1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 45 #include <trace/events/ext4.h> 46 47 /* 48 * used by extent splitting. 49 */ 50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 51 due to ENOSPC */ 52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 54 55 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 56 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 57 58 static __le32 ext4_extent_block_csum(struct inode *inode, 59 struct ext4_extent_header *eh) 60 { 61 struct ext4_inode_info *ei = EXT4_I(inode); 62 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 63 __u32 csum; 64 65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 66 EXT4_EXTENT_TAIL_OFFSET(eh)); 67 return cpu_to_le32(csum); 68 } 69 70 static int ext4_extent_block_csum_verify(struct inode *inode, 71 struct ext4_extent_header *eh) 72 { 73 struct ext4_extent_tail *et; 74 75 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 76 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 77 return 1; 78 79 et = find_ext4_extent_tail(eh); 80 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 81 return 0; 82 return 1; 83 } 84 85 static void ext4_extent_block_csum_set(struct inode *inode, 86 struct ext4_extent_header *eh) 87 { 88 struct ext4_extent_tail *et; 89 90 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 91 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 92 return; 93 94 et = find_ext4_extent_tail(eh); 95 et->et_checksum = ext4_extent_block_csum(inode, eh); 96 } 97 98 static int ext4_split_extent(handle_t *handle, 99 struct inode *inode, 100 struct ext4_ext_path *path, 101 struct ext4_map_blocks *map, 102 int split_flag, 103 int flags); 104 105 static int ext4_split_extent_at(handle_t *handle, 106 struct inode *inode, 107 struct ext4_ext_path *path, 108 ext4_lblk_t split, 109 int split_flag, 110 int flags); 111 112 static int ext4_ext_truncate_extend_restart(handle_t *handle, 113 struct inode *inode, 114 int needed) 115 { 116 int err; 117 118 if (!ext4_handle_valid(handle)) 119 return 0; 120 if (handle->h_buffer_credits > needed) 121 return 0; 122 err = ext4_journal_extend(handle, needed); 123 if (err <= 0) 124 return err; 125 err = ext4_truncate_restart_trans(handle, inode, needed); 126 if (err == 0) 127 err = -EAGAIN; 128 129 return err; 130 } 131 132 /* 133 * could return: 134 * - EROFS 135 * - ENOMEM 136 */ 137 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 138 struct ext4_ext_path *path) 139 { 140 if (path->p_bh) { 141 /* path points to block */ 142 return ext4_journal_get_write_access(handle, path->p_bh); 143 } 144 /* path points to leaf/index in inode body */ 145 /* we use in-core data, no need to protect them */ 146 return 0; 147 } 148 149 /* 150 * could return: 151 * - EROFS 152 * - ENOMEM 153 * - EIO 154 */ 155 #define ext4_ext_dirty(handle, inode, path) \ 156 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 157 static int __ext4_ext_dirty(const char *where, unsigned int line, 158 handle_t *handle, struct inode *inode, 159 struct ext4_ext_path *path) 160 { 161 int err; 162 if (path->p_bh) { 163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 164 /* path points to block */ 165 err = __ext4_handle_dirty_metadata(where, line, handle, 166 inode, path->p_bh); 167 } else { 168 /* path points to leaf/index in inode body */ 169 err = ext4_mark_inode_dirty(handle, inode); 170 } 171 return err; 172 } 173 174 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 175 struct ext4_ext_path *path, 176 ext4_lblk_t block) 177 { 178 if (path) { 179 int depth = path->p_depth; 180 struct ext4_extent *ex; 181 182 /* 183 * Try to predict block placement assuming that we are 184 * filling in a file which will eventually be 185 * non-sparse --- i.e., in the case of libbfd writing 186 * an ELF object sections out-of-order but in a way 187 * the eventually results in a contiguous object or 188 * executable file, or some database extending a table 189 * space file. However, this is actually somewhat 190 * non-ideal if we are writing a sparse file such as 191 * qemu or KVM writing a raw image file that is going 192 * to stay fairly sparse, since it will end up 193 * fragmenting the file system's free space. Maybe we 194 * should have some hueristics or some way to allow 195 * userspace to pass a hint to file system, 196 * especially if the latter case turns out to be 197 * common. 198 */ 199 ex = path[depth].p_ext; 200 if (ex) { 201 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 202 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 203 204 if (block > ext_block) 205 return ext_pblk + (block - ext_block); 206 else 207 return ext_pblk - (ext_block - block); 208 } 209 210 /* it looks like index is empty; 211 * try to find starting block from index itself */ 212 if (path[depth].p_bh) 213 return path[depth].p_bh->b_blocknr; 214 } 215 216 /* OK. use inode's group */ 217 return ext4_inode_to_goal_block(inode); 218 } 219 220 /* 221 * Allocation for a meta data block 222 */ 223 static ext4_fsblk_t 224 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 225 struct ext4_ext_path *path, 226 struct ext4_extent *ex, int *err, unsigned int flags) 227 { 228 ext4_fsblk_t goal, newblock; 229 230 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 231 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 232 NULL, err); 233 return newblock; 234 } 235 236 static inline int ext4_ext_space_block(struct inode *inode, int check) 237 { 238 int size; 239 240 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 241 / sizeof(struct ext4_extent); 242 #ifdef AGGRESSIVE_TEST 243 if (!check && size > 6) 244 size = 6; 245 #endif 246 return size; 247 } 248 249 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 250 { 251 int size; 252 253 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 254 / sizeof(struct ext4_extent_idx); 255 #ifdef AGGRESSIVE_TEST 256 if (!check && size > 5) 257 size = 5; 258 #endif 259 return size; 260 } 261 262 static inline int ext4_ext_space_root(struct inode *inode, int check) 263 { 264 int size; 265 266 size = sizeof(EXT4_I(inode)->i_data); 267 size -= sizeof(struct ext4_extent_header); 268 size /= sizeof(struct ext4_extent); 269 #ifdef AGGRESSIVE_TEST 270 if (!check && size > 3) 271 size = 3; 272 #endif 273 return size; 274 } 275 276 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 277 { 278 int size; 279 280 size = sizeof(EXT4_I(inode)->i_data); 281 size -= sizeof(struct ext4_extent_header); 282 size /= sizeof(struct ext4_extent_idx); 283 #ifdef AGGRESSIVE_TEST 284 if (!check && size > 4) 285 size = 4; 286 #endif 287 return size; 288 } 289 290 /* 291 * Calculate the number of metadata blocks needed 292 * to allocate @blocks 293 * Worse case is one block per extent 294 */ 295 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 296 { 297 struct ext4_inode_info *ei = EXT4_I(inode); 298 int idxs; 299 300 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 301 / sizeof(struct ext4_extent_idx)); 302 303 /* 304 * If the new delayed allocation block is contiguous with the 305 * previous da block, it can share index blocks with the 306 * previous block, so we only need to allocate a new index 307 * block every idxs leaf blocks. At ldxs**2 blocks, we need 308 * an additional index block, and at ldxs**3 blocks, yet 309 * another index blocks. 310 */ 311 if (ei->i_da_metadata_calc_len && 312 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 313 int num = 0; 314 315 if ((ei->i_da_metadata_calc_len % idxs) == 0) 316 num++; 317 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 318 num++; 319 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 320 num++; 321 ei->i_da_metadata_calc_len = 0; 322 } else 323 ei->i_da_metadata_calc_len++; 324 ei->i_da_metadata_calc_last_lblock++; 325 return num; 326 } 327 328 /* 329 * In the worst case we need a new set of index blocks at 330 * every level of the inode's extent tree. 331 */ 332 ei->i_da_metadata_calc_len = 1; 333 ei->i_da_metadata_calc_last_lblock = lblock; 334 return ext_depth(inode) + 1; 335 } 336 337 static int 338 ext4_ext_max_entries(struct inode *inode, int depth) 339 { 340 int max; 341 342 if (depth == ext_depth(inode)) { 343 if (depth == 0) 344 max = ext4_ext_space_root(inode, 1); 345 else 346 max = ext4_ext_space_root_idx(inode, 1); 347 } else { 348 if (depth == 0) 349 max = ext4_ext_space_block(inode, 1); 350 else 351 max = ext4_ext_space_block_idx(inode, 1); 352 } 353 354 return max; 355 } 356 357 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 358 { 359 ext4_fsblk_t block = ext4_ext_pblock(ext); 360 int len = ext4_ext_get_actual_len(ext); 361 362 if (len == 0) 363 return 0; 364 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 365 } 366 367 static int ext4_valid_extent_idx(struct inode *inode, 368 struct ext4_extent_idx *ext_idx) 369 { 370 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 371 372 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 373 } 374 375 static int ext4_valid_extent_entries(struct inode *inode, 376 struct ext4_extent_header *eh, 377 int depth) 378 { 379 unsigned short entries; 380 if (eh->eh_entries == 0) 381 return 1; 382 383 entries = le16_to_cpu(eh->eh_entries); 384 385 if (depth == 0) { 386 /* leaf entries */ 387 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 388 while (entries) { 389 if (!ext4_valid_extent(inode, ext)) 390 return 0; 391 ext++; 392 entries--; 393 } 394 } else { 395 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 396 while (entries) { 397 if (!ext4_valid_extent_idx(inode, ext_idx)) 398 return 0; 399 ext_idx++; 400 entries--; 401 } 402 } 403 return 1; 404 } 405 406 static int __ext4_ext_check(const char *function, unsigned int line, 407 struct inode *inode, struct ext4_extent_header *eh, 408 int depth) 409 { 410 const char *error_msg; 411 int max = 0; 412 413 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 414 error_msg = "invalid magic"; 415 goto corrupted; 416 } 417 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 418 error_msg = "unexpected eh_depth"; 419 goto corrupted; 420 } 421 if (unlikely(eh->eh_max == 0)) { 422 error_msg = "invalid eh_max"; 423 goto corrupted; 424 } 425 max = ext4_ext_max_entries(inode, depth); 426 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 427 error_msg = "too large eh_max"; 428 goto corrupted; 429 } 430 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 431 error_msg = "invalid eh_entries"; 432 goto corrupted; 433 } 434 if (!ext4_valid_extent_entries(inode, eh, depth)) { 435 error_msg = "invalid extent entries"; 436 goto corrupted; 437 } 438 /* Verify checksum on non-root extent tree nodes */ 439 if (ext_depth(inode) != depth && 440 !ext4_extent_block_csum_verify(inode, eh)) { 441 error_msg = "extent tree corrupted"; 442 goto corrupted; 443 } 444 return 0; 445 446 corrupted: 447 ext4_error_inode(inode, function, line, 0, 448 "bad header/extent: %s - magic %x, " 449 "entries %u, max %u(%u), depth %u(%u)", 450 error_msg, le16_to_cpu(eh->eh_magic), 451 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 452 max, le16_to_cpu(eh->eh_depth), depth); 453 454 return -EIO; 455 } 456 457 #define ext4_ext_check(inode, eh, depth) \ 458 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 459 460 int ext4_ext_check_inode(struct inode *inode) 461 { 462 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 463 } 464 465 static int __ext4_ext_check_block(const char *function, unsigned int line, 466 struct inode *inode, 467 struct ext4_extent_header *eh, 468 int depth, 469 struct buffer_head *bh) 470 { 471 int ret; 472 473 if (buffer_verified(bh)) 474 return 0; 475 ret = ext4_ext_check(inode, eh, depth); 476 if (ret) 477 return ret; 478 set_buffer_verified(bh); 479 return ret; 480 } 481 482 #define ext4_ext_check_block(inode, eh, depth, bh) \ 483 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 484 485 #ifdef EXT_DEBUG 486 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 487 { 488 int k, l = path->p_depth; 489 490 ext_debug("path:"); 491 for (k = 0; k <= l; k++, path++) { 492 if (path->p_idx) { 493 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 494 ext4_idx_pblock(path->p_idx)); 495 } else if (path->p_ext) { 496 ext_debug(" %d:[%d]%d:%llu ", 497 le32_to_cpu(path->p_ext->ee_block), 498 ext4_ext_is_uninitialized(path->p_ext), 499 ext4_ext_get_actual_len(path->p_ext), 500 ext4_ext_pblock(path->p_ext)); 501 } else 502 ext_debug(" []"); 503 } 504 ext_debug("\n"); 505 } 506 507 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 508 { 509 int depth = ext_depth(inode); 510 struct ext4_extent_header *eh; 511 struct ext4_extent *ex; 512 int i; 513 514 if (!path) 515 return; 516 517 eh = path[depth].p_hdr; 518 ex = EXT_FIRST_EXTENT(eh); 519 520 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 521 522 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 523 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 524 ext4_ext_is_uninitialized(ex), 525 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 526 } 527 ext_debug("\n"); 528 } 529 530 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 531 ext4_fsblk_t newblock, int level) 532 { 533 int depth = ext_depth(inode); 534 struct ext4_extent *ex; 535 536 if (depth != level) { 537 struct ext4_extent_idx *idx; 538 idx = path[level].p_idx; 539 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 540 ext_debug("%d: move %d:%llu in new index %llu\n", level, 541 le32_to_cpu(idx->ei_block), 542 ext4_idx_pblock(idx), 543 newblock); 544 idx++; 545 } 546 547 return; 548 } 549 550 ex = path[depth].p_ext; 551 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 552 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 553 le32_to_cpu(ex->ee_block), 554 ext4_ext_pblock(ex), 555 ext4_ext_is_uninitialized(ex), 556 ext4_ext_get_actual_len(ex), 557 newblock); 558 ex++; 559 } 560 } 561 562 #else 563 #define ext4_ext_show_path(inode, path) 564 #define ext4_ext_show_leaf(inode, path) 565 #define ext4_ext_show_move(inode, path, newblock, level) 566 #endif 567 568 void ext4_ext_drop_refs(struct ext4_ext_path *path) 569 { 570 int depth = path->p_depth; 571 int i; 572 573 for (i = 0; i <= depth; i++, path++) 574 if (path->p_bh) { 575 brelse(path->p_bh); 576 path->p_bh = NULL; 577 } 578 } 579 580 /* 581 * ext4_ext_binsearch_idx: 582 * binary search for the closest index of the given block 583 * the header must be checked before calling this 584 */ 585 static void 586 ext4_ext_binsearch_idx(struct inode *inode, 587 struct ext4_ext_path *path, ext4_lblk_t block) 588 { 589 struct ext4_extent_header *eh = path->p_hdr; 590 struct ext4_extent_idx *r, *l, *m; 591 592 593 ext_debug("binsearch for %u(idx): ", block); 594 595 l = EXT_FIRST_INDEX(eh) + 1; 596 r = EXT_LAST_INDEX(eh); 597 while (l <= r) { 598 m = l + (r - l) / 2; 599 if (block < le32_to_cpu(m->ei_block)) 600 r = m - 1; 601 else 602 l = m + 1; 603 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 604 m, le32_to_cpu(m->ei_block), 605 r, le32_to_cpu(r->ei_block)); 606 } 607 608 path->p_idx = l - 1; 609 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 610 ext4_idx_pblock(path->p_idx)); 611 612 #ifdef CHECK_BINSEARCH 613 { 614 struct ext4_extent_idx *chix, *ix; 615 int k; 616 617 chix = ix = EXT_FIRST_INDEX(eh); 618 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 619 if (k != 0 && 620 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 621 printk(KERN_DEBUG "k=%d, ix=0x%p, " 622 "first=0x%p\n", k, 623 ix, EXT_FIRST_INDEX(eh)); 624 printk(KERN_DEBUG "%u <= %u\n", 625 le32_to_cpu(ix->ei_block), 626 le32_to_cpu(ix[-1].ei_block)); 627 } 628 BUG_ON(k && le32_to_cpu(ix->ei_block) 629 <= le32_to_cpu(ix[-1].ei_block)); 630 if (block < le32_to_cpu(ix->ei_block)) 631 break; 632 chix = ix; 633 } 634 BUG_ON(chix != path->p_idx); 635 } 636 #endif 637 638 } 639 640 /* 641 * ext4_ext_binsearch: 642 * binary search for closest extent of the given block 643 * the header must be checked before calling this 644 */ 645 static void 646 ext4_ext_binsearch(struct inode *inode, 647 struct ext4_ext_path *path, ext4_lblk_t block) 648 { 649 struct ext4_extent_header *eh = path->p_hdr; 650 struct ext4_extent *r, *l, *m; 651 652 if (eh->eh_entries == 0) { 653 /* 654 * this leaf is empty: 655 * we get such a leaf in split/add case 656 */ 657 return; 658 } 659 660 ext_debug("binsearch for %u: ", block); 661 662 l = EXT_FIRST_EXTENT(eh) + 1; 663 r = EXT_LAST_EXTENT(eh); 664 665 while (l <= r) { 666 m = l + (r - l) / 2; 667 if (block < le32_to_cpu(m->ee_block)) 668 r = m - 1; 669 else 670 l = m + 1; 671 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 672 m, le32_to_cpu(m->ee_block), 673 r, le32_to_cpu(r->ee_block)); 674 } 675 676 path->p_ext = l - 1; 677 ext_debug(" -> %d:%llu:[%d]%d ", 678 le32_to_cpu(path->p_ext->ee_block), 679 ext4_ext_pblock(path->p_ext), 680 ext4_ext_is_uninitialized(path->p_ext), 681 ext4_ext_get_actual_len(path->p_ext)); 682 683 #ifdef CHECK_BINSEARCH 684 { 685 struct ext4_extent *chex, *ex; 686 int k; 687 688 chex = ex = EXT_FIRST_EXTENT(eh); 689 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 690 BUG_ON(k && le32_to_cpu(ex->ee_block) 691 <= le32_to_cpu(ex[-1].ee_block)); 692 if (block < le32_to_cpu(ex->ee_block)) 693 break; 694 chex = ex; 695 } 696 BUG_ON(chex != path->p_ext); 697 } 698 #endif 699 700 } 701 702 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 703 { 704 struct ext4_extent_header *eh; 705 706 eh = ext_inode_hdr(inode); 707 eh->eh_depth = 0; 708 eh->eh_entries = 0; 709 eh->eh_magic = EXT4_EXT_MAGIC; 710 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 711 ext4_mark_inode_dirty(handle, inode); 712 ext4_ext_invalidate_cache(inode); 713 return 0; 714 } 715 716 struct ext4_ext_path * 717 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 718 struct ext4_ext_path *path) 719 { 720 struct ext4_extent_header *eh; 721 struct buffer_head *bh; 722 short int depth, i, ppos = 0, alloc = 0; 723 724 eh = ext_inode_hdr(inode); 725 depth = ext_depth(inode); 726 727 /* account possible depth increase */ 728 if (!path) { 729 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 730 GFP_NOFS); 731 if (!path) 732 return ERR_PTR(-ENOMEM); 733 alloc = 1; 734 } 735 path[0].p_hdr = eh; 736 path[0].p_bh = NULL; 737 738 i = depth; 739 /* walk through the tree */ 740 while (i) { 741 ext_debug("depth %d: num %d, max %d\n", 742 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 743 744 ext4_ext_binsearch_idx(inode, path + ppos, block); 745 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 746 path[ppos].p_depth = i; 747 path[ppos].p_ext = NULL; 748 749 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 750 if (unlikely(!bh)) 751 goto err; 752 if (!bh_uptodate_or_lock(bh)) { 753 trace_ext4_ext_load_extent(inode, block, 754 path[ppos].p_block); 755 if (bh_submit_read(bh) < 0) { 756 put_bh(bh); 757 goto err; 758 } 759 } 760 eh = ext_block_hdr(bh); 761 ppos++; 762 if (unlikely(ppos > depth)) { 763 put_bh(bh); 764 EXT4_ERROR_INODE(inode, 765 "ppos %d > depth %d", ppos, depth); 766 goto err; 767 } 768 path[ppos].p_bh = bh; 769 path[ppos].p_hdr = eh; 770 i--; 771 772 if (ext4_ext_check_block(inode, eh, i, bh)) 773 goto err; 774 } 775 776 path[ppos].p_depth = i; 777 path[ppos].p_ext = NULL; 778 path[ppos].p_idx = NULL; 779 780 /* find extent */ 781 ext4_ext_binsearch(inode, path + ppos, block); 782 /* if not an empty leaf */ 783 if (path[ppos].p_ext) 784 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 785 786 ext4_ext_show_path(inode, path); 787 788 return path; 789 790 err: 791 ext4_ext_drop_refs(path); 792 if (alloc) 793 kfree(path); 794 return ERR_PTR(-EIO); 795 } 796 797 /* 798 * ext4_ext_insert_index: 799 * insert new index [@logical;@ptr] into the block at @curp; 800 * check where to insert: before @curp or after @curp 801 */ 802 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 803 struct ext4_ext_path *curp, 804 int logical, ext4_fsblk_t ptr) 805 { 806 struct ext4_extent_idx *ix; 807 int len, err; 808 809 err = ext4_ext_get_access(handle, inode, curp); 810 if (err) 811 return err; 812 813 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 814 EXT4_ERROR_INODE(inode, 815 "logical %d == ei_block %d!", 816 logical, le32_to_cpu(curp->p_idx->ei_block)); 817 return -EIO; 818 } 819 820 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 821 >= le16_to_cpu(curp->p_hdr->eh_max))) { 822 EXT4_ERROR_INODE(inode, 823 "eh_entries %d >= eh_max %d!", 824 le16_to_cpu(curp->p_hdr->eh_entries), 825 le16_to_cpu(curp->p_hdr->eh_max)); 826 return -EIO; 827 } 828 829 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 830 /* insert after */ 831 ext_debug("insert new index %d after: %llu\n", logical, ptr); 832 ix = curp->p_idx + 1; 833 } else { 834 /* insert before */ 835 ext_debug("insert new index %d before: %llu\n", logical, ptr); 836 ix = curp->p_idx; 837 } 838 839 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 840 BUG_ON(len < 0); 841 if (len > 0) { 842 ext_debug("insert new index %d: " 843 "move %d indices from 0x%p to 0x%p\n", 844 logical, len, ix, ix + 1); 845 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 846 } 847 848 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 849 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 850 return -EIO; 851 } 852 853 ix->ei_block = cpu_to_le32(logical); 854 ext4_idx_store_pblock(ix, ptr); 855 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 856 857 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 858 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 859 return -EIO; 860 } 861 862 err = ext4_ext_dirty(handle, inode, curp); 863 ext4_std_error(inode->i_sb, err); 864 865 return err; 866 } 867 868 /* 869 * ext4_ext_split: 870 * inserts new subtree into the path, using free index entry 871 * at depth @at: 872 * - allocates all needed blocks (new leaf and all intermediate index blocks) 873 * - makes decision where to split 874 * - moves remaining extents and index entries (right to the split point) 875 * into the newly allocated blocks 876 * - initializes subtree 877 */ 878 static int ext4_ext_split(handle_t *handle, struct inode *inode, 879 unsigned int flags, 880 struct ext4_ext_path *path, 881 struct ext4_extent *newext, int at) 882 { 883 struct buffer_head *bh = NULL; 884 int depth = ext_depth(inode); 885 struct ext4_extent_header *neh; 886 struct ext4_extent_idx *fidx; 887 int i = at, k, m, a; 888 ext4_fsblk_t newblock, oldblock; 889 __le32 border; 890 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 891 int err = 0; 892 893 /* make decision: where to split? */ 894 /* FIXME: now decision is simplest: at current extent */ 895 896 /* if current leaf will be split, then we should use 897 * border from split point */ 898 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 899 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 900 return -EIO; 901 } 902 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 903 border = path[depth].p_ext[1].ee_block; 904 ext_debug("leaf will be split." 905 " next leaf starts at %d\n", 906 le32_to_cpu(border)); 907 } else { 908 border = newext->ee_block; 909 ext_debug("leaf will be added." 910 " next leaf starts at %d\n", 911 le32_to_cpu(border)); 912 } 913 914 /* 915 * If error occurs, then we break processing 916 * and mark filesystem read-only. index won't 917 * be inserted and tree will be in consistent 918 * state. Next mount will repair buffers too. 919 */ 920 921 /* 922 * Get array to track all allocated blocks. 923 * We need this to handle errors and free blocks 924 * upon them. 925 */ 926 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 927 if (!ablocks) 928 return -ENOMEM; 929 930 /* allocate all needed blocks */ 931 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 932 for (a = 0; a < depth - at; a++) { 933 newblock = ext4_ext_new_meta_block(handle, inode, path, 934 newext, &err, flags); 935 if (newblock == 0) 936 goto cleanup; 937 ablocks[a] = newblock; 938 } 939 940 /* initialize new leaf */ 941 newblock = ablocks[--a]; 942 if (unlikely(newblock == 0)) { 943 EXT4_ERROR_INODE(inode, "newblock == 0!"); 944 err = -EIO; 945 goto cleanup; 946 } 947 bh = sb_getblk(inode->i_sb, newblock); 948 if (!bh) { 949 err = -EIO; 950 goto cleanup; 951 } 952 lock_buffer(bh); 953 954 err = ext4_journal_get_create_access(handle, bh); 955 if (err) 956 goto cleanup; 957 958 neh = ext_block_hdr(bh); 959 neh->eh_entries = 0; 960 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 961 neh->eh_magic = EXT4_EXT_MAGIC; 962 neh->eh_depth = 0; 963 964 /* move remainder of path[depth] to the new leaf */ 965 if (unlikely(path[depth].p_hdr->eh_entries != 966 path[depth].p_hdr->eh_max)) { 967 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 968 path[depth].p_hdr->eh_entries, 969 path[depth].p_hdr->eh_max); 970 err = -EIO; 971 goto cleanup; 972 } 973 /* start copy from next extent */ 974 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 975 ext4_ext_show_move(inode, path, newblock, depth); 976 if (m) { 977 struct ext4_extent *ex; 978 ex = EXT_FIRST_EXTENT(neh); 979 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 980 le16_add_cpu(&neh->eh_entries, m); 981 } 982 983 ext4_extent_block_csum_set(inode, neh); 984 set_buffer_uptodate(bh); 985 unlock_buffer(bh); 986 987 err = ext4_handle_dirty_metadata(handle, inode, bh); 988 if (err) 989 goto cleanup; 990 brelse(bh); 991 bh = NULL; 992 993 /* correct old leaf */ 994 if (m) { 995 err = ext4_ext_get_access(handle, inode, path + depth); 996 if (err) 997 goto cleanup; 998 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 999 err = ext4_ext_dirty(handle, inode, path + depth); 1000 if (err) 1001 goto cleanup; 1002 1003 } 1004 1005 /* create intermediate indexes */ 1006 k = depth - at - 1; 1007 if (unlikely(k < 0)) { 1008 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1009 err = -EIO; 1010 goto cleanup; 1011 } 1012 if (k) 1013 ext_debug("create %d intermediate indices\n", k); 1014 /* insert new index into current index block */ 1015 /* current depth stored in i var */ 1016 i = depth - 1; 1017 while (k--) { 1018 oldblock = newblock; 1019 newblock = ablocks[--a]; 1020 bh = sb_getblk(inode->i_sb, newblock); 1021 if (!bh) { 1022 err = -EIO; 1023 goto cleanup; 1024 } 1025 lock_buffer(bh); 1026 1027 err = ext4_journal_get_create_access(handle, bh); 1028 if (err) 1029 goto cleanup; 1030 1031 neh = ext_block_hdr(bh); 1032 neh->eh_entries = cpu_to_le16(1); 1033 neh->eh_magic = EXT4_EXT_MAGIC; 1034 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1035 neh->eh_depth = cpu_to_le16(depth - i); 1036 fidx = EXT_FIRST_INDEX(neh); 1037 fidx->ei_block = border; 1038 ext4_idx_store_pblock(fidx, oldblock); 1039 1040 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1041 i, newblock, le32_to_cpu(border), oldblock); 1042 1043 /* move remainder of path[i] to the new index block */ 1044 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1045 EXT_LAST_INDEX(path[i].p_hdr))) { 1046 EXT4_ERROR_INODE(inode, 1047 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1048 le32_to_cpu(path[i].p_ext->ee_block)); 1049 err = -EIO; 1050 goto cleanup; 1051 } 1052 /* start copy indexes */ 1053 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1054 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1055 EXT_MAX_INDEX(path[i].p_hdr)); 1056 ext4_ext_show_move(inode, path, newblock, i); 1057 if (m) { 1058 memmove(++fidx, path[i].p_idx, 1059 sizeof(struct ext4_extent_idx) * m); 1060 le16_add_cpu(&neh->eh_entries, m); 1061 } 1062 ext4_extent_block_csum_set(inode, neh); 1063 set_buffer_uptodate(bh); 1064 unlock_buffer(bh); 1065 1066 err = ext4_handle_dirty_metadata(handle, inode, bh); 1067 if (err) 1068 goto cleanup; 1069 brelse(bh); 1070 bh = NULL; 1071 1072 /* correct old index */ 1073 if (m) { 1074 err = ext4_ext_get_access(handle, inode, path + i); 1075 if (err) 1076 goto cleanup; 1077 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1078 err = ext4_ext_dirty(handle, inode, path + i); 1079 if (err) 1080 goto cleanup; 1081 } 1082 1083 i--; 1084 } 1085 1086 /* insert new index */ 1087 err = ext4_ext_insert_index(handle, inode, path + at, 1088 le32_to_cpu(border), newblock); 1089 1090 cleanup: 1091 if (bh) { 1092 if (buffer_locked(bh)) 1093 unlock_buffer(bh); 1094 brelse(bh); 1095 } 1096 1097 if (err) { 1098 /* free all allocated blocks in error case */ 1099 for (i = 0; i < depth; i++) { 1100 if (!ablocks[i]) 1101 continue; 1102 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1103 EXT4_FREE_BLOCKS_METADATA); 1104 } 1105 } 1106 kfree(ablocks); 1107 1108 return err; 1109 } 1110 1111 /* 1112 * ext4_ext_grow_indepth: 1113 * implements tree growing procedure: 1114 * - allocates new block 1115 * - moves top-level data (index block or leaf) into the new block 1116 * - initializes new top-level, creating index that points to the 1117 * just created block 1118 */ 1119 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1120 unsigned int flags, 1121 struct ext4_extent *newext) 1122 { 1123 struct ext4_extent_header *neh; 1124 struct buffer_head *bh; 1125 ext4_fsblk_t newblock; 1126 int err = 0; 1127 1128 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1129 newext, &err, flags); 1130 if (newblock == 0) 1131 return err; 1132 1133 bh = sb_getblk(inode->i_sb, newblock); 1134 if (!bh) { 1135 err = -EIO; 1136 ext4_std_error(inode->i_sb, err); 1137 return err; 1138 } 1139 lock_buffer(bh); 1140 1141 err = ext4_journal_get_create_access(handle, bh); 1142 if (err) { 1143 unlock_buffer(bh); 1144 goto out; 1145 } 1146 1147 /* move top-level index/leaf into new block */ 1148 memmove(bh->b_data, EXT4_I(inode)->i_data, 1149 sizeof(EXT4_I(inode)->i_data)); 1150 1151 /* set size of new block */ 1152 neh = ext_block_hdr(bh); 1153 /* old root could have indexes or leaves 1154 * so calculate e_max right way */ 1155 if (ext_depth(inode)) 1156 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1157 else 1158 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1159 neh->eh_magic = EXT4_EXT_MAGIC; 1160 ext4_extent_block_csum_set(inode, neh); 1161 set_buffer_uptodate(bh); 1162 unlock_buffer(bh); 1163 1164 err = ext4_handle_dirty_metadata(handle, inode, bh); 1165 if (err) 1166 goto out; 1167 1168 /* Update top-level index: num,max,pointer */ 1169 neh = ext_inode_hdr(inode); 1170 neh->eh_entries = cpu_to_le16(1); 1171 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1172 if (neh->eh_depth == 0) { 1173 /* Root extent block becomes index block */ 1174 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1175 EXT_FIRST_INDEX(neh)->ei_block = 1176 EXT_FIRST_EXTENT(neh)->ee_block; 1177 } 1178 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1179 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1180 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1181 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1182 1183 le16_add_cpu(&neh->eh_depth, 1); 1184 ext4_mark_inode_dirty(handle, inode); 1185 out: 1186 brelse(bh); 1187 1188 return err; 1189 } 1190 1191 /* 1192 * ext4_ext_create_new_leaf: 1193 * finds empty index and adds new leaf. 1194 * if no free index is found, then it requests in-depth growing. 1195 */ 1196 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1197 unsigned int flags, 1198 struct ext4_ext_path *path, 1199 struct ext4_extent *newext) 1200 { 1201 struct ext4_ext_path *curp; 1202 int depth, i, err = 0; 1203 1204 repeat: 1205 i = depth = ext_depth(inode); 1206 1207 /* walk up to the tree and look for free index entry */ 1208 curp = path + depth; 1209 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1210 i--; 1211 curp--; 1212 } 1213 1214 /* we use already allocated block for index block, 1215 * so subsequent data blocks should be contiguous */ 1216 if (EXT_HAS_FREE_INDEX(curp)) { 1217 /* if we found index with free entry, then use that 1218 * entry: create all needed subtree and add new leaf */ 1219 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1220 if (err) 1221 goto out; 1222 1223 /* refill path */ 1224 ext4_ext_drop_refs(path); 1225 path = ext4_ext_find_extent(inode, 1226 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1227 path); 1228 if (IS_ERR(path)) 1229 err = PTR_ERR(path); 1230 } else { 1231 /* tree is full, time to grow in depth */ 1232 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1233 if (err) 1234 goto out; 1235 1236 /* refill path */ 1237 ext4_ext_drop_refs(path); 1238 path = ext4_ext_find_extent(inode, 1239 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1240 path); 1241 if (IS_ERR(path)) { 1242 err = PTR_ERR(path); 1243 goto out; 1244 } 1245 1246 /* 1247 * only first (depth 0 -> 1) produces free space; 1248 * in all other cases we have to split the grown tree 1249 */ 1250 depth = ext_depth(inode); 1251 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1252 /* now we need to split */ 1253 goto repeat; 1254 } 1255 } 1256 1257 out: 1258 return err; 1259 } 1260 1261 /* 1262 * search the closest allocated block to the left for *logical 1263 * and returns it at @logical + it's physical address at @phys 1264 * if *logical is the smallest allocated block, the function 1265 * returns 0 at @phys 1266 * return value contains 0 (success) or error code 1267 */ 1268 static int ext4_ext_search_left(struct inode *inode, 1269 struct ext4_ext_path *path, 1270 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1271 { 1272 struct ext4_extent_idx *ix; 1273 struct ext4_extent *ex; 1274 int depth, ee_len; 1275 1276 if (unlikely(path == NULL)) { 1277 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1278 return -EIO; 1279 } 1280 depth = path->p_depth; 1281 *phys = 0; 1282 1283 if (depth == 0 && path->p_ext == NULL) 1284 return 0; 1285 1286 /* usually extent in the path covers blocks smaller 1287 * then *logical, but it can be that extent is the 1288 * first one in the file */ 1289 1290 ex = path[depth].p_ext; 1291 ee_len = ext4_ext_get_actual_len(ex); 1292 if (*logical < le32_to_cpu(ex->ee_block)) { 1293 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1294 EXT4_ERROR_INODE(inode, 1295 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1296 *logical, le32_to_cpu(ex->ee_block)); 1297 return -EIO; 1298 } 1299 while (--depth >= 0) { 1300 ix = path[depth].p_idx; 1301 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1302 EXT4_ERROR_INODE(inode, 1303 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1304 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1305 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1306 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1307 depth); 1308 return -EIO; 1309 } 1310 } 1311 return 0; 1312 } 1313 1314 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1315 EXT4_ERROR_INODE(inode, 1316 "logical %d < ee_block %d + ee_len %d!", 1317 *logical, le32_to_cpu(ex->ee_block), ee_len); 1318 return -EIO; 1319 } 1320 1321 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1322 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1323 return 0; 1324 } 1325 1326 /* 1327 * search the closest allocated block to the right for *logical 1328 * and returns it at @logical + it's physical address at @phys 1329 * if *logical is the largest allocated block, the function 1330 * returns 0 at @phys 1331 * return value contains 0 (success) or error code 1332 */ 1333 static int ext4_ext_search_right(struct inode *inode, 1334 struct ext4_ext_path *path, 1335 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1336 struct ext4_extent **ret_ex) 1337 { 1338 struct buffer_head *bh = NULL; 1339 struct ext4_extent_header *eh; 1340 struct ext4_extent_idx *ix; 1341 struct ext4_extent *ex; 1342 ext4_fsblk_t block; 1343 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1344 int ee_len; 1345 1346 if (unlikely(path == NULL)) { 1347 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1348 return -EIO; 1349 } 1350 depth = path->p_depth; 1351 *phys = 0; 1352 1353 if (depth == 0 && path->p_ext == NULL) 1354 return 0; 1355 1356 /* usually extent in the path covers blocks smaller 1357 * then *logical, but it can be that extent is the 1358 * first one in the file */ 1359 1360 ex = path[depth].p_ext; 1361 ee_len = ext4_ext_get_actual_len(ex); 1362 if (*logical < le32_to_cpu(ex->ee_block)) { 1363 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1364 EXT4_ERROR_INODE(inode, 1365 "first_extent(path[%d].p_hdr) != ex", 1366 depth); 1367 return -EIO; 1368 } 1369 while (--depth >= 0) { 1370 ix = path[depth].p_idx; 1371 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1372 EXT4_ERROR_INODE(inode, 1373 "ix != EXT_FIRST_INDEX *logical %d!", 1374 *logical); 1375 return -EIO; 1376 } 1377 } 1378 goto found_extent; 1379 } 1380 1381 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1382 EXT4_ERROR_INODE(inode, 1383 "logical %d < ee_block %d + ee_len %d!", 1384 *logical, le32_to_cpu(ex->ee_block), ee_len); 1385 return -EIO; 1386 } 1387 1388 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1389 /* next allocated block in this leaf */ 1390 ex++; 1391 goto found_extent; 1392 } 1393 1394 /* go up and search for index to the right */ 1395 while (--depth >= 0) { 1396 ix = path[depth].p_idx; 1397 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1398 goto got_index; 1399 } 1400 1401 /* we've gone up to the root and found no index to the right */ 1402 return 0; 1403 1404 got_index: 1405 /* we've found index to the right, let's 1406 * follow it and find the closest allocated 1407 * block to the right */ 1408 ix++; 1409 block = ext4_idx_pblock(ix); 1410 while (++depth < path->p_depth) { 1411 bh = sb_bread(inode->i_sb, block); 1412 if (bh == NULL) 1413 return -EIO; 1414 eh = ext_block_hdr(bh); 1415 /* subtract from p_depth to get proper eh_depth */ 1416 if (ext4_ext_check_block(inode, eh, 1417 path->p_depth - depth, bh)) { 1418 put_bh(bh); 1419 return -EIO; 1420 } 1421 ix = EXT_FIRST_INDEX(eh); 1422 block = ext4_idx_pblock(ix); 1423 put_bh(bh); 1424 } 1425 1426 bh = sb_bread(inode->i_sb, block); 1427 if (bh == NULL) 1428 return -EIO; 1429 eh = ext_block_hdr(bh); 1430 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1431 put_bh(bh); 1432 return -EIO; 1433 } 1434 ex = EXT_FIRST_EXTENT(eh); 1435 found_extent: 1436 *logical = le32_to_cpu(ex->ee_block); 1437 *phys = ext4_ext_pblock(ex); 1438 *ret_ex = ex; 1439 if (bh) 1440 put_bh(bh); 1441 return 0; 1442 } 1443 1444 /* 1445 * ext4_ext_next_allocated_block: 1446 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1447 * NOTE: it considers block number from index entry as 1448 * allocated block. Thus, index entries have to be consistent 1449 * with leaves. 1450 */ 1451 static ext4_lblk_t 1452 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1453 { 1454 int depth; 1455 1456 BUG_ON(path == NULL); 1457 depth = path->p_depth; 1458 1459 if (depth == 0 && path->p_ext == NULL) 1460 return EXT_MAX_BLOCKS; 1461 1462 while (depth >= 0) { 1463 if (depth == path->p_depth) { 1464 /* leaf */ 1465 if (path[depth].p_ext && 1466 path[depth].p_ext != 1467 EXT_LAST_EXTENT(path[depth].p_hdr)) 1468 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1469 } else { 1470 /* index */ 1471 if (path[depth].p_idx != 1472 EXT_LAST_INDEX(path[depth].p_hdr)) 1473 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1474 } 1475 depth--; 1476 } 1477 1478 return EXT_MAX_BLOCKS; 1479 } 1480 1481 /* 1482 * ext4_ext_next_leaf_block: 1483 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1484 */ 1485 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1486 { 1487 int depth; 1488 1489 BUG_ON(path == NULL); 1490 depth = path->p_depth; 1491 1492 /* zero-tree has no leaf blocks at all */ 1493 if (depth == 0) 1494 return EXT_MAX_BLOCKS; 1495 1496 /* go to index block */ 1497 depth--; 1498 1499 while (depth >= 0) { 1500 if (path[depth].p_idx != 1501 EXT_LAST_INDEX(path[depth].p_hdr)) 1502 return (ext4_lblk_t) 1503 le32_to_cpu(path[depth].p_idx[1].ei_block); 1504 depth--; 1505 } 1506 1507 return EXT_MAX_BLOCKS; 1508 } 1509 1510 /* 1511 * ext4_ext_correct_indexes: 1512 * if leaf gets modified and modified extent is first in the leaf, 1513 * then we have to correct all indexes above. 1514 * TODO: do we need to correct tree in all cases? 1515 */ 1516 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1517 struct ext4_ext_path *path) 1518 { 1519 struct ext4_extent_header *eh; 1520 int depth = ext_depth(inode); 1521 struct ext4_extent *ex; 1522 __le32 border; 1523 int k, err = 0; 1524 1525 eh = path[depth].p_hdr; 1526 ex = path[depth].p_ext; 1527 1528 if (unlikely(ex == NULL || eh == NULL)) { 1529 EXT4_ERROR_INODE(inode, 1530 "ex %p == NULL or eh %p == NULL", ex, eh); 1531 return -EIO; 1532 } 1533 1534 if (depth == 0) { 1535 /* there is no tree at all */ 1536 return 0; 1537 } 1538 1539 if (ex != EXT_FIRST_EXTENT(eh)) { 1540 /* we correct tree if first leaf got modified only */ 1541 return 0; 1542 } 1543 1544 /* 1545 * TODO: we need correction if border is smaller than current one 1546 */ 1547 k = depth - 1; 1548 border = path[depth].p_ext->ee_block; 1549 err = ext4_ext_get_access(handle, inode, path + k); 1550 if (err) 1551 return err; 1552 path[k].p_idx->ei_block = border; 1553 err = ext4_ext_dirty(handle, inode, path + k); 1554 if (err) 1555 return err; 1556 1557 while (k--) { 1558 /* change all left-side indexes */ 1559 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1560 break; 1561 err = ext4_ext_get_access(handle, inode, path + k); 1562 if (err) 1563 break; 1564 path[k].p_idx->ei_block = border; 1565 err = ext4_ext_dirty(handle, inode, path + k); 1566 if (err) 1567 break; 1568 } 1569 1570 return err; 1571 } 1572 1573 int 1574 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1575 struct ext4_extent *ex2) 1576 { 1577 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1578 1579 /* 1580 * Make sure that either both extents are uninitialized, or 1581 * both are _not_. 1582 */ 1583 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1584 return 0; 1585 1586 if (ext4_ext_is_uninitialized(ex1)) 1587 max_len = EXT_UNINIT_MAX_LEN; 1588 else 1589 max_len = EXT_INIT_MAX_LEN; 1590 1591 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1592 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1593 1594 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1595 le32_to_cpu(ex2->ee_block)) 1596 return 0; 1597 1598 /* 1599 * To allow future support for preallocated extents to be added 1600 * as an RO_COMPAT feature, refuse to merge to extents if 1601 * this can result in the top bit of ee_len being set. 1602 */ 1603 if (ext1_ee_len + ext2_ee_len > max_len) 1604 return 0; 1605 #ifdef AGGRESSIVE_TEST 1606 if (ext1_ee_len >= 4) 1607 return 0; 1608 #endif 1609 1610 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1611 return 1; 1612 return 0; 1613 } 1614 1615 /* 1616 * This function tries to merge the "ex" extent to the next extent in the tree. 1617 * It always tries to merge towards right. If you want to merge towards 1618 * left, pass "ex - 1" as argument instead of "ex". 1619 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1620 * 1 if they got merged. 1621 */ 1622 static int ext4_ext_try_to_merge_right(struct inode *inode, 1623 struct ext4_ext_path *path, 1624 struct ext4_extent *ex) 1625 { 1626 struct ext4_extent_header *eh; 1627 unsigned int depth, len; 1628 int merge_done = 0; 1629 int uninitialized = 0; 1630 1631 depth = ext_depth(inode); 1632 BUG_ON(path[depth].p_hdr == NULL); 1633 eh = path[depth].p_hdr; 1634 1635 while (ex < EXT_LAST_EXTENT(eh)) { 1636 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1637 break; 1638 /* merge with next extent! */ 1639 if (ext4_ext_is_uninitialized(ex)) 1640 uninitialized = 1; 1641 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1642 + ext4_ext_get_actual_len(ex + 1)); 1643 if (uninitialized) 1644 ext4_ext_mark_uninitialized(ex); 1645 1646 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1647 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1648 * sizeof(struct ext4_extent); 1649 memmove(ex + 1, ex + 2, len); 1650 } 1651 le16_add_cpu(&eh->eh_entries, -1); 1652 merge_done = 1; 1653 WARN_ON(eh->eh_entries == 0); 1654 if (!eh->eh_entries) 1655 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1656 } 1657 1658 return merge_done; 1659 } 1660 1661 /* 1662 * This function does a very simple check to see if we can collapse 1663 * an extent tree with a single extent tree leaf block into the inode. 1664 */ 1665 static void ext4_ext_try_to_merge_up(handle_t *handle, 1666 struct inode *inode, 1667 struct ext4_ext_path *path) 1668 { 1669 size_t s; 1670 unsigned max_root = ext4_ext_space_root(inode, 0); 1671 ext4_fsblk_t blk; 1672 1673 if ((path[0].p_depth != 1) || 1674 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1675 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1676 return; 1677 1678 /* 1679 * We need to modify the block allocation bitmap and the block 1680 * group descriptor to release the extent tree block. If we 1681 * can't get the journal credits, give up. 1682 */ 1683 if (ext4_journal_extend(handle, 2)) 1684 return; 1685 1686 /* 1687 * Copy the extent data up to the inode 1688 */ 1689 blk = ext4_idx_pblock(path[0].p_idx); 1690 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1691 sizeof(struct ext4_extent_idx); 1692 s += sizeof(struct ext4_extent_header); 1693 1694 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1695 path[0].p_depth = 0; 1696 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1697 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1698 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1699 1700 brelse(path[1].p_bh); 1701 ext4_free_blocks(handle, inode, NULL, blk, 1, 1702 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1703 } 1704 1705 /* 1706 * This function tries to merge the @ex extent to neighbours in the tree. 1707 * return 1 if merge left else 0. 1708 */ 1709 static void ext4_ext_try_to_merge(handle_t *handle, 1710 struct inode *inode, 1711 struct ext4_ext_path *path, 1712 struct ext4_extent *ex) { 1713 struct ext4_extent_header *eh; 1714 unsigned int depth; 1715 int merge_done = 0; 1716 1717 depth = ext_depth(inode); 1718 BUG_ON(path[depth].p_hdr == NULL); 1719 eh = path[depth].p_hdr; 1720 1721 if (ex > EXT_FIRST_EXTENT(eh)) 1722 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1723 1724 if (!merge_done) 1725 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1726 1727 ext4_ext_try_to_merge_up(handle, inode, path); 1728 } 1729 1730 /* 1731 * check if a portion of the "newext" extent overlaps with an 1732 * existing extent. 1733 * 1734 * If there is an overlap discovered, it updates the length of the newext 1735 * such that there will be no overlap, and then returns 1. 1736 * If there is no overlap found, it returns 0. 1737 */ 1738 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1739 struct inode *inode, 1740 struct ext4_extent *newext, 1741 struct ext4_ext_path *path) 1742 { 1743 ext4_lblk_t b1, b2; 1744 unsigned int depth, len1; 1745 unsigned int ret = 0; 1746 1747 b1 = le32_to_cpu(newext->ee_block); 1748 len1 = ext4_ext_get_actual_len(newext); 1749 depth = ext_depth(inode); 1750 if (!path[depth].p_ext) 1751 goto out; 1752 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1753 b2 &= ~(sbi->s_cluster_ratio - 1); 1754 1755 /* 1756 * get the next allocated block if the extent in the path 1757 * is before the requested block(s) 1758 */ 1759 if (b2 < b1) { 1760 b2 = ext4_ext_next_allocated_block(path); 1761 if (b2 == EXT_MAX_BLOCKS) 1762 goto out; 1763 b2 &= ~(sbi->s_cluster_ratio - 1); 1764 } 1765 1766 /* check for wrap through zero on extent logical start block*/ 1767 if (b1 + len1 < b1) { 1768 len1 = EXT_MAX_BLOCKS - b1; 1769 newext->ee_len = cpu_to_le16(len1); 1770 ret = 1; 1771 } 1772 1773 /* check for overlap */ 1774 if (b1 + len1 > b2) { 1775 newext->ee_len = cpu_to_le16(b2 - b1); 1776 ret = 1; 1777 } 1778 out: 1779 return ret; 1780 } 1781 1782 /* 1783 * ext4_ext_insert_extent: 1784 * tries to merge requsted extent into the existing extent or 1785 * inserts requested extent as new one into the tree, 1786 * creating new leaf in the no-space case. 1787 */ 1788 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1789 struct ext4_ext_path *path, 1790 struct ext4_extent *newext, int flag) 1791 { 1792 struct ext4_extent_header *eh; 1793 struct ext4_extent *ex, *fex; 1794 struct ext4_extent *nearex; /* nearest extent */ 1795 struct ext4_ext_path *npath = NULL; 1796 int depth, len, err; 1797 ext4_lblk_t next; 1798 unsigned uninitialized = 0; 1799 int flags = 0; 1800 1801 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1802 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1803 return -EIO; 1804 } 1805 depth = ext_depth(inode); 1806 ex = path[depth].p_ext; 1807 if (unlikely(path[depth].p_hdr == NULL)) { 1808 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1809 return -EIO; 1810 } 1811 1812 /* try to insert block into found extent and return */ 1813 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1814 && ext4_can_extents_be_merged(inode, ex, newext)) { 1815 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1816 ext4_ext_is_uninitialized(newext), 1817 ext4_ext_get_actual_len(newext), 1818 le32_to_cpu(ex->ee_block), 1819 ext4_ext_is_uninitialized(ex), 1820 ext4_ext_get_actual_len(ex), 1821 ext4_ext_pblock(ex)); 1822 err = ext4_ext_get_access(handle, inode, path + depth); 1823 if (err) 1824 return err; 1825 1826 /* 1827 * ext4_can_extents_be_merged should have checked that either 1828 * both extents are uninitialized, or both aren't. Thus we 1829 * need to check only one of them here. 1830 */ 1831 if (ext4_ext_is_uninitialized(ex)) 1832 uninitialized = 1; 1833 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1834 + ext4_ext_get_actual_len(newext)); 1835 if (uninitialized) 1836 ext4_ext_mark_uninitialized(ex); 1837 eh = path[depth].p_hdr; 1838 nearex = ex; 1839 goto merge; 1840 } 1841 1842 depth = ext_depth(inode); 1843 eh = path[depth].p_hdr; 1844 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1845 goto has_space; 1846 1847 /* probably next leaf has space for us? */ 1848 fex = EXT_LAST_EXTENT(eh); 1849 next = EXT_MAX_BLOCKS; 1850 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1851 next = ext4_ext_next_leaf_block(path); 1852 if (next != EXT_MAX_BLOCKS) { 1853 ext_debug("next leaf block - %u\n", next); 1854 BUG_ON(npath != NULL); 1855 npath = ext4_ext_find_extent(inode, next, NULL); 1856 if (IS_ERR(npath)) 1857 return PTR_ERR(npath); 1858 BUG_ON(npath->p_depth != path->p_depth); 1859 eh = npath[depth].p_hdr; 1860 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1861 ext_debug("next leaf isn't full(%d)\n", 1862 le16_to_cpu(eh->eh_entries)); 1863 path = npath; 1864 goto has_space; 1865 } 1866 ext_debug("next leaf has no free space(%d,%d)\n", 1867 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1868 } 1869 1870 /* 1871 * There is no free space in the found leaf. 1872 * We're gonna add a new leaf in the tree. 1873 */ 1874 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1875 flags = EXT4_MB_USE_ROOT_BLOCKS; 1876 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1877 if (err) 1878 goto cleanup; 1879 depth = ext_depth(inode); 1880 eh = path[depth].p_hdr; 1881 1882 has_space: 1883 nearex = path[depth].p_ext; 1884 1885 err = ext4_ext_get_access(handle, inode, path + depth); 1886 if (err) 1887 goto cleanup; 1888 1889 if (!nearex) { 1890 /* there is no extent in this leaf, create first one */ 1891 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1892 le32_to_cpu(newext->ee_block), 1893 ext4_ext_pblock(newext), 1894 ext4_ext_is_uninitialized(newext), 1895 ext4_ext_get_actual_len(newext)); 1896 nearex = EXT_FIRST_EXTENT(eh); 1897 } else { 1898 if (le32_to_cpu(newext->ee_block) 1899 > le32_to_cpu(nearex->ee_block)) { 1900 /* Insert after */ 1901 ext_debug("insert %u:%llu:[%d]%d before: " 1902 "nearest %p\n", 1903 le32_to_cpu(newext->ee_block), 1904 ext4_ext_pblock(newext), 1905 ext4_ext_is_uninitialized(newext), 1906 ext4_ext_get_actual_len(newext), 1907 nearex); 1908 nearex++; 1909 } else { 1910 /* Insert before */ 1911 BUG_ON(newext->ee_block == nearex->ee_block); 1912 ext_debug("insert %u:%llu:[%d]%d after: " 1913 "nearest %p\n", 1914 le32_to_cpu(newext->ee_block), 1915 ext4_ext_pblock(newext), 1916 ext4_ext_is_uninitialized(newext), 1917 ext4_ext_get_actual_len(newext), 1918 nearex); 1919 } 1920 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1921 if (len > 0) { 1922 ext_debug("insert %u:%llu:[%d]%d: " 1923 "move %d extents from 0x%p to 0x%p\n", 1924 le32_to_cpu(newext->ee_block), 1925 ext4_ext_pblock(newext), 1926 ext4_ext_is_uninitialized(newext), 1927 ext4_ext_get_actual_len(newext), 1928 len, nearex, nearex + 1); 1929 memmove(nearex + 1, nearex, 1930 len * sizeof(struct ext4_extent)); 1931 } 1932 } 1933 1934 le16_add_cpu(&eh->eh_entries, 1); 1935 path[depth].p_ext = nearex; 1936 nearex->ee_block = newext->ee_block; 1937 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1938 nearex->ee_len = newext->ee_len; 1939 1940 merge: 1941 /* try to merge extents */ 1942 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1943 ext4_ext_try_to_merge(handle, inode, path, nearex); 1944 1945 1946 /* time to correct all indexes above */ 1947 err = ext4_ext_correct_indexes(handle, inode, path); 1948 if (err) 1949 goto cleanup; 1950 1951 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 1952 1953 cleanup: 1954 if (npath) { 1955 ext4_ext_drop_refs(npath); 1956 kfree(npath); 1957 } 1958 ext4_ext_invalidate_cache(inode); 1959 return err; 1960 } 1961 1962 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1963 ext4_lblk_t num, ext_prepare_callback func, 1964 void *cbdata) 1965 { 1966 struct ext4_ext_path *path = NULL; 1967 struct ext4_ext_cache cbex; 1968 struct ext4_extent *ex; 1969 ext4_lblk_t next, start = 0, end = 0; 1970 ext4_lblk_t last = block + num; 1971 int depth, exists, err = 0; 1972 1973 BUG_ON(func == NULL); 1974 BUG_ON(inode == NULL); 1975 1976 while (block < last && block != EXT_MAX_BLOCKS) { 1977 num = last - block; 1978 /* find extent for this block */ 1979 down_read(&EXT4_I(inode)->i_data_sem); 1980 path = ext4_ext_find_extent(inode, block, path); 1981 up_read(&EXT4_I(inode)->i_data_sem); 1982 if (IS_ERR(path)) { 1983 err = PTR_ERR(path); 1984 path = NULL; 1985 break; 1986 } 1987 1988 depth = ext_depth(inode); 1989 if (unlikely(path[depth].p_hdr == NULL)) { 1990 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1991 err = -EIO; 1992 break; 1993 } 1994 ex = path[depth].p_ext; 1995 next = ext4_ext_next_allocated_block(path); 1996 1997 exists = 0; 1998 if (!ex) { 1999 /* there is no extent yet, so try to allocate 2000 * all requested space */ 2001 start = block; 2002 end = block + num; 2003 } else if (le32_to_cpu(ex->ee_block) > block) { 2004 /* need to allocate space before found extent */ 2005 start = block; 2006 end = le32_to_cpu(ex->ee_block); 2007 if (block + num < end) 2008 end = block + num; 2009 } else if (block >= le32_to_cpu(ex->ee_block) 2010 + ext4_ext_get_actual_len(ex)) { 2011 /* need to allocate space after found extent */ 2012 start = block; 2013 end = block + num; 2014 if (end >= next) 2015 end = next; 2016 } else if (block >= le32_to_cpu(ex->ee_block)) { 2017 /* 2018 * some part of requested space is covered 2019 * by found extent 2020 */ 2021 start = block; 2022 end = le32_to_cpu(ex->ee_block) 2023 + ext4_ext_get_actual_len(ex); 2024 if (block + num < end) 2025 end = block + num; 2026 exists = 1; 2027 } else { 2028 BUG(); 2029 } 2030 BUG_ON(end <= start); 2031 2032 if (!exists) { 2033 cbex.ec_block = start; 2034 cbex.ec_len = end - start; 2035 cbex.ec_start = 0; 2036 } else { 2037 cbex.ec_block = le32_to_cpu(ex->ee_block); 2038 cbex.ec_len = ext4_ext_get_actual_len(ex); 2039 cbex.ec_start = ext4_ext_pblock(ex); 2040 } 2041 2042 if (unlikely(cbex.ec_len == 0)) { 2043 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0"); 2044 err = -EIO; 2045 break; 2046 } 2047 err = func(inode, next, &cbex, ex, cbdata); 2048 ext4_ext_drop_refs(path); 2049 2050 if (err < 0) 2051 break; 2052 2053 if (err == EXT_REPEAT) 2054 continue; 2055 else if (err == EXT_BREAK) { 2056 err = 0; 2057 break; 2058 } 2059 2060 if (ext_depth(inode) != depth) { 2061 /* depth was changed. we have to realloc path */ 2062 kfree(path); 2063 path = NULL; 2064 } 2065 2066 block = cbex.ec_block + cbex.ec_len; 2067 } 2068 2069 if (path) { 2070 ext4_ext_drop_refs(path); 2071 kfree(path); 2072 } 2073 2074 return err; 2075 } 2076 2077 static void 2078 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 2079 __u32 len, ext4_fsblk_t start) 2080 { 2081 struct ext4_ext_cache *cex; 2082 BUG_ON(len == 0); 2083 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2084 trace_ext4_ext_put_in_cache(inode, block, len, start); 2085 cex = &EXT4_I(inode)->i_cached_extent; 2086 cex->ec_block = block; 2087 cex->ec_len = len; 2088 cex->ec_start = start; 2089 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2090 } 2091 2092 /* 2093 * ext4_ext_put_gap_in_cache: 2094 * calculate boundaries of the gap that the requested block fits into 2095 * and cache this gap 2096 */ 2097 static void 2098 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2099 ext4_lblk_t block) 2100 { 2101 int depth = ext_depth(inode); 2102 unsigned long len; 2103 ext4_lblk_t lblock; 2104 struct ext4_extent *ex; 2105 2106 ex = path[depth].p_ext; 2107 if (ex == NULL) { 2108 /* there is no extent yet, so gap is [0;-] */ 2109 lblock = 0; 2110 len = EXT_MAX_BLOCKS; 2111 ext_debug("cache gap(whole file):"); 2112 } else if (block < le32_to_cpu(ex->ee_block)) { 2113 lblock = block; 2114 len = le32_to_cpu(ex->ee_block) - block; 2115 ext_debug("cache gap(before): %u [%u:%u]", 2116 block, 2117 le32_to_cpu(ex->ee_block), 2118 ext4_ext_get_actual_len(ex)); 2119 } else if (block >= le32_to_cpu(ex->ee_block) 2120 + ext4_ext_get_actual_len(ex)) { 2121 ext4_lblk_t next; 2122 lblock = le32_to_cpu(ex->ee_block) 2123 + ext4_ext_get_actual_len(ex); 2124 2125 next = ext4_ext_next_allocated_block(path); 2126 ext_debug("cache gap(after): [%u:%u] %u", 2127 le32_to_cpu(ex->ee_block), 2128 ext4_ext_get_actual_len(ex), 2129 block); 2130 BUG_ON(next == lblock); 2131 len = next - lblock; 2132 } else { 2133 lblock = len = 0; 2134 BUG(); 2135 } 2136 2137 ext_debug(" -> %u:%lu\n", lblock, len); 2138 ext4_ext_put_in_cache(inode, lblock, len, 0); 2139 } 2140 2141 /* 2142 * ext4_ext_in_cache() 2143 * Checks to see if the given block is in the cache. 2144 * If it is, the cached extent is stored in the given 2145 * cache extent pointer. 2146 * 2147 * @inode: The files inode 2148 * @block: The block to look for in the cache 2149 * @ex: Pointer where the cached extent will be stored 2150 * if it contains block 2151 * 2152 * Return 0 if cache is invalid; 1 if the cache is valid 2153 */ 2154 static int 2155 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2156 struct ext4_extent *ex) 2157 { 2158 struct ext4_ext_cache *cex; 2159 struct ext4_sb_info *sbi; 2160 int ret = 0; 2161 2162 /* 2163 * We borrow i_block_reservation_lock to protect i_cached_extent 2164 */ 2165 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2166 cex = &EXT4_I(inode)->i_cached_extent; 2167 sbi = EXT4_SB(inode->i_sb); 2168 2169 /* has cache valid data? */ 2170 if (cex->ec_len == 0) 2171 goto errout; 2172 2173 if (in_range(block, cex->ec_block, cex->ec_len)) { 2174 ex->ee_block = cpu_to_le32(cex->ec_block); 2175 ext4_ext_store_pblock(ex, cex->ec_start); 2176 ex->ee_len = cpu_to_le16(cex->ec_len); 2177 ext_debug("%u cached by %u:%u:%llu\n", 2178 block, 2179 cex->ec_block, cex->ec_len, cex->ec_start); 2180 ret = 1; 2181 } 2182 errout: 2183 trace_ext4_ext_in_cache(inode, block, ret); 2184 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2185 return ret; 2186 } 2187 2188 /* 2189 * ext4_ext_rm_idx: 2190 * removes index from the index block. 2191 */ 2192 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2193 struct ext4_ext_path *path) 2194 { 2195 int err; 2196 ext4_fsblk_t leaf; 2197 2198 /* free index block */ 2199 path--; 2200 leaf = ext4_idx_pblock(path->p_idx); 2201 if (unlikely(path->p_hdr->eh_entries == 0)) { 2202 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2203 return -EIO; 2204 } 2205 err = ext4_ext_get_access(handle, inode, path); 2206 if (err) 2207 return err; 2208 2209 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2210 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2211 len *= sizeof(struct ext4_extent_idx); 2212 memmove(path->p_idx, path->p_idx + 1, len); 2213 } 2214 2215 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2216 err = ext4_ext_dirty(handle, inode, path); 2217 if (err) 2218 return err; 2219 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2220 trace_ext4_ext_rm_idx(inode, leaf); 2221 2222 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2223 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2224 return err; 2225 } 2226 2227 /* 2228 * ext4_ext_calc_credits_for_single_extent: 2229 * This routine returns max. credits that needed to insert an extent 2230 * to the extent tree. 2231 * When pass the actual path, the caller should calculate credits 2232 * under i_data_sem. 2233 */ 2234 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2235 struct ext4_ext_path *path) 2236 { 2237 if (path) { 2238 int depth = ext_depth(inode); 2239 int ret = 0; 2240 2241 /* probably there is space in leaf? */ 2242 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2243 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2244 2245 /* 2246 * There are some space in the leaf tree, no 2247 * need to account for leaf block credit 2248 * 2249 * bitmaps and block group descriptor blocks 2250 * and other metadata blocks still need to be 2251 * accounted. 2252 */ 2253 /* 1 bitmap, 1 block group descriptor */ 2254 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2255 return ret; 2256 } 2257 } 2258 2259 return ext4_chunk_trans_blocks(inode, nrblocks); 2260 } 2261 2262 /* 2263 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2264 * 2265 * if nrblocks are fit in a single extent (chunk flag is 1), then 2266 * in the worse case, each tree level index/leaf need to be changed 2267 * if the tree split due to insert a new extent, then the old tree 2268 * index/leaf need to be updated too 2269 * 2270 * If the nrblocks are discontiguous, they could cause 2271 * the whole tree split more than once, but this is really rare. 2272 */ 2273 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2274 { 2275 int index; 2276 int depth = ext_depth(inode); 2277 2278 if (chunk) 2279 index = depth * 2; 2280 else 2281 index = depth * 3; 2282 2283 return index; 2284 } 2285 2286 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2287 struct ext4_extent *ex, 2288 ext4_fsblk_t *partial_cluster, 2289 ext4_lblk_t from, ext4_lblk_t to) 2290 { 2291 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2292 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2293 ext4_fsblk_t pblk; 2294 int flags = 0; 2295 2296 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2297 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2298 else if (ext4_should_journal_data(inode)) 2299 flags |= EXT4_FREE_BLOCKS_FORGET; 2300 2301 /* 2302 * For bigalloc file systems, we never free a partial cluster 2303 * at the beginning of the extent. Instead, we make a note 2304 * that we tried freeing the cluster, and check to see if we 2305 * need to free it on a subsequent call to ext4_remove_blocks, 2306 * or at the end of the ext4_truncate() operation. 2307 */ 2308 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2309 2310 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2311 /* 2312 * If we have a partial cluster, and it's different from the 2313 * cluster of the last block, we need to explicitly free the 2314 * partial cluster here. 2315 */ 2316 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2317 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2318 ext4_free_blocks(handle, inode, NULL, 2319 EXT4_C2B(sbi, *partial_cluster), 2320 sbi->s_cluster_ratio, flags); 2321 *partial_cluster = 0; 2322 } 2323 2324 #ifdef EXTENTS_STATS 2325 { 2326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2327 spin_lock(&sbi->s_ext_stats_lock); 2328 sbi->s_ext_blocks += ee_len; 2329 sbi->s_ext_extents++; 2330 if (ee_len < sbi->s_ext_min) 2331 sbi->s_ext_min = ee_len; 2332 if (ee_len > sbi->s_ext_max) 2333 sbi->s_ext_max = ee_len; 2334 if (ext_depth(inode) > sbi->s_depth_max) 2335 sbi->s_depth_max = ext_depth(inode); 2336 spin_unlock(&sbi->s_ext_stats_lock); 2337 } 2338 #endif 2339 if (from >= le32_to_cpu(ex->ee_block) 2340 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2341 /* tail removal */ 2342 ext4_lblk_t num; 2343 2344 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2345 pblk = ext4_ext_pblock(ex) + ee_len - num; 2346 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2347 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2348 /* 2349 * If the block range to be freed didn't start at the 2350 * beginning of a cluster, and we removed the entire 2351 * extent, save the partial cluster here, since we 2352 * might need to delete if we determine that the 2353 * truncate operation has removed all of the blocks in 2354 * the cluster. 2355 */ 2356 if (pblk & (sbi->s_cluster_ratio - 1) && 2357 (ee_len == num)) 2358 *partial_cluster = EXT4_B2C(sbi, pblk); 2359 else 2360 *partial_cluster = 0; 2361 } else if (from == le32_to_cpu(ex->ee_block) 2362 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2363 /* head removal */ 2364 ext4_lblk_t num; 2365 ext4_fsblk_t start; 2366 2367 num = to - from; 2368 start = ext4_ext_pblock(ex); 2369 2370 ext_debug("free first %u blocks starting %llu\n", num, start); 2371 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2372 2373 } else { 2374 printk(KERN_INFO "strange request: removal(2) " 2375 "%u-%u from %u:%u\n", 2376 from, to, le32_to_cpu(ex->ee_block), ee_len); 2377 } 2378 return 0; 2379 } 2380 2381 2382 /* 2383 * ext4_ext_rm_leaf() Removes the extents associated with the 2384 * blocks appearing between "start" and "end", and splits the extents 2385 * if "start" and "end" appear in the same extent 2386 * 2387 * @handle: The journal handle 2388 * @inode: The files inode 2389 * @path: The path to the leaf 2390 * @start: The first block to remove 2391 * @end: The last block to remove 2392 */ 2393 static int 2394 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2395 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2396 ext4_lblk_t start, ext4_lblk_t end) 2397 { 2398 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2399 int err = 0, correct_index = 0; 2400 int depth = ext_depth(inode), credits; 2401 struct ext4_extent_header *eh; 2402 ext4_lblk_t a, b; 2403 unsigned num; 2404 ext4_lblk_t ex_ee_block; 2405 unsigned short ex_ee_len; 2406 unsigned uninitialized = 0; 2407 struct ext4_extent *ex; 2408 2409 /* the header must be checked already in ext4_ext_remove_space() */ 2410 ext_debug("truncate since %u in leaf to %u\n", start, end); 2411 if (!path[depth].p_hdr) 2412 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2413 eh = path[depth].p_hdr; 2414 if (unlikely(path[depth].p_hdr == NULL)) { 2415 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2416 return -EIO; 2417 } 2418 /* find where to start removing */ 2419 ex = EXT_LAST_EXTENT(eh); 2420 2421 ex_ee_block = le32_to_cpu(ex->ee_block); 2422 ex_ee_len = ext4_ext_get_actual_len(ex); 2423 2424 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2425 2426 while (ex >= EXT_FIRST_EXTENT(eh) && 2427 ex_ee_block + ex_ee_len > start) { 2428 2429 if (ext4_ext_is_uninitialized(ex)) 2430 uninitialized = 1; 2431 else 2432 uninitialized = 0; 2433 2434 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2435 uninitialized, ex_ee_len); 2436 path[depth].p_ext = ex; 2437 2438 a = ex_ee_block > start ? ex_ee_block : start; 2439 b = ex_ee_block+ex_ee_len - 1 < end ? 2440 ex_ee_block+ex_ee_len - 1 : end; 2441 2442 ext_debug(" border %u:%u\n", a, b); 2443 2444 /* If this extent is beyond the end of the hole, skip it */ 2445 if (end < ex_ee_block) { 2446 ex--; 2447 ex_ee_block = le32_to_cpu(ex->ee_block); 2448 ex_ee_len = ext4_ext_get_actual_len(ex); 2449 continue; 2450 } else if (b != ex_ee_block + ex_ee_len - 1) { 2451 EXT4_ERROR_INODE(inode, 2452 "can not handle truncate %u:%u " 2453 "on extent %u:%u", 2454 start, end, ex_ee_block, 2455 ex_ee_block + ex_ee_len - 1); 2456 err = -EIO; 2457 goto out; 2458 } else if (a != ex_ee_block) { 2459 /* remove tail of the extent */ 2460 num = a - ex_ee_block; 2461 } else { 2462 /* remove whole extent: excellent! */ 2463 num = 0; 2464 } 2465 /* 2466 * 3 for leaf, sb, and inode plus 2 (bmap and group 2467 * descriptor) for each block group; assume two block 2468 * groups plus ex_ee_len/blocks_per_block_group for 2469 * the worst case 2470 */ 2471 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2472 if (ex == EXT_FIRST_EXTENT(eh)) { 2473 correct_index = 1; 2474 credits += (ext_depth(inode)) + 1; 2475 } 2476 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2477 2478 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2479 if (err) 2480 goto out; 2481 2482 err = ext4_ext_get_access(handle, inode, path + depth); 2483 if (err) 2484 goto out; 2485 2486 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2487 a, b); 2488 if (err) 2489 goto out; 2490 2491 if (num == 0) 2492 /* this extent is removed; mark slot entirely unused */ 2493 ext4_ext_store_pblock(ex, 0); 2494 2495 ex->ee_len = cpu_to_le16(num); 2496 /* 2497 * Do not mark uninitialized if all the blocks in the 2498 * extent have been removed. 2499 */ 2500 if (uninitialized && num) 2501 ext4_ext_mark_uninitialized(ex); 2502 /* 2503 * If the extent was completely released, 2504 * we need to remove it from the leaf 2505 */ 2506 if (num == 0) { 2507 if (end != EXT_MAX_BLOCKS - 1) { 2508 /* 2509 * For hole punching, we need to scoot all the 2510 * extents up when an extent is removed so that 2511 * we dont have blank extents in the middle 2512 */ 2513 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2514 sizeof(struct ext4_extent)); 2515 2516 /* Now get rid of the one at the end */ 2517 memset(EXT_LAST_EXTENT(eh), 0, 2518 sizeof(struct ext4_extent)); 2519 } 2520 le16_add_cpu(&eh->eh_entries, -1); 2521 } else 2522 *partial_cluster = 0; 2523 2524 err = ext4_ext_dirty(handle, inode, path + depth); 2525 if (err) 2526 goto out; 2527 2528 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2529 ext4_ext_pblock(ex)); 2530 ex--; 2531 ex_ee_block = le32_to_cpu(ex->ee_block); 2532 ex_ee_len = ext4_ext_get_actual_len(ex); 2533 } 2534 2535 if (correct_index && eh->eh_entries) 2536 err = ext4_ext_correct_indexes(handle, inode, path); 2537 2538 /* 2539 * If there is still a entry in the leaf node, check to see if 2540 * it references the partial cluster. This is the only place 2541 * where it could; if it doesn't, we can free the cluster. 2542 */ 2543 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2544 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2545 *partial_cluster)) { 2546 int flags = EXT4_FREE_BLOCKS_FORGET; 2547 2548 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2549 flags |= EXT4_FREE_BLOCKS_METADATA; 2550 2551 ext4_free_blocks(handle, inode, NULL, 2552 EXT4_C2B(sbi, *partial_cluster), 2553 sbi->s_cluster_ratio, flags); 2554 *partial_cluster = 0; 2555 } 2556 2557 /* if this leaf is free, then we should 2558 * remove it from index block above */ 2559 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2560 err = ext4_ext_rm_idx(handle, inode, path + depth); 2561 2562 out: 2563 return err; 2564 } 2565 2566 /* 2567 * ext4_ext_more_to_rm: 2568 * returns 1 if current index has to be freed (even partial) 2569 */ 2570 static int 2571 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2572 { 2573 BUG_ON(path->p_idx == NULL); 2574 2575 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2576 return 0; 2577 2578 /* 2579 * if truncate on deeper level happened, it wasn't partial, 2580 * so we have to consider current index for truncation 2581 */ 2582 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2583 return 0; 2584 return 1; 2585 } 2586 2587 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2588 ext4_lblk_t end) 2589 { 2590 struct super_block *sb = inode->i_sb; 2591 int depth = ext_depth(inode); 2592 struct ext4_ext_path *path = NULL; 2593 ext4_fsblk_t partial_cluster = 0; 2594 handle_t *handle; 2595 int i = 0, err = 0; 2596 2597 ext_debug("truncate since %u to %u\n", start, end); 2598 2599 /* probably first extent we're gonna free will be last in block */ 2600 handle = ext4_journal_start(inode, depth + 1); 2601 if (IS_ERR(handle)) 2602 return PTR_ERR(handle); 2603 2604 again: 2605 ext4_ext_invalidate_cache(inode); 2606 2607 trace_ext4_ext_remove_space(inode, start, depth); 2608 2609 /* 2610 * Check if we are removing extents inside the extent tree. If that 2611 * is the case, we are going to punch a hole inside the extent tree 2612 * so we have to check whether we need to split the extent covering 2613 * the last block to remove so we can easily remove the part of it 2614 * in ext4_ext_rm_leaf(). 2615 */ 2616 if (end < EXT_MAX_BLOCKS - 1) { 2617 struct ext4_extent *ex; 2618 ext4_lblk_t ee_block; 2619 2620 /* find extent for this block */ 2621 path = ext4_ext_find_extent(inode, end, NULL); 2622 if (IS_ERR(path)) { 2623 ext4_journal_stop(handle); 2624 return PTR_ERR(path); 2625 } 2626 depth = ext_depth(inode); 2627 /* Leaf not may not exist only if inode has no blocks at all */ 2628 ex = path[depth].p_ext; 2629 if (!ex) { 2630 if (depth) { 2631 EXT4_ERROR_INODE(inode, 2632 "path[%d].p_hdr == NULL", 2633 depth); 2634 err = -EIO; 2635 } 2636 goto out; 2637 } 2638 2639 ee_block = le32_to_cpu(ex->ee_block); 2640 2641 /* 2642 * See if the last block is inside the extent, if so split 2643 * the extent at 'end' block so we can easily remove the 2644 * tail of the first part of the split extent in 2645 * ext4_ext_rm_leaf(). 2646 */ 2647 if (end >= ee_block && 2648 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2649 int split_flag = 0; 2650 2651 if (ext4_ext_is_uninitialized(ex)) 2652 split_flag = EXT4_EXT_MARK_UNINIT1 | 2653 EXT4_EXT_MARK_UNINIT2; 2654 2655 /* 2656 * Split the extent in two so that 'end' is the last 2657 * block in the first new extent 2658 */ 2659 err = ext4_split_extent_at(handle, inode, path, 2660 end + 1, split_flag, 2661 EXT4_GET_BLOCKS_PRE_IO | 2662 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2663 2664 if (err < 0) 2665 goto out; 2666 } 2667 } 2668 /* 2669 * We start scanning from right side, freeing all the blocks 2670 * after i_size and walking into the tree depth-wise. 2671 */ 2672 depth = ext_depth(inode); 2673 if (path) { 2674 int k = i = depth; 2675 while (--k > 0) 2676 path[k].p_block = 2677 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2678 } else { 2679 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2680 GFP_NOFS); 2681 if (path == NULL) { 2682 ext4_journal_stop(handle); 2683 return -ENOMEM; 2684 } 2685 path[0].p_depth = depth; 2686 path[0].p_hdr = ext_inode_hdr(inode); 2687 i = 0; 2688 2689 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2690 err = -EIO; 2691 goto out; 2692 } 2693 } 2694 err = 0; 2695 2696 while (i >= 0 && err == 0) { 2697 if (i == depth) { 2698 /* this is leaf block */ 2699 err = ext4_ext_rm_leaf(handle, inode, path, 2700 &partial_cluster, start, 2701 end); 2702 /* root level has p_bh == NULL, brelse() eats this */ 2703 brelse(path[i].p_bh); 2704 path[i].p_bh = NULL; 2705 i--; 2706 continue; 2707 } 2708 2709 /* this is index block */ 2710 if (!path[i].p_hdr) { 2711 ext_debug("initialize header\n"); 2712 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2713 } 2714 2715 if (!path[i].p_idx) { 2716 /* this level hasn't been touched yet */ 2717 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2718 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2719 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2720 path[i].p_hdr, 2721 le16_to_cpu(path[i].p_hdr->eh_entries)); 2722 } else { 2723 /* we were already here, see at next index */ 2724 path[i].p_idx--; 2725 } 2726 2727 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2728 i, EXT_FIRST_INDEX(path[i].p_hdr), 2729 path[i].p_idx); 2730 if (ext4_ext_more_to_rm(path + i)) { 2731 struct buffer_head *bh; 2732 /* go to the next level */ 2733 ext_debug("move to level %d (block %llu)\n", 2734 i + 1, ext4_idx_pblock(path[i].p_idx)); 2735 memset(path + i + 1, 0, sizeof(*path)); 2736 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2737 if (!bh) { 2738 /* should we reset i_size? */ 2739 err = -EIO; 2740 break; 2741 } 2742 if (WARN_ON(i + 1 > depth)) { 2743 err = -EIO; 2744 break; 2745 } 2746 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2747 depth - i - 1, bh)) { 2748 err = -EIO; 2749 break; 2750 } 2751 path[i + 1].p_bh = bh; 2752 2753 /* save actual number of indexes since this 2754 * number is changed at the next iteration */ 2755 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2756 i++; 2757 } else { 2758 /* we finished processing this index, go up */ 2759 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2760 /* index is empty, remove it; 2761 * handle must be already prepared by the 2762 * truncatei_leaf() */ 2763 err = ext4_ext_rm_idx(handle, inode, path + i); 2764 } 2765 /* root level has p_bh == NULL, brelse() eats this */ 2766 brelse(path[i].p_bh); 2767 path[i].p_bh = NULL; 2768 i--; 2769 ext_debug("return to level %d\n", i); 2770 } 2771 } 2772 2773 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2774 path->p_hdr->eh_entries); 2775 2776 /* If we still have something in the partial cluster and we have removed 2777 * even the first extent, then we should free the blocks in the partial 2778 * cluster as well. */ 2779 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2780 int flags = EXT4_FREE_BLOCKS_FORGET; 2781 2782 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2783 flags |= EXT4_FREE_BLOCKS_METADATA; 2784 2785 ext4_free_blocks(handle, inode, NULL, 2786 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2787 EXT4_SB(sb)->s_cluster_ratio, flags); 2788 partial_cluster = 0; 2789 } 2790 2791 /* TODO: flexible tree reduction should be here */ 2792 if (path->p_hdr->eh_entries == 0) { 2793 /* 2794 * truncate to zero freed all the tree, 2795 * so we need to correct eh_depth 2796 */ 2797 err = ext4_ext_get_access(handle, inode, path); 2798 if (err == 0) { 2799 ext_inode_hdr(inode)->eh_depth = 0; 2800 ext_inode_hdr(inode)->eh_max = 2801 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2802 err = ext4_ext_dirty(handle, inode, path); 2803 } 2804 } 2805 out: 2806 ext4_ext_drop_refs(path); 2807 kfree(path); 2808 if (err == -EAGAIN) { 2809 path = NULL; 2810 goto again; 2811 } 2812 ext4_journal_stop(handle); 2813 2814 return err; 2815 } 2816 2817 /* 2818 * called at mount time 2819 */ 2820 void ext4_ext_init(struct super_block *sb) 2821 { 2822 /* 2823 * possible initialization would be here 2824 */ 2825 2826 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2827 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2828 printk(KERN_INFO "EXT4-fs: file extents enabled" 2829 #ifdef AGGRESSIVE_TEST 2830 ", aggressive tests" 2831 #endif 2832 #ifdef CHECK_BINSEARCH 2833 ", check binsearch" 2834 #endif 2835 #ifdef EXTENTS_STATS 2836 ", stats" 2837 #endif 2838 "\n"); 2839 #endif 2840 #ifdef EXTENTS_STATS 2841 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2842 EXT4_SB(sb)->s_ext_min = 1 << 30; 2843 EXT4_SB(sb)->s_ext_max = 0; 2844 #endif 2845 } 2846 } 2847 2848 /* 2849 * called at umount time 2850 */ 2851 void ext4_ext_release(struct super_block *sb) 2852 { 2853 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2854 return; 2855 2856 #ifdef EXTENTS_STATS 2857 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2858 struct ext4_sb_info *sbi = EXT4_SB(sb); 2859 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2860 sbi->s_ext_blocks, sbi->s_ext_extents, 2861 sbi->s_ext_blocks / sbi->s_ext_extents); 2862 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2863 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2864 } 2865 #endif 2866 } 2867 2868 /* FIXME!! we need to try to merge to left or right after zero-out */ 2869 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2870 { 2871 ext4_fsblk_t ee_pblock; 2872 unsigned int ee_len; 2873 int ret; 2874 2875 ee_len = ext4_ext_get_actual_len(ex); 2876 ee_pblock = ext4_ext_pblock(ex); 2877 2878 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2879 if (ret > 0) 2880 ret = 0; 2881 2882 return ret; 2883 } 2884 2885 /* 2886 * ext4_split_extent_at() splits an extent at given block. 2887 * 2888 * @handle: the journal handle 2889 * @inode: the file inode 2890 * @path: the path to the extent 2891 * @split: the logical block where the extent is splitted. 2892 * @split_flags: indicates if the extent could be zeroout if split fails, and 2893 * the states(init or uninit) of new extents. 2894 * @flags: flags used to insert new extent to extent tree. 2895 * 2896 * 2897 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2898 * of which are deterimined by split_flag. 2899 * 2900 * There are two cases: 2901 * a> the extent are splitted into two extent. 2902 * b> split is not needed, and just mark the extent. 2903 * 2904 * return 0 on success. 2905 */ 2906 static int ext4_split_extent_at(handle_t *handle, 2907 struct inode *inode, 2908 struct ext4_ext_path *path, 2909 ext4_lblk_t split, 2910 int split_flag, 2911 int flags) 2912 { 2913 ext4_fsblk_t newblock; 2914 ext4_lblk_t ee_block; 2915 struct ext4_extent *ex, newex, orig_ex; 2916 struct ext4_extent *ex2 = NULL; 2917 unsigned int ee_len, depth; 2918 int err = 0; 2919 2920 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 2921 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 2922 2923 ext_debug("ext4_split_extents_at: inode %lu, logical" 2924 "block %llu\n", inode->i_ino, (unsigned long long)split); 2925 2926 ext4_ext_show_leaf(inode, path); 2927 2928 depth = ext_depth(inode); 2929 ex = path[depth].p_ext; 2930 ee_block = le32_to_cpu(ex->ee_block); 2931 ee_len = ext4_ext_get_actual_len(ex); 2932 newblock = split - ee_block + ext4_ext_pblock(ex); 2933 2934 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2935 2936 err = ext4_ext_get_access(handle, inode, path + depth); 2937 if (err) 2938 goto out; 2939 2940 if (split == ee_block) { 2941 /* 2942 * case b: block @split is the block that the extent begins with 2943 * then we just change the state of the extent, and splitting 2944 * is not needed. 2945 */ 2946 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2947 ext4_ext_mark_uninitialized(ex); 2948 else 2949 ext4_ext_mark_initialized(ex); 2950 2951 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2952 ext4_ext_try_to_merge(handle, inode, path, ex); 2953 2954 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2955 goto out; 2956 } 2957 2958 /* case a */ 2959 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2960 ex->ee_len = cpu_to_le16(split - ee_block); 2961 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2962 ext4_ext_mark_uninitialized(ex); 2963 2964 /* 2965 * path may lead to new leaf, not to original leaf any more 2966 * after ext4_ext_insert_extent() returns, 2967 */ 2968 err = ext4_ext_dirty(handle, inode, path + depth); 2969 if (err) 2970 goto fix_extent_len; 2971 2972 ex2 = &newex; 2973 ex2->ee_block = cpu_to_le32(split); 2974 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2975 ext4_ext_store_pblock(ex2, newblock); 2976 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2977 ext4_ext_mark_uninitialized(ex2); 2978 2979 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2980 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2981 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 2982 if (split_flag & EXT4_EXT_DATA_VALID1) 2983 err = ext4_ext_zeroout(inode, ex2); 2984 else 2985 err = ext4_ext_zeroout(inode, ex); 2986 } else 2987 err = ext4_ext_zeroout(inode, &orig_ex); 2988 2989 if (err) 2990 goto fix_extent_len; 2991 /* update the extent length and mark as initialized */ 2992 ex->ee_len = cpu_to_le16(ee_len); 2993 ext4_ext_try_to_merge(handle, inode, path, ex); 2994 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2995 goto out; 2996 } else if (err) 2997 goto fix_extent_len; 2998 2999 out: 3000 ext4_ext_show_leaf(inode, path); 3001 return err; 3002 3003 fix_extent_len: 3004 ex->ee_len = orig_ex.ee_len; 3005 ext4_ext_dirty(handle, inode, path + depth); 3006 return err; 3007 } 3008 3009 /* 3010 * ext4_split_extents() splits an extent and mark extent which is covered 3011 * by @map as split_flags indicates 3012 * 3013 * It may result in splitting the extent into multiple extents (upto three) 3014 * There are three possibilities: 3015 * a> There is no split required 3016 * b> Splits in two extents: Split is happening at either end of the extent 3017 * c> Splits in three extents: Somone is splitting in middle of the extent 3018 * 3019 */ 3020 static int ext4_split_extent(handle_t *handle, 3021 struct inode *inode, 3022 struct ext4_ext_path *path, 3023 struct ext4_map_blocks *map, 3024 int split_flag, 3025 int flags) 3026 { 3027 ext4_lblk_t ee_block; 3028 struct ext4_extent *ex; 3029 unsigned int ee_len, depth; 3030 int err = 0; 3031 int uninitialized; 3032 int split_flag1, flags1; 3033 3034 depth = ext_depth(inode); 3035 ex = path[depth].p_ext; 3036 ee_block = le32_to_cpu(ex->ee_block); 3037 ee_len = ext4_ext_get_actual_len(ex); 3038 uninitialized = ext4_ext_is_uninitialized(ex); 3039 3040 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3041 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3042 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3043 if (uninitialized) 3044 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3045 EXT4_EXT_MARK_UNINIT2; 3046 if (split_flag & EXT4_EXT_DATA_VALID2) 3047 split_flag1 |= EXT4_EXT_DATA_VALID1; 3048 err = ext4_split_extent_at(handle, inode, path, 3049 map->m_lblk + map->m_len, split_flag1, flags1); 3050 if (err) 3051 goto out; 3052 } 3053 3054 ext4_ext_drop_refs(path); 3055 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3056 if (IS_ERR(path)) 3057 return PTR_ERR(path); 3058 3059 if (map->m_lblk >= ee_block) { 3060 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT | 3061 EXT4_EXT_DATA_VALID2); 3062 if (uninitialized) 3063 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3064 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3065 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 3066 err = ext4_split_extent_at(handle, inode, path, 3067 map->m_lblk, split_flag1, flags); 3068 if (err) 3069 goto out; 3070 } 3071 3072 ext4_ext_show_leaf(inode, path); 3073 out: 3074 return err ? err : map->m_len; 3075 } 3076 3077 /* 3078 * This function is called by ext4_ext_map_blocks() if someone tries to write 3079 * to an uninitialized extent. It may result in splitting the uninitialized 3080 * extent into multiple extents (up to three - one initialized and two 3081 * uninitialized). 3082 * There are three possibilities: 3083 * a> There is no split required: Entire extent should be initialized 3084 * b> Splits in two extents: Write is happening at either end of the extent 3085 * c> Splits in three extents: Somone is writing in middle of the extent 3086 * 3087 * Pre-conditions: 3088 * - The extent pointed to by 'path' is uninitialized. 3089 * - The extent pointed to by 'path' contains a superset 3090 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3091 * 3092 * Post-conditions on success: 3093 * - the returned value is the number of blocks beyond map->l_lblk 3094 * that are allocated and initialized. 3095 * It is guaranteed to be >= map->m_len. 3096 */ 3097 static int ext4_ext_convert_to_initialized(handle_t *handle, 3098 struct inode *inode, 3099 struct ext4_map_blocks *map, 3100 struct ext4_ext_path *path) 3101 { 3102 struct ext4_sb_info *sbi; 3103 struct ext4_extent_header *eh; 3104 struct ext4_map_blocks split_map; 3105 struct ext4_extent zero_ex; 3106 struct ext4_extent *ex; 3107 ext4_lblk_t ee_block, eof_block; 3108 unsigned int ee_len, depth; 3109 int allocated, max_zeroout = 0; 3110 int err = 0; 3111 int split_flag = 0; 3112 3113 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3114 "block %llu, max_blocks %u\n", inode->i_ino, 3115 (unsigned long long)map->m_lblk, map->m_len); 3116 3117 sbi = EXT4_SB(inode->i_sb); 3118 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3119 inode->i_sb->s_blocksize_bits; 3120 if (eof_block < map->m_lblk + map->m_len) 3121 eof_block = map->m_lblk + map->m_len; 3122 3123 depth = ext_depth(inode); 3124 eh = path[depth].p_hdr; 3125 ex = path[depth].p_ext; 3126 ee_block = le32_to_cpu(ex->ee_block); 3127 ee_len = ext4_ext_get_actual_len(ex); 3128 allocated = ee_len - (map->m_lblk - ee_block); 3129 3130 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3131 3132 /* Pre-conditions */ 3133 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3134 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3135 3136 /* 3137 * Attempt to transfer newly initialized blocks from the currently 3138 * uninitialized extent to its left neighbor. This is much cheaper 3139 * than an insertion followed by a merge as those involve costly 3140 * memmove() calls. This is the common case in steady state for 3141 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3142 * writes. 3143 * 3144 * Limitations of the current logic: 3145 * - L1: we only deal with writes at the start of the extent. 3146 * The approach could be extended to writes at the end 3147 * of the extent but this scenario was deemed less common. 3148 * - L2: we do not deal with writes covering the whole extent. 3149 * This would require removing the extent if the transfer 3150 * is possible. 3151 * - L3: we only attempt to merge with an extent stored in the 3152 * same extent tree node. 3153 */ 3154 if ((map->m_lblk == ee_block) && /*L1*/ 3155 (map->m_len < ee_len) && /*L2*/ 3156 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3157 struct ext4_extent *prev_ex; 3158 ext4_lblk_t prev_lblk; 3159 ext4_fsblk_t prev_pblk, ee_pblk; 3160 unsigned int prev_len, write_len; 3161 3162 prev_ex = ex - 1; 3163 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3164 prev_len = ext4_ext_get_actual_len(prev_ex); 3165 prev_pblk = ext4_ext_pblock(prev_ex); 3166 ee_pblk = ext4_ext_pblock(ex); 3167 write_len = map->m_len; 3168 3169 /* 3170 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3171 * upon those conditions: 3172 * - C1: prev_ex is initialized, 3173 * - C2: prev_ex is logically abutting ex, 3174 * - C3: prev_ex is physically abutting ex, 3175 * - C4: prev_ex can receive the additional blocks without 3176 * overflowing the (initialized) length limit. 3177 */ 3178 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3179 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3180 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3181 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3182 err = ext4_ext_get_access(handle, inode, path + depth); 3183 if (err) 3184 goto out; 3185 3186 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3187 map, ex, prev_ex); 3188 3189 /* Shift the start of ex by 'write_len' blocks */ 3190 ex->ee_block = cpu_to_le32(ee_block + write_len); 3191 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3192 ex->ee_len = cpu_to_le16(ee_len - write_len); 3193 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3194 3195 /* Extend prev_ex by 'write_len' blocks */ 3196 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3197 3198 /* Mark the block containing both extents as dirty */ 3199 ext4_ext_dirty(handle, inode, path + depth); 3200 3201 /* Update path to point to the right extent */ 3202 path[depth].p_ext = prev_ex; 3203 3204 /* Result: number of initialized blocks past m_lblk */ 3205 allocated = write_len; 3206 goto out; 3207 } 3208 } 3209 3210 WARN_ON(map->m_lblk < ee_block); 3211 /* 3212 * It is safe to convert extent to initialized via explicit 3213 * zeroout only if extent is fully insde i_size or new_size. 3214 */ 3215 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3216 3217 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3218 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3219 inode->i_sb->s_blocksize_bits; 3220 3221 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3222 if (max_zeroout && (ee_len <= max_zeroout)) { 3223 err = ext4_ext_zeroout(inode, ex); 3224 if (err) 3225 goto out; 3226 3227 err = ext4_ext_get_access(handle, inode, path + depth); 3228 if (err) 3229 goto out; 3230 ext4_ext_mark_initialized(ex); 3231 ext4_ext_try_to_merge(handle, inode, path, ex); 3232 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3233 goto out; 3234 } 3235 3236 /* 3237 * four cases: 3238 * 1. split the extent into three extents. 3239 * 2. split the extent into two extents, zeroout the first half. 3240 * 3. split the extent into two extents, zeroout the second half. 3241 * 4. split the extent into two extents with out zeroout. 3242 */ 3243 split_map.m_lblk = map->m_lblk; 3244 split_map.m_len = map->m_len; 3245 3246 if (max_zeroout && (allocated > map->m_len)) { 3247 if (allocated <= max_zeroout) { 3248 /* case 3 */ 3249 zero_ex.ee_block = 3250 cpu_to_le32(map->m_lblk); 3251 zero_ex.ee_len = cpu_to_le16(allocated); 3252 ext4_ext_store_pblock(&zero_ex, 3253 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3254 err = ext4_ext_zeroout(inode, &zero_ex); 3255 if (err) 3256 goto out; 3257 split_map.m_lblk = map->m_lblk; 3258 split_map.m_len = allocated; 3259 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3260 /* case 2 */ 3261 if (map->m_lblk != ee_block) { 3262 zero_ex.ee_block = ex->ee_block; 3263 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3264 ee_block); 3265 ext4_ext_store_pblock(&zero_ex, 3266 ext4_ext_pblock(ex)); 3267 err = ext4_ext_zeroout(inode, &zero_ex); 3268 if (err) 3269 goto out; 3270 } 3271 3272 split_map.m_lblk = ee_block; 3273 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3274 allocated = map->m_len; 3275 } 3276 } 3277 3278 allocated = ext4_split_extent(handle, inode, path, 3279 &split_map, split_flag, 0); 3280 if (allocated < 0) 3281 err = allocated; 3282 3283 out: 3284 return err ? err : allocated; 3285 } 3286 3287 /* 3288 * This function is called by ext4_ext_map_blocks() from 3289 * ext4_get_blocks_dio_write() when DIO to write 3290 * to an uninitialized extent. 3291 * 3292 * Writing to an uninitialized extent may result in splitting the uninitialized 3293 * extent into multiple initialized/uninitialized extents (up to three) 3294 * There are three possibilities: 3295 * a> There is no split required: Entire extent should be uninitialized 3296 * b> Splits in two extents: Write is happening at either end of the extent 3297 * c> Splits in three extents: Somone is writing in middle of the extent 3298 * 3299 * One of more index blocks maybe needed if the extent tree grow after 3300 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3301 * complete, we need to split the uninitialized extent before DIO submit 3302 * the IO. The uninitialized extent called at this time will be split 3303 * into three uninitialized extent(at most). After IO complete, the part 3304 * being filled will be convert to initialized by the end_io callback function 3305 * via ext4_convert_unwritten_extents(). 3306 * 3307 * Returns the size of uninitialized extent to be written on success. 3308 */ 3309 static int ext4_split_unwritten_extents(handle_t *handle, 3310 struct inode *inode, 3311 struct ext4_map_blocks *map, 3312 struct ext4_ext_path *path, 3313 int flags) 3314 { 3315 ext4_lblk_t eof_block; 3316 ext4_lblk_t ee_block; 3317 struct ext4_extent *ex; 3318 unsigned int ee_len; 3319 int split_flag = 0, depth; 3320 3321 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3322 "block %llu, max_blocks %u\n", inode->i_ino, 3323 (unsigned long long)map->m_lblk, map->m_len); 3324 3325 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3326 inode->i_sb->s_blocksize_bits; 3327 if (eof_block < map->m_lblk + map->m_len) 3328 eof_block = map->m_lblk + map->m_len; 3329 /* 3330 * It is safe to convert extent to initialized via explicit 3331 * zeroout only if extent is fully insde i_size or new_size. 3332 */ 3333 depth = ext_depth(inode); 3334 ex = path[depth].p_ext; 3335 ee_block = le32_to_cpu(ex->ee_block); 3336 ee_len = ext4_ext_get_actual_len(ex); 3337 3338 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3339 split_flag |= EXT4_EXT_MARK_UNINIT2; 3340 if (flags & EXT4_GET_BLOCKS_CONVERT) 3341 split_flag |= EXT4_EXT_DATA_VALID2; 3342 flags |= EXT4_GET_BLOCKS_PRE_IO; 3343 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3344 } 3345 3346 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3347 struct inode *inode, 3348 struct ext4_map_blocks *map, 3349 struct ext4_ext_path *path) 3350 { 3351 struct ext4_extent *ex; 3352 ext4_lblk_t ee_block; 3353 unsigned int ee_len; 3354 int depth; 3355 int err = 0; 3356 3357 depth = ext_depth(inode); 3358 ex = path[depth].p_ext; 3359 ee_block = le32_to_cpu(ex->ee_block); 3360 ee_len = ext4_ext_get_actual_len(ex); 3361 3362 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3363 "block %llu, max_blocks %u\n", inode->i_ino, 3364 (unsigned long long)ee_block, ee_len); 3365 3366 /* If extent is larger than requested then split is required */ 3367 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3368 err = ext4_split_unwritten_extents(handle, inode, map, path, 3369 EXT4_GET_BLOCKS_CONVERT); 3370 if (err < 0) 3371 goto out; 3372 ext4_ext_drop_refs(path); 3373 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3374 if (IS_ERR(path)) { 3375 err = PTR_ERR(path); 3376 goto out; 3377 } 3378 depth = ext_depth(inode); 3379 ex = path[depth].p_ext; 3380 } 3381 3382 err = ext4_ext_get_access(handle, inode, path + depth); 3383 if (err) 3384 goto out; 3385 /* first mark the extent as initialized */ 3386 ext4_ext_mark_initialized(ex); 3387 3388 /* note: ext4_ext_correct_indexes() isn't needed here because 3389 * borders are not changed 3390 */ 3391 ext4_ext_try_to_merge(handle, inode, path, ex); 3392 3393 /* Mark modified extent as dirty */ 3394 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3395 out: 3396 ext4_ext_show_leaf(inode, path); 3397 return err; 3398 } 3399 3400 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3401 sector_t block, int count) 3402 { 3403 int i; 3404 for (i = 0; i < count; i++) 3405 unmap_underlying_metadata(bdev, block + i); 3406 } 3407 3408 /* 3409 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3410 */ 3411 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3412 ext4_lblk_t lblk, 3413 struct ext4_ext_path *path, 3414 unsigned int len) 3415 { 3416 int i, depth; 3417 struct ext4_extent_header *eh; 3418 struct ext4_extent *last_ex; 3419 3420 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3421 return 0; 3422 3423 depth = ext_depth(inode); 3424 eh = path[depth].p_hdr; 3425 3426 /* 3427 * We're going to remove EOFBLOCKS_FL entirely in future so we 3428 * do not care for this case anymore. Simply remove the flag 3429 * if there are no extents. 3430 */ 3431 if (unlikely(!eh->eh_entries)) 3432 goto out; 3433 last_ex = EXT_LAST_EXTENT(eh); 3434 /* 3435 * We should clear the EOFBLOCKS_FL flag if we are writing the 3436 * last block in the last extent in the file. We test this by 3437 * first checking to see if the caller to 3438 * ext4_ext_get_blocks() was interested in the last block (or 3439 * a block beyond the last block) in the current extent. If 3440 * this turns out to be false, we can bail out from this 3441 * function immediately. 3442 */ 3443 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3444 ext4_ext_get_actual_len(last_ex)) 3445 return 0; 3446 /* 3447 * If the caller does appear to be planning to write at or 3448 * beyond the end of the current extent, we then test to see 3449 * if the current extent is the last extent in the file, by 3450 * checking to make sure it was reached via the rightmost node 3451 * at each level of the tree. 3452 */ 3453 for (i = depth-1; i >= 0; i--) 3454 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3455 return 0; 3456 out: 3457 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3458 return ext4_mark_inode_dirty(handle, inode); 3459 } 3460 3461 /** 3462 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3463 * 3464 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns 3465 * whether there are any buffers marked for delayed allocation. It returns '1' 3466 * on the first delalloc'ed buffer head found. If no buffer head in the given 3467 * range is marked for delalloc, it returns 0. 3468 * lblk_start should always be <= lblk_end. 3469 * search_hint_reverse is to indicate that searching in reverse from lblk_end to 3470 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed 3471 * block sooner). This is useful when blocks are truncated sequentially from 3472 * lblk_start towards lblk_end. 3473 */ 3474 static int ext4_find_delalloc_range(struct inode *inode, 3475 ext4_lblk_t lblk_start, 3476 ext4_lblk_t lblk_end, 3477 int search_hint_reverse) 3478 { 3479 struct address_space *mapping = inode->i_mapping; 3480 struct buffer_head *head, *bh = NULL; 3481 struct page *page; 3482 ext4_lblk_t i, pg_lblk; 3483 pgoff_t index; 3484 3485 if (!test_opt(inode->i_sb, DELALLOC)) 3486 return 0; 3487 3488 /* reverse search wont work if fs block size is less than page size */ 3489 if (inode->i_blkbits < PAGE_CACHE_SHIFT) 3490 search_hint_reverse = 0; 3491 3492 if (search_hint_reverse) 3493 i = lblk_end; 3494 else 3495 i = lblk_start; 3496 3497 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 3498 3499 while ((i >= lblk_start) && (i <= lblk_end)) { 3500 page = find_get_page(mapping, index); 3501 if (!page) 3502 goto nextpage; 3503 3504 if (!page_has_buffers(page)) 3505 goto nextpage; 3506 3507 head = page_buffers(page); 3508 if (!head) 3509 goto nextpage; 3510 3511 bh = head; 3512 pg_lblk = index << (PAGE_CACHE_SHIFT - 3513 inode->i_blkbits); 3514 do { 3515 if (unlikely(pg_lblk < lblk_start)) { 3516 /* 3517 * This is possible when fs block size is less 3518 * than page size and our cluster starts/ends in 3519 * middle of the page. So we need to skip the 3520 * initial few blocks till we reach the 'lblk' 3521 */ 3522 pg_lblk++; 3523 continue; 3524 } 3525 3526 /* Check if the buffer is delayed allocated and that it 3527 * is not yet mapped. (when da-buffers are mapped during 3528 * their writeout, their da_mapped bit is set.) 3529 */ 3530 if (buffer_delay(bh) && !buffer_da_mapped(bh)) { 3531 page_cache_release(page); 3532 trace_ext4_find_delalloc_range(inode, 3533 lblk_start, lblk_end, 3534 search_hint_reverse, 3535 1, i); 3536 return 1; 3537 } 3538 if (search_hint_reverse) 3539 i--; 3540 else 3541 i++; 3542 } while ((i >= lblk_start) && (i <= lblk_end) && 3543 ((bh = bh->b_this_page) != head)); 3544 nextpage: 3545 if (page) 3546 page_cache_release(page); 3547 /* 3548 * Move to next page. 'i' will be the first lblk in the next 3549 * page. 3550 */ 3551 if (search_hint_reverse) 3552 index--; 3553 else 3554 index++; 3555 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 3556 } 3557 3558 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3559 search_hint_reverse, 0, 0); 3560 return 0; 3561 } 3562 3563 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk, 3564 int search_hint_reverse) 3565 { 3566 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3567 ext4_lblk_t lblk_start, lblk_end; 3568 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3569 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3570 3571 return ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3572 search_hint_reverse); 3573 } 3574 3575 /** 3576 * Determines how many complete clusters (out of those specified by the 'map') 3577 * are under delalloc and were reserved quota for. 3578 * This function is called when we are writing out the blocks that were 3579 * originally written with their allocation delayed, but then the space was 3580 * allocated using fallocate() before the delayed allocation could be resolved. 3581 * The cases to look for are: 3582 * ('=' indicated delayed allocated blocks 3583 * '-' indicates non-delayed allocated blocks) 3584 * (a) partial clusters towards beginning and/or end outside of allocated range 3585 * are not delalloc'ed. 3586 * Ex: 3587 * |----c---=|====c====|====c====|===-c----| 3588 * |++++++ allocated ++++++| 3589 * ==> 4 complete clusters in above example 3590 * 3591 * (b) partial cluster (outside of allocated range) towards either end is 3592 * marked for delayed allocation. In this case, we will exclude that 3593 * cluster. 3594 * Ex: 3595 * |----====c========|========c========| 3596 * |++++++ allocated ++++++| 3597 * ==> 1 complete clusters in above example 3598 * 3599 * Ex: 3600 * |================c================| 3601 * |++++++ allocated ++++++| 3602 * ==> 0 complete clusters in above example 3603 * 3604 * The ext4_da_update_reserve_space will be called only if we 3605 * determine here that there were some "entire" clusters that span 3606 * this 'allocated' range. 3607 * In the non-bigalloc case, this function will just end up returning num_blks 3608 * without ever calling ext4_find_delalloc_range. 3609 */ 3610 static unsigned int 3611 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3612 unsigned int num_blks) 3613 { 3614 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3615 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3616 ext4_lblk_t lblk_from, lblk_to, c_offset; 3617 unsigned int allocated_clusters = 0; 3618 3619 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3620 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3621 3622 /* max possible clusters for this allocation */ 3623 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3624 3625 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3626 3627 /* Check towards left side */ 3628 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3629 if (c_offset) { 3630 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3631 lblk_to = lblk_from + c_offset - 1; 3632 3633 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3634 allocated_clusters--; 3635 } 3636 3637 /* Now check towards right. */ 3638 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3639 if (allocated_clusters && c_offset) { 3640 lblk_from = lblk_start + num_blks; 3641 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3642 3643 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3644 allocated_clusters--; 3645 } 3646 3647 return allocated_clusters; 3648 } 3649 3650 static int 3651 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3652 struct ext4_map_blocks *map, 3653 struct ext4_ext_path *path, int flags, 3654 unsigned int allocated, ext4_fsblk_t newblock) 3655 { 3656 int ret = 0; 3657 int err = 0; 3658 ext4_io_end_t *io = ext4_inode_aio(inode); 3659 3660 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3661 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3662 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3663 flags, allocated); 3664 ext4_ext_show_leaf(inode, path); 3665 3666 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated, 3667 newblock); 3668 3669 /* get_block() before submit the IO, split the extent */ 3670 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3671 ret = ext4_split_unwritten_extents(handle, inode, map, 3672 path, flags); 3673 if (ret <= 0) 3674 goto out; 3675 /* 3676 * Flag the inode(non aio case) or end_io struct (aio case) 3677 * that this IO needs to conversion to written when IO is 3678 * completed 3679 */ 3680 if (io) 3681 ext4_set_io_unwritten_flag(inode, io); 3682 else 3683 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3684 if (ext4_should_dioread_nolock(inode)) 3685 map->m_flags |= EXT4_MAP_UNINIT; 3686 goto out; 3687 } 3688 /* IO end_io complete, convert the filled extent to written */ 3689 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3690 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3691 path); 3692 if (ret >= 0) { 3693 ext4_update_inode_fsync_trans(handle, inode, 1); 3694 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3695 path, map->m_len); 3696 } else 3697 err = ret; 3698 goto out2; 3699 } 3700 /* buffered IO case */ 3701 /* 3702 * repeat fallocate creation request 3703 * we already have an unwritten extent 3704 */ 3705 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3706 goto map_out; 3707 3708 /* buffered READ or buffered write_begin() lookup */ 3709 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3710 /* 3711 * We have blocks reserved already. We 3712 * return allocated blocks so that delalloc 3713 * won't do block reservation for us. But 3714 * the buffer head will be unmapped so that 3715 * a read from the block returns 0s. 3716 */ 3717 map->m_flags |= EXT4_MAP_UNWRITTEN; 3718 goto out1; 3719 } 3720 3721 /* buffered write, writepage time, convert*/ 3722 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3723 if (ret >= 0) 3724 ext4_update_inode_fsync_trans(handle, inode, 1); 3725 out: 3726 if (ret <= 0) { 3727 err = ret; 3728 goto out2; 3729 } else 3730 allocated = ret; 3731 map->m_flags |= EXT4_MAP_NEW; 3732 /* 3733 * if we allocated more blocks than requested 3734 * we need to make sure we unmap the extra block 3735 * allocated. The actual needed block will get 3736 * unmapped later when we find the buffer_head marked 3737 * new. 3738 */ 3739 if (allocated > map->m_len) { 3740 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3741 newblock + map->m_len, 3742 allocated - map->m_len); 3743 allocated = map->m_len; 3744 } 3745 3746 /* 3747 * If we have done fallocate with the offset that is already 3748 * delayed allocated, we would have block reservation 3749 * and quota reservation done in the delayed write path. 3750 * But fallocate would have already updated quota and block 3751 * count for this offset. So cancel these reservation 3752 */ 3753 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3754 unsigned int reserved_clusters; 3755 reserved_clusters = get_reserved_cluster_alloc(inode, 3756 map->m_lblk, map->m_len); 3757 if (reserved_clusters) 3758 ext4_da_update_reserve_space(inode, 3759 reserved_clusters, 3760 0); 3761 } 3762 3763 map_out: 3764 map->m_flags |= EXT4_MAP_MAPPED; 3765 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3766 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3767 map->m_len); 3768 if (err < 0) 3769 goto out2; 3770 } 3771 out1: 3772 if (allocated > map->m_len) 3773 allocated = map->m_len; 3774 ext4_ext_show_leaf(inode, path); 3775 map->m_pblk = newblock; 3776 map->m_len = allocated; 3777 out2: 3778 if (path) { 3779 ext4_ext_drop_refs(path); 3780 kfree(path); 3781 } 3782 return err ? err : allocated; 3783 } 3784 3785 /* 3786 * get_implied_cluster_alloc - check to see if the requested 3787 * allocation (in the map structure) overlaps with a cluster already 3788 * allocated in an extent. 3789 * @sb The filesystem superblock structure 3790 * @map The requested lblk->pblk mapping 3791 * @ex The extent structure which might contain an implied 3792 * cluster allocation 3793 * 3794 * This function is called by ext4_ext_map_blocks() after we failed to 3795 * find blocks that were already in the inode's extent tree. Hence, 3796 * we know that the beginning of the requested region cannot overlap 3797 * the extent from the inode's extent tree. There are three cases we 3798 * want to catch. The first is this case: 3799 * 3800 * |--- cluster # N--| 3801 * |--- extent ---| |---- requested region ---| 3802 * |==========| 3803 * 3804 * The second case that we need to test for is this one: 3805 * 3806 * |--------- cluster # N ----------------| 3807 * |--- requested region --| |------- extent ----| 3808 * |=======================| 3809 * 3810 * The third case is when the requested region lies between two extents 3811 * within the same cluster: 3812 * |------------- cluster # N-------------| 3813 * |----- ex -----| |---- ex_right ----| 3814 * |------ requested region ------| 3815 * |================| 3816 * 3817 * In each of the above cases, we need to set the map->m_pblk and 3818 * map->m_len so it corresponds to the return the extent labelled as 3819 * "|====|" from cluster #N, since it is already in use for data in 3820 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3821 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3822 * as a new "allocated" block region. Otherwise, we will return 0 and 3823 * ext4_ext_map_blocks() will then allocate one or more new clusters 3824 * by calling ext4_mb_new_blocks(). 3825 */ 3826 static int get_implied_cluster_alloc(struct super_block *sb, 3827 struct ext4_map_blocks *map, 3828 struct ext4_extent *ex, 3829 struct ext4_ext_path *path) 3830 { 3831 struct ext4_sb_info *sbi = EXT4_SB(sb); 3832 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3833 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3834 ext4_lblk_t rr_cluster_start; 3835 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3836 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3837 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3838 3839 /* The extent passed in that we are trying to match */ 3840 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3841 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3842 3843 /* The requested region passed into ext4_map_blocks() */ 3844 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3845 3846 if ((rr_cluster_start == ex_cluster_end) || 3847 (rr_cluster_start == ex_cluster_start)) { 3848 if (rr_cluster_start == ex_cluster_end) 3849 ee_start += ee_len - 1; 3850 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3851 c_offset; 3852 map->m_len = min(map->m_len, 3853 (unsigned) sbi->s_cluster_ratio - c_offset); 3854 /* 3855 * Check for and handle this case: 3856 * 3857 * |--------- cluster # N-------------| 3858 * |------- extent ----| 3859 * |--- requested region ---| 3860 * |===========| 3861 */ 3862 3863 if (map->m_lblk < ee_block) 3864 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3865 3866 /* 3867 * Check for the case where there is already another allocated 3868 * block to the right of 'ex' but before the end of the cluster. 3869 * 3870 * |------------- cluster # N-------------| 3871 * |----- ex -----| |---- ex_right ----| 3872 * |------ requested region ------| 3873 * |================| 3874 */ 3875 if (map->m_lblk > ee_block) { 3876 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3877 map->m_len = min(map->m_len, next - map->m_lblk); 3878 } 3879 3880 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3881 return 1; 3882 } 3883 3884 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3885 return 0; 3886 } 3887 3888 3889 /* 3890 * Block allocation/map/preallocation routine for extents based files 3891 * 3892 * 3893 * Need to be called with 3894 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3895 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3896 * 3897 * return > 0, number of of blocks already mapped/allocated 3898 * if create == 0 and these are pre-allocated blocks 3899 * buffer head is unmapped 3900 * otherwise blocks are mapped 3901 * 3902 * return = 0, if plain look up failed (blocks have not been allocated) 3903 * buffer head is unmapped 3904 * 3905 * return < 0, error case. 3906 */ 3907 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3908 struct ext4_map_blocks *map, int flags) 3909 { 3910 struct ext4_ext_path *path = NULL; 3911 struct ext4_extent newex, *ex, *ex2; 3912 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3913 ext4_fsblk_t newblock = 0; 3914 int free_on_err = 0, err = 0, depth, ret; 3915 unsigned int allocated = 0, offset = 0; 3916 unsigned int allocated_clusters = 0; 3917 struct ext4_allocation_request ar; 3918 ext4_io_end_t *io = ext4_inode_aio(inode); 3919 ext4_lblk_t cluster_offset; 3920 int set_unwritten = 0; 3921 3922 ext_debug("blocks %u/%u requested for inode %lu\n", 3923 map->m_lblk, map->m_len, inode->i_ino); 3924 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3925 3926 /* check in cache */ 3927 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3928 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3929 if ((sbi->s_cluster_ratio > 1) && 3930 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3931 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3932 3933 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3934 /* 3935 * block isn't allocated yet and 3936 * user doesn't want to allocate it 3937 */ 3938 goto out2; 3939 } 3940 /* we should allocate requested block */ 3941 } else { 3942 /* block is already allocated */ 3943 if (sbi->s_cluster_ratio > 1) 3944 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3945 newblock = map->m_lblk 3946 - le32_to_cpu(newex.ee_block) 3947 + ext4_ext_pblock(&newex); 3948 /* number of remaining blocks in the extent */ 3949 allocated = ext4_ext_get_actual_len(&newex) - 3950 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3951 goto out; 3952 } 3953 } 3954 3955 /* find extent for this block */ 3956 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3957 if (IS_ERR(path)) { 3958 err = PTR_ERR(path); 3959 path = NULL; 3960 goto out2; 3961 } 3962 3963 depth = ext_depth(inode); 3964 3965 /* 3966 * consistent leaf must not be empty; 3967 * this situation is possible, though, _during_ tree modification; 3968 * this is why assert can't be put in ext4_ext_find_extent() 3969 */ 3970 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3971 EXT4_ERROR_INODE(inode, "bad extent address " 3972 "lblock: %lu, depth: %d pblock %lld", 3973 (unsigned long) map->m_lblk, depth, 3974 path[depth].p_block); 3975 err = -EIO; 3976 goto out2; 3977 } 3978 3979 ex = path[depth].p_ext; 3980 if (ex) { 3981 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3982 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3983 unsigned short ee_len; 3984 3985 /* 3986 * Uninitialized extents are treated as holes, except that 3987 * we split out initialized portions during a write. 3988 */ 3989 ee_len = ext4_ext_get_actual_len(ex); 3990 3991 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3992 3993 /* if found extent covers block, simply return it */ 3994 if (in_range(map->m_lblk, ee_block, ee_len)) { 3995 newblock = map->m_lblk - ee_block + ee_start; 3996 /* number of remaining blocks in the extent */ 3997 allocated = ee_len - (map->m_lblk - ee_block); 3998 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3999 ee_block, ee_len, newblock); 4000 4001 /* 4002 * Do not put uninitialized extent 4003 * in the cache 4004 */ 4005 if (!ext4_ext_is_uninitialized(ex)) { 4006 ext4_ext_put_in_cache(inode, ee_block, 4007 ee_len, ee_start); 4008 goto out; 4009 } 4010 ret = ext4_ext_handle_uninitialized_extents( 4011 handle, inode, map, path, flags, 4012 allocated, newblock); 4013 return ret; 4014 } 4015 } 4016 4017 if ((sbi->s_cluster_ratio > 1) && 4018 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 4019 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4020 4021 /* 4022 * requested block isn't allocated yet; 4023 * we couldn't try to create block if create flag is zero 4024 */ 4025 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4026 /* 4027 * put just found gap into cache to speed up 4028 * subsequent requests 4029 */ 4030 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4031 goto out2; 4032 } 4033 4034 /* 4035 * Okay, we need to do block allocation. 4036 */ 4037 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4038 newex.ee_block = cpu_to_le32(map->m_lblk); 4039 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4040 4041 /* 4042 * If we are doing bigalloc, check to see if the extent returned 4043 * by ext4_ext_find_extent() implies a cluster we can use. 4044 */ 4045 if (cluster_offset && ex && 4046 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4047 ar.len = allocated = map->m_len; 4048 newblock = map->m_pblk; 4049 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4050 goto got_allocated_blocks; 4051 } 4052 4053 /* find neighbour allocated blocks */ 4054 ar.lleft = map->m_lblk; 4055 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4056 if (err) 4057 goto out2; 4058 ar.lright = map->m_lblk; 4059 ex2 = NULL; 4060 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4061 if (err) 4062 goto out2; 4063 4064 /* Check if the extent after searching to the right implies a 4065 * cluster we can use. */ 4066 if ((sbi->s_cluster_ratio > 1) && ex2 && 4067 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4068 ar.len = allocated = map->m_len; 4069 newblock = map->m_pblk; 4070 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4071 goto got_allocated_blocks; 4072 } 4073 4074 /* 4075 * See if request is beyond maximum number of blocks we can have in 4076 * a single extent. For an initialized extent this limit is 4077 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4078 * EXT_UNINIT_MAX_LEN. 4079 */ 4080 if (map->m_len > EXT_INIT_MAX_LEN && 4081 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4082 map->m_len = EXT_INIT_MAX_LEN; 4083 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4084 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4085 map->m_len = EXT_UNINIT_MAX_LEN; 4086 4087 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4088 newex.ee_len = cpu_to_le16(map->m_len); 4089 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4090 if (err) 4091 allocated = ext4_ext_get_actual_len(&newex); 4092 else 4093 allocated = map->m_len; 4094 4095 /* allocate new block */ 4096 ar.inode = inode; 4097 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4098 ar.logical = map->m_lblk; 4099 /* 4100 * We calculate the offset from the beginning of the cluster 4101 * for the logical block number, since when we allocate a 4102 * physical cluster, the physical block should start at the 4103 * same offset from the beginning of the cluster. This is 4104 * needed so that future calls to get_implied_cluster_alloc() 4105 * work correctly. 4106 */ 4107 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4108 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4109 ar.goal -= offset; 4110 ar.logical -= offset; 4111 if (S_ISREG(inode->i_mode)) 4112 ar.flags = EXT4_MB_HINT_DATA; 4113 else 4114 /* disable in-core preallocation for non-regular files */ 4115 ar.flags = 0; 4116 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4117 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4118 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4119 if (!newblock) 4120 goto out2; 4121 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4122 ar.goal, newblock, allocated); 4123 free_on_err = 1; 4124 allocated_clusters = ar.len; 4125 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4126 if (ar.len > allocated) 4127 ar.len = allocated; 4128 4129 got_allocated_blocks: 4130 /* try to insert new extent into found leaf and return */ 4131 ext4_ext_store_pblock(&newex, newblock + offset); 4132 newex.ee_len = cpu_to_le16(ar.len); 4133 /* Mark uninitialized */ 4134 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4135 ext4_ext_mark_uninitialized(&newex); 4136 /* 4137 * io_end structure was created for every IO write to an 4138 * uninitialized extent. To avoid unnecessary conversion, 4139 * here we flag the IO that really needs the conversion. 4140 * For non asycn direct IO case, flag the inode state 4141 * that we need to perform conversion when IO is done. 4142 */ 4143 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4144 set_unwritten = 1; 4145 if (ext4_should_dioread_nolock(inode)) 4146 map->m_flags |= EXT4_MAP_UNINIT; 4147 } 4148 4149 err = 0; 4150 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4151 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4152 path, ar.len); 4153 if (!err) 4154 err = ext4_ext_insert_extent(handle, inode, path, 4155 &newex, flags); 4156 4157 if (!err && set_unwritten) { 4158 if (io) 4159 ext4_set_io_unwritten_flag(inode, io); 4160 else 4161 ext4_set_inode_state(inode, 4162 EXT4_STATE_DIO_UNWRITTEN); 4163 } 4164 4165 if (err && free_on_err) { 4166 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4167 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4168 /* free data blocks we just allocated */ 4169 /* not a good idea to call discard here directly, 4170 * but otherwise we'd need to call it every free() */ 4171 ext4_discard_preallocations(inode); 4172 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4173 ext4_ext_get_actual_len(&newex), fb_flags); 4174 goto out2; 4175 } 4176 4177 /* previous routine could use block we allocated */ 4178 newblock = ext4_ext_pblock(&newex); 4179 allocated = ext4_ext_get_actual_len(&newex); 4180 if (allocated > map->m_len) 4181 allocated = map->m_len; 4182 map->m_flags |= EXT4_MAP_NEW; 4183 4184 /* 4185 * Update reserved blocks/metadata blocks after successful 4186 * block allocation which had been deferred till now. 4187 */ 4188 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4189 unsigned int reserved_clusters; 4190 /* 4191 * Check how many clusters we had reserved this allocated range 4192 */ 4193 reserved_clusters = get_reserved_cluster_alloc(inode, 4194 map->m_lblk, allocated); 4195 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4196 if (reserved_clusters) { 4197 /* 4198 * We have clusters reserved for this range. 4199 * But since we are not doing actual allocation 4200 * and are simply using blocks from previously 4201 * allocated cluster, we should release the 4202 * reservation and not claim quota. 4203 */ 4204 ext4_da_update_reserve_space(inode, 4205 reserved_clusters, 0); 4206 } 4207 } else { 4208 BUG_ON(allocated_clusters < reserved_clusters); 4209 /* We will claim quota for all newly allocated blocks.*/ 4210 ext4_da_update_reserve_space(inode, allocated_clusters, 4211 1); 4212 if (reserved_clusters < allocated_clusters) { 4213 struct ext4_inode_info *ei = EXT4_I(inode); 4214 int reservation = allocated_clusters - 4215 reserved_clusters; 4216 /* 4217 * It seems we claimed few clusters outside of 4218 * the range of this allocation. We should give 4219 * it back to the reservation pool. This can 4220 * happen in the following case: 4221 * 4222 * * Suppose s_cluster_ratio is 4 (i.e., each 4223 * cluster has 4 blocks. Thus, the clusters 4224 * are [0-3],[4-7],[8-11]... 4225 * * First comes delayed allocation write for 4226 * logical blocks 10 & 11. Since there were no 4227 * previous delayed allocated blocks in the 4228 * range [8-11], we would reserve 1 cluster 4229 * for this write. 4230 * * Next comes write for logical blocks 3 to 8. 4231 * In this case, we will reserve 2 clusters 4232 * (for [0-3] and [4-7]; and not for [8-11] as 4233 * that range has a delayed allocated blocks. 4234 * Thus total reserved clusters now becomes 3. 4235 * * Now, during the delayed allocation writeout 4236 * time, we will first write blocks [3-8] and 4237 * allocate 3 clusters for writing these 4238 * blocks. Also, we would claim all these 4239 * three clusters above. 4240 * * Now when we come here to writeout the 4241 * blocks [10-11], we would expect to claim 4242 * the reservation of 1 cluster we had made 4243 * (and we would claim it since there are no 4244 * more delayed allocated blocks in the range 4245 * [8-11]. But our reserved cluster count had 4246 * already gone to 0. 4247 * 4248 * Thus, at the step 4 above when we determine 4249 * that there are still some unwritten delayed 4250 * allocated blocks outside of our current 4251 * block range, we should increment the 4252 * reserved clusters count so that when the 4253 * remaining blocks finally gets written, we 4254 * could claim them. 4255 */ 4256 dquot_reserve_block(inode, 4257 EXT4_C2B(sbi, reservation)); 4258 spin_lock(&ei->i_block_reservation_lock); 4259 ei->i_reserved_data_blocks += reservation; 4260 spin_unlock(&ei->i_block_reservation_lock); 4261 } 4262 } 4263 } 4264 4265 /* 4266 * Cache the extent and update transaction to commit on fdatasync only 4267 * when it is _not_ an uninitialized extent. 4268 */ 4269 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 4270 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 4271 ext4_update_inode_fsync_trans(handle, inode, 1); 4272 } else 4273 ext4_update_inode_fsync_trans(handle, inode, 0); 4274 out: 4275 if (allocated > map->m_len) 4276 allocated = map->m_len; 4277 ext4_ext_show_leaf(inode, path); 4278 map->m_flags |= EXT4_MAP_MAPPED; 4279 map->m_pblk = newblock; 4280 map->m_len = allocated; 4281 out2: 4282 if (path) { 4283 ext4_ext_drop_refs(path); 4284 kfree(path); 4285 } 4286 4287 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk, 4288 newblock, map->m_len, err ? err : allocated); 4289 4290 return err ? err : allocated; 4291 } 4292 4293 void ext4_ext_truncate(struct inode *inode) 4294 { 4295 struct address_space *mapping = inode->i_mapping; 4296 struct super_block *sb = inode->i_sb; 4297 ext4_lblk_t last_block; 4298 handle_t *handle; 4299 loff_t page_len; 4300 int err = 0; 4301 4302 /* 4303 * finish any pending end_io work so we won't run the risk of 4304 * converting any truncated blocks to initialized later 4305 */ 4306 ext4_flush_unwritten_io(inode); 4307 4308 /* 4309 * probably first extent we're gonna free will be last in block 4310 */ 4311 err = ext4_writepage_trans_blocks(inode); 4312 handle = ext4_journal_start(inode, err); 4313 if (IS_ERR(handle)) 4314 return; 4315 4316 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4317 page_len = PAGE_CACHE_SIZE - 4318 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4319 4320 err = ext4_discard_partial_page_buffers(handle, 4321 mapping, inode->i_size, page_len, 0); 4322 4323 if (err) 4324 goto out_stop; 4325 } 4326 4327 if (ext4_orphan_add(handle, inode)) 4328 goto out_stop; 4329 4330 down_write(&EXT4_I(inode)->i_data_sem); 4331 ext4_ext_invalidate_cache(inode); 4332 4333 ext4_discard_preallocations(inode); 4334 4335 /* 4336 * TODO: optimization is possible here. 4337 * Probably we need not scan at all, 4338 * because page truncation is enough. 4339 */ 4340 4341 /* we have to know where to truncate from in crash case */ 4342 EXT4_I(inode)->i_disksize = inode->i_size; 4343 ext4_mark_inode_dirty(handle, inode); 4344 4345 last_block = (inode->i_size + sb->s_blocksize - 1) 4346 >> EXT4_BLOCK_SIZE_BITS(sb); 4347 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4348 4349 /* In a multi-transaction truncate, we only make the final 4350 * transaction synchronous. 4351 */ 4352 if (IS_SYNC(inode)) 4353 ext4_handle_sync(handle); 4354 4355 up_write(&EXT4_I(inode)->i_data_sem); 4356 4357 out_stop: 4358 /* 4359 * If this was a simple ftruncate() and the file will remain alive, 4360 * then we need to clear up the orphan record which we created above. 4361 * However, if this was a real unlink then we were called by 4362 * ext4_delete_inode(), and we allow that function to clean up the 4363 * orphan info for us. 4364 */ 4365 if (inode->i_nlink) 4366 ext4_orphan_del(handle, inode); 4367 4368 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4369 ext4_mark_inode_dirty(handle, inode); 4370 ext4_journal_stop(handle); 4371 } 4372 4373 static void ext4_falloc_update_inode(struct inode *inode, 4374 int mode, loff_t new_size, int update_ctime) 4375 { 4376 struct timespec now; 4377 4378 if (update_ctime) { 4379 now = current_fs_time(inode->i_sb); 4380 if (!timespec_equal(&inode->i_ctime, &now)) 4381 inode->i_ctime = now; 4382 } 4383 /* 4384 * Update only when preallocation was requested beyond 4385 * the file size. 4386 */ 4387 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4388 if (new_size > i_size_read(inode)) 4389 i_size_write(inode, new_size); 4390 if (new_size > EXT4_I(inode)->i_disksize) 4391 ext4_update_i_disksize(inode, new_size); 4392 } else { 4393 /* 4394 * Mark that we allocate beyond EOF so the subsequent truncate 4395 * can proceed even if the new size is the same as i_size. 4396 */ 4397 if (new_size > i_size_read(inode)) 4398 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4399 } 4400 4401 } 4402 4403 /* 4404 * preallocate space for a file. This implements ext4's fallocate file 4405 * operation, which gets called from sys_fallocate system call. 4406 * For block-mapped files, posix_fallocate should fall back to the method 4407 * of writing zeroes to the required new blocks (the same behavior which is 4408 * expected for file systems which do not support fallocate() system call). 4409 */ 4410 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4411 { 4412 struct inode *inode = file->f_path.dentry->d_inode; 4413 handle_t *handle; 4414 loff_t new_size; 4415 unsigned int max_blocks; 4416 int ret = 0; 4417 int ret2 = 0; 4418 int retries = 0; 4419 int flags; 4420 struct ext4_map_blocks map; 4421 unsigned int credits, blkbits = inode->i_blkbits; 4422 4423 /* 4424 * currently supporting (pre)allocate mode for extent-based 4425 * files _only_ 4426 */ 4427 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4428 return -EOPNOTSUPP; 4429 4430 /* Return error if mode is not supported */ 4431 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4432 return -EOPNOTSUPP; 4433 4434 if (mode & FALLOC_FL_PUNCH_HOLE) 4435 return ext4_punch_hole(file, offset, len); 4436 4437 trace_ext4_fallocate_enter(inode, offset, len, mode); 4438 map.m_lblk = offset >> blkbits; 4439 /* 4440 * We can't just convert len to max_blocks because 4441 * If blocksize = 4096 offset = 3072 and len = 2048 4442 */ 4443 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4444 - map.m_lblk; 4445 /* 4446 * credits to insert 1 extent into extent tree 4447 */ 4448 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4449 mutex_lock(&inode->i_mutex); 4450 ret = inode_newsize_ok(inode, (len + offset)); 4451 if (ret) { 4452 mutex_unlock(&inode->i_mutex); 4453 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4454 return ret; 4455 } 4456 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4457 if (mode & FALLOC_FL_KEEP_SIZE) 4458 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4459 /* 4460 * Don't normalize the request if it can fit in one extent so 4461 * that it doesn't get unnecessarily split into multiple 4462 * extents. 4463 */ 4464 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4465 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4466 4467 /* Prevent race condition between unwritten */ 4468 ext4_flush_unwritten_io(inode); 4469 retry: 4470 while (ret >= 0 && ret < max_blocks) { 4471 map.m_lblk = map.m_lblk + ret; 4472 map.m_len = max_blocks = max_blocks - ret; 4473 handle = ext4_journal_start(inode, credits); 4474 if (IS_ERR(handle)) { 4475 ret = PTR_ERR(handle); 4476 break; 4477 } 4478 ret = ext4_map_blocks(handle, inode, &map, flags); 4479 if (ret <= 0) { 4480 #ifdef EXT4FS_DEBUG 4481 WARN_ON(ret <= 0); 4482 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4483 "returned error inode#%lu, block=%u, " 4484 "max_blocks=%u", __func__, 4485 inode->i_ino, map.m_lblk, max_blocks); 4486 #endif 4487 ext4_mark_inode_dirty(handle, inode); 4488 ret2 = ext4_journal_stop(handle); 4489 break; 4490 } 4491 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4492 blkbits) >> blkbits)) 4493 new_size = offset + len; 4494 else 4495 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4496 4497 ext4_falloc_update_inode(inode, mode, new_size, 4498 (map.m_flags & EXT4_MAP_NEW)); 4499 ext4_mark_inode_dirty(handle, inode); 4500 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4501 ext4_handle_sync(handle); 4502 ret2 = ext4_journal_stop(handle); 4503 if (ret2) 4504 break; 4505 } 4506 if (ret == -ENOSPC && 4507 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4508 ret = 0; 4509 goto retry; 4510 } 4511 mutex_unlock(&inode->i_mutex); 4512 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4513 ret > 0 ? ret2 : ret); 4514 return ret > 0 ? ret2 : ret; 4515 } 4516 4517 /* 4518 * This function convert a range of blocks to written extents 4519 * The caller of this function will pass the start offset and the size. 4520 * all unwritten extents within this range will be converted to 4521 * written extents. 4522 * 4523 * This function is called from the direct IO end io call back 4524 * function, to convert the fallocated extents after IO is completed. 4525 * Returns 0 on success. 4526 */ 4527 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4528 ssize_t len) 4529 { 4530 handle_t *handle; 4531 unsigned int max_blocks; 4532 int ret = 0; 4533 int ret2 = 0; 4534 struct ext4_map_blocks map; 4535 unsigned int credits, blkbits = inode->i_blkbits; 4536 4537 map.m_lblk = offset >> blkbits; 4538 /* 4539 * We can't just convert len to max_blocks because 4540 * If blocksize = 4096 offset = 3072 and len = 2048 4541 */ 4542 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4543 map.m_lblk); 4544 /* 4545 * credits to insert 1 extent into extent tree 4546 */ 4547 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4548 while (ret >= 0 && ret < max_blocks) { 4549 map.m_lblk += ret; 4550 map.m_len = (max_blocks -= ret); 4551 handle = ext4_journal_start(inode, credits); 4552 if (IS_ERR(handle)) { 4553 ret = PTR_ERR(handle); 4554 break; 4555 } 4556 ret = ext4_map_blocks(handle, inode, &map, 4557 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4558 if (ret <= 0) { 4559 WARN_ON(ret <= 0); 4560 ext4_msg(inode->i_sb, KERN_ERR, 4561 "%s:%d: inode #%lu: block %u: len %u: " 4562 "ext4_ext_map_blocks returned %d", 4563 __func__, __LINE__, inode->i_ino, map.m_lblk, 4564 map.m_len, ret); 4565 } 4566 ext4_mark_inode_dirty(handle, inode); 4567 ret2 = ext4_journal_stop(handle); 4568 if (ret <= 0 || ret2 ) 4569 break; 4570 } 4571 return ret > 0 ? ret2 : ret; 4572 } 4573 4574 /* 4575 * Callback function called for each extent to gather FIEMAP information. 4576 */ 4577 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next, 4578 struct ext4_ext_cache *newex, struct ext4_extent *ex, 4579 void *data) 4580 { 4581 __u64 logical; 4582 __u64 physical; 4583 __u64 length; 4584 __u32 flags = 0; 4585 int ret = 0; 4586 struct fiemap_extent_info *fieinfo = data; 4587 unsigned char blksize_bits; 4588 4589 blksize_bits = inode->i_sb->s_blocksize_bits; 4590 logical = (__u64)newex->ec_block << blksize_bits; 4591 4592 if (newex->ec_start == 0) { 4593 /* 4594 * No extent in extent-tree contains block @newex->ec_start, 4595 * then the block may stay in 1)a hole or 2)delayed-extent. 4596 * 4597 * Holes or delayed-extents are processed as follows. 4598 * 1. lookup dirty pages with specified range in pagecache. 4599 * If no page is got, then there is no delayed-extent and 4600 * return with EXT_CONTINUE. 4601 * 2. find the 1st mapped buffer, 4602 * 3. check if the mapped buffer is both in the request range 4603 * and a delayed buffer. If not, there is no delayed-extent, 4604 * then return. 4605 * 4. a delayed-extent is found, the extent will be collected. 4606 */ 4607 ext4_lblk_t end = 0; 4608 pgoff_t last_offset; 4609 pgoff_t offset; 4610 pgoff_t index; 4611 pgoff_t start_index = 0; 4612 struct page **pages = NULL; 4613 struct buffer_head *bh = NULL; 4614 struct buffer_head *head = NULL; 4615 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *); 4616 4617 pages = kmalloc(PAGE_SIZE, GFP_KERNEL); 4618 if (pages == NULL) 4619 return -ENOMEM; 4620 4621 offset = logical >> PAGE_SHIFT; 4622 repeat: 4623 last_offset = offset; 4624 head = NULL; 4625 ret = find_get_pages_tag(inode->i_mapping, &offset, 4626 PAGECACHE_TAG_DIRTY, nr_pages, pages); 4627 4628 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4629 /* First time, try to find a mapped buffer. */ 4630 if (ret == 0) { 4631 out: 4632 for (index = 0; index < ret; index++) 4633 page_cache_release(pages[index]); 4634 /* just a hole. */ 4635 kfree(pages); 4636 return EXT_CONTINUE; 4637 } 4638 index = 0; 4639 4640 next_page: 4641 /* Try to find the 1st mapped buffer. */ 4642 end = ((__u64)pages[index]->index << PAGE_SHIFT) >> 4643 blksize_bits; 4644 if (!page_has_buffers(pages[index])) 4645 goto out; 4646 head = page_buffers(pages[index]); 4647 if (!head) 4648 goto out; 4649 4650 index++; 4651 bh = head; 4652 do { 4653 if (end >= newex->ec_block + 4654 newex->ec_len) 4655 /* The buffer is out of 4656 * the request range. 4657 */ 4658 goto out; 4659 4660 if (buffer_mapped(bh) && 4661 end >= newex->ec_block) { 4662 start_index = index - 1; 4663 /* get the 1st mapped buffer. */ 4664 goto found_mapped_buffer; 4665 } 4666 4667 bh = bh->b_this_page; 4668 end++; 4669 } while (bh != head); 4670 4671 /* No mapped buffer in the range found in this page, 4672 * We need to look up next page. 4673 */ 4674 if (index >= ret) { 4675 /* There is no page left, but we need to limit 4676 * newex->ec_len. 4677 */ 4678 newex->ec_len = end - newex->ec_block; 4679 goto out; 4680 } 4681 goto next_page; 4682 } else { 4683 /*Find contiguous delayed buffers. */ 4684 if (ret > 0 && pages[0]->index == last_offset) 4685 head = page_buffers(pages[0]); 4686 bh = head; 4687 index = 1; 4688 start_index = 0; 4689 } 4690 4691 found_mapped_buffer: 4692 if (bh != NULL && buffer_delay(bh)) { 4693 /* 1st or contiguous delayed buffer found. */ 4694 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4695 /* 4696 * 1st delayed buffer found, record 4697 * the start of extent. 4698 */ 4699 flags |= FIEMAP_EXTENT_DELALLOC; 4700 newex->ec_block = end; 4701 logical = (__u64)end << blksize_bits; 4702 } 4703 /* Find contiguous delayed buffers. */ 4704 do { 4705 if (!buffer_delay(bh)) 4706 goto found_delayed_extent; 4707 bh = bh->b_this_page; 4708 end++; 4709 } while (bh != head); 4710 4711 for (; index < ret; index++) { 4712 if (!page_has_buffers(pages[index])) { 4713 bh = NULL; 4714 break; 4715 } 4716 head = page_buffers(pages[index]); 4717 if (!head) { 4718 bh = NULL; 4719 break; 4720 } 4721 4722 if (pages[index]->index != 4723 pages[start_index]->index + index 4724 - start_index) { 4725 /* Blocks are not contiguous. */ 4726 bh = NULL; 4727 break; 4728 } 4729 bh = head; 4730 do { 4731 if (!buffer_delay(bh)) 4732 /* Delayed-extent ends. */ 4733 goto found_delayed_extent; 4734 bh = bh->b_this_page; 4735 end++; 4736 } while (bh != head); 4737 } 4738 } else if (!(flags & FIEMAP_EXTENT_DELALLOC)) 4739 /* a hole found. */ 4740 goto out; 4741 4742 found_delayed_extent: 4743 newex->ec_len = min(end - newex->ec_block, 4744 (ext4_lblk_t)EXT_INIT_MAX_LEN); 4745 if (ret == nr_pages && bh != NULL && 4746 newex->ec_len < EXT_INIT_MAX_LEN && 4747 buffer_delay(bh)) { 4748 /* Have not collected an extent and continue. */ 4749 for (index = 0; index < ret; index++) 4750 page_cache_release(pages[index]); 4751 goto repeat; 4752 } 4753 4754 for (index = 0; index < ret; index++) 4755 page_cache_release(pages[index]); 4756 kfree(pages); 4757 } 4758 4759 physical = (__u64)newex->ec_start << blksize_bits; 4760 length = (__u64)newex->ec_len << blksize_bits; 4761 4762 if (ex && ext4_ext_is_uninitialized(ex)) 4763 flags |= FIEMAP_EXTENT_UNWRITTEN; 4764 4765 if (next == EXT_MAX_BLOCKS) 4766 flags |= FIEMAP_EXTENT_LAST; 4767 4768 ret = fiemap_fill_next_extent(fieinfo, logical, physical, 4769 length, flags); 4770 if (ret < 0) 4771 return ret; 4772 if (ret == 1) 4773 return EXT_BREAK; 4774 return EXT_CONTINUE; 4775 } 4776 /* fiemap flags we can handle specified here */ 4777 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4778 4779 static int ext4_xattr_fiemap(struct inode *inode, 4780 struct fiemap_extent_info *fieinfo) 4781 { 4782 __u64 physical = 0; 4783 __u64 length; 4784 __u32 flags = FIEMAP_EXTENT_LAST; 4785 int blockbits = inode->i_sb->s_blocksize_bits; 4786 int error = 0; 4787 4788 /* in-inode? */ 4789 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4790 struct ext4_iloc iloc; 4791 int offset; /* offset of xattr in inode */ 4792 4793 error = ext4_get_inode_loc(inode, &iloc); 4794 if (error) 4795 return error; 4796 physical = iloc.bh->b_blocknr << blockbits; 4797 offset = EXT4_GOOD_OLD_INODE_SIZE + 4798 EXT4_I(inode)->i_extra_isize; 4799 physical += offset; 4800 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4801 flags |= FIEMAP_EXTENT_DATA_INLINE; 4802 brelse(iloc.bh); 4803 } else { /* external block */ 4804 physical = EXT4_I(inode)->i_file_acl << blockbits; 4805 length = inode->i_sb->s_blocksize; 4806 } 4807 4808 if (physical) 4809 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4810 length, flags); 4811 return (error < 0 ? error : 0); 4812 } 4813 4814 /* 4815 * ext4_ext_punch_hole 4816 * 4817 * Punches a hole of "length" bytes in a file starting 4818 * at byte "offset" 4819 * 4820 * @inode: The inode of the file to punch a hole in 4821 * @offset: The starting byte offset of the hole 4822 * @length: The length of the hole 4823 * 4824 * Returns the number of blocks removed or negative on err 4825 */ 4826 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4827 { 4828 struct inode *inode = file->f_path.dentry->d_inode; 4829 struct super_block *sb = inode->i_sb; 4830 ext4_lblk_t first_block, stop_block; 4831 struct address_space *mapping = inode->i_mapping; 4832 handle_t *handle; 4833 loff_t first_page, last_page, page_len; 4834 loff_t first_page_offset, last_page_offset; 4835 int credits, err = 0; 4836 4837 /* 4838 * Write out all dirty pages to avoid race conditions 4839 * Then release them. 4840 */ 4841 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4842 err = filemap_write_and_wait_range(mapping, 4843 offset, offset + length - 1); 4844 4845 if (err) 4846 return err; 4847 } 4848 4849 mutex_lock(&inode->i_mutex); 4850 /* It's not possible punch hole on append only file */ 4851 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4852 err = -EPERM; 4853 goto out_mutex; 4854 } 4855 if (IS_SWAPFILE(inode)) { 4856 err = -ETXTBSY; 4857 goto out_mutex; 4858 } 4859 4860 /* No need to punch hole beyond i_size */ 4861 if (offset >= inode->i_size) 4862 goto out_mutex; 4863 4864 /* 4865 * If the hole extends beyond i_size, set the hole 4866 * to end after the page that contains i_size 4867 */ 4868 if (offset + length > inode->i_size) { 4869 length = inode->i_size + 4870 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4871 offset; 4872 } 4873 4874 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4875 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4876 4877 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4878 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4879 4880 /* Now release the pages */ 4881 if (last_page_offset > first_page_offset) { 4882 truncate_pagecache_range(inode, first_page_offset, 4883 last_page_offset - 1); 4884 } 4885 4886 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4887 ext4_inode_block_unlocked_dio(inode); 4888 err = ext4_flush_unwritten_io(inode); 4889 if (err) 4890 goto out_dio; 4891 inode_dio_wait(inode); 4892 4893 credits = ext4_writepage_trans_blocks(inode); 4894 handle = ext4_journal_start(inode, credits); 4895 if (IS_ERR(handle)) { 4896 err = PTR_ERR(handle); 4897 goto out_dio; 4898 } 4899 4900 4901 /* 4902 * Now we need to zero out the non-page-aligned data in the 4903 * pages at the start and tail of the hole, and unmap the buffer 4904 * heads for the block aligned regions of the page that were 4905 * completely zeroed. 4906 */ 4907 if (first_page > last_page) { 4908 /* 4909 * If the file space being truncated is contained within a page 4910 * just zero out and unmap the middle of that page 4911 */ 4912 err = ext4_discard_partial_page_buffers(handle, 4913 mapping, offset, length, 0); 4914 4915 if (err) 4916 goto out; 4917 } else { 4918 /* 4919 * zero out and unmap the partial page that contains 4920 * the start of the hole 4921 */ 4922 page_len = first_page_offset - offset; 4923 if (page_len > 0) { 4924 err = ext4_discard_partial_page_buffers(handle, mapping, 4925 offset, page_len, 0); 4926 if (err) 4927 goto out; 4928 } 4929 4930 /* 4931 * zero out and unmap the partial page that contains 4932 * the end of the hole 4933 */ 4934 page_len = offset + length - last_page_offset; 4935 if (page_len > 0) { 4936 err = ext4_discard_partial_page_buffers(handle, mapping, 4937 last_page_offset, page_len, 0); 4938 if (err) 4939 goto out; 4940 } 4941 } 4942 4943 /* 4944 * If i_size is contained in the last page, we need to 4945 * unmap and zero the partial page after i_size 4946 */ 4947 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4948 inode->i_size % PAGE_CACHE_SIZE != 0) { 4949 4950 page_len = PAGE_CACHE_SIZE - 4951 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4952 4953 if (page_len > 0) { 4954 err = ext4_discard_partial_page_buffers(handle, 4955 mapping, inode->i_size, page_len, 0); 4956 4957 if (err) 4958 goto out; 4959 } 4960 } 4961 4962 first_block = (offset + sb->s_blocksize - 1) >> 4963 EXT4_BLOCK_SIZE_BITS(sb); 4964 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4965 4966 /* If there are no blocks to remove, return now */ 4967 if (first_block >= stop_block) 4968 goto out; 4969 4970 down_write(&EXT4_I(inode)->i_data_sem); 4971 ext4_ext_invalidate_cache(inode); 4972 ext4_discard_preallocations(inode); 4973 4974 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4975 4976 ext4_ext_invalidate_cache(inode); 4977 ext4_discard_preallocations(inode); 4978 4979 if (IS_SYNC(inode)) 4980 ext4_handle_sync(handle); 4981 4982 up_write(&EXT4_I(inode)->i_data_sem); 4983 4984 out: 4985 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4986 ext4_mark_inode_dirty(handle, inode); 4987 ext4_journal_stop(handle); 4988 out_dio: 4989 ext4_inode_resume_unlocked_dio(inode); 4990 out_mutex: 4991 mutex_unlock(&inode->i_mutex); 4992 return err; 4993 } 4994 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4995 __u64 start, __u64 len) 4996 { 4997 ext4_lblk_t start_blk; 4998 int error = 0; 4999 5000 /* fallback to generic here if not in extents fmt */ 5001 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5002 return generic_block_fiemap(inode, fieinfo, start, len, 5003 ext4_get_block); 5004 5005 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5006 return -EBADR; 5007 5008 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5009 error = ext4_xattr_fiemap(inode, fieinfo); 5010 } else { 5011 ext4_lblk_t len_blks; 5012 __u64 last_blk; 5013 5014 start_blk = start >> inode->i_sb->s_blocksize_bits; 5015 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5016 if (last_blk >= EXT_MAX_BLOCKS) 5017 last_blk = EXT_MAX_BLOCKS-1; 5018 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5019 5020 /* 5021 * Walk the extent tree gathering extent information. 5022 * ext4_ext_fiemap_cb will push extents back to user. 5023 */ 5024 error = ext4_ext_walk_space(inode, start_blk, len_blks, 5025 ext4_ext_fiemap_cb, fieinfo); 5026 } 5027 5028 return error; 5029 } 5030