xref: /linux/fs/ext4/extents.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 
45 #include <trace/events/ext4.h>
46 
47 /*
48  * used by extent splitting.
49  */
50 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
51 					due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
54 
55 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
57 
58 static __le32 ext4_extent_block_csum(struct inode *inode,
59 				     struct ext4_extent_header *eh)
60 {
61 	struct ext4_inode_info *ei = EXT4_I(inode);
62 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
63 	__u32 csum;
64 
65 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
66 			   EXT4_EXTENT_TAIL_OFFSET(eh));
67 	return cpu_to_le32(csum);
68 }
69 
70 static int ext4_extent_block_csum_verify(struct inode *inode,
71 					 struct ext4_extent_header *eh)
72 {
73 	struct ext4_extent_tail *et;
74 
75 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
76 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
77 		return 1;
78 
79 	et = find_ext4_extent_tail(eh);
80 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81 		return 0;
82 	return 1;
83 }
84 
85 static void ext4_extent_block_csum_set(struct inode *inode,
86 				       struct ext4_extent_header *eh)
87 {
88 	struct ext4_extent_tail *et;
89 
90 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
91 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
92 		return;
93 
94 	et = find_ext4_extent_tail(eh);
95 	et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97 
98 static int ext4_split_extent(handle_t *handle,
99 				struct inode *inode,
100 				struct ext4_ext_path *path,
101 				struct ext4_map_blocks *map,
102 				int split_flag,
103 				int flags);
104 
105 static int ext4_split_extent_at(handle_t *handle,
106 			     struct inode *inode,
107 			     struct ext4_ext_path *path,
108 			     ext4_lblk_t split,
109 			     int split_flag,
110 			     int flags);
111 
112 static int ext4_ext_truncate_extend_restart(handle_t *handle,
113 					    struct inode *inode,
114 					    int needed)
115 {
116 	int err;
117 
118 	if (!ext4_handle_valid(handle))
119 		return 0;
120 	if (handle->h_buffer_credits > needed)
121 		return 0;
122 	err = ext4_journal_extend(handle, needed);
123 	if (err <= 0)
124 		return err;
125 	err = ext4_truncate_restart_trans(handle, inode, needed);
126 	if (err == 0)
127 		err = -EAGAIN;
128 
129 	return err;
130 }
131 
132 /*
133  * could return:
134  *  - EROFS
135  *  - ENOMEM
136  */
137 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
138 				struct ext4_ext_path *path)
139 {
140 	if (path->p_bh) {
141 		/* path points to block */
142 		return ext4_journal_get_write_access(handle, path->p_bh);
143 	}
144 	/* path points to leaf/index in inode body */
145 	/* we use in-core data, no need to protect them */
146 	return 0;
147 }
148 
149 /*
150  * could return:
151  *  - EROFS
152  *  - ENOMEM
153  *  - EIO
154  */
155 #define ext4_ext_dirty(handle, inode, path) \
156 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
157 static int __ext4_ext_dirty(const char *where, unsigned int line,
158 			    handle_t *handle, struct inode *inode,
159 			    struct ext4_ext_path *path)
160 {
161 	int err;
162 	if (path->p_bh) {
163 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
164 		/* path points to block */
165 		err = __ext4_handle_dirty_metadata(where, line, handle,
166 						   inode, path->p_bh);
167 	} else {
168 		/* path points to leaf/index in inode body */
169 		err = ext4_mark_inode_dirty(handle, inode);
170 	}
171 	return err;
172 }
173 
174 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
175 			      struct ext4_ext_path *path,
176 			      ext4_lblk_t block)
177 {
178 	if (path) {
179 		int depth = path->p_depth;
180 		struct ext4_extent *ex;
181 
182 		/*
183 		 * Try to predict block placement assuming that we are
184 		 * filling in a file which will eventually be
185 		 * non-sparse --- i.e., in the case of libbfd writing
186 		 * an ELF object sections out-of-order but in a way
187 		 * the eventually results in a contiguous object or
188 		 * executable file, or some database extending a table
189 		 * space file.  However, this is actually somewhat
190 		 * non-ideal if we are writing a sparse file such as
191 		 * qemu or KVM writing a raw image file that is going
192 		 * to stay fairly sparse, since it will end up
193 		 * fragmenting the file system's free space.  Maybe we
194 		 * should have some hueristics or some way to allow
195 		 * userspace to pass a hint to file system,
196 		 * especially if the latter case turns out to be
197 		 * common.
198 		 */
199 		ex = path[depth].p_ext;
200 		if (ex) {
201 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
202 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
203 
204 			if (block > ext_block)
205 				return ext_pblk + (block - ext_block);
206 			else
207 				return ext_pblk - (ext_block - block);
208 		}
209 
210 		/* it looks like index is empty;
211 		 * try to find starting block from index itself */
212 		if (path[depth].p_bh)
213 			return path[depth].p_bh->b_blocknr;
214 	}
215 
216 	/* OK. use inode's group */
217 	return ext4_inode_to_goal_block(inode);
218 }
219 
220 /*
221  * Allocation for a meta data block
222  */
223 static ext4_fsblk_t
224 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
225 			struct ext4_ext_path *path,
226 			struct ext4_extent *ex, int *err, unsigned int flags)
227 {
228 	ext4_fsblk_t goal, newblock;
229 
230 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
231 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
232 					NULL, err);
233 	return newblock;
234 }
235 
236 static inline int ext4_ext_space_block(struct inode *inode, int check)
237 {
238 	int size;
239 
240 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 			/ sizeof(struct ext4_extent);
242 #ifdef AGGRESSIVE_TEST
243 	if (!check && size > 6)
244 		size = 6;
245 #endif
246 	return size;
247 }
248 
249 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
250 {
251 	int size;
252 
253 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
254 			/ sizeof(struct ext4_extent_idx);
255 #ifdef AGGRESSIVE_TEST
256 	if (!check && size > 5)
257 		size = 5;
258 #endif
259 	return size;
260 }
261 
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
263 {
264 	int size;
265 
266 	size = sizeof(EXT4_I(inode)->i_data);
267 	size -= sizeof(struct ext4_extent_header);
268 	size /= sizeof(struct ext4_extent);
269 #ifdef AGGRESSIVE_TEST
270 	if (!check && size > 3)
271 		size = 3;
272 #endif
273 	return size;
274 }
275 
276 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
277 {
278 	int size;
279 
280 	size = sizeof(EXT4_I(inode)->i_data);
281 	size -= sizeof(struct ext4_extent_header);
282 	size /= sizeof(struct ext4_extent_idx);
283 #ifdef AGGRESSIVE_TEST
284 	if (!check && size > 4)
285 		size = 4;
286 #endif
287 	return size;
288 }
289 
290 /*
291  * Calculate the number of metadata blocks needed
292  * to allocate @blocks
293  * Worse case is one block per extent
294  */
295 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
296 {
297 	struct ext4_inode_info *ei = EXT4_I(inode);
298 	int idxs;
299 
300 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
301 		/ sizeof(struct ext4_extent_idx));
302 
303 	/*
304 	 * If the new delayed allocation block is contiguous with the
305 	 * previous da block, it can share index blocks with the
306 	 * previous block, so we only need to allocate a new index
307 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
308 	 * an additional index block, and at ldxs**3 blocks, yet
309 	 * another index blocks.
310 	 */
311 	if (ei->i_da_metadata_calc_len &&
312 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
313 		int num = 0;
314 
315 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
316 			num++;
317 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
318 			num++;
319 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
320 			num++;
321 			ei->i_da_metadata_calc_len = 0;
322 		} else
323 			ei->i_da_metadata_calc_len++;
324 		ei->i_da_metadata_calc_last_lblock++;
325 		return num;
326 	}
327 
328 	/*
329 	 * In the worst case we need a new set of index blocks at
330 	 * every level of the inode's extent tree.
331 	 */
332 	ei->i_da_metadata_calc_len = 1;
333 	ei->i_da_metadata_calc_last_lblock = lblock;
334 	return ext_depth(inode) + 1;
335 }
336 
337 static int
338 ext4_ext_max_entries(struct inode *inode, int depth)
339 {
340 	int max;
341 
342 	if (depth == ext_depth(inode)) {
343 		if (depth == 0)
344 			max = ext4_ext_space_root(inode, 1);
345 		else
346 			max = ext4_ext_space_root_idx(inode, 1);
347 	} else {
348 		if (depth == 0)
349 			max = ext4_ext_space_block(inode, 1);
350 		else
351 			max = ext4_ext_space_block_idx(inode, 1);
352 	}
353 
354 	return max;
355 }
356 
357 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
358 {
359 	ext4_fsblk_t block = ext4_ext_pblock(ext);
360 	int len = ext4_ext_get_actual_len(ext);
361 
362 	if (len == 0)
363 		return 0;
364 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
365 }
366 
367 static int ext4_valid_extent_idx(struct inode *inode,
368 				struct ext4_extent_idx *ext_idx)
369 {
370 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
371 
372 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
373 }
374 
375 static int ext4_valid_extent_entries(struct inode *inode,
376 				struct ext4_extent_header *eh,
377 				int depth)
378 {
379 	unsigned short entries;
380 	if (eh->eh_entries == 0)
381 		return 1;
382 
383 	entries = le16_to_cpu(eh->eh_entries);
384 
385 	if (depth == 0) {
386 		/* leaf entries */
387 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
388 		while (entries) {
389 			if (!ext4_valid_extent(inode, ext))
390 				return 0;
391 			ext++;
392 			entries--;
393 		}
394 	} else {
395 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
396 		while (entries) {
397 			if (!ext4_valid_extent_idx(inode, ext_idx))
398 				return 0;
399 			ext_idx++;
400 			entries--;
401 		}
402 	}
403 	return 1;
404 }
405 
406 static int __ext4_ext_check(const char *function, unsigned int line,
407 			    struct inode *inode, struct ext4_extent_header *eh,
408 			    int depth)
409 {
410 	const char *error_msg;
411 	int max = 0;
412 
413 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
414 		error_msg = "invalid magic";
415 		goto corrupted;
416 	}
417 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
418 		error_msg = "unexpected eh_depth";
419 		goto corrupted;
420 	}
421 	if (unlikely(eh->eh_max == 0)) {
422 		error_msg = "invalid eh_max";
423 		goto corrupted;
424 	}
425 	max = ext4_ext_max_entries(inode, depth);
426 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
427 		error_msg = "too large eh_max";
428 		goto corrupted;
429 	}
430 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
431 		error_msg = "invalid eh_entries";
432 		goto corrupted;
433 	}
434 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
435 		error_msg = "invalid extent entries";
436 		goto corrupted;
437 	}
438 	/* Verify checksum on non-root extent tree nodes */
439 	if (ext_depth(inode) != depth &&
440 	    !ext4_extent_block_csum_verify(inode, eh)) {
441 		error_msg = "extent tree corrupted";
442 		goto corrupted;
443 	}
444 	return 0;
445 
446 corrupted:
447 	ext4_error_inode(inode, function, line, 0,
448 			"bad header/extent: %s - magic %x, "
449 			"entries %u, max %u(%u), depth %u(%u)",
450 			error_msg, le16_to_cpu(eh->eh_magic),
451 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
452 			max, le16_to_cpu(eh->eh_depth), depth);
453 
454 	return -EIO;
455 }
456 
457 #define ext4_ext_check(inode, eh, depth)	\
458 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
459 
460 int ext4_ext_check_inode(struct inode *inode)
461 {
462 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
463 }
464 
465 static int __ext4_ext_check_block(const char *function, unsigned int line,
466 				  struct inode *inode,
467 				  struct ext4_extent_header *eh,
468 				  int depth,
469 				  struct buffer_head *bh)
470 {
471 	int ret;
472 
473 	if (buffer_verified(bh))
474 		return 0;
475 	ret = ext4_ext_check(inode, eh, depth);
476 	if (ret)
477 		return ret;
478 	set_buffer_verified(bh);
479 	return ret;
480 }
481 
482 #define ext4_ext_check_block(inode, eh, depth, bh)	\
483 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
484 
485 #ifdef EXT_DEBUG
486 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
487 {
488 	int k, l = path->p_depth;
489 
490 	ext_debug("path:");
491 	for (k = 0; k <= l; k++, path++) {
492 		if (path->p_idx) {
493 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
494 			    ext4_idx_pblock(path->p_idx));
495 		} else if (path->p_ext) {
496 			ext_debug("  %d:[%d]%d:%llu ",
497 				  le32_to_cpu(path->p_ext->ee_block),
498 				  ext4_ext_is_uninitialized(path->p_ext),
499 				  ext4_ext_get_actual_len(path->p_ext),
500 				  ext4_ext_pblock(path->p_ext));
501 		} else
502 			ext_debug("  []");
503 	}
504 	ext_debug("\n");
505 }
506 
507 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
508 {
509 	int depth = ext_depth(inode);
510 	struct ext4_extent_header *eh;
511 	struct ext4_extent *ex;
512 	int i;
513 
514 	if (!path)
515 		return;
516 
517 	eh = path[depth].p_hdr;
518 	ex = EXT_FIRST_EXTENT(eh);
519 
520 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
521 
522 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
523 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
524 			  ext4_ext_is_uninitialized(ex),
525 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
526 	}
527 	ext_debug("\n");
528 }
529 
530 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
531 			ext4_fsblk_t newblock, int level)
532 {
533 	int depth = ext_depth(inode);
534 	struct ext4_extent *ex;
535 
536 	if (depth != level) {
537 		struct ext4_extent_idx *idx;
538 		idx = path[level].p_idx;
539 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
540 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
541 					le32_to_cpu(idx->ei_block),
542 					ext4_idx_pblock(idx),
543 					newblock);
544 			idx++;
545 		}
546 
547 		return;
548 	}
549 
550 	ex = path[depth].p_ext;
551 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
552 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
553 				le32_to_cpu(ex->ee_block),
554 				ext4_ext_pblock(ex),
555 				ext4_ext_is_uninitialized(ex),
556 				ext4_ext_get_actual_len(ex),
557 				newblock);
558 		ex++;
559 	}
560 }
561 
562 #else
563 #define ext4_ext_show_path(inode, path)
564 #define ext4_ext_show_leaf(inode, path)
565 #define ext4_ext_show_move(inode, path, newblock, level)
566 #endif
567 
568 void ext4_ext_drop_refs(struct ext4_ext_path *path)
569 {
570 	int depth = path->p_depth;
571 	int i;
572 
573 	for (i = 0; i <= depth; i++, path++)
574 		if (path->p_bh) {
575 			brelse(path->p_bh);
576 			path->p_bh = NULL;
577 		}
578 }
579 
580 /*
581  * ext4_ext_binsearch_idx:
582  * binary search for the closest index of the given block
583  * the header must be checked before calling this
584  */
585 static void
586 ext4_ext_binsearch_idx(struct inode *inode,
587 			struct ext4_ext_path *path, ext4_lblk_t block)
588 {
589 	struct ext4_extent_header *eh = path->p_hdr;
590 	struct ext4_extent_idx *r, *l, *m;
591 
592 
593 	ext_debug("binsearch for %u(idx):  ", block);
594 
595 	l = EXT_FIRST_INDEX(eh) + 1;
596 	r = EXT_LAST_INDEX(eh);
597 	while (l <= r) {
598 		m = l + (r - l) / 2;
599 		if (block < le32_to_cpu(m->ei_block))
600 			r = m - 1;
601 		else
602 			l = m + 1;
603 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
604 				m, le32_to_cpu(m->ei_block),
605 				r, le32_to_cpu(r->ei_block));
606 	}
607 
608 	path->p_idx = l - 1;
609 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
610 		  ext4_idx_pblock(path->p_idx));
611 
612 #ifdef CHECK_BINSEARCH
613 	{
614 		struct ext4_extent_idx *chix, *ix;
615 		int k;
616 
617 		chix = ix = EXT_FIRST_INDEX(eh);
618 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
619 		  if (k != 0 &&
620 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
621 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
622 				       "first=0x%p\n", k,
623 				       ix, EXT_FIRST_INDEX(eh));
624 				printk(KERN_DEBUG "%u <= %u\n",
625 				       le32_to_cpu(ix->ei_block),
626 				       le32_to_cpu(ix[-1].ei_block));
627 			}
628 			BUG_ON(k && le32_to_cpu(ix->ei_block)
629 					   <= le32_to_cpu(ix[-1].ei_block));
630 			if (block < le32_to_cpu(ix->ei_block))
631 				break;
632 			chix = ix;
633 		}
634 		BUG_ON(chix != path->p_idx);
635 	}
636 #endif
637 
638 }
639 
640 /*
641  * ext4_ext_binsearch:
642  * binary search for closest extent of the given block
643  * the header must be checked before calling this
644  */
645 static void
646 ext4_ext_binsearch(struct inode *inode,
647 		struct ext4_ext_path *path, ext4_lblk_t block)
648 {
649 	struct ext4_extent_header *eh = path->p_hdr;
650 	struct ext4_extent *r, *l, *m;
651 
652 	if (eh->eh_entries == 0) {
653 		/*
654 		 * this leaf is empty:
655 		 * we get such a leaf in split/add case
656 		 */
657 		return;
658 	}
659 
660 	ext_debug("binsearch for %u:  ", block);
661 
662 	l = EXT_FIRST_EXTENT(eh) + 1;
663 	r = EXT_LAST_EXTENT(eh);
664 
665 	while (l <= r) {
666 		m = l + (r - l) / 2;
667 		if (block < le32_to_cpu(m->ee_block))
668 			r = m - 1;
669 		else
670 			l = m + 1;
671 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
672 				m, le32_to_cpu(m->ee_block),
673 				r, le32_to_cpu(r->ee_block));
674 	}
675 
676 	path->p_ext = l - 1;
677 	ext_debug("  -> %d:%llu:[%d]%d ",
678 			le32_to_cpu(path->p_ext->ee_block),
679 			ext4_ext_pblock(path->p_ext),
680 			ext4_ext_is_uninitialized(path->p_ext),
681 			ext4_ext_get_actual_len(path->p_ext));
682 
683 #ifdef CHECK_BINSEARCH
684 	{
685 		struct ext4_extent *chex, *ex;
686 		int k;
687 
688 		chex = ex = EXT_FIRST_EXTENT(eh);
689 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
690 			BUG_ON(k && le32_to_cpu(ex->ee_block)
691 					  <= le32_to_cpu(ex[-1].ee_block));
692 			if (block < le32_to_cpu(ex->ee_block))
693 				break;
694 			chex = ex;
695 		}
696 		BUG_ON(chex != path->p_ext);
697 	}
698 #endif
699 
700 }
701 
702 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
703 {
704 	struct ext4_extent_header *eh;
705 
706 	eh = ext_inode_hdr(inode);
707 	eh->eh_depth = 0;
708 	eh->eh_entries = 0;
709 	eh->eh_magic = EXT4_EXT_MAGIC;
710 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
711 	ext4_mark_inode_dirty(handle, inode);
712 	ext4_ext_invalidate_cache(inode);
713 	return 0;
714 }
715 
716 struct ext4_ext_path *
717 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
718 					struct ext4_ext_path *path)
719 {
720 	struct ext4_extent_header *eh;
721 	struct buffer_head *bh;
722 	short int depth, i, ppos = 0, alloc = 0;
723 
724 	eh = ext_inode_hdr(inode);
725 	depth = ext_depth(inode);
726 
727 	/* account possible depth increase */
728 	if (!path) {
729 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
730 				GFP_NOFS);
731 		if (!path)
732 			return ERR_PTR(-ENOMEM);
733 		alloc = 1;
734 	}
735 	path[0].p_hdr = eh;
736 	path[0].p_bh = NULL;
737 
738 	i = depth;
739 	/* walk through the tree */
740 	while (i) {
741 		ext_debug("depth %d: num %d, max %d\n",
742 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
743 
744 		ext4_ext_binsearch_idx(inode, path + ppos, block);
745 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
746 		path[ppos].p_depth = i;
747 		path[ppos].p_ext = NULL;
748 
749 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
750 		if (unlikely(!bh))
751 			goto err;
752 		if (!bh_uptodate_or_lock(bh)) {
753 			trace_ext4_ext_load_extent(inode, block,
754 						path[ppos].p_block);
755 			if (bh_submit_read(bh) < 0) {
756 				put_bh(bh);
757 				goto err;
758 			}
759 		}
760 		eh = ext_block_hdr(bh);
761 		ppos++;
762 		if (unlikely(ppos > depth)) {
763 			put_bh(bh);
764 			EXT4_ERROR_INODE(inode,
765 					 "ppos %d > depth %d", ppos, depth);
766 			goto err;
767 		}
768 		path[ppos].p_bh = bh;
769 		path[ppos].p_hdr = eh;
770 		i--;
771 
772 		if (ext4_ext_check_block(inode, eh, i, bh))
773 			goto err;
774 	}
775 
776 	path[ppos].p_depth = i;
777 	path[ppos].p_ext = NULL;
778 	path[ppos].p_idx = NULL;
779 
780 	/* find extent */
781 	ext4_ext_binsearch(inode, path + ppos, block);
782 	/* if not an empty leaf */
783 	if (path[ppos].p_ext)
784 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
785 
786 	ext4_ext_show_path(inode, path);
787 
788 	return path;
789 
790 err:
791 	ext4_ext_drop_refs(path);
792 	if (alloc)
793 		kfree(path);
794 	return ERR_PTR(-EIO);
795 }
796 
797 /*
798  * ext4_ext_insert_index:
799  * insert new index [@logical;@ptr] into the block at @curp;
800  * check where to insert: before @curp or after @curp
801  */
802 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
803 				 struct ext4_ext_path *curp,
804 				 int logical, ext4_fsblk_t ptr)
805 {
806 	struct ext4_extent_idx *ix;
807 	int len, err;
808 
809 	err = ext4_ext_get_access(handle, inode, curp);
810 	if (err)
811 		return err;
812 
813 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
814 		EXT4_ERROR_INODE(inode,
815 				 "logical %d == ei_block %d!",
816 				 logical, le32_to_cpu(curp->p_idx->ei_block));
817 		return -EIO;
818 	}
819 
820 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
821 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
822 		EXT4_ERROR_INODE(inode,
823 				 "eh_entries %d >= eh_max %d!",
824 				 le16_to_cpu(curp->p_hdr->eh_entries),
825 				 le16_to_cpu(curp->p_hdr->eh_max));
826 		return -EIO;
827 	}
828 
829 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
830 		/* insert after */
831 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
832 		ix = curp->p_idx + 1;
833 	} else {
834 		/* insert before */
835 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
836 		ix = curp->p_idx;
837 	}
838 
839 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
840 	BUG_ON(len < 0);
841 	if (len > 0) {
842 		ext_debug("insert new index %d: "
843 				"move %d indices from 0x%p to 0x%p\n",
844 				logical, len, ix, ix + 1);
845 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
846 	}
847 
848 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
849 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
850 		return -EIO;
851 	}
852 
853 	ix->ei_block = cpu_to_le32(logical);
854 	ext4_idx_store_pblock(ix, ptr);
855 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
856 
857 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
858 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
859 		return -EIO;
860 	}
861 
862 	err = ext4_ext_dirty(handle, inode, curp);
863 	ext4_std_error(inode->i_sb, err);
864 
865 	return err;
866 }
867 
868 /*
869  * ext4_ext_split:
870  * inserts new subtree into the path, using free index entry
871  * at depth @at:
872  * - allocates all needed blocks (new leaf and all intermediate index blocks)
873  * - makes decision where to split
874  * - moves remaining extents and index entries (right to the split point)
875  *   into the newly allocated blocks
876  * - initializes subtree
877  */
878 static int ext4_ext_split(handle_t *handle, struct inode *inode,
879 			  unsigned int flags,
880 			  struct ext4_ext_path *path,
881 			  struct ext4_extent *newext, int at)
882 {
883 	struct buffer_head *bh = NULL;
884 	int depth = ext_depth(inode);
885 	struct ext4_extent_header *neh;
886 	struct ext4_extent_idx *fidx;
887 	int i = at, k, m, a;
888 	ext4_fsblk_t newblock, oldblock;
889 	__le32 border;
890 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
891 	int err = 0;
892 
893 	/* make decision: where to split? */
894 	/* FIXME: now decision is simplest: at current extent */
895 
896 	/* if current leaf will be split, then we should use
897 	 * border from split point */
898 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
899 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
900 		return -EIO;
901 	}
902 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
903 		border = path[depth].p_ext[1].ee_block;
904 		ext_debug("leaf will be split."
905 				" next leaf starts at %d\n",
906 				  le32_to_cpu(border));
907 	} else {
908 		border = newext->ee_block;
909 		ext_debug("leaf will be added."
910 				" next leaf starts at %d\n",
911 				le32_to_cpu(border));
912 	}
913 
914 	/*
915 	 * If error occurs, then we break processing
916 	 * and mark filesystem read-only. index won't
917 	 * be inserted and tree will be in consistent
918 	 * state. Next mount will repair buffers too.
919 	 */
920 
921 	/*
922 	 * Get array to track all allocated blocks.
923 	 * We need this to handle errors and free blocks
924 	 * upon them.
925 	 */
926 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
927 	if (!ablocks)
928 		return -ENOMEM;
929 
930 	/* allocate all needed blocks */
931 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
932 	for (a = 0; a < depth - at; a++) {
933 		newblock = ext4_ext_new_meta_block(handle, inode, path,
934 						   newext, &err, flags);
935 		if (newblock == 0)
936 			goto cleanup;
937 		ablocks[a] = newblock;
938 	}
939 
940 	/* initialize new leaf */
941 	newblock = ablocks[--a];
942 	if (unlikely(newblock == 0)) {
943 		EXT4_ERROR_INODE(inode, "newblock == 0!");
944 		err = -EIO;
945 		goto cleanup;
946 	}
947 	bh = sb_getblk(inode->i_sb, newblock);
948 	if (!bh) {
949 		err = -EIO;
950 		goto cleanup;
951 	}
952 	lock_buffer(bh);
953 
954 	err = ext4_journal_get_create_access(handle, bh);
955 	if (err)
956 		goto cleanup;
957 
958 	neh = ext_block_hdr(bh);
959 	neh->eh_entries = 0;
960 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
961 	neh->eh_magic = EXT4_EXT_MAGIC;
962 	neh->eh_depth = 0;
963 
964 	/* move remainder of path[depth] to the new leaf */
965 	if (unlikely(path[depth].p_hdr->eh_entries !=
966 		     path[depth].p_hdr->eh_max)) {
967 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
968 				 path[depth].p_hdr->eh_entries,
969 				 path[depth].p_hdr->eh_max);
970 		err = -EIO;
971 		goto cleanup;
972 	}
973 	/* start copy from next extent */
974 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
975 	ext4_ext_show_move(inode, path, newblock, depth);
976 	if (m) {
977 		struct ext4_extent *ex;
978 		ex = EXT_FIRST_EXTENT(neh);
979 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
980 		le16_add_cpu(&neh->eh_entries, m);
981 	}
982 
983 	ext4_extent_block_csum_set(inode, neh);
984 	set_buffer_uptodate(bh);
985 	unlock_buffer(bh);
986 
987 	err = ext4_handle_dirty_metadata(handle, inode, bh);
988 	if (err)
989 		goto cleanup;
990 	brelse(bh);
991 	bh = NULL;
992 
993 	/* correct old leaf */
994 	if (m) {
995 		err = ext4_ext_get_access(handle, inode, path + depth);
996 		if (err)
997 			goto cleanup;
998 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
999 		err = ext4_ext_dirty(handle, inode, path + depth);
1000 		if (err)
1001 			goto cleanup;
1002 
1003 	}
1004 
1005 	/* create intermediate indexes */
1006 	k = depth - at - 1;
1007 	if (unlikely(k < 0)) {
1008 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1009 		err = -EIO;
1010 		goto cleanup;
1011 	}
1012 	if (k)
1013 		ext_debug("create %d intermediate indices\n", k);
1014 	/* insert new index into current index block */
1015 	/* current depth stored in i var */
1016 	i = depth - 1;
1017 	while (k--) {
1018 		oldblock = newblock;
1019 		newblock = ablocks[--a];
1020 		bh = sb_getblk(inode->i_sb, newblock);
1021 		if (!bh) {
1022 			err = -EIO;
1023 			goto cleanup;
1024 		}
1025 		lock_buffer(bh);
1026 
1027 		err = ext4_journal_get_create_access(handle, bh);
1028 		if (err)
1029 			goto cleanup;
1030 
1031 		neh = ext_block_hdr(bh);
1032 		neh->eh_entries = cpu_to_le16(1);
1033 		neh->eh_magic = EXT4_EXT_MAGIC;
1034 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1035 		neh->eh_depth = cpu_to_le16(depth - i);
1036 		fidx = EXT_FIRST_INDEX(neh);
1037 		fidx->ei_block = border;
1038 		ext4_idx_store_pblock(fidx, oldblock);
1039 
1040 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1041 				i, newblock, le32_to_cpu(border), oldblock);
1042 
1043 		/* move remainder of path[i] to the new index block */
1044 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1045 					EXT_LAST_INDEX(path[i].p_hdr))) {
1046 			EXT4_ERROR_INODE(inode,
1047 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1048 					 le32_to_cpu(path[i].p_ext->ee_block));
1049 			err = -EIO;
1050 			goto cleanup;
1051 		}
1052 		/* start copy indexes */
1053 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1054 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1055 				EXT_MAX_INDEX(path[i].p_hdr));
1056 		ext4_ext_show_move(inode, path, newblock, i);
1057 		if (m) {
1058 			memmove(++fidx, path[i].p_idx,
1059 				sizeof(struct ext4_extent_idx) * m);
1060 			le16_add_cpu(&neh->eh_entries, m);
1061 		}
1062 		ext4_extent_block_csum_set(inode, neh);
1063 		set_buffer_uptodate(bh);
1064 		unlock_buffer(bh);
1065 
1066 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1067 		if (err)
1068 			goto cleanup;
1069 		brelse(bh);
1070 		bh = NULL;
1071 
1072 		/* correct old index */
1073 		if (m) {
1074 			err = ext4_ext_get_access(handle, inode, path + i);
1075 			if (err)
1076 				goto cleanup;
1077 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1078 			err = ext4_ext_dirty(handle, inode, path + i);
1079 			if (err)
1080 				goto cleanup;
1081 		}
1082 
1083 		i--;
1084 	}
1085 
1086 	/* insert new index */
1087 	err = ext4_ext_insert_index(handle, inode, path + at,
1088 				    le32_to_cpu(border), newblock);
1089 
1090 cleanup:
1091 	if (bh) {
1092 		if (buffer_locked(bh))
1093 			unlock_buffer(bh);
1094 		brelse(bh);
1095 	}
1096 
1097 	if (err) {
1098 		/* free all allocated blocks in error case */
1099 		for (i = 0; i < depth; i++) {
1100 			if (!ablocks[i])
1101 				continue;
1102 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1103 					 EXT4_FREE_BLOCKS_METADATA);
1104 		}
1105 	}
1106 	kfree(ablocks);
1107 
1108 	return err;
1109 }
1110 
1111 /*
1112  * ext4_ext_grow_indepth:
1113  * implements tree growing procedure:
1114  * - allocates new block
1115  * - moves top-level data (index block or leaf) into the new block
1116  * - initializes new top-level, creating index that points to the
1117  *   just created block
1118  */
1119 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1120 				 unsigned int flags,
1121 				 struct ext4_extent *newext)
1122 {
1123 	struct ext4_extent_header *neh;
1124 	struct buffer_head *bh;
1125 	ext4_fsblk_t newblock;
1126 	int err = 0;
1127 
1128 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1129 		newext, &err, flags);
1130 	if (newblock == 0)
1131 		return err;
1132 
1133 	bh = sb_getblk(inode->i_sb, newblock);
1134 	if (!bh) {
1135 		err = -EIO;
1136 		ext4_std_error(inode->i_sb, err);
1137 		return err;
1138 	}
1139 	lock_buffer(bh);
1140 
1141 	err = ext4_journal_get_create_access(handle, bh);
1142 	if (err) {
1143 		unlock_buffer(bh);
1144 		goto out;
1145 	}
1146 
1147 	/* move top-level index/leaf into new block */
1148 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1149 		sizeof(EXT4_I(inode)->i_data));
1150 
1151 	/* set size of new block */
1152 	neh = ext_block_hdr(bh);
1153 	/* old root could have indexes or leaves
1154 	 * so calculate e_max right way */
1155 	if (ext_depth(inode))
1156 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1157 	else
1158 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1159 	neh->eh_magic = EXT4_EXT_MAGIC;
1160 	ext4_extent_block_csum_set(inode, neh);
1161 	set_buffer_uptodate(bh);
1162 	unlock_buffer(bh);
1163 
1164 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1165 	if (err)
1166 		goto out;
1167 
1168 	/* Update top-level index: num,max,pointer */
1169 	neh = ext_inode_hdr(inode);
1170 	neh->eh_entries = cpu_to_le16(1);
1171 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1172 	if (neh->eh_depth == 0) {
1173 		/* Root extent block becomes index block */
1174 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1175 		EXT_FIRST_INDEX(neh)->ei_block =
1176 			EXT_FIRST_EXTENT(neh)->ee_block;
1177 	}
1178 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1179 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1180 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1181 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1182 
1183 	le16_add_cpu(&neh->eh_depth, 1);
1184 	ext4_mark_inode_dirty(handle, inode);
1185 out:
1186 	brelse(bh);
1187 
1188 	return err;
1189 }
1190 
1191 /*
1192  * ext4_ext_create_new_leaf:
1193  * finds empty index and adds new leaf.
1194  * if no free index is found, then it requests in-depth growing.
1195  */
1196 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1197 				    unsigned int flags,
1198 				    struct ext4_ext_path *path,
1199 				    struct ext4_extent *newext)
1200 {
1201 	struct ext4_ext_path *curp;
1202 	int depth, i, err = 0;
1203 
1204 repeat:
1205 	i = depth = ext_depth(inode);
1206 
1207 	/* walk up to the tree and look for free index entry */
1208 	curp = path + depth;
1209 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1210 		i--;
1211 		curp--;
1212 	}
1213 
1214 	/* we use already allocated block for index block,
1215 	 * so subsequent data blocks should be contiguous */
1216 	if (EXT_HAS_FREE_INDEX(curp)) {
1217 		/* if we found index with free entry, then use that
1218 		 * entry: create all needed subtree and add new leaf */
1219 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1220 		if (err)
1221 			goto out;
1222 
1223 		/* refill path */
1224 		ext4_ext_drop_refs(path);
1225 		path = ext4_ext_find_extent(inode,
1226 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1227 				    path);
1228 		if (IS_ERR(path))
1229 			err = PTR_ERR(path);
1230 	} else {
1231 		/* tree is full, time to grow in depth */
1232 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1233 		if (err)
1234 			goto out;
1235 
1236 		/* refill path */
1237 		ext4_ext_drop_refs(path);
1238 		path = ext4_ext_find_extent(inode,
1239 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1240 				    path);
1241 		if (IS_ERR(path)) {
1242 			err = PTR_ERR(path);
1243 			goto out;
1244 		}
1245 
1246 		/*
1247 		 * only first (depth 0 -> 1) produces free space;
1248 		 * in all other cases we have to split the grown tree
1249 		 */
1250 		depth = ext_depth(inode);
1251 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1252 			/* now we need to split */
1253 			goto repeat;
1254 		}
1255 	}
1256 
1257 out:
1258 	return err;
1259 }
1260 
1261 /*
1262  * search the closest allocated block to the left for *logical
1263  * and returns it at @logical + it's physical address at @phys
1264  * if *logical is the smallest allocated block, the function
1265  * returns 0 at @phys
1266  * return value contains 0 (success) or error code
1267  */
1268 static int ext4_ext_search_left(struct inode *inode,
1269 				struct ext4_ext_path *path,
1270 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1271 {
1272 	struct ext4_extent_idx *ix;
1273 	struct ext4_extent *ex;
1274 	int depth, ee_len;
1275 
1276 	if (unlikely(path == NULL)) {
1277 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1278 		return -EIO;
1279 	}
1280 	depth = path->p_depth;
1281 	*phys = 0;
1282 
1283 	if (depth == 0 && path->p_ext == NULL)
1284 		return 0;
1285 
1286 	/* usually extent in the path covers blocks smaller
1287 	 * then *logical, but it can be that extent is the
1288 	 * first one in the file */
1289 
1290 	ex = path[depth].p_ext;
1291 	ee_len = ext4_ext_get_actual_len(ex);
1292 	if (*logical < le32_to_cpu(ex->ee_block)) {
1293 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1294 			EXT4_ERROR_INODE(inode,
1295 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1296 					 *logical, le32_to_cpu(ex->ee_block));
1297 			return -EIO;
1298 		}
1299 		while (--depth >= 0) {
1300 			ix = path[depth].p_idx;
1301 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1302 				EXT4_ERROR_INODE(inode,
1303 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1304 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1305 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1306 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1307 				  depth);
1308 				return -EIO;
1309 			}
1310 		}
1311 		return 0;
1312 	}
1313 
1314 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1315 		EXT4_ERROR_INODE(inode,
1316 				 "logical %d < ee_block %d + ee_len %d!",
1317 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1318 		return -EIO;
1319 	}
1320 
1321 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1322 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1323 	return 0;
1324 }
1325 
1326 /*
1327  * search the closest allocated block to the right for *logical
1328  * and returns it at @logical + it's physical address at @phys
1329  * if *logical is the largest allocated block, the function
1330  * returns 0 at @phys
1331  * return value contains 0 (success) or error code
1332  */
1333 static int ext4_ext_search_right(struct inode *inode,
1334 				 struct ext4_ext_path *path,
1335 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1336 				 struct ext4_extent **ret_ex)
1337 {
1338 	struct buffer_head *bh = NULL;
1339 	struct ext4_extent_header *eh;
1340 	struct ext4_extent_idx *ix;
1341 	struct ext4_extent *ex;
1342 	ext4_fsblk_t block;
1343 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1344 	int ee_len;
1345 
1346 	if (unlikely(path == NULL)) {
1347 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1348 		return -EIO;
1349 	}
1350 	depth = path->p_depth;
1351 	*phys = 0;
1352 
1353 	if (depth == 0 && path->p_ext == NULL)
1354 		return 0;
1355 
1356 	/* usually extent in the path covers blocks smaller
1357 	 * then *logical, but it can be that extent is the
1358 	 * first one in the file */
1359 
1360 	ex = path[depth].p_ext;
1361 	ee_len = ext4_ext_get_actual_len(ex);
1362 	if (*logical < le32_to_cpu(ex->ee_block)) {
1363 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1364 			EXT4_ERROR_INODE(inode,
1365 					 "first_extent(path[%d].p_hdr) != ex",
1366 					 depth);
1367 			return -EIO;
1368 		}
1369 		while (--depth >= 0) {
1370 			ix = path[depth].p_idx;
1371 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1372 				EXT4_ERROR_INODE(inode,
1373 						 "ix != EXT_FIRST_INDEX *logical %d!",
1374 						 *logical);
1375 				return -EIO;
1376 			}
1377 		}
1378 		goto found_extent;
1379 	}
1380 
1381 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1382 		EXT4_ERROR_INODE(inode,
1383 				 "logical %d < ee_block %d + ee_len %d!",
1384 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1385 		return -EIO;
1386 	}
1387 
1388 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1389 		/* next allocated block in this leaf */
1390 		ex++;
1391 		goto found_extent;
1392 	}
1393 
1394 	/* go up and search for index to the right */
1395 	while (--depth >= 0) {
1396 		ix = path[depth].p_idx;
1397 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1398 			goto got_index;
1399 	}
1400 
1401 	/* we've gone up to the root and found no index to the right */
1402 	return 0;
1403 
1404 got_index:
1405 	/* we've found index to the right, let's
1406 	 * follow it and find the closest allocated
1407 	 * block to the right */
1408 	ix++;
1409 	block = ext4_idx_pblock(ix);
1410 	while (++depth < path->p_depth) {
1411 		bh = sb_bread(inode->i_sb, block);
1412 		if (bh == NULL)
1413 			return -EIO;
1414 		eh = ext_block_hdr(bh);
1415 		/* subtract from p_depth to get proper eh_depth */
1416 		if (ext4_ext_check_block(inode, eh,
1417 					 path->p_depth - depth, bh)) {
1418 			put_bh(bh);
1419 			return -EIO;
1420 		}
1421 		ix = EXT_FIRST_INDEX(eh);
1422 		block = ext4_idx_pblock(ix);
1423 		put_bh(bh);
1424 	}
1425 
1426 	bh = sb_bread(inode->i_sb, block);
1427 	if (bh == NULL)
1428 		return -EIO;
1429 	eh = ext_block_hdr(bh);
1430 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1431 		put_bh(bh);
1432 		return -EIO;
1433 	}
1434 	ex = EXT_FIRST_EXTENT(eh);
1435 found_extent:
1436 	*logical = le32_to_cpu(ex->ee_block);
1437 	*phys = ext4_ext_pblock(ex);
1438 	*ret_ex = ex;
1439 	if (bh)
1440 		put_bh(bh);
1441 	return 0;
1442 }
1443 
1444 /*
1445  * ext4_ext_next_allocated_block:
1446  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1447  * NOTE: it considers block number from index entry as
1448  * allocated block. Thus, index entries have to be consistent
1449  * with leaves.
1450  */
1451 static ext4_lblk_t
1452 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1453 {
1454 	int depth;
1455 
1456 	BUG_ON(path == NULL);
1457 	depth = path->p_depth;
1458 
1459 	if (depth == 0 && path->p_ext == NULL)
1460 		return EXT_MAX_BLOCKS;
1461 
1462 	while (depth >= 0) {
1463 		if (depth == path->p_depth) {
1464 			/* leaf */
1465 			if (path[depth].p_ext &&
1466 				path[depth].p_ext !=
1467 					EXT_LAST_EXTENT(path[depth].p_hdr))
1468 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1469 		} else {
1470 			/* index */
1471 			if (path[depth].p_idx !=
1472 					EXT_LAST_INDEX(path[depth].p_hdr))
1473 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1474 		}
1475 		depth--;
1476 	}
1477 
1478 	return EXT_MAX_BLOCKS;
1479 }
1480 
1481 /*
1482  * ext4_ext_next_leaf_block:
1483  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1484  */
1485 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1486 {
1487 	int depth;
1488 
1489 	BUG_ON(path == NULL);
1490 	depth = path->p_depth;
1491 
1492 	/* zero-tree has no leaf blocks at all */
1493 	if (depth == 0)
1494 		return EXT_MAX_BLOCKS;
1495 
1496 	/* go to index block */
1497 	depth--;
1498 
1499 	while (depth >= 0) {
1500 		if (path[depth].p_idx !=
1501 				EXT_LAST_INDEX(path[depth].p_hdr))
1502 			return (ext4_lblk_t)
1503 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1504 		depth--;
1505 	}
1506 
1507 	return EXT_MAX_BLOCKS;
1508 }
1509 
1510 /*
1511  * ext4_ext_correct_indexes:
1512  * if leaf gets modified and modified extent is first in the leaf,
1513  * then we have to correct all indexes above.
1514  * TODO: do we need to correct tree in all cases?
1515  */
1516 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1517 				struct ext4_ext_path *path)
1518 {
1519 	struct ext4_extent_header *eh;
1520 	int depth = ext_depth(inode);
1521 	struct ext4_extent *ex;
1522 	__le32 border;
1523 	int k, err = 0;
1524 
1525 	eh = path[depth].p_hdr;
1526 	ex = path[depth].p_ext;
1527 
1528 	if (unlikely(ex == NULL || eh == NULL)) {
1529 		EXT4_ERROR_INODE(inode,
1530 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1531 		return -EIO;
1532 	}
1533 
1534 	if (depth == 0) {
1535 		/* there is no tree at all */
1536 		return 0;
1537 	}
1538 
1539 	if (ex != EXT_FIRST_EXTENT(eh)) {
1540 		/* we correct tree if first leaf got modified only */
1541 		return 0;
1542 	}
1543 
1544 	/*
1545 	 * TODO: we need correction if border is smaller than current one
1546 	 */
1547 	k = depth - 1;
1548 	border = path[depth].p_ext->ee_block;
1549 	err = ext4_ext_get_access(handle, inode, path + k);
1550 	if (err)
1551 		return err;
1552 	path[k].p_idx->ei_block = border;
1553 	err = ext4_ext_dirty(handle, inode, path + k);
1554 	if (err)
1555 		return err;
1556 
1557 	while (k--) {
1558 		/* change all left-side indexes */
1559 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1560 			break;
1561 		err = ext4_ext_get_access(handle, inode, path + k);
1562 		if (err)
1563 			break;
1564 		path[k].p_idx->ei_block = border;
1565 		err = ext4_ext_dirty(handle, inode, path + k);
1566 		if (err)
1567 			break;
1568 	}
1569 
1570 	return err;
1571 }
1572 
1573 int
1574 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1575 				struct ext4_extent *ex2)
1576 {
1577 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1578 
1579 	/*
1580 	 * Make sure that either both extents are uninitialized, or
1581 	 * both are _not_.
1582 	 */
1583 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1584 		return 0;
1585 
1586 	if (ext4_ext_is_uninitialized(ex1))
1587 		max_len = EXT_UNINIT_MAX_LEN;
1588 	else
1589 		max_len = EXT_INIT_MAX_LEN;
1590 
1591 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1592 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1593 
1594 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1595 			le32_to_cpu(ex2->ee_block))
1596 		return 0;
1597 
1598 	/*
1599 	 * To allow future support for preallocated extents to be added
1600 	 * as an RO_COMPAT feature, refuse to merge to extents if
1601 	 * this can result in the top bit of ee_len being set.
1602 	 */
1603 	if (ext1_ee_len + ext2_ee_len > max_len)
1604 		return 0;
1605 #ifdef AGGRESSIVE_TEST
1606 	if (ext1_ee_len >= 4)
1607 		return 0;
1608 #endif
1609 
1610 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1611 		return 1;
1612 	return 0;
1613 }
1614 
1615 /*
1616  * This function tries to merge the "ex" extent to the next extent in the tree.
1617  * It always tries to merge towards right. If you want to merge towards
1618  * left, pass "ex - 1" as argument instead of "ex".
1619  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1620  * 1 if they got merged.
1621  */
1622 static int ext4_ext_try_to_merge_right(struct inode *inode,
1623 				 struct ext4_ext_path *path,
1624 				 struct ext4_extent *ex)
1625 {
1626 	struct ext4_extent_header *eh;
1627 	unsigned int depth, len;
1628 	int merge_done = 0;
1629 	int uninitialized = 0;
1630 
1631 	depth = ext_depth(inode);
1632 	BUG_ON(path[depth].p_hdr == NULL);
1633 	eh = path[depth].p_hdr;
1634 
1635 	while (ex < EXT_LAST_EXTENT(eh)) {
1636 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1637 			break;
1638 		/* merge with next extent! */
1639 		if (ext4_ext_is_uninitialized(ex))
1640 			uninitialized = 1;
1641 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1642 				+ ext4_ext_get_actual_len(ex + 1));
1643 		if (uninitialized)
1644 			ext4_ext_mark_uninitialized(ex);
1645 
1646 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1647 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1648 				* sizeof(struct ext4_extent);
1649 			memmove(ex + 1, ex + 2, len);
1650 		}
1651 		le16_add_cpu(&eh->eh_entries, -1);
1652 		merge_done = 1;
1653 		WARN_ON(eh->eh_entries == 0);
1654 		if (!eh->eh_entries)
1655 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1656 	}
1657 
1658 	return merge_done;
1659 }
1660 
1661 /*
1662  * This function does a very simple check to see if we can collapse
1663  * an extent tree with a single extent tree leaf block into the inode.
1664  */
1665 static void ext4_ext_try_to_merge_up(handle_t *handle,
1666 				     struct inode *inode,
1667 				     struct ext4_ext_path *path)
1668 {
1669 	size_t s;
1670 	unsigned max_root = ext4_ext_space_root(inode, 0);
1671 	ext4_fsblk_t blk;
1672 
1673 	if ((path[0].p_depth != 1) ||
1674 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1675 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1676 		return;
1677 
1678 	/*
1679 	 * We need to modify the block allocation bitmap and the block
1680 	 * group descriptor to release the extent tree block.  If we
1681 	 * can't get the journal credits, give up.
1682 	 */
1683 	if (ext4_journal_extend(handle, 2))
1684 		return;
1685 
1686 	/*
1687 	 * Copy the extent data up to the inode
1688 	 */
1689 	blk = ext4_idx_pblock(path[0].p_idx);
1690 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1691 		sizeof(struct ext4_extent_idx);
1692 	s += sizeof(struct ext4_extent_header);
1693 
1694 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1695 	path[0].p_depth = 0;
1696 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1697 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1698 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1699 
1700 	brelse(path[1].p_bh);
1701 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1702 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1703 }
1704 
1705 /*
1706  * This function tries to merge the @ex extent to neighbours in the tree.
1707  * return 1 if merge left else 0.
1708  */
1709 static void ext4_ext_try_to_merge(handle_t *handle,
1710 				  struct inode *inode,
1711 				  struct ext4_ext_path *path,
1712 				  struct ext4_extent *ex) {
1713 	struct ext4_extent_header *eh;
1714 	unsigned int depth;
1715 	int merge_done = 0;
1716 
1717 	depth = ext_depth(inode);
1718 	BUG_ON(path[depth].p_hdr == NULL);
1719 	eh = path[depth].p_hdr;
1720 
1721 	if (ex > EXT_FIRST_EXTENT(eh))
1722 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1723 
1724 	if (!merge_done)
1725 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1726 
1727 	ext4_ext_try_to_merge_up(handle, inode, path);
1728 }
1729 
1730 /*
1731  * check if a portion of the "newext" extent overlaps with an
1732  * existing extent.
1733  *
1734  * If there is an overlap discovered, it updates the length of the newext
1735  * such that there will be no overlap, and then returns 1.
1736  * If there is no overlap found, it returns 0.
1737  */
1738 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1739 					   struct inode *inode,
1740 					   struct ext4_extent *newext,
1741 					   struct ext4_ext_path *path)
1742 {
1743 	ext4_lblk_t b1, b2;
1744 	unsigned int depth, len1;
1745 	unsigned int ret = 0;
1746 
1747 	b1 = le32_to_cpu(newext->ee_block);
1748 	len1 = ext4_ext_get_actual_len(newext);
1749 	depth = ext_depth(inode);
1750 	if (!path[depth].p_ext)
1751 		goto out;
1752 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1753 	b2 &= ~(sbi->s_cluster_ratio - 1);
1754 
1755 	/*
1756 	 * get the next allocated block if the extent in the path
1757 	 * is before the requested block(s)
1758 	 */
1759 	if (b2 < b1) {
1760 		b2 = ext4_ext_next_allocated_block(path);
1761 		if (b2 == EXT_MAX_BLOCKS)
1762 			goto out;
1763 		b2 &= ~(sbi->s_cluster_ratio - 1);
1764 	}
1765 
1766 	/* check for wrap through zero on extent logical start block*/
1767 	if (b1 + len1 < b1) {
1768 		len1 = EXT_MAX_BLOCKS - b1;
1769 		newext->ee_len = cpu_to_le16(len1);
1770 		ret = 1;
1771 	}
1772 
1773 	/* check for overlap */
1774 	if (b1 + len1 > b2) {
1775 		newext->ee_len = cpu_to_le16(b2 - b1);
1776 		ret = 1;
1777 	}
1778 out:
1779 	return ret;
1780 }
1781 
1782 /*
1783  * ext4_ext_insert_extent:
1784  * tries to merge requsted extent into the existing extent or
1785  * inserts requested extent as new one into the tree,
1786  * creating new leaf in the no-space case.
1787  */
1788 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1789 				struct ext4_ext_path *path,
1790 				struct ext4_extent *newext, int flag)
1791 {
1792 	struct ext4_extent_header *eh;
1793 	struct ext4_extent *ex, *fex;
1794 	struct ext4_extent *nearex; /* nearest extent */
1795 	struct ext4_ext_path *npath = NULL;
1796 	int depth, len, err;
1797 	ext4_lblk_t next;
1798 	unsigned uninitialized = 0;
1799 	int flags = 0;
1800 
1801 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1802 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1803 		return -EIO;
1804 	}
1805 	depth = ext_depth(inode);
1806 	ex = path[depth].p_ext;
1807 	if (unlikely(path[depth].p_hdr == NULL)) {
1808 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1809 		return -EIO;
1810 	}
1811 
1812 	/* try to insert block into found extent and return */
1813 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1814 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1815 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1816 			  ext4_ext_is_uninitialized(newext),
1817 			  ext4_ext_get_actual_len(newext),
1818 			  le32_to_cpu(ex->ee_block),
1819 			  ext4_ext_is_uninitialized(ex),
1820 			  ext4_ext_get_actual_len(ex),
1821 			  ext4_ext_pblock(ex));
1822 		err = ext4_ext_get_access(handle, inode, path + depth);
1823 		if (err)
1824 			return err;
1825 
1826 		/*
1827 		 * ext4_can_extents_be_merged should have checked that either
1828 		 * both extents are uninitialized, or both aren't. Thus we
1829 		 * need to check only one of them here.
1830 		 */
1831 		if (ext4_ext_is_uninitialized(ex))
1832 			uninitialized = 1;
1833 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1834 					+ ext4_ext_get_actual_len(newext));
1835 		if (uninitialized)
1836 			ext4_ext_mark_uninitialized(ex);
1837 		eh = path[depth].p_hdr;
1838 		nearex = ex;
1839 		goto merge;
1840 	}
1841 
1842 	depth = ext_depth(inode);
1843 	eh = path[depth].p_hdr;
1844 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1845 		goto has_space;
1846 
1847 	/* probably next leaf has space for us? */
1848 	fex = EXT_LAST_EXTENT(eh);
1849 	next = EXT_MAX_BLOCKS;
1850 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1851 		next = ext4_ext_next_leaf_block(path);
1852 	if (next != EXT_MAX_BLOCKS) {
1853 		ext_debug("next leaf block - %u\n", next);
1854 		BUG_ON(npath != NULL);
1855 		npath = ext4_ext_find_extent(inode, next, NULL);
1856 		if (IS_ERR(npath))
1857 			return PTR_ERR(npath);
1858 		BUG_ON(npath->p_depth != path->p_depth);
1859 		eh = npath[depth].p_hdr;
1860 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1861 			ext_debug("next leaf isn't full(%d)\n",
1862 				  le16_to_cpu(eh->eh_entries));
1863 			path = npath;
1864 			goto has_space;
1865 		}
1866 		ext_debug("next leaf has no free space(%d,%d)\n",
1867 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1868 	}
1869 
1870 	/*
1871 	 * There is no free space in the found leaf.
1872 	 * We're gonna add a new leaf in the tree.
1873 	 */
1874 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1875 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1876 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1877 	if (err)
1878 		goto cleanup;
1879 	depth = ext_depth(inode);
1880 	eh = path[depth].p_hdr;
1881 
1882 has_space:
1883 	nearex = path[depth].p_ext;
1884 
1885 	err = ext4_ext_get_access(handle, inode, path + depth);
1886 	if (err)
1887 		goto cleanup;
1888 
1889 	if (!nearex) {
1890 		/* there is no extent in this leaf, create first one */
1891 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1892 				le32_to_cpu(newext->ee_block),
1893 				ext4_ext_pblock(newext),
1894 				ext4_ext_is_uninitialized(newext),
1895 				ext4_ext_get_actual_len(newext));
1896 		nearex = EXT_FIRST_EXTENT(eh);
1897 	} else {
1898 		if (le32_to_cpu(newext->ee_block)
1899 			   > le32_to_cpu(nearex->ee_block)) {
1900 			/* Insert after */
1901 			ext_debug("insert %u:%llu:[%d]%d before: "
1902 					"nearest %p\n",
1903 					le32_to_cpu(newext->ee_block),
1904 					ext4_ext_pblock(newext),
1905 					ext4_ext_is_uninitialized(newext),
1906 					ext4_ext_get_actual_len(newext),
1907 					nearex);
1908 			nearex++;
1909 		} else {
1910 			/* Insert before */
1911 			BUG_ON(newext->ee_block == nearex->ee_block);
1912 			ext_debug("insert %u:%llu:[%d]%d after: "
1913 					"nearest %p\n",
1914 					le32_to_cpu(newext->ee_block),
1915 					ext4_ext_pblock(newext),
1916 					ext4_ext_is_uninitialized(newext),
1917 					ext4_ext_get_actual_len(newext),
1918 					nearex);
1919 		}
1920 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1921 		if (len > 0) {
1922 			ext_debug("insert %u:%llu:[%d]%d: "
1923 					"move %d extents from 0x%p to 0x%p\n",
1924 					le32_to_cpu(newext->ee_block),
1925 					ext4_ext_pblock(newext),
1926 					ext4_ext_is_uninitialized(newext),
1927 					ext4_ext_get_actual_len(newext),
1928 					len, nearex, nearex + 1);
1929 			memmove(nearex + 1, nearex,
1930 				len * sizeof(struct ext4_extent));
1931 		}
1932 	}
1933 
1934 	le16_add_cpu(&eh->eh_entries, 1);
1935 	path[depth].p_ext = nearex;
1936 	nearex->ee_block = newext->ee_block;
1937 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1938 	nearex->ee_len = newext->ee_len;
1939 
1940 merge:
1941 	/* try to merge extents */
1942 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1943 		ext4_ext_try_to_merge(handle, inode, path, nearex);
1944 
1945 
1946 	/* time to correct all indexes above */
1947 	err = ext4_ext_correct_indexes(handle, inode, path);
1948 	if (err)
1949 		goto cleanup;
1950 
1951 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1952 
1953 cleanup:
1954 	if (npath) {
1955 		ext4_ext_drop_refs(npath);
1956 		kfree(npath);
1957 	}
1958 	ext4_ext_invalidate_cache(inode);
1959 	return err;
1960 }
1961 
1962 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1963 			       ext4_lblk_t num, ext_prepare_callback func,
1964 			       void *cbdata)
1965 {
1966 	struct ext4_ext_path *path = NULL;
1967 	struct ext4_ext_cache cbex;
1968 	struct ext4_extent *ex;
1969 	ext4_lblk_t next, start = 0, end = 0;
1970 	ext4_lblk_t last = block + num;
1971 	int depth, exists, err = 0;
1972 
1973 	BUG_ON(func == NULL);
1974 	BUG_ON(inode == NULL);
1975 
1976 	while (block < last && block != EXT_MAX_BLOCKS) {
1977 		num = last - block;
1978 		/* find extent for this block */
1979 		down_read(&EXT4_I(inode)->i_data_sem);
1980 		path = ext4_ext_find_extent(inode, block, path);
1981 		up_read(&EXT4_I(inode)->i_data_sem);
1982 		if (IS_ERR(path)) {
1983 			err = PTR_ERR(path);
1984 			path = NULL;
1985 			break;
1986 		}
1987 
1988 		depth = ext_depth(inode);
1989 		if (unlikely(path[depth].p_hdr == NULL)) {
1990 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1991 			err = -EIO;
1992 			break;
1993 		}
1994 		ex = path[depth].p_ext;
1995 		next = ext4_ext_next_allocated_block(path);
1996 
1997 		exists = 0;
1998 		if (!ex) {
1999 			/* there is no extent yet, so try to allocate
2000 			 * all requested space */
2001 			start = block;
2002 			end = block + num;
2003 		} else if (le32_to_cpu(ex->ee_block) > block) {
2004 			/* need to allocate space before found extent */
2005 			start = block;
2006 			end = le32_to_cpu(ex->ee_block);
2007 			if (block + num < end)
2008 				end = block + num;
2009 		} else if (block >= le32_to_cpu(ex->ee_block)
2010 					+ ext4_ext_get_actual_len(ex)) {
2011 			/* need to allocate space after found extent */
2012 			start = block;
2013 			end = block + num;
2014 			if (end >= next)
2015 				end = next;
2016 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2017 			/*
2018 			 * some part of requested space is covered
2019 			 * by found extent
2020 			 */
2021 			start = block;
2022 			end = le32_to_cpu(ex->ee_block)
2023 				+ ext4_ext_get_actual_len(ex);
2024 			if (block + num < end)
2025 				end = block + num;
2026 			exists = 1;
2027 		} else {
2028 			BUG();
2029 		}
2030 		BUG_ON(end <= start);
2031 
2032 		if (!exists) {
2033 			cbex.ec_block = start;
2034 			cbex.ec_len = end - start;
2035 			cbex.ec_start = 0;
2036 		} else {
2037 			cbex.ec_block = le32_to_cpu(ex->ee_block);
2038 			cbex.ec_len = ext4_ext_get_actual_len(ex);
2039 			cbex.ec_start = ext4_ext_pblock(ex);
2040 		}
2041 
2042 		if (unlikely(cbex.ec_len == 0)) {
2043 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2044 			err = -EIO;
2045 			break;
2046 		}
2047 		err = func(inode, next, &cbex, ex, cbdata);
2048 		ext4_ext_drop_refs(path);
2049 
2050 		if (err < 0)
2051 			break;
2052 
2053 		if (err == EXT_REPEAT)
2054 			continue;
2055 		else if (err == EXT_BREAK) {
2056 			err = 0;
2057 			break;
2058 		}
2059 
2060 		if (ext_depth(inode) != depth) {
2061 			/* depth was changed. we have to realloc path */
2062 			kfree(path);
2063 			path = NULL;
2064 		}
2065 
2066 		block = cbex.ec_block + cbex.ec_len;
2067 	}
2068 
2069 	if (path) {
2070 		ext4_ext_drop_refs(path);
2071 		kfree(path);
2072 	}
2073 
2074 	return err;
2075 }
2076 
2077 static void
2078 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2079 			__u32 len, ext4_fsblk_t start)
2080 {
2081 	struct ext4_ext_cache *cex;
2082 	BUG_ON(len == 0);
2083 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2084 	trace_ext4_ext_put_in_cache(inode, block, len, start);
2085 	cex = &EXT4_I(inode)->i_cached_extent;
2086 	cex->ec_block = block;
2087 	cex->ec_len = len;
2088 	cex->ec_start = start;
2089 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2090 }
2091 
2092 /*
2093  * ext4_ext_put_gap_in_cache:
2094  * calculate boundaries of the gap that the requested block fits into
2095  * and cache this gap
2096  */
2097 static void
2098 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2099 				ext4_lblk_t block)
2100 {
2101 	int depth = ext_depth(inode);
2102 	unsigned long len;
2103 	ext4_lblk_t lblock;
2104 	struct ext4_extent *ex;
2105 
2106 	ex = path[depth].p_ext;
2107 	if (ex == NULL) {
2108 		/* there is no extent yet, so gap is [0;-] */
2109 		lblock = 0;
2110 		len = EXT_MAX_BLOCKS;
2111 		ext_debug("cache gap(whole file):");
2112 	} else if (block < le32_to_cpu(ex->ee_block)) {
2113 		lblock = block;
2114 		len = le32_to_cpu(ex->ee_block) - block;
2115 		ext_debug("cache gap(before): %u [%u:%u]",
2116 				block,
2117 				le32_to_cpu(ex->ee_block),
2118 				 ext4_ext_get_actual_len(ex));
2119 	} else if (block >= le32_to_cpu(ex->ee_block)
2120 			+ ext4_ext_get_actual_len(ex)) {
2121 		ext4_lblk_t next;
2122 		lblock = le32_to_cpu(ex->ee_block)
2123 			+ ext4_ext_get_actual_len(ex);
2124 
2125 		next = ext4_ext_next_allocated_block(path);
2126 		ext_debug("cache gap(after): [%u:%u] %u",
2127 				le32_to_cpu(ex->ee_block),
2128 				ext4_ext_get_actual_len(ex),
2129 				block);
2130 		BUG_ON(next == lblock);
2131 		len = next - lblock;
2132 	} else {
2133 		lblock = len = 0;
2134 		BUG();
2135 	}
2136 
2137 	ext_debug(" -> %u:%lu\n", lblock, len);
2138 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2139 }
2140 
2141 /*
2142  * ext4_ext_in_cache()
2143  * Checks to see if the given block is in the cache.
2144  * If it is, the cached extent is stored in the given
2145  * cache extent pointer.
2146  *
2147  * @inode: The files inode
2148  * @block: The block to look for in the cache
2149  * @ex:    Pointer where the cached extent will be stored
2150  *         if it contains block
2151  *
2152  * Return 0 if cache is invalid; 1 if the cache is valid
2153  */
2154 static int
2155 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2156 		  struct ext4_extent *ex)
2157 {
2158 	struct ext4_ext_cache *cex;
2159 	struct ext4_sb_info *sbi;
2160 	int ret = 0;
2161 
2162 	/*
2163 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2164 	 */
2165 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2166 	cex = &EXT4_I(inode)->i_cached_extent;
2167 	sbi = EXT4_SB(inode->i_sb);
2168 
2169 	/* has cache valid data? */
2170 	if (cex->ec_len == 0)
2171 		goto errout;
2172 
2173 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2174 		ex->ee_block = cpu_to_le32(cex->ec_block);
2175 		ext4_ext_store_pblock(ex, cex->ec_start);
2176 		ex->ee_len = cpu_to_le16(cex->ec_len);
2177 		ext_debug("%u cached by %u:%u:%llu\n",
2178 				block,
2179 				cex->ec_block, cex->ec_len, cex->ec_start);
2180 		ret = 1;
2181 	}
2182 errout:
2183 	trace_ext4_ext_in_cache(inode, block, ret);
2184 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2185 	return ret;
2186 }
2187 
2188 /*
2189  * ext4_ext_rm_idx:
2190  * removes index from the index block.
2191  */
2192 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2193 			struct ext4_ext_path *path)
2194 {
2195 	int err;
2196 	ext4_fsblk_t leaf;
2197 
2198 	/* free index block */
2199 	path--;
2200 	leaf = ext4_idx_pblock(path->p_idx);
2201 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2202 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2203 		return -EIO;
2204 	}
2205 	err = ext4_ext_get_access(handle, inode, path);
2206 	if (err)
2207 		return err;
2208 
2209 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2210 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2211 		len *= sizeof(struct ext4_extent_idx);
2212 		memmove(path->p_idx, path->p_idx + 1, len);
2213 	}
2214 
2215 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2216 	err = ext4_ext_dirty(handle, inode, path);
2217 	if (err)
2218 		return err;
2219 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2220 	trace_ext4_ext_rm_idx(inode, leaf);
2221 
2222 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2223 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2224 	return err;
2225 }
2226 
2227 /*
2228  * ext4_ext_calc_credits_for_single_extent:
2229  * This routine returns max. credits that needed to insert an extent
2230  * to the extent tree.
2231  * When pass the actual path, the caller should calculate credits
2232  * under i_data_sem.
2233  */
2234 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2235 						struct ext4_ext_path *path)
2236 {
2237 	if (path) {
2238 		int depth = ext_depth(inode);
2239 		int ret = 0;
2240 
2241 		/* probably there is space in leaf? */
2242 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2243 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2244 
2245 			/*
2246 			 *  There are some space in the leaf tree, no
2247 			 *  need to account for leaf block credit
2248 			 *
2249 			 *  bitmaps and block group descriptor blocks
2250 			 *  and other metadata blocks still need to be
2251 			 *  accounted.
2252 			 */
2253 			/* 1 bitmap, 1 block group descriptor */
2254 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2255 			return ret;
2256 		}
2257 	}
2258 
2259 	return ext4_chunk_trans_blocks(inode, nrblocks);
2260 }
2261 
2262 /*
2263  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2264  *
2265  * if nrblocks are fit in a single extent (chunk flag is 1), then
2266  * in the worse case, each tree level index/leaf need to be changed
2267  * if the tree split due to insert a new extent, then the old tree
2268  * index/leaf need to be updated too
2269  *
2270  * If the nrblocks are discontiguous, they could cause
2271  * the whole tree split more than once, but this is really rare.
2272  */
2273 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2274 {
2275 	int index;
2276 	int depth = ext_depth(inode);
2277 
2278 	if (chunk)
2279 		index = depth * 2;
2280 	else
2281 		index = depth * 3;
2282 
2283 	return index;
2284 }
2285 
2286 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2287 			      struct ext4_extent *ex,
2288 			      ext4_fsblk_t *partial_cluster,
2289 			      ext4_lblk_t from, ext4_lblk_t to)
2290 {
2291 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2292 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2293 	ext4_fsblk_t pblk;
2294 	int flags = 0;
2295 
2296 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2297 		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2298 	else if (ext4_should_journal_data(inode))
2299 		flags |= EXT4_FREE_BLOCKS_FORGET;
2300 
2301 	/*
2302 	 * For bigalloc file systems, we never free a partial cluster
2303 	 * at the beginning of the extent.  Instead, we make a note
2304 	 * that we tried freeing the cluster, and check to see if we
2305 	 * need to free it on a subsequent call to ext4_remove_blocks,
2306 	 * or at the end of the ext4_truncate() operation.
2307 	 */
2308 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2309 
2310 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2311 	/*
2312 	 * If we have a partial cluster, and it's different from the
2313 	 * cluster of the last block, we need to explicitly free the
2314 	 * partial cluster here.
2315 	 */
2316 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2317 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2318 		ext4_free_blocks(handle, inode, NULL,
2319 				 EXT4_C2B(sbi, *partial_cluster),
2320 				 sbi->s_cluster_ratio, flags);
2321 		*partial_cluster = 0;
2322 	}
2323 
2324 #ifdef EXTENTS_STATS
2325 	{
2326 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2327 		spin_lock(&sbi->s_ext_stats_lock);
2328 		sbi->s_ext_blocks += ee_len;
2329 		sbi->s_ext_extents++;
2330 		if (ee_len < sbi->s_ext_min)
2331 			sbi->s_ext_min = ee_len;
2332 		if (ee_len > sbi->s_ext_max)
2333 			sbi->s_ext_max = ee_len;
2334 		if (ext_depth(inode) > sbi->s_depth_max)
2335 			sbi->s_depth_max = ext_depth(inode);
2336 		spin_unlock(&sbi->s_ext_stats_lock);
2337 	}
2338 #endif
2339 	if (from >= le32_to_cpu(ex->ee_block)
2340 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2341 		/* tail removal */
2342 		ext4_lblk_t num;
2343 
2344 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2345 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2346 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2347 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2348 		/*
2349 		 * If the block range to be freed didn't start at the
2350 		 * beginning of a cluster, and we removed the entire
2351 		 * extent, save the partial cluster here, since we
2352 		 * might need to delete if we determine that the
2353 		 * truncate operation has removed all of the blocks in
2354 		 * the cluster.
2355 		 */
2356 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2357 		    (ee_len == num))
2358 			*partial_cluster = EXT4_B2C(sbi, pblk);
2359 		else
2360 			*partial_cluster = 0;
2361 	} else if (from == le32_to_cpu(ex->ee_block)
2362 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2363 		/* head removal */
2364 		ext4_lblk_t num;
2365 		ext4_fsblk_t start;
2366 
2367 		num = to - from;
2368 		start = ext4_ext_pblock(ex);
2369 
2370 		ext_debug("free first %u blocks starting %llu\n", num, start);
2371 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2372 
2373 	} else {
2374 		printk(KERN_INFO "strange request: removal(2) "
2375 				"%u-%u from %u:%u\n",
2376 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2377 	}
2378 	return 0;
2379 }
2380 
2381 
2382 /*
2383  * ext4_ext_rm_leaf() Removes the extents associated with the
2384  * blocks appearing between "start" and "end", and splits the extents
2385  * if "start" and "end" appear in the same extent
2386  *
2387  * @handle: The journal handle
2388  * @inode:  The files inode
2389  * @path:   The path to the leaf
2390  * @start:  The first block to remove
2391  * @end:   The last block to remove
2392  */
2393 static int
2394 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2395 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2396 		 ext4_lblk_t start, ext4_lblk_t end)
2397 {
2398 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2399 	int err = 0, correct_index = 0;
2400 	int depth = ext_depth(inode), credits;
2401 	struct ext4_extent_header *eh;
2402 	ext4_lblk_t a, b;
2403 	unsigned num;
2404 	ext4_lblk_t ex_ee_block;
2405 	unsigned short ex_ee_len;
2406 	unsigned uninitialized = 0;
2407 	struct ext4_extent *ex;
2408 
2409 	/* the header must be checked already in ext4_ext_remove_space() */
2410 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2411 	if (!path[depth].p_hdr)
2412 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2413 	eh = path[depth].p_hdr;
2414 	if (unlikely(path[depth].p_hdr == NULL)) {
2415 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2416 		return -EIO;
2417 	}
2418 	/* find where to start removing */
2419 	ex = EXT_LAST_EXTENT(eh);
2420 
2421 	ex_ee_block = le32_to_cpu(ex->ee_block);
2422 	ex_ee_len = ext4_ext_get_actual_len(ex);
2423 
2424 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2425 
2426 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2427 			ex_ee_block + ex_ee_len > start) {
2428 
2429 		if (ext4_ext_is_uninitialized(ex))
2430 			uninitialized = 1;
2431 		else
2432 			uninitialized = 0;
2433 
2434 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2435 			 uninitialized, ex_ee_len);
2436 		path[depth].p_ext = ex;
2437 
2438 		a = ex_ee_block > start ? ex_ee_block : start;
2439 		b = ex_ee_block+ex_ee_len - 1 < end ?
2440 			ex_ee_block+ex_ee_len - 1 : end;
2441 
2442 		ext_debug("  border %u:%u\n", a, b);
2443 
2444 		/* If this extent is beyond the end of the hole, skip it */
2445 		if (end < ex_ee_block) {
2446 			ex--;
2447 			ex_ee_block = le32_to_cpu(ex->ee_block);
2448 			ex_ee_len = ext4_ext_get_actual_len(ex);
2449 			continue;
2450 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2451 			EXT4_ERROR_INODE(inode,
2452 					 "can not handle truncate %u:%u "
2453 					 "on extent %u:%u",
2454 					 start, end, ex_ee_block,
2455 					 ex_ee_block + ex_ee_len - 1);
2456 			err = -EIO;
2457 			goto out;
2458 		} else if (a != ex_ee_block) {
2459 			/* remove tail of the extent */
2460 			num = a - ex_ee_block;
2461 		} else {
2462 			/* remove whole extent: excellent! */
2463 			num = 0;
2464 		}
2465 		/*
2466 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2467 		 * descriptor) for each block group; assume two block
2468 		 * groups plus ex_ee_len/blocks_per_block_group for
2469 		 * the worst case
2470 		 */
2471 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2472 		if (ex == EXT_FIRST_EXTENT(eh)) {
2473 			correct_index = 1;
2474 			credits += (ext_depth(inode)) + 1;
2475 		}
2476 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2477 
2478 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2479 		if (err)
2480 			goto out;
2481 
2482 		err = ext4_ext_get_access(handle, inode, path + depth);
2483 		if (err)
2484 			goto out;
2485 
2486 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2487 					 a, b);
2488 		if (err)
2489 			goto out;
2490 
2491 		if (num == 0)
2492 			/* this extent is removed; mark slot entirely unused */
2493 			ext4_ext_store_pblock(ex, 0);
2494 
2495 		ex->ee_len = cpu_to_le16(num);
2496 		/*
2497 		 * Do not mark uninitialized if all the blocks in the
2498 		 * extent have been removed.
2499 		 */
2500 		if (uninitialized && num)
2501 			ext4_ext_mark_uninitialized(ex);
2502 		/*
2503 		 * If the extent was completely released,
2504 		 * we need to remove it from the leaf
2505 		 */
2506 		if (num == 0) {
2507 			if (end != EXT_MAX_BLOCKS - 1) {
2508 				/*
2509 				 * For hole punching, we need to scoot all the
2510 				 * extents up when an extent is removed so that
2511 				 * we dont have blank extents in the middle
2512 				 */
2513 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2514 					sizeof(struct ext4_extent));
2515 
2516 				/* Now get rid of the one at the end */
2517 				memset(EXT_LAST_EXTENT(eh), 0,
2518 					sizeof(struct ext4_extent));
2519 			}
2520 			le16_add_cpu(&eh->eh_entries, -1);
2521 		} else
2522 			*partial_cluster = 0;
2523 
2524 		err = ext4_ext_dirty(handle, inode, path + depth);
2525 		if (err)
2526 			goto out;
2527 
2528 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2529 				ext4_ext_pblock(ex));
2530 		ex--;
2531 		ex_ee_block = le32_to_cpu(ex->ee_block);
2532 		ex_ee_len = ext4_ext_get_actual_len(ex);
2533 	}
2534 
2535 	if (correct_index && eh->eh_entries)
2536 		err = ext4_ext_correct_indexes(handle, inode, path);
2537 
2538 	/*
2539 	 * If there is still a entry in the leaf node, check to see if
2540 	 * it references the partial cluster.  This is the only place
2541 	 * where it could; if it doesn't, we can free the cluster.
2542 	 */
2543 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2544 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2545 	     *partial_cluster)) {
2546 		int flags = EXT4_FREE_BLOCKS_FORGET;
2547 
2548 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2549 			flags |= EXT4_FREE_BLOCKS_METADATA;
2550 
2551 		ext4_free_blocks(handle, inode, NULL,
2552 				 EXT4_C2B(sbi, *partial_cluster),
2553 				 sbi->s_cluster_ratio, flags);
2554 		*partial_cluster = 0;
2555 	}
2556 
2557 	/* if this leaf is free, then we should
2558 	 * remove it from index block above */
2559 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2560 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2561 
2562 out:
2563 	return err;
2564 }
2565 
2566 /*
2567  * ext4_ext_more_to_rm:
2568  * returns 1 if current index has to be freed (even partial)
2569  */
2570 static int
2571 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2572 {
2573 	BUG_ON(path->p_idx == NULL);
2574 
2575 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2576 		return 0;
2577 
2578 	/*
2579 	 * if truncate on deeper level happened, it wasn't partial,
2580 	 * so we have to consider current index for truncation
2581 	 */
2582 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2583 		return 0;
2584 	return 1;
2585 }
2586 
2587 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2588 				 ext4_lblk_t end)
2589 {
2590 	struct super_block *sb = inode->i_sb;
2591 	int depth = ext_depth(inode);
2592 	struct ext4_ext_path *path = NULL;
2593 	ext4_fsblk_t partial_cluster = 0;
2594 	handle_t *handle;
2595 	int i = 0, err = 0;
2596 
2597 	ext_debug("truncate since %u to %u\n", start, end);
2598 
2599 	/* probably first extent we're gonna free will be last in block */
2600 	handle = ext4_journal_start(inode, depth + 1);
2601 	if (IS_ERR(handle))
2602 		return PTR_ERR(handle);
2603 
2604 again:
2605 	ext4_ext_invalidate_cache(inode);
2606 
2607 	trace_ext4_ext_remove_space(inode, start, depth);
2608 
2609 	/*
2610 	 * Check if we are removing extents inside the extent tree. If that
2611 	 * is the case, we are going to punch a hole inside the extent tree
2612 	 * so we have to check whether we need to split the extent covering
2613 	 * the last block to remove so we can easily remove the part of it
2614 	 * in ext4_ext_rm_leaf().
2615 	 */
2616 	if (end < EXT_MAX_BLOCKS - 1) {
2617 		struct ext4_extent *ex;
2618 		ext4_lblk_t ee_block;
2619 
2620 		/* find extent for this block */
2621 		path = ext4_ext_find_extent(inode, end, NULL);
2622 		if (IS_ERR(path)) {
2623 			ext4_journal_stop(handle);
2624 			return PTR_ERR(path);
2625 		}
2626 		depth = ext_depth(inode);
2627 		/* Leaf not may not exist only if inode has no blocks at all */
2628 		ex = path[depth].p_ext;
2629 		if (!ex) {
2630 			if (depth) {
2631 				EXT4_ERROR_INODE(inode,
2632 						 "path[%d].p_hdr == NULL",
2633 						 depth);
2634 				err = -EIO;
2635 			}
2636 			goto out;
2637 		}
2638 
2639 		ee_block = le32_to_cpu(ex->ee_block);
2640 
2641 		/*
2642 		 * See if the last block is inside the extent, if so split
2643 		 * the extent at 'end' block so we can easily remove the
2644 		 * tail of the first part of the split extent in
2645 		 * ext4_ext_rm_leaf().
2646 		 */
2647 		if (end >= ee_block &&
2648 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2649 			int split_flag = 0;
2650 
2651 			if (ext4_ext_is_uninitialized(ex))
2652 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2653 					     EXT4_EXT_MARK_UNINIT2;
2654 
2655 			/*
2656 			 * Split the extent in two so that 'end' is the last
2657 			 * block in the first new extent
2658 			 */
2659 			err = ext4_split_extent_at(handle, inode, path,
2660 						end + 1, split_flag,
2661 						EXT4_GET_BLOCKS_PRE_IO |
2662 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2663 
2664 			if (err < 0)
2665 				goto out;
2666 		}
2667 	}
2668 	/*
2669 	 * We start scanning from right side, freeing all the blocks
2670 	 * after i_size and walking into the tree depth-wise.
2671 	 */
2672 	depth = ext_depth(inode);
2673 	if (path) {
2674 		int k = i = depth;
2675 		while (--k > 0)
2676 			path[k].p_block =
2677 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2678 	} else {
2679 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2680 			       GFP_NOFS);
2681 		if (path == NULL) {
2682 			ext4_journal_stop(handle);
2683 			return -ENOMEM;
2684 		}
2685 		path[0].p_depth = depth;
2686 		path[0].p_hdr = ext_inode_hdr(inode);
2687 		i = 0;
2688 
2689 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2690 			err = -EIO;
2691 			goto out;
2692 		}
2693 	}
2694 	err = 0;
2695 
2696 	while (i >= 0 && err == 0) {
2697 		if (i == depth) {
2698 			/* this is leaf block */
2699 			err = ext4_ext_rm_leaf(handle, inode, path,
2700 					       &partial_cluster, start,
2701 					       end);
2702 			/* root level has p_bh == NULL, brelse() eats this */
2703 			brelse(path[i].p_bh);
2704 			path[i].p_bh = NULL;
2705 			i--;
2706 			continue;
2707 		}
2708 
2709 		/* this is index block */
2710 		if (!path[i].p_hdr) {
2711 			ext_debug("initialize header\n");
2712 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2713 		}
2714 
2715 		if (!path[i].p_idx) {
2716 			/* this level hasn't been touched yet */
2717 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2718 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2719 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2720 				  path[i].p_hdr,
2721 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2722 		} else {
2723 			/* we were already here, see at next index */
2724 			path[i].p_idx--;
2725 		}
2726 
2727 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2728 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2729 				path[i].p_idx);
2730 		if (ext4_ext_more_to_rm(path + i)) {
2731 			struct buffer_head *bh;
2732 			/* go to the next level */
2733 			ext_debug("move to level %d (block %llu)\n",
2734 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2735 			memset(path + i + 1, 0, sizeof(*path));
2736 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2737 			if (!bh) {
2738 				/* should we reset i_size? */
2739 				err = -EIO;
2740 				break;
2741 			}
2742 			if (WARN_ON(i + 1 > depth)) {
2743 				err = -EIO;
2744 				break;
2745 			}
2746 			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2747 							depth - i - 1, bh)) {
2748 				err = -EIO;
2749 				break;
2750 			}
2751 			path[i + 1].p_bh = bh;
2752 
2753 			/* save actual number of indexes since this
2754 			 * number is changed at the next iteration */
2755 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2756 			i++;
2757 		} else {
2758 			/* we finished processing this index, go up */
2759 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2760 				/* index is empty, remove it;
2761 				 * handle must be already prepared by the
2762 				 * truncatei_leaf() */
2763 				err = ext4_ext_rm_idx(handle, inode, path + i);
2764 			}
2765 			/* root level has p_bh == NULL, brelse() eats this */
2766 			brelse(path[i].p_bh);
2767 			path[i].p_bh = NULL;
2768 			i--;
2769 			ext_debug("return to level %d\n", i);
2770 		}
2771 	}
2772 
2773 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2774 			path->p_hdr->eh_entries);
2775 
2776 	/* If we still have something in the partial cluster and we have removed
2777 	 * even the first extent, then we should free the blocks in the partial
2778 	 * cluster as well. */
2779 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2780 		int flags = EXT4_FREE_BLOCKS_FORGET;
2781 
2782 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2783 			flags |= EXT4_FREE_BLOCKS_METADATA;
2784 
2785 		ext4_free_blocks(handle, inode, NULL,
2786 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2787 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2788 		partial_cluster = 0;
2789 	}
2790 
2791 	/* TODO: flexible tree reduction should be here */
2792 	if (path->p_hdr->eh_entries == 0) {
2793 		/*
2794 		 * truncate to zero freed all the tree,
2795 		 * so we need to correct eh_depth
2796 		 */
2797 		err = ext4_ext_get_access(handle, inode, path);
2798 		if (err == 0) {
2799 			ext_inode_hdr(inode)->eh_depth = 0;
2800 			ext_inode_hdr(inode)->eh_max =
2801 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2802 			err = ext4_ext_dirty(handle, inode, path);
2803 		}
2804 	}
2805 out:
2806 	ext4_ext_drop_refs(path);
2807 	kfree(path);
2808 	if (err == -EAGAIN) {
2809 		path = NULL;
2810 		goto again;
2811 	}
2812 	ext4_journal_stop(handle);
2813 
2814 	return err;
2815 }
2816 
2817 /*
2818  * called at mount time
2819  */
2820 void ext4_ext_init(struct super_block *sb)
2821 {
2822 	/*
2823 	 * possible initialization would be here
2824 	 */
2825 
2826 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2827 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2828 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2829 #ifdef AGGRESSIVE_TEST
2830 		       ", aggressive tests"
2831 #endif
2832 #ifdef CHECK_BINSEARCH
2833 		       ", check binsearch"
2834 #endif
2835 #ifdef EXTENTS_STATS
2836 		       ", stats"
2837 #endif
2838 		       "\n");
2839 #endif
2840 #ifdef EXTENTS_STATS
2841 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2842 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2843 		EXT4_SB(sb)->s_ext_max = 0;
2844 #endif
2845 	}
2846 }
2847 
2848 /*
2849  * called at umount time
2850  */
2851 void ext4_ext_release(struct super_block *sb)
2852 {
2853 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2854 		return;
2855 
2856 #ifdef EXTENTS_STATS
2857 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2858 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2859 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2860 			sbi->s_ext_blocks, sbi->s_ext_extents,
2861 			sbi->s_ext_blocks / sbi->s_ext_extents);
2862 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2863 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2864 	}
2865 #endif
2866 }
2867 
2868 /* FIXME!! we need to try to merge to left or right after zero-out  */
2869 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2870 {
2871 	ext4_fsblk_t ee_pblock;
2872 	unsigned int ee_len;
2873 	int ret;
2874 
2875 	ee_len    = ext4_ext_get_actual_len(ex);
2876 	ee_pblock = ext4_ext_pblock(ex);
2877 
2878 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2879 	if (ret > 0)
2880 		ret = 0;
2881 
2882 	return ret;
2883 }
2884 
2885 /*
2886  * ext4_split_extent_at() splits an extent at given block.
2887  *
2888  * @handle: the journal handle
2889  * @inode: the file inode
2890  * @path: the path to the extent
2891  * @split: the logical block where the extent is splitted.
2892  * @split_flags: indicates if the extent could be zeroout if split fails, and
2893  *		 the states(init or uninit) of new extents.
2894  * @flags: flags used to insert new extent to extent tree.
2895  *
2896  *
2897  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2898  * of which are deterimined by split_flag.
2899  *
2900  * There are two cases:
2901  *  a> the extent are splitted into two extent.
2902  *  b> split is not needed, and just mark the extent.
2903  *
2904  * return 0 on success.
2905  */
2906 static int ext4_split_extent_at(handle_t *handle,
2907 			     struct inode *inode,
2908 			     struct ext4_ext_path *path,
2909 			     ext4_lblk_t split,
2910 			     int split_flag,
2911 			     int flags)
2912 {
2913 	ext4_fsblk_t newblock;
2914 	ext4_lblk_t ee_block;
2915 	struct ext4_extent *ex, newex, orig_ex;
2916 	struct ext4_extent *ex2 = NULL;
2917 	unsigned int ee_len, depth;
2918 	int err = 0;
2919 
2920 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2921 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2922 
2923 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2924 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2925 
2926 	ext4_ext_show_leaf(inode, path);
2927 
2928 	depth = ext_depth(inode);
2929 	ex = path[depth].p_ext;
2930 	ee_block = le32_to_cpu(ex->ee_block);
2931 	ee_len = ext4_ext_get_actual_len(ex);
2932 	newblock = split - ee_block + ext4_ext_pblock(ex);
2933 
2934 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2935 
2936 	err = ext4_ext_get_access(handle, inode, path + depth);
2937 	if (err)
2938 		goto out;
2939 
2940 	if (split == ee_block) {
2941 		/*
2942 		 * case b: block @split is the block that the extent begins with
2943 		 * then we just change the state of the extent, and splitting
2944 		 * is not needed.
2945 		 */
2946 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2947 			ext4_ext_mark_uninitialized(ex);
2948 		else
2949 			ext4_ext_mark_initialized(ex);
2950 
2951 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2952 			ext4_ext_try_to_merge(handle, inode, path, ex);
2953 
2954 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2955 		goto out;
2956 	}
2957 
2958 	/* case a */
2959 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2960 	ex->ee_len = cpu_to_le16(split - ee_block);
2961 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2962 		ext4_ext_mark_uninitialized(ex);
2963 
2964 	/*
2965 	 * path may lead to new leaf, not to original leaf any more
2966 	 * after ext4_ext_insert_extent() returns,
2967 	 */
2968 	err = ext4_ext_dirty(handle, inode, path + depth);
2969 	if (err)
2970 		goto fix_extent_len;
2971 
2972 	ex2 = &newex;
2973 	ex2->ee_block = cpu_to_le32(split);
2974 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2975 	ext4_ext_store_pblock(ex2, newblock);
2976 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2977 		ext4_ext_mark_uninitialized(ex2);
2978 
2979 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2980 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2981 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2982 			if (split_flag & EXT4_EXT_DATA_VALID1)
2983 				err = ext4_ext_zeroout(inode, ex2);
2984 			else
2985 				err = ext4_ext_zeroout(inode, ex);
2986 		} else
2987 			err = ext4_ext_zeroout(inode, &orig_ex);
2988 
2989 		if (err)
2990 			goto fix_extent_len;
2991 		/* update the extent length and mark as initialized */
2992 		ex->ee_len = cpu_to_le16(ee_len);
2993 		ext4_ext_try_to_merge(handle, inode, path, ex);
2994 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2995 		goto out;
2996 	} else if (err)
2997 		goto fix_extent_len;
2998 
2999 out:
3000 	ext4_ext_show_leaf(inode, path);
3001 	return err;
3002 
3003 fix_extent_len:
3004 	ex->ee_len = orig_ex.ee_len;
3005 	ext4_ext_dirty(handle, inode, path + depth);
3006 	return err;
3007 }
3008 
3009 /*
3010  * ext4_split_extents() splits an extent and mark extent which is covered
3011  * by @map as split_flags indicates
3012  *
3013  * It may result in splitting the extent into multiple extents (upto three)
3014  * There are three possibilities:
3015  *   a> There is no split required
3016  *   b> Splits in two extents: Split is happening at either end of the extent
3017  *   c> Splits in three extents: Somone is splitting in middle of the extent
3018  *
3019  */
3020 static int ext4_split_extent(handle_t *handle,
3021 			      struct inode *inode,
3022 			      struct ext4_ext_path *path,
3023 			      struct ext4_map_blocks *map,
3024 			      int split_flag,
3025 			      int flags)
3026 {
3027 	ext4_lblk_t ee_block;
3028 	struct ext4_extent *ex;
3029 	unsigned int ee_len, depth;
3030 	int err = 0;
3031 	int uninitialized;
3032 	int split_flag1, flags1;
3033 
3034 	depth = ext_depth(inode);
3035 	ex = path[depth].p_ext;
3036 	ee_block = le32_to_cpu(ex->ee_block);
3037 	ee_len = ext4_ext_get_actual_len(ex);
3038 	uninitialized = ext4_ext_is_uninitialized(ex);
3039 
3040 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3041 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3042 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3043 		if (uninitialized)
3044 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3045 				       EXT4_EXT_MARK_UNINIT2;
3046 		if (split_flag & EXT4_EXT_DATA_VALID2)
3047 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3048 		err = ext4_split_extent_at(handle, inode, path,
3049 				map->m_lblk + map->m_len, split_flag1, flags1);
3050 		if (err)
3051 			goto out;
3052 	}
3053 
3054 	ext4_ext_drop_refs(path);
3055 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3056 	if (IS_ERR(path))
3057 		return PTR_ERR(path);
3058 
3059 	if (map->m_lblk >= ee_block) {
3060 		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3061 					    EXT4_EXT_DATA_VALID2);
3062 		if (uninitialized)
3063 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3064 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3065 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3066 		err = ext4_split_extent_at(handle, inode, path,
3067 				map->m_lblk, split_flag1, flags);
3068 		if (err)
3069 			goto out;
3070 	}
3071 
3072 	ext4_ext_show_leaf(inode, path);
3073 out:
3074 	return err ? err : map->m_len;
3075 }
3076 
3077 /*
3078  * This function is called by ext4_ext_map_blocks() if someone tries to write
3079  * to an uninitialized extent. It may result in splitting the uninitialized
3080  * extent into multiple extents (up to three - one initialized and two
3081  * uninitialized).
3082  * There are three possibilities:
3083  *   a> There is no split required: Entire extent should be initialized
3084  *   b> Splits in two extents: Write is happening at either end of the extent
3085  *   c> Splits in three extents: Somone is writing in middle of the extent
3086  *
3087  * Pre-conditions:
3088  *  - The extent pointed to by 'path' is uninitialized.
3089  *  - The extent pointed to by 'path' contains a superset
3090  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3091  *
3092  * Post-conditions on success:
3093  *  - the returned value is the number of blocks beyond map->l_lblk
3094  *    that are allocated and initialized.
3095  *    It is guaranteed to be >= map->m_len.
3096  */
3097 static int ext4_ext_convert_to_initialized(handle_t *handle,
3098 					   struct inode *inode,
3099 					   struct ext4_map_blocks *map,
3100 					   struct ext4_ext_path *path)
3101 {
3102 	struct ext4_sb_info *sbi;
3103 	struct ext4_extent_header *eh;
3104 	struct ext4_map_blocks split_map;
3105 	struct ext4_extent zero_ex;
3106 	struct ext4_extent *ex;
3107 	ext4_lblk_t ee_block, eof_block;
3108 	unsigned int ee_len, depth;
3109 	int allocated, max_zeroout = 0;
3110 	int err = 0;
3111 	int split_flag = 0;
3112 
3113 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3114 		"block %llu, max_blocks %u\n", inode->i_ino,
3115 		(unsigned long long)map->m_lblk, map->m_len);
3116 
3117 	sbi = EXT4_SB(inode->i_sb);
3118 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3119 		inode->i_sb->s_blocksize_bits;
3120 	if (eof_block < map->m_lblk + map->m_len)
3121 		eof_block = map->m_lblk + map->m_len;
3122 
3123 	depth = ext_depth(inode);
3124 	eh = path[depth].p_hdr;
3125 	ex = path[depth].p_ext;
3126 	ee_block = le32_to_cpu(ex->ee_block);
3127 	ee_len = ext4_ext_get_actual_len(ex);
3128 	allocated = ee_len - (map->m_lblk - ee_block);
3129 
3130 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3131 
3132 	/* Pre-conditions */
3133 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3134 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3135 
3136 	/*
3137 	 * Attempt to transfer newly initialized blocks from the currently
3138 	 * uninitialized extent to its left neighbor. This is much cheaper
3139 	 * than an insertion followed by a merge as those involve costly
3140 	 * memmove() calls. This is the common case in steady state for
3141 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3142 	 * writes.
3143 	 *
3144 	 * Limitations of the current logic:
3145 	 *  - L1: we only deal with writes at the start of the extent.
3146 	 *    The approach could be extended to writes at the end
3147 	 *    of the extent but this scenario was deemed less common.
3148 	 *  - L2: we do not deal with writes covering the whole extent.
3149 	 *    This would require removing the extent if the transfer
3150 	 *    is possible.
3151 	 *  - L3: we only attempt to merge with an extent stored in the
3152 	 *    same extent tree node.
3153 	 */
3154 	if ((map->m_lblk == ee_block) &&	/*L1*/
3155 		(map->m_len < ee_len) &&	/*L2*/
3156 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3157 		struct ext4_extent *prev_ex;
3158 		ext4_lblk_t prev_lblk;
3159 		ext4_fsblk_t prev_pblk, ee_pblk;
3160 		unsigned int prev_len, write_len;
3161 
3162 		prev_ex = ex - 1;
3163 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3164 		prev_len = ext4_ext_get_actual_len(prev_ex);
3165 		prev_pblk = ext4_ext_pblock(prev_ex);
3166 		ee_pblk = ext4_ext_pblock(ex);
3167 		write_len = map->m_len;
3168 
3169 		/*
3170 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3171 		 * upon those conditions:
3172 		 * - C1: prev_ex is initialized,
3173 		 * - C2: prev_ex is logically abutting ex,
3174 		 * - C3: prev_ex is physically abutting ex,
3175 		 * - C4: prev_ex can receive the additional blocks without
3176 		 *   overflowing the (initialized) length limit.
3177 		 */
3178 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3179 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3180 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3181 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3182 			err = ext4_ext_get_access(handle, inode, path + depth);
3183 			if (err)
3184 				goto out;
3185 
3186 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3187 				map, ex, prev_ex);
3188 
3189 			/* Shift the start of ex by 'write_len' blocks */
3190 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3191 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3192 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3193 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3194 
3195 			/* Extend prev_ex by 'write_len' blocks */
3196 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3197 
3198 			/* Mark the block containing both extents as dirty */
3199 			ext4_ext_dirty(handle, inode, path + depth);
3200 
3201 			/* Update path to point to the right extent */
3202 			path[depth].p_ext = prev_ex;
3203 
3204 			/* Result: number of initialized blocks past m_lblk */
3205 			allocated = write_len;
3206 			goto out;
3207 		}
3208 	}
3209 
3210 	WARN_ON(map->m_lblk < ee_block);
3211 	/*
3212 	 * It is safe to convert extent to initialized via explicit
3213 	 * zeroout only if extent is fully insde i_size or new_size.
3214 	 */
3215 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3216 
3217 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3218 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3219 			inode->i_sb->s_blocksize_bits;
3220 
3221 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3222 	if (max_zeroout && (ee_len <= max_zeroout)) {
3223 		err = ext4_ext_zeroout(inode, ex);
3224 		if (err)
3225 			goto out;
3226 
3227 		err = ext4_ext_get_access(handle, inode, path + depth);
3228 		if (err)
3229 			goto out;
3230 		ext4_ext_mark_initialized(ex);
3231 		ext4_ext_try_to_merge(handle, inode, path, ex);
3232 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3233 		goto out;
3234 	}
3235 
3236 	/*
3237 	 * four cases:
3238 	 * 1. split the extent into three extents.
3239 	 * 2. split the extent into two extents, zeroout the first half.
3240 	 * 3. split the extent into two extents, zeroout the second half.
3241 	 * 4. split the extent into two extents with out zeroout.
3242 	 */
3243 	split_map.m_lblk = map->m_lblk;
3244 	split_map.m_len = map->m_len;
3245 
3246 	if (max_zeroout && (allocated > map->m_len)) {
3247 		if (allocated <= max_zeroout) {
3248 			/* case 3 */
3249 			zero_ex.ee_block =
3250 					 cpu_to_le32(map->m_lblk);
3251 			zero_ex.ee_len = cpu_to_le16(allocated);
3252 			ext4_ext_store_pblock(&zero_ex,
3253 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3254 			err = ext4_ext_zeroout(inode, &zero_ex);
3255 			if (err)
3256 				goto out;
3257 			split_map.m_lblk = map->m_lblk;
3258 			split_map.m_len = allocated;
3259 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3260 			/* case 2 */
3261 			if (map->m_lblk != ee_block) {
3262 				zero_ex.ee_block = ex->ee_block;
3263 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3264 							ee_block);
3265 				ext4_ext_store_pblock(&zero_ex,
3266 						      ext4_ext_pblock(ex));
3267 				err = ext4_ext_zeroout(inode, &zero_ex);
3268 				if (err)
3269 					goto out;
3270 			}
3271 
3272 			split_map.m_lblk = ee_block;
3273 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3274 			allocated = map->m_len;
3275 		}
3276 	}
3277 
3278 	allocated = ext4_split_extent(handle, inode, path,
3279 				      &split_map, split_flag, 0);
3280 	if (allocated < 0)
3281 		err = allocated;
3282 
3283 out:
3284 	return err ? err : allocated;
3285 }
3286 
3287 /*
3288  * This function is called by ext4_ext_map_blocks() from
3289  * ext4_get_blocks_dio_write() when DIO to write
3290  * to an uninitialized extent.
3291  *
3292  * Writing to an uninitialized extent may result in splitting the uninitialized
3293  * extent into multiple initialized/uninitialized extents (up to three)
3294  * There are three possibilities:
3295  *   a> There is no split required: Entire extent should be uninitialized
3296  *   b> Splits in two extents: Write is happening at either end of the extent
3297  *   c> Splits in three extents: Somone is writing in middle of the extent
3298  *
3299  * One of more index blocks maybe needed if the extent tree grow after
3300  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3301  * complete, we need to split the uninitialized extent before DIO submit
3302  * the IO. The uninitialized extent called at this time will be split
3303  * into three uninitialized extent(at most). After IO complete, the part
3304  * being filled will be convert to initialized by the end_io callback function
3305  * via ext4_convert_unwritten_extents().
3306  *
3307  * Returns the size of uninitialized extent to be written on success.
3308  */
3309 static int ext4_split_unwritten_extents(handle_t *handle,
3310 					struct inode *inode,
3311 					struct ext4_map_blocks *map,
3312 					struct ext4_ext_path *path,
3313 					int flags)
3314 {
3315 	ext4_lblk_t eof_block;
3316 	ext4_lblk_t ee_block;
3317 	struct ext4_extent *ex;
3318 	unsigned int ee_len;
3319 	int split_flag = 0, depth;
3320 
3321 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3322 		"block %llu, max_blocks %u\n", inode->i_ino,
3323 		(unsigned long long)map->m_lblk, map->m_len);
3324 
3325 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3326 		inode->i_sb->s_blocksize_bits;
3327 	if (eof_block < map->m_lblk + map->m_len)
3328 		eof_block = map->m_lblk + map->m_len;
3329 	/*
3330 	 * It is safe to convert extent to initialized via explicit
3331 	 * zeroout only if extent is fully insde i_size or new_size.
3332 	 */
3333 	depth = ext_depth(inode);
3334 	ex = path[depth].p_ext;
3335 	ee_block = le32_to_cpu(ex->ee_block);
3336 	ee_len = ext4_ext_get_actual_len(ex);
3337 
3338 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3339 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3340 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3341 		split_flag |= EXT4_EXT_DATA_VALID2;
3342 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3343 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3344 }
3345 
3346 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3347 						struct inode *inode,
3348 						struct ext4_map_blocks *map,
3349 						struct ext4_ext_path *path)
3350 {
3351 	struct ext4_extent *ex;
3352 	ext4_lblk_t ee_block;
3353 	unsigned int ee_len;
3354 	int depth;
3355 	int err = 0;
3356 
3357 	depth = ext_depth(inode);
3358 	ex = path[depth].p_ext;
3359 	ee_block = le32_to_cpu(ex->ee_block);
3360 	ee_len = ext4_ext_get_actual_len(ex);
3361 
3362 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3363 		"block %llu, max_blocks %u\n", inode->i_ino,
3364 		  (unsigned long long)ee_block, ee_len);
3365 
3366 	/* If extent is larger than requested then split is required */
3367 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3368 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3369 						   EXT4_GET_BLOCKS_CONVERT);
3370 		if (err < 0)
3371 			goto out;
3372 		ext4_ext_drop_refs(path);
3373 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3374 		if (IS_ERR(path)) {
3375 			err = PTR_ERR(path);
3376 			goto out;
3377 		}
3378 		depth = ext_depth(inode);
3379 		ex = path[depth].p_ext;
3380 	}
3381 
3382 	err = ext4_ext_get_access(handle, inode, path + depth);
3383 	if (err)
3384 		goto out;
3385 	/* first mark the extent as initialized */
3386 	ext4_ext_mark_initialized(ex);
3387 
3388 	/* note: ext4_ext_correct_indexes() isn't needed here because
3389 	 * borders are not changed
3390 	 */
3391 	ext4_ext_try_to_merge(handle, inode, path, ex);
3392 
3393 	/* Mark modified extent as dirty */
3394 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3395 out:
3396 	ext4_ext_show_leaf(inode, path);
3397 	return err;
3398 }
3399 
3400 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3401 			sector_t block, int count)
3402 {
3403 	int i;
3404 	for (i = 0; i < count; i++)
3405                 unmap_underlying_metadata(bdev, block + i);
3406 }
3407 
3408 /*
3409  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3410  */
3411 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3412 			      ext4_lblk_t lblk,
3413 			      struct ext4_ext_path *path,
3414 			      unsigned int len)
3415 {
3416 	int i, depth;
3417 	struct ext4_extent_header *eh;
3418 	struct ext4_extent *last_ex;
3419 
3420 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3421 		return 0;
3422 
3423 	depth = ext_depth(inode);
3424 	eh = path[depth].p_hdr;
3425 
3426 	/*
3427 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3428 	 * do not care for this case anymore. Simply remove the flag
3429 	 * if there are no extents.
3430 	 */
3431 	if (unlikely(!eh->eh_entries))
3432 		goto out;
3433 	last_ex = EXT_LAST_EXTENT(eh);
3434 	/*
3435 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3436 	 * last block in the last extent in the file.  We test this by
3437 	 * first checking to see if the caller to
3438 	 * ext4_ext_get_blocks() was interested in the last block (or
3439 	 * a block beyond the last block) in the current extent.  If
3440 	 * this turns out to be false, we can bail out from this
3441 	 * function immediately.
3442 	 */
3443 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3444 	    ext4_ext_get_actual_len(last_ex))
3445 		return 0;
3446 	/*
3447 	 * If the caller does appear to be planning to write at or
3448 	 * beyond the end of the current extent, we then test to see
3449 	 * if the current extent is the last extent in the file, by
3450 	 * checking to make sure it was reached via the rightmost node
3451 	 * at each level of the tree.
3452 	 */
3453 	for (i = depth-1; i >= 0; i--)
3454 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3455 			return 0;
3456 out:
3457 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3458 	return ext4_mark_inode_dirty(handle, inode);
3459 }
3460 
3461 /**
3462  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3463  *
3464  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3465  * whether there are any buffers marked for delayed allocation. It returns '1'
3466  * on the first delalloc'ed buffer head found. If no buffer head in the given
3467  * range is marked for delalloc, it returns 0.
3468  * lblk_start should always be <= lblk_end.
3469  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3470  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3471  * block sooner). This is useful when blocks are truncated sequentially from
3472  * lblk_start towards lblk_end.
3473  */
3474 static int ext4_find_delalloc_range(struct inode *inode,
3475 				    ext4_lblk_t lblk_start,
3476 				    ext4_lblk_t lblk_end,
3477 				    int search_hint_reverse)
3478 {
3479 	struct address_space *mapping = inode->i_mapping;
3480 	struct buffer_head *head, *bh = NULL;
3481 	struct page *page;
3482 	ext4_lblk_t i, pg_lblk;
3483 	pgoff_t index;
3484 
3485 	if (!test_opt(inode->i_sb, DELALLOC))
3486 		return 0;
3487 
3488 	/* reverse search wont work if fs block size is less than page size */
3489 	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3490 		search_hint_reverse = 0;
3491 
3492 	if (search_hint_reverse)
3493 		i = lblk_end;
3494 	else
3495 		i = lblk_start;
3496 
3497 	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3498 
3499 	while ((i >= lblk_start) && (i <= lblk_end)) {
3500 		page = find_get_page(mapping, index);
3501 		if (!page)
3502 			goto nextpage;
3503 
3504 		if (!page_has_buffers(page))
3505 			goto nextpage;
3506 
3507 		head = page_buffers(page);
3508 		if (!head)
3509 			goto nextpage;
3510 
3511 		bh = head;
3512 		pg_lblk = index << (PAGE_CACHE_SHIFT -
3513 						inode->i_blkbits);
3514 		do {
3515 			if (unlikely(pg_lblk < lblk_start)) {
3516 				/*
3517 				 * This is possible when fs block size is less
3518 				 * than page size and our cluster starts/ends in
3519 				 * middle of the page. So we need to skip the
3520 				 * initial few blocks till we reach the 'lblk'
3521 				 */
3522 				pg_lblk++;
3523 				continue;
3524 			}
3525 
3526 			/* Check if the buffer is delayed allocated and that it
3527 			 * is not yet mapped. (when da-buffers are mapped during
3528 			 * their writeout, their da_mapped bit is set.)
3529 			 */
3530 			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3531 				page_cache_release(page);
3532 				trace_ext4_find_delalloc_range(inode,
3533 						lblk_start, lblk_end,
3534 						search_hint_reverse,
3535 						1, i);
3536 				return 1;
3537 			}
3538 			if (search_hint_reverse)
3539 				i--;
3540 			else
3541 				i++;
3542 		} while ((i >= lblk_start) && (i <= lblk_end) &&
3543 				((bh = bh->b_this_page) != head));
3544 nextpage:
3545 		if (page)
3546 			page_cache_release(page);
3547 		/*
3548 		 * Move to next page. 'i' will be the first lblk in the next
3549 		 * page.
3550 		 */
3551 		if (search_hint_reverse)
3552 			index--;
3553 		else
3554 			index++;
3555 		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3556 	}
3557 
3558 	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3559 					search_hint_reverse, 0, 0);
3560 	return 0;
3561 }
3562 
3563 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3564 			       int search_hint_reverse)
3565 {
3566 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3567 	ext4_lblk_t lblk_start, lblk_end;
3568 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3569 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3570 
3571 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3572 					search_hint_reverse);
3573 }
3574 
3575 /**
3576  * Determines how many complete clusters (out of those specified by the 'map')
3577  * are under delalloc and were reserved quota for.
3578  * This function is called when we are writing out the blocks that were
3579  * originally written with their allocation delayed, but then the space was
3580  * allocated using fallocate() before the delayed allocation could be resolved.
3581  * The cases to look for are:
3582  * ('=' indicated delayed allocated blocks
3583  *  '-' indicates non-delayed allocated blocks)
3584  * (a) partial clusters towards beginning and/or end outside of allocated range
3585  *     are not delalloc'ed.
3586  *	Ex:
3587  *	|----c---=|====c====|====c====|===-c----|
3588  *	         |++++++ allocated ++++++|
3589  *	==> 4 complete clusters in above example
3590  *
3591  * (b) partial cluster (outside of allocated range) towards either end is
3592  *     marked for delayed allocation. In this case, we will exclude that
3593  *     cluster.
3594  *	Ex:
3595  *	|----====c========|========c========|
3596  *	     |++++++ allocated ++++++|
3597  *	==> 1 complete clusters in above example
3598  *
3599  *	Ex:
3600  *	|================c================|
3601  *            |++++++ allocated ++++++|
3602  *	==> 0 complete clusters in above example
3603  *
3604  * The ext4_da_update_reserve_space will be called only if we
3605  * determine here that there were some "entire" clusters that span
3606  * this 'allocated' range.
3607  * In the non-bigalloc case, this function will just end up returning num_blks
3608  * without ever calling ext4_find_delalloc_range.
3609  */
3610 static unsigned int
3611 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3612 			   unsigned int num_blks)
3613 {
3614 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3615 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3616 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3617 	unsigned int allocated_clusters = 0;
3618 
3619 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3620 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3621 
3622 	/* max possible clusters for this allocation */
3623 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3624 
3625 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3626 
3627 	/* Check towards left side */
3628 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3629 	if (c_offset) {
3630 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3631 		lblk_to = lblk_from + c_offset - 1;
3632 
3633 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3634 			allocated_clusters--;
3635 	}
3636 
3637 	/* Now check towards right. */
3638 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3639 	if (allocated_clusters && c_offset) {
3640 		lblk_from = lblk_start + num_blks;
3641 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3642 
3643 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3644 			allocated_clusters--;
3645 	}
3646 
3647 	return allocated_clusters;
3648 }
3649 
3650 static int
3651 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3652 			struct ext4_map_blocks *map,
3653 			struct ext4_ext_path *path, int flags,
3654 			unsigned int allocated, ext4_fsblk_t newblock)
3655 {
3656 	int ret = 0;
3657 	int err = 0;
3658 	ext4_io_end_t *io = ext4_inode_aio(inode);
3659 
3660 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3661 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3662 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3663 		  flags, allocated);
3664 	ext4_ext_show_leaf(inode, path);
3665 
3666 	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3667 						    newblock);
3668 
3669 	/* get_block() before submit the IO, split the extent */
3670 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3671 		ret = ext4_split_unwritten_extents(handle, inode, map,
3672 						   path, flags);
3673 		if (ret <= 0)
3674 			goto out;
3675 		/*
3676 		 * Flag the inode(non aio case) or end_io struct (aio case)
3677 		 * that this IO needs to conversion to written when IO is
3678 		 * completed
3679 		 */
3680 		if (io)
3681 			ext4_set_io_unwritten_flag(inode, io);
3682 		else
3683 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3684 		if (ext4_should_dioread_nolock(inode))
3685 			map->m_flags |= EXT4_MAP_UNINIT;
3686 		goto out;
3687 	}
3688 	/* IO end_io complete, convert the filled extent to written */
3689 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3690 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3691 							path);
3692 		if (ret >= 0) {
3693 			ext4_update_inode_fsync_trans(handle, inode, 1);
3694 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3695 						 path, map->m_len);
3696 		} else
3697 			err = ret;
3698 		goto out2;
3699 	}
3700 	/* buffered IO case */
3701 	/*
3702 	 * repeat fallocate creation request
3703 	 * we already have an unwritten extent
3704 	 */
3705 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3706 		goto map_out;
3707 
3708 	/* buffered READ or buffered write_begin() lookup */
3709 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3710 		/*
3711 		 * We have blocks reserved already.  We
3712 		 * return allocated blocks so that delalloc
3713 		 * won't do block reservation for us.  But
3714 		 * the buffer head will be unmapped so that
3715 		 * a read from the block returns 0s.
3716 		 */
3717 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3718 		goto out1;
3719 	}
3720 
3721 	/* buffered write, writepage time, convert*/
3722 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3723 	if (ret >= 0)
3724 		ext4_update_inode_fsync_trans(handle, inode, 1);
3725 out:
3726 	if (ret <= 0) {
3727 		err = ret;
3728 		goto out2;
3729 	} else
3730 		allocated = ret;
3731 	map->m_flags |= EXT4_MAP_NEW;
3732 	/*
3733 	 * if we allocated more blocks than requested
3734 	 * we need to make sure we unmap the extra block
3735 	 * allocated. The actual needed block will get
3736 	 * unmapped later when we find the buffer_head marked
3737 	 * new.
3738 	 */
3739 	if (allocated > map->m_len) {
3740 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3741 					newblock + map->m_len,
3742 					allocated - map->m_len);
3743 		allocated = map->m_len;
3744 	}
3745 
3746 	/*
3747 	 * If we have done fallocate with the offset that is already
3748 	 * delayed allocated, we would have block reservation
3749 	 * and quota reservation done in the delayed write path.
3750 	 * But fallocate would have already updated quota and block
3751 	 * count for this offset. So cancel these reservation
3752 	 */
3753 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3754 		unsigned int reserved_clusters;
3755 		reserved_clusters = get_reserved_cluster_alloc(inode,
3756 				map->m_lblk, map->m_len);
3757 		if (reserved_clusters)
3758 			ext4_da_update_reserve_space(inode,
3759 						     reserved_clusters,
3760 						     0);
3761 	}
3762 
3763 map_out:
3764 	map->m_flags |= EXT4_MAP_MAPPED;
3765 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3766 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3767 					 map->m_len);
3768 		if (err < 0)
3769 			goto out2;
3770 	}
3771 out1:
3772 	if (allocated > map->m_len)
3773 		allocated = map->m_len;
3774 	ext4_ext_show_leaf(inode, path);
3775 	map->m_pblk = newblock;
3776 	map->m_len = allocated;
3777 out2:
3778 	if (path) {
3779 		ext4_ext_drop_refs(path);
3780 		kfree(path);
3781 	}
3782 	return err ? err : allocated;
3783 }
3784 
3785 /*
3786  * get_implied_cluster_alloc - check to see if the requested
3787  * allocation (in the map structure) overlaps with a cluster already
3788  * allocated in an extent.
3789  *	@sb	The filesystem superblock structure
3790  *	@map	The requested lblk->pblk mapping
3791  *	@ex	The extent structure which might contain an implied
3792  *			cluster allocation
3793  *
3794  * This function is called by ext4_ext_map_blocks() after we failed to
3795  * find blocks that were already in the inode's extent tree.  Hence,
3796  * we know that the beginning of the requested region cannot overlap
3797  * the extent from the inode's extent tree.  There are three cases we
3798  * want to catch.  The first is this case:
3799  *
3800  *		 |--- cluster # N--|
3801  *    |--- extent ---|	|---- requested region ---|
3802  *			|==========|
3803  *
3804  * The second case that we need to test for is this one:
3805  *
3806  *   |--------- cluster # N ----------------|
3807  *	   |--- requested region --|   |------- extent ----|
3808  *	   |=======================|
3809  *
3810  * The third case is when the requested region lies between two extents
3811  * within the same cluster:
3812  *          |------------- cluster # N-------------|
3813  * |----- ex -----|                  |---- ex_right ----|
3814  *                  |------ requested region ------|
3815  *                  |================|
3816  *
3817  * In each of the above cases, we need to set the map->m_pblk and
3818  * map->m_len so it corresponds to the return the extent labelled as
3819  * "|====|" from cluster #N, since it is already in use for data in
3820  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3821  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3822  * as a new "allocated" block region.  Otherwise, we will return 0 and
3823  * ext4_ext_map_blocks() will then allocate one or more new clusters
3824  * by calling ext4_mb_new_blocks().
3825  */
3826 static int get_implied_cluster_alloc(struct super_block *sb,
3827 				     struct ext4_map_blocks *map,
3828 				     struct ext4_extent *ex,
3829 				     struct ext4_ext_path *path)
3830 {
3831 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3832 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3833 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3834 	ext4_lblk_t rr_cluster_start;
3835 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3836 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3837 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3838 
3839 	/* The extent passed in that we are trying to match */
3840 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3841 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3842 
3843 	/* The requested region passed into ext4_map_blocks() */
3844 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3845 
3846 	if ((rr_cluster_start == ex_cluster_end) ||
3847 	    (rr_cluster_start == ex_cluster_start)) {
3848 		if (rr_cluster_start == ex_cluster_end)
3849 			ee_start += ee_len - 1;
3850 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3851 			c_offset;
3852 		map->m_len = min(map->m_len,
3853 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3854 		/*
3855 		 * Check for and handle this case:
3856 		 *
3857 		 *   |--------- cluster # N-------------|
3858 		 *		       |------- extent ----|
3859 		 *	   |--- requested region ---|
3860 		 *	   |===========|
3861 		 */
3862 
3863 		if (map->m_lblk < ee_block)
3864 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3865 
3866 		/*
3867 		 * Check for the case where there is already another allocated
3868 		 * block to the right of 'ex' but before the end of the cluster.
3869 		 *
3870 		 *          |------------- cluster # N-------------|
3871 		 * |----- ex -----|                  |---- ex_right ----|
3872 		 *                  |------ requested region ------|
3873 		 *                  |================|
3874 		 */
3875 		if (map->m_lblk > ee_block) {
3876 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3877 			map->m_len = min(map->m_len, next - map->m_lblk);
3878 		}
3879 
3880 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3881 		return 1;
3882 	}
3883 
3884 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3885 	return 0;
3886 }
3887 
3888 
3889 /*
3890  * Block allocation/map/preallocation routine for extents based files
3891  *
3892  *
3893  * Need to be called with
3894  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3895  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3896  *
3897  * return > 0, number of of blocks already mapped/allocated
3898  *          if create == 0 and these are pre-allocated blocks
3899  *          	buffer head is unmapped
3900  *          otherwise blocks are mapped
3901  *
3902  * return = 0, if plain look up failed (blocks have not been allocated)
3903  *          buffer head is unmapped
3904  *
3905  * return < 0, error case.
3906  */
3907 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3908 			struct ext4_map_blocks *map, int flags)
3909 {
3910 	struct ext4_ext_path *path = NULL;
3911 	struct ext4_extent newex, *ex, *ex2;
3912 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3913 	ext4_fsblk_t newblock = 0;
3914 	int free_on_err = 0, err = 0, depth, ret;
3915 	unsigned int allocated = 0, offset = 0;
3916 	unsigned int allocated_clusters = 0;
3917 	struct ext4_allocation_request ar;
3918 	ext4_io_end_t *io = ext4_inode_aio(inode);
3919 	ext4_lblk_t cluster_offset;
3920 	int set_unwritten = 0;
3921 
3922 	ext_debug("blocks %u/%u requested for inode %lu\n",
3923 		  map->m_lblk, map->m_len, inode->i_ino);
3924 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3925 
3926 	/* check in cache */
3927 	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3928 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3929 			if ((sbi->s_cluster_ratio > 1) &&
3930 			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3931 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3932 
3933 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3934 				/*
3935 				 * block isn't allocated yet and
3936 				 * user doesn't want to allocate it
3937 				 */
3938 				goto out2;
3939 			}
3940 			/* we should allocate requested block */
3941 		} else {
3942 			/* block is already allocated */
3943 			if (sbi->s_cluster_ratio > 1)
3944 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3945 			newblock = map->m_lblk
3946 				   - le32_to_cpu(newex.ee_block)
3947 				   + ext4_ext_pblock(&newex);
3948 			/* number of remaining blocks in the extent */
3949 			allocated = ext4_ext_get_actual_len(&newex) -
3950 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3951 			goto out;
3952 		}
3953 	}
3954 
3955 	/* find extent for this block */
3956 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3957 	if (IS_ERR(path)) {
3958 		err = PTR_ERR(path);
3959 		path = NULL;
3960 		goto out2;
3961 	}
3962 
3963 	depth = ext_depth(inode);
3964 
3965 	/*
3966 	 * consistent leaf must not be empty;
3967 	 * this situation is possible, though, _during_ tree modification;
3968 	 * this is why assert can't be put in ext4_ext_find_extent()
3969 	 */
3970 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3971 		EXT4_ERROR_INODE(inode, "bad extent address "
3972 				 "lblock: %lu, depth: %d pblock %lld",
3973 				 (unsigned long) map->m_lblk, depth,
3974 				 path[depth].p_block);
3975 		err = -EIO;
3976 		goto out2;
3977 	}
3978 
3979 	ex = path[depth].p_ext;
3980 	if (ex) {
3981 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3982 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3983 		unsigned short ee_len;
3984 
3985 		/*
3986 		 * Uninitialized extents are treated as holes, except that
3987 		 * we split out initialized portions during a write.
3988 		 */
3989 		ee_len = ext4_ext_get_actual_len(ex);
3990 
3991 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3992 
3993 		/* if found extent covers block, simply return it */
3994 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3995 			newblock = map->m_lblk - ee_block + ee_start;
3996 			/* number of remaining blocks in the extent */
3997 			allocated = ee_len - (map->m_lblk - ee_block);
3998 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3999 				  ee_block, ee_len, newblock);
4000 
4001 			/*
4002 			 * Do not put uninitialized extent
4003 			 * in the cache
4004 			 */
4005 			if (!ext4_ext_is_uninitialized(ex)) {
4006 				ext4_ext_put_in_cache(inode, ee_block,
4007 					ee_len, ee_start);
4008 				goto out;
4009 			}
4010 			ret = ext4_ext_handle_uninitialized_extents(
4011 				handle, inode, map, path, flags,
4012 				allocated, newblock);
4013 			return ret;
4014 		}
4015 	}
4016 
4017 	if ((sbi->s_cluster_ratio > 1) &&
4018 	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
4019 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4020 
4021 	/*
4022 	 * requested block isn't allocated yet;
4023 	 * we couldn't try to create block if create flag is zero
4024 	 */
4025 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4026 		/*
4027 		 * put just found gap into cache to speed up
4028 		 * subsequent requests
4029 		 */
4030 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4031 		goto out2;
4032 	}
4033 
4034 	/*
4035 	 * Okay, we need to do block allocation.
4036 	 */
4037 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4038 	newex.ee_block = cpu_to_le32(map->m_lblk);
4039 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4040 
4041 	/*
4042 	 * If we are doing bigalloc, check to see if the extent returned
4043 	 * by ext4_ext_find_extent() implies a cluster we can use.
4044 	 */
4045 	if (cluster_offset && ex &&
4046 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4047 		ar.len = allocated = map->m_len;
4048 		newblock = map->m_pblk;
4049 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4050 		goto got_allocated_blocks;
4051 	}
4052 
4053 	/* find neighbour allocated blocks */
4054 	ar.lleft = map->m_lblk;
4055 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4056 	if (err)
4057 		goto out2;
4058 	ar.lright = map->m_lblk;
4059 	ex2 = NULL;
4060 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4061 	if (err)
4062 		goto out2;
4063 
4064 	/* Check if the extent after searching to the right implies a
4065 	 * cluster we can use. */
4066 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4067 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4068 		ar.len = allocated = map->m_len;
4069 		newblock = map->m_pblk;
4070 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4071 		goto got_allocated_blocks;
4072 	}
4073 
4074 	/*
4075 	 * See if request is beyond maximum number of blocks we can have in
4076 	 * a single extent. For an initialized extent this limit is
4077 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4078 	 * EXT_UNINIT_MAX_LEN.
4079 	 */
4080 	if (map->m_len > EXT_INIT_MAX_LEN &&
4081 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4082 		map->m_len = EXT_INIT_MAX_LEN;
4083 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4084 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4085 		map->m_len = EXT_UNINIT_MAX_LEN;
4086 
4087 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4088 	newex.ee_len = cpu_to_le16(map->m_len);
4089 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4090 	if (err)
4091 		allocated = ext4_ext_get_actual_len(&newex);
4092 	else
4093 		allocated = map->m_len;
4094 
4095 	/* allocate new block */
4096 	ar.inode = inode;
4097 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4098 	ar.logical = map->m_lblk;
4099 	/*
4100 	 * We calculate the offset from the beginning of the cluster
4101 	 * for the logical block number, since when we allocate a
4102 	 * physical cluster, the physical block should start at the
4103 	 * same offset from the beginning of the cluster.  This is
4104 	 * needed so that future calls to get_implied_cluster_alloc()
4105 	 * work correctly.
4106 	 */
4107 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4108 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4109 	ar.goal -= offset;
4110 	ar.logical -= offset;
4111 	if (S_ISREG(inode->i_mode))
4112 		ar.flags = EXT4_MB_HINT_DATA;
4113 	else
4114 		/* disable in-core preallocation for non-regular files */
4115 		ar.flags = 0;
4116 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4117 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4118 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4119 	if (!newblock)
4120 		goto out2;
4121 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4122 		  ar.goal, newblock, allocated);
4123 	free_on_err = 1;
4124 	allocated_clusters = ar.len;
4125 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4126 	if (ar.len > allocated)
4127 		ar.len = allocated;
4128 
4129 got_allocated_blocks:
4130 	/* try to insert new extent into found leaf and return */
4131 	ext4_ext_store_pblock(&newex, newblock + offset);
4132 	newex.ee_len = cpu_to_le16(ar.len);
4133 	/* Mark uninitialized */
4134 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4135 		ext4_ext_mark_uninitialized(&newex);
4136 		/*
4137 		 * io_end structure was created for every IO write to an
4138 		 * uninitialized extent. To avoid unnecessary conversion,
4139 		 * here we flag the IO that really needs the conversion.
4140 		 * For non asycn direct IO case, flag the inode state
4141 		 * that we need to perform conversion when IO is done.
4142 		 */
4143 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4144 			set_unwritten = 1;
4145 		if (ext4_should_dioread_nolock(inode))
4146 			map->m_flags |= EXT4_MAP_UNINIT;
4147 	}
4148 
4149 	err = 0;
4150 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4151 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4152 					 path, ar.len);
4153 	if (!err)
4154 		err = ext4_ext_insert_extent(handle, inode, path,
4155 					     &newex, flags);
4156 
4157 	if (!err && set_unwritten) {
4158 		if (io)
4159 			ext4_set_io_unwritten_flag(inode, io);
4160 		else
4161 			ext4_set_inode_state(inode,
4162 					     EXT4_STATE_DIO_UNWRITTEN);
4163 	}
4164 
4165 	if (err && free_on_err) {
4166 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4167 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4168 		/* free data blocks we just allocated */
4169 		/* not a good idea to call discard here directly,
4170 		 * but otherwise we'd need to call it every free() */
4171 		ext4_discard_preallocations(inode);
4172 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4173 				 ext4_ext_get_actual_len(&newex), fb_flags);
4174 		goto out2;
4175 	}
4176 
4177 	/* previous routine could use block we allocated */
4178 	newblock = ext4_ext_pblock(&newex);
4179 	allocated = ext4_ext_get_actual_len(&newex);
4180 	if (allocated > map->m_len)
4181 		allocated = map->m_len;
4182 	map->m_flags |= EXT4_MAP_NEW;
4183 
4184 	/*
4185 	 * Update reserved blocks/metadata blocks after successful
4186 	 * block allocation which had been deferred till now.
4187 	 */
4188 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4189 		unsigned int reserved_clusters;
4190 		/*
4191 		 * Check how many clusters we had reserved this allocated range
4192 		 */
4193 		reserved_clusters = get_reserved_cluster_alloc(inode,
4194 						map->m_lblk, allocated);
4195 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4196 			if (reserved_clusters) {
4197 				/*
4198 				 * We have clusters reserved for this range.
4199 				 * But since we are not doing actual allocation
4200 				 * and are simply using blocks from previously
4201 				 * allocated cluster, we should release the
4202 				 * reservation and not claim quota.
4203 				 */
4204 				ext4_da_update_reserve_space(inode,
4205 						reserved_clusters, 0);
4206 			}
4207 		} else {
4208 			BUG_ON(allocated_clusters < reserved_clusters);
4209 			/* We will claim quota for all newly allocated blocks.*/
4210 			ext4_da_update_reserve_space(inode, allocated_clusters,
4211 							1);
4212 			if (reserved_clusters < allocated_clusters) {
4213 				struct ext4_inode_info *ei = EXT4_I(inode);
4214 				int reservation = allocated_clusters -
4215 						  reserved_clusters;
4216 				/*
4217 				 * It seems we claimed few clusters outside of
4218 				 * the range of this allocation. We should give
4219 				 * it back to the reservation pool. This can
4220 				 * happen in the following case:
4221 				 *
4222 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4223 				 *   cluster has 4 blocks. Thus, the clusters
4224 				 *   are [0-3],[4-7],[8-11]...
4225 				 * * First comes delayed allocation write for
4226 				 *   logical blocks 10 & 11. Since there were no
4227 				 *   previous delayed allocated blocks in the
4228 				 *   range [8-11], we would reserve 1 cluster
4229 				 *   for this write.
4230 				 * * Next comes write for logical blocks 3 to 8.
4231 				 *   In this case, we will reserve 2 clusters
4232 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4233 				 *   that range has a delayed allocated blocks.
4234 				 *   Thus total reserved clusters now becomes 3.
4235 				 * * Now, during the delayed allocation writeout
4236 				 *   time, we will first write blocks [3-8] and
4237 				 *   allocate 3 clusters for writing these
4238 				 *   blocks. Also, we would claim all these
4239 				 *   three clusters above.
4240 				 * * Now when we come here to writeout the
4241 				 *   blocks [10-11], we would expect to claim
4242 				 *   the reservation of 1 cluster we had made
4243 				 *   (and we would claim it since there are no
4244 				 *   more delayed allocated blocks in the range
4245 				 *   [8-11]. But our reserved cluster count had
4246 				 *   already gone to 0.
4247 				 *
4248 				 *   Thus, at the step 4 above when we determine
4249 				 *   that there are still some unwritten delayed
4250 				 *   allocated blocks outside of our current
4251 				 *   block range, we should increment the
4252 				 *   reserved clusters count so that when the
4253 				 *   remaining blocks finally gets written, we
4254 				 *   could claim them.
4255 				 */
4256 				dquot_reserve_block(inode,
4257 						EXT4_C2B(sbi, reservation));
4258 				spin_lock(&ei->i_block_reservation_lock);
4259 				ei->i_reserved_data_blocks += reservation;
4260 				spin_unlock(&ei->i_block_reservation_lock);
4261 			}
4262 		}
4263 	}
4264 
4265 	/*
4266 	 * Cache the extent and update transaction to commit on fdatasync only
4267 	 * when it is _not_ an uninitialized extent.
4268 	 */
4269 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4270 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4271 		ext4_update_inode_fsync_trans(handle, inode, 1);
4272 	} else
4273 		ext4_update_inode_fsync_trans(handle, inode, 0);
4274 out:
4275 	if (allocated > map->m_len)
4276 		allocated = map->m_len;
4277 	ext4_ext_show_leaf(inode, path);
4278 	map->m_flags |= EXT4_MAP_MAPPED;
4279 	map->m_pblk = newblock;
4280 	map->m_len = allocated;
4281 out2:
4282 	if (path) {
4283 		ext4_ext_drop_refs(path);
4284 		kfree(path);
4285 	}
4286 
4287 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4288 		newblock, map->m_len, err ? err : allocated);
4289 
4290 	return err ? err : allocated;
4291 }
4292 
4293 void ext4_ext_truncate(struct inode *inode)
4294 {
4295 	struct address_space *mapping = inode->i_mapping;
4296 	struct super_block *sb = inode->i_sb;
4297 	ext4_lblk_t last_block;
4298 	handle_t *handle;
4299 	loff_t page_len;
4300 	int err = 0;
4301 
4302 	/*
4303 	 * finish any pending end_io work so we won't run the risk of
4304 	 * converting any truncated blocks to initialized later
4305 	 */
4306 	ext4_flush_unwritten_io(inode);
4307 
4308 	/*
4309 	 * probably first extent we're gonna free will be last in block
4310 	 */
4311 	err = ext4_writepage_trans_blocks(inode);
4312 	handle = ext4_journal_start(inode, err);
4313 	if (IS_ERR(handle))
4314 		return;
4315 
4316 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4317 		page_len = PAGE_CACHE_SIZE -
4318 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4319 
4320 		err = ext4_discard_partial_page_buffers(handle,
4321 			mapping, inode->i_size, page_len, 0);
4322 
4323 		if (err)
4324 			goto out_stop;
4325 	}
4326 
4327 	if (ext4_orphan_add(handle, inode))
4328 		goto out_stop;
4329 
4330 	down_write(&EXT4_I(inode)->i_data_sem);
4331 	ext4_ext_invalidate_cache(inode);
4332 
4333 	ext4_discard_preallocations(inode);
4334 
4335 	/*
4336 	 * TODO: optimization is possible here.
4337 	 * Probably we need not scan at all,
4338 	 * because page truncation is enough.
4339 	 */
4340 
4341 	/* we have to know where to truncate from in crash case */
4342 	EXT4_I(inode)->i_disksize = inode->i_size;
4343 	ext4_mark_inode_dirty(handle, inode);
4344 
4345 	last_block = (inode->i_size + sb->s_blocksize - 1)
4346 			>> EXT4_BLOCK_SIZE_BITS(sb);
4347 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4348 
4349 	/* In a multi-transaction truncate, we only make the final
4350 	 * transaction synchronous.
4351 	 */
4352 	if (IS_SYNC(inode))
4353 		ext4_handle_sync(handle);
4354 
4355 	up_write(&EXT4_I(inode)->i_data_sem);
4356 
4357 out_stop:
4358 	/*
4359 	 * If this was a simple ftruncate() and the file will remain alive,
4360 	 * then we need to clear up the orphan record which we created above.
4361 	 * However, if this was a real unlink then we were called by
4362 	 * ext4_delete_inode(), and we allow that function to clean up the
4363 	 * orphan info for us.
4364 	 */
4365 	if (inode->i_nlink)
4366 		ext4_orphan_del(handle, inode);
4367 
4368 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4369 	ext4_mark_inode_dirty(handle, inode);
4370 	ext4_journal_stop(handle);
4371 }
4372 
4373 static void ext4_falloc_update_inode(struct inode *inode,
4374 				int mode, loff_t new_size, int update_ctime)
4375 {
4376 	struct timespec now;
4377 
4378 	if (update_ctime) {
4379 		now = current_fs_time(inode->i_sb);
4380 		if (!timespec_equal(&inode->i_ctime, &now))
4381 			inode->i_ctime = now;
4382 	}
4383 	/*
4384 	 * Update only when preallocation was requested beyond
4385 	 * the file size.
4386 	 */
4387 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4388 		if (new_size > i_size_read(inode))
4389 			i_size_write(inode, new_size);
4390 		if (new_size > EXT4_I(inode)->i_disksize)
4391 			ext4_update_i_disksize(inode, new_size);
4392 	} else {
4393 		/*
4394 		 * Mark that we allocate beyond EOF so the subsequent truncate
4395 		 * can proceed even if the new size is the same as i_size.
4396 		 */
4397 		if (new_size > i_size_read(inode))
4398 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4399 	}
4400 
4401 }
4402 
4403 /*
4404  * preallocate space for a file. This implements ext4's fallocate file
4405  * operation, which gets called from sys_fallocate system call.
4406  * For block-mapped files, posix_fallocate should fall back to the method
4407  * of writing zeroes to the required new blocks (the same behavior which is
4408  * expected for file systems which do not support fallocate() system call).
4409  */
4410 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4411 {
4412 	struct inode *inode = file->f_path.dentry->d_inode;
4413 	handle_t *handle;
4414 	loff_t new_size;
4415 	unsigned int max_blocks;
4416 	int ret = 0;
4417 	int ret2 = 0;
4418 	int retries = 0;
4419 	int flags;
4420 	struct ext4_map_blocks map;
4421 	unsigned int credits, blkbits = inode->i_blkbits;
4422 
4423 	/*
4424 	 * currently supporting (pre)allocate mode for extent-based
4425 	 * files _only_
4426 	 */
4427 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4428 		return -EOPNOTSUPP;
4429 
4430 	/* Return error if mode is not supported */
4431 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4432 		return -EOPNOTSUPP;
4433 
4434 	if (mode & FALLOC_FL_PUNCH_HOLE)
4435 		return ext4_punch_hole(file, offset, len);
4436 
4437 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4438 	map.m_lblk = offset >> blkbits;
4439 	/*
4440 	 * We can't just convert len to max_blocks because
4441 	 * If blocksize = 4096 offset = 3072 and len = 2048
4442 	 */
4443 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4444 		- map.m_lblk;
4445 	/*
4446 	 * credits to insert 1 extent into extent tree
4447 	 */
4448 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4449 	mutex_lock(&inode->i_mutex);
4450 	ret = inode_newsize_ok(inode, (len + offset));
4451 	if (ret) {
4452 		mutex_unlock(&inode->i_mutex);
4453 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4454 		return ret;
4455 	}
4456 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4457 	if (mode & FALLOC_FL_KEEP_SIZE)
4458 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4459 	/*
4460 	 * Don't normalize the request if it can fit in one extent so
4461 	 * that it doesn't get unnecessarily split into multiple
4462 	 * extents.
4463 	 */
4464 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4465 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4466 
4467 	/* Prevent race condition between unwritten */
4468 	ext4_flush_unwritten_io(inode);
4469 retry:
4470 	while (ret >= 0 && ret < max_blocks) {
4471 		map.m_lblk = map.m_lblk + ret;
4472 		map.m_len = max_blocks = max_blocks - ret;
4473 		handle = ext4_journal_start(inode, credits);
4474 		if (IS_ERR(handle)) {
4475 			ret = PTR_ERR(handle);
4476 			break;
4477 		}
4478 		ret = ext4_map_blocks(handle, inode, &map, flags);
4479 		if (ret <= 0) {
4480 #ifdef EXT4FS_DEBUG
4481 			WARN_ON(ret <= 0);
4482 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4483 				    "returned error inode#%lu, block=%u, "
4484 				    "max_blocks=%u", __func__,
4485 				    inode->i_ino, map.m_lblk, max_blocks);
4486 #endif
4487 			ext4_mark_inode_dirty(handle, inode);
4488 			ret2 = ext4_journal_stop(handle);
4489 			break;
4490 		}
4491 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4492 						blkbits) >> blkbits))
4493 			new_size = offset + len;
4494 		else
4495 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4496 
4497 		ext4_falloc_update_inode(inode, mode, new_size,
4498 					 (map.m_flags & EXT4_MAP_NEW));
4499 		ext4_mark_inode_dirty(handle, inode);
4500 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4501 			ext4_handle_sync(handle);
4502 		ret2 = ext4_journal_stop(handle);
4503 		if (ret2)
4504 			break;
4505 	}
4506 	if (ret == -ENOSPC &&
4507 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4508 		ret = 0;
4509 		goto retry;
4510 	}
4511 	mutex_unlock(&inode->i_mutex);
4512 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4513 				ret > 0 ? ret2 : ret);
4514 	return ret > 0 ? ret2 : ret;
4515 }
4516 
4517 /*
4518  * This function convert a range of blocks to written extents
4519  * The caller of this function will pass the start offset and the size.
4520  * all unwritten extents within this range will be converted to
4521  * written extents.
4522  *
4523  * This function is called from the direct IO end io call back
4524  * function, to convert the fallocated extents after IO is completed.
4525  * Returns 0 on success.
4526  */
4527 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4528 				    ssize_t len)
4529 {
4530 	handle_t *handle;
4531 	unsigned int max_blocks;
4532 	int ret = 0;
4533 	int ret2 = 0;
4534 	struct ext4_map_blocks map;
4535 	unsigned int credits, blkbits = inode->i_blkbits;
4536 
4537 	map.m_lblk = offset >> blkbits;
4538 	/*
4539 	 * We can't just convert len to max_blocks because
4540 	 * If blocksize = 4096 offset = 3072 and len = 2048
4541 	 */
4542 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4543 		      map.m_lblk);
4544 	/*
4545 	 * credits to insert 1 extent into extent tree
4546 	 */
4547 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4548 	while (ret >= 0 && ret < max_blocks) {
4549 		map.m_lblk += ret;
4550 		map.m_len = (max_blocks -= ret);
4551 		handle = ext4_journal_start(inode, credits);
4552 		if (IS_ERR(handle)) {
4553 			ret = PTR_ERR(handle);
4554 			break;
4555 		}
4556 		ret = ext4_map_blocks(handle, inode, &map,
4557 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4558 		if (ret <= 0) {
4559 			WARN_ON(ret <= 0);
4560 			ext4_msg(inode->i_sb, KERN_ERR,
4561 				 "%s:%d: inode #%lu: block %u: len %u: "
4562 				 "ext4_ext_map_blocks returned %d",
4563 				 __func__, __LINE__, inode->i_ino, map.m_lblk,
4564 				 map.m_len, ret);
4565 		}
4566 		ext4_mark_inode_dirty(handle, inode);
4567 		ret2 = ext4_journal_stop(handle);
4568 		if (ret <= 0 || ret2 )
4569 			break;
4570 	}
4571 	return ret > 0 ? ret2 : ret;
4572 }
4573 
4574 /*
4575  * Callback function called for each extent to gather FIEMAP information.
4576  */
4577 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4578 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4579 		       void *data)
4580 {
4581 	__u64	logical;
4582 	__u64	physical;
4583 	__u64	length;
4584 	__u32	flags = 0;
4585 	int		ret = 0;
4586 	struct fiemap_extent_info *fieinfo = data;
4587 	unsigned char blksize_bits;
4588 
4589 	blksize_bits = inode->i_sb->s_blocksize_bits;
4590 	logical = (__u64)newex->ec_block << blksize_bits;
4591 
4592 	if (newex->ec_start == 0) {
4593 		/*
4594 		 * No extent in extent-tree contains block @newex->ec_start,
4595 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4596 		 *
4597 		 * Holes or delayed-extents are processed as follows.
4598 		 * 1. lookup dirty pages with specified range in pagecache.
4599 		 *    If no page is got, then there is no delayed-extent and
4600 		 *    return with EXT_CONTINUE.
4601 		 * 2. find the 1st mapped buffer,
4602 		 * 3. check if the mapped buffer is both in the request range
4603 		 *    and a delayed buffer. If not, there is no delayed-extent,
4604 		 *    then return.
4605 		 * 4. a delayed-extent is found, the extent will be collected.
4606 		 */
4607 		ext4_lblk_t	end = 0;
4608 		pgoff_t		last_offset;
4609 		pgoff_t		offset;
4610 		pgoff_t		index;
4611 		pgoff_t		start_index = 0;
4612 		struct page	**pages = NULL;
4613 		struct buffer_head *bh = NULL;
4614 		struct buffer_head *head = NULL;
4615 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4616 
4617 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4618 		if (pages == NULL)
4619 			return -ENOMEM;
4620 
4621 		offset = logical >> PAGE_SHIFT;
4622 repeat:
4623 		last_offset = offset;
4624 		head = NULL;
4625 		ret = find_get_pages_tag(inode->i_mapping, &offset,
4626 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4627 
4628 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4629 			/* First time, try to find a mapped buffer. */
4630 			if (ret == 0) {
4631 out:
4632 				for (index = 0; index < ret; index++)
4633 					page_cache_release(pages[index]);
4634 				/* just a hole. */
4635 				kfree(pages);
4636 				return EXT_CONTINUE;
4637 			}
4638 			index = 0;
4639 
4640 next_page:
4641 			/* Try to find the 1st mapped buffer. */
4642 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4643 				  blksize_bits;
4644 			if (!page_has_buffers(pages[index]))
4645 				goto out;
4646 			head = page_buffers(pages[index]);
4647 			if (!head)
4648 				goto out;
4649 
4650 			index++;
4651 			bh = head;
4652 			do {
4653 				if (end >= newex->ec_block +
4654 					newex->ec_len)
4655 					/* The buffer is out of
4656 					 * the request range.
4657 					 */
4658 					goto out;
4659 
4660 				if (buffer_mapped(bh) &&
4661 				    end >= newex->ec_block) {
4662 					start_index = index - 1;
4663 					/* get the 1st mapped buffer. */
4664 					goto found_mapped_buffer;
4665 				}
4666 
4667 				bh = bh->b_this_page;
4668 				end++;
4669 			} while (bh != head);
4670 
4671 			/* No mapped buffer in the range found in this page,
4672 			 * We need to look up next page.
4673 			 */
4674 			if (index >= ret) {
4675 				/* There is no page left, but we need to limit
4676 				 * newex->ec_len.
4677 				 */
4678 				newex->ec_len = end - newex->ec_block;
4679 				goto out;
4680 			}
4681 			goto next_page;
4682 		} else {
4683 			/*Find contiguous delayed buffers. */
4684 			if (ret > 0 && pages[0]->index == last_offset)
4685 				head = page_buffers(pages[0]);
4686 			bh = head;
4687 			index = 1;
4688 			start_index = 0;
4689 		}
4690 
4691 found_mapped_buffer:
4692 		if (bh != NULL && buffer_delay(bh)) {
4693 			/* 1st or contiguous delayed buffer found. */
4694 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4695 				/*
4696 				 * 1st delayed buffer found, record
4697 				 * the start of extent.
4698 				 */
4699 				flags |= FIEMAP_EXTENT_DELALLOC;
4700 				newex->ec_block = end;
4701 				logical = (__u64)end << blksize_bits;
4702 			}
4703 			/* Find contiguous delayed buffers. */
4704 			do {
4705 				if (!buffer_delay(bh))
4706 					goto found_delayed_extent;
4707 				bh = bh->b_this_page;
4708 				end++;
4709 			} while (bh != head);
4710 
4711 			for (; index < ret; index++) {
4712 				if (!page_has_buffers(pages[index])) {
4713 					bh = NULL;
4714 					break;
4715 				}
4716 				head = page_buffers(pages[index]);
4717 				if (!head) {
4718 					bh = NULL;
4719 					break;
4720 				}
4721 
4722 				if (pages[index]->index !=
4723 				    pages[start_index]->index + index
4724 				    - start_index) {
4725 					/* Blocks are not contiguous. */
4726 					bh = NULL;
4727 					break;
4728 				}
4729 				bh = head;
4730 				do {
4731 					if (!buffer_delay(bh))
4732 						/* Delayed-extent ends. */
4733 						goto found_delayed_extent;
4734 					bh = bh->b_this_page;
4735 					end++;
4736 				} while (bh != head);
4737 			}
4738 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4739 			/* a hole found. */
4740 			goto out;
4741 
4742 found_delayed_extent:
4743 		newex->ec_len = min(end - newex->ec_block,
4744 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4745 		if (ret == nr_pages && bh != NULL &&
4746 			newex->ec_len < EXT_INIT_MAX_LEN &&
4747 			buffer_delay(bh)) {
4748 			/* Have not collected an extent and continue. */
4749 			for (index = 0; index < ret; index++)
4750 				page_cache_release(pages[index]);
4751 			goto repeat;
4752 		}
4753 
4754 		for (index = 0; index < ret; index++)
4755 			page_cache_release(pages[index]);
4756 		kfree(pages);
4757 	}
4758 
4759 	physical = (__u64)newex->ec_start << blksize_bits;
4760 	length =   (__u64)newex->ec_len << blksize_bits;
4761 
4762 	if (ex && ext4_ext_is_uninitialized(ex))
4763 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4764 
4765 	if (next == EXT_MAX_BLOCKS)
4766 		flags |= FIEMAP_EXTENT_LAST;
4767 
4768 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4769 					length, flags);
4770 	if (ret < 0)
4771 		return ret;
4772 	if (ret == 1)
4773 		return EXT_BREAK;
4774 	return EXT_CONTINUE;
4775 }
4776 /* fiemap flags we can handle specified here */
4777 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4778 
4779 static int ext4_xattr_fiemap(struct inode *inode,
4780 				struct fiemap_extent_info *fieinfo)
4781 {
4782 	__u64 physical = 0;
4783 	__u64 length;
4784 	__u32 flags = FIEMAP_EXTENT_LAST;
4785 	int blockbits = inode->i_sb->s_blocksize_bits;
4786 	int error = 0;
4787 
4788 	/* in-inode? */
4789 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4790 		struct ext4_iloc iloc;
4791 		int offset;	/* offset of xattr in inode */
4792 
4793 		error = ext4_get_inode_loc(inode, &iloc);
4794 		if (error)
4795 			return error;
4796 		physical = iloc.bh->b_blocknr << blockbits;
4797 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4798 				EXT4_I(inode)->i_extra_isize;
4799 		physical += offset;
4800 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4801 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4802 		brelse(iloc.bh);
4803 	} else { /* external block */
4804 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4805 		length = inode->i_sb->s_blocksize;
4806 	}
4807 
4808 	if (physical)
4809 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4810 						length, flags);
4811 	return (error < 0 ? error : 0);
4812 }
4813 
4814 /*
4815  * ext4_ext_punch_hole
4816  *
4817  * Punches a hole of "length" bytes in a file starting
4818  * at byte "offset"
4819  *
4820  * @inode:  The inode of the file to punch a hole in
4821  * @offset: The starting byte offset of the hole
4822  * @length: The length of the hole
4823  *
4824  * Returns the number of blocks removed or negative on err
4825  */
4826 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4827 {
4828 	struct inode *inode = file->f_path.dentry->d_inode;
4829 	struct super_block *sb = inode->i_sb;
4830 	ext4_lblk_t first_block, stop_block;
4831 	struct address_space *mapping = inode->i_mapping;
4832 	handle_t *handle;
4833 	loff_t first_page, last_page, page_len;
4834 	loff_t first_page_offset, last_page_offset;
4835 	int credits, err = 0;
4836 
4837 	/*
4838 	 * Write out all dirty pages to avoid race conditions
4839 	 * Then release them.
4840 	 */
4841 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4842 		err = filemap_write_and_wait_range(mapping,
4843 			offset, offset + length - 1);
4844 
4845 		if (err)
4846 			return err;
4847 	}
4848 
4849 	mutex_lock(&inode->i_mutex);
4850 	/* It's not possible punch hole on append only file */
4851 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4852 		err = -EPERM;
4853 		goto out_mutex;
4854 	}
4855 	if (IS_SWAPFILE(inode)) {
4856 		err = -ETXTBSY;
4857 		goto out_mutex;
4858 	}
4859 
4860 	/* No need to punch hole beyond i_size */
4861 	if (offset >= inode->i_size)
4862 		goto out_mutex;
4863 
4864 	/*
4865 	 * If the hole extends beyond i_size, set the hole
4866 	 * to end after the page that contains i_size
4867 	 */
4868 	if (offset + length > inode->i_size) {
4869 		length = inode->i_size +
4870 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4871 		   offset;
4872 	}
4873 
4874 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4875 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4876 
4877 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4878 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4879 
4880 	/* Now release the pages */
4881 	if (last_page_offset > first_page_offset) {
4882 		truncate_pagecache_range(inode, first_page_offset,
4883 					 last_page_offset - 1);
4884 	}
4885 
4886 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4887 	ext4_inode_block_unlocked_dio(inode);
4888 	err = ext4_flush_unwritten_io(inode);
4889 	if (err)
4890 		goto out_dio;
4891 	inode_dio_wait(inode);
4892 
4893 	credits = ext4_writepage_trans_blocks(inode);
4894 	handle = ext4_journal_start(inode, credits);
4895 	if (IS_ERR(handle)) {
4896 		err = PTR_ERR(handle);
4897 		goto out_dio;
4898 	}
4899 
4900 
4901 	/*
4902 	 * Now we need to zero out the non-page-aligned data in the
4903 	 * pages at the start and tail of the hole, and unmap the buffer
4904 	 * heads for the block aligned regions of the page that were
4905 	 * completely zeroed.
4906 	 */
4907 	if (first_page > last_page) {
4908 		/*
4909 		 * If the file space being truncated is contained within a page
4910 		 * just zero out and unmap the middle of that page
4911 		 */
4912 		err = ext4_discard_partial_page_buffers(handle,
4913 			mapping, offset, length, 0);
4914 
4915 		if (err)
4916 			goto out;
4917 	} else {
4918 		/*
4919 		 * zero out and unmap the partial page that contains
4920 		 * the start of the hole
4921 		 */
4922 		page_len  = first_page_offset - offset;
4923 		if (page_len > 0) {
4924 			err = ext4_discard_partial_page_buffers(handle, mapping,
4925 						   offset, page_len, 0);
4926 			if (err)
4927 				goto out;
4928 		}
4929 
4930 		/*
4931 		 * zero out and unmap the partial page that contains
4932 		 * the end of the hole
4933 		 */
4934 		page_len = offset + length - last_page_offset;
4935 		if (page_len > 0) {
4936 			err = ext4_discard_partial_page_buffers(handle, mapping,
4937 					last_page_offset, page_len, 0);
4938 			if (err)
4939 				goto out;
4940 		}
4941 	}
4942 
4943 	/*
4944 	 * If i_size is contained in the last page, we need to
4945 	 * unmap and zero the partial page after i_size
4946 	 */
4947 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4948 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4949 
4950 		page_len = PAGE_CACHE_SIZE -
4951 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4952 
4953 		if (page_len > 0) {
4954 			err = ext4_discard_partial_page_buffers(handle,
4955 			  mapping, inode->i_size, page_len, 0);
4956 
4957 			if (err)
4958 				goto out;
4959 		}
4960 	}
4961 
4962 	first_block = (offset + sb->s_blocksize - 1) >>
4963 		EXT4_BLOCK_SIZE_BITS(sb);
4964 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4965 
4966 	/* If there are no blocks to remove, return now */
4967 	if (first_block >= stop_block)
4968 		goto out;
4969 
4970 	down_write(&EXT4_I(inode)->i_data_sem);
4971 	ext4_ext_invalidate_cache(inode);
4972 	ext4_discard_preallocations(inode);
4973 
4974 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4975 
4976 	ext4_ext_invalidate_cache(inode);
4977 	ext4_discard_preallocations(inode);
4978 
4979 	if (IS_SYNC(inode))
4980 		ext4_handle_sync(handle);
4981 
4982 	up_write(&EXT4_I(inode)->i_data_sem);
4983 
4984 out:
4985 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4986 	ext4_mark_inode_dirty(handle, inode);
4987 	ext4_journal_stop(handle);
4988 out_dio:
4989 	ext4_inode_resume_unlocked_dio(inode);
4990 out_mutex:
4991 	mutex_unlock(&inode->i_mutex);
4992 	return err;
4993 }
4994 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4995 		__u64 start, __u64 len)
4996 {
4997 	ext4_lblk_t start_blk;
4998 	int error = 0;
4999 
5000 	/* fallback to generic here if not in extents fmt */
5001 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5002 		return generic_block_fiemap(inode, fieinfo, start, len,
5003 			ext4_get_block);
5004 
5005 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5006 		return -EBADR;
5007 
5008 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5009 		error = ext4_xattr_fiemap(inode, fieinfo);
5010 	} else {
5011 		ext4_lblk_t len_blks;
5012 		__u64 last_blk;
5013 
5014 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5015 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5016 		if (last_blk >= EXT_MAX_BLOCKS)
5017 			last_blk = EXT_MAX_BLOCKS-1;
5018 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5019 
5020 		/*
5021 		 * Walk the extent tree gathering extent information.
5022 		 * ext4_ext_fiemap_cb will push extents back to user.
5023 		 */
5024 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
5025 					  ext4_ext_fiemap_cb, fieinfo);
5026 	}
5027 
5028 	return error;
5029 }
5030