode)->i_es_lock);
984 
985 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
986 	if (!es || es->es_lblk > end)
987 		__es_insert_extent(inode, &newes, NULL);
988 	write_unlock(&EXT4_I(inode)->i_es_lock);
989 }
990 
991 /*
992  * ext4_es_lookup_extent() looks up an extent in extent status tree.
993  *
994  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
995  *
996  * Return: 1 on found, 0 on not
997  */
998 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
999 			  ext4_lblk_t *next_lblk,
1000 			  struct extent_status *es)
1001 {
1002 	struct ext4_es_tree *tree;
1003 	struct ext4_es_stats *stats;
1004 	struct extent_status *es1 = NULL;
1005 	struct rb_node *node;
1006 	int found = 0;
1007 
1008 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1009 		return 0;
1010 
1011 	trace_ext4_es_lookup_extent_enter(inode, lblk);
1012 	es_debug("lookup extent in block %u\n", lblk);
1013 
1014 	tree = &EXT4_I(inode)->i_es_tree;
1015 	read_lock(&EXT4_I(inode)->i_es_lock);
1016 
1017 	/* find extent in cache firstly */
1018 	es->es_lblk = es->es_len = es->es_pblk = 0;
1019 	es1 = READ_ONCE(tree->cache_es);
1020 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1021 		es_debug("%u cached by [%u/%u)\n",
1022 			 lblk, es1->es_lblk, es1->es_len);
1023 		found = 1;
1024 		goto out;
1025 	}
1026 
1027 	node = tree->root.rb_node;
1028 	while (node) {
1029 		es1 = rb_entry(node, struct extent_status, rb_node);
1030 		if (lblk < es1->es_lblk)
1031 			node = node->rb_left;
1032 		else if (lblk > ext4_es_end(es1))
1033 			node = node->rb_right;
1034 		else {
1035 			found = 1;
1036 			break;
1037 		}
1038 	}
1039 
1040 out:
1041 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1042 	if (found) {
1043 		BUG_ON(!es1);
1044 		es->es_lblk = es1->es_lblk;
1045 		es->es_len = es1->es_len;
1046 		es->es_pblk = es1->es_pblk;
1047 		if (!ext4_es_is_referenced(es1))
1048 			ext4_es_set_referenced(es1);
1049 		percpu_counter_inc(&stats->es_stats_cache_hits);
1050 		if (next_lblk) {
1051 			node = rb_next(&es1->rb_node);
1052 			if (node) {
1053 				es1 = rb_entry(node, struct extent_status,
1054 					       rb_node);
1055 				*next_lblk = es1->es_lblk;
1056 			} else
1057 				*next_lblk = 0;
1058 		}
1059 	} else {
1060 		percpu_counter_inc(&stats->es_stats_cache_misses);
1061 	}
1062 
1063 	read_unlock(&EXT4_I(inode)->i_es_lock);
1064 
1065 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1066 	return found;
1067 }
1068 
1069 struct rsvd_count {
1070 	int ndelayed;
1071 	bool first_do_lblk_found;
1072 	ext4_lblk_t first_do_lblk;
1073 	ext4_lblk_t last_do_lblk;
1074 	struct extent_status *left_es;
1075 	bool partial;
1076 	ext4_lblk_t lclu;
1077 };
1078 
1079 /*
1080  * init_rsvd - initialize reserved count data before removing block range
1081  *	       in file from extent status tree
1082  *
1083  * @inode - file containing range
1084  * @lblk - first block in range
1085  * @es - pointer to first extent in range
1086  * @rc - pointer to reserved count data
1087  *
1088  * Assumes es is not NULL
1089  */
1090 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1091 		      struct extent_status *es, struct rsvd_count *rc)
1092 {
1093 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094 	struct rb_node *node;
1095 
1096 	rc->ndelayed = 0;
1097 
1098 	/*
1099 	 * for bigalloc, note the first delayed block in the range has not
1100 	 * been found, record the extent containing the block to the left of
1101 	 * the region to be removed, if any, and note that there's no partial
1102 	 * cluster to track
1103 	 */
1104 	if (sbi->s_cluster_ratio > 1) {
1105 		rc->first_do_lblk_found = false;
1106 		if (lblk > es->es_lblk) {
1107 			rc->left_es = es;
1108 		} else {
1109 			node = rb_prev(&es->rb_node);
1110 			rc->left_es = node ? rb_entry(node,
1111 						      struct extent_status,
1112 						      rb_node) : NULL;
1113 		}
1114 		rc->partial = false;
1115 	}
1116 }
1117 
1118 /*
1119  * count_rsvd - count the clusters containing delayed blocks in a range
1120  *	        within an extent and add to the running tally in rsvd_count
1121  *
1122  * @inode - file containing extent
1123  * @lblk - first block in range
1124  * @len - length of range in blocks
1125  * @es - pointer to extent containing clusters to be counted
1126  * @rc - pointer to reserved count data
1127  *
1128  * Tracks partial clusters found at the beginning and end of extents so
1129  * they aren't overcounted when they span adjacent extents
1130  */
1131 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1132 		       struct extent_status *es, struct rsvd_count *rc)
1133 {
1134 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1135 	ext4_lblk_t i, end, nclu;
1136 
1137 	if (!ext4_es_is_delayed(es))
1138 		return;
1139 
1140 	WARN_ON(len <= 0);
1141 
1142 	if (sbi->s_cluster_ratio == 1) {
1143 		rc->ndelayed += (int) len;
1144 		return;
1145 	}
1146 
1147 	/* bigalloc */
1148 
1149 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1150 	end = lblk + (ext4_lblk_t) len - 1;
1151 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1152 
1153 	/* record the first block of the first delayed extent seen */
1154 	if (!rc->first_do_lblk_found) {
1155 		rc->first_do_lblk = i;
1156 		rc->first_do_lblk_found = true;
1157 	}
1158 
1159 	/* update the last lblk in the region seen so far */
1160 	rc->last_do_lblk = end;
1161 
1162 	/*
1163 	 * if we're tracking a partial cluster and the current extent
1164 	 * doesn't start with it, count it and stop tracking
1165 	 */
1166 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1167 		rc->ndelayed++;
1168 		rc->partial = false;
1169 	}
1170 
1171 	/*
1172 	 * if the first cluster doesn't start on a cluster boundary but
1173 	 * ends on one, count it
1174 	 */
1175 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1176 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1177 			rc->ndelayed++;
1178 			rc->partial = false;
1179 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * if the current cluster starts on a cluster boundary, count the
1185 	 * number of whole delayed clusters in the extent
1186 	 */
1187 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1188 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1189 		rc->ndelayed += nclu;
1190 		i += nclu << sbi->s_cluster_bits;
1191 	}
1192 
1193 	/*
1194 	 * start tracking a partial cluster if there's a partial at the end
1195 	 * of the current extent and we're not already tracking one
1196 	 */
1197 	if (!rc->partial && i <= end) {
1198 		rc->partial = true;
1199 		rc->lclu = EXT4_B2C(sbi, i);
1200 	}
1201 }
1202 
1203 /*
1204  * __pr_tree_search - search for a pending cluster reservation
1205  *
1206  * @root - root of pending reservation tree
1207  * @lclu - logical cluster to search for
1208  *
1209  * Returns the pending reservation for the cluster identified by @lclu
1210  * if found.  If not, returns a reservation for the next cluster if any,
1211  * and if not, returns NULL.
1212  */
1213 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1214 						    ext4_lblk_t lclu)
1215 {
1216 	struct rb_node *node = root->rb_node;
1217 	struct pending_reservation *pr = NULL;
1218 
1219 	while (node) {
1220 		pr = rb_entry(node, struct pending_reservation, rb_node);
1221 		if (lclu < pr->lclu)
1222 			node = node->rb_left;
1223 		else if (lclu > pr->lclu)
1224 			node = node->rb_right;
1225 		else
1226 			return pr;
1227 	}
1228 	if (pr && lclu < pr->lclu)
1229 		return pr;
1230 	if (pr && lclu > pr->lclu) {
1231 		node = rb_next(&pr->rb_node);
1232 		return node ? rb_entry(node, struct pending_reservation,
1233 				       rb_node) : NULL;
1234 	}
1235 	return NULL;
1236 }
1237 
1238 /*
1239  * get_rsvd - calculates and returns the number of cluster reservations to be
1240  *	      released when removing a block range from the extent status tree
1241  *	      and releases any pending reservations within the range
1242  *
1243  * @inode - file containing block range
1244  * @end - last block in range
1245  * @right_es - pointer to extent containing next block beyond end or NULL
1246  * @rc - pointer to reserved count data
1247  *
1248  * The number of reservations to be released is equal to the number of
1249  * clusters containing delayed blocks within the range, minus the number of
1250  * clusters still containing delayed blocks at the ends of the range, and
1251  * minus the number of pending reservations within the range.
1252  */
1253 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1254 			     struct extent_status *right_es,
1255 			     struct rsvd_count *rc)
1256 {
1257 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1258 	struct pending_reservation *pr;
1259 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1260 	struct rb_node *node;
1261 	ext4_lblk_t first_lclu, last_lclu;
1262 	bool left_delayed, right_delayed, count_pending;
1263 	struct extent_status *es;
1264 
1265 	if (sbi->s_cluster_ratio > 1) {
1266 		/* count any remaining partial cluster */
1267 		if (rc->partial)
1268 			rc->ndelayed++;
1269 
1270 		if (rc->ndelayed == 0)
1271 			return 0;
1272 
1273 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1274 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1275 
1276 		/*
1277 		 * decrease the delayed count by the number of clusters at the
1278 		 * ends of the range that still contain delayed blocks -
1279 		 * these clusters still need to be reserved
1280 		 */
1281 		left_delayed = right_delayed = false;
1282 
1283 		es = rc->left_es;
1284 		while (es && ext4_es_end(es) >=
1285 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1286 			if (ext4_es_is_delayed(es)) {
1287 				rc->ndelayed--;
1288 				left_delayed = true;
1289 				break;
1290 			}
1291 			node = rb_prev(&es->rb_node);
1292 			if (!node)
1293 				break;
1294 			es = rb_entry(node, struct extent_status, rb_node);
1295 		}
1296 		if (right_es && (!left_delayed || first_lclu != last_lclu)) {
1297 			if (end < ext4_es_end(right_es)) {
1298 				es = right_es;
1299 			} else {
1300 				node = rb_next(&right_es->rb_node);
1301 				es = node ? rb_entry(node, struct extent_status,
1302 						     rb_node) : NULL;
1303 			}
1304 			while (es && es->es_lblk <=
1305 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1306 				if (ext4_es_is_delayed(es)) {
1307 					rc->ndelayed--;
1308 					right_delayed = true;
1309 					break;
1310 				}
1311 				node = rb_next(&es->rb_node);
1312 				if (!node)
1313 					break;
1314 				es = rb_entry(node, struct extent_status,
1315 					      rb_node);
1316 			}
1317 		}
1318 
1319 		/*
1320 		 * Determine the block range that should be searched for
1321 		 * pending reservations, if any.  Clusters on the ends of the
1322 		 * original removed range containing delayed blocks are
1323 		 * excluded.  They've already been accounted for and it's not
1324 		 * possible to determine if an associated pending reservation
1325 		 * should be released with the information available in the
1326 		 * extents status tree.
1327 		 */
1328 		if (first_lclu == last_lclu) {
1329 			if (left_delayed | right_delayed)
1330 				count_pending = false;
1331 			else
1332 				count_pending = true;
1333 		} else {
1334 			if (left_delayed)
1335 				first_lclu++;
1336 			if (right_delayed)
1337 				last_lclu--;
1338 			if (first_lclu <= last_lclu)
1339 				count_pending = true;
1340 			else
1341 				count_pending = false;
1342 		}
1343 
1344 		/*
1345 		 * a pending reservation found between first_lclu and last_lclu
1346 		 * represents an allocated cluster that contained at least one
1347 		 * delayed block, so the delayed total must be reduced by one
1348 		 * for each pending reservation found and released
1349 		 */
1350 		if (count_pending) {
1351 			pr = __pr_tree_search(&tree->root, first_lclu);
1352 			while (pr && pr->lclu <= last_lclu) {
1353 				rc->ndelayed--;
1354 				node = rb_next(&pr->rb_node);
1355 				rb_erase(&pr->rb_node, &tree->root);
1356 				__free_pending(pr);
1357 				if (!node)
1358 					break;
1359 				pr = rb_entry(node, struct pending_reservation,
1360 					      rb_node);
1361 			}
1362 		}
1363 	}
1364 	return rc->ndelayed;
1365 }
1366 
1367 
1368 /*
1369  * __es_remove_extent - removes block range from extent status tree
1370  *
1371  * @inode - file containing range
1372  * @lblk - first block in range
1373  * @end - last block in range
1374  * @reserved - number of cluster reservations released
1375  * @prealloc - pre-allocated es to avoid memory allocation failures
1376  *
1377  * If @reserved is not NULL and delayed allocation is enabled, counts
1378  * block/cluster reservations freed by removing range and if bigalloc
1379  * enabled cancels pending reservations as needed. Returns 0 on success,
1380  * error code on failure.
1381  */
1382 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1383 			      ext4_lblk_t end, int *reserved,
1384 			      struct extent_status *prealloc)
1385 {
1386 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1387 	struct rb_node *node;
1388 	struct extent_status *es;
1389 	struct extent_status orig_es;
1390 	ext4_lblk_t len1, len2;
1391 	ext4_fsblk_t block;
1392 	int err = 0;
1393 	bool count_reserved = true;
1394 	struct rsvd_count rc;
1395 
1396 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1397 		count_reserved = false;
1398 
1399 	es = __es_tree_search(&tree->root, lblk);
1400 	if (!es)
1401 		goto out;
1402 	if (es->es_lblk > end)
1403 		goto out;
1404 
1405 	/* Simply invalidate cache_es. */
1406 	tree->cache_es = NULL;
1407 	if (count_reserved)
1408 		init_rsvd(inode, lblk, es, &rc);
1409 
1410 	orig_es.es_lblk = es->es_lblk;
1411 	orig_es.es_len = es->es_len;
1412 	orig_es.es_pblk = es->es_pblk;
1413 
1414 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1415 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1416 	if (len1 > 0)
1417 		es->es_len = len1;
1418 	if (len2 > 0) {
1419 		if (len1 > 0) {
1420 			struct extent_status newes;
1421 
1422 			newes.es_lblk = end + 1;
1423 			newes.es_len = len2;
1424 			block = 0x7FDEADBEEFULL;
1425 			if (ext4_es_is_written(&orig_es) ||
1426 			    ext4_es_is_unwritten(&orig_es))
1427 				block = ext4_es_pblock(&orig_es) +
1428 					orig_es.es_len - len2;
1429 			ext4_es_store_pblock_status(&newes, block,
1430 						    ext4_es_status(&orig_es));
1431 			err = __es_insert_extent(inode, &newes, prealloc);
1432 			if (err) {
1433 				if (!ext4_es_must_keep(&newes))
1434 					return 0;
1435 
1436 				es->es_lblk = orig_es.es_lblk;
1437 				es->es_len = orig_es.es_len;
1438 				goto out;
1439 			}
1440 		} else {
1441 			es->es_lblk = end + 1;
1442 			es->es_len = len2;
1443 			if (ext4_es_is_written(es) ||
1444 			    ext4_es_is_unwritten(es)) {
1445 				block = orig_es.es_pblk + orig_es.es_len - len2;
1446 				ext4_es_store_pblock(es, block);
1447 			}
1448 		}
1449 		if (count_reserved)
1450 			count_rsvd(inode, orig_es.es_lblk + len1,
1451 				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1452 		goto out_get_reserved;
1453 	}
1454 
1455 	if (len1 > 0) {
1456 		if (count_reserved)
1457 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1458 				   &orig_es, &rc);
1459 		node = rb_next(&es->rb_node);
1460 		if (node)
1461 			es = rb_entry(node, struct extent_status, rb_node);
1462 		else
1463 			es = NULL;
1464 	}
1465 
1466 	while (es && ext4_es_end(es) <= end) {
1467 		if (count_reserved)
1468 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1469 		node = rb_next(&es->rb_node);
1470 		rb_erase(&es->rb_node, &tree->root);
1471 		ext4_es_free_extent(inode, es);
1472 		if (!node) {
1473 			es = NULL;
1474 			break;
1475 		}
1476 		es = rb_entry(node, struct extent_status, rb_node);
1477 	}
1478 
1479 	if (es && es->es_lblk < end + 1) {
1480 		ext4_lblk_t orig_len = es->es_len;
1481 
1482 		len1 = ext4_es_end(es) - end;
1483 		if (count_reserved)
1484 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1485 				   es, &rc);
1486 		es->es_lblk = end + 1;
1487 		es->es_len = len1;
1488 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1489 			block = es->es_pblk + orig_len - len1;
1490 			ext4_es_store_pblock(es, block);
1491 		}
1492 	}
1493 
1494 out_get_reserved:
1495 	if (count_reserved)
1496 		*reserved = get_rsvd(inode, end, es, &rc);
1497 out:
1498 	return err;
1499 }
1500 
1501 /*
1502  * ext4_es_remove_extent - removes block range from extent status tree
1503  *
1504  * @inode - file containing range
1505  * @lblk - first block in range
1506  * @len - number of blocks to remove
1507  *
1508  * Reduces block/cluster reservation count and for bigalloc cancels pending
1509  * reservations as needed.
1510  */
1511 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1512 			   ext4_lblk_t len)
1513 {
1514 	ext4_lblk_t end;
1515 	int err = 0;
1516 	int reserved = 0;
1517 	struct extent_status *es = NULL;
1518 
1519 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1520 		return;
1521 
1522 	trace_ext4_es_remove_extent(inode, lblk, len);
1523 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1524 		 lblk, len, inode->i_ino);
1525 
1526 	if (!len)
1527 		return;
1528 
1529 	end = lblk + len - 1;
1530 	BUG_ON(end < lblk);
1531 
1532 retry:
1533 	if (err && !es)
1534 		es = __es_alloc_extent(true);
1535 	/*
1536 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1537 	 * so that we are sure __es_shrink() is done with the inode before it
1538 	 * is reclaimed.
1539 	 */
1540 	write_lock(&EXT4_I(inode)->i_es_lock);
1541 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1542 	/* Free preallocated extent if it didn't get used. */
1543 	if (es) {
1544 		if (!es->es_len)
1545 			__es_free_extent(es);
1546 		es = NULL;
1547 	}
1548 	write_unlock(&EXT4_I(inode)->i_es_lock);
1549 	if (err)
1550 		goto retry;
1551 
1552 	ext4_es_print_tree(inode);
1553 	ext4_da_release_space(inode, reserved);
1554 	return;
1555 }
1556 
1557 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1558 		       struct ext4_inode_info *locked_ei)
1559 {
1560 	struct ext4_inode_info *ei;
1561 	struct ext4_es_stats *es_stats;
1562 	ktime_t start_time;
1563 	u64 scan_time;
1564 	int nr_to_walk;
1565 	int nr_shrunk = 0;
1566 	int retried = 0, nr_skipped = 0;
1567 
1568 	es_stats = &sbi->s_es_stats;
1569 	start_time = ktime_get();
1570 
1571 retry:
1572 	spin_lock(&sbi->s_es_lock);
1573 	nr_to_walk = sbi->s_es_nr_inode;
1574 	while (nr_to_walk-- > 0) {
1575 		if (list_empty(&sbi->s_es_list)) {
1576 			spin_unlock(&sbi->s_es_lock);
1577 			goto out;
1578 		}
1579 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1580 				      i_es_list);
1581 		/* Move the inode to the tail */
1582 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1583 
1584 		/*
1585 		 * Normally we try hard to avoid shrinking precached inodes,
1586 		 * but we will as a last resort.
1587 		 */
1588 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1589 						EXT4_STATE_EXT_PRECACHED)) {
1590 			nr_skipped++;
1591 			continue;
1592 		}
1593 
1594 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1595 			nr_skipped++;
1596 			continue;
1597 		}
1598 		/*
1599 		 * Now we hold i_es_lock which protects us from inode reclaim
1600 		 * freeing inode under us
1601 		 */
1602 		spin_unlock(&sbi->s_es_lock);
1603 
1604 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1605 		write_unlock(&ei->i_es_lock);
1606 
1607 		if (nr_to_scan <= 0)
1608 			goto out;
1609 		spin_lock(&sbi->s_es_lock);
1610 	}
1611 	spin_unlock(&sbi->s_es_lock);
1612 
1613 	/*
1614 	 * If we skipped any inodes, and we weren't able to make any
1615 	 * forward progress, try again to scan precached inodes.
1616 	 */
1617 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1618 		retried++;
1619 		goto retry;
1620 	}
1621 
1622 	if (locked_ei && nr_shrunk == 0)
1623 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1624 
1625 out:
1626 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1627 	if (likely(es_stats->es_stats_scan_time))
1628 		es_stats->es_stats_scan_time = (scan_time +
1629 				es_stats->es_stats_scan_time*3) / 4;
1630 	else
1631 		es_stats->es_stats_scan_time = scan_time;
1632 	if (scan_time > es_stats->es_stats_max_scan_time)
1633 		es_stats->es_stats_max_scan_time = scan_time;
1634 	if (likely(es_stats->es_stats_shrunk))
1635 		es_stats->es_stats_shrunk = (nr_shrunk +
1636 				es_stats->es_stats_shrunk*3) / 4;
1637 	else
1638 		es_stats->es_stats_shrunk = nr_shrunk;
1639 
1640 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1641 			     nr_skipped, retried);
1642 	return nr_shrunk;
1643 }
1644 
1645 static unsigned long ext4_es_count(struct shrinker *shrink,
1646 				   struct shrink_control *sc)
1647 {
1648 	unsigned long nr;
1649 	struct ext4_sb_info *sbi;
1650 
1651 	sbi = shrink->private_data;
1652 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1653 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1654 	return nr;
1655 }
1656 
1657 static unsigned long ext4_es_scan(struct shrinker *shrink,
1658 				  struct shrink_control *sc)
1659 {
1660 	struct ext4_sb_info *sbi = shrink->private_data;
1661 	int nr_to_scan = sc->nr_to_scan;
1662 	int ret, nr_shrunk;
1663 
1664 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1665 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1666 
1667 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1668 
1669 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1670 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1671 	return nr_shrunk;
1672 }
1673 
1674 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1675 {
1676 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1677 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1678 	struct ext4_inode_info *ei, *max = NULL;
1679 	unsigned int inode_cnt = 0;
1680 
1681 	if (v != SEQ_START_TOKEN)
1682 		return 0;
1683 
1684 	/* here we just find an inode that has the max nr. of objects */
1685 	spin_lock(&sbi->s_es_lock);
1686 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1687 		inode_cnt++;
1688 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1689 			max = ei;
1690 		else if (!max)
1691 			max = ei;
1692 	}
1693 	spin_unlock(&sbi->s_es_lock);
1694 
1695 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1696 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1697 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1698 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1699 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1700 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1701 	if (inode_cnt)
1702 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1703 
1704 	seq_printf(seq, "average:\n  %llu us scan time\n",
1705 	    div_u64(es_stats->es_stats_scan_time, 1000));
1706 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1707 	if (inode_cnt)
1708 		seq_printf(seq,
1709 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1710 		    "  %llu us max scan time\n",
1711 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1712 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1713 
1714 	return 0;
1715 }
1716 
1717 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1718 {
1719 	int err;
1720 
1721 	/* Make sure we have enough bits for physical block number */
1722 	BUILD_BUG_ON(ES_SHIFT < 48);
1723 	INIT_LIST_HEAD(&sbi->s_es_list);
1724 	sbi->s_es_nr_inode = 0;
1725 	spin_lock_init(&sbi->s_es_lock);
1726 	sbi->s_es_stats.es_stats_shrunk = 0;
1727 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1728 				  GFP_KERNEL);
1729 	if (err)
1730 		return err;
1731 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1732 				  GFP_KERNEL);
1733 	if (err)
1734 		goto err1;
1735 	sbi->s_es_stats.es_stats_scan_time = 0;
1736 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1737 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1738 	if (err)
1739 		goto err2;
1740 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1741 	if (err)
1742 		goto err3;
1743 
1744 	sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id);
1745 	if (!sbi->s_es_shrinker) {
1746 		err = -ENOMEM;
1747 		goto err4;
1748 	}
1749 
1750 	sbi->s_es_shrinker->scan_objects = ext4_es_scan;
1751 	sbi->s_es_shrinker->count_objects = ext4_es_count;
1752 	sbi->s_es_shrinker->private_data = sbi;
1753 
1754 	shrinker_register(sbi->s_es_shrinker);
1755 
1756 	return 0;
1757 err4:
1758 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1759 err3:
1760 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1761 err2:
1762 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1763 err1:
1764 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1765 	return err;
1766 }
1767 
1768 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1769 {
1770 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1771 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1772 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1773 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1774 	shrinker_free(sbi->s_es_shrinker);
1775 }
1776 
1777 /*
1778  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1779  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1780  *
1781  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1782  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1783  * ei->i_es_shrink_lblk to where we should continue scanning.
1784  */
1785 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1786 				 int *nr_to_scan, int *nr_shrunk)
1787 {
1788 	struct inode *inode = &ei->vfs_inode;
1789 	struct ext4_es_tree *tree = &ei->i_es_tree;
1790 	struct extent_status *es;
1791 	struct rb_node *node;
1792 
1793 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1794 	if (!es)
1795 		goto out_wrap;
1796 
1797 	while (*nr_to_scan > 0) {
1798 		if (es->es_lblk > end) {
1799 			ei->i_es_shrink_lblk = end + 1;
1800 			return 0;
1801 		}
1802 
1803 		(*nr_to_scan)--;
1804 		node = rb_next(&es->rb_node);
1805 
1806 		if (ext4_es_must_keep(es))
1807 			goto next;
1808 		if (ext4_es_is_referenced(es)) {
1809 			ext4_es_clear_referenced(es);
1810 			goto next;
1811 		}
1812 
1813 		rb_erase(&es->rb_node, &tree->root);
1814 		ext4_es_free_extent(inode, es);
1815 		(*nr_shrunk)++;
1816 next:
1817 		if (!node)
1818 			goto out_wrap;
1819 		es = rb_entry(node, struct extent_status, rb_node);
1820 	}
1821 	ei->i_es_shrink_lblk = es->es_lblk;
1822 	return 1;
1823 out_wrap:
1824 	ei->i_es_shrink_lblk = 0;
1825 	return 0;
1826 }
1827 
1828 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1829 {
1830 	struct inode *inode = &ei->vfs_inode;
1831 	int nr_shrunk = 0;
1832 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1833 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1834 				      DEFAULT_RATELIMIT_BURST);
1835 
1836 	if (ei->i_es_shk_nr == 0)
1837 		return 0;
1838 
1839 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1840 	    __ratelimit(&_rs))
1841 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1842 
1843 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1844 	    start != 0)
1845 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1846 
1847 	ei->i_es_tree.cache_es = NULL;
1848 	return nr_shrunk;
1849 }
1850 
1851 /*
1852  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1853  * discretionary entries from the extent status cache.  (Some entries
1854  * must be present for proper operations.)
1855  */
1856 void ext4_clear_inode_es(struct inode *inode)
1857 {
1858 	struct ext4_inode_info *ei = EXT4_I(inode);
1859 	struct extent_status *es;
1860 	struct ext4_es_tree *tree;
1861 	struct rb_node *node;
1862 
1863 	write_lock(&ei->i_es_lock);
1864 	tree = &EXT4_I(inode)->i_es_tree;
1865 	tree->cache_es = NULL;
1866 	node = rb_first(&tree->root);
1867 	while (node) {
1868 		es = rb_entry(node, struct extent_status, rb_node);
1869 		node = rb_next(node);
1870 		if (!ext4_es_must_keep(es)) {
1871 			rb_erase(&es->rb_node, &tree->root);
1872 			ext4_es_free_extent(inode, es);
1873 		}
1874 	}
1875 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1876 	write_unlock(&ei->i_es_lock);
1877 }
1878 
1879 #ifdef ES_DEBUG__
1880 static void ext4_print_pending_tree(struct inode *inode)
1881 {
1882 	struct ext4_pending_tree *tree;
1883 	struct rb_node *node;
1884 	struct pending_reservation *pr;
1885 
1886 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1887 	tree = &EXT4_I(inode)->i_pending_tree;
1888 	node = rb_first(&tree->root);
1889 	while (node) {
1890 		pr = rb_entry(node, struct pending_reservation, rb_node);
1891 		printk(KERN_DEBUG " %u", pr->lclu);
1892 		node = rb_next(node);
1893 	}
1894 	printk(KERN_DEBUG "\n");
1895 }
1896 #else
1897 #define ext4_print_pending_tree(inode)
1898 #endif
1899 
1900 int __init ext4_init_pending(void)
1901 {
1902 	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1903 	if (ext4_pending_cachep == NULL)
1904 		return -ENOMEM;
1905 	return 0;
1906 }
1907 
1908 void ext4_exit_pending(void)
1909 {
1910 	kmem_cache_destroy(ext4_pending_cachep);
1911 }
1912 
1913 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1914 {
1915 	tree->root = RB_ROOT;
1916 }
1917 
1918 /*
1919  * __get_pending - retrieve a pointer to a pending reservation
1920  *
1921  * @inode - file containing the pending cluster reservation
1922  * @lclu - logical cluster of interest
1923  *
1924  * Returns a pointer to a pending reservation if it's a member of
1925  * the set, and NULL if not.  Must be called holding i_es_lock.
1926  */
1927 static struct pending_reservation *__get_pending(struct inode *inode,
1928 						 ext4_lblk_t lclu)
1929 {
1930 	struct ext4_pending_tree *tree;
1931 	struct rb_node *node;
1932 	struct pending_reservation *pr = NULL;
1933 
1934 	tree = &EXT4_I(inode)->i_pending_tree;
1935 	node = (&tree->root)->rb_node;
1936 
1937 	while (node) {
1938 		pr = rb_entry(node, struct pending_reservation, rb_node);
1939 		if (lclu < pr->lclu)
1940 			node = node->rb_left;
1941 		else if (lclu > pr->lclu)
1942 			node = node->rb_right;
1943 		else if (lclu == pr->lclu)
1944 			return pr;
1945 	}
1946 	return NULL;
1947 }
1948 
1949 /*
1950  * __insert_pending - adds a pending cluster reservation to the set of
1951  *                    pending reservations
1952  *
1953  * @inode - file containing the cluster
1954  * @lblk - logical block in the cluster to be added
1955  * @prealloc - preallocated pending entry
1956  *
1957  * Returns 1 on successful insertion and -ENOMEM on failure.  If the
1958  * pending reservation is already in the set, returns successfully.
1959  */
1960 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1961 			    struct pending_reservation **prealloc)
1962 {
1963 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1964 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1965 	struct rb_node **p = &tree->root.rb_node;
1966 	struct rb_node *parent = NULL;
1967 	struct pending_reservation *pr;
1968 	ext4_lblk_t lclu;
1969 	int ret = 0;
1970 
1971 	lclu = EXT4_B2C(sbi, lblk);
1972 	/* search to find parent for insertion */
1973 	while (*p) {
1974 		parent = *p;
1975 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1976 
1977 		if (lclu < pr->lclu) {
1978 			p = &(*p)->rb_left;
1979 		} else if (lclu > pr->lclu) {
1980 			p = &(*p)->rb_right;
1981 		} else {
1982 			/* pending reservation already inserted */
1983 			goto out;
1984 		}
1985 	}
1986 
1987 	if (likely(*prealloc == NULL)) {
1988 		pr = __alloc_pending(false);
1989 		if (!pr) {
1990 			ret = -ENOMEM;
1991 			goto out;
1992 		}
1993 	} else {
1994 		pr = *prealloc;
1995 		*prealloc = NULL;
1996 	}
1997 	pr->lclu = lclu;
1998 
1999 	rb_link_node(&pr->rb_node, parent, p);
2000 	rb_insert_color(&pr->rb_node, &tree->root);
2001 	ret = 1;
2002 
2003 out:
2004 	return ret;
2005 }
2006 
2007 /*
2008  * __remove_pending - removes a pending cluster reservation from the set
2009  *                    of pending reservations
2010  *
2011  * @inode - file containing the cluster
2012  * @lblk - logical block in the pending cluster reservation to be removed
2013  *
2014  * Returns successfully if pending reservation is not a member of the set.
2015  */
2016 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2017 {
2018 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2019 	struct pending_reservation *pr;
2020 	struct ext4_pending_tree *tree;
2021 
2022 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2023 	if (pr != NULL) {
2024 		tree = &EXT4_I(inode)->i_pending_tree;
2025 		rb_erase(&pr->rb_node, &tree->root);
2026 		__free_pending(pr);
2027 	}
2028 }
2029 
2030 /*
2031  * ext4_remove_pending - removes a pending cluster reservation from the set
2032  *                       of pending reservations
2033  *
2034  * @inode - file containing the cluster
2035  * @lblk - logical block in the pending cluster reservation to be removed
2036  *
2037  * Locking for external use of __remove_pending.
2038  */
2039 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2040 {
2041 	struct ext4_inode_info *ei = EXT4_I(inode);
2042 
2043 	write_lock(&ei->i_es_lock);
2044 	__remove_pending(inode, lblk);
2045 	write_unlock(&ei->i_es_lock);
2046 }
2047 
2048 /*
2049  * ext4_is_pending - determine whether a cluster has a pending reservation
2050  *                   on it
2051  *
2052  * @inode - file containing the cluster
2053  * @lblk - logical block in the cluster
2054  *
2055  * Returns true if there's a pending reservation for the cluster in the
2056  * set of pending reservations, and false if not.
2057  */
2058 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2059 {
2060 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2061 	struct ext4_inode_info *ei = EXT4_I(inode);
2062 	bool ret;
2063 
2064 	read_lock(&ei->i_es_lock);
2065 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2066 	read_unlock(&ei->i_es_lock);
2067 
2068 	return ret;
2069 }
2070 
2071 /*
2072  * ext4_es_insert_delayed_extent - adds some delayed blocks to the extents
2073  *                                 status tree, adding a pending reservation
2074  *                                 where needed
2075  *
2076  * @inode - file containing the newly added block
2077  * @lblk - start logical block to be added
2078  * @len - length of blocks to be added
2079  * @lclu_allocated/end_allocated - indicates whether a physical cluster has
2080  *                                 been allocated for the logical cluster
2081  *                                 that contains the start/end block. Note that
2082  *                                 end_allocated should always be set to false
2083  *                                 if the start and the end block are in the
2084  *                                 same cluster
2085  */
2086 void ext4_es_insert_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
2087 				   ext4_lblk_t len, bool lclu_allocated,
2088 				   bool end_allocated)
2089 {
2090 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2091 	struct extent_status newes;
2092 	ext4_lblk_t end = lblk + len - 1;
2093 	int err1 = 0, err2 = 0, err3 = 0;
2094 	struct extent_status *es1 = NULL;
2095 	struct extent_status *es2 = NULL;
2096 	struct pending_reservation *pr1 = NULL;
2097 	struct pending_reservation *pr2 = NULL;
2098 
2099 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2100 		return;
2101 
2102 	es_debug("add [%u/%u) delayed to extent status tree of inode %lu\n",
2103 		 lblk, len, inode->i_ino);
2104 	if (!len)
2105 		return;
2106 
2107 	WARN_ON_ONCE((EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) &&
2108 		     end_allocated);
2109 
2110 	newes.es_lblk = lblk;
2111 	newes.es_len = len;
2112 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2113 	trace_ext4_es_insert_delayed_extent(inode, &newes, lclu_allocated,
2114 					    end_allocated);
2115 
2116 	ext4_es_insert_extent_check(inode, &newes);
2117 
2118 retry:
2119 	if (err1 && !es1)
2120 		es1 = __es_alloc_extent(true);
2121 	if ((err1 || err2) && !es2)
2122 		es2 = __es_alloc_extent(true);
2123 	if (err1 || err2 || err3 < 0) {
2124 		if (lclu_allocated && !pr1)
2125 			pr1 = __alloc_pending(true);
2126 		if (end_allocated && !pr2)
2127 			pr2 = __alloc_pending(true);
2128 	}
2129 	write_lock(&EXT4_I(inode)->i_es_lock);
2130 
2131 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
2132 	if (err1 != 0)
2133 		goto error;
2134 	/* Free preallocated extent if it didn't get used. */
2135 	if (es1) {
2136 		if (!es1->es_len)
2137 			__es_free_extent(es1);
2138 		es1 = NULL;
2139 	}
2140 
2141 	err2 = __es_insert_extent(inode, &newes, es2);
2142 	if (err2 != 0)
2143 		goto error;
2144 	/* Free preallocated extent if it didn't get used. */
2145 	if (es2) {
2146 		if (!es2->es_len)
2147 			__es_free_extent(es2);
2148 		es2 = NULL;
2149 	}
2150 
2151 	if (lclu_allocated) {
2152 		err3 = __insert_pending(inode, lblk, &pr1);
2153 		if (err3 < 0)
2154 			goto error;
2155 		if (pr1) {
2156 			__free_pending(pr1);
2157 			pr1 = NULL;
2158 		}
2159 	}
2160 	if (end_allocated) {
2161 		err3 = __insert_pending(inode, end, &pr2);
2162 		if (err3 < 0)
2163 			goto error;
2164 		if (pr2) {
2165 			__free_pending(pr2);
2166 			pr2 = NULL;
2167 		}
2168 	}
2169 error:
2170 	write_unlock(&EXT4_I(inode)->i_es_lock);
2171 	if (err1 || err2 || err3 < 0)
2172 		goto retry;
2173 
2174 	ext4_es_print_tree(inode);
2175 	ext4_print_pending_tree(inode);
2176 	return;
2177 }
2178 
2179 /*
2180  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2181  *                    reservations for a specified block range depending
2182  *                    upon the presence or absence of delayed blocks
2183  *                    outside the range within clusters at the ends of the
2184  *                    range
2185  *
2186  * @inode - file containing the range
2187  * @lblk - logical block defining the start of range
2188  * @len  - length of range in blocks
2189  * @prealloc - preallocated pending entry
2190  *
2191  * Used after a newly allocated extent is added to the extents status tree.
2192  * Requires that the extents in the range have either written or unwritten
2193  * status.  Must be called while holding i_es_lock. Returns number of new
2194  * inserts pending cluster on insert pendings, returns 0 on remove pendings,
2195  * return -ENOMEM on failure.
2196  */
2197 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2198 			    ext4_lblk_t len,
2199 			    struct pending_reservation **prealloc)
2200 {
2201 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2202 	ext4_lblk_t end = lblk + len - 1;
2203 	ext4_lblk_t first, last;
2204 	bool f_del = false, l_del = false;
2205 	int pendings = 0;
2206 	int ret = 0;
2207 
2208 	if (len == 0)
2209 		return 0;
2210 
2211 	/*
2212 	 * Two cases - block range within single cluster and block range
2213 	 * spanning two or more clusters.  Note that a cluster belonging
2214 	 * to a range starting and/or ending on a cluster boundary is treated
2215 	 * as if it does not contain a delayed extent.  The new range may
2216 	 * have allocated space for previously delayed blocks out to the
2217 	 * cluster boundary, requiring that any pre-existing pending
2218 	 * reservation be canceled.  Because this code only looks at blocks
2219 	 * outside the range, it should revise pending reservations
2220 	 * correctly even if the extent represented by the range can't be
2221 	 * inserted in the extents status tree due to ENOSPC.
2222 	 */
2223 
2224 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2225 		first = EXT4_LBLK_CMASK(sbi, lblk);
2226 		if (first != lblk)
2227 			f_del = __es_scan_range(inode, &ext4_es_is_delayed,
2228 						first, lblk - 1);
2229 		if (f_del) {
2230 			ret = __insert_pending(inode, first, prealloc);
2231 			if (ret < 0)
2232 				goto out;
2233 			pendings += ret;
2234 		} else {
2235 			last = EXT4_LBLK_CMASK(sbi, end) +
2236 			       sbi->s_cluster_ratio - 1;
2237 			if (last != end)
2238 				l_del = __es_scan_range(inode,
2239 							&ext4_es_is_delayed,
2240 							end + 1, last);
2241 			if (l_del) {
2242 				ret = __insert_pending(inode, last, prealloc);
2243 				if (ret < 0)
2244 					goto out;
2245 				pendings += ret;
2246 			} else
2247 				__remove_pending(inode, last);
2248 		}
2249 	} else {
2250 		first = EXT4_LBLK_CMASK(sbi, lblk);
2251 		if (first != lblk)
2252 			f_del = __es_scan_range(inode, &ext4_es_is_delayed,
2253 						first, lblk - 1);
2254 		if (f_del) {
2255 			ret = __insert_pending(inode, first, prealloc);
2256 			if (ret < 0)
2257 				goto out;
2258 			pendings += ret;
2259 		} else
2260 			__remove_pending(inode, first);
2261 
2262 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2263 		if (last != end)
2264 			l_del = __es_scan_range(inode, &ext4_es_is_delayed,
2265 						end + 1, last);
2266 		if (l_del) {
2267 			ret = __insert_pending(inode, last, prealloc);
2268 			if (ret < 0)
2269 				goto out;
2270 			pendings += ret;
2271 		} else
2272 			__remove_pending(inode, last);
2273 	}
2274 out:
2275 	return (ret < 0) ? ret : pendings;
2276 }
2277