xref: /linux/fs/ext4/extents.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 					    struct inode *inode,
98 					    int needed)
99 {
100 	int err;
101 
102 	if (!ext4_handle_valid(handle))
103 		return 0;
104 	if (handle->h_buffer_credits > needed)
105 		return 0;
106 	err = ext4_journal_extend(handle, needed);
107 	if (err <= 0)
108 		return err;
109 	err = ext4_truncate_restart_trans(handle, inode, needed);
110 	if (err == 0)
111 		err = -EAGAIN;
112 
113 	return err;
114 }
115 
116 /*
117  * could return:
118  *  - EROFS
119  *  - ENOMEM
120  */
121 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
122 				struct ext4_ext_path *path)
123 {
124 	if (path->p_bh) {
125 		/* path points to block */
126 		return ext4_journal_get_write_access(handle, path->p_bh);
127 	}
128 	/* path points to leaf/index in inode body */
129 	/* we use in-core data, no need to protect them */
130 	return 0;
131 }
132 
133 /*
134  * could return:
135  *  - EROFS
136  *  - ENOMEM
137  *  - EIO
138  */
139 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
140 				struct ext4_ext_path *path)
141 {
142 	int err;
143 	if (path->p_bh) {
144 		/* path points to block */
145 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
146 	} else {
147 		/* path points to leaf/index in inode body */
148 		err = ext4_mark_inode_dirty(handle, inode);
149 	}
150 	return err;
151 }
152 
153 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
154 			      struct ext4_ext_path *path,
155 			      ext4_lblk_t block)
156 {
157 	struct ext4_inode_info *ei = EXT4_I(inode);
158 	ext4_fsblk_t bg_start;
159 	ext4_fsblk_t last_block;
160 	ext4_grpblk_t colour;
161 	ext4_group_t block_group;
162 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
163 	int depth;
164 
165 	if (path) {
166 		struct ext4_extent *ex;
167 		depth = path->p_depth;
168 
169 		/* try to predict block placement */
170 		ex = path[depth].p_ext;
171 		if (ex)
172 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
173 
174 		/* it looks like index is empty;
175 		 * try to find starting block from index itself */
176 		if (path[depth].p_bh)
177 			return path[depth].p_bh->b_blocknr;
178 	}
179 
180 	/* OK. use inode's group */
181 	block_group = ei->i_block_group;
182 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
183 		/*
184 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
185 		 * block groups per flexgroup, reserve the first block
186 		 * group for directories and special files.  Regular
187 		 * files will start at the second block group.  This
188 		 * tends to speed up directory access and improves
189 		 * fsck times.
190 		 */
191 		block_group &= ~(flex_size-1);
192 		if (S_ISREG(inode->i_mode))
193 			block_group++;
194 	}
195 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
196 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
197 
198 	/*
199 	 * If we are doing delayed allocation, we don't need take
200 	 * colour into account.
201 	 */
202 	if (test_opt(inode->i_sb, DELALLOC))
203 		return bg_start;
204 
205 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
206 		colour = (current->pid % 16) *
207 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
208 	else
209 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
210 	return bg_start + colour + block;
211 }
212 
213 /*
214  * Allocation for a meta data block
215  */
216 static ext4_fsblk_t
217 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
218 			struct ext4_ext_path *path,
219 			struct ext4_extent *ex, int *err)
220 {
221 	ext4_fsblk_t goal, newblock;
222 
223 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
224 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
225 	return newblock;
226 }
227 
228 static inline int ext4_ext_space_block(struct inode *inode, int check)
229 {
230 	int size;
231 
232 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
233 			/ sizeof(struct ext4_extent);
234 	if (!check) {
235 #ifdef AGGRESSIVE_TEST
236 		if (size > 6)
237 			size = 6;
238 #endif
239 	}
240 	return size;
241 }
242 
243 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
244 {
245 	int size;
246 
247 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
248 			/ sizeof(struct ext4_extent_idx);
249 	if (!check) {
250 #ifdef AGGRESSIVE_TEST
251 		if (size > 5)
252 			size = 5;
253 #endif
254 	}
255 	return size;
256 }
257 
258 static inline int ext4_ext_space_root(struct inode *inode, int check)
259 {
260 	int size;
261 
262 	size = sizeof(EXT4_I(inode)->i_data);
263 	size -= sizeof(struct ext4_extent_header);
264 	size /= sizeof(struct ext4_extent);
265 	if (!check) {
266 #ifdef AGGRESSIVE_TEST
267 		if (size > 3)
268 			size = 3;
269 #endif
270 	}
271 	return size;
272 }
273 
274 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
275 {
276 	int size;
277 
278 	size = sizeof(EXT4_I(inode)->i_data);
279 	size -= sizeof(struct ext4_extent_header);
280 	size /= sizeof(struct ext4_extent_idx);
281 	if (!check) {
282 #ifdef AGGRESSIVE_TEST
283 		if (size > 4)
284 			size = 4;
285 #endif
286 	}
287 	return size;
288 }
289 
290 /*
291  * Calculate the number of metadata blocks needed
292  * to allocate @blocks
293  * Worse case is one block per extent
294  */
295 int ext4_ext_calc_metadata_amount(struct inode *inode, sector_t lblock)
296 {
297 	struct ext4_inode_info *ei = EXT4_I(inode);
298 	int idxs, num = 0;
299 
300 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
301 		/ sizeof(struct ext4_extent_idx));
302 
303 	/*
304 	 * If the new delayed allocation block is contiguous with the
305 	 * previous da block, it can share index blocks with the
306 	 * previous block, so we only need to allocate a new index
307 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
308 	 * an additional index block, and at ldxs**3 blocks, yet
309 	 * another index blocks.
310 	 */
311 	if (ei->i_da_metadata_calc_len &&
312 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
313 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
314 			num++;
315 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
316 			num++;
317 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
318 			num++;
319 			ei->i_da_metadata_calc_len = 0;
320 		} else
321 			ei->i_da_metadata_calc_len++;
322 		ei->i_da_metadata_calc_last_lblock++;
323 		return num;
324 	}
325 
326 	/*
327 	 * In the worst case we need a new set of index blocks at
328 	 * every level of the inode's extent tree.
329 	 */
330 	ei->i_da_metadata_calc_len = 1;
331 	ei->i_da_metadata_calc_last_lblock = lblock;
332 	return ext_depth(inode) + 1;
333 }
334 
335 static int
336 ext4_ext_max_entries(struct inode *inode, int depth)
337 {
338 	int max;
339 
340 	if (depth == ext_depth(inode)) {
341 		if (depth == 0)
342 			max = ext4_ext_space_root(inode, 1);
343 		else
344 			max = ext4_ext_space_root_idx(inode, 1);
345 	} else {
346 		if (depth == 0)
347 			max = ext4_ext_space_block(inode, 1);
348 		else
349 			max = ext4_ext_space_block_idx(inode, 1);
350 	}
351 
352 	return max;
353 }
354 
355 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
356 {
357 	ext4_fsblk_t block = ext_pblock(ext);
358 	int len = ext4_ext_get_actual_len(ext);
359 
360 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
361 }
362 
363 static int ext4_valid_extent_idx(struct inode *inode,
364 				struct ext4_extent_idx *ext_idx)
365 {
366 	ext4_fsblk_t block = idx_pblock(ext_idx);
367 
368 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
369 }
370 
371 static int ext4_valid_extent_entries(struct inode *inode,
372 				struct ext4_extent_header *eh,
373 				int depth)
374 {
375 	struct ext4_extent *ext;
376 	struct ext4_extent_idx *ext_idx;
377 	unsigned short entries;
378 	if (eh->eh_entries == 0)
379 		return 1;
380 
381 	entries = le16_to_cpu(eh->eh_entries);
382 
383 	if (depth == 0) {
384 		/* leaf entries */
385 		ext = EXT_FIRST_EXTENT(eh);
386 		while (entries) {
387 			if (!ext4_valid_extent(inode, ext))
388 				return 0;
389 			ext++;
390 			entries--;
391 		}
392 	} else {
393 		ext_idx = EXT_FIRST_INDEX(eh);
394 		while (entries) {
395 			if (!ext4_valid_extent_idx(inode, ext_idx))
396 				return 0;
397 			ext_idx++;
398 			entries--;
399 		}
400 	}
401 	return 1;
402 }
403 
404 static int __ext4_ext_check(const char *function, struct inode *inode,
405 					struct ext4_extent_header *eh,
406 					int depth)
407 {
408 	const char *error_msg;
409 	int max = 0;
410 
411 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
412 		error_msg = "invalid magic";
413 		goto corrupted;
414 	}
415 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
416 		error_msg = "unexpected eh_depth";
417 		goto corrupted;
418 	}
419 	if (unlikely(eh->eh_max == 0)) {
420 		error_msg = "invalid eh_max";
421 		goto corrupted;
422 	}
423 	max = ext4_ext_max_entries(inode, depth);
424 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
425 		error_msg = "too large eh_max";
426 		goto corrupted;
427 	}
428 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
429 		error_msg = "invalid eh_entries";
430 		goto corrupted;
431 	}
432 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
433 		error_msg = "invalid extent entries";
434 		goto corrupted;
435 	}
436 	return 0;
437 
438 corrupted:
439 	ext4_error_inode(function, inode,
440 			"bad header/extent: %s - magic %x, "
441 			"entries %u, max %u(%u), depth %u(%u)",
442 			error_msg, le16_to_cpu(eh->eh_magic),
443 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
444 			max, le16_to_cpu(eh->eh_depth), depth);
445 
446 	return -EIO;
447 }
448 
449 #define ext4_ext_check(inode, eh, depth)	\
450 	__ext4_ext_check(__func__, inode, eh, depth)
451 
452 int ext4_ext_check_inode(struct inode *inode)
453 {
454 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
455 }
456 
457 #ifdef EXT_DEBUG
458 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
459 {
460 	int k, l = path->p_depth;
461 
462 	ext_debug("path:");
463 	for (k = 0; k <= l; k++, path++) {
464 		if (path->p_idx) {
465 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
466 			    idx_pblock(path->p_idx));
467 		} else if (path->p_ext) {
468 			ext_debug("  %d:[%d]%d:%llu ",
469 				  le32_to_cpu(path->p_ext->ee_block),
470 				  ext4_ext_is_uninitialized(path->p_ext),
471 				  ext4_ext_get_actual_len(path->p_ext),
472 				  ext_pblock(path->p_ext));
473 		} else
474 			ext_debug("  []");
475 	}
476 	ext_debug("\n");
477 }
478 
479 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
480 {
481 	int depth = ext_depth(inode);
482 	struct ext4_extent_header *eh;
483 	struct ext4_extent *ex;
484 	int i;
485 
486 	if (!path)
487 		return;
488 
489 	eh = path[depth].p_hdr;
490 	ex = EXT_FIRST_EXTENT(eh);
491 
492 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
493 
494 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
495 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
496 			  ext4_ext_is_uninitialized(ex),
497 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
498 	}
499 	ext_debug("\n");
500 }
501 #else
502 #define ext4_ext_show_path(inode, path)
503 #define ext4_ext_show_leaf(inode, path)
504 #endif
505 
506 void ext4_ext_drop_refs(struct ext4_ext_path *path)
507 {
508 	int depth = path->p_depth;
509 	int i;
510 
511 	for (i = 0; i <= depth; i++, path++)
512 		if (path->p_bh) {
513 			brelse(path->p_bh);
514 			path->p_bh = NULL;
515 		}
516 }
517 
518 /*
519  * ext4_ext_binsearch_idx:
520  * binary search for the closest index of the given block
521  * the header must be checked before calling this
522  */
523 static void
524 ext4_ext_binsearch_idx(struct inode *inode,
525 			struct ext4_ext_path *path, ext4_lblk_t block)
526 {
527 	struct ext4_extent_header *eh = path->p_hdr;
528 	struct ext4_extent_idx *r, *l, *m;
529 
530 
531 	ext_debug("binsearch for %u(idx):  ", block);
532 
533 	l = EXT_FIRST_INDEX(eh) + 1;
534 	r = EXT_LAST_INDEX(eh);
535 	while (l <= r) {
536 		m = l + (r - l) / 2;
537 		if (block < le32_to_cpu(m->ei_block))
538 			r = m - 1;
539 		else
540 			l = m + 1;
541 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
542 				m, le32_to_cpu(m->ei_block),
543 				r, le32_to_cpu(r->ei_block));
544 	}
545 
546 	path->p_idx = l - 1;
547 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
548 		  idx_pblock(path->p_idx));
549 
550 #ifdef CHECK_BINSEARCH
551 	{
552 		struct ext4_extent_idx *chix, *ix;
553 		int k;
554 
555 		chix = ix = EXT_FIRST_INDEX(eh);
556 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
557 		  if (k != 0 &&
558 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
559 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
560 				       "first=0x%p\n", k,
561 				       ix, EXT_FIRST_INDEX(eh));
562 				printk(KERN_DEBUG "%u <= %u\n",
563 				       le32_to_cpu(ix->ei_block),
564 				       le32_to_cpu(ix[-1].ei_block));
565 			}
566 			BUG_ON(k && le32_to_cpu(ix->ei_block)
567 					   <= le32_to_cpu(ix[-1].ei_block));
568 			if (block < le32_to_cpu(ix->ei_block))
569 				break;
570 			chix = ix;
571 		}
572 		BUG_ON(chix != path->p_idx);
573 	}
574 #endif
575 
576 }
577 
578 /*
579  * ext4_ext_binsearch:
580  * binary search for closest extent of the given block
581  * the header must be checked before calling this
582  */
583 static void
584 ext4_ext_binsearch(struct inode *inode,
585 		struct ext4_ext_path *path, ext4_lblk_t block)
586 {
587 	struct ext4_extent_header *eh = path->p_hdr;
588 	struct ext4_extent *r, *l, *m;
589 
590 	if (eh->eh_entries == 0) {
591 		/*
592 		 * this leaf is empty:
593 		 * we get such a leaf in split/add case
594 		 */
595 		return;
596 	}
597 
598 	ext_debug("binsearch for %u:  ", block);
599 
600 	l = EXT_FIRST_EXTENT(eh) + 1;
601 	r = EXT_LAST_EXTENT(eh);
602 
603 	while (l <= r) {
604 		m = l + (r - l) / 2;
605 		if (block < le32_to_cpu(m->ee_block))
606 			r = m - 1;
607 		else
608 			l = m + 1;
609 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
610 				m, le32_to_cpu(m->ee_block),
611 				r, le32_to_cpu(r->ee_block));
612 	}
613 
614 	path->p_ext = l - 1;
615 	ext_debug("  -> %d:%llu:[%d]%d ",
616 			le32_to_cpu(path->p_ext->ee_block),
617 			ext_pblock(path->p_ext),
618 			ext4_ext_is_uninitialized(path->p_ext),
619 			ext4_ext_get_actual_len(path->p_ext));
620 
621 #ifdef CHECK_BINSEARCH
622 	{
623 		struct ext4_extent *chex, *ex;
624 		int k;
625 
626 		chex = ex = EXT_FIRST_EXTENT(eh);
627 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
628 			BUG_ON(k && le32_to_cpu(ex->ee_block)
629 					  <= le32_to_cpu(ex[-1].ee_block));
630 			if (block < le32_to_cpu(ex->ee_block))
631 				break;
632 			chex = ex;
633 		}
634 		BUG_ON(chex != path->p_ext);
635 	}
636 #endif
637 
638 }
639 
640 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
641 {
642 	struct ext4_extent_header *eh;
643 
644 	eh = ext_inode_hdr(inode);
645 	eh->eh_depth = 0;
646 	eh->eh_entries = 0;
647 	eh->eh_magic = EXT4_EXT_MAGIC;
648 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
649 	ext4_mark_inode_dirty(handle, inode);
650 	ext4_ext_invalidate_cache(inode);
651 	return 0;
652 }
653 
654 struct ext4_ext_path *
655 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
656 					struct ext4_ext_path *path)
657 {
658 	struct ext4_extent_header *eh;
659 	struct buffer_head *bh;
660 	short int depth, i, ppos = 0, alloc = 0;
661 
662 	eh = ext_inode_hdr(inode);
663 	depth = ext_depth(inode);
664 
665 	/* account possible depth increase */
666 	if (!path) {
667 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
668 				GFP_NOFS);
669 		if (!path)
670 			return ERR_PTR(-ENOMEM);
671 		alloc = 1;
672 	}
673 	path[0].p_hdr = eh;
674 	path[0].p_bh = NULL;
675 
676 	i = depth;
677 	/* walk through the tree */
678 	while (i) {
679 		int need_to_validate = 0;
680 
681 		ext_debug("depth %d: num %d, max %d\n",
682 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
683 
684 		ext4_ext_binsearch_idx(inode, path + ppos, block);
685 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
686 		path[ppos].p_depth = i;
687 		path[ppos].p_ext = NULL;
688 
689 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
690 		if (unlikely(!bh))
691 			goto err;
692 		if (!bh_uptodate_or_lock(bh)) {
693 			if (bh_submit_read(bh) < 0) {
694 				put_bh(bh);
695 				goto err;
696 			}
697 			/* validate the extent entries */
698 			need_to_validate = 1;
699 		}
700 		eh = ext_block_hdr(bh);
701 		ppos++;
702 		if (unlikely(ppos > depth)) {
703 			put_bh(bh);
704 			EXT4_ERROR_INODE(inode,
705 					 "ppos %d > depth %d", ppos, depth);
706 			goto err;
707 		}
708 		path[ppos].p_bh = bh;
709 		path[ppos].p_hdr = eh;
710 		i--;
711 
712 		if (need_to_validate && ext4_ext_check(inode, eh, i))
713 			goto err;
714 	}
715 
716 	path[ppos].p_depth = i;
717 	path[ppos].p_ext = NULL;
718 	path[ppos].p_idx = NULL;
719 
720 	/* find extent */
721 	ext4_ext_binsearch(inode, path + ppos, block);
722 	/* if not an empty leaf */
723 	if (path[ppos].p_ext)
724 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
725 
726 	ext4_ext_show_path(inode, path);
727 
728 	return path;
729 
730 err:
731 	ext4_ext_drop_refs(path);
732 	if (alloc)
733 		kfree(path);
734 	return ERR_PTR(-EIO);
735 }
736 
737 /*
738  * ext4_ext_insert_index:
739  * insert new index [@logical;@ptr] into the block at @curp;
740  * check where to insert: before @curp or after @curp
741  */
742 int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
743 				struct ext4_ext_path *curp,
744 				int logical, ext4_fsblk_t ptr)
745 {
746 	struct ext4_extent_idx *ix;
747 	int len, err;
748 
749 	err = ext4_ext_get_access(handle, inode, curp);
750 	if (err)
751 		return err;
752 
753 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
754 		EXT4_ERROR_INODE(inode,
755 				 "logical %d == ei_block %d!",
756 				 logical, le32_to_cpu(curp->p_idx->ei_block));
757 		return -EIO;
758 	}
759 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
760 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
761 		/* insert after */
762 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
763 			len = (len - 1) * sizeof(struct ext4_extent_idx);
764 			len = len < 0 ? 0 : len;
765 			ext_debug("insert new index %d after: %llu. "
766 					"move %d from 0x%p to 0x%p\n",
767 					logical, ptr, len,
768 					(curp->p_idx + 1), (curp->p_idx + 2));
769 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
770 		}
771 		ix = curp->p_idx + 1;
772 	} else {
773 		/* insert before */
774 		len = len * sizeof(struct ext4_extent_idx);
775 		len = len < 0 ? 0 : len;
776 		ext_debug("insert new index %d before: %llu. "
777 				"move %d from 0x%p to 0x%p\n",
778 				logical, ptr, len,
779 				curp->p_idx, (curp->p_idx + 1));
780 		memmove(curp->p_idx + 1, curp->p_idx, len);
781 		ix = curp->p_idx;
782 	}
783 
784 	ix->ei_block = cpu_to_le32(logical);
785 	ext4_idx_store_pblock(ix, ptr);
786 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
787 
788 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
789 			     > le16_to_cpu(curp->p_hdr->eh_max))) {
790 		EXT4_ERROR_INODE(inode,
791 				 "logical %d == ei_block %d!",
792 				 logical, le32_to_cpu(curp->p_idx->ei_block));
793 		return -EIO;
794 	}
795 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
796 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
797 		return -EIO;
798 	}
799 
800 	err = ext4_ext_dirty(handle, inode, curp);
801 	ext4_std_error(inode->i_sb, err);
802 
803 	return err;
804 }
805 
806 /*
807  * ext4_ext_split:
808  * inserts new subtree into the path, using free index entry
809  * at depth @at:
810  * - allocates all needed blocks (new leaf and all intermediate index blocks)
811  * - makes decision where to split
812  * - moves remaining extents and index entries (right to the split point)
813  *   into the newly allocated blocks
814  * - initializes subtree
815  */
816 static int ext4_ext_split(handle_t *handle, struct inode *inode,
817 				struct ext4_ext_path *path,
818 				struct ext4_extent *newext, int at)
819 {
820 	struct buffer_head *bh = NULL;
821 	int depth = ext_depth(inode);
822 	struct ext4_extent_header *neh;
823 	struct ext4_extent_idx *fidx;
824 	struct ext4_extent *ex;
825 	int i = at, k, m, a;
826 	ext4_fsblk_t newblock, oldblock;
827 	__le32 border;
828 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
829 	int err = 0;
830 
831 	/* make decision: where to split? */
832 	/* FIXME: now decision is simplest: at current extent */
833 
834 	/* if current leaf will be split, then we should use
835 	 * border from split point */
836 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
837 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
838 		return -EIO;
839 	}
840 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
841 		border = path[depth].p_ext[1].ee_block;
842 		ext_debug("leaf will be split."
843 				" next leaf starts at %d\n",
844 				  le32_to_cpu(border));
845 	} else {
846 		border = newext->ee_block;
847 		ext_debug("leaf will be added."
848 				" next leaf starts at %d\n",
849 				le32_to_cpu(border));
850 	}
851 
852 	/*
853 	 * If error occurs, then we break processing
854 	 * and mark filesystem read-only. index won't
855 	 * be inserted and tree will be in consistent
856 	 * state. Next mount will repair buffers too.
857 	 */
858 
859 	/*
860 	 * Get array to track all allocated blocks.
861 	 * We need this to handle errors and free blocks
862 	 * upon them.
863 	 */
864 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
865 	if (!ablocks)
866 		return -ENOMEM;
867 
868 	/* allocate all needed blocks */
869 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
870 	for (a = 0; a < depth - at; a++) {
871 		newblock = ext4_ext_new_meta_block(handle, inode, path,
872 						   newext, &err);
873 		if (newblock == 0)
874 			goto cleanup;
875 		ablocks[a] = newblock;
876 	}
877 
878 	/* initialize new leaf */
879 	newblock = ablocks[--a];
880 	if (unlikely(newblock == 0)) {
881 		EXT4_ERROR_INODE(inode, "newblock == 0!");
882 		err = -EIO;
883 		goto cleanup;
884 	}
885 	bh = sb_getblk(inode->i_sb, newblock);
886 	if (!bh) {
887 		err = -EIO;
888 		goto cleanup;
889 	}
890 	lock_buffer(bh);
891 
892 	err = ext4_journal_get_create_access(handle, bh);
893 	if (err)
894 		goto cleanup;
895 
896 	neh = ext_block_hdr(bh);
897 	neh->eh_entries = 0;
898 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
899 	neh->eh_magic = EXT4_EXT_MAGIC;
900 	neh->eh_depth = 0;
901 	ex = EXT_FIRST_EXTENT(neh);
902 
903 	/* move remainder of path[depth] to the new leaf */
904 	if (unlikely(path[depth].p_hdr->eh_entries !=
905 		     path[depth].p_hdr->eh_max)) {
906 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
907 				 path[depth].p_hdr->eh_entries,
908 				 path[depth].p_hdr->eh_max);
909 		err = -EIO;
910 		goto cleanup;
911 	}
912 	/* start copy from next extent */
913 	/* TODO: we could do it by single memmove */
914 	m = 0;
915 	path[depth].p_ext++;
916 	while (path[depth].p_ext <=
917 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
918 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
919 				le32_to_cpu(path[depth].p_ext->ee_block),
920 				ext_pblock(path[depth].p_ext),
921 				ext4_ext_is_uninitialized(path[depth].p_ext),
922 				ext4_ext_get_actual_len(path[depth].p_ext),
923 				newblock);
924 		/*memmove(ex++, path[depth].p_ext++,
925 				sizeof(struct ext4_extent));
926 		neh->eh_entries++;*/
927 		path[depth].p_ext++;
928 		m++;
929 	}
930 	if (m) {
931 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
932 		le16_add_cpu(&neh->eh_entries, m);
933 	}
934 
935 	set_buffer_uptodate(bh);
936 	unlock_buffer(bh);
937 
938 	err = ext4_handle_dirty_metadata(handle, inode, bh);
939 	if (err)
940 		goto cleanup;
941 	brelse(bh);
942 	bh = NULL;
943 
944 	/* correct old leaf */
945 	if (m) {
946 		err = ext4_ext_get_access(handle, inode, path + depth);
947 		if (err)
948 			goto cleanup;
949 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
950 		err = ext4_ext_dirty(handle, inode, path + depth);
951 		if (err)
952 			goto cleanup;
953 
954 	}
955 
956 	/* create intermediate indexes */
957 	k = depth - at - 1;
958 	if (unlikely(k < 0)) {
959 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
960 		err = -EIO;
961 		goto cleanup;
962 	}
963 	if (k)
964 		ext_debug("create %d intermediate indices\n", k);
965 	/* insert new index into current index block */
966 	/* current depth stored in i var */
967 	i = depth - 1;
968 	while (k--) {
969 		oldblock = newblock;
970 		newblock = ablocks[--a];
971 		bh = sb_getblk(inode->i_sb, newblock);
972 		if (!bh) {
973 			err = -EIO;
974 			goto cleanup;
975 		}
976 		lock_buffer(bh);
977 
978 		err = ext4_journal_get_create_access(handle, bh);
979 		if (err)
980 			goto cleanup;
981 
982 		neh = ext_block_hdr(bh);
983 		neh->eh_entries = cpu_to_le16(1);
984 		neh->eh_magic = EXT4_EXT_MAGIC;
985 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
986 		neh->eh_depth = cpu_to_le16(depth - i);
987 		fidx = EXT_FIRST_INDEX(neh);
988 		fidx->ei_block = border;
989 		ext4_idx_store_pblock(fidx, oldblock);
990 
991 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
992 				i, newblock, le32_to_cpu(border), oldblock);
993 		/* copy indexes */
994 		m = 0;
995 		path[i].p_idx++;
996 
997 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
998 				EXT_MAX_INDEX(path[i].p_hdr));
999 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1000 					EXT_LAST_INDEX(path[i].p_hdr))) {
1001 			EXT4_ERROR_INODE(inode,
1002 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1003 					 le32_to_cpu(path[i].p_ext->ee_block));
1004 			err = -EIO;
1005 			goto cleanup;
1006 		}
1007 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
1008 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
1009 					le32_to_cpu(path[i].p_idx->ei_block),
1010 					idx_pblock(path[i].p_idx),
1011 					newblock);
1012 			/*memmove(++fidx, path[i].p_idx++,
1013 					sizeof(struct ext4_extent_idx));
1014 			neh->eh_entries++;
1015 			BUG_ON(neh->eh_entries > neh->eh_max);*/
1016 			path[i].p_idx++;
1017 			m++;
1018 		}
1019 		if (m) {
1020 			memmove(++fidx, path[i].p_idx - m,
1021 				sizeof(struct ext4_extent_idx) * m);
1022 			le16_add_cpu(&neh->eh_entries, m);
1023 		}
1024 		set_buffer_uptodate(bh);
1025 		unlock_buffer(bh);
1026 
1027 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1028 		if (err)
1029 			goto cleanup;
1030 		brelse(bh);
1031 		bh = NULL;
1032 
1033 		/* correct old index */
1034 		if (m) {
1035 			err = ext4_ext_get_access(handle, inode, path + i);
1036 			if (err)
1037 				goto cleanup;
1038 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1039 			err = ext4_ext_dirty(handle, inode, path + i);
1040 			if (err)
1041 				goto cleanup;
1042 		}
1043 
1044 		i--;
1045 	}
1046 
1047 	/* insert new index */
1048 	err = ext4_ext_insert_index(handle, inode, path + at,
1049 				    le32_to_cpu(border), newblock);
1050 
1051 cleanup:
1052 	if (bh) {
1053 		if (buffer_locked(bh))
1054 			unlock_buffer(bh);
1055 		brelse(bh);
1056 	}
1057 
1058 	if (err) {
1059 		/* free all allocated blocks in error case */
1060 		for (i = 0; i < depth; i++) {
1061 			if (!ablocks[i])
1062 				continue;
1063 			ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1064 					 EXT4_FREE_BLOCKS_METADATA);
1065 		}
1066 	}
1067 	kfree(ablocks);
1068 
1069 	return err;
1070 }
1071 
1072 /*
1073  * ext4_ext_grow_indepth:
1074  * implements tree growing procedure:
1075  * - allocates new block
1076  * - moves top-level data (index block or leaf) into the new block
1077  * - initializes new top-level, creating index that points to the
1078  *   just created block
1079  */
1080 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1081 					struct ext4_ext_path *path,
1082 					struct ext4_extent *newext)
1083 {
1084 	struct ext4_ext_path *curp = path;
1085 	struct ext4_extent_header *neh;
1086 	struct ext4_extent_idx *fidx;
1087 	struct buffer_head *bh;
1088 	ext4_fsblk_t newblock;
1089 	int err = 0;
1090 
1091 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1092 	if (newblock == 0)
1093 		return err;
1094 
1095 	bh = sb_getblk(inode->i_sb, newblock);
1096 	if (!bh) {
1097 		err = -EIO;
1098 		ext4_std_error(inode->i_sb, err);
1099 		return err;
1100 	}
1101 	lock_buffer(bh);
1102 
1103 	err = ext4_journal_get_create_access(handle, bh);
1104 	if (err) {
1105 		unlock_buffer(bh);
1106 		goto out;
1107 	}
1108 
1109 	/* move top-level index/leaf into new block */
1110 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1111 
1112 	/* set size of new block */
1113 	neh = ext_block_hdr(bh);
1114 	/* old root could have indexes or leaves
1115 	 * so calculate e_max right way */
1116 	if (ext_depth(inode))
1117 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1118 	else
1119 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1120 	neh->eh_magic = EXT4_EXT_MAGIC;
1121 	set_buffer_uptodate(bh);
1122 	unlock_buffer(bh);
1123 
1124 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1125 	if (err)
1126 		goto out;
1127 
1128 	/* create index in new top-level index: num,max,pointer */
1129 	err = ext4_ext_get_access(handle, inode, curp);
1130 	if (err)
1131 		goto out;
1132 
1133 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1134 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1135 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1136 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1137 
1138 	if (path[0].p_hdr->eh_depth)
1139 		curp->p_idx->ei_block =
1140 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1141 	else
1142 		curp->p_idx->ei_block =
1143 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1144 	ext4_idx_store_pblock(curp->p_idx, newblock);
1145 
1146 	neh = ext_inode_hdr(inode);
1147 	fidx = EXT_FIRST_INDEX(neh);
1148 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1149 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1150 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1151 
1152 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1153 	err = ext4_ext_dirty(handle, inode, curp);
1154 out:
1155 	brelse(bh);
1156 
1157 	return err;
1158 }
1159 
1160 /*
1161  * ext4_ext_create_new_leaf:
1162  * finds empty index and adds new leaf.
1163  * if no free index is found, then it requests in-depth growing.
1164  */
1165 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1166 					struct ext4_ext_path *path,
1167 					struct ext4_extent *newext)
1168 {
1169 	struct ext4_ext_path *curp;
1170 	int depth, i, err = 0;
1171 
1172 repeat:
1173 	i = depth = ext_depth(inode);
1174 
1175 	/* walk up to the tree and look for free index entry */
1176 	curp = path + depth;
1177 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1178 		i--;
1179 		curp--;
1180 	}
1181 
1182 	/* we use already allocated block for index block,
1183 	 * so subsequent data blocks should be contiguous */
1184 	if (EXT_HAS_FREE_INDEX(curp)) {
1185 		/* if we found index with free entry, then use that
1186 		 * entry: create all needed subtree and add new leaf */
1187 		err = ext4_ext_split(handle, inode, path, newext, i);
1188 		if (err)
1189 			goto out;
1190 
1191 		/* refill path */
1192 		ext4_ext_drop_refs(path);
1193 		path = ext4_ext_find_extent(inode,
1194 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1195 				    path);
1196 		if (IS_ERR(path))
1197 			err = PTR_ERR(path);
1198 	} else {
1199 		/* tree is full, time to grow in depth */
1200 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1201 		if (err)
1202 			goto out;
1203 
1204 		/* refill path */
1205 		ext4_ext_drop_refs(path);
1206 		path = ext4_ext_find_extent(inode,
1207 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1208 				    path);
1209 		if (IS_ERR(path)) {
1210 			err = PTR_ERR(path);
1211 			goto out;
1212 		}
1213 
1214 		/*
1215 		 * only first (depth 0 -> 1) produces free space;
1216 		 * in all other cases we have to split the grown tree
1217 		 */
1218 		depth = ext_depth(inode);
1219 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1220 			/* now we need to split */
1221 			goto repeat;
1222 		}
1223 	}
1224 
1225 out:
1226 	return err;
1227 }
1228 
1229 /*
1230  * search the closest allocated block to the left for *logical
1231  * and returns it at @logical + it's physical address at @phys
1232  * if *logical is the smallest allocated block, the function
1233  * returns 0 at @phys
1234  * return value contains 0 (success) or error code
1235  */
1236 int
1237 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1238 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1239 {
1240 	struct ext4_extent_idx *ix;
1241 	struct ext4_extent *ex;
1242 	int depth, ee_len;
1243 
1244 	if (unlikely(path == NULL)) {
1245 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1246 		return -EIO;
1247 	}
1248 	depth = path->p_depth;
1249 	*phys = 0;
1250 
1251 	if (depth == 0 && path->p_ext == NULL)
1252 		return 0;
1253 
1254 	/* usually extent in the path covers blocks smaller
1255 	 * then *logical, but it can be that extent is the
1256 	 * first one in the file */
1257 
1258 	ex = path[depth].p_ext;
1259 	ee_len = ext4_ext_get_actual_len(ex);
1260 	if (*logical < le32_to_cpu(ex->ee_block)) {
1261 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1262 			EXT4_ERROR_INODE(inode,
1263 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1264 					 *logical, le32_to_cpu(ex->ee_block));
1265 			return -EIO;
1266 		}
1267 		while (--depth >= 0) {
1268 			ix = path[depth].p_idx;
1269 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1270 				EXT4_ERROR_INODE(inode,
1271 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1272 				  ix != NULL ? ix->ei_block : 0,
1273 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1274 				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1275 				  depth);
1276 				return -EIO;
1277 			}
1278 		}
1279 		return 0;
1280 	}
1281 
1282 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1283 		EXT4_ERROR_INODE(inode,
1284 				 "logical %d < ee_block %d + ee_len %d!",
1285 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1286 		return -EIO;
1287 	}
1288 
1289 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1290 	*phys = ext_pblock(ex) + ee_len - 1;
1291 	return 0;
1292 }
1293 
1294 /*
1295  * search the closest allocated block to the right for *logical
1296  * and returns it at @logical + it's physical address at @phys
1297  * if *logical is the smallest allocated block, the function
1298  * returns 0 at @phys
1299  * return value contains 0 (success) or error code
1300  */
1301 int
1302 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1303 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1304 {
1305 	struct buffer_head *bh = NULL;
1306 	struct ext4_extent_header *eh;
1307 	struct ext4_extent_idx *ix;
1308 	struct ext4_extent *ex;
1309 	ext4_fsblk_t block;
1310 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1311 	int ee_len;
1312 
1313 	if (unlikely(path == NULL)) {
1314 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1315 		return -EIO;
1316 	}
1317 	depth = path->p_depth;
1318 	*phys = 0;
1319 
1320 	if (depth == 0 && path->p_ext == NULL)
1321 		return 0;
1322 
1323 	/* usually extent in the path covers blocks smaller
1324 	 * then *logical, but it can be that extent is the
1325 	 * first one in the file */
1326 
1327 	ex = path[depth].p_ext;
1328 	ee_len = ext4_ext_get_actual_len(ex);
1329 	if (*logical < le32_to_cpu(ex->ee_block)) {
1330 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1331 			EXT4_ERROR_INODE(inode,
1332 					 "first_extent(path[%d].p_hdr) != ex",
1333 					 depth);
1334 			return -EIO;
1335 		}
1336 		while (--depth >= 0) {
1337 			ix = path[depth].p_idx;
1338 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1339 				EXT4_ERROR_INODE(inode,
1340 						 "ix != EXT_FIRST_INDEX *logical %d!",
1341 						 *logical);
1342 				return -EIO;
1343 			}
1344 		}
1345 		*logical = le32_to_cpu(ex->ee_block);
1346 		*phys = ext_pblock(ex);
1347 		return 0;
1348 	}
1349 
1350 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1351 		EXT4_ERROR_INODE(inode,
1352 				 "logical %d < ee_block %d + ee_len %d!",
1353 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1354 		return -EIO;
1355 	}
1356 
1357 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1358 		/* next allocated block in this leaf */
1359 		ex++;
1360 		*logical = le32_to_cpu(ex->ee_block);
1361 		*phys = ext_pblock(ex);
1362 		return 0;
1363 	}
1364 
1365 	/* go up and search for index to the right */
1366 	while (--depth >= 0) {
1367 		ix = path[depth].p_idx;
1368 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1369 			goto got_index;
1370 	}
1371 
1372 	/* we've gone up to the root and found no index to the right */
1373 	return 0;
1374 
1375 got_index:
1376 	/* we've found index to the right, let's
1377 	 * follow it and find the closest allocated
1378 	 * block to the right */
1379 	ix++;
1380 	block = idx_pblock(ix);
1381 	while (++depth < path->p_depth) {
1382 		bh = sb_bread(inode->i_sb, block);
1383 		if (bh == NULL)
1384 			return -EIO;
1385 		eh = ext_block_hdr(bh);
1386 		/* subtract from p_depth to get proper eh_depth */
1387 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1388 			put_bh(bh);
1389 			return -EIO;
1390 		}
1391 		ix = EXT_FIRST_INDEX(eh);
1392 		block = idx_pblock(ix);
1393 		put_bh(bh);
1394 	}
1395 
1396 	bh = sb_bread(inode->i_sb, block);
1397 	if (bh == NULL)
1398 		return -EIO;
1399 	eh = ext_block_hdr(bh);
1400 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1401 		put_bh(bh);
1402 		return -EIO;
1403 	}
1404 	ex = EXT_FIRST_EXTENT(eh);
1405 	*logical = le32_to_cpu(ex->ee_block);
1406 	*phys = ext_pblock(ex);
1407 	put_bh(bh);
1408 	return 0;
1409 }
1410 
1411 /*
1412  * ext4_ext_next_allocated_block:
1413  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1414  * NOTE: it considers block number from index entry as
1415  * allocated block. Thus, index entries have to be consistent
1416  * with leaves.
1417  */
1418 static ext4_lblk_t
1419 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1420 {
1421 	int depth;
1422 
1423 	BUG_ON(path == NULL);
1424 	depth = path->p_depth;
1425 
1426 	if (depth == 0 && path->p_ext == NULL)
1427 		return EXT_MAX_BLOCK;
1428 
1429 	while (depth >= 0) {
1430 		if (depth == path->p_depth) {
1431 			/* leaf */
1432 			if (path[depth].p_ext !=
1433 					EXT_LAST_EXTENT(path[depth].p_hdr))
1434 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1435 		} else {
1436 			/* index */
1437 			if (path[depth].p_idx !=
1438 					EXT_LAST_INDEX(path[depth].p_hdr))
1439 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1440 		}
1441 		depth--;
1442 	}
1443 
1444 	return EXT_MAX_BLOCK;
1445 }
1446 
1447 /*
1448  * ext4_ext_next_leaf_block:
1449  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1450  */
1451 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1452 					struct ext4_ext_path *path)
1453 {
1454 	int depth;
1455 
1456 	BUG_ON(path == NULL);
1457 	depth = path->p_depth;
1458 
1459 	/* zero-tree has no leaf blocks at all */
1460 	if (depth == 0)
1461 		return EXT_MAX_BLOCK;
1462 
1463 	/* go to index block */
1464 	depth--;
1465 
1466 	while (depth >= 0) {
1467 		if (path[depth].p_idx !=
1468 				EXT_LAST_INDEX(path[depth].p_hdr))
1469 			return (ext4_lblk_t)
1470 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1471 		depth--;
1472 	}
1473 
1474 	return EXT_MAX_BLOCK;
1475 }
1476 
1477 /*
1478  * ext4_ext_correct_indexes:
1479  * if leaf gets modified and modified extent is first in the leaf,
1480  * then we have to correct all indexes above.
1481  * TODO: do we need to correct tree in all cases?
1482  */
1483 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1484 				struct ext4_ext_path *path)
1485 {
1486 	struct ext4_extent_header *eh;
1487 	int depth = ext_depth(inode);
1488 	struct ext4_extent *ex;
1489 	__le32 border;
1490 	int k, err = 0;
1491 
1492 	eh = path[depth].p_hdr;
1493 	ex = path[depth].p_ext;
1494 
1495 	if (unlikely(ex == NULL || eh == NULL)) {
1496 		EXT4_ERROR_INODE(inode,
1497 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1498 		return -EIO;
1499 	}
1500 
1501 	if (depth == 0) {
1502 		/* there is no tree at all */
1503 		return 0;
1504 	}
1505 
1506 	if (ex != EXT_FIRST_EXTENT(eh)) {
1507 		/* we correct tree if first leaf got modified only */
1508 		return 0;
1509 	}
1510 
1511 	/*
1512 	 * TODO: we need correction if border is smaller than current one
1513 	 */
1514 	k = depth - 1;
1515 	border = path[depth].p_ext->ee_block;
1516 	err = ext4_ext_get_access(handle, inode, path + k);
1517 	if (err)
1518 		return err;
1519 	path[k].p_idx->ei_block = border;
1520 	err = ext4_ext_dirty(handle, inode, path + k);
1521 	if (err)
1522 		return err;
1523 
1524 	while (k--) {
1525 		/* change all left-side indexes */
1526 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1527 			break;
1528 		err = ext4_ext_get_access(handle, inode, path + k);
1529 		if (err)
1530 			break;
1531 		path[k].p_idx->ei_block = border;
1532 		err = ext4_ext_dirty(handle, inode, path + k);
1533 		if (err)
1534 			break;
1535 	}
1536 
1537 	return err;
1538 }
1539 
1540 int
1541 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1542 				struct ext4_extent *ex2)
1543 {
1544 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1545 
1546 	/*
1547 	 * Make sure that either both extents are uninitialized, or
1548 	 * both are _not_.
1549 	 */
1550 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1551 		return 0;
1552 
1553 	if (ext4_ext_is_uninitialized(ex1))
1554 		max_len = EXT_UNINIT_MAX_LEN;
1555 	else
1556 		max_len = EXT_INIT_MAX_LEN;
1557 
1558 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1559 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1560 
1561 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1562 			le32_to_cpu(ex2->ee_block))
1563 		return 0;
1564 
1565 	/*
1566 	 * To allow future support for preallocated extents to be added
1567 	 * as an RO_COMPAT feature, refuse to merge to extents if
1568 	 * this can result in the top bit of ee_len being set.
1569 	 */
1570 	if (ext1_ee_len + ext2_ee_len > max_len)
1571 		return 0;
1572 #ifdef AGGRESSIVE_TEST
1573 	if (ext1_ee_len >= 4)
1574 		return 0;
1575 #endif
1576 
1577 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1578 		return 1;
1579 	return 0;
1580 }
1581 
1582 /*
1583  * This function tries to merge the "ex" extent to the next extent in the tree.
1584  * It always tries to merge towards right. If you want to merge towards
1585  * left, pass "ex - 1" as argument instead of "ex".
1586  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1587  * 1 if they got merged.
1588  */
1589 int ext4_ext_try_to_merge(struct inode *inode,
1590 			  struct ext4_ext_path *path,
1591 			  struct ext4_extent *ex)
1592 {
1593 	struct ext4_extent_header *eh;
1594 	unsigned int depth, len;
1595 	int merge_done = 0;
1596 	int uninitialized = 0;
1597 
1598 	depth = ext_depth(inode);
1599 	BUG_ON(path[depth].p_hdr == NULL);
1600 	eh = path[depth].p_hdr;
1601 
1602 	while (ex < EXT_LAST_EXTENT(eh)) {
1603 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1604 			break;
1605 		/* merge with next extent! */
1606 		if (ext4_ext_is_uninitialized(ex))
1607 			uninitialized = 1;
1608 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1609 				+ ext4_ext_get_actual_len(ex + 1));
1610 		if (uninitialized)
1611 			ext4_ext_mark_uninitialized(ex);
1612 
1613 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1614 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1615 				* sizeof(struct ext4_extent);
1616 			memmove(ex + 1, ex + 2, len);
1617 		}
1618 		le16_add_cpu(&eh->eh_entries, -1);
1619 		merge_done = 1;
1620 		WARN_ON(eh->eh_entries == 0);
1621 		if (!eh->eh_entries)
1622 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1623 	}
1624 
1625 	return merge_done;
1626 }
1627 
1628 /*
1629  * check if a portion of the "newext" extent overlaps with an
1630  * existing extent.
1631  *
1632  * If there is an overlap discovered, it updates the length of the newext
1633  * such that there will be no overlap, and then returns 1.
1634  * If there is no overlap found, it returns 0.
1635  */
1636 unsigned int ext4_ext_check_overlap(struct inode *inode,
1637 				    struct ext4_extent *newext,
1638 				    struct ext4_ext_path *path)
1639 {
1640 	ext4_lblk_t b1, b2;
1641 	unsigned int depth, len1;
1642 	unsigned int ret = 0;
1643 
1644 	b1 = le32_to_cpu(newext->ee_block);
1645 	len1 = ext4_ext_get_actual_len(newext);
1646 	depth = ext_depth(inode);
1647 	if (!path[depth].p_ext)
1648 		goto out;
1649 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1650 
1651 	/*
1652 	 * get the next allocated block if the extent in the path
1653 	 * is before the requested block(s)
1654 	 */
1655 	if (b2 < b1) {
1656 		b2 = ext4_ext_next_allocated_block(path);
1657 		if (b2 == EXT_MAX_BLOCK)
1658 			goto out;
1659 	}
1660 
1661 	/* check for wrap through zero on extent logical start block*/
1662 	if (b1 + len1 < b1) {
1663 		len1 = EXT_MAX_BLOCK - b1;
1664 		newext->ee_len = cpu_to_le16(len1);
1665 		ret = 1;
1666 	}
1667 
1668 	/* check for overlap */
1669 	if (b1 + len1 > b2) {
1670 		newext->ee_len = cpu_to_le16(b2 - b1);
1671 		ret = 1;
1672 	}
1673 out:
1674 	return ret;
1675 }
1676 
1677 /*
1678  * ext4_ext_insert_extent:
1679  * tries to merge requsted extent into the existing extent or
1680  * inserts requested extent as new one into the tree,
1681  * creating new leaf in the no-space case.
1682  */
1683 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1684 				struct ext4_ext_path *path,
1685 				struct ext4_extent *newext, int flag)
1686 {
1687 	struct ext4_extent_header *eh;
1688 	struct ext4_extent *ex, *fex;
1689 	struct ext4_extent *nearex; /* nearest extent */
1690 	struct ext4_ext_path *npath = NULL;
1691 	int depth, len, err;
1692 	ext4_lblk_t next;
1693 	unsigned uninitialized = 0;
1694 
1695 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1696 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1697 		return -EIO;
1698 	}
1699 	depth = ext_depth(inode);
1700 	ex = path[depth].p_ext;
1701 	if (unlikely(path[depth].p_hdr == NULL)) {
1702 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1703 		return -EIO;
1704 	}
1705 
1706 	/* try to insert block into found extent and return */
1707 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1708 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1709 		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1710 				ext4_ext_is_uninitialized(newext),
1711 				ext4_ext_get_actual_len(newext),
1712 				le32_to_cpu(ex->ee_block),
1713 				ext4_ext_is_uninitialized(ex),
1714 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1715 		err = ext4_ext_get_access(handle, inode, path + depth);
1716 		if (err)
1717 			return err;
1718 
1719 		/*
1720 		 * ext4_can_extents_be_merged should have checked that either
1721 		 * both extents are uninitialized, or both aren't. Thus we
1722 		 * need to check only one of them here.
1723 		 */
1724 		if (ext4_ext_is_uninitialized(ex))
1725 			uninitialized = 1;
1726 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1727 					+ ext4_ext_get_actual_len(newext));
1728 		if (uninitialized)
1729 			ext4_ext_mark_uninitialized(ex);
1730 		eh = path[depth].p_hdr;
1731 		nearex = ex;
1732 		goto merge;
1733 	}
1734 
1735 repeat:
1736 	depth = ext_depth(inode);
1737 	eh = path[depth].p_hdr;
1738 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1739 		goto has_space;
1740 
1741 	/* probably next leaf has space for us? */
1742 	fex = EXT_LAST_EXTENT(eh);
1743 	next = ext4_ext_next_leaf_block(inode, path);
1744 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1745 	    && next != EXT_MAX_BLOCK) {
1746 		ext_debug("next leaf block - %d\n", next);
1747 		BUG_ON(npath != NULL);
1748 		npath = ext4_ext_find_extent(inode, next, NULL);
1749 		if (IS_ERR(npath))
1750 			return PTR_ERR(npath);
1751 		BUG_ON(npath->p_depth != path->p_depth);
1752 		eh = npath[depth].p_hdr;
1753 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1754 			ext_debug("next leaf isnt full(%d)\n",
1755 				  le16_to_cpu(eh->eh_entries));
1756 			path = npath;
1757 			goto repeat;
1758 		}
1759 		ext_debug("next leaf has no free space(%d,%d)\n",
1760 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1761 	}
1762 
1763 	/*
1764 	 * There is no free space in the found leaf.
1765 	 * We're gonna add a new leaf in the tree.
1766 	 */
1767 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1768 	if (err)
1769 		goto cleanup;
1770 	depth = ext_depth(inode);
1771 	eh = path[depth].p_hdr;
1772 
1773 has_space:
1774 	nearex = path[depth].p_ext;
1775 
1776 	err = ext4_ext_get_access(handle, inode, path + depth);
1777 	if (err)
1778 		goto cleanup;
1779 
1780 	if (!nearex) {
1781 		/* there is no extent in this leaf, create first one */
1782 		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1783 				le32_to_cpu(newext->ee_block),
1784 				ext_pblock(newext),
1785 				ext4_ext_is_uninitialized(newext),
1786 				ext4_ext_get_actual_len(newext));
1787 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1788 	} else if (le32_to_cpu(newext->ee_block)
1789 			   > le32_to_cpu(nearex->ee_block)) {
1790 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1791 		if (nearex != EXT_LAST_EXTENT(eh)) {
1792 			len = EXT_MAX_EXTENT(eh) - nearex;
1793 			len = (len - 1) * sizeof(struct ext4_extent);
1794 			len = len < 0 ? 0 : len;
1795 			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1796 					"move %d from 0x%p to 0x%p\n",
1797 					le32_to_cpu(newext->ee_block),
1798 					ext_pblock(newext),
1799 					ext4_ext_is_uninitialized(newext),
1800 					ext4_ext_get_actual_len(newext),
1801 					nearex, len, nearex + 1, nearex + 2);
1802 			memmove(nearex + 2, nearex + 1, len);
1803 		}
1804 		path[depth].p_ext = nearex + 1;
1805 	} else {
1806 		BUG_ON(newext->ee_block == nearex->ee_block);
1807 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1808 		len = len < 0 ? 0 : len;
1809 		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1810 				"move %d from 0x%p to 0x%p\n",
1811 				le32_to_cpu(newext->ee_block),
1812 				ext_pblock(newext),
1813 				ext4_ext_is_uninitialized(newext),
1814 				ext4_ext_get_actual_len(newext),
1815 				nearex, len, nearex + 1, nearex + 2);
1816 		memmove(nearex + 1, nearex, len);
1817 		path[depth].p_ext = nearex;
1818 	}
1819 
1820 	le16_add_cpu(&eh->eh_entries, 1);
1821 	nearex = path[depth].p_ext;
1822 	nearex->ee_block = newext->ee_block;
1823 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1824 	nearex->ee_len = newext->ee_len;
1825 
1826 merge:
1827 	/* try to merge extents to the right */
1828 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1829 		ext4_ext_try_to_merge(inode, path, nearex);
1830 
1831 	/* try to merge extents to the left */
1832 
1833 	/* time to correct all indexes above */
1834 	err = ext4_ext_correct_indexes(handle, inode, path);
1835 	if (err)
1836 		goto cleanup;
1837 
1838 	err = ext4_ext_dirty(handle, inode, path + depth);
1839 
1840 cleanup:
1841 	if (npath) {
1842 		ext4_ext_drop_refs(npath);
1843 		kfree(npath);
1844 	}
1845 	ext4_ext_invalidate_cache(inode);
1846 	return err;
1847 }
1848 
1849 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1850 			ext4_lblk_t num, ext_prepare_callback func,
1851 			void *cbdata)
1852 {
1853 	struct ext4_ext_path *path = NULL;
1854 	struct ext4_ext_cache cbex;
1855 	struct ext4_extent *ex;
1856 	ext4_lblk_t next, start = 0, end = 0;
1857 	ext4_lblk_t last = block + num;
1858 	int depth, exists, err = 0;
1859 
1860 	BUG_ON(func == NULL);
1861 	BUG_ON(inode == NULL);
1862 
1863 	while (block < last && block != EXT_MAX_BLOCK) {
1864 		num = last - block;
1865 		/* find extent for this block */
1866 		down_read(&EXT4_I(inode)->i_data_sem);
1867 		path = ext4_ext_find_extent(inode, block, path);
1868 		up_read(&EXT4_I(inode)->i_data_sem);
1869 		if (IS_ERR(path)) {
1870 			err = PTR_ERR(path);
1871 			path = NULL;
1872 			break;
1873 		}
1874 
1875 		depth = ext_depth(inode);
1876 		if (unlikely(path[depth].p_hdr == NULL)) {
1877 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1878 			err = -EIO;
1879 			break;
1880 		}
1881 		ex = path[depth].p_ext;
1882 		next = ext4_ext_next_allocated_block(path);
1883 
1884 		exists = 0;
1885 		if (!ex) {
1886 			/* there is no extent yet, so try to allocate
1887 			 * all requested space */
1888 			start = block;
1889 			end = block + num;
1890 		} else if (le32_to_cpu(ex->ee_block) > block) {
1891 			/* need to allocate space before found extent */
1892 			start = block;
1893 			end = le32_to_cpu(ex->ee_block);
1894 			if (block + num < end)
1895 				end = block + num;
1896 		} else if (block >= le32_to_cpu(ex->ee_block)
1897 					+ ext4_ext_get_actual_len(ex)) {
1898 			/* need to allocate space after found extent */
1899 			start = block;
1900 			end = block + num;
1901 			if (end >= next)
1902 				end = next;
1903 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1904 			/*
1905 			 * some part of requested space is covered
1906 			 * by found extent
1907 			 */
1908 			start = block;
1909 			end = le32_to_cpu(ex->ee_block)
1910 				+ ext4_ext_get_actual_len(ex);
1911 			if (block + num < end)
1912 				end = block + num;
1913 			exists = 1;
1914 		} else {
1915 			BUG();
1916 		}
1917 		BUG_ON(end <= start);
1918 
1919 		if (!exists) {
1920 			cbex.ec_block = start;
1921 			cbex.ec_len = end - start;
1922 			cbex.ec_start = 0;
1923 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1924 		} else {
1925 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1926 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1927 			cbex.ec_start = ext_pblock(ex);
1928 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1929 		}
1930 
1931 		if (unlikely(cbex.ec_len == 0)) {
1932 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1933 			err = -EIO;
1934 			break;
1935 		}
1936 		err = func(inode, path, &cbex, ex, cbdata);
1937 		ext4_ext_drop_refs(path);
1938 
1939 		if (err < 0)
1940 			break;
1941 
1942 		if (err == EXT_REPEAT)
1943 			continue;
1944 		else if (err == EXT_BREAK) {
1945 			err = 0;
1946 			break;
1947 		}
1948 
1949 		if (ext_depth(inode) != depth) {
1950 			/* depth was changed. we have to realloc path */
1951 			kfree(path);
1952 			path = NULL;
1953 		}
1954 
1955 		block = cbex.ec_block + cbex.ec_len;
1956 	}
1957 
1958 	if (path) {
1959 		ext4_ext_drop_refs(path);
1960 		kfree(path);
1961 	}
1962 
1963 	return err;
1964 }
1965 
1966 static void
1967 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1968 			__u32 len, ext4_fsblk_t start, int type)
1969 {
1970 	struct ext4_ext_cache *cex;
1971 	BUG_ON(len == 0);
1972 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1973 	cex = &EXT4_I(inode)->i_cached_extent;
1974 	cex->ec_type = type;
1975 	cex->ec_block = block;
1976 	cex->ec_len = len;
1977 	cex->ec_start = start;
1978 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1979 }
1980 
1981 /*
1982  * ext4_ext_put_gap_in_cache:
1983  * calculate boundaries of the gap that the requested block fits into
1984  * and cache this gap
1985  */
1986 static void
1987 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1988 				ext4_lblk_t block)
1989 {
1990 	int depth = ext_depth(inode);
1991 	unsigned long len;
1992 	ext4_lblk_t lblock;
1993 	struct ext4_extent *ex;
1994 
1995 	ex = path[depth].p_ext;
1996 	if (ex == NULL) {
1997 		/* there is no extent yet, so gap is [0;-] */
1998 		lblock = 0;
1999 		len = EXT_MAX_BLOCK;
2000 		ext_debug("cache gap(whole file):");
2001 	} else if (block < le32_to_cpu(ex->ee_block)) {
2002 		lblock = block;
2003 		len = le32_to_cpu(ex->ee_block) - block;
2004 		ext_debug("cache gap(before): %u [%u:%u]",
2005 				block,
2006 				le32_to_cpu(ex->ee_block),
2007 				 ext4_ext_get_actual_len(ex));
2008 	} else if (block >= le32_to_cpu(ex->ee_block)
2009 			+ ext4_ext_get_actual_len(ex)) {
2010 		ext4_lblk_t next;
2011 		lblock = le32_to_cpu(ex->ee_block)
2012 			+ ext4_ext_get_actual_len(ex);
2013 
2014 		next = ext4_ext_next_allocated_block(path);
2015 		ext_debug("cache gap(after): [%u:%u] %u",
2016 				le32_to_cpu(ex->ee_block),
2017 				ext4_ext_get_actual_len(ex),
2018 				block);
2019 		BUG_ON(next == lblock);
2020 		len = next - lblock;
2021 	} else {
2022 		lblock = len = 0;
2023 		BUG();
2024 	}
2025 
2026 	ext_debug(" -> %u:%lu\n", lblock, len);
2027 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
2028 }
2029 
2030 static int
2031 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2032 			struct ext4_extent *ex)
2033 {
2034 	struct ext4_ext_cache *cex;
2035 	int ret = EXT4_EXT_CACHE_NO;
2036 
2037 	/*
2038 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2039 	 */
2040 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2041 	cex = &EXT4_I(inode)->i_cached_extent;
2042 
2043 	/* has cache valid data? */
2044 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
2045 		goto errout;
2046 
2047 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
2048 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
2049 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2050 		ex->ee_block = cpu_to_le32(cex->ec_block);
2051 		ext4_ext_store_pblock(ex, cex->ec_start);
2052 		ex->ee_len = cpu_to_le16(cex->ec_len);
2053 		ext_debug("%u cached by %u:%u:%llu\n",
2054 				block,
2055 				cex->ec_block, cex->ec_len, cex->ec_start);
2056 		ret = cex->ec_type;
2057 	}
2058 errout:
2059 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2060 	return ret;
2061 }
2062 
2063 /*
2064  * ext4_ext_rm_idx:
2065  * removes index from the index block.
2066  * It's used in truncate case only, thus all requests are for
2067  * last index in the block only.
2068  */
2069 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2070 			struct ext4_ext_path *path)
2071 {
2072 	int err;
2073 	ext4_fsblk_t leaf;
2074 
2075 	/* free index block */
2076 	path--;
2077 	leaf = idx_pblock(path->p_idx);
2078 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2079 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2080 		return -EIO;
2081 	}
2082 	err = ext4_ext_get_access(handle, inode, path);
2083 	if (err)
2084 		return err;
2085 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2086 	err = ext4_ext_dirty(handle, inode, path);
2087 	if (err)
2088 		return err;
2089 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2090 	ext4_free_blocks(handle, inode, 0, leaf, 1,
2091 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2092 	return err;
2093 }
2094 
2095 /*
2096  * ext4_ext_calc_credits_for_single_extent:
2097  * This routine returns max. credits that needed to insert an extent
2098  * to the extent tree.
2099  * When pass the actual path, the caller should calculate credits
2100  * under i_data_sem.
2101  */
2102 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2103 						struct ext4_ext_path *path)
2104 {
2105 	if (path) {
2106 		int depth = ext_depth(inode);
2107 		int ret = 0;
2108 
2109 		/* probably there is space in leaf? */
2110 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2111 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2112 
2113 			/*
2114 			 *  There are some space in the leaf tree, no
2115 			 *  need to account for leaf block credit
2116 			 *
2117 			 *  bitmaps and block group descriptor blocks
2118 			 *  and other metadat blocks still need to be
2119 			 *  accounted.
2120 			 */
2121 			/* 1 bitmap, 1 block group descriptor */
2122 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2123 			return ret;
2124 		}
2125 	}
2126 
2127 	return ext4_chunk_trans_blocks(inode, nrblocks);
2128 }
2129 
2130 /*
2131  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2132  *
2133  * if nrblocks are fit in a single extent (chunk flag is 1), then
2134  * in the worse case, each tree level index/leaf need to be changed
2135  * if the tree split due to insert a new extent, then the old tree
2136  * index/leaf need to be updated too
2137  *
2138  * If the nrblocks are discontiguous, they could cause
2139  * the whole tree split more than once, but this is really rare.
2140  */
2141 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2142 {
2143 	int index;
2144 	int depth = ext_depth(inode);
2145 
2146 	if (chunk)
2147 		index = depth * 2;
2148 	else
2149 		index = depth * 3;
2150 
2151 	return index;
2152 }
2153 
2154 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2155 				struct ext4_extent *ex,
2156 				ext4_lblk_t from, ext4_lblk_t to)
2157 {
2158 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2159 	int flags = EXT4_FREE_BLOCKS_FORGET;
2160 
2161 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2162 		flags |= EXT4_FREE_BLOCKS_METADATA;
2163 #ifdef EXTENTS_STATS
2164 	{
2165 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2166 		spin_lock(&sbi->s_ext_stats_lock);
2167 		sbi->s_ext_blocks += ee_len;
2168 		sbi->s_ext_extents++;
2169 		if (ee_len < sbi->s_ext_min)
2170 			sbi->s_ext_min = ee_len;
2171 		if (ee_len > sbi->s_ext_max)
2172 			sbi->s_ext_max = ee_len;
2173 		if (ext_depth(inode) > sbi->s_depth_max)
2174 			sbi->s_depth_max = ext_depth(inode);
2175 		spin_unlock(&sbi->s_ext_stats_lock);
2176 	}
2177 #endif
2178 	if (from >= le32_to_cpu(ex->ee_block)
2179 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2180 		/* tail removal */
2181 		ext4_lblk_t num;
2182 		ext4_fsblk_t start;
2183 
2184 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2185 		start = ext_pblock(ex) + ee_len - num;
2186 		ext_debug("free last %u blocks starting %llu\n", num, start);
2187 		ext4_free_blocks(handle, inode, 0, start, num, flags);
2188 	} else if (from == le32_to_cpu(ex->ee_block)
2189 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2190 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2191 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2192 	} else {
2193 		printk(KERN_INFO "strange request: removal(2) "
2194 				"%u-%u from %u:%u\n",
2195 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2196 	}
2197 	return 0;
2198 }
2199 
2200 static int
2201 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2202 		struct ext4_ext_path *path, ext4_lblk_t start)
2203 {
2204 	int err = 0, correct_index = 0;
2205 	int depth = ext_depth(inode), credits;
2206 	struct ext4_extent_header *eh;
2207 	ext4_lblk_t a, b, block;
2208 	unsigned num;
2209 	ext4_lblk_t ex_ee_block;
2210 	unsigned short ex_ee_len;
2211 	unsigned uninitialized = 0;
2212 	struct ext4_extent *ex;
2213 
2214 	/* the header must be checked already in ext4_ext_remove_space() */
2215 	ext_debug("truncate since %u in leaf\n", start);
2216 	if (!path[depth].p_hdr)
2217 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2218 	eh = path[depth].p_hdr;
2219 	if (unlikely(path[depth].p_hdr == NULL)) {
2220 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2221 		return -EIO;
2222 	}
2223 	/* find where to start removing */
2224 	ex = EXT_LAST_EXTENT(eh);
2225 
2226 	ex_ee_block = le32_to_cpu(ex->ee_block);
2227 	ex_ee_len = ext4_ext_get_actual_len(ex);
2228 
2229 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2230 			ex_ee_block + ex_ee_len > start) {
2231 
2232 		if (ext4_ext_is_uninitialized(ex))
2233 			uninitialized = 1;
2234 		else
2235 			uninitialized = 0;
2236 
2237 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2238 			 uninitialized, ex_ee_len);
2239 		path[depth].p_ext = ex;
2240 
2241 		a = ex_ee_block > start ? ex_ee_block : start;
2242 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2243 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2244 
2245 		ext_debug("  border %u:%u\n", a, b);
2246 
2247 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2248 			block = 0;
2249 			num = 0;
2250 			BUG();
2251 		} else if (a != ex_ee_block) {
2252 			/* remove tail of the extent */
2253 			block = ex_ee_block;
2254 			num = a - block;
2255 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2256 			/* remove head of the extent */
2257 			block = a;
2258 			num = b - a;
2259 			/* there is no "make a hole" API yet */
2260 			BUG();
2261 		} else {
2262 			/* remove whole extent: excellent! */
2263 			block = ex_ee_block;
2264 			num = 0;
2265 			BUG_ON(a != ex_ee_block);
2266 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2267 		}
2268 
2269 		/*
2270 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2271 		 * descriptor) for each block group; assume two block
2272 		 * groups plus ex_ee_len/blocks_per_block_group for
2273 		 * the worst case
2274 		 */
2275 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2276 		if (ex == EXT_FIRST_EXTENT(eh)) {
2277 			correct_index = 1;
2278 			credits += (ext_depth(inode)) + 1;
2279 		}
2280 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2281 
2282 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2283 		if (err)
2284 			goto out;
2285 
2286 		err = ext4_ext_get_access(handle, inode, path + depth);
2287 		if (err)
2288 			goto out;
2289 
2290 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2291 		if (err)
2292 			goto out;
2293 
2294 		if (num == 0) {
2295 			/* this extent is removed; mark slot entirely unused */
2296 			ext4_ext_store_pblock(ex, 0);
2297 			le16_add_cpu(&eh->eh_entries, -1);
2298 		}
2299 
2300 		ex->ee_block = cpu_to_le32(block);
2301 		ex->ee_len = cpu_to_le16(num);
2302 		/*
2303 		 * Do not mark uninitialized if all the blocks in the
2304 		 * extent have been removed.
2305 		 */
2306 		if (uninitialized && num)
2307 			ext4_ext_mark_uninitialized(ex);
2308 
2309 		err = ext4_ext_dirty(handle, inode, path + depth);
2310 		if (err)
2311 			goto out;
2312 
2313 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2314 				ext_pblock(ex));
2315 		ex--;
2316 		ex_ee_block = le32_to_cpu(ex->ee_block);
2317 		ex_ee_len = ext4_ext_get_actual_len(ex);
2318 	}
2319 
2320 	if (correct_index && eh->eh_entries)
2321 		err = ext4_ext_correct_indexes(handle, inode, path);
2322 
2323 	/* if this leaf is free, then we should
2324 	 * remove it from index block above */
2325 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2326 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2327 
2328 out:
2329 	return err;
2330 }
2331 
2332 /*
2333  * ext4_ext_more_to_rm:
2334  * returns 1 if current index has to be freed (even partial)
2335  */
2336 static int
2337 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2338 {
2339 	BUG_ON(path->p_idx == NULL);
2340 
2341 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2342 		return 0;
2343 
2344 	/*
2345 	 * if truncate on deeper level happened, it wasn't partial,
2346 	 * so we have to consider current index for truncation
2347 	 */
2348 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2349 		return 0;
2350 	return 1;
2351 }
2352 
2353 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2354 {
2355 	struct super_block *sb = inode->i_sb;
2356 	int depth = ext_depth(inode);
2357 	struct ext4_ext_path *path;
2358 	handle_t *handle;
2359 	int i, err;
2360 
2361 	ext_debug("truncate since %u\n", start);
2362 
2363 	/* probably first extent we're gonna free will be last in block */
2364 	handle = ext4_journal_start(inode, depth + 1);
2365 	if (IS_ERR(handle))
2366 		return PTR_ERR(handle);
2367 
2368 again:
2369 	ext4_ext_invalidate_cache(inode);
2370 
2371 	/*
2372 	 * We start scanning from right side, freeing all the blocks
2373 	 * after i_size and walking into the tree depth-wise.
2374 	 */
2375 	depth = ext_depth(inode);
2376 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2377 	if (path == NULL) {
2378 		ext4_journal_stop(handle);
2379 		return -ENOMEM;
2380 	}
2381 	path[0].p_depth = depth;
2382 	path[0].p_hdr = ext_inode_hdr(inode);
2383 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2384 		err = -EIO;
2385 		goto out;
2386 	}
2387 	i = err = 0;
2388 
2389 	while (i >= 0 && err == 0) {
2390 		if (i == depth) {
2391 			/* this is leaf block */
2392 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2393 			/* root level has p_bh == NULL, brelse() eats this */
2394 			brelse(path[i].p_bh);
2395 			path[i].p_bh = NULL;
2396 			i--;
2397 			continue;
2398 		}
2399 
2400 		/* this is index block */
2401 		if (!path[i].p_hdr) {
2402 			ext_debug("initialize header\n");
2403 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2404 		}
2405 
2406 		if (!path[i].p_idx) {
2407 			/* this level hasn't been touched yet */
2408 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2409 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2410 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2411 				  path[i].p_hdr,
2412 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2413 		} else {
2414 			/* we were already here, see at next index */
2415 			path[i].p_idx--;
2416 		}
2417 
2418 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2419 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2420 				path[i].p_idx);
2421 		if (ext4_ext_more_to_rm(path + i)) {
2422 			struct buffer_head *bh;
2423 			/* go to the next level */
2424 			ext_debug("move to level %d (block %llu)\n",
2425 				  i + 1, idx_pblock(path[i].p_idx));
2426 			memset(path + i + 1, 0, sizeof(*path));
2427 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2428 			if (!bh) {
2429 				/* should we reset i_size? */
2430 				err = -EIO;
2431 				break;
2432 			}
2433 			if (WARN_ON(i + 1 > depth)) {
2434 				err = -EIO;
2435 				break;
2436 			}
2437 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2438 							depth - i - 1)) {
2439 				err = -EIO;
2440 				break;
2441 			}
2442 			path[i + 1].p_bh = bh;
2443 
2444 			/* save actual number of indexes since this
2445 			 * number is changed at the next iteration */
2446 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2447 			i++;
2448 		} else {
2449 			/* we finished processing this index, go up */
2450 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2451 				/* index is empty, remove it;
2452 				 * handle must be already prepared by the
2453 				 * truncatei_leaf() */
2454 				err = ext4_ext_rm_idx(handle, inode, path + i);
2455 			}
2456 			/* root level has p_bh == NULL, brelse() eats this */
2457 			brelse(path[i].p_bh);
2458 			path[i].p_bh = NULL;
2459 			i--;
2460 			ext_debug("return to level %d\n", i);
2461 		}
2462 	}
2463 
2464 	/* TODO: flexible tree reduction should be here */
2465 	if (path->p_hdr->eh_entries == 0) {
2466 		/*
2467 		 * truncate to zero freed all the tree,
2468 		 * so we need to correct eh_depth
2469 		 */
2470 		err = ext4_ext_get_access(handle, inode, path);
2471 		if (err == 0) {
2472 			ext_inode_hdr(inode)->eh_depth = 0;
2473 			ext_inode_hdr(inode)->eh_max =
2474 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2475 			err = ext4_ext_dirty(handle, inode, path);
2476 		}
2477 	}
2478 out:
2479 	ext4_ext_drop_refs(path);
2480 	kfree(path);
2481 	if (err == -EAGAIN)
2482 		goto again;
2483 	ext4_journal_stop(handle);
2484 
2485 	return err;
2486 }
2487 
2488 /*
2489  * called at mount time
2490  */
2491 void ext4_ext_init(struct super_block *sb)
2492 {
2493 	/*
2494 	 * possible initialization would be here
2495 	 */
2496 
2497 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2498 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2499 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2500 #ifdef AGGRESSIVE_TEST
2501 		printk(", aggressive tests");
2502 #endif
2503 #ifdef CHECK_BINSEARCH
2504 		printk(", check binsearch");
2505 #endif
2506 #ifdef EXTENTS_STATS
2507 		printk(", stats");
2508 #endif
2509 		printk("\n");
2510 #endif
2511 #ifdef EXTENTS_STATS
2512 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2513 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2514 		EXT4_SB(sb)->s_ext_max = 0;
2515 #endif
2516 	}
2517 }
2518 
2519 /*
2520  * called at umount time
2521  */
2522 void ext4_ext_release(struct super_block *sb)
2523 {
2524 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2525 		return;
2526 
2527 #ifdef EXTENTS_STATS
2528 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2529 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2530 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2531 			sbi->s_ext_blocks, sbi->s_ext_extents,
2532 			sbi->s_ext_blocks / sbi->s_ext_extents);
2533 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2534 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2535 	}
2536 #endif
2537 }
2538 
2539 static void bi_complete(struct bio *bio, int error)
2540 {
2541 	complete((struct completion *)bio->bi_private);
2542 }
2543 
2544 /* FIXME!! we need to try to merge to left or right after zero-out  */
2545 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2546 {
2547 	int ret;
2548 	struct bio *bio;
2549 	int blkbits, blocksize;
2550 	sector_t ee_pblock;
2551 	struct completion event;
2552 	unsigned int ee_len, len, done, offset;
2553 
2554 
2555 	blkbits   = inode->i_blkbits;
2556 	blocksize = inode->i_sb->s_blocksize;
2557 	ee_len    = ext4_ext_get_actual_len(ex);
2558 	ee_pblock = ext_pblock(ex);
2559 
2560 	/* convert ee_pblock to 512 byte sectors */
2561 	ee_pblock = ee_pblock << (blkbits - 9);
2562 
2563 	while (ee_len > 0) {
2564 
2565 		if (ee_len > BIO_MAX_PAGES)
2566 			len = BIO_MAX_PAGES;
2567 		else
2568 			len = ee_len;
2569 
2570 		bio = bio_alloc(GFP_NOIO, len);
2571 		if (!bio)
2572 			return -ENOMEM;
2573 
2574 		bio->bi_sector = ee_pblock;
2575 		bio->bi_bdev   = inode->i_sb->s_bdev;
2576 
2577 		done = 0;
2578 		offset = 0;
2579 		while (done < len) {
2580 			ret = bio_add_page(bio, ZERO_PAGE(0),
2581 							blocksize, offset);
2582 			if (ret != blocksize) {
2583 				/*
2584 				 * We can't add any more pages because of
2585 				 * hardware limitations.  Start a new bio.
2586 				 */
2587 				break;
2588 			}
2589 			done++;
2590 			offset += blocksize;
2591 			if (offset >= PAGE_CACHE_SIZE)
2592 				offset = 0;
2593 		}
2594 
2595 		init_completion(&event);
2596 		bio->bi_private = &event;
2597 		bio->bi_end_io = bi_complete;
2598 		submit_bio(WRITE, bio);
2599 		wait_for_completion(&event);
2600 
2601 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2602 			bio_put(bio);
2603 			return -EIO;
2604 		}
2605 		bio_put(bio);
2606 		ee_len    -= done;
2607 		ee_pblock += done  << (blkbits - 9);
2608 	}
2609 	return 0;
2610 }
2611 
2612 #define EXT4_EXT_ZERO_LEN 7
2613 /*
2614  * This function is called by ext4_ext_map_blocks() if someone tries to write
2615  * to an uninitialized extent. It may result in splitting the uninitialized
2616  * extent into multiple extents (upto three - one initialized and two
2617  * uninitialized).
2618  * There are three possibilities:
2619  *   a> There is no split required: Entire extent should be initialized
2620  *   b> Splits in two extents: Write is happening at either end of the extent
2621  *   c> Splits in three extents: Somone is writing in middle of the extent
2622  */
2623 static int ext4_ext_convert_to_initialized(handle_t *handle,
2624 					   struct inode *inode,
2625 					   struct ext4_map_blocks *map,
2626 					   struct ext4_ext_path *path)
2627 {
2628 	struct ext4_extent *ex, newex, orig_ex;
2629 	struct ext4_extent *ex1 = NULL;
2630 	struct ext4_extent *ex2 = NULL;
2631 	struct ext4_extent *ex3 = NULL;
2632 	struct ext4_extent_header *eh;
2633 	ext4_lblk_t ee_block, eof_block;
2634 	unsigned int allocated, ee_len, depth;
2635 	ext4_fsblk_t newblock;
2636 	int err = 0;
2637 	int ret = 0;
2638 	int may_zeroout;
2639 
2640 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2641 		"block %llu, max_blocks %u\n", inode->i_ino,
2642 		(unsigned long long)map->m_lblk, map->m_len);
2643 
2644 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2645 		inode->i_sb->s_blocksize_bits;
2646 	if (eof_block < map->m_lblk + map->m_len)
2647 		eof_block = map->m_lblk + map->m_len;
2648 
2649 	depth = ext_depth(inode);
2650 	eh = path[depth].p_hdr;
2651 	ex = path[depth].p_ext;
2652 	ee_block = le32_to_cpu(ex->ee_block);
2653 	ee_len = ext4_ext_get_actual_len(ex);
2654 	allocated = ee_len - (map->m_lblk - ee_block);
2655 	newblock = map->m_lblk - ee_block + ext_pblock(ex);
2656 
2657 	ex2 = ex;
2658 	orig_ex.ee_block = ex->ee_block;
2659 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2660 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2661 
2662 	/*
2663 	 * It is safe to convert extent to initialized via explicit
2664 	 * zeroout only if extent is fully insde i_size or new_size.
2665 	 */
2666 	may_zeroout = ee_block + ee_len <= eof_block;
2667 
2668 	err = ext4_ext_get_access(handle, inode, path + depth);
2669 	if (err)
2670 		goto out;
2671 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2672 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2673 		err =  ext4_ext_zeroout(inode, &orig_ex);
2674 		if (err)
2675 			goto fix_extent_len;
2676 		/* update the extent length and mark as initialized */
2677 		ex->ee_block = orig_ex.ee_block;
2678 		ex->ee_len   = orig_ex.ee_len;
2679 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2680 		ext4_ext_dirty(handle, inode, path + depth);
2681 		/* zeroed the full extent */
2682 		return allocated;
2683 	}
2684 
2685 	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2686 	if (map->m_lblk > ee_block) {
2687 		ex1 = ex;
2688 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2689 		ext4_ext_mark_uninitialized(ex1);
2690 		ex2 = &newex;
2691 	}
2692 	/*
2693 	 * for sanity, update the length of the ex2 extent before
2694 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2695 	 * overlap of blocks.
2696 	 */
2697 	if (!ex1 && allocated > map->m_len)
2698 		ex2->ee_len = cpu_to_le16(map->m_len);
2699 	/* ex3: to ee_block + ee_len : uninitialised */
2700 	if (allocated > map->m_len) {
2701 		unsigned int newdepth;
2702 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2703 		if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2704 			/*
2705 			 * map->m_lblk == ee_block is handled by the zerouout
2706 			 * at the beginning.
2707 			 * Mark first half uninitialized.
2708 			 * Mark second half initialized and zero out the
2709 			 * initialized extent
2710 			 */
2711 			ex->ee_block = orig_ex.ee_block;
2712 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2713 			ext4_ext_mark_uninitialized(ex);
2714 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2715 			ext4_ext_dirty(handle, inode, path + depth);
2716 
2717 			ex3 = &newex;
2718 			ex3->ee_block = cpu_to_le32(map->m_lblk);
2719 			ext4_ext_store_pblock(ex3, newblock);
2720 			ex3->ee_len = cpu_to_le16(allocated);
2721 			err = ext4_ext_insert_extent(handle, inode, path,
2722 							ex3, 0);
2723 			if (err == -ENOSPC) {
2724 				err =  ext4_ext_zeroout(inode, &orig_ex);
2725 				if (err)
2726 					goto fix_extent_len;
2727 				ex->ee_block = orig_ex.ee_block;
2728 				ex->ee_len   = orig_ex.ee_len;
2729 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2730 				ext4_ext_dirty(handle, inode, path + depth);
2731 				/* blocks available from map->m_lblk */
2732 				return allocated;
2733 
2734 			} else if (err)
2735 				goto fix_extent_len;
2736 
2737 			/*
2738 			 * We need to zero out the second half because
2739 			 * an fallocate request can update file size and
2740 			 * converting the second half to initialized extent
2741 			 * implies that we can leak some junk data to user
2742 			 * space.
2743 			 */
2744 			err =  ext4_ext_zeroout(inode, ex3);
2745 			if (err) {
2746 				/*
2747 				 * We should actually mark the
2748 				 * second half as uninit and return error
2749 				 * Insert would have changed the extent
2750 				 */
2751 				depth = ext_depth(inode);
2752 				ext4_ext_drop_refs(path);
2753 				path = ext4_ext_find_extent(inode, map->m_lblk,
2754 							    path);
2755 				if (IS_ERR(path)) {
2756 					err = PTR_ERR(path);
2757 					return err;
2758 				}
2759 				/* get the second half extent details */
2760 				ex = path[depth].p_ext;
2761 				err = ext4_ext_get_access(handle, inode,
2762 								path + depth);
2763 				if (err)
2764 					return err;
2765 				ext4_ext_mark_uninitialized(ex);
2766 				ext4_ext_dirty(handle, inode, path + depth);
2767 				return err;
2768 			}
2769 
2770 			/* zeroed the second half */
2771 			return allocated;
2772 		}
2773 		ex3 = &newex;
2774 		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2775 		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2776 		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2777 		ext4_ext_mark_uninitialized(ex3);
2778 		err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2779 		if (err == -ENOSPC && may_zeroout) {
2780 			err =  ext4_ext_zeroout(inode, &orig_ex);
2781 			if (err)
2782 				goto fix_extent_len;
2783 			/* update the extent length and mark as initialized */
2784 			ex->ee_block = orig_ex.ee_block;
2785 			ex->ee_len   = orig_ex.ee_len;
2786 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2787 			ext4_ext_dirty(handle, inode, path + depth);
2788 			/* zeroed the full extent */
2789 			/* blocks available from map->m_lblk */
2790 			return allocated;
2791 
2792 		} else if (err)
2793 			goto fix_extent_len;
2794 		/*
2795 		 * The depth, and hence eh & ex might change
2796 		 * as part of the insert above.
2797 		 */
2798 		newdepth = ext_depth(inode);
2799 		/*
2800 		 * update the extent length after successful insert of the
2801 		 * split extent
2802 		 */
2803 		ee_len -= ext4_ext_get_actual_len(ex3);
2804 		orig_ex.ee_len = cpu_to_le16(ee_len);
2805 		may_zeroout = ee_block + ee_len <= eof_block;
2806 
2807 		depth = newdepth;
2808 		ext4_ext_drop_refs(path);
2809 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2810 		if (IS_ERR(path)) {
2811 			err = PTR_ERR(path);
2812 			goto out;
2813 		}
2814 		eh = path[depth].p_hdr;
2815 		ex = path[depth].p_ext;
2816 		if (ex2 != &newex)
2817 			ex2 = ex;
2818 
2819 		err = ext4_ext_get_access(handle, inode, path + depth);
2820 		if (err)
2821 			goto out;
2822 
2823 		allocated = map->m_len;
2824 
2825 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2826 		 * to insert a extent in the middle zerout directly
2827 		 * otherwise give the extent a chance to merge to left
2828 		 */
2829 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2830 			map->m_lblk != ee_block && may_zeroout) {
2831 			err =  ext4_ext_zeroout(inode, &orig_ex);
2832 			if (err)
2833 				goto fix_extent_len;
2834 			/* update the extent length and mark as initialized */
2835 			ex->ee_block = orig_ex.ee_block;
2836 			ex->ee_len   = orig_ex.ee_len;
2837 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2838 			ext4_ext_dirty(handle, inode, path + depth);
2839 			/* zero out the first half */
2840 			/* blocks available from map->m_lblk */
2841 			return allocated;
2842 		}
2843 	}
2844 	/*
2845 	 * If there was a change of depth as part of the
2846 	 * insertion of ex3 above, we need to update the length
2847 	 * of the ex1 extent again here
2848 	 */
2849 	if (ex1 && ex1 != ex) {
2850 		ex1 = ex;
2851 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2852 		ext4_ext_mark_uninitialized(ex1);
2853 		ex2 = &newex;
2854 	}
2855 	/* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2856 	ex2->ee_block = cpu_to_le32(map->m_lblk);
2857 	ext4_ext_store_pblock(ex2, newblock);
2858 	ex2->ee_len = cpu_to_le16(allocated);
2859 	if (ex2 != ex)
2860 		goto insert;
2861 	/*
2862 	 * New (initialized) extent starts from the first block
2863 	 * in the current extent. i.e., ex2 == ex
2864 	 * We have to see if it can be merged with the extent
2865 	 * on the left.
2866 	 */
2867 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2868 		/*
2869 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2870 		 * since it merges towards right _only_.
2871 		 */
2872 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2873 		if (ret) {
2874 			err = ext4_ext_correct_indexes(handle, inode, path);
2875 			if (err)
2876 				goto out;
2877 			depth = ext_depth(inode);
2878 			ex2--;
2879 		}
2880 	}
2881 	/*
2882 	 * Try to Merge towards right. This might be required
2883 	 * only when the whole extent is being written to.
2884 	 * i.e. ex2 == ex and ex3 == NULL.
2885 	 */
2886 	if (!ex3) {
2887 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2888 		if (ret) {
2889 			err = ext4_ext_correct_indexes(handle, inode, path);
2890 			if (err)
2891 				goto out;
2892 		}
2893 	}
2894 	/* Mark modified extent as dirty */
2895 	err = ext4_ext_dirty(handle, inode, path + depth);
2896 	goto out;
2897 insert:
2898 	err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2899 	if (err == -ENOSPC && may_zeroout) {
2900 		err =  ext4_ext_zeroout(inode, &orig_ex);
2901 		if (err)
2902 			goto fix_extent_len;
2903 		/* update the extent length and mark as initialized */
2904 		ex->ee_block = orig_ex.ee_block;
2905 		ex->ee_len   = orig_ex.ee_len;
2906 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2907 		ext4_ext_dirty(handle, inode, path + depth);
2908 		/* zero out the first half */
2909 		return allocated;
2910 	} else if (err)
2911 		goto fix_extent_len;
2912 out:
2913 	ext4_ext_show_leaf(inode, path);
2914 	return err ? err : allocated;
2915 
2916 fix_extent_len:
2917 	ex->ee_block = orig_ex.ee_block;
2918 	ex->ee_len   = orig_ex.ee_len;
2919 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2920 	ext4_ext_mark_uninitialized(ex);
2921 	ext4_ext_dirty(handle, inode, path + depth);
2922 	return err;
2923 }
2924 
2925 /*
2926  * This function is called by ext4_ext_map_blocks() from
2927  * ext4_get_blocks_dio_write() when DIO to write
2928  * to an uninitialized extent.
2929  *
2930  * Writing to an uninitized extent may result in splitting the uninitialized
2931  * extent into multiple /intialized unintialized extents (up to three)
2932  * There are three possibilities:
2933  *   a> There is no split required: Entire extent should be uninitialized
2934  *   b> Splits in two extents: Write is happening at either end of the extent
2935  *   c> Splits in three extents: Somone is writing in middle of the extent
2936  *
2937  * One of more index blocks maybe needed if the extent tree grow after
2938  * the unintialized extent split. To prevent ENOSPC occur at the IO
2939  * complete, we need to split the uninitialized extent before DIO submit
2940  * the IO. The uninitilized extent called at this time will be split
2941  * into three uninitialized extent(at most). After IO complete, the part
2942  * being filled will be convert to initialized by the end_io callback function
2943  * via ext4_convert_unwritten_extents().
2944  *
2945  * Returns the size of uninitialized extent to be written on success.
2946  */
2947 static int ext4_split_unwritten_extents(handle_t *handle,
2948 					struct inode *inode,
2949 					struct ext4_map_blocks *map,
2950 					struct ext4_ext_path *path,
2951 					int flags)
2952 {
2953 	struct ext4_extent *ex, newex, orig_ex;
2954 	struct ext4_extent *ex1 = NULL;
2955 	struct ext4_extent *ex2 = NULL;
2956 	struct ext4_extent *ex3 = NULL;
2957 	struct ext4_extent_header *eh;
2958 	ext4_lblk_t ee_block, eof_block;
2959 	unsigned int allocated, ee_len, depth;
2960 	ext4_fsblk_t newblock;
2961 	int err = 0;
2962 	int may_zeroout;
2963 
2964 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2965 		"block %llu, max_blocks %u\n", inode->i_ino,
2966 		(unsigned long long)map->m_lblk, map->m_len);
2967 
2968 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2969 		inode->i_sb->s_blocksize_bits;
2970 	if (eof_block < map->m_lblk + map->m_len)
2971 		eof_block = map->m_lblk + map->m_len;
2972 
2973 	depth = ext_depth(inode);
2974 	eh = path[depth].p_hdr;
2975 	ex = path[depth].p_ext;
2976 	ee_block = le32_to_cpu(ex->ee_block);
2977 	ee_len = ext4_ext_get_actual_len(ex);
2978 	allocated = ee_len - (map->m_lblk - ee_block);
2979 	newblock = map->m_lblk - ee_block + ext_pblock(ex);
2980 
2981 	ex2 = ex;
2982 	orig_ex.ee_block = ex->ee_block;
2983 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2984 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2985 
2986 	/*
2987 	 * It is safe to convert extent to initialized via explicit
2988 	 * zeroout only if extent is fully insde i_size or new_size.
2989 	 */
2990 	may_zeroout = ee_block + ee_len <= eof_block;
2991 
2992 	/*
2993  	 * If the uninitialized extent begins at the same logical
2994  	 * block where the write begins, and the write completely
2995  	 * covers the extent, then we don't need to split it.
2996  	 */
2997 	if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2998 		return allocated;
2999 
3000 	err = ext4_ext_get_access(handle, inode, path + depth);
3001 	if (err)
3002 		goto out;
3003 	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
3004 	if (map->m_lblk > ee_block) {
3005 		ex1 = ex;
3006 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
3007 		ext4_ext_mark_uninitialized(ex1);
3008 		ex2 = &newex;
3009 	}
3010 	/*
3011 	 * for sanity, update the length of the ex2 extent before
3012 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
3013 	 * overlap of blocks.
3014 	 */
3015 	if (!ex1 && allocated > map->m_len)
3016 		ex2->ee_len = cpu_to_le16(map->m_len);
3017 	/* ex3: to ee_block + ee_len : uninitialised */
3018 	if (allocated > map->m_len) {
3019 		unsigned int newdepth;
3020 		ex3 = &newex;
3021 		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
3022 		ext4_ext_store_pblock(ex3, newblock + map->m_len);
3023 		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
3024 		ext4_ext_mark_uninitialized(ex3);
3025 		err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
3026 		if (err == -ENOSPC && may_zeroout) {
3027 			err =  ext4_ext_zeroout(inode, &orig_ex);
3028 			if (err)
3029 				goto fix_extent_len;
3030 			/* update the extent length and mark as initialized */
3031 			ex->ee_block = orig_ex.ee_block;
3032 			ex->ee_len   = orig_ex.ee_len;
3033 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3034 			ext4_ext_dirty(handle, inode, path + depth);
3035 			/* zeroed the full extent */
3036 			/* blocks available from map->m_lblk */
3037 			return allocated;
3038 
3039 		} else if (err)
3040 			goto fix_extent_len;
3041 		/*
3042 		 * The depth, and hence eh & ex might change
3043 		 * as part of the insert above.
3044 		 */
3045 		newdepth = ext_depth(inode);
3046 		/*
3047 		 * update the extent length after successful insert of the
3048 		 * split extent
3049 		 */
3050 		ee_len -= ext4_ext_get_actual_len(ex3);
3051 		orig_ex.ee_len = cpu_to_le16(ee_len);
3052 		may_zeroout = ee_block + ee_len <= eof_block;
3053 
3054 		depth = newdepth;
3055 		ext4_ext_drop_refs(path);
3056 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3057 		if (IS_ERR(path)) {
3058 			err = PTR_ERR(path);
3059 			goto out;
3060 		}
3061 		eh = path[depth].p_hdr;
3062 		ex = path[depth].p_ext;
3063 		if (ex2 != &newex)
3064 			ex2 = ex;
3065 
3066 		err = ext4_ext_get_access(handle, inode, path + depth);
3067 		if (err)
3068 			goto out;
3069 
3070 		allocated = map->m_len;
3071 	}
3072 	/*
3073 	 * If there was a change of depth as part of the
3074 	 * insertion of ex3 above, we need to update the length
3075 	 * of the ex1 extent again here
3076 	 */
3077 	if (ex1 && ex1 != ex) {
3078 		ex1 = ex;
3079 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
3080 		ext4_ext_mark_uninitialized(ex1);
3081 		ex2 = &newex;
3082 	}
3083 	/*
3084 	 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
3085 	 * using direct I/O, uninitialised still.
3086 	 */
3087 	ex2->ee_block = cpu_to_le32(map->m_lblk);
3088 	ext4_ext_store_pblock(ex2, newblock);
3089 	ex2->ee_len = cpu_to_le16(allocated);
3090 	ext4_ext_mark_uninitialized(ex2);
3091 	if (ex2 != ex)
3092 		goto insert;
3093 	/* Mark modified extent as dirty */
3094 	err = ext4_ext_dirty(handle, inode, path + depth);
3095 	ext_debug("out here\n");
3096 	goto out;
3097 insert:
3098 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3099 	if (err == -ENOSPC && may_zeroout) {
3100 		err =  ext4_ext_zeroout(inode, &orig_ex);
3101 		if (err)
3102 			goto fix_extent_len;
3103 		/* update the extent length and mark as initialized */
3104 		ex->ee_block = orig_ex.ee_block;
3105 		ex->ee_len   = orig_ex.ee_len;
3106 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3107 		ext4_ext_dirty(handle, inode, path + depth);
3108 		/* zero out the first half */
3109 		return allocated;
3110 	} else if (err)
3111 		goto fix_extent_len;
3112 out:
3113 	ext4_ext_show_leaf(inode, path);
3114 	return err ? err : allocated;
3115 
3116 fix_extent_len:
3117 	ex->ee_block = orig_ex.ee_block;
3118 	ex->ee_len   = orig_ex.ee_len;
3119 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3120 	ext4_ext_mark_uninitialized(ex);
3121 	ext4_ext_dirty(handle, inode, path + depth);
3122 	return err;
3123 }
3124 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3125 					      struct inode *inode,
3126 					      struct ext4_ext_path *path)
3127 {
3128 	struct ext4_extent *ex;
3129 	struct ext4_extent_header *eh;
3130 	int depth;
3131 	int err = 0;
3132 	int ret = 0;
3133 
3134 	depth = ext_depth(inode);
3135 	eh = path[depth].p_hdr;
3136 	ex = path[depth].p_ext;
3137 
3138 	err = ext4_ext_get_access(handle, inode, path + depth);
3139 	if (err)
3140 		goto out;
3141 	/* first mark the extent as initialized */
3142 	ext4_ext_mark_initialized(ex);
3143 
3144 	/*
3145 	 * We have to see if it can be merged with the extent
3146 	 * on the left.
3147 	 */
3148 	if (ex > EXT_FIRST_EXTENT(eh)) {
3149 		/*
3150 		 * To merge left, pass "ex - 1" to try_to_merge(),
3151 		 * since it merges towards right _only_.
3152 		 */
3153 		ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3154 		if (ret) {
3155 			err = ext4_ext_correct_indexes(handle, inode, path);
3156 			if (err)
3157 				goto out;
3158 			depth = ext_depth(inode);
3159 			ex--;
3160 		}
3161 	}
3162 	/*
3163 	 * Try to Merge towards right.
3164 	 */
3165 	ret = ext4_ext_try_to_merge(inode, path, ex);
3166 	if (ret) {
3167 		err = ext4_ext_correct_indexes(handle, inode, path);
3168 		if (err)
3169 			goto out;
3170 		depth = ext_depth(inode);
3171 	}
3172 	/* Mark modified extent as dirty */
3173 	err = ext4_ext_dirty(handle, inode, path + depth);
3174 out:
3175 	ext4_ext_show_leaf(inode, path);
3176 	return err;
3177 }
3178 
3179 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3180 			sector_t block, int count)
3181 {
3182 	int i;
3183 	for (i = 0; i < count; i++)
3184                 unmap_underlying_metadata(bdev, block + i);
3185 }
3186 
3187 static int
3188 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3189 			struct ext4_map_blocks *map,
3190 			struct ext4_ext_path *path, int flags,
3191 			unsigned int allocated, ext4_fsblk_t newblock)
3192 {
3193 	int ret = 0;
3194 	int err = 0;
3195 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3196 
3197 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3198 		  "block %llu, max_blocks %u, flags %d, allocated %u",
3199 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3200 		  flags, allocated);
3201 	ext4_ext_show_leaf(inode, path);
3202 
3203 	/* get_block() before submit the IO, split the extent */
3204 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3205 		ret = ext4_split_unwritten_extents(handle, inode, map,
3206 						   path, flags);
3207 		/*
3208 		 * Flag the inode(non aio case) or end_io struct (aio case)
3209 		 * that this IO needs to convertion to written when IO is
3210 		 * completed
3211 		 */
3212 		if (io)
3213 			io->flag = EXT4_IO_UNWRITTEN;
3214 		else
3215 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3216 		if (ext4_should_dioread_nolock(inode))
3217 			map->m_flags |= EXT4_MAP_UNINIT;
3218 		goto out;
3219 	}
3220 	/* IO end_io complete, convert the filled extent to written */
3221 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3222 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3223 							path);
3224 		if (ret >= 0)
3225 			ext4_update_inode_fsync_trans(handle, inode, 1);
3226 		goto out2;
3227 	}
3228 	/* buffered IO case */
3229 	/*
3230 	 * repeat fallocate creation request
3231 	 * we already have an unwritten extent
3232 	 */
3233 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3234 		goto map_out;
3235 
3236 	/* buffered READ or buffered write_begin() lookup */
3237 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3238 		/*
3239 		 * We have blocks reserved already.  We
3240 		 * return allocated blocks so that delalloc
3241 		 * won't do block reservation for us.  But
3242 		 * the buffer head will be unmapped so that
3243 		 * a read from the block returns 0s.
3244 		 */
3245 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3246 		goto out1;
3247 	}
3248 
3249 	/* buffered write, writepage time, convert*/
3250 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3251 	if (ret >= 0)
3252 		ext4_update_inode_fsync_trans(handle, inode, 1);
3253 out:
3254 	if (ret <= 0) {
3255 		err = ret;
3256 		goto out2;
3257 	} else
3258 		allocated = ret;
3259 	map->m_flags |= EXT4_MAP_NEW;
3260 	/*
3261 	 * if we allocated more blocks than requested
3262 	 * we need to make sure we unmap the extra block
3263 	 * allocated. The actual needed block will get
3264 	 * unmapped later when we find the buffer_head marked
3265 	 * new.
3266 	 */
3267 	if (allocated > map->m_len) {
3268 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3269 					newblock + map->m_len,
3270 					allocated - map->m_len);
3271 		allocated = map->m_len;
3272 	}
3273 
3274 	/*
3275 	 * If we have done fallocate with the offset that is already
3276 	 * delayed allocated, we would have block reservation
3277 	 * and quota reservation done in the delayed write path.
3278 	 * But fallocate would have already updated quota and block
3279 	 * count for this offset. So cancel these reservation
3280 	 */
3281 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3282 		ext4_da_update_reserve_space(inode, allocated, 0);
3283 
3284 map_out:
3285 	map->m_flags |= EXT4_MAP_MAPPED;
3286 out1:
3287 	if (allocated > map->m_len)
3288 		allocated = map->m_len;
3289 	ext4_ext_show_leaf(inode, path);
3290 	map->m_pblk = newblock;
3291 	map->m_len = allocated;
3292 out2:
3293 	if (path) {
3294 		ext4_ext_drop_refs(path);
3295 		kfree(path);
3296 	}
3297 	return err ? err : allocated;
3298 }
3299 /*
3300  * Block allocation/map/preallocation routine for extents based files
3301  *
3302  *
3303  * Need to be called with
3304  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3305  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3306  *
3307  * return > 0, number of of blocks already mapped/allocated
3308  *          if create == 0 and these are pre-allocated blocks
3309  *          	buffer head is unmapped
3310  *          otherwise blocks are mapped
3311  *
3312  * return = 0, if plain look up failed (blocks have not been allocated)
3313  *          buffer head is unmapped
3314  *
3315  * return < 0, error case.
3316  */
3317 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3318 			struct ext4_map_blocks *map, int flags)
3319 {
3320 	struct ext4_ext_path *path = NULL;
3321 	struct ext4_extent_header *eh;
3322 	struct ext4_extent newex, *ex, *last_ex;
3323 	ext4_fsblk_t newblock;
3324 	int i, err = 0, depth, ret, cache_type;
3325 	unsigned int allocated = 0;
3326 	struct ext4_allocation_request ar;
3327 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3328 
3329 	ext_debug("blocks %u/%u requested for inode %lu\n",
3330 		  map->m_lblk, map->m_len, inode->i_ino);
3331 
3332 	/* check in cache */
3333 	cache_type = ext4_ext_in_cache(inode, map->m_lblk, &newex);
3334 	if (cache_type) {
3335 		if (cache_type == EXT4_EXT_CACHE_GAP) {
3336 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3337 				/*
3338 				 * block isn't allocated yet and
3339 				 * user doesn't want to allocate it
3340 				 */
3341 				goto out2;
3342 			}
3343 			/* we should allocate requested block */
3344 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
3345 			/* block is already allocated */
3346 			newblock = map->m_lblk
3347 				   - le32_to_cpu(newex.ee_block)
3348 				   + ext_pblock(&newex);
3349 			/* number of remaining blocks in the extent */
3350 			allocated = ext4_ext_get_actual_len(&newex) -
3351 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3352 			goto out;
3353 		} else {
3354 			BUG();
3355 		}
3356 	}
3357 
3358 	/* find extent for this block */
3359 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3360 	if (IS_ERR(path)) {
3361 		err = PTR_ERR(path);
3362 		path = NULL;
3363 		goto out2;
3364 	}
3365 
3366 	depth = ext_depth(inode);
3367 
3368 	/*
3369 	 * consistent leaf must not be empty;
3370 	 * this situation is possible, though, _during_ tree modification;
3371 	 * this is why assert can't be put in ext4_ext_find_extent()
3372 	 */
3373 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3374 		EXT4_ERROR_INODE(inode, "bad extent address "
3375 				 "lblock: %lu, depth: %d pblock %lld",
3376 				 (unsigned long) map->m_lblk, depth,
3377 				 path[depth].p_block);
3378 		err = -EIO;
3379 		goto out2;
3380 	}
3381 	eh = path[depth].p_hdr;
3382 
3383 	ex = path[depth].p_ext;
3384 	if (ex) {
3385 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3386 		ext4_fsblk_t ee_start = ext_pblock(ex);
3387 		unsigned short ee_len;
3388 
3389 		/*
3390 		 * Uninitialized extents are treated as holes, except that
3391 		 * we split out initialized portions during a write.
3392 		 */
3393 		ee_len = ext4_ext_get_actual_len(ex);
3394 		/* if found extent covers block, simply return it */
3395 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3396 			newblock = map->m_lblk - ee_block + ee_start;
3397 			/* number of remaining blocks in the extent */
3398 			allocated = ee_len - (map->m_lblk - ee_block);
3399 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3400 				  ee_block, ee_len, newblock);
3401 
3402 			/* Do not put uninitialized extent in the cache */
3403 			if (!ext4_ext_is_uninitialized(ex)) {
3404 				ext4_ext_put_in_cache(inode, ee_block,
3405 							ee_len, ee_start,
3406 							EXT4_EXT_CACHE_EXTENT);
3407 				goto out;
3408 			}
3409 			ret = ext4_ext_handle_uninitialized_extents(handle,
3410 					inode, map, path, flags, allocated,
3411 					newblock);
3412 			return ret;
3413 		}
3414 	}
3415 
3416 	/*
3417 	 * requested block isn't allocated yet;
3418 	 * we couldn't try to create block if create flag is zero
3419 	 */
3420 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3421 		/*
3422 		 * put just found gap into cache to speed up
3423 		 * subsequent requests
3424 		 */
3425 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3426 		goto out2;
3427 	}
3428 	/*
3429 	 * Okay, we need to do block allocation.
3430 	 */
3431 
3432 	/* find neighbour allocated blocks */
3433 	ar.lleft = map->m_lblk;
3434 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3435 	if (err)
3436 		goto out2;
3437 	ar.lright = map->m_lblk;
3438 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3439 	if (err)
3440 		goto out2;
3441 
3442 	/*
3443 	 * See if request is beyond maximum number of blocks we can have in
3444 	 * a single extent. For an initialized extent this limit is
3445 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3446 	 * EXT_UNINIT_MAX_LEN.
3447 	 */
3448 	if (map->m_len > EXT_INIT_MAX_LEN &&
3449 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3450 		map->m_len = EXT_INIT_MAX_LEN;
3451 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3452 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3453 		map->m_len = EXT_UNINIT_MAX_LEN;
3454 
3455 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3456 	newex.ee_block = cpu_to_le32(map->m_lblk);
3457 	newex.ee_len = cpu_to_le16(map->m_len);
3458 	err = ext4_ext_check_overlap(inode, &newex, path);
3459 	if (err)
3460 		allocated = ext4_ext_get_actual_len(&newex);
3461 	else
3462 		allocated = map->m_len;
3463 
3464 	/* allocate new block */
3465 	ar.inode = inode;
3466 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3467 	ar.logical = map->m_lblk;
3468 	ar.len = allocated;
3469 	if (S_ISREG(inode->i_mode))
3470 		ar.flags = EXT4_MB_HINT_DATA;
3471 	else
3472 		/* disable in-core preallocation for non-regular files */
3473 		ar.flags = 0;
3474 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3475 	if (!newblock)
3476 		goto out2;
3477 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3478 		  ar.goal, newblock, allocated);
3479 
3480 	/* try to insert new extent into found leaf and return */
3481 	ext4_ext_store_pblock(&newex, newblock);
3482 	newex.ee_len = cpu_to_le16(ar.len);
3483 	/* Mark uninitialized */
3484 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3485 		ext4_ext_mark_uninitialized(&newex);
3486 		/*
3487 		 * io_end structure was created for every IO write to an
3488 		 * uninitialized extent. To avoid unecessary conversion,
3489 		 * here we flag the IO that really needs the conversion.
3490 		 * For non asycn direct IO case, flag the inode state
3491 		 * that we need to perform convertion when IO is done.
3492 		 */
3493 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3494 			if (io)
3495 				io->flag = EXT4_IO_UNWRITTEN;
3496 			else
3497 				ext4_set_inode_state(inode,
3498 						     EXT4_STATE_DIO_UNWRITTEN);
3499 		}
3500 		if (ext4_should_dioread_nolock(inode))
3501 			map->m_flags |= EXT4_MAP_UNINIT;
3502 	}
3503 
3504 	if (unlikely(ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) {
3505 		if (unlikely(!eh->eh_entries)) {
3506 			EXT4_ERROR_INODE(inode,
3507 					 "eh->eh_entries == 0 and "
3508 					 "EOFBLOCKS_FL set");
3509 			err = -EIO;
3510 			goto out2;
3511 		}
3512 		last_ex = EXT_LAST_EXTENT(eh);
3513 		/*
3514 		 * If the current leaf block was reached by looking at
3515 		 * the last index block all the way down the tree, and
3516 		 * we are extending the inode beyond the last extent
3517 		 * in the current leaf block, then clear the
3518 		 * EOFBLOCKS_FL flag.
3519 		 */
3520 		for (i = depth-1; i >= 0; i--) {
3521 			if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3522 				break;
3523 		}
3524 		if ((i < 0) &&
3525 		    (map->m_lblk + ar.len > le32_to_cpu(last_ex->ee_block) +
3526 		     ext4_ext_get_actual_len(last_ex)))
3527 			ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3528 	}
3529 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3530 	if (err) {
3531 		/* free data blocks we just allocated */
3532 		/* not a good idea to call discard here directly,
3533 		 * but otherwise we'd need to call it every free() */
3534 		ext4_discard_preallocations(inode);
3535 		ext4_free_blocks(handle, inode, 0, ext_pblock(&newex),
3536 				 ext4_ext_get_actual_len(&newex), 0);
3537 		goto out2;
3538 	}
3539 
3540 	/* previous routine could use block we allocated */
3541 	newblock = ext_pblock(&newex);
3542 	allocated = ext4_ext_get_actual_len(&newex);
3543 	if (allocated > map->m_len)
3544 		allocated = map->m_len;
3545 	map->m_flags |= EXT4_MAP_NEW;
3546 
3547 	/*
3548 	 * Update reserved blocks/metadata blocks after successful
3549 	 * block allocation which had been deferred till now.
3550 	 */
3551 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3552 		ext4_da_update_reserve_space(inode, allocated, 1);
3553 
3554 	/*
3555 	 * Cache the extent and update transaction to commit on fdatasync only
3556 	 * when it is _not_ an uninitialized extent.
3557 	 */
3558 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3559 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock,
3560 						EXT4_EXT_CACHE_EXTENT);
3561 		ext4_update_inode_fsync_trans(handle, inode, 1);
3562 	} else
3563 		ext4_update_inode_fsync_trans(handle, inode, 0);
3564 out:
3565 	if (allocated > map->m_len)
3566 		allocated = map->m_len;
3567 	ext4_ext_show_leaf(inode, path);
3568 	map->m_flags |= EXT4_MAP_MAPPED;
3569 	map->m_pblk = newblock;
3570 	map->m_len = allocated;
3571 out2:
3572 	if (path) {
3573 		ext4_ext_drop_refs(path);
3574 		kfree(path);
3575 	}
3576 	return err ? err : allocated;
3577 }
3578 
3579 void ext4_ext_truncate(struct inode *inode)
3580 {
3581 	struct address_space *mapping = inode->i_mapping;
3582 	struct super_block *sb = inode->i_sb;
3583 	ext4_lblk_t last_block;
3584 	handle_t *handle;
3585 	int err = 0;
3586 
3587 	/*
3588 	 * probably first extent we're gonna free will be last in block
3589 	 */
3590 	err = ext4_writepage_trans_blocks(inode);
3591 	handle = ext4_journal_start(inode, err);
3592 	if (IS_ERR(handle))
3593 		return;
3594 
3595 	if (inode->i_size & (sb->s_blocksize - 1))
3596 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3597 
3598 	if (ext4_orphan_add(handle, inode))
3599 		goto out_stop;
3600 
3601 	down_write(&EXT4_I(inode)->i_data_sem);
3602 	ext4_ext_invalidate_cache(inode);
3603 
3604 	ext4_discard_preallocations(inode);
3605 
3606 	/*
3607 	 * TODO: optimization is possible here.
3608 	 * Probably we need not scan at all,
3609 	 * because page truncation is enough.
3610 	 */
3611 
3612 	/* we have to know where to truncate from in crash case */
3613 	EXT4_I(inode)->i_disksize = inode->i_size;
3614 	ext4_mark_inode_dirty(handle, inode);
3615 
3616 	last_block = (inode->i_size + sb->s_blocksize - 1)
3617 			>> EXT4_BLOCK_SIZE_BITS(sb);
3618 	err = ext4_ext_remove_space(inode, last_block);
3619 
3620 	/* In a multi-transaction truncate, we only make the final
3621 	 * transaction synchronous.
3622 	 */
3623 	if (IS_SYNC(inode))
3624 		ext4_handle_sync(handle);
3625 
3626 out_stop:
3627 	up_write(&EXT4_I(inode)->i_data_sem);
3628 	/*
3629 	 * If this was a simple ftruncate() and the file will remain alive,
3630 	 * then we need to clear up the orphan record which we created above.
3631 	 * However, if this was a real unlink then we were called by
3632 	 * ext4_delete_inode(), and we allow that function to clean up the
3633 	 * orphan info for us.
3634 	 */
3635 	if (inode->i_nlink)
3636 		ext4_orphan_del(handle, inode);
3637 
3638 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3639 	ext4_mark_inode_dirty(handle, inode);
3640 	ext4_journal_stop(handle);
3641 }
3642 
3643 static void ext4_falloc_update_inode(struct inode *inode,
3644 				int mode, loff_t new_size, int update_ctime)
3645 {
3646 	struct timespec now;
3647 
3648 	if (update_ctime) {
3649 		now = current_fs_time(inode->i_sb);
3650 		if (!timespec_equal(&inode->i_ctime, &now))
3651 			inode->i_ctime = now;
3652 	}
3653 	/*
3654 	 * Update only when preallocation was requested beyond
3655 	 * the file size.
3656 	 */
3657 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3658 		if (new_size > i_size_read(inode))
3659 			i_size_write(inode, new_size);
3660 		if (new_size > EXT4_I(inode)->i_disksize)
3661 			ext4_update_i_disksize(inode, new_size);
3662 	} else {
3663 		/*
3664 		 * Mark that we allocate beyond EOF so the subsequent truncate
3665 		 * can proceed even if the new size is the same as i_size.
3666 		 */
3667 		if (new_size > i_size_read(inode))
3668 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3669 	}
3670 
3671 }
3672 
3673 /*
3674  * preallocate space for a file. This implements ext4's fallocate inode
3675  * operation, which gets called from sys_fallocate system call.
3676  * For block-mapped files, posix_fallocate should fall back to the method
3677  * of writing zeroes to the required new blocks (the same behavior which is
3678  * expected for file systems which do not support fallocate() system call).
3679  */
3680 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3681 {
3682 	handle_t *handle;
3683 	loff_t new_size;
3684 	unsigned int max_blocks;
3685 	int ret = 0;
3686 	int ret2 = 0;
3687 	int retries = 0;
3688 	struct ext4_map_blocks map;
3689 	unsigned int credits, blkbits = inode->i_blkbits;
3690 
3691 	/*
3692 	 * currently supporting (pre)allocate mode for extent-based
3693 	 * files _only_
3694 	 */
3695 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3696 		return -EOPNOTSUPP;
3697 
3698 	/* preallocation to directories is currently not supported */
3699 	if (S_ISDIR(inode->i_mode))
3700 		return -ENODEV;
3701 
3702 	map.m_lblk = offset >> blkbits;
3703 	/*
3704 	 * We can't just convert len to max_blocks because
3705 	 * If blocksize = 4096 offset = 3072 and len = 2048
3706 	 */
3707 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3708 		- map.m_lblk;
3709 	/*
3710 	 * credits to insert 1 extent into extent tree
3711 	 */
3712 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3713 	mutex_lock(&inode->i_mutex);
3714 	ret = inode_newsize_ok(inode, (len + offset));
3715 	if (ret) {
3716 		mutex_unlock(&inode->i_mutex);
3717 		return ret;
3718 	}
3719 retry:
3720 	while (ret >= 0 && ret < max_blocks) {
3721 		map.m_lblk = map.m_lblk + ret;
3722 		map.m_len = max_blocks = max_blocks - ret;
3723 		handle = ext4_journal_start(inode, credits);
3724 		if (IS_ERR(handle)) {
3725 			ret = PTR_ERR(handle);
3726 			break;
3727 		}
3728 		ret = ext4_map_blocks(handle, inode, &map,
3729 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3730 		if (ret <= 0) {
3731 #ifdef EXT4FS_DEBUG
3732 			WARN_ON(ret <= 0);
3733 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3734 				    "returned error inode#%lu, block=%u, "
3735 				    "max_blocks=%u", __func__,
3736 				    inode->i_ino, block, max_blocks);
3737 #endif
3738 			ext4_mark_inode_dirty(handle, inode);
3739 			ret2 = ext4_journal_stop(handle);
3740 			break;
3741 		}
3742 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3743 						blkbits) >> blkbits))
3744 			new_size = offset + len;
3745 		else
3746 			new_size = (map.m_lblk + ret) << blkbits;
3747 
3748 		ext4_falloc_update_inode(inode, mode, new_size,
3749 					 (map.m_flags & EXT4_MAP_NEW));
3750 		ext4_mark_inode_dirty(handle, inode);
3751 		ret2 = ext4_journal_stop(handle);
3752 		if (ret2)
3753 			break;
3754 	}
3755 	if (ret == -ENOSPC &&
3756 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3757 		ret = 0;
3758 		goto retry;
3759 	}
3760 	mutex_unlock(&inode->i_mutex);
3761 	return ret > 0 ? ret2 : ret;
3762 }
3763 
3764 /*
3765  * This function convert a range of blocks to written extents
3766  * The caller of this function will pass the start offset and the size.
3767  * all unwritten extents within this range will be converted to
3768  * written extents.
3769  *
3770  * This function is called from the direct IO end io call back
3771  * function, to convert the fallocated extents after IO is completed.
3772  * Returns 0 on success.
3773  */
3774 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3775 				    ssize_t len)
3776 {
3777 	handle_t *handle;
3778 	unsigned int max_blocks;
3779 	int ret = 0;
3780 	int ret2 = 0;
3781 	struct ext4_map_blocks map;
3782 	unsigned int credits, blkbits = inode->i_blkbits;
3783 
3784 	map.m_lblk = offset >> blkbits;
3785 	/*
3786 	 * We can't just convert len to max_blocks because
3787 	 * If blocksize = 4096 offset = 3072 and len = 2048
3788 	 */
3789 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3790 		      map.m_lblk);
3791 	/*
3792 	 * credits to insert 1 extent into extent tree
3793 	 */
3794 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3795 	while (ret >= 0 && ret < max_blocks) {
3796 		map.m_lblk += ret;
3797 		map.m_len = (max_blocks -= ret);
3798 		handle = ext4_journal_start(inode, credits);
3799 		if (IS_ERR(handle)) {
3800 			ret = PTR_ERR(handle);
3801 			break;
3802 		}
3803 		ret = ext4_map_blocks(handle, inode, &map,
3804 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3805 		if (ret <= 0) {
3806 			WARN_ON(ret <= 0);
3807 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3808 				    "returned error inode#%lu, block=%u, "
3809 				    "max_blocks=%u", __func__,
3810 				    inode->i_ino, map.m_lblk, map.m_len);
3811 		}
3812 		ext4_mark_inode_dirty(handle, inode);
3813 		ret2 = ext4_journal_stop(handle);
3814 		if (ret <= 0 || ret2 )
3815 			break;
3816 	}
3817 	return ret > 0 ? ret2 : ret;
3818 }
3819 /*
3820  * Callback function called for each extent to gather FIEMAP information.
3821  */
3822 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3823 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3824 		       void *data)
3825 {
3826 	struct fiemap_extent_info *fieinfo = data;
3827 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3828 	__u64	logical;
3829 	__u64	physical;
3830 	__u64	length;
3831 	__u32	flags = 0;
3832 	int	error;
3833 
3834 	logical =  (__u64)newex->ec_block << blksize_bits;
3835 
3836 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3837 		pgoff_t offset;
3838 		struct page *page;
3839 		struct buffer_head *bh = NULL;
3840 
3841 		offset = logical >> PAGE_SHIFT;
3842 		page = find_get_page(inode->i_mapping, offset);
3843 		if (!page || !page_has_buffers(page))
3844 			return EXT_CONTINUE;
3845 
3846 		bh = page_buffers(page);
3847 
3848 		if (!bh)
3849 			return EXT_CONTINUE;
3850 
3851 		if (buffer_delay(bh)) {
3852 			flags |= FIEMAP_EXTENT_DELALLOC;
3853 			page_cache_release(page);
3854 		} else {
3855 			page_cache_release(page);
3856 			return EXT_CONTINUE;
3857 		}
3858 	}
3859 
3860 	physical = (__u64)newex->ec_start << blksize_bits;
3861 	length =   (__u64)newex->ec_len << blksize_bits;
3862 
3863 	if (ex && ext4_ext_is_uninitialized(ex))
3864 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3865 
3866 	/*
3867 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3868 	 *
3869 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3870 	 * this also indicates no more allocated blocks.
3871 	 *
3872 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3873 	 */
3874 	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3875 	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3876 		loff_t size = i_size_read(inode);
3877 		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3878 
3879 		flags |= FIEMAP_EXTENT_LAST;
3880 		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3881 		    logical+length > size)
3882 			length = (size - logical + bs - 1) & ~(bs-1);
3883 	}
3884 
3885 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3886 					length, flags);
3887 	if (error < 0)
3888 		return error;
3889 	if (error == 1)
3890 		return EXT_BREAK;
3891 
3892 	return EXT_CONTINUE;
3893 }
3894 
3895 /* fiemap flags we can handle specified here */
3896 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3897 
3898 static int ext4_xattr_fiemap(struct inode *inode,
3899 				struct fiemap_extent_info *fieinfo)
3900 {
3901 	__u64 physical = 0;
3902 	__u64 length;
3903 	__u32 flags = FIEMAP_EXTENT_LAST;
3904 	int blockbits = inode->i_sb->s_blocksize_bits;
3905 	int error = 0;
3906 
3907 	/* in-inode? */
3908 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3909 		struct ext4_iloc iloc;
3910 		int offset;	/* offset of xattr in inode */
3911 
3912 		error = ext4_get_inode_loc(inode, &iloc);
3913 		if (error)
3914 			return error;
3915 		physical = iloc.bh->b_blocknr << blockbits;
3916 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3917 				EXT4_I(inode)->i_extra_isize;
3918 		physical += offset;
3919 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3920 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3921 		brelse(iloc.bh);
3922 	} else { /* external block */
3923 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3924 		length = inode->i_sb->s_blocksize;
3925 	}
3926 
3927 	if (physical)
3928 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3929 						length, flags);
3930 	return (error < 0 ? error : 0);
3931 }
3932 
3933 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3934 		__u64 start, __u64 len)
3935 {
3936 	ext4_lblk_t start_blk;
3937 	int error = 0;
3938 
3939 	/* fallback to generic here if not in extents fmt */
3940 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3941 		return generic_block_fiemap(inode, fieinfo, start, len,
3942 			ext4_get_block);
3943 
3944 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3945 		return -EBADR;
3946 
3947 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3948 		error = ext4_xattr_fiemap(inode, fieinfo);
3949 	} else {
3950 		ext4_lblk_t len_blks;
3951 		__u64 last_blk;
3952 
3953 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3954 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3955 		if (last_blk >= EXT_MAX_BLOCK)
3956 			last_blk = EXT_MAX_BLOCK-1;
3957 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3958 
3959 		/*
3960 		 * Walk the extent tree gathering extent information.
3961 		 * ext4_ext_fiemap_cb will push extents back to user.
3962 		 */
3963 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3964 					  ext4_ext_fiemap_cb, fieinfo);
3965 	}
3966 
3967 	return error;
3968 }
3969 
3970