1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include <linux/backing-dev.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 55 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!ext4_has_metadata_csum(inode->i_sb)) 78 return 1; 79 80 et = find_ext4_extent_tail(eh); 81 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 82 return 0; 83 return 1; 84 } 85 86 static void ext4_extent_block_csum_set(struct inode *inode, 87 struct ext4_extent_header *eh) 88 { 89 struct ext4_extent_tail *et; 90 91 if (!ext4_has_metadata_csum(inode->i_sb)) 92 return; 93 94 et = find_ext4_extent_tail(eh); 95 et->et_checksum = ext4_extent_block_csum(inode, eh); 96 } 97 98 static int ext4_split_extent(handle_t *handle, 99 struct inode *inode, 100 struct ext4_ext_path **ppath, 101 struct ext4_map_blocks *map, 102 int split_flag, 103 int flags); 104 105 static int ext4_split_extent_at(handle_t *handle, 106 struct inode *inode, 107 struct ext4_ext_path **ppath, 108 ext4_lblk_t split, 109 int split_flag, 110 int flags); 111 112 static int ext4_find_delayed_extent(struct inode *inode, 113 struct extent_status *newes); 114 115 static int ext4_ext_truncate_extend_restart(handle_t *handle, 116 struct inode *inode, 117 int needed) 118 { 119 int err; 120 121 if (!ext4_handle_valid(handle)) 122 return 0; 123 if (handle->h_buffer_credits > needed) 124 return 0; 125 err = ext4_journal_extend(handle, needed); 126 if (err <= 0) 127 return err; 128 err = ext4_truncate_restart_trans(handle, inode, needed); 129 if (err == 0) 130 err = -EAGAIN; 131 132 return err; 133 } 134 135 /* 136 * could return: 137 * - EROFS 138 * - ENOMEM 139 */ 140 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 141 struct ext4_ext_path *path) 142 { 143 if (path->p_bh) { 144 /* path points to block */ 145 BUFFER_TRACE(path->p_bh, "get_write_access"); 146 return ext4_journal_get_write_access(handle, path->p_bh); 147 } 148 /* path points to leaf/index in inode body */ 149 /* we use in-core data, no need to protect them */ 150 return 0; 151 } 152 153 /* 154 * could return: 155 * - EROFS 156 * - ENOMEM 157 * - EIO 158 */ 159 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 160 struct inode *inode, struct ext4_ext_path *path) 161 { 162 int err; 163 164 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 165 if (path->p_bh) { 166 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 167 /* path points to block */ 168 err = __ext4_handle_dirty_metadata(where, line, handle, 169 inode, path->p_bh); 170 } else { 171 /* path points to leaf/index in inode body */ 172 err = ext4_mark_inode_dirty(handle, inode); 173 } 174 return err; 175 } 176 177 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 178 struct ext4_ext_path *path, 179 ext4_lblk_t block) 180 { 181 if (path) { 182 int depth = path->p_depth; 183 struct ext4_extent *ex; 184 185 /* 186 * Try to predict block placement assuming that we are 187 * filling in a file which will eventually be 188 * non-sparse --- i.e., in the case of libbfd writing 189 * an ELF object sections out-of-order but in a way 190 * the eventually results in a contiguous object or 191 * executable file, or some database extending a table 192 * space file. However, this is actually somewhat 193 * non-ideal if we are writing a sparse file such as 194 * qemu or KVM writing a raw image file that is going 195 * to stay fairly sparse, since it will end up 196 * fragmenting the file system's free space. Maybe we 197 * should have some hueristics or some way to allow 198 * userspace to pass a hint to file system, 199 * especially if the latter case turns out to be 200 * common. 201 */ 202 ex = path[depth].p_ext; 203 if (ex) { 204 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 205 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 206 207 if (block > ext_block) 208 return ext_pblk + (block - ext_block); 209 else 210 return ext_pblk - (ext_block - block); 211 } 212 213 /* it looks like index is empty; 214 * try to find starting block from index itself */ 215 if (path[depth].p_bh) 216 return path[depth].p_bh->b_blocknr; 217 } 218 219 /* OK. use inode's group */ 220 return ext4_inode_to_goal_block(inode); 221 } 222 223 /* 224 * Allocation for a meta data block 225 */ 226 static ext4_fsblk_t 227 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 228 struct ext4_ext_path *path, 229 struct ext4_extent *ex, int *err, unsigned int flags) 230 { 231 ext4_fsblk_t goal, newblock; 232 233 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 234 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 235 NULL, err); 236 return newblock; 237 } 238 239 static inline int ext4_ext_space_block(struct inode *inode, int check) 240 { 241 int size; 242 243 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 244 / sizeof(struct ext4_extent); 245 #ifdef AGGRESSIVE_TEST 246 if (!check && size > 6) 247 size = 6; 248 #endif 249 return size; 250 } 251 252 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 253 { 254 int size; 255 256 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx); 258 #ifdef AGGRESSIVE_TEST 259 if (!check && size > 5) 260 size = 5; 261 #endif 262 return size; 263 } 264 265 static inline int ext4_ext_space_root(struct inode *inode, int check) 266 { 267 int size; 268 269 size = sizeof(EXT4_I(inode)->i_data); 270 size -= sizeof(struct ext4_extent_header); 271 size /= sizeof(struct ext4_extent); 272 #ifdef AGGRESSIVE_TEST 273 if (!check && size > 3) 274 size = 3; 275 #endif 276 return size; 277 } 278 279 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 280 { 281 int size; 282 283 size = sizeof(EXT4_I(inode)->i_data); 284 size -= sizeof(struct ext4_extent_header); 285 size /= sizeof(struct ext4_extent_idx); 286 #ifdef AGGRESSIVE_TEST 287 if (!check && size > 4) 288 size = 4; 289 #endif 290 return size; 291 } 292 293 static inline int 294 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 295 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 296 int nofail) 297 { 298 struct ext4_ext_path *path = *ppath; 299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 300 301 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 302 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 303 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 304 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 305 } 306 307 /* 308 * Calculate the number of metadata blocks needed 309 * to allocate @blocks 310 * Worse case is one block per extent 311 */ 312 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 313 { 314 struct ext4_inode_info *ei = EXT4_I(inode); 315 int idxs; 316 317 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 318 / sizeof(struct ext4_extent_idx)); 319 320 /* 321 * If the new delayed allocation block is contiguous with the 322 * previous da block, it can share index blocks with the 323 * previous block, so we only need to allocate a new index 324 * block every idxs leaf blocks. At ldxs**2 blocks, we need 325 * an additional index block, and at ldxs**3 blocks, yet 326 * another index blocks. 327 */ 328 if (ei->i_da_metadata_calc_len && 329 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 330 int num = 0; 331 332 if ((ei->i_da_metadata_calc_len % idxs) == 0) 333 num++; 334 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 335 num++; 336 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 337 num++; 338 ei->i_da_metadata_calc_len = 0; 339 } else 340 ei->i_da_metadata_calc_len++; 341 ei->i_da_metadata_calc_last_lblock++; 342 return num; 343 } 344 345 /* 346 * In the worst case we need a new set of index blocks at 347 * every level of the inode's extent tree. 348 */ 349 ei->i_da_metadata_calc_len = 1; 350 ei->i_da_metadata_calc_last_lblock = lblock; 351 return ext_depth(inode) + 1; 352 } 353 354 static int 355 ext4_ext_max_entries(struct inode *inode, int depth) 356 { 357 int max; 358 359 if (depth == ext_depth(inode)) { 360 if (depth == 0) 361 max = ext4_ext_space_root(inode, 1); 362 else 363 max = ext4_ext_space_root_idx(inode, 1); 364 } else { 365 if (depth == 0) 366 max = ext4_ext_space_block(inode, 1); 367 else 368 max = ext4_ext_space_block_idx(inode, 1); 369 } 370 371 return max; 372 } 373 374 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 375 { 376 ext4_fsblk_t block = ext4_ext_pblock(ext); 377 int len = ext4_ext_get_actual_len(ext); 378 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 379 ext4_lblk_t last = lblock + len - 1; 380 381 if (len == 0 || lblock > last) 382 return 0; 383 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 384 } 385 386 static int ext4_valid_extent_idx(struct inode *inode, 387 struct ext4_extent_idx *ext_idx) 388 { 389 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 390 391 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 392 } 393 394 static int ext4_valid_extent_entries(struct inode *inode, 395 struct ext4_extent_header *eh, 396 int depth) 397 { 398 unsigned short entries; 399 if (eh->eh_entries == 0) 400 return 1; 401 402 entries = le16_to_cpu(eh->eh_entries); 403 404 if (depth == 0) { 405 /* leaf entries */ 406 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 407 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 408 ext4_fsblk_t pblock = 0; 409 ext4_lblk_t lblock = 0; 410 ext4_lblk_t prev = 0; 411 int len = 0; 412 while (entries) { 413 if (!ext4_valid_extent(inode, ext)) 414 return 0; 415 416 /* Check for overlapping extents */ 417 lblock = le32_to_cpu(ext->ee_block); 418 len = ext4_ext_get_actual_len(ext); 419 if ((lblock <= prev) && prev) { 420 pblock = ext4_ext_pblock(ext); 421 es->s_last_error_block = cpu_to_le64(pblock); 422 return 0; 423 } 424 ext++; 425 entries--; 426 prev = lblock + len - 1; 427 } 428 } else { 429 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 430 while (entries) { 431 if (!ext4_valid_extent_idx(inode, ext_idx)) 432 return 0; 433 ext_idx++; 434 entries--; 435 } 436 } 437 return 1; 438 } 439 440 static int __ext4_ext_check(const char *function, unsigned int line, 441 struct inode *inode, struct ext4_extent_header *eh, 442 int depth, ext4_fsblk_t pblk) 443 { 444 const char *error_msg; 445 int max = 0, err = -EFSCORRUPTED; 446 447 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 448 error_msg = "invalid magic"; 449 goto corrupted; 450 } 451 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 452 error_msg = "unexpected eh_depth"; 453 goto corrupted; 454 } 455 if (unlikely(eh->eh_max == 0)) { 456 error_msg = "invalid eh_max"; 457 goto corrupted; 458 } 459 max = ext4_ext_max_entries(inode, depth); 460 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 461 error_msg = "too large eh_max"; 462 goto corrupted; 463 } 464 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 465 error_msg = "invalid eh_entries"; 466 goto corrupted; 467 } 468 if (!ext4_valid_extent_entries(inode, eh, depth)) { 469 error_msg = "invalid extent entries"; 470 goto corrupted; 471 } 472 /* Verify checksum on non-root extent tree nodes */ 473 if (ext_depth(inode) != depth && 474 !ext4_extent_block_csum_verify(inode, eh)) { 475 error_msg = "extent tree corrupted"; 476 err = -EFSBADCRC; 477 goto corrupted; 478 } 479 return 0; 480 481 corrupted: 482 ext4_error_inode(inode, function, line, 0, 483 "pblk %llu bad header/extent: %s - magic %x, " 484 "entries %u, max %u(%u), depth %u(%u)", 485 (unsigned long long) pblk, error_msg, 486 le16_to_cpu(eh->eh_magic), 487 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 488 max, le16_to_cpu(eh->eh_depth), depth); 489 return err; 490 } 491 492 #define ext4_ext_check(inode, eh, depth, pblk) \ 493 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 494 495 int ext4_ext_check_inode(struct inode *inode) 496 { 497 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 498 } 499 500 static struct buffer_head * 501 __read_extent_tree_block(const char *function, unsigned int line, 502 struct inode *inode, ext4_fsblk_t pblk, int depth, 503 int flags) 504 { 505 struct buffer_head *bh; 506 int err; 507 508 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 509 if (unlikely(!bh)) 510 return ERR_PTR(-ENOMEM); 511 512 if (!bh_uptodate_or_lock(bh)) { 513 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 514 err = bh_submit_read(bh); 515 if (err < 0) 516 goto errout; 517 } 518 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 519 return bh; 520 err = __ext4_ext_check(function, line, inode, 521 ext_block_hdr(bh), depth, pblk); 522 if (err) 523 goto errout; 524 set_buffer_verified(bh); 525 /* 526 * If this is a leaf block, cache all of its entries 527 */ 528 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 529 struct ext4_extent_header *eh = ext_block_hdr(bh); 530 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 531 ext4_lblk_t prev = 0; 532 int i; 533 534 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 535 unsigned int status = EXTENT_STATUS_WRITTEN; 536 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 537 int len = ext4_ext_get_actual_len(ex); 538 539 if (prev && (prev != lblk)) 540 ext4_es_cache_extent(inode, prev, 541 lblk - prev, ~0, 542 EXTENT_STATUS_HOLE); 543 544 if (ext4_ext_is_unwritten(ex)) 545 status = EXTENT_STATUS_UNWRITTEN; 546 ext4_es_cache_extent(inode, lblk, len, 547 ext4_ext_pblock(ex), status); 548 prev = lblk + len; 549 } 550 } 551 return bh; 552 errout: 553 put_bh(bh); 554 return ERR_PTR(err); 555 556 } 557 558 #define read_extent_tree_block(inode, pblk, depth, flags) \ 559 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 560 (depth), (flags)) 561 562 /* 563 * This function is called to cache a file's extent information in the 564 * extent status tree 565 */ 566 int ext4_ext_precache(struct inode *inode) 567 { 568 struct ext4_inode_info *ei = EXT4_I(inode); 569 struct ext4_ext_path *path = NULL; 570 struct buffer_head *bh; 571 int i = 0, depth, ret = 0; 572 573 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 574 return 0; /* not an extent-mapped inode */ 575 576 down_read(&ei->i_data_sem); 577 depth = ext_depth(inode); 578 579 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 580 GFP_NOFS); 581 if (path == NULL) { 582 up_read(&ei->i_data_sem); 583 return -ENOMEM; 584 } 585 586 /* Don't cache anything if there are no external extent blocks */ 587 if (depth == 0) 588 goto out; 589 path[0].p_hdr = ext_inode_hdr(inode); 590 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 591 if (ret) 592 goto out; 593 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 594 while (i >= 0) { 595 /* 596 * If this is a leaf block or we've reached the end of 597 * the index block, go up 598 */ 599 if ((i == depth) || 600 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 601 brelse(path[i].p_bh); 602 path[i].p_bh = NULL; 603 i--; 604 continue; 605 } 606 bh = read_extent_tree_block(inode, 607 ext4_idx_pblock(path[i].p_idx++), 608 depth - i - 1, 609 EXT4_EX_FORCE_CACHE); 610 if (IS_ERR(bh)) { 611 ret = PTR_ERR(bh); 612 break; 613 } 614 i++; 615 path[i].p_bh = bh; 616 path[i].p_hdr = ext_block_hdr(bh); 617 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 618 } 619 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 620 out: 621 up_read(&ei->i_data_sem); 622 ext4_ext_drop_refs(path); 623 kfree(path); 624 return ret; 625 } 626 627 #ifdef EXT_DEBUG 628 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 629 { 630 int k, l = path->p_depth; 631 632 ext_debug("path:"); 633 for (k = 0; k <= l; k++, path++) { 634 if (path->p_idx) { 635 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 636 ext4_idx_pblock(path->p_idx)); 637 } else if (path->p_ext) { 638 ext_debug(" %d:[%d]%d:%llu ", 639 le32_to_cpu(path->p_ext->ee_block), 640 ext4_ext_is_unwritten(path->p_ext), 641 ext4_ext_get_actual_len(path->p_ext), 642 ext4_ext_pblock(path->p_ext)); 643 } else 644 ext_debug(" []"); 645 } 646 ext_debug("\n"); 647 } 648 649 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 650 { 651 int depth = ext_depth(inode); 652 struct ext4_extent_header *eh; 653 struct ext4_extent *ex; 654 int i; 655 656 if (!path) 657 return; 658 659 eh = path[depth].p_hdr; 660 ex = EXT_FIRST_EXTENT(eh); 661 662 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 663 664 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 665 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 666 ext4_ext_is_unwritten(ex), 667 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 668 } 669 ext_debug("\n"); 670 } 671 672 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 673 ext4_fsblk_t newblock, int level) 674 { 675 int depth = ext_depth(inode); 676 struct ext4_extent *ex; 677 678 if (depth != level) { 679 struct ext4_extent_idx *idx; 680 idx = path[level].p_idx; 681 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 682 ext_debug("%d: move %d:%llu in new index %llu\n", level, 683 le32_to_cpu(idx->ei_block), 684 ext4_idx_pblock(idx), 685 newblock); 686 idx++; 687 } 688 689 return; 690 } 691 692 ex = path[depth].p_ext; 693 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 694 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 695 le32_to_cpu(ex->ee_block), 696 ext4_ext_pblock(ex), 697 ext4_ext_is_unwritten(ex), 698 ext4_ext_get_actual_len(ex), 699 newblock); 700 ex++; 701 } 702 } 703 704 #else 705 #define ext4_ext_show_path(inode, path) 706 #define ext4_ext_show_leaf(inode, path) 707 #define ext4_ext_show_move(inode, path, newblock, level) 708 #endif 709 710 void ext4_ext_drop_refs(struct ext4_ext_path *path) 711 { 712 int depth, i; 713 714 if (!path) 715 return; 716 depth = path->p_depth; 717 for (i = 0; i <= depth; i++, path++) 718 if (path->p_bh) { 719 brelse(path->p_bh); 720 path->p_bh = NULL; 721 } 722 } 723 724 /* 725 * ext4_ext_binsearch_idx: 726 * binary search for the closest index of the given block 727 * the header must be checked before calling this 728 */ 729 static void 730 ext4_ext_binsearch_idx(struct inode *inode, 731 struct ext4_ext_path *path, ext4_lblk_t block) 732 { 733 struct ext4_extent_header *eh = path->p_hdr; 734 struct ext4_extent_idx *r, *l, *m; 735 736 737 ext_debug("binsearch for %u(idx): ", block); 738 739 l = EXT_FIRST_INDEX(eh) + 1; 740 r = EXT_LAST_INDEX(eh); 741 while (l <= r) { 742 m = l + (r - l) / 2; 743 if (block < le32_to_cpu(m->ei_block)) 744 r = m - 1; 745 else 746 l = m + 1; 747 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 748 m, le32_to_cpu(m->ei_block), 749 r, le32_to_cpu(r->ei_block)); 750 } 751 752 path->p_idx = l - 1; 753 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 754 ext4_idx_pblock(path->p_idx)); 755 756 #ifdef CHECK_BINSEARCH 757 { 758 struct ext4_extent_idx *chix, *ix; 759 int k; 760 761 chix = ix = EXT_FIRST_INDEX(eh); 762 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 763 if (k != 0 && 764 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 765 printk(KERN_DEBUG "k=%d, ix=0x%p, " 766 "first=0x%p\n", k, 767 ix, EXT_FIRST_INDEX(eh)); 768 printk(KERN_DEBUG "%u <= %u\n", 769 le32_to_cpu(ix->ei_block), 770 le32_to_cpu(ix[-1].ei_block)); 771 } 772 BUG_ON(k && le32_to_cpu(ix->ei_block) 773 <= le32_to_cpu(ix[-1].ei_block)); 774 if (block < le32_to_cpu(ix->ei_block)) 775 break; 776 chix = ix; 777 } 778 BUG_ON(chix != path->p_idx); 779 } 780 #endif 781 782 } 783 784 /* 785 * ext4_ext_binsearch: 786 * binary search for closest extent of the given block 787 * the header must be checked before calling this 788 */ 789 static void 790 ext4_ext_binsearch(struct inode *inode, 791 struct ext4_ext_path *path, ext4_lblk_t block) 792 { 793 struct ext4_extent_header *eh = path->p_hdr; 794 struct ext4_extent *r, *l, *m; 795 796 if (eh->eh_entries == 0) { 797 /* 798 * this leaf is empty: 799 * we get such a leaf in split/add case 800 */ 801 return; 802 } 803 804 ext_debug("binsearch for %u: ", block); 805 806 l = EXT_FIRST_EXTENT(eh) + 1; 807 r = EXT_LAST_EXTENT(eh); 808 809 while (l <= r) { 810 m = l + (r - l) / 2; 811 if (block < le32_to_cpu(m->ee_block)) 812 r = m - 1; 813 else 814 l = m + 1; 815 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 816 m, le32_to_cpu(m->ee_block), 817 r, le32_to_cpu(r->ee_block)); 818 } 819 820 path->p_ext = l - 1; 821 ext_debug(" -> %d:%llu:[%d]%d ", 822 le32_to_cpu(path->p_ext->ee_block), 823 ext4_ext_pblock(path->p_ext), 824 ext4_ext_is_unwritten(path->p_ext), 825 ext4_ext_get_actual_len(path->p_ext)); 826 827 #ifdef CHECK_BINSEARCH 828 { 829 struct ext4_extent *chex, *ex; 830 int k; 831 832 chex = ex = EXT_FIRST_EXTENT(eh); 833 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 834 BUG_ON(k && le32_to_cpu(ex->ee_block) 835 <= le32_to_cpu(ex[-1].ee_block)); 836 if (block < le32_to_cpu(ex->ee_block)) 837 break; 838 chex = ex; 839 } 840 BUG_ON(chex != path->p_ext); 841 } 842 #endif 843 844 } 845 846 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 847 { 848 struct ext4_extent_header *eh; 849 850 eh = ext_inode_hdr(inode); 851 eh->eh_depth = 0; 852 eh->eh_entries = 0; 853 eh->eh_magic = EXT4_EXT_MAGIC; 854 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 855 ext4_mark_inode_dirty(handle, inode); 856 return 0; 857 } 858 859 struct ext4_ext_path * 860 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 861 struct ext4_ext_path **orig_path, int flags) 862 { 863 struct ext4_extent_header *eh; 864 struct buffer_head *bh; 865 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 866 short int depth, i, ppos = 0; 867 int ret; 868 869 eh = ext_inode_hdr(inode); 870 depth = ext_depth(inode); 871 872 if (path) { 873 ext4_ext_drop_refs(path); 874 if (depth > path[0].p_maxdepth) { 875 kfree(path); 876 *orig_path = path = NULL; 877 } 878 } 879 if (!path) { 880 /* account possible depth increase */ 881 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 882 GFP_NOFS); 883 if (unlikely(!path)) 884 return ERR_PTR(-ENOMEM); 885 path[0].p_maxdepth = depth + 1; 886 } 887 path[0].p_hdr = eh; 888 path[0].p_bh = NULL; 889 890 i = depth; 891 /* walk through the tree */ 892 while (i) { 893 ext_debug("depth %d: num %d, max %d\n", 894 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 895 896 ext4_ext_binsearch_idx(inode, path + ppos, block); 897 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 898 path[ppos].p_depth = i; 899 path[ppos].p_ext = NULL; 900 901 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 902 flags); 903 if (IS_ERR(bh)) { 904 ret = PTR_ERR(bh); 905 goto err; 906 } 907 908 eh = ext_block_hdr(bh); 909 ppos++; 910 if (unlikely(ppos > depth)) { 911 put_bh(bh); 912 EXT4_ERROR_INODE(inode, 913 "ppos %d > depth %d", ppos, depth); 914 ret = -EFSCORRUPTED; 915 goto err; 916 } 917 path[ppos].p_bh = bh; 918 path[ppos].p_hdr = eh; 919 } 920 921 path[ppos].p_depth = i; 922 path[ppos].p_ext = NULL; 923 path[ppos].p_idx = NULL; 924 925 /* find extent */ 926 ext4_ext_binsearch(inode, path + ppos, block); 927 /* if not an empty leaf */ 928 if (path[ppos].p_ext) 929 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 930 931 ext4_ext_show_path(inode, path); 932 933 return path; 934 935 err: 936 ext4_ext_drop_refs(path); 937 kfree(path); 938 if (orig_path) 939 *orig_path = NULL; 940 return ERR_PTR(ret); 941 } 942 943 /* 944 * ext4_ext_insert_index: 945 * insert new index [@logical;@ptr] into the block at @curp; 946 * check where to insert: before @curp or after @curp 947 */ 948 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 949 struct ext4_ext_path *curp, 950 int logical, ext4_fsblk_t ptr) 951 { 952 struct ext4_extent_idx *ix; 953 int len, err; 954 955 err = ext4_ext_get_access(handle, inode, curp); 956 if (err) 957 return err; 958 959 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 960 EXT4_ERROR_INODE(inode, 961 "logical %d == ei_block %d!", 962 logical, le32_to_cpu(curp->p_idx->ei_block)); 963 return -EFSCORRUPTED; 964 } 965 966 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 967 >= le16_to_cpu(curp->p_hdr->eh_max))) { 968 EXT4_ERROR_INODE(inode, 969 "eh_entries %d >= eh_max %d!", 970 le16_to_cpu(curp->p_hdr->eh_entries), 971 le16_to_cpu(curp->p_hdr->eh_max)); 972 return -EFSCORRUPTED; 973 } 974 975 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 976 /* insert after */ 977 ext_debug("insert new index %d after: %llu\n", logical, ptr); 978 ix = curp->p_idx + 1; 979 } else { 980 /* insert before */ 981 ext_debug("insert new index %d before: %llu\n", logical, ptr); 982 ix = curp->p_idx; 983 } 984 985 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 986 BUG_ON(len < 0); 987 if (len > 0) { 988 ext_debug("insert new index %d: " 989 "move %d indices from 0x%p to 0x%p\n", 990 logical, len, ix, ix + 1); 991 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 992 } 993 994 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 995 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 996 return -EFSCORRUPTED; 997 } 998 999 ix->ei_block = cpu_to_le32(logical); 1000 ext4_idx_store_pblock(ix, ptr); 1001 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1002 1003 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1004 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1005 return -EFSCORRUPTED; 1006 } 1007 1008 err = ext4_ext_dirty(handle, inode, curp); 1009 ext4_std_error(inode->i_sb, err); 1010 1011 return err; 1012 } 1013 1014 /* 1015 * ext4_ext_split: 1016 * inserts new subtree into the path, using free index entry 1017 * at depth @at: 1018 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1019 * - makes decision where to split 1020 * - moves remaining extents and index entries (right to the split point) 1021 * into the newly allocated blocks 1022 * - initializes subtree 1023 */ 1024 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1025 unsigned int flags, 1026 struct ext4_ext_path *path, 1027 struct ext4_extent *newext, int at) 1028 { 1029 struct buffer_head *bh = NULL; 1030 int depth = ext_depth(inode); 1031 struct ext4_extent_header *neh; 1032 struct ext4_extent_idx *fidx; 1033 int i = at, k, m, a; 1034 ext4_fsblk_t newblock, oldblock; 1035 __le32 border; 1036 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1037 int err = 0; 1038 1039 /* make decision: where to split? */ 1040 /* FIXME: now decision is simplest: at current extent */ 1041 1042 /* if current leaf will be split, then we should use 1043 * border from split point */ 1044 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1045 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1046 return -EFSCORRUPTED; 1047 } 1048 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1049 border = path[depth].p_ext[1].ee_block; 1050 ext_debug("leaf will be split." 1051 " next leaf starts at %d\n", 1052 le32_to_cpu(border)); 1053 } else { 1054 border = newext->ee_block; 1055 ext_debug("leaf will be added." 1056 " next leaf starts at %d\n", 1057 le32_to_cpu(border)); 1058 } 1059 1060 /* 1061 * If error occurs, then we break processing 1062 * and mark filesystem read-only. index won't 1063 * be inserted and tree will be in consistent 1064 * state. Next mount will repair buffers too. 1065 */ 1066 1067 /* 1068 * Get array to track all allocated blocks. 1069 * We need this to handle errors and free blocks 1070 * upon them. 1071 */ 1072 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1073 if (!ablocks) 1074 return -ENOMEM; 1075 1076 /* allocate all needed blocks */ 1077 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1078 for (a = 0; a < depth - at; a++) { 1079 newblock = ext4_ext_new_meta_block(handle, inode, path, 1080 newext, &err, flags); 1081 if (newblock == 0) 1082 goto cleanup; 1083 ablocks[a] = newblock; 1084 } 1085 1086 /* initialize new leaf */ 1087 newblock = ablocks[--a]; 1088 if (unlikely(newblock == 0)) { 1089 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1090 err = -EFSCORRUPTED; 1091 goto cleanup; 1092 } 1093 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1094 if (unlikely(!bh)) { 1095 err = -ENOMEM; 1096 goto cleanup; 1097 } 1098 lock_buffer(bh); 1099 1100 err = ext4_journal_get_create_access(handle, bh); 1101 if (err) 1102 goto cleanup; 1103 1104 neh = ext_block_hdr(bh); 1105 neh->eh_entries = 0; 1106 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1107 neh->eh_magic = EXT4_EXT_MAGIC; 1108 neh->eh_depth = 0; 1109 1110 /* move remainder of path[depth] to the new leaf */ 1111 if (unlikely(path[depth].p_hdr->eh_entries != 1112 path[depth].p_hdr->eh_max)) { 1113 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1114 path[depth].p_hdr->eh_entries, 1115 path[depth].p_hdr->eh_max); 1116 err = -EFSCORRUPTED; 1117 goto cleanup; 1118 } 1119 /* start copy from next extent */ 1120 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1121 ext4_ext_show_move(inode, path, newblock, depth); 1122 if (m) { 1123 struct ext4_extent *ex; 1124 ex = EXT_FIRST_EXTENT(neh); 1125 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1126 le16_add_cpu(&neh->eh_entries, m); 1127 } 1128 1129 ext4_extent_block_csum_set(inode, neh); 1130 set_buffer_uptodate(bh); 1131 unlock_buffer(bh); 1132 1133 err = ext4_handle_dirty_metadata(handle, inode, bh); 1134 if (err) 1135 goto cleanup; 1136 brelse(bh); 1137 bh = NULL; 1138 1139 /* correct old leaf */ 1140 if (m) { 1141 err = ext4_ext_get_access(handle, inode, path + depth); 1142 if (err) 1143 goto cleanup; 1144 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1145 err = ext4_ext_dirty(handle, inode, path + depth); 1146 if (err) 1147 goto cleanup; 1148 1149 } 1150 1151 /* create intermediate indexes */ 1152 k = depth - at - 1; 1153 if (unlikely(k < 0)) { 1154 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1155 err = -EFSCORRUPTED; 1156 goto cleanup; 1157 } 1158 if (k) 1159 ext_debug("create %d intermediate indices\n", k); 1160 /* insert new index into current index block */ 1161 /* current depth stored in i var */ 1162 i = depth - 1; 1163 while (k--) { 1164 oldblock = newblock; 1165 newblock = ablocks[--a]; 1166 bh = sb_getblk(inode->i_sb, newblock); 1167 if (unlikely(!bh)) { 1168 err = -ENOMEM; 1169 goto cleanup; 1170 } 1171 lock_buffer(bh); 1172 1173 err = ext4_journal_get_create_access(handle, bh); 1174 if (err) 1175 goto cleanup; 1176 1177 neh = ext_block_hdr(bh); 1178 neh->eh_entries = cpu_to_le16(1); 1179 neh->eh_magic = EXT4_EXT_MAGIC; 1180 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1181 neh->eh_depth = cpu_to_le16(depth - i); 1182 fidx = EXT_FIRST_INDEX(neh); 1183 fidx->ei_block = border; 1184 ext4_idx_store_pblock(fidx, oldblock); 1185 1186 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1187 i, newblock, le32_to_cpu(border), oldblock); 1188 1189 /* move remainder of path[i] to the new index block */ 1190 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1191 EXT_LAST_INDEX(path[i].p_hdr))) { 1192 EXT4_ERROR_INODE(inode, 1193 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1194 le32_to_cpu(path[i].p_ext->ee_block)); 1195 err = -EFSCORRUPTED; 1196 goto cleanup; 1197 } 1198 /* start copy indexes */ 1199 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1200 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1201 EXT_MAX_INDEX(path[i].p_hdr)); 1202 ext4_ext_show_move(inode, path, newblock, i); 1203 if (m) { 1204 memmove(++fidx, path[i].p_idx, 1205 sizeof(struct ext4_extent_idx) * m); 1206 le16_add_cpu(&neh->eh_entries, m); 1207 } 1208 ext4_extent_block_csum_set(inode, neh); 1209 set_buffer_uptodate(bh); 1210 unlock_buffer(bh); 1211 1212 err = ext4_handle_dirty_metadata(handle, inode, bh); 1213 if (err) 1214 goto cleanup; 1215 brelse(bh); 1216 bh = NULL; 1217 1218 /* correct old index */ 1219 if (m) { 1220 err = ext4_ext_get_access(handle, inode, path + i); 1221 if (err) 1222 goto cleanup; 1223 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1224 err = ext4_ext_dirty(handle, inode, path + i); 1225 if (err) 1226 goto cleanup; 1227 } 1228 1229 i--; 1230 } 1231 1232 /* insert new index */ 1233 err = ext4_ext_insert_index(handle, inode, path + at, 1234 le32_to_cpu(border), newblock); 1235 1236 cleanup: 1237 if (bh) { 1238 if (buffer_locked(bh)) 1239 unlock_buffer(bh); 1240 brelse(bh); 1241 } 1242 1243 if (err) { 1244 /* free all allocated blocks in error case */ 1245 for (i = 0; i < depth; i++) { 1246 if (!ablocks[i]) 1247 continue; 1248 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1249 EXT4_FREE_BLOCKS_METADATA); 1250 } 1251 } 1252 kfree(ablocks); 1253 1254 return err; 1255 } 1256 1257 /* 1258 * ext4_ext_grow_indepth: 1259 * implements tree growing procedure: 1260 * - allocates new block 1261 * - moves top-level data (index block or leaf) into the new block 1262 * - initializes new top-level, creating index that points to the 1263 * just created block 1264 */ 1265 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1266 unsigned int flags) 1267 { 1268 struct ext4_extent_header *neh; 1269 struct buffer_head *bh; 1270 ext4_fsblk_t newblock, goal = 0; 1271 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1272 int err = 0; 1273 1274 /* Try to prepend new index to old one */ 1275 if (ext_depth(inode)) 1276 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1277 if (goal > le32_to_cpu(es->s_first_data_block)) { 1278 flags |= EXT4_MB_HINT_TRY_GOAL; 1279 goal--; 1280 } else 1281 goal = ext4_inode_to_goal_block(inode); 1282 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1283 NULL, &err); 1284 if (newblock == 0) 1285 return err; 1286 1287 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1288 if (unlikely(!bh)) 1289 return -ENOMEM; 1290 lock_buffer(bh); 1291 1292 err = ext4_journal_get_create_access(handle, bh); 1293 if (err) { 1294 unlock_buffer(bh); 1295 goto out; 1296 } 1297 1298 /* move top-level index/leaf into new block */ 1299 memmove(bh->b_data, EXT4_I(inode)->i_data, 1300 sizeof(EXT4_I(inode)->i_data)); 1301 1302 /* set size of new block */ 1303 neh = ext_block_hdr(bh); 1304 /* old root could have indexes or leaves 1305 * so calculate e_max right way */ 1306 if (ext_depth(inode)) 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1308 else 1309 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1310 neh->eh_magic = EXT4_EXT_MAGIC; 1311 ext4_extent_block_csum_set(inode, neh); 1312 set_buffer_uptodate(bh); 1313 unlock_buffer(bh); 1314 1315 err = ext4_handle_dirty_metadata(handle, inode, bh); 1316 if (err) 1317 goto out; 1318 1319 /* Update top-level index: num,max,pointer */ 1320 neh = ext_inode_hdr(inode); 1321 neh->eh_entries = cpu_to_le16(1); 1322 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1323 if (neh->eh_depth == 0) { 1324 /* Root extent block becomes index block */ 1325 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1326 EXT_FIRST_INDEX(neh)->ei_block = 1327 EXT_FIRST_EXTENT(neh)->ee_block; 1328 } 1329 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1330 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1331 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1332 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1333 1334 le16_add_cpu(&neh->eh_depth, 1); 1335 ext4_mark_inode_dirty(handle, inode); 1336 out: 1337 brelse(bh); 1338 1339 return err; 1340 } 1341 1342 /* 1343 * ext4_ext_create_new_leaf: 1344 * finds empty index and adds new leaf. 1345 * if no free index is found, then it requests in-depth growing. 1346 */ 1347 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1348 unsigned int mb_flags, 1349 unsigned int gb_flags, 1350 struct ext4_ext_path **ppath, 1351 struct ext4_extent *newext) 1352 { 1353 struct ext4_ext_path *path = *ppath; 1354 struct ext4_ext_path *curp; 1355 int depth, i, err = 0; 1356 1357 repeat: 1358 i = depth = ext_depth(inode); 1359 1360 /* walk up to the tree and look for free index entry */ 1361 curp = path + depth; 1362 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1363 i--; 1364 curp--; 1365 } 1366 1367 /* we use already allocated block for index block, 1368 * so subsequent data blocks should be contiguous */ 1369 if (EXT_HAS_FREE_INDEX(curp)) { 1370 /* if we found index with free entry, then use that 1371 * entry: create all needed subtree and add new leaf */ 1372 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1373 if (err) 1374 goto out; 1375 1376 /* refill path */ 1377 path = ext4_find_extent(inode, 1378 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1379 ppath, gb_flags); 1380 if (IS_ERR(path)) 1381 err = PTR_ERR(path); 1382 } else { 1383 /* tree is full, time to grow in depth */ 1384 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1385 if (err) 1386 goto out; 1387 1388 /* refill path */ 1389 path = ext4_find_extent(inode, 1390 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1391 ppath, gb_flags); 1392 if (IS_ERR(path)) { 1393 err = PTR_ERR(path); 1394 goto out; 1395 } 1396 1397 /* 1398 * only first (depth 0 -> 1) produces free space; 1399 * in all other cases we have to split the grown tree 1400 */ 1401 depth = ext_depth(inode); 1402 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1403 /* now we need to split */ 1404 goto repeat; 1405 } 1406 } 1407 1408 out: 1409 return err; 1410 } 1411 1412 /* 1413 * search the closest allocated block to the left for *logical 1414 * and returns it at @logical + it's physical address at @phys 1415 * if *logical is the smallest allocated block, the function 1416 * returns 0 at @phys 1417 * return value contains 0 (success) or error code 1418 */ 1419 static int ext4_ext_search_left(struct inode *inode, 1420 struct ext4_ext_path *path, 1421 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1422 { 1423 struct ext4_extent_idx *ix; 1424 struct ext4_extent *ex; 1425 int depth, ee_len; 1426 1427 if (unlikely(path == NULL)) { 1428 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1429 return -EFSCORRUPTED; 1430 } 1431 depth = path->p_depth; 1432 *phys = 0; 1433 1434 if (depth == 0 && path->p_ext == NULL) 1435 return 0; 1436 1437 /* usually extent in the path covers blocks smaller 1438 * then *logical, but it can be that extent is the 1439 * first one in the file */ 1440 1441 ex = path[depth].p_ext; 1442 ee_len = ext4_ext_get_actual_len(ex); 1443 if (*logical < le32_to_cpu(ex->ee_block)) { 1444 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1445 EXT4_ERROR_INODE(inode, 1446 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1447 *logical, le32_to_cpu(ex->ee_block)); 1448 return -EFSCORRUPTED; 1449 } 1450 while (--depth >= 0) { 1451 ix = path[depth].p_idx; 1452 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1453 EXT4_ERROR_INODE(inode, 1454 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1455 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1456 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1457 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1458 depth); 1459 return -EFSCORRUPTED; 1460 } 1461 } 1462 return 0; 1463 } 1464 1465 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1466 EXT4_ERROR_INODE(inode, 1467 "logical %d < ee_block %d + ee_len %d!", 1468 *logical, le32_to_cpu(ex->ee_block), ee_len); 1469 return -EFSCORRUPTED; 1470 } 1471 1472 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1473 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1474 return 0; 1475 } 1476 1477 /* 1478 * search the closest allocated block to the right for *logical 1479 * and returns it at @logical + it's physical address at @phys 1480 * if *logical is the largest allocated block, the function 1481 * returns 0 at @phys 1482 * return value contains 0 (success) or error code 1483 */ 1484 static int ext4_ext_search_right(struct inode *inode, 1485 struct ext4_ext_path *path, 1486 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1487 struct ext4_extent **ret_ex) 1488 { 1489 struct buffer_head *bh = NULL; 1490 struct ext4_extent_header *eh; 1491 struct ext4_extent_idx *ix; 1492 struct ext4_extent *ex; 1493 ext4_fsblk_t block; 1494 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1495 int ee_len; 1496 1497 if (unlikely(path == NULL)) { 1498 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1499 return -EFSCORRUPTED; 1500 } 1501 depth = path->p_depth; 1502 *phys = 0; 1503 1504 if (depth == 0 && path->p_ext == NULL) 1505 return 0; 1506 1507 /* usually extent in the path covers blocks smaller 1508 * then *logical, but it can be that extent is the 1509 * first one in the file */ 1510 1511 ex = path[depth].p_ext; 1512 ee_len = ext4_ext_get_actual_len(ex); 1513 if (*logical < le32_to_cpu(ex->ee_block)) { 1514 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1515 EXT4_ERROR_INODE(inode, 1516 "first_extent(path[%d].p_hdr) != ex", 1517 depth); 1518 return -EFSCORRUPTED; 1519 } 1520 while (--depth >= 0) { 1521 ix = path[depth].p_idx; 1522 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1523 EXT4_ERROR_INODE(inode, 1524 "ix != EXT_FIRST_INDEX *logical %d!", 1525 *logical); 1526 return -EFSCORRUPTED; 1527 } 1528 } 1529 goto found_extent; 1530 } 1531 1532 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1533 EXT4_ERROR_INODE(inode, 1534 "logical %d < ee_block %d + ee_len %d!", 1535 *logical, le32_to_cpu(ex->ee_block), ee_len); 1536 return -EFSCORRUPTED; 1537 } 1538 1539 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1540 /* next allocated block in this leaf */ 1541 ex++; 1542 goto found_extent; 1543 } 1544 1545 /* go up and search for index to the right */ 1546 while (--depth >= 0) { 1547 ix = path[depth].p_idx; 1548 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1549 goto got_index; 1550 } 1551 1552 /* we've gone up to the root and found no index to the right */ 1553 return 0; 1554 1555 got_index: 1556 /* we've found index to the right, let's 1557 * follow it and find the closest allocated 1558 * block to the right */ 1559 ix++; 1560 block = ext4_idx_pblock(ix); 1561 while (++depth < path->p_depth) { 1562 /* subtract from p_depth to get proper eh_depth */ 1563 bh = read_extent_tree_block(inode, block, 1564 path->p_depth - depth, 0); 1565 if (IS_ERR(bh)) 1566 return PTR_ERR(bh); 1567 eh = ext_block_hdr(bh); 1568 ix = EXT_FIRST_INDEX(eh); 1569 block = ext4_idx_pblock(ix); 1570 put_bh(bh); 1571 } 1572 1573 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1574 if (IS_ERR(bh)) 1575 return PTR_ERR(bh); 1576 eh = ext_block_hdr(bh); 1577 ex = EXT_FIRST_EXTENT(eh); 1578 found_extent: 1579 *logical = le32_to_cpu(ex->ee_block); 1580 *phys = ext4_ext_pblock(ex); 1581 *ret_ex = ex; 1582 if (bh) 1583 put_bh(bh); 1584 return 0; 1585 } 1586 1587 /* 1588 * ext4_ext_next_allocated_block: 1589 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1590 * NOTE: it considers block number from index entry as 1591 * allocated block. Thus, index entries have to be consistent 1592 * with leaves. 1593 */ 1594 ext4_lblk_t 1595 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1596 { 1597 int depth; 1598 1599 BUG_ON(path == NULL); 1600 depth = path->p_depth; 1601 1602 if (depth == 0 && path->p_ext == NULL) 1603 return EXT_MAX_BLOCKS; 1604 1605 while (depth >= 0) { 1606 if (depth == path->p_depth) { 1607 /* leaf */ 1608 if (path[depth].p_ext && 1609 path[depth].p_ext != 1610 EXT_LAST_EXTENT(path[depth].p_hdr)) 1611 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1612 } else { 1613 /* index */ 1614 if (path[depth].p_idx != 1615 EXT_LAST_INDEX(path[depth].p_hdr)) 1616 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1617 } 1618 depth--; 1619 } 1620 1621 return EXT_MAX_BLOCKS; 1622 } 1623 1624 /* 1625 * ext4_ext_next_leaf_block: 1626 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1627 */ 1628 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1629 { 1630 int depth; 1631 1632 BUG_ON(path == NULL); 1633 depth = path->p_depth; 1634 1635 /* zero-tree has no leaf blocks at all */ 1636 if (depth == 0) 1637 return EXT_MAX_BLOCKS; 1638 1639 /* go to index block */ 1640 depth--; 1641 1642 while (depth >= 0) { 1643 if (path[depth].p_idx != 1644 EXT_LAST_INDEX(path[depth].p_hdr)) 1645 return (ext4_lblk_t) 1646 le32_to_cpu(path[depth].p_idx[1].ei_block); 1647 depth--; 1648 } 1649 1650 return EXT_MAX_BLOCKS; 1651 } 1652 1653 /* 1654 * ext4_ext_correct_indexes: 1655 * if leaf gets modified and modified extent is first in the leaf, 1656 * then we have to correct all indexes above. 1657 * TODO: do we need to correct tree in all cases? 1658 */ 1659 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1660 struct ext4_ext_path *path) 1661 { 1662 struct ext4_extent_header *eh; 1663 int depth = ext_depth(inode); 1664 struct ext4_extent *ex; 1665 __le32 border; 1666 int k, err = 0; 1667 1668 eh = path[depth].p_hdr; 1669 ex = path[depth].p_ext; 1670 1671 if (unlikely(ex == NULL || eh == NULL)) { 1672 EXT4_ERROR_INODE(inode, 1673 "ex %p == NULL or eh %p == NULL", ex, eh); 1674 return -EFSCORRUPTED; 1675 } 1676 1677 if (depth == 0) { 1678 /* there is no tree at all */ 1679 return 0; 1680 } 1681 1682 if (ex != EXT_FIRST_EXTENT(eh)) { 1683 /* we correct tree if first leaf got modified only */ 1684 return 0; 1685 } 1686 1687 /* 1688 * TODO: we need correction if border is smaller than current one 1689 */ 1690 k = depth - 1; 1691 border = path[depth].p_ext->ee_block; 1692 err = ext4_ext_get_access(handle, inode, path + k); 1693 if (err) 1694 return err; 1695 path[k].p_idx->ei_block = border; 1696 err = ext4_ext_dirty(handle, inode, path + k); 1697 if (err) 1698 return err; 1699 1700 while (k--) { 1701 /* change all left-side indexes */ 1702 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1703 break; 1704 err = ext4_ext_get_access(handle, inode, path + k); 1705 if (err) 1706 break; 1707 path[k].p_idx->ei_block = border; 1708 err = ext4_ext_dirty(handle, inode, path + k); 1709 if (err) 1710 break; 1711 } 1712 1713 return err; 1714 } 1715 1716 int 1717 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1718 struct ext4_extent *ex2) 1719 { 1720 unsigned short ext1_ee_len, ext2_ee_len; 1721 1722 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1723 return 0; 1724 1725 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1726 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1727 1728 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1729 le32_to_cpu(ex2->ee_block)) 1730 return 0; 1731 1732 /* 1733 * To allow future support for preallocated extents to be added 1734 * as an RO_COMPAT feature, refuse to merge to extents if 1735 * this can result in the top bit of ee_len being set. 1736 */ 1737 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1738 return 0; 1739 if (ext4_ext_is_unwritten(ex1) && 1740 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1741 atomic_read(&EXT4_I(inode)->i_unwritten) || 1742 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1743 return 0; 1744 #ifdef AGGRESSIVE_TEST 1745 if (ext1_ee_len >= 4) 1746 return 0; 1747 #endif 1748 1749 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1750 return 1; 1751 return 0; 1752 } 1753 1754 /* 1755 * This function tries to merge the "ex" extent to the next extent in the tree. 1756 * It always tries to merge towards right. If you want to merge towards 1757 * left, pass "ex - 1" as argument instead of "ex". 1758 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1759 * 1 if they got merged. 1760 */ 1761 static int ext4_ext_try_to_merge_right(struct inode *inode, 1762 struct ext4_ext_path *path, 1763 struct ext4_extent *ex) 1764 { 1765 struct ext4_extent_header *eh; 1766 unsigned int depth, len; 1767 int merge_done = 0, unwritten; 1768 1769 depth = ext_depth(inode); 1770 BUG_ON(path[depth].p_hdr == NULL); 1771 eh = path[depth].p_hdr; 1772 1773 while (ex < EXT_LAST_EXTENT(eh)) { 1774 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1775 break; 1776 /* merge with next extent! */ 1777 unwritten = ext4_ext_is_unwritten(ex); 1778 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1779 + ext4_ext_get_actual_len(ex + 1)); 1780 if (unwritten) 1781 ext4_ext_mark_unwritten(ex); 1782 1783 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1784 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1785 * sizeof(struct ext4_extent); 1786 memmove(ex + 1, ex + 2, len); 1787 } 1788 le16_add_cpu(&eh->eh_entries, -1); 1789 merge_done = 1; 1790 WARN_ON(eh->eh_entries == 0); 1791 if (!eh->eh_entries) 1792 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1793 } 1794 1795 return merge_done; 1796 } 1797 1798 /* 1799 * This function does a very simple check to see if we can collapse 1800 * an extent tree with a single extent tree leaf block into the inode. 1801 */ 1802 static void ext4_ext_try_to_merge_up(handle_t *handle, 1803 struct inode *inode, 1804 struct ext4_ext_path *path) 1805 { 1806 size_t s; 1807 unsigned max_root = ext4_ext_space_root(inode, 0); 1808 ext4_fsblk_t blk; 1809 1810 if ((path[0].p_depth != 1) || 1811 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1812 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1813 return; 1814 1815 /* 1816 * We need to modify the block allocation bitmap and the block 1817 * group descriptor to release the extent tree block. If we 1818 * can't get the journal credits, give up. 1819 */ 1820 if (ext4_journal_extend(handle, 2)) 1821 return; 1822 1823 /* 1824 * Copy the extent data up to the inode 1825 */ 1826 blk = ext4_idx_pblock(path[0].p_idx); 1827 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1828 sizeof(struct ext4_extent_idx); 1829 s += sizeof(struct ext4_extent_header); 1830 1831 path[1].p_maxdepth = path[0].p_maxdepth; 1832 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1833 path[0].p_depth = 0; 1834 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1835 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1836 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1837 1838 brelse(path[1].p_bh); 1839 ext4_free_blocks(handle, inode, NULL, blk, 1, 1840 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1841 } 1842 1843 /* 1844 * This function tries to merge the @ex extent to neighbours in the tree. 1845 * return 1 if merge left else 0. 1846 */ 1847 static void ext4_ext_try_to_merge(handle_t *handle, 1848 struct inode *inode, 1849 struct ext4_ext_path *path, 1850 struct ext4_extent *ex) { 1851 struct ext4_extent_header *eh; 1852 unsigned int depth; 1853 int merge_done = 0; 1854 1855 depth = ext_depth(inode); 1856 BUG_ON(path[depth].p_hdr == NULL); 1857 eh = path[depth].p_hdr; 1858 1859 if (ex > EXT_FIRST_EXTENT(eh)) 1860 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1861 1862 if (!merge_done) 1863 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1864 1865 ext4_ext_try_to_merge_up(handle, inode, path); 1866 } 1867 1868 /* 1869 * check if a portion of the "newext" extent overlaps with an 1870 * existing extent. 1871 * 1872 * If there is an overlap discovered, it updates the length of the newext 1873 * such that there will be no overlap, and then returns 1. 1874 * If there is no overlap found, it returns 0. 1875 */ 1876 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1877 struct inode *inode, 1878 struct ext4_extent *newext, 1879 struct ext4_ext_path *path) 1880 { 1881 ext4_lblk_t b1, b2; 1882 unsigned int depth, len1; 1883 unsigned int ret = 0; 1884 1885 b1 = le32_to_cpu(newext->ee_block); 1886 len1 = ext4_ext_get_actual_len(newext); 1887 depth = ext_depth(inode); 1888 if (!path[depth].p_ext) 1889 goto out; 1890 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1891 1892 /* 1893 * get the next allocated block if the extent in the path 1894 * is before the requested block(s) 1895 */ 1896 if (b2 < b1) { 1897 b2 = ext4_ext_next_allocated_block(path); 1898 if (b2 == EXT_MAX_BLOCKS) 1899 goto out; 1900 b2 = EXT4_LBLK_CMASK(sbi, b2); 1901 } 1902 1903 /* check for wrap through zero on extent logical start block*/ 1904 if (b1 + len1 < b1) { 1905 len1 = EXT_MAX_BLOCKS - b1; 1906 newext->ee_len = cpu_to_le16(len1); 1907 ret = 1; 1908 } 1909 1910 /* check for overlap */ 1911 if (b1 + len1 > b2) { 1912 newext->ee_len = cpu_to_le16(b2 - b1); 1913 ret = 1; 1914 } 1915 out: 1916 return ret; 1917 } 1918 1919 /* 1920 * ext4_ext_insert_extent: 1921 * tries to merge requsted extent into the existing extent or 1922 * inserts requested extent as new one into the tree, 1923 * creating new leaf in the no-space case. 1924 */ 1925 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1926 struct ext4_ext_path **ppath, 1927 struct ext4_extent *newext, int gb_flags) 1928 { 1929 struct ext4_ext_path *path = *ppath; 1930 struct ext4_extent_header *eh; 1931 struct ext4_extent *ex, *fex; 1932 struct ext4_extent *nearex; /* nearest extent */ 1933 struct ext4_ext_path *npath = NULL; 1934 int depth, len, err; 1935 ext4_lblk_t next; 1936 int mb_flags = 0, unwritten; 1937 1938 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1939 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1940 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1941 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1942 return -EFSCORRUPTED; 1943 } 1944 depth = ext_depth(inode); 1945 ex = path[depth].p_ext; 1946 eh = path[depth].p_hdr; 1947 if (unlikely(path[depth].p_hdr == NULL)) { 1948 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1949 return -EFSCORRUPTED; 1950 } 1951 1952 /* try to insert block into found extent and return */ 1953 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1954 1955 /* 1956 * Try to see whether we should rather test the extent on 1957 * right from ex, or from the left of ex. This is because 1958 * ext4_find_extent() can return either extent on the 1959 * left, or on the right from the searched position. This 1960 * will make merging more effective. 1961 */ 1962 if (ex < EXT_LAST_EXTENT(eh) && 1963 (le32_to_cpu(ex->ee_block) + 1964 ext4_ext_get_actual_len(ex) < 1965 le32_to_cpu(newext->ee_block))) { 1966 ex += 1; 1967 goto prepend; 1968 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1969 (le32_to_cpu(newext->ee_block) + 1970 ext4_ext_get_actual_len(newext) < 1971 le32_to_cpu(ex->ee_block))) 1972 ex -= 1; 1973 1974 /* Try to append newex to the ex */ 1975 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1976 ext_debug("append [%d]%d block to %u:[%d]%d" 1977 "(from %llu)\n", 1978 ext4_ext_is_unwritten(newext), 1979 ext4_ext_get_actual_len(newext), 1980 le32_to_cpu(ex->ee_block), 1981 ext4_ext_is_unwritten(ex), 1982 ext4_ext_get_actual_len(ex), 1983 ext4_ext_pblock(ex)); 1984 err = ext4_ext_get_access(handle, inode, 1985 path + depth); 1986 if (err) 1987 return err; 1988 unwritten = ext4_ext_is_unwritten(ex); 1989 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1990 + ext4_ext_get_actual_len(newext)); 1991 if (unwritten) 1992 ext4_ext_mark_unwritten(ex); 1993 eh = path[depth].p_hdr; 1994 nearex = ex; 1995 goto merge; 1996 } 1997 1998 prepend: 1999 /* Try to prepend newex to the ex */ 2000 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2001 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2002 "(from %llu)\n", 2003 le32_to_cpu(newext->ee_block), 2004 ext4_ext_is_unwritten(newext), 2005 ext4_ext_get_actual_len(newext), 2006 le32_to_cpu(ex->ee_block), 2007 ext4_ext_is_unwritten(ex), 2008 ext4_ext_get_actual_len(ex), 2009 ext4_ext_pblock(ex)); 2010 err = ext4_ext_get_access(handle, inode, 2011 path + depth); 2012 if (err) 2013 return err; 2014 2015 unwritten = ext4_ext_is_unwritten(ex); 2016 ex->ee_block = newext->ee_block; 2017 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2018 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2019 + ext4_ext_get_actual_len(newext)); 2020 if (unwritten) 2021 ext4_ext_mark_unwritten(ex); 2022 eh = path[depth].p_hdr; 2023 nearex = ex; 2024 goto merge; 2025 } 2026 } 2027 2028 depth = ext_depth(inode); 2029 eh = path[depth].p_hdr; 2030 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2031 goto has_space; 2032 2033 /* probably next leaf has space for us? */ 2034 fex = EXT_LAST_EXTENT(eh); 2035 next = EXT_MAX_BLOCKS; 2036 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2037 next = ext4_ext_next_leaf_block(path); 2038 if (next != EXT_MAX_BLOCKS) { 2039 ext_debug("next leaf block - %u\n", next); 2040 BUG_ON(npath != NULL); 2041 npath = ext4_find_extent(inode, next, NULL, 0); 2042 if (IS_ERR(npath)) 2043 return PTR_ERR(npath); 2044 BUG_ON(npath->p_depth != path->p_depth); 2045 eh = npath[depth].p_hdr; 2046 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2047 ext_debug("next leaf isn't full(%d)\n", 2048 le16_to_cpu(eh->eh_entries)); 2049 path = npath; 2050 goto has_space; 2051 } 2052 ext_debug("next leaf has no free space(%d,%d)\n", 2053 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2054 } 2055 2056 /* 2057 * There is no free space in the found leaf. 2058 * We're gonna add a new leaf in the tree. 2059 */ 2060 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2061 mb_flags |= EXT4_MB_USE_RESERVED; 2062 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2063 ppath, newext); 2064 if (err) 2065 goto cleanup; 2066 depth = ext_depth(inode); 2067 eh = path[depth].p_hdr; 2068 2069 has_space: 2070 nearex = path[depth].p_ext; 2071 2072 err = ext4_ext_get_access(handle, inode, path + depth); 2073 if (err) 2074 goto cleanup; 2075 2076 if (!nearex) { 2077 /* there is no extent in this leaf, create first one */ 2078 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2079 le32_to_cpu(newext->ee_block), 2080 ext4_ext_pblock(newext), 2081 ext4_ext_is_unwritten(newext), 2082 ext4_ext_get_actual_len(newext)); 2083 nearex = EXT_FIRST_EXTENT(eh); 2084 } else { 2085 if (le32_to_cpu(newext->ee_block) 2086 > le32_to_cpu(nearex->ee_block)) { 2087 /* Insert after */ 2088 ext_debug("insert %u:%llu:[%d]%d before: " 2089 "nearest %p\n", 2090 le32_to_cpu(newext->ee_block), 2091 ext4_ext_pblock(newext), 2092 ext4_ext_is_unwritten(newext), 2093 ext4_ext_get_actual_len(newext), 2094 nearex); 2095 nearex++; 2096 } else { 2097 /* Insert before */ 2098 BUG_ON(newext->ee_block == nearex->ee_block); 2099 ext_debug("insert %u:%llu:[%d]%d after: " 2100 "nearest %p\n", 2101 le32_to_cpu(newext->ee_block), 2102 ext4_ext_pblock(newext), 2103 ext4_ext_is_unwritten(newext), 2104 ext4_ext_get_actual_len(newext), 2105 nearex); 2106 } 2107 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2108 if (len > 0) { 2109 ext_debug("insert %u:%llu:[%d]%d: " 2110 "move %d extents from 0x%p to 0x%p\n", 2111 le32_to_cpu(newext->ee_block), 2112 ext4_ext_pblock(newext), 2113 ext4_ext_is_unwritten(newext), 2114 ext4_ext_get_actual_len(newext), 2115 len, nearex, nearex + 1); 2116 memmove(nearex + 1, nearex, 2117 len * sizeof(struct ext4_extent)); 2118 } 2119 } 2120 2121 le16_add_cpu(&eh->eh_entries, 1); 2122 path[depth].p_ext = nearex; 2123 nearex->ee_block = newext->ee_block; 2124 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2125 nearex->ee_len = newext->ee_len; 2126 2127 merge: 2128 /* try to merge extents */ 2129 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2130 ext4_ext_try_to_merge(handle, inode, path, nearex); 2131 2132 2133 /* time to correct all indexes above */ 2134 err = ext4_ext_correct_indexes(handle, inode, path); 2135 if (err) 2136 goto cleanup; 2137 2138 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2139 2140 cleanup: 2141 ext4_ext_drop_refs(npath); 2142 kfree(npath); 2143 return err; 2144 } 2145 2146 static int ext4_fill_fiemap_extents(struct inode *inode, 2147 ext4_lblk_t block, ext4_lblk_t num, 2148 struct fiemap_extent_info *fieinfo) 2149 { 2150 struct ext4_ext_path *path = NULL; 2151 struct ext4_extent *ex; 2152 struct extent_status es; 2153 ext4_lblk_t next, next_del, start = 0, end = 0; 2154 ext4_lblk_t last = block + num; 2155 int exists, depth = 0, err = 0; 2156 unsigned int flags = 0; 2157 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2158 2159 while (block < last && block != EXT_MAX_BLOCKS) { 2160 num = last - block; 2161 /* find extent for this block */ 2162 down_read(&EXT4_I(inode)->i_data_sem); 2163 2164 path = ext4_find_extent(inode, block, &path, 0); 2165 if (IS_ERR(path)) { 2166 up_read(&EXT4_I(inode)->i_data_sem); 2167 err = PTR_ERR(path); 2168 path = NULL; 2169 break; 2170 } 2171 2172 depth = ext_depth(inode); 2173 if (unlikely(path[depth].p_hdr == NULL)) { 2174 up_read(&EXT4_I(inode)->i_data_sem); 2175 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2176 err = -EFSCORRUPTED; 2177 break; 2178 } 2179 ex = path[depth].p_ext; 2180 next = ext4_ext_next_allocated_block(path); 2181 2182 flags = 0; 2183 exists = 0; 2184 if (!ex) { 2185 /* there is no extent yet, so try to allocate 2186 * all requested space */ 2187 start = block; 2188 end = block + num; 2189 } else if (le32_to_cpu(ex->ee_block) > block) { 2190 /* need to allocate space before found extent */ 2191 start = block; 2192 end = le32_to_cpu(ex->ee_block); 2193 if (block + num < end) 2194 end = block + num; 2195 } else if (block >= le32_to_cpu(ex->ee_block) 2196 + ext4_ext_get_actual_len(ex)) { 2197 /* need to allocate space after found extent */ 2198 start = block; 2199 end = block + num; 2200 if (end >= next) 2201 end = next; 2202 } else if (block >= le32_to_cpu(ex->ee_block)) { 2203 /* 2204 * some part of requested space is covered 2205 * by found extent 2206 */ 2207 start = block; 2208 end = le32_to_cpu(ex->ee_block) 2209 + ext4_ext_get_actual_len(ex); 2210 if (block + num < end) 2211 end = block + num; 2212 exists = 1; 2213 } else { 2214 BUG(); 2215 } 2216 BUG_ON(end <= start); 2217 2218 if (!exists) { 2219 es.es_lblk = start; 2220 es.es_len = end - start; 2221 es.es_pblk = 0; 2222 } else { 2223 es.es_lblk = le32_to_cpu(ex->ee_block); 2224 es.es_len = ext4_ext_get_actual_len(ex); 2225 es.es_pblk = ext4_ext_pblock(ex); 2226 if (ext4_ext_is_unwritten(ex)) 2227 flags |= FIEMAP_EXTENT_UNWRITTEN; 2228 } 2229 2230 /* 2231 * Find delayed extent and update es accordingly. We call 2232 * it even in !exists case to find out whether es is the 2233 * last existing extent or not. 2234 */ 2235 next_del = ext4_find_delayed_extent(inode, &es); 2236 if (!exists && next_del) { 2237 exists = 1; 2238 flags |= (FIEMAP_EXTENT_DELALLOC | 2239 FIEMAP_EXTENT_UNKNOWN); 2240 } 2241 up_read(&EXT4_I(inode)->i_data_sem); 2242 2243 if (unlikely(es.es_len == 0)) { 2244 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2245 err = -EFSCORRUPTED; 2246 break; 2247 } 2248 2249 /* 2250 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2251 * we need to check next == EXT_MAX_BLOCKS because it is 2252 * possible that an extent is with unwritten and delayed 2253 * status due to when an extent is delayed allocated and 2254 * is allocated by fallocate status tree will track both of 2255 * them in a extent. 2256 * 2257 * So we could return a unwritten and delayed extent, and 2258 * its block is equal to 'next'. 2259 */ 2260 if (next == next_del && next == EXT_MAX_BLOCKS) { 2261 flags |= FIEMAP_EXTENT_LAST; 2262 if (unlikely(next_del != EXT_MAX_BLOCKS || 2263 next != EXT_MAX_BLOCKS)) { 2264 EXT4_ERROR_INODE(inode, 2265 "next extent == %u, next " 2266 "delalloc extent = %u", 2267 next, next_del); 2268 err = -EFSCORRUPTED; 2269 break; 2270 } 2271 } 2272 2273 if (exists) { 2274 err = fiemap_fill_next_extent(fieinfo, 2275 (__u64)es.es_lblk << blksize_bits, 2276 (__u64)es.es_pblk << blksize_bits, 2277 (__u64)es.es_len << blksize_bits, 2278 flags); 2279 if (err < 0) 2280 break; 2281 if (err == 1) { 2282 err = 0; 2283 break; 2284 } 2285 } 2286 2287 block = es.es_lblk + es.es_len; 2288 } 2289 2290 ext4_ext_drop_refs(path); 2291 kfree(path); 2292 return err; 2293 } 2294 2295 /* 2296 * ext4_ext_put_gap_in_cache: 2297 * calculate boundaries of the gap that the requested block fits into 2298 * and cache this gap 2299 */ 2300 static void 2301 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2302 ext4_lblk_t block) 2303 { 2304 int depth = ext_depth(inode); 2305 ext4_lblk_t len; 2306 ext4_lblk_t lblock; 2307 struct ext4_extent *ex; 2308 struct extent_status es; 2309 2310 ex = path[depth].p_ext; 2311 if (ex == NULL) { 2312 /* there is no extent yet, so gap is [0;-] */ 2313 lblock = 0; 2314 len = EXT_MAX_BLOCKS; 2315 ext_debug("cache gap(whole file):"); 2316 } else if (block < le32_to_cpu(ex->ee_block)) { 2317 lblock = block; 2318 len = le32_to_cpu(ex->ee_block) - block; 2319 ext_debug("cache gap(before): %u [%u:%u]", 2320 block, 2321 le32_to_cpu(ex->ee_block), 2322 ext4_ext_get_actual_len(ex)); 2323 } else if (block >= le32_to_cpu(ex->ee_block) 2324 + ext4_ext_get_actual_len(ex)) { 2325 ext4_lblk_t next; 2326 lblock = le32_to_cpu(ex->ee_block) 2327 + ext4_ext_get_actual_len(ex); 2328 2329 next = ext4_ext_next_allocated_block(path); 2330 ext_debug("cache gap(after): [%u:%u] %u", 2331 le32_to_cpu(ex->ee_block), 2332 ext4_ext_get_actual_len(ex), 2333 block); 2334 BUG_ON(next == lblock); 2335 len = next - lblock; 2336 } else { 2337 BUG(); 2338 } 2339 2340 ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es); 2341 if (es.es_len) { 2342 /* There's delayed extent containing lblock? */ 2343 if (es.es_lblk <= lblock) 2344 return; 2345 len = min(es.es_lblk - lblock, len); 2346 } 2347 ext_debug(" -> %u:%u\n", lblock, len); 2348 ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE); 2349 } 2350 2351 /* 2352 * ext4_ext_rm_idx: 2353 * removes index from the index block. 2354 */ 2355 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2356 struct ext4_ext_path *path, int depth) 2357 { 2358 int err; 2359 ext4_fsblk_t leaf; 2360 2361 /* free index block */ 2362 depth--; 2363 path = path + depth; 2364 leaf = ext4_idx_pblock(path->p_idx); 2365 if (unlikely(path->p_hdr->eh_entries == 0)) { 2366 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2367 return -EFSCORRUPTED; 2368 } 2369 err = ext4_ext_get_access(handle, inode, path); 2370 if (err) 2371 return err; 2372 2373 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2374 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2375 len *= sizeof(struct ext4_extent_idx); 2376 memmove(path->p_idx, path->p_idx + 1, len); 2377 } 2378 2379 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2380 err = ext4_ext_dirty(handle, inode, path); 2381 if (err) 2382 return err; 2383 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2384 trace_ext4_ext_rm_idx(inode, leaf); 2385 2386 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2387 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2388 2389 while (--depth >= 0) { 2390 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2391 break; 2392 path--; 2393 err = ext4_ext_get_access(handle, inode, path); 2394 if (err) 2395 break; 2396 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2397 err = ext4_ext_dirty(handle, inode, path); 2398 if (err) 2399 break; 2400 } 2401 return err; 2402 } 2403 2404 /* 2405 * ext4_ext_calc_credits_for_single_extent: 2406 * This routine returns max. credits that needed to insert an extent 2407 * to the extent tree. 2408 * When pass the actual path, the caller should calculate credits 2409 * under i_data_sem. 2410 */ 2411 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2412 struct ext4_ext_path *path) 2413 { 2414 if (path) { 2415 int depth = ext_depth(inode); 2416 int ret = 0; 2417 2418 /* probably there is space in leaf? */ 2419 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2420 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2421 2422 /* 2423 * There are some space in the leaf tree, no 2424 * need to account for leaf block credit 2425 * 2426 * bitmaps and block group descriptor blocks 2427 * and other metadata blocks still need to be 2428 * accounted. 2429 */ 2430 /* 1 bitmap, 1 block group descriptor */ 2431 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2432 return ret; 2433 } 2434 } 2435 2436 return ext4_chunk_trans_blocks(inode, nrblocks); 2437 } 2438 2439 /* 2440 * How many index/leaf blocks need to change/allocate to add @extents extents? 2441 * 2442 * If we add a single extent, then in the worse case, each tree level 2443 * index/leaf need to be changed in case of the tree split. 2444 * 2445 * If more extents are inserted, they could cause the whole tree split more 2446 * than once, but this is really rare. 2447 */ 2448 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2449 { 2450 int index; 2451 int depth; 2452 2453 /* If we are converting the inline data, only one is needed here. */ 2454 if (ext4_has_inline_data(inode)) 2455 return 1; 2456 2457 depth = ext_depth(inode); 2458 2459 if (extents <= 1) 2460 index = depth * 2; 2461 else 2462 index = depth * 3; 2463 2464 return index; 2465 } 2466 2467 static inline int get_default_free_blocks_flags(struct inode *inode) 2468 { 2469 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2470 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2471 else if (ext4_should_journal_data(inode)) 2472 return EXT4_FREE_BLOCKS_FORGET; 2473 return 0; 2474 } 2475 2476 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2477 struct ext4_extent *ex, 2478 long long *partial_cluster, 2479 ext4_lblk_t from, ext4_lblk_t to) 2480 { 2481 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2482 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2483 ext4_fsblk_t pblk; 2484 int flags = get_default_free_blocks_flags(inode); 2485 2486 /* 2487 * For bigalloc file systems, we never free a partial cluster 2488 * at the beginning of the extent. Instead, we make a note 2489 * that we tried freeing the cluster, and check to see if we 2490 * need to free it on a subsequent call to ext4_remove_blocks, 2491 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2492 */ 2493 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2494 2495 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2496 /* 2497 * If we have a partial cluster, and it's different from the 2498 * cluster of the last block, we need to explicitly free the 2499 * partial cluster here. 2500 */ 2501 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2502 if (*partial_cluster > 0 && 2503 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2504 ext4_free_blocks(handle, inode, NULL, 2505 EXT4_C2B(sbi, *partial_cluster), 2506 sbi->s_cluster_ratio, flags); 2507 *partial_cluster = 0; 2508 } 2509 2510 #ifdef EXTENTS_STATS 2511 { 2512 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2513 spin_lock(&sbi->s_ext_stats_lock); 2514 sbi->s_ext_blocks += ee_len; 2515 sbi->s_ext_extents++; 2516 if (ee_len < sbi->s_ext_min) 2517 sbi->s_ext_min = ee_len; 2518 if (ee_len > sbi->s_ext_max) 2519 sbi->s_ext_max = ee_len; 2520 if (ext_depth(inode) > sbi->s_depth_max) 2521 sbi->s_depth_max = ext_depth(inode); 2522 spin_unlock(&sbi->s_ext_stats_lock); 2523 } 2524 #endif 2525 if (from >= le32_to_cpu(ex->ee_block) 2526 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2527 /* tail removal */ 2528 ext4_lblk_t num; 2529 long long first_cluster; 2530 2531 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2532 pblk = ext4_ext_pblock(ex) + ee_len - num; 2533 /* 2534 * Usually we want to free partial cluster at the end of the 2535 * extent, except for the situation when the cluster is still 2536 * used by any other extent (partial_cluster is negative). 2537 */ 2538 if (*partial_cluster < 0 && 2539 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2540 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2541 2542 ext_debug("free last %u blocks starting %llu partial %lld\n", 2543 num, pblk, *partial_cluster); 2544 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2545 /* 2546 * If the block range to be freed didn't start at the 2547 * beginning of a cluster, and we removed the entire 2548 * extent and the cluster is not used by any other extent, 2549 * save the partial cluster here, since we might need to 2550 * delete if we determine that the truncate or punch hole 2551 * operation has removed all of the blocks in the cluster. 2552 * If that cluster is used by another extent, preserve its 2553 * negative value so it isn't freed later on. 2554 * 2555 * If the whole extent wasn't freed, we've reached the 2556 * start of the truncated/punched region and have finished 2557 * removing blocks. If there's a partial cluster here it's 2558 * shared with the remainder of the extent and is no longer 2559 * a candidate for removal. 2560 */ 2561 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2562 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2563 if (first_cluster != -*partial_cluster) 2564 *partial_cluster = first_cluster; 2565 } else { 2566 *partial_cluster = 0; 2567 } 2568 } else 2569 ext4_error(sbi->s_sb, "strange request: removal(2) " 2570 "%u-%u from %u:%u\n", 2571 from, to, le32_to_cpu(ex->ee_block), ee_len); 2572 return 0; 2573 } 2574 2575 2576 /* 2577 * ext4_ext_rm_leaf() Removes the extents associated with the 2578 * blocks appearing between "start" and "end". Both "start" 2579 * and "end" must appear in the same extent or EIO is returned. 2580 * 2581 * @handle: The journal handle 2582 * @inode: The files inode 2583 * @path: The path to the leaf 2584 * @partial_cluster: The cluster which we'll have to free if all extents 2585 * has been released from it. However, if this value is 2586 * negative, it's a cluster just to the right of the 2587 * punched region and it must not be freed. 2588 * @start: The first block to remove 2589 * @end: The last block to remove 2590 */ 2591 static int 2592 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2593 struct ext4_ext_path *path, 2594 long long *partial_cluster, 2595 ext4_lblk_t start, ext4_lblk_t end) 2596 { 2597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2598 int err = 0, correct_index = 0; 2599 int depth = ext_depth(inode), credits; 2600 struct ext4_extent_header *eh; 2601 ext4_lblk_t a, b; 2602 unsigned num; 2603 ext4_lblk_t ex_ee_block; 2604 unsigned short ex_ee_len; 2605 unsigned unwritten = 0; 2606 struct ext4_extent *ex; 2607 ext4_fsblk_t pblk; 2608 2609 /* the header must be checked already in ext4_ext_remove_space() */ 2610 ext_debug("truncate since %u in leaf to %u\n", start, end); 2611 if (!path[depth].p_hdr) 2612 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2613 eh = path[depth].p_hdr; 2614 if (unlikely(path[depth].p_hdr == NULL)) { 2615 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2616 return -EFSCORRUPTED; 2617 } 2618 /* find where to start removing */ 2619 ex = path[depth].p_ext; 2620 if (!ex) 2621 ex = EXT_LAST_EXTENT(eh); 2622 2623 ex_ee_block = le32_to_cpu(ex->ee_block); 2624 ex_ee_len = ext4_ext_get_actual_len(ex); 2625 2626 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2627 2628 while (ex >= EXT_FIRST_EXTENT(eh) && 2629 ex_ee_block + ex_ee_len > start) { 2630 2631 if (ext4_ext_is_unwritten(ex)) 2632 unwritten = 1; 2633 else 2634 unwritten = 0; 2635 2636 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2637 unwritten, ex_ee_len); 2638 path[depth].p_ext = ex; 2639 2640 a = ex_ee_block > start ? ex_ee_block : start; 2641 b = ex_ee_block+ex_ee_len - 1 < end ? 2642 ex_ee_block+ex_ee_len - 1 : end; 2643 2644 ext_debug(" border %u:%u\n", a, b); 2645 2646 /* If this extent is beyond the end of the hole, skip it */ 2647 if (end < ex_ee_block) { 2648 /* 2649 * We're going to skip this extent and move to another, 2650 * so note that its first cluster is in use to avoid 2651 * freeing it when removing blocks. Eventually, the 2652 * right edge of the truncated/punched region will 2653 * be just to the left. 2654 */ 2655 if (sbi->s_cluster_ratio > 1) { 2656 pblk = ext4_ext_pblock(ex); 2657 *partial_cluster = 2658 -(long long) EXT4_B2C(sbi, pblk); 2659 } 2660 ex--; 2661 ex_ee_block = le32_to_cpu(ex->ee_block); 2662 ex_ee_len = ext4_ext_get_actual_len(ex); 2663 continue; 2664 } else if (b != ex_ee_block + ex_ee_len - 1) { 2665 EXT4_ERROR_INODE(inode, 2666 "can not handle truncate %u:%u " 2667 "on extent %u:%u", 2668 start, end, ex_ee_block, 2669 ex_ee_block + ex_ee_len - 1); 2670 err = -EFSCORRUPTED; 2671 goto out; 2672 } else if (a != ex_ee_block) { 2673 /* remove tail of the extent */ 2674 num = a - ex_ee_block; 2675 } else { 2676 /* remove whole extent: excellent! */ 2677 num = 0; 2678 } 2679 /* 2680 * 3 for leaf, sb, and inode plus 2 (bmap and group 2681 * descriptor) for each block group; assume two block 2682 * groups plus ex_ee_len/blocks_per_block_group for 2683 * the worst case 2684 */ 2685 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2686 if (ex == EXT_FIRST_EXTENT(eh)) { 2687 correct_index = 1; 2688 credits += (ext_depth(inode)) + 1; 2689 } 2690 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2691 2692 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2693 if (err) 2694 goto out; 2695 2696 err = ext4_ext_get_access(handle, inode, path + depth); 2697 if (err) 2698 goto out; 2699 2700 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2701 a, b); 2702 if (err) 2703 goto out; 2704 2705 if (num == 0) 2706 /* this extent is removed; mark slot entirely unused */ 2707 ext4_ext_store_pblock(ex, 0); 2708 2709 ex->ee_len = cpu_to_le16(num); 2710 /* 2711 * Do not mark unwritten if all the blocks in the 2712 * extent have been removed. 2713 */ 2714 if (unwritten && num) 2715 ext4_ext_mark_unwritten(ex); 2716 /* 2717 * If the extent was completely released, 2718 * we need to remove it from the leaf 2719 */ 2720 if (num == 0) { 2721 if (end != EXT_MAX_BLOCKS - 1) { 2722 /* 2723 * For hole punching, we need to scoot all the 2724 * extents up when an extent is removed so that 2725 * we dont have blank extents in the middle 2726 */ 2727 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2728 sizeof(struct ext4_extent)); 2729 2730 /* Now get rid of the one at the end */ 2731 memset(EXT_LAST_EXTENT(eh), 0, 2732 sizeof(struct ext4_extent)); 2733 } 2734 le16_add_cpu(&eh->eh_entries, -1); 2735 } 2736 2737 err = ext4_ext_dirty(handle, inode, path + depth); 2738 if (err) 2739 goto out; 2740 2741 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2742 ext4_ext_pblock(ex)); 2743 ex--; 2744 ex_ee_block = le32_to_cpu(ex->ee_block); 2745 ex_ee_len = ext4_ext_get_actual_len(ex); 2746 } 2747 2748 if (correct_index && eh->eh_entries) 2749 err = ext4_ext_correct_indexes(handle, inode, path); 2750 2751 /* 2752 * If there's a partial cluster and at least one extent remains in 2753 * the leaf, free the partial cluster if it isn't shared with the 2754 * current extent. If it is shared with the current extent 2755 * we zero partial_cluster because we've reached the start of the 2756 * truncated/punched region and we're done removing blocks. 2757 */ 2758 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2759 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2760 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2761 ext4_free_blocks(handle, inode, NULL, 2762 EXT4_C2B(sbi, *partial_cluster), 2763 sbi->s_cluster_ratio, 2764 get_default_free_blocks_flags(inode)); 2765 } 2766 *partial_cluster = 0; 2767 } 2768 2769 /* if this leaf is free, then we should 2770 * remove it from index block above */ 2771 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2772 err = ext4_ext_rm_idx(handle, inode, path, depth); 2773 2774 out: 2775 return err; 2776 } 2777 2778 /* 2779 * ext4_ext_more_to_rm: 2780 * returns 1 if current index has to be freed (even partial) 2781 */ 2782 static int 2783 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2784 { 2785 BUG_ON(path->p_idx == NULL); 2786 2787 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2788 return 0; 2789 2790 /* 2791 * if truncate on deeper level happened, it wasn't partial, 2792 * so we have to consider current index for truncation 2793 */ 2794 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2795 return 0; 2796 return 1; 2797 } 2798 2799 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2800 ext4_lblk_t end) 2801 { 2802 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2803 int depth = ext_depth(inode); 2804 struct ext4_ext_path *path = NULL; 2805 long long partial_cluster = 0; 2806 handle_t *handle; 2807 int i = 0, err = 0; 2808 2809 ext_debug("truncate since %u to %u\n", start, end); 2810 2811 /* probably first extent we're gonna free will be last in block */ 2812 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2813 if (IS_ERR(handle)) 2814 return PTR_ERR(handle); 2815 2816 again: 2817 trace_ext4_ext_remove_space(inode, start, end, depth); 2818 2819 /* 2820 * Check if we are removing extents inside the extent tree. If that 2821 * is the case, we are going to punch a hole inside the extent tree 2822 * so we have to check whether we need to split the extent covering 2823 * the last block to remove so we can easily remove the part of it 2824 * in ext4_ext_rm_leaf(). 2825 */ 2826 if (end < EXT_MAX_BLOCKS - 1) { 2827 struct ext4_extent *ex; 2828 ext4_lblk_t ee_block, ex_end, lblk; 2829 ext4_fsblk_t pblk; 2830 2831 /* find extent for or closest extent to this block */ 2832 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2833 if (IS_ERR(path)) { 2834 ext4_journal_stop(handle); 2835 return PTR_ERR(path); 2836 } 2837 depth = ext_depth(inode); 2838 /* Leaf not may not exist only if inode has no blocks at all */ 2839 ex = path[depth].p_ext; 2840 if (!ex) { 2841 if (depth) { 2842 EXT4_ERROR_INODE(inode, 2843 "path[%d].p_hdr == NULL", 2844 depth); 2845 err = -EFSCORRUPTED; 2846 } 2847 goto out; 2848 } 2849 2850 ee_block = le32_to_cpu(ex->ee_block); 2851 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2852 2853 /* 2854 * See if the last block is inside the extent, if so split 2855 * the extent at 'end' block so we can easily remove the 2856 * tail of the first part of the split extent in 2857 * ext4_ext_rm_leaf(). 2858 */ 2859 if (end >= ee_block && end < ex_end) { 2860 2861 /* 2862 * If we're going to split the extent, note that 2863 * the cluster containing the block after 'end' is 2864 * in use to avoid freeing it when removing blocks. 2865 */ 2866 if (sbi->s_cluster_ratio > 1) { 2867 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2868 partial_cluster = 2869 -(long long) EXT4_B2C(sbi, pblk); 2870 } 2871 2872 /* 2873 * Split the extent in two so that 'end' is the last 2874 * block in the first new extent. Also we should not 2875 * fail removing space due to ENOSPC so try to use 2876 * reserved block if that happens. 2877 */ 2878 err = ext4_force_split_extent_at(handle, inode, &path, 2879 end + 1, 1); 2880 if (err < 0) 2881 goto out; 2882 2883 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2884 /* 2885 * If there's an extent to the right its first cluster 2886 * contains the immediate right boundary of the 2887 * truncated/punched region. Set partial_cluster to 2888 * its negative value so it won't be freed if shared 2889 * with the current extent. The end < ee_block case 2890 * is handled in ext4_ext_rm_leaf(). 2891 */ 2892 lblk = ex_end + 1; 2893 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2894 &ex); 2895 if (err) 2896 goto out; 2897 if (pblk) 2898 partial_cluster = 2899 -(long long) EXT4_B2C(sbi, pblk); 2900 } 2901 } 2902 /* 2903 * We start scanning from right side, freeing all the blocks 2904 * after i_size and walking into the tree depth-wise. 2905 */ 2906 depth = ext_depth(inode); 2907 if (path) { 2908 int k = i = depth; 2909 while (--k > 0) 2910 path[k].p_block = 2911 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2912 } else { 2913 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2914 GFP_NOFS); 2915 if (path == NULL) { 2916 ext4_journal_stop(handle); 2917 return -ENOMEM; 2918 } 2919 path[0].p_maxdepth = path[0].p_depth = depth; 2920 path[0].p_hdr = ext_inode_hdr(inode); 2921 i = 0; 2922 2923 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2924 err = -EFSCORRUPTED; 2925 goto out; 2926 } 2927 } 2928 err = 0; 2929 2930 while (i >= 0 && err == 0) { 2931 if (i == depth) { 2932 /* this is leaf block */ 2933 err = ext4_ext_rm_leaf(handle, inode, path, 2934 &partial_cluster, start, 2935 end); 2936 /* root level has p_bh == NULL, brelse() eats this */ 2937 brelse(path[i].p_bh); 2938 path[i].p_bh = NULL; 2939 i--; 2940 continue; 2941 } 2942 2943 /* this is index block */ 2944 if (!path[i].p_hdr) { 2945 ext_debug("initialize header\n"); 2946 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2947 } 2948 2949 if (!path[i].p_idx) { 2950 /* this level hasn't been touched yet */ 2951 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2952 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2953 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2954 path[i].p_hdr, 2955 le16_to_cpu(path[i].p_hdr->eh_entries)); 2956 } else { 2957 /* we were already here, see at next index */ 2958 path[i].p_idx--; 2959 } 2960 2961 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2962 i, EXT_FIRST_INDEX(path[i].p_hdr), 2963 path[i].p_idx); 2964 if (ext4_ext_more_to_rm(path + i)) { 2965 struct buffer_head *bh; 2966 /* go to the next level */ 2967 ext_debug("move to level %d (block %llu)\n", 2968 i + 1, ext4_idx_pblock(path[i].p_idx)); 2969 memset(path + i + 1, 0, sizeof(*path)); 2970 bh = read_extent_tree_block(inode, 2971 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2972 EXT4_EX_NOCACHE); 2973 if (IS_ERR(bh)) { 2974 /* should we reset i_size? */ 2975 err = PTR_ERR(bh); 2976 break; 2977 } 2978 /* Yield here to deal with large extent trees. 2979 * Should be a no-op if we did IO above. */ 2980 cond_resched(); 2981 if (WARN_ON(i + 1 > depth)) { 2982 err = -EFSCORRUPTED; 2983 break; 2984 } 2985 path[i + 1].p_bh = bh; 2986 2987 /* save actual number of indexes since this 2988 * number is changed at the next iteration */ 2989 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2990 i++; 2991 } else { 2992 /* we finished processing this index, go up */ 2993 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2994 /* index is empty, remove it; 2995 * handle must be already prepared by the 2996 * truncatei_leaf() */ 2997 err = ext4_ext_rm_idx(handle, inode, path, i); 2998 } 2999 /* root level has p_bh == NULL, brelse() eats this */ 3000 brelse(path[i].p_bh); 3001 path[i].p_bh = NULL; 3002 i--; 3003 ext_debug("return to level %d\n", i); 3004 } 3005 } 3006 3007 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3008 partial_cluster, path->p_hdr->eh_entries); 3009 3010 /* 3011 * If we still have something in the partial cluster and we have removed 3012 * even the first extent, then we should free the blocks in the partial 3013 * cluster as well. (This code will only run when there are no leaves 3014 * to the immediate left of the truncated/punched region.) 3015 */ 3016 if (partial_cluster > 0 && err == 0) { 3017 /* don't zero partial_cluster since it's not used afterwards */ 3018 ext4_free_blocks(handle, inode, NULL, 3019 EXT4_C2B(sbi, partial_cluster), 3020 sbi->s_cluster_ratio, 3021 get_default_free_blocks_flags(inode)); 3022 } 3023 3024 /* TODO: flexible tree reduction should be here */ 3025 if (path->p_hdr->eh_entries == 0) { 3026 /* 3027 * truncate to zero freed all the tree, 3028 * so we need to correct eh_depth 3029 */ 3030 err = ext4_ext_get_access(handle, inode, path); 3031 if (err == 0) { 3032 ext_inode_hdr(inode)->eh_depth = 0; 3033 ext_inode_hdr(inode)->eh_max = 3034 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3035 err = ext4_ext_dirty(handle, inode, path); 3036 } 3037 } 3038 out: 3039 ext4_ext_drop_refs(path); 3040 kfree(path); 3041 path = NULL; 3042 if (err == -EAGAIN) 3043 goto again; 3044 ext4_journal_stop(handle); 3045 3046 return err; 3047 } 3048 3049 /* 3050 * called at mount time 3051 */ 3052 void ext4_ext_init(struct super_block *sb) 3053 { 3054 /* 3055 * possible initialization would be here 3056 */ 3057 3058 if (ext4_has_feature_extents(sb)) { 3059 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3060 printk(KERN_INFO "EXT4-fs: file extents enabled" 3061 #ifdef AGGRESSIVE_TEST 3062 ", aggressive tests" 3063 #endif 3064 #ifdef CHECK_BINSEARCH 3065 ", check binsearch" 3066 #endif 3067 #ifdef EXTENTS_STATS 3068 ", stats" 3069 #endif 3070 "\n"); 3071 #endif 3072 #ifdef EXTENTS_STATS 3073 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3074 EXT4_SB(sb)->s_ext_min = 1 << 30; 3075 EXT4_SB(sb)->s_ext_max = 0; 3076 #endif 3077 } 3078 } 3079 3080 /* 3081 * called at umount time 3082 */ 3083 void ext4_ext_release(struct super_block *sb) 3084 { 3085 if (!ext4_has_feature_extents(sb)) 3086 return; 3087 3088 #ifdef EXTENTS_STATS 3089 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3090 struct ext4_sb_info *sbi = EXT4_SB(sb); 3091 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3092 sbi->s_ext_blocks, sbi->s_ext_extents, 3093 sbi->s_ext_blocks / sbi->s_ext_extents); 3094 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3095 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3096 } 3097 #endif 3098 } 3099 3100 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3101 { 3102 ext4_lblk_t ee_block; 3103 ext4_fsblk_t ee_pblock; 3104 unsigned int ee_len; 3105 3106 ee_block = le32_to_cpu(ex->ee_block); 3107 ee_len = ext4_ext_get_actual_len(ex); 3108 ee_pblock = ext4_ext_pblock(ex); 3109 3110 if (ee_len == 0) 3111 return 0; 3112 3113 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3114 EXTENT_STATUS_WRITTEN); 3115 } 3116 3117 /* FIXME!! we need to try to merge to left or right after zero-out */ 3118 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3119 { 3120 ext4_fsblk_t ee_pblock; 3121 unsigned int ee_len; 3122 3123 ee_len = ext4_ext_get_actual_len(ex); 3124 ee_pblock = ext4_ext_pblock(ex); 3125 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3126 ee_len); 3127 } 3128 3129 /* 3130 * ext4_split_extent_at() splits an extent at given block. 3131 * 3132 * @handle: the journal handle 3133 * @inode: the file inode 3134 * @path: the path to the extent 3135 * @split: the logical block where the extent is splitted. 3136 * @split_flags: indicates if the extent could be zeroout if split fails, and 3137 * the states(init or unwritten) of new extents. 3138 * @flags: flags used to insert new extent to extent tree. 3139 * 3140 * 3141 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3142 * of which are deterimined by split_flag. 3143 * 3144 * There are two cases: 3145 * a> the extent are splitted into two extent. 3146 * b> split is not needed, and just mark the extent. 3147 * 3148 * return 0 on success. 3149 */ 3150 static int ext4_split_extent_at(handle_t *handle, 3151 struct inode *inode, 3152 struct ext4_ext_path **ppath, 3153 ext4_lblk_t split, 3154 int split_flag, 3155 int flags) 3156 { 3157 struct ext4_ext_path *path = *ppath; 3158 ext4_fsblk_t newblock; 3159 ext4_lblk_t ee_block; 3160 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3161 struct ext4_extent *ex2 = NULL; 3162 unsigned int ee_len, depth; 3163 int err = 0; 3164 3165 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3166 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3167 3168 ext_debug("ext4_split_extents_at: inode %lu, logical" 3169 "block %llu\n", inode->i_ino, (unsigned long long)split); 3170 3171 ext4_ext_show_leaf(inode, path); 3172 3173 depth = ext_depth(inode); 3174 ex = path[depth].p_ext; 3175 ee_block = le32_to_cpu(ex->ee_block); 3176 ee_len = ext4_ext_get_actual_len(ex); 3177 newblock = split - ee_block + ext4_ext_pblock(ex); 3178 3179 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3180 BUG_ON(!ext4_ext_is_unwritten(ex) && 3181 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3182 EXT4_EXT_MARK_UNWRIT1 | 3183 EXT4_EXT_MARK_UNWRIT2)); 3184 3185 err = ext4_ext_get_access(handle, inode, path + depth); 3186 if (err) 3187 goto out; 3188 3189 if (split == ee_block) { 3190 /* 3191 * case b: block @split is the block that the extent begins with 3192 * then we just change the state of the extent, and splitting 3193 * is not needed. 3194 */ 3195 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3196 ext4_ext_mark_unwritten(ex); 3197 else 3198 ext4_ext_mark_initialized(ex); 3199 3200 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3201 ext4_ext_try_to_merge(handle, inode, path, ex); 3202 3203 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3204 goto out; 3205 } 3206 3207 /* case a */ 3208 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3209 ex->ee_len = cpu_to_le16(split - ee_block); 3210 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3211 ext4_ext_mark_unwritten(ex); 3212 3213 /* 3214 * path may lead to new leaf, not to original leaf any more 3215 * after ext4_ext_insert_extent() returns, 3216 */ 3217 err = ext4_ext_dirty(handle, inode, path + depth); 3218 if (err) 3219 goto fix_extent_len; 3220 3221 ex2 = &newex; 3222 ex2->ee_block = cpu_to_le32(split); 3223 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3224 ext4_ext_store_pblock(ex2, newblock); 3225 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3226 ext4_ext_mark_unwritten(ex2); 3227 3228 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3229 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3230 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3231 if (split_flag & EXT4_EXT_DATA_VALID1) { 3232 err = ext4_ext_zeroout(inode, ex2); 3233 zero_ex.ee_block = ex2->ee_block; 3234 zero_ex.ee_len = cpu_to_le16( 3235 ext4_ext_get_actual_len(ex2)); 3236 ext4_ext_store_pblock(&zero_ex, 3237 ext4_ext_pblock(ex2)); 3238 } else { 3239 err = ext4_ext_zeroout(inode, ex); 3240 zero_ex.ee_block = ex->ee_block; 3241 zero_ex.ee_len = cpu_to_le16( 3242 ext4_ext_get_actual_len(ex)); 3243 ext4_ext_store_pblock(&zero_ex, 3244 ext4_ext_pblock(ex)); 3245 } 3246 } else { 3247 err = ext4_ext_zeroout(inode, &orig_ex); 3248 zero_ex.ee_block = orig_ex.ee_block; 3249 zero_ex.ee_len = cpu_to_le16( 3250 ext4_ext_get_actual_len(&orig_ex)); 3251 ext4_ext_store_pblock(&zero_ex, 3252 ext4_ext_pblock(&orig_ex)); 3253 } 3254 3255 if (err) 3256 goto fix_extent_len; 3257 /* update the extent length and mark as initialized */ 3258 ex->ee_len = cpu_to_le16(ee_len); 3259 ext4_ext_try_to_merge(handle, inode, path, ex); 3260 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3261 if (err) 3262 goto fix_extent_len; 3263 3264 /* update extent status tree */ 3265 err = ext4_zeroout_es(inode, &zero_ex); 3266 3267 goto out; 3268 } else if (err) 3269 goto fix_extent_len; 3270 3271 out: 3272 ext4_ext_show_leaf(inode, path); 3273 return err; 3274 3275 fix_extent_len: 3276 ex->ee_len = orig_ex.ee_len; 3277 ext4_ext_dirty(handle, inode, path + path->p_depth); 3278 return err; 3279 } 3280 3281 /* 3282 * ext4_split_extents() splits an extent and mark extent which is covered 3283 * by @map as split_flags indicates 3284 * 3285 * It may result in splitting the extent into multiple extents (up to three) 3286 * There are three possibilities: 3287 * a> There is no split required 3288 * b> Splits in two extents: Split is happening at either end of the extent 3289 * c> Splits in three extents: Somone is splitting in middle of the extent 3290 * 3291 */ 3292 static int ext4_split_extent(handle_t *handle, 3293 struct inode *inode, 3294 struct ext4_ext_path **ppath, 3295 struct ext4_map_blocks *map, 3296 int split_flag, 3297 int flags) 3298 { 3299 struct ext4_ext_path *path = *ppath; 3300 ext4_lblk_t ee_block; 3301 struct ext4_extent *ex; 3302 unsigned int ee_len, depth; 3303 int err = 0; 3304 int unwritten; 3305 int split_flag1, flags1; 3306 int allocated = map->m_len; 3307 3308 depth = ext_depth(inode); 3309 ex = path[depth].p_ext; 3310 ee_block = le32_to_cpu(ex->ee_block); 3311 ee_len = ext4_ext_get_actual_len(ex); 3312 unwritten = ext4_ext_is_unwritten(ex); 3313 3314 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3315 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3316 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3317 if (unwritten) 3318 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3319 EXT4_EXT_MARK_UNWRIT2; 3320 if (split_flag & EXT4_EXT_DATA_VALID2) 3321 split_flag1 |= EXT4_EXT_DATA_VALID1; 3322 err = ext4_split_extent_at(handle, inode, ppath, 3323 map->m_lblk + map->m_len, split_flag1, flags1); 3324 if (err) 3325 goto out; 3326 } else { 3327 allocated = ee_len - (map->m_lblk - ee_block); 3328 } 3329 /* 3330 * Update path is required because previous ext4_split_extent_at() may 3331 * result in split of original leaf or extent zeroout. 3332 */ 3333 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3334 if (IS_ERR(path)) 3335 return PTR_ERR(path); 3336 depth = ext_depth(inode); 3337 ex = path[depth].p_ext; 3338 if (!ex) { 3339 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3340 (unsigned long) map->m_lblk); 3341 return -EFSCORRUPTED; 3342 } 3343 unwritten = ext4_ext_is_unwritten(ex); 3344 split_flag1 = 0; 3345 3346 if (map->m_lblk >= ee_block) { 3347 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3348 if (unwritten) { 3349 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3350 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3351 EXT4_EXT_MARK_UNWRIT2); 3352 } 3353 err = ext4_split_extent_at(handle, inode, ppath, 3354 map->m_lblk, split_flag1, flags); 3355 if (err) 3356 goto out; 3357 } 3358 3359 ext4_ext_show_leaf(inode, path); 3360 out: 3361 return err ? err : allocated; 3362 } 3363 3364 /* 3365 * This function is called by ext4_ext_map_blocks() if someone tries to write 3366 * to an unwritten extent. It may result in splitting the unwritten 3367 * extent into multiple extents (up to three - one initialized and two 3368 * unwritten). 3369 * There are three possibilities: 3370 * a> There is no split required: Entire extent should be initialized 3371 * b> Splits in two extents: Write is happening at either end of the extent 3372 * c> Splits in three extents: Somone is writing in middle of the extent 3373 * 3374 * Pre-conditions: 3375 * - The extent pointed to by 'path' is unwritten. 3376 * - The extent pointed to by 'path' contains a superset 3377 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3378 * 3379 * Post-conditions on success: 3380 * - the returned value is the number of blocks beyond map->l_lblk 3381 * that are allocated and initialized. 3382 * It is guaranteed to be >= map->m_len. 3383 */ 3384 static int ext4_ext_convert_to_initialized(handle_t *handle, 3385 struct inode *inode, 3386 struct ext4_map_blocks *map, 3387 struct ext4_ext_path **ppath, 3388 int flags) 3389 { 3390 struct ext4_ext_path *path = *ppath; 3391 struct ext4_sb_info *sbi; 3392 struct ext4_extent_header *eh; 3393 struct ext4_map_blocks split_map; 3394 struct ext4_extent zero_ex; 3395 struct ext4_extent *ex, *abut_ex; 3396 ext4_lblk_t ee_block, eof_block; 3397 unsigned int ee_len, depth, map_len = map->m_len; 3398 int allocated = 0, max_zeroout = 0; 3399 int err = 0; 3400 int split_flag = 0; 3401 3402 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3403 "block %llu, max_blocks %u\n", inode->i_ino, 3404 (unsigned long long)map->m_lblk, map_len); 3405 3406 sbi = EXT4_SB(inode->i_sb); 3407 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3408 inode->i_sb->s_blocksize_bits; 3409 if (eof_block < map->m_lblk + map_len) 3410 eof_block = map->m_lblk + map_len; 3411 3412 depth = ext_depth(inode); 3413 eh = path[depth].p_hdr; 3414 ex = path[depth].p_ext; 3415 ee_block = le32_to_cpu(ex->ee_block); 3416 ee_len = ext4_ext_get_actual_len(ex); 3417 zero_ex.ee_len = 0; 3418 3419 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3420 3421 /* Pre-conditions */ 3422 BUG_ON(!ext4_ext_is_unwritten(ex)); 3423 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3424 3425 /* 3426 * Attempt to transfer newly initialized blocks from the currently 3427 * unwritten extent to its neighbor. This is much cheaper 3428 * than an insertion followed by a merge as those involve costly 3429 * memmove() calls. Transferring to the left is the common case in 3430 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3431 * followed by append writes. 3432 * 3433 * Limitations of the current logic: 3434 * - L1: we do not deal with writes covering the whole extent. 3435 * This would require removing the extent if the transfer 3436 * is possible. 3437 * - L2: we only attempt to merge with an extent stored in the 3438 * same extent tree node. 3439 */ 3440 if ((map->m_lblk == ee_block) && 3441 /* See if we can merge left */ 3442 (map_len < ee_len) && /*L1*/ 3443 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3444 ext4_lblk_t prev_lblk; 3445 ext4_fsblk_t prev_pblk, ee_pblk; 3446 unsigned int prev_len; 3447 3448 abut_ex = ex - 1; 3449 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3450 prev_len = ext4_ext_get_actual_len(abut_ex); 3451 prev_pblk = ext4_ext_pblock(abut_ex); 3452 ee_pblk = ext4_ext_pblock(ex); 3453 3454 /* 3455 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3456 * upon those conditions: 3457 * - C1: abut_ex is initialized, 3458 * - C2: abut_ex is logically abutting ex, 3459 * - C3: abut_ex is physically abutting ex, 3460 * - C4: abut_ex can receive the additional blocks without 3461 * overflowing the (initialized) length limit. 3462 */ 3463 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3464 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3465 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3466 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3467 err = ext4_ext_get_access(handle, inode, path + depth); 3468 if (err) 3469 goto out; 3470 3471 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3472 map, ex, abut_ex); 3473 3474 /* Shift the start of ex by 'map_len' blocks */ 3475 ex->ee_block = cpu_to_le32(ee_block + map_len); 3476 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3477 ex->ee_len = cpu_to_le16(ee_len - map_len); 3478 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3479 3480 /* Extend abut_ex by 'map_len' blocks */ 3481 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3482 3483 /* Result: number of initialized blocks past m_lblk */ 3484 allocated = map_len; 3485 } 3486 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3487 (map_len < ee_len) && /*L1*/ 3488 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3489 /* See if we can merge right */ 3490 ext4_lblk_t next_lblk; 3491 ext4_fsblk_t next_pblk, ee_pblk; 3492 unsigned int next_len; 3493 3494 abut_ex = ex + 1; 3495 next_lblk = le32_to_cpu(abut_ex->ee_block); 3496 next_len = ext4_ext_get_actual_len(abut_ex); 3497 next_pblk = ext4_ext_pblock(abut_ex); 3498 ee_pblk = ext4_ext_pblock(ex); 3499 3500 /* 3501 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3502 * upon those conditions: 3503 * - C1: abut_ex is initialized, 3504 * - C2: abut_ex is logically abutting ex, 3505 * - C3: abut_ex is physically abutting ex, 3506 * - C4: abut_ex can receive the additional blocks without 3507 * overflowing the (initialized) length limit. 3508 */ 3509 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3510 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3511 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3512 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3513 err = ext4_ext_get_access(handle, inode, path + depth); 3514 if (err) 3515 goto out; 3516 3517 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3518 map, ex, abut_ex); 3519 3520 /* Shift the start of abut_ex by 'map_len' blocks */ 3521 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3522 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3523 ex->ee_len = cpu_to_le16(ee_len - map_len); 3524 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3525 3526 /* Extend abut_ex by 'map_len' blocks */ 3527 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3528 3529 /* Result: number of initialized blocks past m_lblk */ 3530 allocated = map_len; 3531 } 3532 } 3533 if (allocated) { 3534 /* Mark the block containing both extents as dirty */ 3535 ext4_ext_dirty(handle, inode, path + depth); 3536 3537 /* Update path to point to the right extent */ 3538 path[depth].p_ext = abut_ex; 3539 goto out; 3540 } else 3541 allocated = ee_len - (map->m_lblk - ee_block); 3542 3543 WARN_ON(map->m_lblk < ee_block); 3544 /* 3545 * It is safe to convert extent to initialized via explicit 3546 * zeroout only if extent is fully inside i_size or new_size. 3547 */ 3548 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3549 3550 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3551 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3552 (inode->i_sb->s_blocksize_bits - 10); 3553 3554 if (ext4_encrypted_inode(inode)) 3555 max_zeroout = 0; 3556 3557 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3558 if (max_zeroout && (ee_len <= max_zeroout)) { 3559 err = ext4_ext_zeroout(inode, ex); 3560 if (err) 3561 goto out; 3562 zero_ex.ee_block = ex->ee_block; 3563 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3564 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3565 3566 err = ext4_ext_get_access(handle, inode, path + depth); 3567 if (err) 3568 goto out; 3569 ext4_ext_mark_initialized(ex); 3570 ext4_ext_try_to_merge(handle, inode, path, ex); 3571 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3572 goto out; 3573 } 3574 3575 /* 3576 * four cases: 3577 * 1. split the extent into three extents. 3578 * 2. split the extent into two extents, zeroout the first half. 3579 * 3. split the extent into two extents, zeroout the second half. 3580 * 4. split the extent into two extents with out zeroout. 3581 */ 3582 split_map.m_lblk = map->m_lblk; 3583 split_map.m_len = map->m_len; 3584 3585 if (max_zeroout && (allocated > map->m_len)) { 3586 if (allocated <= max_zeroout) { 3587 /* case 3 */ 3588 zero_ex.ee_block = 3589 cpu_to_le32(map->m_lblk); 3590 zero_ex.ee_len = cpu_to_le16(allocated); 3591 ext4_ext_store_pblock(&zero_ex, 3592 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3593 err = ext4_ext_zeroout(inode, &zero_ex); 3594 if (err) 3595 goto out; 3596 split_map.m_lblk = map->m_lblk; 3597 split_map.m_len = allocated; 3598 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3599 /* case 2 */ 3600 if (map->m_lblk != ee_block) { 3601 zero_ex.ee_block = ex->ee_block; 3602 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3603 ee_block); 3604 ext4_ext_store_pblock(&zero_ex, 3605 ext4_ext_pblock(ex)); 3606 err = ext4_ext_zeroout(inode, &zero_ex); 3607 if (err) 3608 goto out; 3609 } 3610 3611 split_map.m_lblk = ee_block; 3612 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3613 allocated = map->m_len; 3614 } 3615 } 3616 3617 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3618 flags); 3619 if (err > 0) 3620 err = 0; 3621 out: 3622 /* If we have gotten a failure, don't zero out status tree */ 3623 if (!err) 3624 err = ext4_zeroout_es(inode, &zero_ex); 3625 return err ? err : allocated; 3626 } 3627 3628 /* 3629 * This function is called by ext4_ext_map_blocks() from 3630 * ext4_get_blocks_dio_write() when DIO to write 3631 * to an unwritten extent. 3632 * 3633 * Writing to an unwritten extent may result in splitting the unwritten 3634 * extent into multiple initialized/unwritten extents (up to three) 3635 * There are three possibilities: 3636 * a> There is no split required: Entire extent should be unwritten 3637 * b> Splits in two extents: Write is happening at either end of the extent 3638 * c> Splits in three extents: Somone is writing in middle of the extent 3639 * 3640 * This works the same way in the case of initialized -> unwritten conversion. 3641 * 3642 * One of more index blocks maybe needed if the extent tree grow after 3643 * the unwritten extent split. To prevent ENOSPC occur at the IO 3644 * complete, we need to split the unwritten extent before DIO submit 3645 * the IO. The unwritten extent called at this time will be split 3646 * into three unwritten extent(at most). After IO complete, the part 3647 * being filled will be convert to initialized by the end_io callback function 3648 * via ext4_convert_unwritten_extents(). 3649 * 3650 * Returns the size of unwritten extent to be written on success. 3651 */ 3652 static int ext4_split_convert_extents(handle_t *handle, 3653 struct inode *inode, 3654 struct ext4_map_blocks *map, 3655 struct ext4_ext_path **ppath, 3656 int flags) 3657 { 3658 struct ext4_ext_path *path = *ppath; 3659 ext4_lblk_t eof_block; 3660 ext4_lblk_t ee_block; 3661 struct ext4_extent *ex; 3662 unsigned int ee_len; 3663 int split_flag = 0, depth; 3664 3665 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3666 __func__, inode->i_ino, 3667 (unsigned long long)map->m_lblk, map->m_len); 3668 3669 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3670 inode->i_sb->s_blocksize_bits; 3671 if (eof_block < map->m_lblk + map->m_len) 3672 eof_block = map->m_lblk + map->m_len; 3673 /* 3674 * It is safe to convert extent to initialized via explicit 3675 * zeroout only if extent is fully insde i_size or new_size. 3676 */ 3677 depth = ext_depth(inode); 3678 ex = path[depth].p_ext; 3679 ee_block = le32_to_cpu(ex->ee_block); 3680 ee_len = ext4_ext_get_actual_len(ex); 3681 3682 /* Convert to unwritten */ 3683 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3684 split_flag |= EXT4_EXT_DATA_VALID1; 3685 /* Convert to initialized */ 3686 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3687 split_flag |= ee_block + ee_len <= eof_block ? 3688 EXT4_EXT_MAY_ZEROOUT : 0; 3689 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3690 } 3691 flags |= EXT4_GET_BLOCKS_PRE_IO; 3692 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3693 } 3694 3695 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3696 struct inode *inode, 3697 struct ext4_map_blocks *map, 3698 struct ext4_ext_path **ppath) 3699 { 3700 struct ext4_ext_path *path = *ppath; 3701 struct ext4_extent *ex; 3702 ext4_lblk_t ee_block; 3703 unsigned int ee_len; 3704 int depth; 3705 int err = 0; 3706 3707 depth = ext_depth(inode); 3708 ex = path[depth].p_ext; 3709 ee_block = le32_to_cpu(ex->ee_block); 3710 ee_len = ext4_ext_get_actual_len(ex); 3711 3712 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3713 "block %llu, max_blocks %u\n", inode->i_ino, 3714 (unsigned long long)ee_block, ee_len); 3715 3716 /* If extent is larger than requested it is a clear sign that we still 3717 * have some extent state machine issues left. So extent_split is still 3718 * required. 3719 * TODO: Once all related issues will be fixed this situation should be 3720 * illegal. 3721 */ 3722 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3723 #ifdef EXT4_DEBUG 3724 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3725 " len %u; IO logical block %llu, len %u\n", 3726 inode->i_ino, (unsigned long long)ee_block, ee_len, 3727 (unsigned long long)map->m_lblk, map->m_len); 3728 #endif 3729 err = ext4_split_convert_extents(handle, inode, map, ppath, 3730 EXT4_GET_BLOCKS_CONVERT); 3731 if (err < 0) 3732 return err; 3733 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3734 if (IS_ERR(path)) 3735 return PTR_ERR(path); 3736 depth = ext_depth(inode); 3737 ex = path[depth].p_ext; 3738 } 3739 3740 err = ext4_ext_get_access(handle, inode, path + depth); 3741 if (err) 3742 goto out; 3743 /* first mark the extent as initialized */ 3744 ext4_ext_mark_initialized(ex); 3745 3746 /* note: ext4_ext_correct_indexes() isn't needed here because 3747 * borders are not changed 3748 */ 3749 ext4_ext_try_to_merge(handle, inode, path, ex); 3750 3751 /* Mark modified extent as dirty */ 3752 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3753 out: 3754 ext4_ext_show_leaf(inode, path); 3755 return err; 3756 } 3757 3758 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3759 sector_t block, int count) 3760 { 3761 int i; 3762 for (i = 0; i < count; i++) 3763 unmap_underlying_metadata(bdev, block + i); 3764 } 3765 3766 /* 3767 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3768 */ 3769 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3770 ext4_lblk_t lblk, 3771 struct ext4_ext_path *path, 3772 unsigned int len) 3773 { 3774 int i, depth; 3775 struct ext4_extent_header *eh; 3776 struct ext4_extent *last_ex; 3777 3778 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3779 return 0; 3780 3781 depth = ext_depth(inode); 3782 eh = path[depth].p_hdr; 3783 3784 /* 3785 * We're going to remove EOFBLOCKS_FL entirely in future so we 3786 * do not care for this case anymore. Simply remove the flag 3787 * if there are no extents. 3788 */ 3789 if (unlikely(!eh->eh_entries)) 3790 goto out; 3791 last_ex = EXT_LAST_EXTENT(eh); 3792 /* 3793 * We should clear the EOFBLOCKS_FL flag if we are writing the 3794 * last block in the last extent in the file. We test this by 3795 * first checking to see if the caller to 3796 * ext4_ext_get_blocks() was interested in the last block (or 3797 * a block beyond the last block) in the current extent. If 3798 * this turns out to be false, we can bail out from this 3799 * function immediately. 3800 */ 3801 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3802 ext4_ext_get_actual_len(last_ex)) 3803 return 0; 3804 /* 3805 * If the caller does appear to be planning to write at or 3806 * beyond the end of the current extent, we then test to see 3807 * if the current extent is the last extent in the file, by 3808 * checking to make sure it was reached via the rightmost node 3809 * at each level of the tree. 3810 */ 3811 for (i = depth-1; i >= 0; i--) 3812 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3813 return 0; 3814 out: 3815 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3816 return ext4_mark_inode_dirty(handle, inode); 3817 } 3818 3819 /** 3820 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3821 * 3822 * Return 1 if there is a delalloc block in the range, otherwise 0. 3823 */ 3824 int ext4_find_delalloc_range(struct inode *inode, 3825 ext4_lblk_t lblk_start, 3826 ext4_lblk_t lblk_end) 3827 { 3828 struct extent_status es; 3829 3830 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3831 if (es.es_len == 0) 3832 return 0; /* there is no delay extent in this tree */ 3833 else if (es.es_lblk <= lblk_start && 3834 lblk_start < es.es_lblk + es.es_len) 3835 return 1; 3836 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3837 return 1; 3838 else 3839 return 0; 3840 } 3841 3842 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3843 { 3844 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3845 ext4_lblk_t lblk_start, lblk_end; 3846 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3847 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3848 3849 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3850 } 3851 3852 /** 3853 * Determines how many complete clusters (out of those specified by the 'map') 3854 * are under delalloc and were reserved quota for. 3855 * This function is called when we are writing out the blocks that were 3856 * originally written with their allocation delayed, but then the space was 3857 * allocated using fallocate() before the delayed allocation could be resolved. 3858 * The cases to look for are: 3859 * ('=' indicated delayed allocated blocks 3860 * '-' indicates non-delayed allocated blocks) 3861 * (a) partial clusters towards beginning and/or end outside of allocated range 3862 * are not delalloc'ed. 3863 * Ex: 3864 * |----c---=|====c====|====c====|===-c----| 3865 * |++++++ allocated ++++++| 3866 * ==> 4 complete clusters in above example 3867 * 3868 * (b) partial cluster (outside of allocated range) towards either end is 3869 * marked for delayed allocation. In this case, we will exclude that 3870 * cluster. 3871 * Ex: 3872 * |----====c========|========c========| 3873 * |++++++ allocated ++++++| 3874 * ==> 1 complete clusters in above example 3875 * 3876 * Ex: 3877 * |================c================| 3878 * |++++++ allocated ++++++| 3879 * ==> 0 complete clusters in above example 3880 * 3881 * The ext4_da_update_reserve_space will be called only if we 3882 * determine here that there were some "entire" clusters that span 3883 * this 'allocated' range. 3884 * In the non-bigalloc case, this function will just end up returning num_blks 3885 * without ever calling ext4_find_delalloc_range. 3886 */ 3887 static unsigned int 3888 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3889 unsigned int num_blks) 3890 { 3891 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3892 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3893 ext4_lblk_t lblk_from, lblk_to, c_offset; 3894 unsigned int allocated_clusters = 0; 3895 3896 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3897 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3898 3899 /* max possible clusters for this allocation */ 3900 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3901 3902 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3903 3904 /* Check towards left side */ 3905 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3906 if (c_offset) { 3907 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3908 lblk_to = lblk_from + c_offset - 1; 3909 3910 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3911 allocated_clusters--; 3912 } 3913 3914 /* Now check towards right. */ 3915 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3916 if (allocated_clusters && c_offset) { 3917 lblk_from = lblk_start + num_blks; 3918 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3919 3920 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3921 allocated_clusters--; 3922 } 3923 3924 return allocated_clusters; 3925 } 3926 3927 static int 3928 convert_initialized_extent(handle_t *handle, struct inode *inode, 3929 struct ext4_map_blocks *map, 3930 struct ext4_ext_path **ppath, int flags, 3931 unsigned int allocated) 3932 { 3933 struct ext4_ext_path *path = *ppath; 3934 struct ext4_extent *ex; 3935 ext4_lblk_t ee_block; 3936 unsigned int ee_len; 3937 int depth; 3938 int err = 0; 3939 3940 /* 3941 * Make sure that the extent is no bigger than we support with 3942 * unwritten extent 3943 */ 3944 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3945 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3946 3947 depth = ext_depth(inode); 3948 ex = path[depth].p_ext; 3949 ee_block = le32_to_cpu(ex->ee_block); 3950 ee_len = ext4_ext_get_actual_len(ex); 3951 3952 ext_debug("%s: inode %lu, logical" 3953 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3954 (unsigned long long)ee_block, ee_len); 3955 3956 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3957 err = ext4_split_convert_extents(handle, inode, map, ppath, 3958 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3959 if (err < 0) 3960 return err; 3961 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3962 if (IS_ERR(path)) 3963 return PTR_ERR(path); 3964 depth = ext_depth(inode); 3965 ex = path[depth].p_ext; 3966 if (!ex) { 3967 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3968 (unsigned long) map->m_lblk); 3969 return -EFSCORRUPTED; 3970 } 3971 } 3972 3973 err = ext4_ext_get_access(handle, inode, path + depth); 3974 if (err) 3975 return err; 3976 /* first mark the extent as unwritten */ 3977 ext4_ext_mark_unwritten(ex); 3978 3979 /* note: ext4_ext_correct_indexes() isn't needed here because 3980 * borders are not changed 3981 */ 3982 ext4_ext_try_to_merge(handle, inode, path, ex); 3983 3984 /* Mark modified extent as dirty */ 3985 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3986 if (err) 3987 return err; 3988 ext4_ext_show_leaf(inode, path); 3989 3990 ext4_update_inode_fsync_trans(handle, inode, 1); 3991 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3992 if (err) 3993 return err; 3994 map->m_flags |= EXT4_MAP_UNWRITTEN; 3995 if (allocated > map->m_len) 3996 allocated = map->m_len; 3997 map->m_len = allocated; 3998 return allocated; 3999 } 4000 4001 static int 4002 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4003 struct ext4_map_blocks *map, 4004 struct ext4_ext_path **ppath, int flags, 4005 unsigned int allocated, ext4_fsblk_t newblock) 4006 { 4007 struct ext4_ext_path *path = *ppath; 4008 int ret = 0; 4009 int err = 0; 4010 ext4_io_end_t *io = ext4_inode_aio(inode); 4011 4012 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4013 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4014 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4015 flags, allocated); 4016 ext4_ext_show_leaf(inode, path); 4017 4018 /* 4019 * When writing into unwritten space, we should not fail to 4020 * allocate metadata blocks for the new extent block if needed. 4021 */ 4022 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4023 4024 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4025 allocated, newblock); 4026 4027 /* get_block() before submit the IO, split the extent */ 4028 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4029 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4030 flags | EXT4_GET_BLOCKS_CONVERT); 4031 if (ret <= 0) 4032 goto out; 4033 /* 4034 * Flag the inode(non aio case) or end_io struct (aio case) 4035 * that this IO needs to conversion to written when IO is 4036 * completed 4037 */ 4038 if (io) 4039 ext4_set_io_unwritten_flag(inode, io); 4040 else 4041 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4042 map->m_flags |= EXT4_MAP_UNWRITTEN; 4043 goto out; 4044 } 4045 /* IO end_io complete, convert the filled extent to written */ 4046 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4047 if (flags & EXT4_GET_BLOCKS_ZERO) { 4048 if (allocated > map->m_len) 4049 allocated = map->m_len; 4050 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 4051 allocated); 4052 if (err < 0) 4053 goto out2; 4054 } 4055 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4056 ppath); 4057 if (ret >= 0) { 4058 ext4_update_inode_fsync_trans(handle, inode, 1); 4059 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4060 path, map->m_len); 4061 } else 4062 err = ret; 4063 map->m_flags |= EXT4_MAP_MAPPED; 4064 map->m_pblk = newblock; 4065 if (allocated > map->m_len) 4066 allocated = map->m_len; 4067 map->m_len = allocated; 4068 goto out2; 4069 } 4070 /* buffered IO case */ 4071 /* 4072 * repeat fallocate creation request 4073 * we already have an unwritten extent 4074 */ 4075 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4076 map->m_flags |= EXT4_MAP_UNWRITTEN; 4077 goto map_out; 4078 } 4079 4080 /* buffered READ or buffered write_begin() lookup */ 4081 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4082 /* 4083 * We have blocks reserved already. We 4084 * return allocated blocks so that delalloc 4085 * won't do block reservation for us. But 4086 * the buffer head will be unmapped so that 4087 * a read from the block returns 0s. 4088 */ 4089 map->m_flags |= EXT4_MAP_UNWRITTEN; 4090 goto out1; 4091 } 4092 4093 /* buffered write, writepage time, convert*/ 4094 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4095 if (ret >= 0) 4096 ext4_update_inode_fsync_trans(handle, inode, 1); 4097 out: 4098 if (ret <= 0) { 4099 err = ret; 4100 goto out2; 4101 } else 4102 allocated = ret; 4103 map->m_flags |= EXT4_MAP_NEW; 4104 /* 4105 * if we allocated more blocks than requested 4106 * we need to make sure we unmap the extra block 4107 * allocated. The actual needed block will get 4108 * unmapped later when we find the buffer_head marked 4109 * new. 4110 */ 4111 if (allocated > map->m_len) { 4112 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4113 newblock + map->m_len, 4114 allocated - map->m_len); 4115 allocated = map->m_len; 4116 } 4117 map->m_len = allocated; 4118 4119 /* 4120 * If we have done fallocate with the offset that is already 4121 * delayed allocated, we would have block reservation 4122 * and quota reservation done in the delayed write path. 4123 * But fallocate would have already updated quota and block 4124 * count for this offset. So cancel these reservation 4125 */ 4126 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4127 unsigned int reserved_clusters; 4128 reserved_clusters = get_reserved_cluster_alloc(inode, 4129 map->m_lblk, map->m_len); 4130 if (reserved_clusters) 4131 ext4_da_update_reserve_space(inode, 4132 reserved_clusters, 4133 0); 4134 } 4135 4136 map_out: 4137 map->m_flags |= EXT4_MAP_MAPPED; 4138 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4139 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4140 map->m_len); 4141 if (err < 0) 4142 goto out2; 4143 } 4144 out1: 4145 if (allocated > map->m_len) 4146 allocated = map->m_len; 4147 ext4_ext_show_leaf(inode, path); 4148 map->m_pblk = newblock; 4149 map->m_len = allocated; 4150 out2: 4151 return err ? err : allocated; 4152 } 4153 4154 /* 4155 * get_implied_cluster_alloc - check to see if the requested 4156 * allocation (in the map structure) overlaps with a cluster already 4157 * allocated in an extent. 4158 * @sb The filesystem superblock structure 4159 * @map The requested lblk->pblk mapping 4160 * @ex The extent structure which might contain an implied 4161 * cluster allocation 4162 * 4163 * This function is called by ext4_ext_map_blocks() after we failed to 4164 * find blocks that were already in the inode's extent tree. Hence, 4165 * we know that the beginning of the requested region cannot overlap 4166 * the extent from the inode's extent tree. There are three cases we 4167 * want to catch. The first is this case: 4168 * 4169 * |--- cluster # N--| 4170 * |--- extent ---| |---- requested region ---| 4171 * |==========| 4172 * 4173 * The second case that we need to test for is this one: 4174 * 4175 * |--------- cluster # N ----------------| 4176 * |--- requested region --| |------- extent ----| 4177 * |=======================| 4178 * 4179 * The third case is when the requested region lies between two extents 4180 * within the same cluster: 4181 * |------------- cluster # N-------------| 4182 * |----- ex -----| |---- ex_right ----| 4183 * |------ requested region ------| 4184 * |================| 4185 * 4186 * In each of the above cases, we need to set the map->m_pblk and 4187 * map->m_len so it corresponds to the return the extent labelled as 4188 * "|====|" from cluster #N, since it is already in use for data in 4189 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4190 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4191 * as a new "allocated" block region. Otherwise, we will return 0 and 4192 * ext4_ext_map_blocks() will then allocate one or more new clusters 4193 * by calling ext4_mb_new_blocks(). 4194 */ 4195 static int get_implied_cluster_alloc(struct super_block *sb, 4196 struct ext4_map_blocks *map, 4197 struct ext4_extent *ex, 4198 struct ext4_ext_path *path) 4199 { 4200 struct ext4_sb_info *sbi = EXT4_SB(sb); 4201 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4202 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4203 ext4_lblk_t rr_cluster_start; 4204 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4205 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4206 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4207 4208 /* The extent passed in that we are trying to match */ 4209 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4210 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4211 4212 /* The requested region passed into ext4_map_blocks() */ 4213 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4214 4215 if ((rr_cluster_start == ex_cluster_end) || 4216 (rr_cluster_start == ex_cluster_start)) { 4217 if (rr_cluster_start == ex_cluster_end) 4218 ee_start += ee_len - 1; 4219 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4220 map->m_len = min(map->m_len, 4221 (unsigned) sbi->s_cluster_ratio - c_offset); 4222 /* 4223 * Check for and handle this case: 4224 * 4225 * |--------- cluster # N-------------| 4226 * |------- extent ----| 4227 * |--- requested region ---| 4228 * |===========| 4229 */ 4230 4231 if (map->m_lblk < ee_block) 4232 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4233 4234 /* 4235 * Check for the case where there is already another allocated 4236 * block to the right of 'ex' but before the end of the cluster. 4237 * 4238 * |------------- cluster # N-------------| 4239 * |----- ex -----| |---- ex_right ----| 4240 * |------ requested region ------| 4241 * |================| 4242 */ 4243 if (map->m_lblk > ee_block) { 4244 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4245 map->m_len = min(map->m_len, next - map->m_lblk); 4246 } 4247 4248 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4249 return 1; 4250 } 4251 4252 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4253 return 0; 4254 } 4255 4256 4257 /* 4258 * Block allocation/map/preallocation routine for extents based files 4259 * 4260 * 4261 * Need to be called with 4262 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4263 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4264 * 4265 * return > 0, number of of blocks already mapped/allocated 4266 * if create == 0 and these are pre-allocated blocks 4267 * buffer head is unmapped 4268 * otherwise blocks are mapped 4269 * 4270 * return = 0, if plain look up failed (blocks have not been allocated) 4271 * buffer head is unmapped 4272 * 4273 * return < 0, error case. 4274 */ 4275 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4276 struct ext4_map_blocks *map, int flags) 4277 { 4278 struct ext4_ext_path *path = NULL; 4279 struct ext4_extent newex, *ex, *ex2; 4280 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4281 ext4_fsblk_t newblock = 0; 4282 int free_on_err = 0, err = 0, depth, ret; 4283 unsigned int allocated = 0, offset = 0; 4284 unsigned int allocated_clusters = 0; 4285 struct ext4_allocation_request ar; 4286 ext4_io_end_t *io = ext4_inode_aio(inode); 4287 ext4_lblk_t cluster_offset; 4288 int set_unwritten = 0; 4289 bool map_from_cluster = false; 4290 4291 ext_debug("blocks %u/%u requested for inode %lu\n", 4292 map->m_lblk, map->m_len, inode->i_ino); 4293 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4294 4295 /* find extent for this block */ 4296 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4297 if (IS_ERR(path)) { 4298 err = PTR_ERR(path); 4299 path = NULL; 4300 goto out2; 4301 } 4302 4303 depth = ext_depth(inode); 4304 4305 /* 4306 * consistent leaf must not be empty; 4307 * this situation is possible, though, _during_ tree modification; 4308 * this is why assert can't be put in ext4_find_extent() 4309 */ 4310 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4311 EXT4_ERROR_INODE(inode, "bad extent address " 4312 "lblock: %lu, depth: %d pblock %lld", 4313 (unsigned long) map->m_lblk, depth, 4314 path[depth].p_block); 4315 err = -EFSCORRUPTED; 4316 goto out2; 4317 } 4318 4319 ex = path[depth].p_ext; 4320 if (ex) { 4321 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4322 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4323 unsigned short ee_len; 4324 4325 4326 /* 4327 * unwritten extents are treated as holes, except that 4328 * we split out initialized portions during a write. 4329 */ 4330 ee_len = ext4_ext_get_actual_len(ex); 4331 4332 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4333 4334 /* if found extent covers block, simply return it */ 4335 if (in_range(map->m_lblk, ee_block, ee_len)) { 4336 newblock = map->m_lblk - ee_block + ee_start; 4337 /* number of remaining blocks in the extent */ 4338 allocated = ee_len - (map->m_lblk - ee_block); 4339 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4340 ee_block, ee_len, newblock); 4341 4342 /* 4343 * If the extent is initialized check whether the 4344 * caller wants to convert it to unwritten. 4345 */ 4346 if ((!ext4_ext_is_unwritten(ex)) && 4347 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4348 allocated = convert_initialized_extent( 4349 handle, inode, map, &path, 4350 flags, allocated); 4351 goto out2; 4352 } else if (!ext4_ext_is_unwritten(ex)) 4353 goto out; 4354 4355 ret = ext4_ext_handle_unwritten_extents( 4356 handle, inode, map, &path, flags, 4357 allocated, newblock); 4358 if (ret < 0) 4359 err = ret; 4360 else 4361 allocated = ret; 4362 goto out2; 4363 } 4364 } 4365 4366 /* 4367 * requested block isn't allocated yet; 4368 * we couldn't try to create block if create flag is zero 4369 */ 4370 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4371 /* 4372 * put just found gap into cache to speed up 4373 * subsequent requests 4374 */ 4375 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4376 goto out2; 4377 } 4378 4379 /* 4380 * Okay, we need to do block allocation. 4381 */ 4382 newex.ee_block = cpu_to_le32(map->m_lblk); 4383 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4384 4385 /* 4386 * If we are doing bigalloc, check to see if the extent returned 4387 * by ext4_find_extent() implies a cluster we can use. 4388 */ 4389 if (cluster_offset && ex && 4390 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4391 ar.len = allocated = map->m_len; 4392 newblock = map->m_pblk; 4393 map_from_cluster = true; 4394 goto got_allocated_blocks; 4395 } 4396 4397 /* find neighbour allocated blocks */ 4398 ar.lleft = map->m_lblk; 4399 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4400 if (err) 4401 goto out2; 4402 ar.lright = map->m_lblk; 4403 ex2 = NULL; 4404 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4405 if (err) 4406 goto out2; 4407 4408 /* Check if the extent after searching to the right implies a 4409 * cluster we can use. */ 4410 if ((sbi->s_cluster_ratio > 1) && ex2 && 4411 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4412 ar.len = allocated = map->m_len; 4413 newblock = map->m_pblk; 4414 map_from_cluster = true; 4415 goto got_allocated_blocks; 4416 } 4417 4418 /* 4419 * See if request is beyond maximum number of blocks we can have in 4420 * a single extent. For an initialized extent this limit is 4421 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4422 * EXT_UNWRITTEN_MAX_LEN. 4423 */ 4424 if (map->m_len > EXT_INIT_MAX_LEN && 4425 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4426 map->m_len = EXT_INIT_MAX_LEN; 4427 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4428 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4429 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4430 4431 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4432 newex.ee_len = cpu_to_le16(map->m_len); 4433 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4434 if (err) 4435 allocated = ext4_ext_get_actual_len(&newex); 4436 else 4437 allocated = map->m_len; 4438 4439 /* allocate new block */ 4440 ar.inode = inode; 4441 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4442 ar.logical = map->m_lblk; 4443 /* 4444 * We calculate the offset from the beginning of the cluster 4445 * for the logical block number, since when we allocate a 4446 * physical cluster, the physical block should start at the 4447 * same offset from the beginning of the cluster. This is 4448 * needed so that future calls to get_implied_cluster_alloc() 4449 * work correctly. 4450 */ 4451 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4452 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4453 ar.goal -= offset; 4454 ar.logical -= offset; 4455 if (S_ISREG(inode->i_mode)) 4456 ar.flags = EXT4_MB_HINT_DATA; 4457 else 4458 /* disable in-core preallocation for non-regular files */ 4459 ar.flags = 0; 4460 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4461 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4462 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4463 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4464 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4465 ar.flags |= EXT4_MB_USE_RESERVED; 4466 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4467 if (!newblock) 4468 goto out2; 4469 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4470 ar.goal, newblock, allocated); 4471 free_on_err = 1; 4472 allocated_clusters = ar.len; 4473 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4474 if (ar.len > allocated) 4475 ar.len = allocated; 4476 4477 got_allocated_blocks: 4478 /* try to insert new extent into found leaf and return */ 4479 ext4_ext_store_pblock(&newex, newblock + offset); 4480 newex.ee_len = cpu_to_le16(ar.len); 4481 /* Mark unwritten */ 4482 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4483 ext4_ext_mark_unwritten(&newex); 4484 map->m_flags |= EXT4_MAP_UNWRITTEN; 4485 /* 4486 * io_end structure was created for every IO write to an 4487 * unwritten extent. To avoid unnecessary conversion, 4488 * here we flag the IO that really needs the conversion. 4489 * For non asycn direct IO case, flag the inode state 4490 * that we need to perform conversion when IO is done. 4491 */ 4492 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4493 set_unwritten = 1; 4494 } 4495 4496 err = 0; 4497 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4498 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4499 path, ar.len); 4500 if (!err) 4501 err = ext4_ext_insert_extent(handle, inode, &path, 4502 &newex, flags); 4503 4504 if (!err && set_unwritten) { 4505 if (io) 4506 ext4_set_io_unwritten_flag(inode, io); 4507 else 4508 ext4_set_inode_state(inode, 4509 EXT4_STATE_DIO_UNWRITTEN); 4510 } 4511 4512 if (err && free_on_err) { 4513 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4514 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4515 /* free data blocks we just allocated */ 4516 /* not a good idea to call discard here directly, 4517 * but otherwise we'd need to call it every free() */ 4518 ext4_discard_preallocations(inode); 4519 ext4_free_blocks(handle, inode, NULL, newblock, 4520 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4521 goto out2; 4522 } 4523 4524 /* previous routine could use block we allocated */ 4525 newblock = ext4_ext_pblock(&newex); 4526 allocated = ext4_ext_get_actual_len(&newex); 4527 if (allocated > map->m_len) 4528 allocated = map->m_len; 4529 map->m_flags |= EXT4_MAP_NEW; 4530 4531 /* 4532 * Update reserved blocks/metadata blocks after successful 4533 * block allocation which had been deferred till now. 4534 */ 4535 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4536 unsigned int reserved_clusters; 4537 /* 4538 * Check how many clusters we had reserved this allocated range 4539 */ 4540 reserved_clusters = get_reserved_cluster_alloc(inode, 4541 map->m_lblk, allocated); 4542 if (!map_from_cluster) { 4543 BUG_ON(allocated_clusters < reserved_clusters); 4544 if (reserved_clusters < allocated_clusters) { 4545 struct ext4_inode_info *ei = EXT4_I(inode); 4546 int reservation = allocated_clusters - 4547 reserved_clusters; 4548 /* 4549 * It seems we claimed few clusters outside of 4550 * the range of this allocation. We should give 4551 * it back to the reservation pool. This can 4552 * happen in the following case: 4553 * 4554 * * Suppose s_cluster_ratio is 4 (i.e., each 4555 * cluster has 4 blocks. Thus, the clusters 4556 * are [0-3],[4-7],[8-11]... 4557 * * First comes delayed allocation write for 4558 * logical blocks 10 & 11. Since there were no 4559 * previous delayed allocated blocks in the 4560 * range [8-11], we would reserve 1 cluster 4561 * for this write. 4562 * * Next comes write for logical blocks 3 to 8. 4563 * In this case, we will reserve 2 clusters 4564 * (for [0-3] and [4-7]; and not for [8-11] as 4565 * that range has a delayed allocated blocks. 4566 * Thus total reserved clusters now becomes 3. 4567 * * Now, during the delayed allocation writeout 4568 * time, we will first write blocks [3-8] and 4569 * allocate 3 clusters for writing these 4570 * blocks. Also, we would claim all these 4571 * three clusters above. 4572 * * Now when we come here to writeout the 4573 * blocks [10-11], we would expect to claim 4574 * the reservation of 1 cluster we had made 4575 * (and we would claim it since there are no 4576 * more delayed allocated blocks in the range 4577 * [8-11]. But our reserved cluster count had 4578 * already gone to 0. 4579 * 4580 * Thus, at the step 4 above when we determine 4581 * that there are still some unwritten delayed 4582 * allocated blocks outside of our current 4583 * block range, we should increment the 4584 * reserved clusters count so that when the 4585 * remaining blocks finally gets written, we 4586 * could claim them. 4587 */ 4588 dquot_reserve_block(inode, 4589 EXT4_C2B(sbi, reservation)); 4590 spin_lock(&ei->i_block_reservation_lock); 4591 ei->i_reserved_data_blocks += reservation; 4592 spin_unlock(&ei->i_block_reservation_lock); 4593 } 4594 /* 4595 * We will claim quota for all newly allocated blocks. 4596 * We're updating the reserved space *after* the 4597 * correction above so we do not accidentally free 4598 * all the metadata reservation because we might 4599 * actually need it later on. 4600 */ 4601 ext4_da_update_reserve_space(inode, allocated_clusters, 4602 1); 4603 } 4604 } 4605 4606 /* 4607 * Cache the extent and update transaction to commit on fdatasync only 4608 * when it is _not_ an unwritten extent. 4609 */ 4610 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4611 ext4_update_inode_fsync_trans(handle, inode, 1); 4612 else 4613 ext4_update_inode_fsync_trans(handle, inode, 0); 4614 out: 4615 if (allocated > map->m_len) 4616 allocated = map->m_len; 4617 ext4_ext_show_leaf(inode, path); 4618 map->m_flags |= EXT4_MAP_MAPPED; 4619 map->m_pblk = newblock; 4620 map->m_len = allocated; 4621 out2: 4622 ext4_ext_drop_refs(path); 4623 kfree(path); 4624 4625 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4626 err ? err : allocated); 4627 return err ? err : allocated; 4628 } 4629 4630 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4631 { 4632 struct super_block *sb = inode->i_sb; 4633 ext4_lblk_t last_block; 4634 int err = 0; 4635 4636 /* 4637 * TODO: optimization is possible here. 4638 * Probably we need not scan at all, 4639 * because page truncation is enough. 4640 */ 4641 4642 /* we have to know where to truncate from in crash case */ 4643 EXT4_I(inode)->i_disksize = inode->i_size; 4644 ext4_mark_inode_dirty(handle, inode); 4645 4646 last_block = (inode->i_size + sb->s_blocksize - 1) 4647 >> EXT4_BLOCK_SIZE_BITS(sb); 4648 retry: 4649 err = ext4_es_remove_extent(inode, last_block, 4650 EXT_MAX_BLOCKS - last_block); 4651 if (err == -ENOMEM) { 4652 cond_resched(); 4653 congestion_wait(BLK_RW_ASYNC, HZ/50); 4654 goto retry; 4655 } 4656 if (err) { 4657 ext4_std_error(inode->i_sb, err); 4658 return; 4659 } 4660 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4661 ext4_std_error(inode->i_sb, err); 4662 } 4663 4664 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4665 ext4_lblk_t len, loff_t new_size, 4666 int flags, int mode) 4667 { 4668 struct inode *inode = file_inode(file); 4669 handle_t *handle; 4670 int ret = 0; 4671 int ret2 = 0; 4672 int retries = 0; 4673 int depth = 0; 4674 struct ext4_map_blocks map; 4675 unsigned int credits; 4676 loff_t epos; 4677 4678 map.m_lblk = offset; 4679 map.m_len = len; 4680 /* 4681 * Don't normalize the request if it can fit in one extent so 4682 * that it doesn't get unnecessarily split into multiple 4683 * extents. 4684 */ 4685 if (len <= EXT_UNWRITTEN_MAX_LEN) 4686 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4687 4688 /* 4689 * credits to insert 1 extent into extent tree 4690 */ 4691 credits = ext4_chunk_trans_blocks(inode, len); 4692 /* 4693 * We can only call ext_depth() on extent based inodes 4694 */ 4695 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4696 depth = ext_depth(inode); 4697 else 4698 depth = -1; 4699 4700 retry: 4701 while (ret >= 0 && len) { 4702 /* 4703 * Recalculate credits when extent tree depth changes. 4704 */ 4705 if (depth >= 0 && depth != ext_depth(inode)) { 4706 credits = ext4_chunk_trans_blocks(inode, len); 4707 depth = ext_depth(inode); 4708 } 4709 4710 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4711 credits); 4712 if (IS_ERR(handle)) { 4713 ret = PTR_ERR(handle); 4714 break; 4715 } 4716 ret = ext4_map_blocks(handle, inode, &map, flags); 4717 if (ret <= 0) { 4718 ext4_debug("inode #%lu: block %u: len %u: " 4719 "ext4_ext_map_blocks returned %d", 4720 inode->i_ino, map.m_lblk, 4721 map.m_len, ret); 4722 ext4_mark_inode_dirty(handle, inode); 4723 ret2 = ext4_journal_stop(handle); 4724 break; 4725 } 4726 map.m_lblk += ret; 4727 map.m_len = len = len - ret; 4728 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4729 inode->i_ctime = ext4_current_time(inode); 4730 if (new_size) { 4731 if (epos > new_size) 4732 epos = new_size; 4733 if (ext4_update_inode_size(inode, epos) & 0x1) 4734 inode->i_mtime = inode->i_ctime; 4735 } else { 4736 if (epos > inode->i_size) 4737 ext4_set_inode_flag(inode, 4738 EXT4_INODE_EOFBLOCKS); 4739 } 4740 ext4_mark_inode_dirty(handle, inode); 4741 ret2 = ext4_journal_stop(handle); 4742 if (ret2) 4743 break; 4744 } 4745 if (ret == -ENOSPC && 4746 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4747 ret = 0; 4748 goto retry; 4749 } 4750 4751 return ret > 0 ? ret2 : ret; 4752 } 4753 4754 static long ext4_zero_range(struct file *file, loff_t offset, 4755 loff_t len, int mode) 4756 { 4757 struct inode *inode = file_inode(file); 4758 handle_t *handle = NULL; 4759 unsigned int max_blocks; 4760 loff_t new_size = 0; 4761 int ret = 0; 4762 int flags; 4763 int credits; 4764 int partial_begin, partial_end; 4765 loff_t start, end; 4766 ext4_lblk_t lblk; 4767 unsigned int blkbits = inode->i_blkbits; 4768 4769 trace_ext4_zero_range(inode, offset, len, mode); 4770 4771 if (!S_ISREG(inode->i_mode)) 4772 return -EINVAL; 4773 4774 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4775 if (ext4_should_journal_data(inode)) { 4776 ret = ext4_force_commit(inode->i_sb); 4777 if (ret) 4778 return ret; 4779 } 4780 4781 /* 4782 * Round up offset. This is not fallocate, we neet to zero out 4783 * blocks, so convert interior block aligned part of the range to 4784 * unwritten and possibly manually zero out unaligned parts of the 4785 * range. 4786 */ 4787 start = round_up(offset, 1 << blkbits); 4788 end = round_down((offset + len), 1 << blkbits); 4789 4790 if (start < offset || end > offset + len) 4791 return -EINVAL; 4792 partial_begin = offset & ((1 << blkbits) - 1); 4793 partial_end = (offset + len) & ((1 << blkbits) - 1); 4794 4795 lblk = start >> blkbits; 4796 max_blocks = (end >> blkbits); 4797 if (max_blocks < lblk) 4798 max_blocks = 0; 4799 else 4800 max_blocks -= lblk; 4801 4802 inode_lock(inode); 4803 4804 /* 4805 * Indirect files do not support unwritten extnets 4806 */ 4807 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4808 ret = -EOPNOTSUPP; 4809 goto out_mutex; 4810 } 4811 4812 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4813 offset + len > i_size_read(inode)) { 4814 new_size = offset + len; 4815 ret = inode_newsize_ok(inode, new_size); 4816 if (ret) 4817 goto out_mutex; 4818 } 4819 4820 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4821 if (mode & FALLOC_FL_KEEP_SIZE) 4822 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4823 4824 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4825 ext4_inode_block_unlocked_dio(inode); 4826 inode_dio_wait(inode); 4827 4828 /* Preallocate the range including the unaligned edges */ 4829 if (partial_begin || partial_end) { 4830 ret = ext4_alloc_file_blocks(file, 4831 round_down(offset, 1 << blkbits) >> blkbits, 4832 (round_up((offset + len), 1 << blkbits) - 4833 round_down(offset, 1 << blkbits)) >> blkbits, 4834 new_size, flags, mode); 4835 if (ret) 4836 goto out_dio; 4837 4838 } 4839 4840 /* Zero range excluding the unaligned edges */ 4841 if (max_blocks > 0) { 4842 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4843 EXT4_EX_NOCACHE); 4844 4845 /* 4846 * Prevent page faults from reinstantiating pages we have 4847 * released from page cache. 4848 */ 4849 down_write(&EXT4_I(inode)->i_mmap_sem); 4850 ret = ext4_update_disksize_before_punch(inode, offset, len); 4851 if (ret) { 4852 up_write(&EXT4_I(inode)->i_mmap_sem); 4853 goto out_dio; 4854 } 4855 /* Now release the pages and zero block aligned part of pages */ 4856 truncate_pagecache_range(inode, start, end - 1); 4857 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4858 4859 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4860 flags, mode); 4861 up_write(&EXT4_I(inode)->i_mmap_sem); 4862 if (ret) 4863 goto out_dio; 4864 } 4865 if (!partial_begin && !partial_end) 4866 goto out_dio; 4867 4868 /* 4869 * In worst case we have to writeout two nonadjacent unwritten 4870 * blocks and update the inode 4871 */ 4872 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4873 if (ext4_should_journal_data(inode)) 4874 credits += 2; 4875 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4876 if (IS_ERR(handle)) { 4877 ret = PTR_ERR(handle); 4878 ext4_std_error(inode->i_sb, ret); 4879 goto out_dio; 4880 } 4881 4882 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4883 if (new_size) { 4884 ext4_update_inode_size(inode, new_size); 4885 } else { 4886 /* 4887 * Mark that we allocate beyond EOF so the subsequent truncate 4888 * can proceed even if the new size is the same as i_size. 4889 */ 4890 if ((offset + len) > i_size_read(inode)) 4891 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4892 } 4893 ext4_mark_inode_dirty(handle, inode); 4894 4895 /* Zero out partial block at the edges of the range */ 4896 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4897 4898 if (file->f_flags & O_SYNC) 4899 ext4_handle_sync(handle); 4900 4901 ext4_journal_stop(handle); 4902 out_dio: 4903 ext4_inode_resume_unlocked_dio(inode); 4904 out_mutex: 4905 inode_unlock(inode); 4906 return ret; 4907 } 4908 4909 /* 4910 * preallocate space for a file. This implements ext4's fallocate file 4911 * operation, which gets called from sys_fallocate system call. 4912 * For block-mapped files, posix_fallocate should fall back to the method 4913 * of writing zeroes to the required new blocks (the same behavior which is 4914 * expected for file systems which do not support fallocate() system call). 4915 */ 4916 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4917 { 4918 struct inode *inode = file_inode(file); 4919 loff_t new_size = 0; 4920 unsigned int max_blocks; 4921 int ret = 0; 4922 int flags; 4923 ext4_lblk_t lblk; 4924 unsigned int blkbits = inode->i_blkbits; 4925 4926 /* 4927 * Encrypted inodes can't handle collapse range or insert 4928 * range since we would need to re-encrypt blocks with a 4929 * different IV or XTS tweak (which are based on the logical 4930 * block number). 4931 * 4932 * XXX It's not clear why zero range isn't working, but we'll 4933 * leave it disabled for encrypted inodes for now. This is a 4934 * bug we should fix.... 4935 */ 4936 if (ext4_encrypted_inode(inode) && 4937 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4938 FALLOC_FL_ZERO_RANGE))) 4939 return -EOPNOTSUPP; 4940 4941 /* Return error if mode is not supported */ 4942 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4943 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4944 FALLOC_FL_INSERT_RANGE)) 4945 return -EOPNOTSUPP; 4946 4947 if (mode & FALLOC_FL_PUNCH_HOLE) 4948 return ext4_punch_hole(inode, offset, len); 4949 4950 ret = ext4_convert_inline_data(inode); 4951 if (ret) 4952 return ret; 4953 4954 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4955 return ext4_collapse_range(inode, offset, len); 4956 4957 if (mode & FALLOC_FL_INSERT_RANGE) 4958 return ext4_insert_range(inode, offset, len); 4959 4960 if (mode & FALLOC_FL_ZERO_RANGE) 4961 return ext4_zero_range(file, offset, len, mode); 4962 4963 trace_ext4_fallocate_enter(inode, offset, len, mode); 4964 lblk = offset >> blkbits; 4965 /* 4966 * We can't just convert len to max_blocks because 4967 * If blocksize = 4096 offset = 3072 and len = 2048 4968 */ 4969 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4970 - lblk; 4971 4972 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4973 if (mode & FALLOC_FL_KEEP_SIZE) 4974 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4975 4976 inode_lock(inode); 4977 4978 /* 4979 * We only support preallocation for extent-based files only 4980 */ 4981 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4982 ret = -EOPNOTSUPP; 4983 goto out; 4984 } 4985 4986 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4987 offset + len > i_size_read(inode)) { 4988 new_size = offset + len; 4989 ret = inode_newsize_ok(inode, new_size); 4990 if (ret) 4991 goto out; 4992 } 4993 4994 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4995 ext4_inode_block_unlocked_dio(inode); 4996 inode_dio_wait(inode); 4997 4998 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4999 flags, mode); 5000 ext4_inode_resume_unlocked_dio(inode); 5001 if (ret) 5002 goto out; 5003 5004 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 5005 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5006 EXT4_I(inode)->i_sync_tid); 5007 } 5008 out: 5009 inode_unlock(inode); 5010 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 5011 return ret; 5012 } 5013 5014 /* 5015 * This function convert a range of blocks to written extents 5016 * The caller of this function will pass the start offset and the size. 5017 * all unwritten extents within this range will be converted to 5018 * written extents. 5019 * 5020 * This function is called from the direct IO end io call back 5021 * function, to convert the fallocated extents after IO is completed. 5022 * Returns 0 on success. 5023 */ 5024 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 5025 loff_t offset, ssize_t len) 5026 { 5027 unsigned int max_blocks; 5028 int ret = 0; 5029 int ret2 = 0; 5030 struct ext4_map_blocks map; 5031 unsigned int credits, blkbits = inode->i_blkbits; 5032 5033 map.m_lblk = offset >> blkbits; 5034 /* 5035 * We can't just convert len to max_blocks because 5036 * If blocksize = 4096 offset = 3072 and len = 2048 5037 */ 5038 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5039 map.m_lblk); 5040 /* 5041 * This is somewhat ugly but the idea is clear: When transaction is 5042 * reserved, everything goes into it. Otherwise we rather start several 5043 * smaller transactions for conversion of each extent separately. 5044 */ 5045 if (handle) { 5046 handle = ext4_journal_start_reserved(handle, 5047 EXT4_HT_EXT_CONVERT); 5048 if (IS_ERR(handle)) 5049 return PTR_ERR(handle); 5050 credits = 0; 5051 } else { 5052 /* 5053 * credits to insert 1 extent into extent tree 5054 */ 5055 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5056 } 5057 while (ret >= 0 && ret < max_blocks) { 5058 map.m_lblk += ret; 5059 map.m_len = (max_blocks -= ret); 5060 if (credits) { 5061 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5062 credits); 5063 if (IS_ERR(handle)) { 5064 ret = PTR_ERR(handle); 5065 break; 5066 } 5067 } 5068 ret = ext4_map_blocks(handle, inode, &map, 5069 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5070 if (ret <= 0) 5071 ext4_warning(inode->i_sb, 5072 "inode #%lu: block %u: len %u: " 5073 "ext4_ext_map_blocks returned %d", 5074 inode->i_ino, map.m_lblk, 5075 map.m_len, ret); 5076 ext4_mark_inode_dirty(handle, inode); 5077 if (credits) 5078 ret2 = ext4_journal_stop(handle); 5079 if (ret <= 0 || ret2) 5080 break; 5081 } 5082 if (!credits) 5083 ret2 = ext4_journal_stop(handle); 5084 return ret > 0 ? ret2 : ret; 5085 } 5086 5087 /* 5088 * If newes is not existing extent (newes->ec_pblk equals zero) find 5089 * delayed extent at start of newes and update newes accordingly and 5090 * return start of the next delayed extent. 5091 * 5092 * If newes is existing extent (newes->ec_pblk is not equal zero) 5093 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5094 * extent found. Leave newes unmodified. 5095 */ 5096 static int ext4_find_delayed_extent(struct inode *inode, 5097 struct extent_status *newes) 5098 { 5099 struct extent_status es; 5100 ext4_lblk_t block, next_del; 5101 5102 if (newes->es_pblk == 0) { 5103 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5104 newes->es_lblk + newes->es_len - 1, &es); 5105 5106 /* 5107 * No extent in extent-tree contains block @newes->es_pblk, 5108 * then the block may stay in 1)a hole or 2)delayed-extent. 5109 */ 5110 if (es.es_len == 0) 5111 /* A hole found. */ 5112 return 0; 5113 5114 if (es.es_lblk > newes->es_lblk) { 5115 /* A hole found. */ 5116 newes->es_len = min(es.es_lblk - newes->es_lblk, 5117 newes->es_len); 5118 return 0; 5119 } 5120 5121 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5122 } 5123 5124 block = newes->es_lblk + newes->es_len; 5125 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5126 if (es.es_len == 0) 5127 next_del = EXT_MAX_BLOCKS; 5128 else 5129 next_del = es.es_lblk; 5130 5131 return next_del; 5132 } 5133 /* fiemap flags we can handle specified here */ 5134 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5135 5136 static int ext4_xattr_fiemap(struct inode *inode, 5137 struct fiemap_extent_info *fieinfo) 5138 { 5139 __u64 physical = 0; 5140 __u64 length; 5141 __u32 flags = FIEMAP_EXTENT_LAST; 5142 int blockbits = inode->i_sb->s_blocksize_bits; 5143 int error = 0; 5144 5145 /* in-inode? */ 5146 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5147 struct ext4_iloc iloc; 5148 int offset; /* offset of xattr in inode */ 5149 5150 error = ext4_get_inode_loc(inode, &iloc); 5151 if (error) 5152 return error; 5153 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5154 offset = EXT4_GOOD_OLD_INODE_SIZE + 5155 EXT4_I(inode)->i_extra_isize; 5156 physical += offset; 5157 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5158 flags |= FIEMAP_EXTENT_DATA_INLINE; 5159 brelse(iloc.bh); 5160 } else { /* external block */ 5161 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5162 length = inode->i_sb->s_blocksize; 5163 } 5164 5165 if (physical) 5166 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5167 length, flags); 5168 return (error < 0 ? error : 0); 5169 } 5170 5171 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5172 __u64 start, __u64 len) 5173 { 5174 ext4_lblk_t start_blk; 5175 int error = 0; 5176 5177 if (ext4_has_inline_data(inode)) { 5178 int has_inline = 1; 5179 5180 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5181 start, len); 5182 5183 if (has_inline) 5184 return error; 5185 } 5186 5187 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5188 error = ext4_ext_precache(inode); 5189 if (error) 5190 return error; 5191 } 5192 5193 /* fallback to generic here if not in extents fmt */ 5194 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5195 return generic_block_fiemap(inode, fieinfo, start, len, 5196 ext4_get_block); 5197 5198 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5199 return -EBADR; 5200 5201 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5202 error = ext4_xattr_fiemap(inode, fieinfo); 5203 } else { 5204 ext4_lblk_t len_blks; 5205 __u64 last_blk; 5206 5207 start_blk = start >> inode->i_sb->s_blocksize_bits; 5208 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5209 if (last_blk >= EXT_MAX_BLOCKS) 5210 last_blk = EXT_MAX_BLOCKS-1; 5211 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5212 5213 /* 5214 * Walk the extent tree gathering extent information 5215 * and pushing extents back to the user. 5216 */ 5217 error = ext4_fill_fiemap_extents(inode, start_blk, 5218 len_blks, fieinfo); 5219 } 5220 return error; 5221 } 5222 5223 /* 5224 * ext4_access_path: 5225 * Function to access the path buffer for marking it dirty. 5226 * It also checks if there are sufficient credits left in the journal handle 5227 * to update path. 5228 */ 5229 static int 5230 ext4_access_path(handle_t *handle, struct inode *inode, 5231 struct ext4_ext_path *path) 5232 { 5233 int credits, err; 5234 5235 if (!ext4_handle_valid(handle)) 5236 return 0; 5237 5238 /* 5239 * Check if need to extend journal credits 5240 * 3 for leaf, sb, and inode plus 2 (bmap and group 5241 * descriptor) for each block group; assume two block 5242 * groups 5243 */ 5244 if (handle->h_buffer_credits < 7) { 5245 credits = ext4_writepage_trans_blocks(inode); 5246 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5247 /* EAGAIN is success */ 5248 if (err && err != -EAGAIN) 5249 return err; 5250 } 5251 5252 err = ext4_ext_get_access(handle, inode, path); 5253 return err; 5254 } 5255 5256 /* 5257 * ext4_ext_shift_path_extents: 5258 * Shift the extents of a path structure lying between path[depth].p_ext 5259 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5260 * if it is right shift or left shift operation. 5261 */ 5262 static int 5263 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5264 struct inode *inode, handle_t *handle, 5265 enum SHIFT_DIRECTION SHIFT) 5266 { 5267 int depth, err = 0; 5268 struct ext4_extent *ex_start, *ex_last; 5269 bool update = 0; 5270 depth = path->p_depth; 5271 5272 while (depth >= 0) { 5273 if (depth == path->p_depth) { 5274 ex_start = path[depth].p_ext; 5275 if (!ex_start) 5276 return -EFSCORRUPTED; 5277 5278 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5279 5280 err = ext4_access_path(handle, inode, path + depth); 5281 if (err) 5282 goto out; 5283 5284 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5285 update = 1; 5286 5287 while (ex_start <= ex_last) { 5288 if (SHIFT == SHIFT_LEFT) { 5289 le32_add_cpu(&ex_start->ee_block, 5290 -shift); 5291 /* Try to merge to the left. */ 5292 if ((ex_start > 5293 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5294 && 5295 ext4_ext_try_to_merge_right(inode, 5296 path, ex_start - 1)) 5297 ex_last--; 5298 else 5299 ex_start++; 5300 } else { 5301 le32_add_cpu(&ex_last->ee_block, shift); 5302 ext4_ext_try_to_merge_right(inode, path, 5303 ex_last); 5304 ex_last--; 5305 } 5306 } 5307 err = ext4_ext_dirty(handle, inode, path + depth); 5308 if (err) 5309 goto out; 5310 5311 if (--depth < 0 || !update) 5312 break; 5313 } 5314 5315 /* Update index too */ 5316 err = ext4_access_path(handle, inode, path + depth); 5317 if (err) 5318 goto out; 5319 5320 if (SHIFT == SHIFT_LEFT) 5321 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5322 else 5323 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5324 err = ext4_ext_dirty(handle, inode, path + depth); 5325 if (err) 5326 goto out; 5327 5328 /* we are done if current index is not a starting index */ 5329 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5330 break; 5331 5332 depth--; 5333 } 5334 5335 out: 5336 return err; 5337 } 5338 5339 /* 5340 * ext4_ext_shift_extents: 5341 * All the extents which lies in the range from @start to the last allocated 5342 * block for the @inode are shifted either towards left or right (depending 5343 * upon @SHIFT) by @shift blocks. 5344 * On success, 0 is returned, error otherwise. 5345 */ 5346 static int 5347 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5348 ext4_lblk_t start, ext4_lblk_t shift, 5349 enum SHIFT_DIRECTION SHIFT) 5350 { 5351 struct ext4_ext_path *path; 5352 int ret = 0, depth; 5353 struct ext4_extent *extent; 5354 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5355 5356 /* Let path point to the last extent */ 5357 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5358 if (IS_ERR(path)) 5359 return PTR_ERR(path); 5360 5361 depth = path->p_depth; 5362 extent = path[depth].p_ext; 5363 if (!extent) 5364 goto out; 5365 5366 stop = le32_to_cpu(extent->ee_block) + 5367 ext4_ext_get_actual_len(extent); 5368 5369 /* 5370 * In case of left shift, Don't start shifting extents until we make 5371 * sure the hole is big enough to accommodate the shift. 5372 */ 5373 if (SHIFT == SHIFT_LEFT) { 5374 path = ext4_find_extent(inode, start - 1, &path, 0); 5375 if (IS_ERR(path)) 5376 return PTR_ERR(path); 5377 depth = path->p_depth; 5378 extent = path[depth].p_ext; 5379 if (extent) { 5380 ex_start = le32_to_cpu(extent->ee_block); 5381 ex_end = le32_to_cpu(extent->ee_block) + 5382 ext4_ext_get_actual_len(extent); 5383 } else { 5384 ex_start = 0; 5385 ex_end = 0; 5386 } 5387 5388 if ((start == ex_start && shift > ex_start) || 5389 (shift > start - ex_end)) { 5390 ext4_ext_drop_refs(path); 5391 kfree(path); 5392 return -EINVAL; 5393 } 5394 } 5395 5396 /* 5397 * In case of left shift, iterator points to start and it is increased 5398 * till we reach stop. In case of right shift, iterator points to stop 5399 * and it is decreased till we reach start. 5400 */ 5401 if (SHIFT == SHIFT_LEFT) 5402 iterator = &start; 5403 else 5404 iterator = &stop; 5405 5406 /* Its safe to start updating extents */ 5407 while (start < stop) { 5408 path = ext4_find_extent(inode, *iterator, &path, 0); 5409 if (IS_ERR(path)) 5410 return PTR_ERR(path); 5411 depth = path->p_depth; 5412 extent = path[depth].p_ext; 5413 if (!extent) { 5414 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5415 (unsigned long) *iterator); 5416 return -EFSCORRUPTED; 5417 } 5418 if (SHIFT == SHIFT_LEFT && *iterator > 5419 le32_to_cpu(extent->ee_block)) { 5420 /* Hole, move to the next extent */ 5421 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5422 path[depth].p_ext++; 5423 } else { 5424 *iterator = ext4_ext_next_allocated_block(path); 5425 continue; 5426 } 5427 } 5428 5429 if (SHIFT == SHIFT_LEFT) { 5430 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5431 *iterator = le32_to_cpu(extent->ee_block) + 5432 ext4_ext_get_actual_len(extent); 5433 } else { 5434 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5435 *iterator = le32_to_cpu(extent->ee_block) > 0 ? 5436 le32_to_cpu(extent->ee_block) - 1 : 0; 5437 /* Update path extent in case we need to stop */ 5438 while (le32_to_cpu(extent->ee_block) < start) 5439 extent++; 5440 path[depth].p_ext = extent; 5441 } 5442 ret = ext4_ext_shift_path_extents(path, shift, inode, 5443 handle, SHIFT); 5444 if (ret) 5445 break; 5446 } 5447 out: 5448 ext4_ext_drop_refs(path); 5449 kfree(path); 5450 return ret; 5451 } 5452 5453 /* 5454 * ext4_collapse_range: 5455 * This implements the fallocate's collapse range functionality for ext4 5456 * Returns: 0 and non-zero on error. 5457 */ 5458 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5459 { 5460 struct super_block *sb = inode->i_sb; 5461 ext4_lblk_t punch_start, punch_stop; 5462 handle_t *handle; 5463 unsigned int credits; 5464 loff_t new_size, ioffset; 5465 int ret; 5466 5467 /* 5468 * We need to test this early because xfstests assumes that a 5469 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5470 * system does not support collapse range. 5471 */ 5472 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5473 return -EOPNOTSUPP; 5474 5475 /* Collapse range works only on fs block size aligned offsets. */ 5476 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5477 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5478 return -EINVAL; 5479 5480 if (!S_ISREG(inode->i_mode)) 5481 return -EINVAL; 5482 5483 trace_ext4_collapse_range(inode, offset, len); 5484 5485 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5486 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5487 5488 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5489 if (ext4_should_journal_data(inode)) { 5490 ret = ext4_force_commit(inode->i_sb); 5491 if (ret) 5492 return ret; 5493 } 5494 5495 inode_lock(inode); 5496 /* 5497 * There is no need to overlap collapse range with EOF, in which case 5498 * it is effectively a truncate operation 5499 */ 5500 if (offset + len >= i_size_read(inode)) { 5501 ret = -EINVAL; 5502 goto out_mutex; 5503 } 5504 5505 /* Currently just for extent based files */ 5506 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5507 ret = -EOPNOTSUPP; 5508 goto out_mutex; 5509 } 5510 5511 /* Wait for existing dio to complete */ 5512 ext4_inode_block_unlocked_dio(inode); 5513 inode_dio_wait(inode); 5514 5515 /* 5516 * Prevent page faults from reinstantiating pages we have released from 5517 * page cache. 5518 */ 5519 down_write(&EXT4_I(inode)->i_mmap_sem); 5520 /* 5521 * Need to round down offset to be aligned with page size boundary 5522 * for page size > block size. 5523 */ 5524 ioffset = round_down(offset, PAGE_SIZE); 5525 /* 5526 * Write tail of the last page before removed range since it will get 5527 * removed from the page cache below. 5528 */ 5529 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5530 if (ret) 5531 goto out_mmap; 5532 /* 5533 * Write data that will be shifted to preserve them when discarding 5534 * page cache below. We are also protected from pages becoming dirty 5535 * by i_mmap_sem. 5536 */ 5537 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5538 LLONG_MAX); 5539 if (ret) 5540 goto out_mmap; 5541 truncate_pagecache(inode, ioffset); 5542 5543 credits = ext4_writepage_trans_blocks(inode); 5544 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5545 if (IS_ERR(handle)) { 5546 ret = PTR_ERR(handle); 5547 goto out_mmap; 5548 } 5549 5550 down_write(&EXT4_I(inode)->i_data_sem); 5551 ext4_discard_preallocations(inode); 5552 5553 ret = ext4_es_remove_extent(inode, punch_start, 5554 EXT_MAX_BLOCKS - punch_start); 5555 if (ret) { 5556 up_write(&EXT4_I(inode)->i_data_sem); 5557 goto out_stop; 5558 } 5559 5560 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5561 if (ret) { 5562 up_write(&EXT4_I(inode)->i_data_sem); 5563 goto out_stop; 5564 } 5565 ext4_discard_preallocations(inode); 5566 5567 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5568 punch_stop - punch_start, SHIFT_LEFT); 5569 if (ret) { 5570 up_write(&EXT4_I(inode)->i_data_sem); 5571 goto out_stop; 5572 } 5573 5574 new_size = i_size_read(inode) - len; 5575 i_size_write(inode, new_size); 5576 EXT4_I(inode)->i_disksize = new_size; 5577 5578 up_write(&EXT4_I(inode)->i_data_sem); 5579 if (IS_SYNC(inode)) 5580 ext4_handle_sync(handle); 5581 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5582 ext4_mark_inode_dirty(handle, inode); 5583 5584 out_stop: 5585 ext4_journal_stop(handle); 5586 out_mmap: 5587 up_write(&EXT4_I(inode)->i_mmap_sem); 5588 ext4_inode_resume_unlocked_dio(inode); 5589 out_mutex: 5590 inode_unlock(inode); 5591 return ret; 5592 } 5593 5594 /* 5595 * ext4_insert_range: 5596 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5597 * The data blocks starting from @offset to the EOF are shifted by @len 5598 * towards right to create a hole in the @inode. Inode size is increased 5599 * by len bytes. 5600 * Returns 0 on success, error otherwise. 5601 */ 5602 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5603 { 5604 struct super_block *sb = inode->i_sb; 5605 handle_t *handle; 5606 struct ext4_ext_path *path; 5607 struct ext4_extent *extent; 5608 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5609 unsigned int credits, ee_len; 5610 int ret = 0, depth, split_flag = 0; 5611 loff_t ioffset; 5612 5613 /* 5614 * We need to test this early because xfstests assumes that an 5615 * insert range of (0, 1) will return EOPNOTSUPP if the file 5616 * system does not support insert range. 5617 */ 5618 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5619 return -EOPNOTSUPP; 5620 5621 /* Insert range works only on fs block size aligned offsets. */ 5622 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5623 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5624 return -EINVAL; 5625 5626 if (!S_ISREG(inode->i_mode)) 5627 return -EOPNOTSUPP; 5628 5629 trace_ext4_insert_range(inode, offset, len); 5630 5631 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5632 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5633 5634 /* Call ext4_force_commit to flush all data in case of data=journal */ 5635 if (ext4_should_journal_data(inode)) { 5636 ret = ext4_force_commit(inode->i_sb); 5637 if (ret) 5638 return ret; 5639 } 5640 5641 inode_lock(inode); 5642 /* Currently just for extent based files */ 5643 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5644 ret = -EOPNOTSUPP; 5645 goto out_mutex; 5646 } 5647 5648 /* Check for wrap through zero */ 5649 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5650 ret = -EFBIG; 5651 goto out_mutex; 5652 } 5653 5654 /* Offset should be less than i_size */ 5655 if (offset >= i_size_read(inode)) { 5656 ret = -EINVAL; 5657 goto out_mutex; 5658 } 5659 5660 /* Wait for existing dio to complete */ 5661 ext4_inode_block_unlocked_dio(inode); 5662 inode_dio_wait(inode); 5663 5664 /* 5665 * Prevent page faults from reinstantiating pages we have released from 5666 * page cache. 5667 */ 5668 down_write(&EXT4_I(inode)->i_mmap_sem); 5669 /* 5670 * Need to round down to align start offset to page size boundary 5671 * for page size > block size. 5672 */ 5673 ioffset = round_down(offset, PAGE_SIZE); 5674 /* Write out all dirty pages */ 5675 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5676 LLONG_MAX); 5677 if (ret) 5678 goto out_mmap; 5679 truncate_pagecache(inode, ioffset); 5680 5681 credits = ext4_writepage_trans_blocks(inode); 5682 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5683 if (IS_ERR(handle)) { 5684 ret = PTR_ERR(handle); 5685 goto out_mmap; 5686 } 5687 5688 /* Expand file to avoid data loss if there is error while shifting */ 5689 inode->i_size += len; 5690 EXT4_I(inode)->i_disksize += len; 5691 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5692 ret = ext4_mark_inode_dirty(handle, inode); 5693 if (ret) 5694 goto out_stop; 5695 5696 down_write(&EXT4_I(inode)->i_data_sem); 5697 ext4_discard_preallocations(inode); 5698 5699 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5700 if (IS_ERR(path)) { 5701 up_write(&EXT4_I(inode)->i_data_sem); 5702 goto out_stop; 5703 } 5704 5705 depth = ext_depth(inode); 5706 extent = path[depth].p_ext; 5707 if (extent) { 5708 ee_start_lblk = le32_to_cpu(extent->ee_block); 5709 ee_len = ext4_ext_get_actual_len(extent); 5710 5711 /* 5712 * If offset_lblk is not the starting block of extent, split 5713 * the extent @offset_lblk 5714 */ 5715 if ((offset_lblk > ee_start_lblk) && 5716 (offset_lblk < (ee_start_lblk + ee_len))) { 5717 if (ext4_ext_is_unwritten(extent)) 5718 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5719 EXT4_EXT_MARK_UNWRIT2; 5720 ret = ext4_split_extent_at(handle, inode, &path, 5721 offset_lblk, split_flag, 5722 EXT4_EX_NOCACHE | 5723 EXT4_GET_BLOCKS_PRE_IO | 5724 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5725 } 5726 5727 ext4_ext_drop_refs(path); 5728 kfree(path); 5729 if (ret < 0) { 5730 up_write(&EXT4_I(inode)->i_data_sem); 5731 goto out_stop; 5732 } 5733 } 5734 5735 ret = ext4_es_remove_extent(inode, offset_lblk, 5736 EXT_MAX_BLOCKS - offset_lblk); 5737 if (ret) { 5738 up_write(&EXT4_I(inode)->i_data_sem); 5739 goto out_stop; 5740 } 5741 5742 /* 5743 * if offset_lblk lies in a hole which is at start of file, use 5744 * ee_start_lblk to shift extents 5745 */ 5746 ret = ext4_ext_shift_extents(inode, handle, 5747 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5748 len_lblk, SHIFT_RIGHT); 5749 5750 up_write(&EXT4_I(inode)->i_data_sem); 5751 if (IS_SYNC(inode)) 5752 ext4_handle_sync(handle); 5753 5754 out_stop: 5755 ext4_journal_stop(handle); 5756 out_mmap: 5757 up_write(&EXT4_I(inode)->i_mmap_sem); 5758 ext4_inode_resume_unlocked_dio(inode); 5759 out_mutex: 5760 inode_unlock(inode); 5761 return ret; 5762 } 5763 5764 /** 5765 * ext4_swap_extents - Swap extents between two inodes 5766 * 5767 * @inode1: First inode 5768 * @inode2: Second inode 5769 * @lblk1: Start block for first inode 5770 * @lblk2: Start block for second inode 5771 * @count: Number of blocks to swap 5772 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5773 * @erp: Pointer to save error value 5774 * 5775 * This helper routine does exactly what is promise "swap extents". All other 5776 * stuff such as page-cache locking consistency, bh mapping consistency or 5777 * extent's data copying must be performed by caller. 5778 * Locking: 5779 * i_mutex is held for both inodes 5780 * i_data_sem is locked for write for both inodes 5781 * Assumptions: 5782 * All pages from requested range are locked for both inodes 5783 */ 5784 int 5785 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5786 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5787 ext4_lblk_t count, int unwritten, int *erp) 5788 { 5789 struct ext4_ext_path *path1 = NULL; 5790 struct ext4_ext_path *path2 = NULL; 5791 int replaced_count = 0; 5792 5793 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5794 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5795 BUG_ON(!inode_is_locked(inode1)); 5796 BUG_ON(!inode_is_locked(inode2)); 5797 5798 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5799 if (unlikely(*erp)) 5800 return 0; 5801 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5802 if (unlikely(*erp)) 5803 return 0; 5804 5805 while (count) { 5806 struct ext4_extent *ex1, *ex2, tmp_ex; 5807 ext4_lblk_t e1_blk, e2_blk; 5808 int e1_len, e2_len, len; 5809 int split = 0; 5810 5811 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5812 if (IS_ERR(path1)) { 5813 *erp = PTR_ERR(path1); 5814 path1 = NULL; 5815 finish: 5816 count = 0; 5817 goto repeat; 5818 } 5819 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5820 if (IS_ERR(path2)) { 5821 *erp = PTR_ERR(path2); 5822 path2 = NULL; 5823 goto finish; 5824 } 5825 ex1 = path1[path1->p_depth].p_ext; 5826 ex2 = path2[path2->p_depth].p_ext; 5827 /* Do we have somthing to swap ? */ 5828 if (unlikely(!ex2 || !ex1)) 5829 goto finish; 5830 5831 e1_blk = le32_to_cpu(ex1->ee_block); 5832 e2_blk = le32_to_cpu(ex2->ee_block); 5833 e1_len = ext4_ext_get_actual_len(ex1); 5834 e2_len = ext4_ext_get_actual_len(ex2); 5835 5836 /* Hole handling */ 5837 if (!in_range(lblk1, e1_blk, e1_len) || 5838 !in_range(lblk2, e2_blk, e2_len)) { 5839 ext4_lblk_t next1, next2; 5840 5841 /* if hole after extent, then go to next extent */ 5842 next1 = ext4_ext_next_allocated_block(path1); 5843 next2 = ext4_ext_next_allocated_block(path2); 5844 /* If hole before extent, then shift to that extent */ 5845 if (e1_blk > lblk1) 5846 next1 = e1_blk; 5847 if (e2_blk > lblk2) 5848 next2 = e1_blk; 5849 /* Do we have something to swap */ 5850 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5851 goto finish; 5852 /* Move to the rightest boundary */ 5853 len = next1 - lblk1; 5854 if (len < next2 - lblk2) 5855 len = next2 - lblk2; 5856 if (len > count) 5857 len = count; 5858 lblk1 += len; 5859 lblk2 += len; 5860 count -= len; 5861 goto repeat; 5862 } 5863 5864 /* Prepare left boundary */ 5865 if (e1_blk < lblk1) { 5866 split = 1; 5867 *erp = ext4_force_split_extent_at(handle, inode1, 5868 &path1, lblk1, 0); 5869 if (unlikely(*erp)) 5870 goto finish; 5871 } 5872 if (e2_blk < lblk2) { 5873 split = 1; 5874 *erp = ext4_force_split_extent_at(handle, inode2, 5875 &path2, lblk2, 0); 5876 if (unlikely(*erp)) 5877 goto finish; 5878 } 5879 /* ext4_split_extent_at() may result in leaf extent split, 5880 * path must to be revalidated. */ 5881 if (split) 5882 goto repeat; 5883 5884 /* Prepare right boundary */ 5885 len = count; 5886 if (len > e1_blk + e1_len - lblk1) 5887 len = e1_blk + e1_len - lblk1; 5888 if (len > e2_blk + e2_len - lblk2) 5889 len = e2_blk + e2_len - lblk2; 5890 5891 if (len != e1_len) { 5892 split = 1; 5893 *erp = ext4_force_split_extent_at(handle, inode1, 5894 &path1, lblk1 + len, 0); 5895 if (unlikely(*erp)) 5896 goto finish; 5897 } 5898 if (len != e2_len) { 5899 split = 1; 5900 *erp = ext4_force_split_extent_at(handle, inode2, 5901 &path2, lblk2 + len, 0); 5902 if (*erp) 5903 goto finish; 5904 } 5905 /* ext4_split_extent_at() may result in leaf extent split, 5906 * path must to be revalidated. */ 5907 if (split) 5908 goto repeat; 5909 5910 BUG_ON(e2_len != e1_len); 5911 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5912 if (unlikely(*erp)) 5913 goto finish; 5914 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5915 if (unlikely(*erp)) 5916 goto finish; 5917 5918 /* Both extents are fully inside boundaries. Swap it now */ 5919 tmp_ex = *ex1; 5920 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5921 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5922 ex1->ee_len = cpu_to_le16(e2_len); 5923 ex2->ee_len = cpu_to_le16(e1_len); 5924 if (unwritten) 5925 ext4_ext_mark_unwritten(ex2); 5926 if (ext4_ext_is_unwritten(&tmp_ex)) 5927 ext4_ext_mark_unwritten(ex1); 5928 5929 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5930 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5931 *erp = ext4_ext_dirty(handle, inode2, path2 + 5932 path2->p_depth); 5933 if (unlikely(*erp)) 5934 goto finish; 5935 *erp = ext4_ext_dirty(handle, inode1, path1 + 5936 path1->p_depth); 5937 /* 5938 * Looks scarry ah..? second inode already points to new blocks, 5939 * and it was successfully dirtied. But luckily error may happen 5940 * only due to journal error, so full transaction will be 5941 * aborted anyway. 5942 */ 5943 if (unlikely(*erp)) 5944 goto finish; 5945 lblk1 += len; 5946 lblk2 += len; 5947 replaced_count += len; 5948 count -= len; 5949 5950 repeat: 5951 ext4_ext_drop_refs(path1); 5952 kfree(path1); 5953 ext4_ext_drop_refs(path2); 5954 kfree(path2); 5955 path1 = path2 = NULL; 5956 } 5957 return replaced_count; 5958 } 5959