1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct ext4_ext_cache *newex); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 #define ext4_ext_dirty(handle, inode, path) \ 161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 162 static int __ext4_ext_dirty(const char *where, unsigned int line, 163 handle_t *handle, struct inode *inode, 164 struct ext4_ext_path *path) 165 { 166 int err; 167 if (path->p_bh) { 168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 169 /* path points to block */ 170 err = __ext4_handle_dirty_metadata(where, line, handle, 171 inode, path->p_bh); 172 } else { 173 /* path points to leaf/index in inode body */ 174 err = ext4_mark_inode_dirty(handle, inode); 175 } 176 return err; 177 } 178 179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 180 struct ext4_ext_path *path, 181 ext4_lblk_t block) 182 { 183 if (path) { 184 int depth = path->p_depth; 185 struct ext4_extent *ex; 186 187 /* 188 * Try to predict block placement assuming that we are 189 * filling in a file which will eventually be 190 * non-sparse --- i.e., in the case of libbfd writing 191 * an ELF object sections out-of-order but in a way 192 * the eventually results in a contiguous object or 193 * executable file, or some database extending a table 194 * space file. However, this is actually somewhat 195 * non-ideal if we are writing a sparse file such as 196 * qemu or KVM writing a raw image file that is going 197 * to stay fairly sparse, since it will end up 198 * fragmenting the file system's free space. Maybe we 199 * should have some hueristics or some way to allow 200 * userspace to pass a hint to file system, 201 * especially if the latter case turns out to be 202 * common. 203 */ 204 ex = path[depth].p_ext; 205 if (ex) { 206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 208 209 if (block > ext_block) 210 return ext_pblk + (block - ext_block); 211 else 212 return ext_pblk - (ext_block - block); 213 } 214 215 /* it looks like index is empty; 216 * try to find starting block from index itself */ 217 if (path[depth].p_bh) 218 return path[depth].p_bh->b_blocknr; 219 } 220 221 /* OK. use inode's group */ 222 return ext4_inode_to_goal_block(inode); 223 } 224 225 /* 226 * Allocation for a meta data block 227 */ 228 static ext4_fsblk_t 229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 230 struct ext4_ext_path *path, 231 struct ext4_extent *ex, int *err, unsigned int flags) 232 { 233 ext4_fsblk_t goal, newblock; 234 235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 237 NULL, err); 238 return newblock; 239 } 240 241 static inline int ext4_ext_space_block(struct inode *inode, int check) 242 { 243 int size; 244 245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 246 / sizeof(struct ext4_extent); 247 #ifdef AGGRESSIVE_TEST 248 if (!check && size > 6) 249 size = 6; 250 #endif 251 return size; 252 } 253 254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 255 { 256 int size; 257 258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 259 / sizeof(struct ext4_extent_idx); 260 #ifdef AGGRESSIVE_TEST 261 if (!check && size > 5) 262 size = 5; 263 #endif 264 return size; 265 } 266 267 static inline int ext4_ext_space_root(struct inode *inode, int check) 268 { 269 int size; 270 271 size = sizeof(EXT4_I(inode)->i_data); 272 size -= sizeof(struct ext4_extent_header); 273 size /= sizeof(struct ext4_extent); 274 #ifdef AGGRESSIVE_TEST 275 if (!check && size > 3) 276 size = 3; 277 #endif 278 return size; 279 } 280 281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 282 { 283 int size; 284 285 size = sizeof(EXT4_I(inode)->i_data); 286 size -= sizeof(struct ext4_extent_header); 287 size /= sizeof(struct ext4_extent_idx); 288 #ifdef AGGRESSIVE_TEST 289 if (!check && size > 4) 290 size = 4; 291 #endif 292 return size; 293 } 294 295 /* 296 * Calculate the number of metadata blocks needed 297 * to allocate @blocks 298 * Worse case is one block per extent 299 */ 300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 301 { 302 struct ext4_inode_info *ei = EXT4_I(inode); 303 int idxs; 304 305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 306 / sizeof(struct ext4_extent_idx)); 307 308 /* 309 * If the new delayed allocation block is contiguous with the 310 * previous da block, it can share index blocks with the 311 * previous block, so we only need to allocate a new index 312 * block every idxs leaf blocks. At ldxs**2 blocks, we need 313 * an additional index block, and at ldxs**3 blocks, yet 314 * another index blocks. 315 */ 316 if (ei->i_da_metadata_calc_len && 317 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 318 int num = 0; 319 320 if ((ei->i_da_metadata_calc_len % idxs) == 0) 321 num++; 322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 323 num++; 324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 325 num++; 326 ei->i_da_metadata_calc_len = 0; 327 } else 328 ei->i_da_metadata_calc_len++; 329 ei->i_da_metadata_calc_last_lblock++; 330 return num; 331 } 332 333 /* 334 * In the worst case we need a new set of index blocks at 335 * every level of the inode's extent tree. 336 */ 337 ei->i_da_metadata_calc_len = 1; 338 ei->i_da_metadata_calc_last_lblock = lblock; 339 return ext_depth(inode) + 1; 340 } 341 342 static int 343 ext4_ext_max_entries(struct inode *inode, int depth) 344 { 345 int max; 346 347 if (depth == ext_depth(inode)) { 348 if (depth == 0) 349 max = ext4_ext_space_root(inode, 1); 350 else 351 max = ext4_ext_space_root_idx(inode, 1); 352 } else { 353 if (depth == 0) 354 max = ext4_ext_space_block(inode, 1); 355 else 356 max = ext4_ext_space_block_idx(inode, 1); 357 } 358 359 return max; 360 } 361 362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 363 { 364 ext4_fsblk_t block = ext4_ext_pblock(ext); 365 int len = ext4_ext_get_actual_len(ext); 366 367 if (len == 0) 368 return 0; 369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 370 } 371 372 static int ext4_valid_extent_idx(struct inode *inode, 373 struct ext4_extent_idx *ext_idx) 374 { 375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 376 377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 378 } 379 380 static int ext4_valid_extent_entries(struct inode *inode, 381 struct ext4_extent_header *eh, 382 int depth) 383 { 384 unsigned short entries; 385 if (eh->eh_entries == 0) 386 return 1; 387 388 entries = le16_to_cpu(eh->eh_entries); 389 390 if (depth == 0) { 391 /* leaf entries */ 392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 393 while (entries) { 394 if (!ext4_valid_extent(inode, ext)) 395 return 0; 396 ext++; 397 entries--; 398 } 399 } else { 400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 401 while (entries) { 402 if (!ext4_valid_extent_idx(inode, ext_idx)) 403 return 0; 404 ext_idx++; 405 entries--; 406 } 407 } 408 return 1; 409 } 410 411 static int __ext4_ext_check(const char *function, unsigned int line, 412 struct inode *inode, struct ext4_extent_header *eh, 413 int depth) 414 { 415 const char *error_msg; 416 int max = 0; 417 418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 419 error_msg = "invalid magic"; 420 goto corrupted; 421 } 422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 423 error_msg = "unexpected eh_depth"; 424 goto corrupted; 425 } 426 if (unlikely(eh->eh_max == 0)) { 427 error_msg = "invalid eh_max"; 428 goto corrupted; 429 } 430 max = ext4_ext_max_entries(inode, depth); 431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 432 error_msg = "too large eh_max"; 433 goto corrupted; 434 } 435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 436 error_msg = "invalid eh_entries"; 437 goto corrupted; 438 } 439 if (!ext4_valid_extent_entries(inode, eh, depth)) { 440 error_msg = "invalid extent entries"; 441 goto corrupted; 442 } 443 /* Verify checksum on non-root extent tree nodes */ 444 if (ext_depth(inode) != depth && 445 !ext4_extent_block_csum_verify(inode, eh)) { 446 error_msg = "extent tree corrupted"; 447 goto corrupted; 448 } 449 return 0; 450 451 corrupted: 452 ext4_error_inode(inode, function, line, 0, 453 "bad header/extent: %s - magic %x, " 454 "entries %u, max %u(%u), depth %u(%u)", 455 error_msg, le16_to_cpu(eh->eh_magic), 456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 457 max, le16_to_cpu(eh->eh_depth), depth); 458 459 return -EIO; 460 } 461 462 #define ext4_ext_check(inode, eh, depth) \ 463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 464 465 int ext4_ext_check_inode(struct inode *inode) 466 { 467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 468 } 469 470 static int __ext4_ext_check_block(const char *function, unsigned int line, 471 struct inode *inode, 472 struct ext4_extent_header *eh, 473 int depth, 474 struct buffer_head *bh) 475 { 476 int ret; 477 478 if (buffer_verified(bh)) 479 return 0; 480 ret = ext4_ext_check(inode, eh, depth); 481 if (ret) 482 return ret; 483 set_buffer_verified(bh); 484 return ret; 485 } 486 487 #define ext4_ext_check_block(inode, eh, depth, bh) \ 488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 489 490 #ifdef EXT_DEBUG 491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 492 { 493 int k, l = path->p_depth; 494 495 ext_debug("path:"); 496 for (k = 0; k <= l; k++, path++) { 497 if (path->p_idx) { 498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 499 ext4_idx_pblock(path->p_idx)); 500 } else if (path->p_ext) { 501 ext_debug(" %d:[%d]%d:%llu ", 502 le32_to_cpu(path->p_ext->ee_block), 503 ext4_ext_is_uninitialized(path->p_ext), 504 ext4_ext_get_actual_len(path->p_ext), 505 ext4_ext_pblock(path->p_ext)); 506 } else 507 ext_debug(" []"); 508 } 509 ext_debug("\n"); 510 } 511 512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 513 { 514 int depth = ext_depth(inode); 515 struct ext4_extent_header *eh; 516 struct ext4_extent *ex; 517 int i; 518 519 if (!path) 520 return; 521 522 eh = path[depth].p_hdr; 523 ex = EXT_FIRST_EXTENT(eh); 524 525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 526 527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 529 ext4_ext_is_uninitialized(ex), 530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 531 } 532 ext_debug("\n"); 533 } 534 535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 536 ext4_fsblk_t newblock, int level) 537 { 538 int depth = ext_depth(inode); 539 struct ext4_extent *ex; 540 541 if (depth != level) { 542 struct ext4_extent_idx *idx; 543 idx = path[level].p_idx; 544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 545 ext_debug("%d: move %d:%llu in new index %llu\n", level, 546 le32_to_cpu(idx->ei_block), 547 ext4_idx_pblock(idx), 548 newblock); 549 idx++; 550 } 551 552 return; 553 } 554 555 ex = path[depth].p_ext; 556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 558 le32_to_cpu(ex->ee_block), 559 ext4_ext_pblock(ex), 560 ext4_ext_is_uninitialized(ex), 561 ext4_ext_get_actual_len(ex), 562 newblock); 563 ex++; 564 } 565 } 566 567 #else 568 #define ext4_ext_show_path(inode, path) 569 #define ext4_ext_show_leaf(inode, path) 570 #define ext4_ext_show_move(inode, path, newblock, level) 571 #endif 572 573 void ext4_ext_drop_refs(struct ext4_ext_path *path) 574 { 575 int depth = path->p_depth; 576 int i; 577 578 for (i = 0; i <= depth; i++, path++) 579 if (path->p_bh) { 580 brelse(path->p_bh); 581 path->p_bh = NULL; 582 } 583 } 584 585 /* 586 * ext4_ext_binsearch_idx: 587 * binary search for the closest index of the given block 588 * the header must be checked before calling this 589 */ 590 static void 591 ext4_ext_binsearch_idx(struct inode *inode, 592 struct ext4_ext_path *path, ext4_lblk_t block) 593 { 594 struct ext4_extent_header *eh = path->p_hdr; 595 struct ext4_extent_idx *r, *l, *m; 596 597 598 ext_debug("binsearch for %u(idx): ", block); 599 600 l = EXT_FIRST_INDEX(eh) + 1; 601 r = EXT_LAST_INDEX(eh); 602 while (l <= r) { 603 m = l + (r - l) / 2; 604 if (block < le32_to_cpu(m->ei_block)) 605 r = m - 1; 606 else 607 l = m + 1; 608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 609 m, le32_to_cpu(m->ei_block), 610 r, le32_to_cpu(r->ei_block)); 611 } 612 613 path->p_idx = l - 1; 614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 615 ext4_idx_pblock(path->p_idx)); 616 617 #ifdef CHECK_BINSEARCH 618 { 619 struct ext4_extent_idx *chix, *ix; 620 int k; 621 622 chix = ix = EXT_FIRST_INDEX(eh); 623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 624 if (k != 0 && 625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 626 printk(KERN_DEBUG "k=%d, ix=0x%p, " 627 "first=0x%p\n", k, 628 ix, EXT_FIRST_INDEX(eh)); 629 printk(KERN_DEBUG "%u <= %u\n", 630 le32_to_cpu(ix->ei_block), 631 le32_to_cpu(ix[-1].ei_block)); 632 } 633 BUG_ON(k && le32_to_cpu(ix->ei_block) 634 <= le32_to_cpu(ix[-1].ei_block)); 635 if (block < le32_to_cpu(ix->ei_block)) 636 break; 637 chix = ix; 638 } 639 BUG_ON(chix != path->p_idx); 640 } 641 #endif 642 643 } 644 645 /* 646 * ext4_ext_binsearch: 647 * binary search for closest extent of the given block 648 * the header must be checked before calling this 649 */ 650 static void 651 ext4_ext_binsearch(struct inode *inode, 652 struct ext4_ext_path *path, ext4_lblk_t block) 653 { 654 struct ext4_extent_header *eh = path->p_hdr; 655 struct ext4_extent *r, *l, *m; 656 657 if (eh->eh_entries == 0) { 658 /* 659 * this leaf is empty: 660 * we get such a leaf in split/add case 661 */ 662 return; 663 } 664 665 ext_debug("binsearch for %u: ", block); 666 667 l = EXT_FIRST_EXTENT(eh) + 1; 668 r = EXT_LAST_EXTENT(eh); 669 670 while (l <= r) { 671 m = l + (r - l) / 2; 672 if (block < le32_to_cpu(m->ee_block)) 673 r = m - 1; 674 else 675 l = m + 1; 676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 677 m, le32_to_cpu(m->ee_block), 678 r, le32_to_cpu(r->ee_block)); 679 } 680 681 path->p_ext = l - 1; 682 ext_debug(" -> %d:%llu:[%d]%d ", 683 le32_to_cpu(path->p_ext->ee_block), 684 ext4_ext_pblock(path->p_ext), 685 ext4_ext_is_uninitialized(path->p_ext), 686 ext4_ext_get_actual_len(path->p_ext)); 687 688 #ifdef CHECK_BINSEARCH 689 { 690 struct ext4_extent *chex, *ex; 691 int k; 692 693 chex = ex = EXT_FIRST_EXTENT(eh); 694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 695 BUG_ON(k && le32_to_cpu(ex->ee_block) 696 <= le32_to_cpu(ex[-1].ee_block)); 697 if (block < le32_to_cpu(ex->ee_block)) 698 break; 699 chex = ex; 700 } 701 BUG_ON(chex != path->p_ext); 702 } 703 #endif 704 705 } 706 707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 708 { 709 struct ext4_extent_header *eh; 710 711 eh = ext_inode_hdr(inode); 712 eh->eh_depth = 0; 713 eh->eh_entries = 0; 714 eh->eh_magic = EXT4_EXT_MAGIC; 715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 716 ext4_mark_inode_dirty(handle, inode); 717 ext4_ext_invalidate_cache(inode); 718 return 0; 719 } 720 721 struct ext4_ext_path * 722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 723 struct ext4_ext_path *path) 724 { 725 struct ext4_extent_header *eh; 726 struct buffer_head *bh; 727 short int depth, i, ppos = 0, alloc = 0; 728 729 eh = ext_inode_hdr(inode); 730 depth = ext_depth(inode); 731 732 /* account possible depth increase */ 733 if (!path) { 734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 735 GFP_NOFS); 736 if (!path) 737 return ERR_PTR(-ENOMEM); 738 alloc = 1; 739 } 740 path[0].p_hdr = eh; 741 path[0].p_bh = NULL; 742 743 i = depth; 744 /* walk through the tree */ 745 while (i) { 746 ext_debug("depth %d: num %d, max %d\n", 747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 748 749 ext4_ext_binsearch_idx(inode, path + ppos, block); 750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 751 path[ppos].p_depth = i; 752 path[ppos].p_ext = NULL; 753 754 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 755 if (unlikely(!bh)) 756 goto err; 757 if (!bh_uptodate_or_lock(bh)) { 758 trace_ext4_ext_load_extent(inode, block, 759 path[ppos].p_block); 760 if (bh_submit_read(bh) < 0) { 761 put_bh(bh); 762 goto err; 763 } 764 } 765 eh = ext_block_hdr(bh); 766 ppos++; 767 if (unlikely(ppos > depth)) { 768 put_bh(bh); 769 EXT4_ERROR_INODE(inode, 770 "ppos %d > depth %d", ppos, depth); 771 goto err; 772 } 773 path[ppos].p_bh = bh; 774 path[ppos].p_hdr = eh; 775 i--; 776 777 if (ext4_ext_check_block(inode, eh, i, bh)) 778 goto err; 779 } 780 781 path[ppos].p_depth = i; 782 path[ppos].p_ext = NULL; 783 path[ppos].p_idx = NULL; 784 785 /* find extent */ 786 ext4_ext_binsearch(inode, path + ppos, block); 787 /* if not an empty leaf */ 788 if (path[ppos].p_ext) 789 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 790 791 ext4_ext_show_path(inode, path); 792 793 return path; 794 795 err: 796 ext4_ext_drop_refs(path); 797 if (alloc) 798 kfree(path); 799 return ERR_PTR(-EIO); 800 } 801 802 /* 803 * ext4_ext_insert_index: 804 * insert new index [@logical;@ptr] into the block at @curp; 805 * check where to insert: before @curp or after @curp 806 */ 807 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 808 struct ext4_ext_path *curp, 809 int logical, ext4_fsblk_t ptr) 810 { 811 struct ext4_extent_idx *ix; 812 int len, err; 813 814 err = ext4_ext_get_access(handle, inode, curp); 815 if (err) 816 return err; 817 818 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 819 EXT4_ERROR_INODE(inode, 820 "logical %d == ei_block %d!", 821 logical, le32_to_cpu(curp->p_idx->ei_block)); 822 return -EIO; 823 } 824 825 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 826 >= le16_to_cpu(curp->p_hdr->eh_max))) { 827 EXT4_ERROR_INODE(inode, 828 "eh_entries %d >= eh_max %d!", 829 le16_to_cpu(curp->p_hdr->eh_entries), 830 le16_to_cpu(curp->p_hdr->eh_max)); 831 return -EIO; 832 } 833 834 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 835 /* insert after */ 836 ext_debug("insert new index %d after: %llu\n", logical, ptr); 837 ix = curp->p_idx + 1; 838 } else { 839 /* insert before */ 840 ext_debug("insert new index %d before: %llu\n", logical, ptr); 841 ix = curp->p_idx; 842 } 843 844 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 845 BUG_ON(len < 0); 846 if (len > 0) { 847 ext_debug("insert new index %d: " 848 "move %d indices from 0x%p to 0x%p\n", 849 logical, len, ix, ix + 1); 850 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 851 } 852 853 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 854 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 855 return -EIO; 856 } 857 858 ix->ei_block = cpu_to_le32(logical); 859 ext4_idx_store_pblock(ix, ptr); 860 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 861 862 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 863 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 864 return -EIO; 865 } 866 867 err = ext4_ext_dirty(handle, inode, curp); 868 ext4_std_error(inode->i_sb, err); 869 870 return err; 871 } 872 873 /* 874 * ext4_ext_split: 875 * inserts new subtree into the path, using free index entry 876 * at depth @at: 877 * - allocates all needed blocks (new leaf and all intermediate index blocks) 878 * - makes decision where to split 879 * - moves remaining extents and index entries (right to the split point) 880 * into the newly allocated blocks 881 * - initializes subtree 882 */ 883 static int ext4_ext_split(handle_t *handle, struct inode *inode, 884 unsigned int flags, 885 struct ext4_ext_path *path, 886 struct ext4_extent *newext, int at) 887 { 888 struct buffer_head *bh = NULL; 889 int depth = ext_depth(inode); 890 struct ext4_extent_header *neh; 891 struct ext4_extent_idx *fidx; 892 int i = at, k, m, a; 893 ext4_fsblk_t newblock, oldblock; 894 __le32 border; 895 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 896 int err = 0; 897 898 /* make decision: where to split? */ 899 /* FIXME: now decision is simplest: at current extent */ 900 901 /* if current leaf will be split, then we should use 902 * border from split point */ 903 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 904 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 905 return -EIO; 906 } 907 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 908 border = path[depth].p_ext[1].ee_block; 909 ext_debug("leaf will be split." 910 " next leaf starts at %d\n", 911 le32_to_cpu(border)); 912 } else { 913 border = newext->ee_block; 914 ext_debug("leaf will be added." 915 " next leaf starts at %d\n", 916 le32_to_cpu(border)); 917 } 918 919 /* 920 * If error occurs, then we break processing 921 * and mark filesystem read-only. index won't 922 * be inserted and tree will be in consistent 923 * state. Next mount will repair buffers too. 924 */ 925 926 /* 927 * Get array to track all allocated blocks. 928 * We need this to handle errors and free blocks 929 * upon them. 930 */ 931 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 932 if (!ablocks) 933 return -ENOMEM; 934 935 /* allocate all needed blocks */ 936 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 937 for (a = 0; a < depth - at; a++) { 938 newblock = ext4_ext_new_meta_block(handle, inode, path, 939 newext, &err, flags); 940 if (newblock == 0) 941 goto cleanup; 942 ablocks[a] = newblock; 943 } 944 945 /* initialize new leaf */ 946 newblock = ablocks[--a]; 947 if (unlikely(newblock == 0)) { 948 EXT4_ERROR_INODE(inode, "newblock == 0!"); 949 err = -EIO; 950 goto cleanup; 951 } 952 bh = sb_getblk(inode->i_sb, newblock); 953 if (!bh) { 954 err = -EIO; 955 goto cleanup; 956 } 957 lock_buffer(bh); 958 959 err = ext4_journal_get_create_access(handle, bh); 960 if (err) 961 goto cleanup; 962 963 neh = ext_block_hdr(bh); 964 neh->eh_entries = 0; 965 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 966 neh->eh_magic = EXT4_EXT_MAGIC; 967 neh->eh_depth = 0; 968 969 /* move remainder of path[depth] to the new leaf */ 970 if (unlikely(path[depth].p_hdr->eh_entries != 971 path[depth].p_hdr->eh_max)) { 972 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 973 path[depth].p_hdr->eh_entries, 974 path[depth].p_hdr->eh_max); 975 err = -EIO; 976 goto cleanup; 977 } 978 /* start copy from next extent */ 979 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 980 ext4_ext_show_move(inode, path, newblock, depth); 981 if (m) { 982 struct ext4_extent *ex; 983 ex = EXT_FIRST_EXTENT(neh); 984 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 985 le16_add_cpu(&neh->eh_entries, m); 986 } 987 988 ext4_extent_block_csum_set(inode, neh); 989 set_buffer_uptodate(bh); 990 unlock_buffer(bh); 991 992 err = ext4_handle_dirty_metadata(handle, inode, bh); 993 if (err) 994 goto cleanup; 995 brelse(bh); 996 bh = NULL; 997 998 /* correct old leaf */ 999 if (m) { 1000 err = ext4_ext_get_access(handle, inode, path + depth); 1001 if (err) 1002 goto cleanup; 1003 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1004 err = ext4_ext_dirty(handle, inode, path + depth); 1005 if (err) 1006 goto cleanup; 1007 1008 } 1009 1010 /* create intermediate indexes */ 1011 k = depth - at - 1; 1012 if (unlikely(k < 0)) { 1013 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1014 err = -EIO; 1015 goto cleanup; 1016 } 1017 if (k) 1018 ext_debug("create %d intermediate indices\n", k); 1019 /* insert new index into current index block */ 1020 /* current depth stored in i var */ 1021 i = depth - 1; 1022 while (k--) { 1023 oldblock = newblock; 1024 newblock = ablocks[--a]; 1025 bh = sb_getblk(inode->i_sb, newblock); 1026 if (!bh) { 1027 err = -EIO; 1028 goto cleanup; 1029 } 1030 lock_buffer(bh); 1031 1032 err = ext4_journal_get_create_access(handle, bh); 1033 if (err) 1034 goto cleanup; 1035 1036 neh = ext_block_hdr(bh); 1037 neh->eh_entries = cpu_to_le16(1); 1038 neh->eh_magic = EXT4_EXT_MAGIC; 1039 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1040 neh->eh_depth = cpu_to_le16(depth - i); 1041 fidx = EXT_FIRST_INDEX(neh); 1042 fidx->ei_block = border; 1043 ext4_idx_store_pblock(fidx, oldblock); 1044 1045 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1046 i, newblock, le32_to_cpu(border), oldblock); 1047 1048 /* move remainder of path[i] to the new index block */ 1049 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1050 EXT_LAST_INDEX(path[i].p_hdr))) { 1051 EXT4_ERROR_INODE(inode, 1052 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1053 le32_to_cpu(path[i].p_ext->ee_block)); 1054 err = -EIO; 1055 goto cleanup; 1056 } 1057 /* start copy indexes */ 1058 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1059 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1060 EXT_MAX_INDEX(path[i].p_hdr)); 1061 ext4_ext_show_move(inode, path, newblock, i); 1062 if (m) { 1063 memmove(++fidx, path[i].p_idx, 1064 sizeof(struct ext4_extent_idx) * m); 1065 le16_add_cpu(&neh->eh_entries, m); 1066 } 1067 ext4_extent_block_csum_set(inode, neh); 1068 set_buffer_uptodate(bh); 1069 unlock_buffer(bh); 1070 1071 err = ext4_handle_dirty_metadata(handle, inode, bh); 1072 if (err) 1073 goto cleanup; 1074 brelse(bh); 1075 bh = NULL; 1076 1077 /* correct old index */ 1078 if (m) { 1079 err = ext4_ext_get_access(handle, inode, path + i); 1080 if (err) 1081 goto cleanup; 1082 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1083 err = ext4_ext_dirty(handle, inode, path + i); 1084 if (err) 1085 goto cleanup; 1086 } 1087 1088 i--; 1089 } 1090 1091 /* insert new index */ 1092 err = ext4_ext_insert_index(handle, inode, path + at, 1093 le32_to_cpu(border), newblock); 1094 1095 cleanup: 1096 if (bh) { 1097 if (buffer_locked(bh)) 1098 unlock_buffer(bh); 1099 brelse(bh); 1100 } 1101 1102 if (err) { 1103 /* free all allocated blocks in error case */ 1104 for (i = 0; i < depth; i++) { 1105 if (!ablocks[i]) 1106 continue; 1107 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1108 EXT4_FREE_BLOCKS_METADATA); 1109 } 1110 } 1111 kfree(ablocks); 1112 1113 return err; 1114 } 1115 1116 /* 1117 * ext4_ext_grow_indepth: 1118 * implements tree growing procedure: 1119 * - allocates new block 1120 * - moves top-level data (index block or leaf) into the new block 1121 * - initializes new top-level, creating index that points to the 1122 * just created block 1123 */ 1124 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1125 unsigned int flags, 1126 struct ext4_extent *newext) 1127 { 1128 struct ext4_extent_header *neh; 1129 struct buffer_head *bh; 1130 ext4_fsblk_t newblock; 1131 int err = 0; 1132 1133 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1134 newext, &err, flags); 1135 if (newblock == 0) 1136 return err; 1137 1138 bh = sb_getblk(inode->i_sb, newblock); 1139 if (!bh) { 1140 err = -EIO; 1141 ext4_std_error(inode->i_sb, err); 1142 return err; 1143 } 1144 lock_buffer(bh); 1145 1146 err = ext4_journal_get_create_access(handle, bh); 1147 if (err) { 1148 unlock_buffer(bh); 1149 goto out; 1150 } 1151 1152 /* move top-level index/leaf into new block */ 1153 memmove(bh->b_data, EXT4_I(inode)->i_data, 1154 sizeof(EXT4_I(inode)->i_data)); 1155 1156 /* set size of new block */ 1157 neh = ext_block_hdr(bh); 1158 /* old root could have indexes or leaves 1159 * so calculate e_max right way */ 1160 if (ext_depth(inode)) 1161 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1162 else 1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1164 neh->eh_magic = EXT4_EXT_MAGIC; 1165 ext4_extent_block_csum_set(inode, neh); 1166 set_buffer_uptodate(bh); 1167 unlock_buffer(bh); 1168 1169 err = ext4_handle_dirty_metadata(handle, inode, bh); 1170 if (err) 1171 goto out; 1172 1173 /* Update top-level index: num,max,pointer */ 1174 neh = ext_inode_hdr(inode); 1175 neh->eh_entries = cpu_to_le16(1); 1176 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1177 if (neh->eh_depth == 0) { 1178 /* Root extent block becomes index block */ 1179 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1180 EXT_FIRST_INDEX(neh)->ei_block = 1181 EXT_FIRST_EXTENT(neh)->ee_block; 1182 } 1183 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1184 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1185 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1186 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1187 1188 le16_add_cpu(&neh->eh_depth, 1); 1189 ext4_mark_inode_dirty(handle, inode); 1190 out: 1191 brelse(bh); 1192 1193 return err; 1194 } 1195 1196 /* 1197 * ext4_ext_create_new_leaf: 1198 * finds empty index and adds new leaf. 1199 * if no free index is found, then it requests in-depth growing. 1200 */ 1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1202 unsigned int flags, 1203 struct ext4_ext_path *path, 1204 struct ext4_extent *newext) 1205 { 1206 struct ext4_ext_path *curp; 1207 int depth, i, err = 0; 1208 1209 repeat: 1210 i = depth = ext_depth(inode); 1211 1212 /* walk up to the tree and look for free index entry */ 1213 curp = path + depth; 1214 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1215 i--; 1216 curp--; 1217 } 1218 1219 /* we use already allocated block for index block, 1220 * so subsequent data blocks should be contiguous */ 1221 if (EXT_HAS_FREE_INDEX(curp)) { 1222 /* if we found index with free entry, then use that 1223 * entry: create all needed subtree and add new leaf */ 1224 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1225 if (err) 1226 goto out; 1227 1228 /* refill path */ 1229 ext4_ext_drop_refs(path); 1230 path = ext4_ext_find_extent(inode, 1231 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1232 path); 1233 if (IS_ERR(path)) 1234 err = PTR_ERR(path); 1235 } else { 1236 /* tree is full, time to grow in depth */ 1237 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1238 if (err) 1239 goto out; 1240 1241 /* refill path */ 1242 ext4_ext_drop_refs(path); 1243 path = ext4_ext_find_extent(inode, 1244 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1245 path); 1246 if (IS_ERR(path)) { 1247 err = PTR_ERR(path); 1248 goto out; 1249 } 1250 1251 /* 1252 * only first (depth 0 -> 1) produces free space; 1253 * in all other cases we have to split the grown tree 1254 */ 1255 depth = ext_depth(inode); 1256 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1257 /* now we need to split */ 1258 goto repeat; 1259 } 1260 } 1261 1262 out: 1263 return err; 1264 } 1265 1266 /* 1267 * search the closest allocated block to the left for *logical 1268 * and returns it at @logical + it's physical address at @phys 1269 * if *logical is the smallest allocated block, the function 1270 * returns 0 at @phys 1271 * return value contains 0 (success) or error code 1272 */ 1273 static int ext4_ext_search_left(struct inode *inode, 1274 struct ext4_ext_path *path, 1275 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1276 { 1277 struct ext4_extent_idx *ix; 1278 struct ext4_extent *ex; 1279 int depth, ee_len; 1280 1281 if (unlikely(path == NULL)) { 1282 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1283 return -EIO; 1284 } 1285 depth = path->p_depth; 1286 *phys = 0; 1287 1288 if (depth == 0 && path->p_ext == NULL) 1289 return 0; 1290 1291 /* usually extent in the path covers blocks smaller 1292 * then *logical, but it can be that extent is the 1293 * first one in the file */ 1294 1295 ex = path[depth].p_ext; 1296 ee_len = ext4_ext_get_actual_len(ex); 1297 if (*logical < le32_to_cpu(ex->ee_block)) { 1298 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1299 EXT4_ERROR_INODE(inode, 1300 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1301 *logical, le32_to_cpu(ex->ee_block)); 1302 return -EIO; 1303 } 1304 while (--depth >= 0) { 1305 ix = path[depth].p_idx; 1306 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1307 EXT4_ERROR_INODE(inode, 1308 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1309 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1310 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1311 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1312 depth); 1313 return -EIO; 1314 } 1315 } 1316 return 0; 1317 } 1318 1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1320 EXT4_ERROR_INODE(inode, 1321 "logical %d < ee_block %d + ee_len %d!", 1322 *logical, le32_to_cpu(ex->ee_block), ee_len); 1323 return -EIO; 1324 } 1325 1326 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1327 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1328 return 0; 1329 } 1330 1331 /* 1332 * search the closest allocated block to the right for *logical 1333 * and returns it at @logical + it's physical address at @phys 1334 * if *logical is the largest allocated block, the function 1335 * returns 0 at @phys 1336 * return value contains 0 (success) or error code 1337 */ 1338 static int ext4_ext_search_right(struct inode *inode, 1339 struct ext4_ext_path *path, 1340 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1341 struct ext4_extent **ret_ex) 1342 { 1343 struct buffer_head *bh = NULL; 1344 struct ext4_extent_header *eh; 1345 struct ext4_extent_idx *ix; 1346 struct ext4_extent *ex; 1347 ext4_fsblk_t block; 1348 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1349 int ee_len; 1350 1351 if (unlikely(path == NULL)) { 1352 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1353 return -EIO; 1354 } 1355 depth = path->p_depth; 1356 *phys = 0; 1357 1358 if (depth == 0 && path->p_ext == NULL) 1359 return 0; 1360 1361 /* usually extent in the path covers blocks smaller 1362 * then *logical, but it can be that extent is the 1363 * first one in the file */ 1364 1365 ex = path[depth].p_ext; 1366 ee_len = ext4_ext_get_actual_len(ex); 1367 if (*logical < le32_to_cpu(ex->ee_block)) { 1368 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1369 EXT4_ERROR_INODE(inode, 1370 "first_extent(path[%d].p_hdr) != ex", 1371 depth); 1372 return -EIO; 1373 } 1374 while (--depth >= 0) { 1375 ix = path[depth].p_idx; 1376 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1377 EXT4_ERROR_INODE(inode, 1378 "ix != EXT_FIRST_INDEX *logical %d!", 1379 *logical); 1380 return -EIO; 1381 } 1382 } 1383 goto found_extent; 1384 } 1385 1386 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1387 EXT4_ERROR_INODE(inode, 1388 "logical %d < ee_block %d + ee_len %d!", 1389 *logical, le32_to_cpu(ex->ee_block), ee_len); 1390 return -EIO; 1391 } 1392 1393 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1394 /* next allocated block in this leaf */ 1395 ex++; 1396 goto found_extent; 1397 } 1398 1399 /* go up and search for index to the right */ 1400 while (--depth >= 0) { 1401 ix = path[depth].p_idx; 1402 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1403 goto got_index; 1404 } 1405 1406 /* we've gone up to the root and found no index to the right */ 1407 return 0; 1408 1409 got_index: 1410 /* we've found index to the right, let's 1411 * follow it and find the closest allocated 1412 * block to the right */ 1413 ix++; 1414 block = ext4_idx_pblock(ix); 1415 while (++depth < path->p_depth) { 1416 bh = sb_bread(inode->i_sb, block); 1417 if (bh == NULL) 1418 return -EIO; 1419 eh = ext_block_hdr(bh); 1420 /* subtract from p_depth to get proper eh_depth */ 1421 if (ext4_ext_check_block(inode, eh, 1422 path->p_depth - depth, bh)) { 1423 put_bh(bh); 1424 return -EIO; 1425 } 1426 ix = EXT_FIRST_INDEX(eh); 1427 block = ext4_idx_pblock(ix); 1428 put_bh(bh); 1429 } 1430 1431 bh = sb_bread(inode->i_sb, block); 1432 if (bh == NULL) 1433 return -EIO; 1434 eh = ext_block_hdr(bh); 1435 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1436 put_bh(bh); 1437 return -EIO; 1438 } 1439 ex = EXT_FIRST_EXTENT(eh); 1440 found_extent: 1441 *logical = le32_to_cpu(ex->ee_block); 1442 *phys = ext4_ext_pblock(ex); 1443 *ret_ex = ex; 1444 if (bh) 1445 put_bh(bh); 1446 return 0; 1447 } 1448 1449 /* 1450 * ext4_ext_next_allocated_block: 1451 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1452 * NOTE: it considers block number from index entry as 1453 * allocated block. Thus, index entries have to be consistent 1454 * with leaves. 1455 */ 1456 static ext4_lblk_t 1457 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1458 { 1459 int depth; 1460 1461 BUG_ON(path == NULL); 1462 depth = path->p_depth; 1463 1464 if (depth == 0 && path->p_ext == NULL) 1465 return EXT_MAX_BLOCKS; 1466 1467 while (depth >= 0) { 1468 if (depth == path->p_depth) { 1469 /* leaf */ 1470 if (path[depth].p_ext && 1471 path[depth].p_ext != 1472 EXT_LAST_EXTENT(path[depth].p_hdr)) 1473 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1474 } else { 1475 /* index */ 1476 if (path[depth].p_idx != 1477 EXT_LAST_INDEX(path[depth].p_hdr)) 1478 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1479 } 1480 depth--; 1481 } 1482 1483 return EXT_MAX_BLOCKS; 1484 } 1485 1486 /* 1487 * ext4_ext_next_leaf_block: 1488 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1489 */ 1490 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1491 { 1492 int depth; 1493 1494 BUG_ON(path == NULL); 1495 depth = path->p_depth; 1496 1497 /* zero-tree has no leaf blocks at all */ 1498 if (depth == 0) 1499 return EXT_MAX_BLOCKS; 1500 1501 /* go to index block */ 1502 depth--; 1503 1504 while (depth >= 0) { 1505 if (path[depth].p_idx != 1506 EXT_LAST_INDEX(path[depth].p_hdr)) 1507 return (ext4_lblk_t) 1508 le32_to_cpu(path[depth].p_idx[1].ei_block); 1509 depth--; 1510 } 1511 1512 return EXT_MAX_BLOCKS; 1513 } 1514 1515 /* 1516 * ext4_ext_correct_indexes: 1517 * if leaf gets modified and modified extent is first in the leaf, 1518 * then we have to correct all indexes above. 1519 * TODO: do we need to correct tree in all cases? 1520 */ 1521 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1522 struct ext4_ext_path *path) 1523 { 1524 struct ext4_extent_header *eh; 1525 int depth = ext_depth(inode); 1526 struct ext4_extent *ex; 1527 __le32 border; 1528 int k, err = 0; 1529 1530 eh = path[depth].p_hdr; 1531 ex = path[depth].p_ext; 1532 1533 if (unlikely(ex == NULL || eh == NULL)) { 1534 EXT4_ERROR_INODE(inode, 1535 "ex %p == NULL or eh %p == NULL", ex, eh); 1536 return -EIO; 1537 } 1538 1539 if (depth == 0) { 1540 /* there is no tree at all */ 1541 return 0; 1542 } 1543 1544 if (ex != EXT_FIRST_EXTENT(eh)) { 1545 /* we correct tree if first leaf got modified only */ 1546 return 0; 1547 } 1548 1549 /* 1550 * TODO: we need correction if border is smaller than current one 1551 */ 1552 k = depth - 1; 1553 border = path[depth].p_ext->ee_block; 1554 err = ext4_ext_get_access(handle, inode, path + k); 1555 if (err) 1556 return err; 1557 path[k].p_idx->ei_block = border; 1558 err = ext4_ext_dirty(handle, inode, path + k); 1559 if (err) 1560 return err; 1561 1562 while (k--) { 1563 /* change all left-side indexes */ 1564 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1565 break; 1566 err = ext4_ext_get_access(handle, inode, path + k); 1567 if (err) 1568 break; 1569 path[k].p_idx->ei_block = border; 1570 err = ext4_ext_dirty(handle, inode, path + k); 1571 if (err) 1572 break; 1573 } 1574 1575 return err; 1576 } 1577 1578 int 1579 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1580 struct ext4_extent *ex2) 1581 { 1582 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1583 1584 /* 1585 * Make sure that either both extents are uninitialized, or 1586 * both are _not_. 1587 */ 1588 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1589 return 0; 1590 1591 if (ext4_ext_is_uninitialized(ex1)) 1592 max_len = EXT_UNINIT_MAX_LEN; 1593 else 1594 max_len = EXT_INIT_MAX_LEN; 1595 1596 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1597 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1598 1599 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1600 le32_to_cpu(ex2->ee_block)) 1601 return 0; 1602 1603 /* 1604 * To allow future support for preallocated extents to be added 1605 * as an RO_COMPAT feature, refuse to merge to extents if 1606 * this can result in the top bit of ee_len being set. 1607 */ 1608 if (ext1_ee_len + ext2_ee_len > max_len) 1609 return 0; 1610 #ifdef AGGRESSIVE_TEST 1611 if (ext1_ee_len >= 4) 1612 return 0; 1613 #endif 1614 1615 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1616 return 1; 1617 return 0; 1618 } 1619 1620 /* 1621 * This function tries to merge the "ex" extent to the next extent in the tree. 1622 * It always tries to merge towards right. If you want to merge towards 1623 * left, pass "ex - 1" as argument instead of "ex". 1624 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1625 * 1 if they got merged. 1626 */ 1627 static int ext4_ext_try_to_merge_right(struct inode *inode, 1628 struct ext4_ext_path *path, 1629 struct ext4_extent *ex) 1630 { 1631 struct ext4_extent_header *eh; 1632 unsigned int depth, len; 1633 int merge_done = 0; 1634 int uninitialized = 0; 1635 1636 depth = ext_depth(inode); 1637 BUG_ON(path[depth].p_hdr == NULL); 1638 eh = path[depth].p_hdr; 1639 1640 while (ex < EXT_LAST_EXTENT(eh)) { 1641 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1642 break; 1643 /* merge with next extent! */ 1644 if (ext4_ext_is_uninitialized(ex)) 1645 uninitialized = 1; 1646 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1647 + ext4_ext_get_actual_len(ex + 1)); 1648 if (uninitialized) 1649 ext4_ext_mark_uninitialized(ex); 1650 1651 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1652 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1653 * sizeof(struct ext4_extent); 1654 memmove(ex + 1, ex + 2, len); 1655 } 1656 le16_add_cpu(&eh->eh_entries, -1); 1657 merge_done = 1; 1658 WARN_ON(eh->eh_entries == 0); 1659 if (!eh->eh_entries) 1660 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1661 } 1662 1663 return merge_done; 1664 } 1665 1666 /* 1667 * This function does a very simple check to see if we can collapse 1668 * an extent tree with a single extent tree leaf block into the inode. 1669 */ 1670 static void ext4_ext_try_to_merge_up(handle_t *handle, 1671 struct inode *inode, 1672 struct ext4_ext_path *path) 1673 { 1674 size_t s; 1675 unsigned max_root = ext4_ext_space_root(inode, 0); 1676 ext4_fsblk_t blk; 1677 1678 if ((path[0].p_depth != 1) || 1679 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1680 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1681 return; 1682 1683 /* 1684 * We need to modify the block allocation bitmap and the block 1685 * group descriptor to release the extent tree block. If we 1686 * can't get the journal credits, give up. 1687 */ 1688 if (ext4_journal_extend(handle, 2)) 1689 return; 1690 1691 /* 1692 * Copy the extent data up to the inode 1693 */ 1694 blk = ext4_idx_pblock(path[0].p_idx); 1695 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1696 sizeof(struct ext4_extent_idx); 1697 s += sizeof(struct ext4_extent_header); 1698 1699 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1700 path[0].p_depth = 0; 1701 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1702 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1703 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1704 1705 brelse(path[1].p_bh); 1706 ext4_free_blocks(handle, inode, NULL, blk, 1, 1707 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1708 } 1709 1710 /* 1711 * This function tries to merge the @ex extent to neighbours in the tree. 1712 * return 1 if merge left else 0. 1713 */ 1714 static void ext4_ext_try_to_merge(handle_t *handle, 1715 struct inode *inode, 1716 struct ext4_ext_path *path, 1717 struct ext4_extent *ex) { 1718 struct ext4_extent_header *eh; 1719 unsigned int depth; 1720 int merge_done = 0; 1721 1722 depth = ext_depth(inode); 1723 BUG_ON(path[depth].p_hdr == NULL); 1724 eh = path[depth].p_hdr; 1725 1726 if (ex > EXT_FIRST_EXTENT(eh)) 1727 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1728 1729 if (!merge_done) 1730 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1731 1732 ext4_ext_try_to_merge_up(handle, inode, path); 1733 } 1734 1735 /* 1736 * check if a portion of the "newext" extent overlaps with an 1737 * existing extent. 1738 * 1739 * If there is an overlap discovered, it updates the length of the newext 1740 * such that there will be no overlap, and then returns 1. 1741 * If there is no overlap found, it returns 0. 1742 */ 1743 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1744 struct inode *inode, 1745 struct ext4_extent *newext, 1746 struct ext4_ext_path *path) 1747 { 1748 ext4_lblk_t b1, b2; 1749 unsigned int depth, len1; 1750 unsigned int ret = 0; 1751 1752 b1 = le32_to_cpu(newext->ee_block); 1753 len1 = ext4_ext_get_actual_len(newext); 1754 depth = ext_depth(inode); 1755 if (!path[depth].p_ext) 1756 goto out; 1757 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1758 b2 &= ~(sbi->s_cluster_ratio - 1); 1759 1760 /* 1761 * get the next allocated block if the extent in the path 1762 * is before the requested block(s) 1763 */ 1764 if (b2 < b1) { 1765 b2 = ext4_ext_next_allocated_block(path); 1766 if (b2 == EXT_MAX_BLOCKS) 1767 goto out; 1768 b2 &= ~(sbi->s_cluster_ratio - 1); 1769 } 1770 1771 /* check for wrap through zero on extent logical start block*/ 1772 if (b1 + len1 < b1) { 1773 len1 = EXT_MAX_BLOCKS - b1; 1774 newext->ee_len = cpu_to_le16(len1); 1775 ret = 1; 1776 } 1777 1778 /* check for overlap */ 1779 if (b1 + len1 > b2) { 1780 newext->ee_len = cpu_to_le16(b2 - b1); 1781 ret = 1; 1782 } 1783 out: 1784 return ret; 1785 } 1786 1787 /* 1788 * ext4_ext_insert_extent: 1789 * tries to merge requsted extent into the existing extent or 1790 * inserts requested extent as new one into the tree, 1791 * creating new leaf in the no-space case. 1792 */ 1793 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1794 struct ext4_ext_path *path, 1795 struct ext4_extent *newext, int flag) 1796 { 1797 struct ext4_extent_header *eh; 1798 struct ext4_extent *ex, *fex; 1799 struct ext4_extent *nearex; /* nearest extent */ 1800 struct ext4_ext_path *npath = NULL; 1801 int depth, len, err; 1802 ext4_lblk_t next; 1803 unsigned uninitialized = 0; 1804 int flags = 0; 1805 1806 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1807 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1808 return -EIO; 1809 } 1810 depth = ext_depth(inode); 1811 ex = path[depth].p_ext; 1812 if (unlikely(path[depth].p_hdr == NULL)) { 1813 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1814 return -EIO; 1815 } 1816 1817 /* try to insert block into found extent and return */ 1818 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1819 && ext4_can_extents_be_merged(inode, ex, newext)) { 1820 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1821 ext4_ext_is_uninitialized(newext), 1822 ext4_ext_get_actual_len(newext), 1823 le32_to_cpu(ex->ee_block), 1824 ext4_ext_is_uninitialized(ex), 1825 ext4_ext_get_actual_len(ex), 1826 ext4_ext_pblock(ex)); 1827 err = ext4_ext_get_access(handle, inode, path + depth); 1828 if (err) 1829 return err; 1830 1831 /* 1832 * ext4_can_extents_be_merged should have checked that either 1833 * both extents are uninitialized, or both aren't. Thus we 1834 * need to check only one of them here. 1835 */ 1836 if (ext4_ext_is_uninitialized(ex)) 1837 uninitialized = 1; 1838 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1839 + ext4_ext_get_actual_len(newext)); 1840 if (uninitialized) 1841 ext4_ext_mark_uninitialized(ex); 1842 eh = path[depth].p_hdr; 1843 nearex = ex; 1844 goto merge; 1845 } 1846 1847 depth = ext_depth(inode); 1848 eh = path[depth].p_hdr; 1849 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1850 goto has_space; 1851 1852 /* probably next leaf has space for us? */ 1853 fex = EXT_LAST_EXTENT(eh); 1854 next = EXT_MAX_BLOCKS; 1855 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1856 next = ext4_ext_next_leaf_block(path); 1857 if (next != EXT_MAX_BLOCKS) { 1858 ext_debug("next leaf block - %u\n", next); 1859 BUG_ON(npath != NULL); 1860 npath = ext4_ext_find_extent(inode, next, NULL); 1861 if (IS_ERR(npath)) 1862 return PTR_ERR(npath); 1863 BUG_ON(npath->p_depth != path->p_depth); 1864 eh = npath[depth].p_hdr; 1865 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1866 ext_debug("next leaf isn't full(%d)\n", 1867 le16_to_cpu(eh->eh_entries)); 1868 path = npath; 1869 goto has_space; 1870 } 1871 ext_debug("next leaf has no free space(%d,%d)\n", 1872 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1873 } 1874 1875 /* 1876 * There is no free space in the found leaf. 1877 * We're gonna add a new leaf in the tree. 1878 */ 1879 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1880 flags = EXT4_MB_USE_ROOT_BLOCKS; 1881 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1882 if (err) 1883 goto cleanup; 1884 depth = ext_depth(inode); 1885 eh = path[depth].p_hdr; 1886 1887 has_space: 1888 nearex = path[depth].p_ext; 1889 1890 err = ext4_ext_get_access(handle, inode, path + depth); 1891 if (err) 1892 goto cleanup; 1893 1894 if (!nearex) { 1895 /* there is no extent in this leaf, create first one */ 1896 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1897 le32_to_cpu(newext->ee_block), 1898 ext4_ext_pblock(newext), 1899 ext4_ext_is_uninitialized(newext), 1900 ext4_ext_get_actual_len(newext)); 1901 nearex = EXT_FIRST_EXTENT(eh); 1902 } else { 1903 if (le32_to_cpu(newext->ee_block) 1904 > le32_to_cpu(nearex->ee_block)) { 1905 /* Insert after */ 1906 ext_debug("insert %u:%llu:[%d]%d before: " 1907 "nearest %p\n", 1908 le32_to_cpu(newext->ee_block), 1909 ext4_ext_pblock(newext), 1910 ext4_ext_is_uninitialized(newext), 1911 ext4_ext_get_actual_len(newext), 1912 nearex); 1913 nearex++; 1914 } else { 1915 /* Insert before */ 1916 BUG_ON(newext->ee_block == nearex->ee_block); 1917 ext_debug("insert %u:%llu:[%d]%d after: " 1918 "nearest %p\n", 1919 le32_to_cpu(newext->ee_block), 1920 ext4_ext_pblock(newext), 1921 ext4_ext_is_uninitialized(newext), 1922 ext4_ext_get_actual_len(newext), 1923 nearex); 1924 } 1925 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1926 if (len > 0) { 1927 ext_debug("insert %u:%llu:[%d]%d: " 1928 "move %d extents from 0x%p to 0x%p\n", 1929 le32_to_cpu(newext->ee_block), 1930 ext4_ext_pblock(newext), 1931 ext4_ext_is_uninitialized(newext), 1932 ext4_ext_get_actual_len(newext), 1933 len, nearex, nearex + 1); 1934 memmove(nearex + 1, nearex, 1935 len * sizeof(struct ext4_extent)); 1936 } 1937 } 1938 1939 le16_add_cpu(&eh->eh_entries, 1); 1940 path[depth].p_ext = nearex; 1941 nearex->ee_block = newext->ee_block; 1942 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1943 nearex->ee_len = newext->ee_len; 1944 1945 merge: 1946 /* try to merge extents */ 1947 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1948 ext4_ext_try_to_merge(handle, inode, path, nearex); 1949 1950 1951 /* time to correct all indexes above */ 1952 err = ext4_ext_correct_indexes(handle, inode, path); 1953 if (err) 1954 goto cleanup; 1955 1956 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 1957 1958 cleanup: 1959 if (npath) { 1960 ext4_ext_drop_refs(npath); 1961 kfree(npath); 1962 } 1963 ext4_ext_invalidate_cache(inode); 1964 return err; 1965 } 1966 1967 static int ext4_fill_fiemap_extents(struct inode *inode, 1968 ext4_lblk_t block, ext4_lblk_t num, 1969 struct fiemap_extent_info *fieinfo) 1970 { 1971 struct ext4_ext_path *path = NULL; 1972 struct ext4_ext_cache newex; 1973 struct ext4_extent *ex; 1974 ext4_lblk_t next, next_del, start = 0, end = 0; 1975 ext4_lblk_t last = block + num; 1976 int exists, depth = 0, err = 0; 1977 unsigned int flags = 0; 1978 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 1979 1980 while (block < last && block != EXT_MAX_BLOCKS) { 1981 num = last - block; 1982 /* find extent for this block */ 1983 down_read(&EXT4_I(inode)->i_data_sem); 1984 1985 if (path && ext_depth(inode) != depth) { 1986 /* depth was changed. we have to realloc path */ 1987 kfree(path); 1988 path = NULL; 1989 } 1990 1991 path = ext4_ext_find_extent(inode, block, path); 1992 if (IS_ERR(path)) { 1993 up_read(&EXT4_I(inode)->i_data_sem); 1994 err = PTR_ERR(path); 1995 path = NULL; 1996 break; 1997 } 1998 1999 depth = ext_depth(inode); 2000 if (unlikely(path[depth].p_hdr == NULL)) { 2001 up_read(&EXT4_I(inode)->i_data_sem); 2002 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2003 err = -EIO; 2004 break; 2005 } 2006 ex = path[depth].p_ext; 2007 next = ext4_ext_next_allocated_block(path); 2008 ext4_ext_drop_refs(path); 2009 2010 flags = 0; 2011 exists = 0; 2012 if (!ex) { 2013 /* there is no extent yet, so try to allocate 2014 * all requested space */ 2015 start = block; 2016 end = block + num; 2017 } else if (le32_to_cpu(ex->ee_block) > block) { 2018 /* need to allocate space before found extent */ 2019 start = block; 2020 end = le32_to_cpu(ex->ee_block); 2021 if (block + num < end) 2022 end = block + num; 2023 } else if (block >= le32_to_cpu(ex->ee_block) 2024 + ext4_ext_get_actual_len(ex)) { 2025 /* need to allocate space after found extent */ 2026 start = block; 2027 end = block + num; 2028 if (end >= next) 2029 end = next; 2030 } else if (block >= le32_to_cpu(ex->ee_block)) { 2031 /* 2032 * some part of requested space is covered 2033 * by found extent 2034 */ 2035 start = block; 2036 end = le32_to_cpu(ex->ee_block) 2037 + ext4_ext_get_actual_len(ex); 2038 if (block + num < end) 2039 end = block + num; 2040 exists = 1; 2041 } else { 2042 BUG(); 2043 } 2044 BUG_ON(end <= start); 2045 2046 if (!exists) { 2047 newex.ec_block = start; 2048 newex.ec_len = end - start; 2049 newex.ec_start = 0; 2050 } else { 2051 newex.ec_block = le32_to_cpu(ex->ee_block); 2052 newex.ec_len = ext4_ext_get_actual_len(ex); 2053 newex.ec_start = ext4_ext_pblock(ex); 2054 if (ext4_ext_is_uninitialized(ex)) 2055 flags |= FIEMAP_EXTENT_UNWRITTEN; 2056 } 2057 2058 /* 2059 * Find delayed extent and update newex accordingly. We call 2060 * it even in !exists case to find out whether newex is the 2061 * last existing extent or not. 2062 */ 2063 next_del = ext4_find_delayed_extent(inode, &newex); 2064 if (!exists && next_del) { 2065 exists = 1; 2066 flags |= FIEMAP_EXTENT_DELALLOC; 2067 } 2068 up_read(&EXT4_I(inode)->i_data_sem); 2069 2070 if (unlikely(newex.ec_len == 0)) { 2071 EXT4_ERROR_INODE(inode, "newex.ec_len == 0"); 2072 err = -EIO; 2073 break; 2074 } 2075 2076 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */ 2077 if (next == next_del) { 2078 flags |= FIEMAP_EXTENT_LAST; 2079 if (unlikely(next_del != EXT_MAX_BLOCKS || 2080 next != EXT_MAX_BLOCKS)) { 2081 EXT4_ERROR_INODE(inode, 2082 "next extent == %u, next " 2083 "delalloc extent = %u", 2084 next, next_del); 2085 err = -EIO; 2086 break; 2087 } 2088 } 2089 2090 if (exists) { 2091 err = fiemap_fill_next_extent(fieinfo, 2092 (__u64)newex.ec_block << blksize_bits, 2093 (__u64)newex.ec_start << blksize_bits, 2094 (__u64)newex.ec_len << blksize_bits, 2095 flags); 2096 if (err < 0) 2097 break; 2098 if (err == 1) { 2099 err = 0; 2100 break; 2101 } 2102 } 2103 2104 block = newex.ec_block + newex.ec_len; 2105 } 2106 2107 if (path) { 2108 ext4_ext_drop_refs(path); 2109 kfree(path); 2110 } 2111 2112 return err; 2113 } 2114 2115 static void 2116 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 2117 __u32 len, ext4_fsblk_t start) 2118 { 2119 struct ext4_ext_cache *cex; 2120 BUG_ON(len == 0); 2121 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2122 trace_ext4_ext_put_in_cache(inode, block, len, start); 2123 cex = &EXT4_I(inode)->i_cached_extent; 2124 cex->ec_block = block; 2125 cex->ec_len = len; 2126 cex->ec_start = start; 2127 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2128 } 2129 2130 /* 2131 * ext4_ext_put_gap_in_cache: 2132 * calculate boundaries of the gap that the requested block fits into 2133 * and cache this gap 2134 */ 2135 static void 2136 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2137 ext4_lblk_t block) 2138 { 2139 int depth = ext_depth(inode); 2140 unsigned long len; 2141 ext4_lblk_t lblock; 2142 struct ext4_extent *ex; 2143 2144 ex = path[depth].p_ext; 2145 if (ex == NULL) { 2146 /* there is no extent yet, so gap is [0;-] */ 2147 lblock = 0; 2148 len = EXT_MAX_BLOCKS; 2149 ext_debug("cache gap(whole file):"); 2150 } else if (block < le32_to_cpu(ex->ee_block)) { 2151 lblock = block; 2152 len = le32_to_cpu(ex->ee_block) - block; 2153 ext_debug("cache gap(before): %u [%u:%u]", 2154 block, 2155 le32_to_cpu(ex->ee_block), 2156 ext4_ext_get_actual_len(ex)); 2157 } else if (block >= le32_to_cpu(ex->ee_block) 2158 + ext4_ext_get_actual_len(ex)) { 2159 ext4_lblk_t next; 2160 lblock = le32_to_cpu(ex->ee_block) 2161 + ext4_ext_get_actual_len(ex); 2162 2163 next = ext4_ext_next_allocated_block(path); 2164 ext_debug("cache gap(after): [%u:%u] %u", 2165 le32_to_cpu(ex->ee_block), 2166 ext4_ext_get_actual_len(ex), 2167 block); 2168 BUG_ON(next == lblock); 2169 len = next - lblock; 2170 } else { 2171 lblock = len = 0; 2172 BUG(); 2173 } 2174 2175 ext_debug(" -> %u:%lu\n", lblock, len); 2176 ext4_ext_put_in_cache(inode, lblock, len, 0); 2177 } 2178 2179 /* 2180 * ext4_ext_in_cache() 2181 * Checks to see if the given block is in the cache. 2182 * If it is, the cached extent is stored in the given 2183 * cache extent pointer. 2184 * 2185 * @inode: The files inode 2186 * @block: The block to look for in the cache 2187 * @ex: Pointer where the cached extent will be stored 2188 * if it contains block 2189 * 2190 * Return 0 if cache is invalid; 1 if the cache is valid 2191 */ 2192 static int 2193 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2194 struct ext4_extent *ex) 2195 { 2196 struct ext4_ext_cache *cex; 2197 int ret = 0; 2198 2199 /* 2200 * We borrow i_block_reservation_lock to protect i_cached_extent 2201 */ 2202 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2203 cex = &EXT4_I(inode)->i_cached_extent; 2204 2205 /* has cache valid data? */ 2206 if (cex->ec_len == 0) 2207 goto errout; 2208 2209 if (in_range(block, cex->ec_block, cex->ec_len)) { 2210 ex->ee_block = cpu_to_le32(cex->ec_block); 2211 ext4_ext_store_pblock(ex, cex->ec_start); 2212 ex->ee_len = cpu_to_le16(cex->ec_len); 2213 ext_debug("%u cached by %u:%u:%llu\n", 2214 block, 2215 cex->ec_block, cex->ec_len, cex->ec_start); 2216 ret = 1; 2217 } 2218 errout: 2219 trace_ext4_ext_in_cache(inode, block, ret); 2220 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2221 return ret; 2222 } 2223 2224 /* 2225 * ext4_ext_rm_idx: 2226 * removes index from the index block. 2227 */ 2228 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2229 struct ext4_ext_path *path) 2230 { 2231 int err; 2232 ext4_fsblk_t leaf; 2233 2234 /* free index block */ 2235 path--; 2236 leaf = ext4_idx_pblock(path->p_idx); 2237 if (unlikely(path->p_hdr->eh_entries == 0)) { 2238 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2239 return -EIO; 2240 } 2241 err = ext4_ext_get_access(handle, inode, path); 2242 if (err) 2243 return err; 2244 2245 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2246 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2247 len *= sizeof(struct ext4_extent_idx); 2248 memmove(path->p_idx, path->p_idx + 1, len); 2249 } 2250 2251 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2252 err = ext4_ext_dirty(handle, inode, path); 2253 if (err) 2254 return err; 2255 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2256 trace_ext4_ext_rm_idx(inode, leaf); 2257 2258 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2259 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2260 return err; 2261 } 2262 2263 /* 2264 * ext4_ext_calc_credits_for_single_extent: 2265 * This routine returns max. credits that needed to insert an extent 2266 * to the extent tree. 2267 * When pass the actual path, the caller should calculate credits 2268 * under i_data_sem. 2269 */ 2270 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2271 struct ext4_ext_path *path) 2272 { 2273 if (path) { 2274 int depth = ext_depth(inode); 2275 int ret = 0; 2276 2277 /* probably there is space in leaf? */ 2278 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2279 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2280 2281 /* 2282 * There are some space in the leaf tree, no 2283 * need to account for leaf block credit 2284 * 2285 * bitmaps and block group descriptor blocks 2286 * and other metadata blocks still need to be 2287 * accounted. 2288 */ 2289 /* 1 bitmap, 1 block group descriptor */ 2290 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2291 return ret; 2292 } 2293 } 2294 2295 return ext4_chunk_trans_blocks(inode, nrblocks); 2296 } 2297 2298 /* 2299 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2300 * 2301 * if nrblocks are fit in a single extent (chunk flag is 1), then 2302 * in the worse case, each tree level index/leaf need to be changed 2303 * if the tree split due to insert a new extent, then the old tree 2304 * index/leaf need to be updated too 2305 * 2306 * If the nrblocks are discontiguous, they could cause 2307 * the whole tree split more than once, but this is really rare. 2308 */ 2309 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2310 { 2311 int index; 2312 int depth; 2313 2314 /* If we are converting the inline data, only one is needed here. */ 2315 if (ext4_has_inline_data(inode)) 2316 return 1; 2317 2318 depth = ext_depth(inode); 2319 2320 if (chunk) 2321 index = depth * 2; 2322 else 2323 index = depth * 3; 2324 2325 return index; 2326 } 2327 2328 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2329 struct ext4_extent *ex, 2330 ext4_fsblk_t *partial_cluster, 2331 ext4_lblk_t from, ext4_lblk_t to) 2332 { 2333 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2334 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2335 ext4_fsblk_t pblk; 2336 int flags = 0; 2337 2338 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2339 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2340 else if (ext4_should_journal_data(inode)) 2341 flags |= EXT4_FREE_BLOCKS_FORGET; 2342 2343 /* 2344 * For bigalloc file systems, we never free a partial cluster 2345 * at the beginning of the extent. Instead, we make a note 2346 * that we tried freeing the cluster, and check to see if we 2347 * need to free it on a subsequent call to ext4_remove_blocks, 2348 * or at the end of the ext4_truncate() operation. 2349 */ 2350 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2351 2352 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2353 /* 2354 * If we have a partial cluster, and it's different from the 2355 * cluster of the last block, we need to explicitly free the 2356 * partial cluster here. 2357 */ 2358 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2359 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2360 ext4_free_blocks(handle, inode, NULL, 2361 EXT4_C2B(sbi, *partial_cluster), 2362 sbi->s_cluster_ratio, flags); 2363 *partial_cluster = 0; 2364 } 2365 2366 #ifdef EXTENTS_STATS 2367 { 2368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2369 spin_lock(&sbi->s_ext_stats_lock); 2370 sbi->s_ext_blocks += ee_len; 2371 sbi->s_ext_extents++; 2372 if (ee_len < sbi->s_ext_min) 2373 sbi->s_ext_min = ee_len; 2374 if (ee_len > sbi->s_ext_max) 2375 sbi->s_ext_max = ee_len; 2376 if (ext_depth(inode) > sbi->s_depth_max) 2377 sbi->s_depth_max = ext_depth(inode); 2378 spin_unlock(&sbi->s_ext_stats_lock); 2379 } 2380 #endif 2381 if (from >= le32_to_cpu(ex->ee_block) 2382 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2383 /* tail removal */ 2384 ext4_lblk_t num; 2385 2386 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2387 pblk = ext4_ext_pblock(ex) + ee_len - num; 2388 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2389 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2390 /* 2391 * If the block range to be freed didn't start at the 2392 * beginning of a cluster, and we removed the entire 2393 * extent, save the partial cluster here, since we 2394 * might need to delete if we determine that the 2395 * truncate operation has removed all of the blocks in 2396 * the cluster. 2397 */ 2398 if (pblk & (sbi->s_cluster_ratio - 1) && 2399 (ee_len == num)) 2400 *partial_cluster = EXT4_B2C(sbi, pblk); 2401 else 2402 *partial_cluster = 0; 2403 } else if (from == le32_to_cpu(ex->ee_block) 2404 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2405 /* head removal */ 2406 ext4_lblk_t num; 2407 ext4_fsblk_t start; 2408 2409 num = to - from; 2410 start = ext4_ext_pblock(ex); 2411 2412 ext_debug("free first %u blocks starting %llu\n", num, start); 2413 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2414 2415 } else { 2416 printk(KERN_INFO "strange request: removal(2) " 2417 "%u-%u from %u:%u\n", 2418 from, to, le32_to_cpu(ex->ee_block), ee_len); 2419 } 2420 return 0; 2421 } 2422 2423 2424 /* 2425 * ext4_ext_rm_leaf() Removes the extents associated with the 2426 * blocks appearing between "start" and "end", and splits the extents 2427 * if "start" and "end" appear in the same extent 2428 * 2429 * @handle: The journal handle 2430 * @inode: The files inode 2431 * @path: The path to the leaf 2432 * @start: The first block to remove 2433 * @end: The last block to remove 2434 */ 2435 static int 2436 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2437 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2438 ext4_lblk_t start, ext4_lblk_t end) 2439 { 2440 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2441 int err = 0, correct_index = 0; 2442 int depth = ext_depth(inode), credits; 2443 struct ext4_extent_header *eh; 2444 ext4_lblk_t a, b; 2445 unsigned num; 2446 ext4_lblk_t ex_ee_block; 2447 unsigned short ex_ee_len; 2448 unsigned uninitialized = 0; 2449 struct ext4_extent *ex; 2450 2451 /* the header must be checked already in ext4_ext_remove_space() */ 2452 ext_debug("truncate since %u in leaf to %u\n", start, end); 2453 if (!path[depth].p_hdr) 2454 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2455 eh = path[depth].p_hdr; 2456 if (unlikely(path[depth].p_hdr == NULL)) { 2457 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2458 return -EIO; 2459 } 2460 /* find where to start removing */ 2461 ex = EXT_LAST_EXTENT(eh); 2462 2463 ex_ee_block = le32_to_cpu(ex->ee_block); 2464 ex_ee_len = ext4_ext_get_actual_len(ex); 2465 2466 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2467 2468 while (ex >= EXT_FIRST_EXTENT(eh) && 2469 ex_ee_block + ex_ee_len > start) { 2470 2471 if (ext4_ext_is_uninitialized(ex)) 2472 uninitialized = 1; 2473 else 2474 uninitialized = 0; 2475 2476 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2477 uninitialized, ex_ee_len); 2478 path[depth].p_ext = ex; 2479 2480 a = ex_ee_block > start ? ex_ee_block : start; 2481 b = ex_ee_block+ex_ee_len - 1 < end ? 2482 ex_ee_block+ex_ee_len - 1 : end; 2483 2484 ext_debug(" border %u:%u\n", a, b); 2485 2486 /* If this extent is beyond the end of the hole, skip it */ 2487 if (end < ex_ee_block) { 2488 ex--; 2489 ex_ee_block = le32_to_cpu(ex->ee_block); 2490 ex_ee_len = ext4_ext_get_actual_len(ex); 2491 continue; 2492 } else if (b != ex_ee_block + ex_ee_len - 1) { 2493 EXT4_ERROR_INODE(inode, 2494 "can not handle truncate %u:%u " 2495 "on extent %u:%u", 2496 start, end, ex_ee_block, 2497 ex_ee_block + ex_ee_len - 1); 2498 err = -EIO; 2499 goto out; 2500 } else if (a != ex_ee_block) { 2501 /* remove tail of the extent */ 2502 num = a - ex_ee_block; 2503 } else { 2504 /* remove whole extent: excellent! */ 2505 num = 0; 2506 } 2507 /* 2508 * 3 for leaf, sb, and inode plus 2 (bmap and group 2509 * descriptor) for each block group; assume two block 2510 * groups plus ex_ee_len/blocks_per_block_group for 2511 * the worst case 2512 */ 2513 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2514 if (ex == EXT_FIRST_EXTENT(eh)) { 2515 correct_index = 1; 2516 credits += (ext_depth(inode)) + 1; 2517 } 2518 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2519 2520 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2521 if (err) 2522 goto out; 2523 2524 err = ext4_ext_get_access(handle, inode, path + depth); 2525 if (err) 2526 goto out; 2527 2528 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2529 a, b); 2530 if (err) 2531 goto out; 2532 2533 if (num == 0) 2534 /* this extent is removed; mark slot entirely unused */ 2535 ext4_ext_store_pblock(ex, 0); 2536 2537 ex->ee_len = cpu_to_le16(num); 2538 /* 2539 * Do not mark uninitialized if all the blocks in the 2540 * extent have been removed. 2541 */ 2542 if (uninitialized && num) 2543 ext4_ext_mark_uninitialized(ex); 2544 /* 2545 * If the extent was completely released, 2546 * we need to remove it from the leaf 2547 */ 2548 if (num == 0) { 2549 if (end != EXT_MAX_BLOCKS - 1) { 2550 /* 2551 * For hole punching, we need to scoot all the 2552 * extents up when an extent is removed so that 2553 * we dont have blank extents in the middle 2554 */ 2555 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2556 sizeof(struct ext4_extent)); 2557 2558 /* Now get rid of the one at the end */ 2559 memset(EXT_LAST_EXTENT(eh), 0, 2560 sizeof(struct ext4_extent)); 2561 } 2562 le16_add_cpu(&eh->eh_entries, -1); 2563 } else 2564 *partial_cluster = 0; 2565 2566 err = ext4_ext_dirty(handle, inode, path + depth); 2567 if (err) 2568 goto out; 2569 2570 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2571 ext4_ext_pblock(ex)); 2572 ex--; 2573 ex_ee_block = le32_to_cpu(ex->ee_block); 2574 ex_ee_len = ext4_ext_get_actual_len(ex); 2575 } 2576 2577 if (correct_index && eh->eh_entries) 2578 err = ext4_ext_correct_indexes(handle, inode, path); 2579 2580 /* 2581 * If there is still a entry in the leaf node, check to see if 2582 * it references the partial cluster. This is the only place 2583 * where it could; if it doesn't, we can free the cluster. 2584 */ 2585 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2586 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2587 *partial_cluster)) { 2588 int flags = EXT4_FREE_BLOCKS_FORGET; 2589 2590 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2591 flags |= EXT4_FREE_BLOCKS_METADATA; 2592 2593 ext4_free_blocks(handle, inode, NULL, 2594 EXT4_C2B(sbi, *partial_cluster), 2595 sbi->s_cluster_ratio, flags); 2596 *partial_cluster = 0; 2597 } 2598 2599 /* if this leaf is free, then we should 2600 * remove it from index block above */ 2601 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2602 err = ext4_ext_rm_idx(handle, inode, path + depth); 2603 2604 out: 2605 return err; 2606 } 2607 2608 /* 2609 * ext4_ext_more_to_rm: 2610 * returns 1 if current index has to be freed (even partial) 2611 */ 2612 static int 2613 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2614 { 2615 BUG_ON(path->p_idx == NULL); 2616 2617 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2618 return 0; 2619 2620 /* 2621 * if truncate on deeper level happened, it wasn't partial, 2622 * so we have to consider current index for truncation 2623 */ 2624 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2625 return 0; 2626 return 1; 2627 } 2628 2629 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2630 ext4_lblk_t end) 2631 { 2632 struct super_block *sb = inode->i_sb; 2633 int depth = ext_depth(inode); 2634 struct ext4_ext_path *path = NULL; 2635 ext4_fsblk_t partial_cluster = 0; 2636 handle_t *handle; 2637 int i = 0, err = 0; 2638 2639 ext_debug("truncate since %u to %u\n", start, end); 2640 2641 /* probably first extent we're gonna free will be last in block */ 2642 handle = ext4_journal_start(inode, depth + 1); 2643 if (IS_ERR(handle)) 2644 return PTR_ERR(handle); 2645 2646 again: 2647 ext4_ext_invalidate_cache(inode); 2648 2649 trace_ext4_ext_remove_space(inode, start, depth); 2650 2651 /* 2652 * Check if we are removing extents inside the extent tree. If that 2653 * is the case, we are going to punch a hole inside the extent tree 2654 * so we have to check whether we need to split the extent covering 2655 * the last block to remove so we can easily remove the part of it 2656 * in ext4_ext_rm_leaf(). 2657 */ 2658 if (end < EXT_MAX_BLOCKS - 1) { 2659 struct ext4_extent *ex; 2660 ext4_lblk_t ee_block; 2661 2662 /* find extent for this block */ 2663 path = ext4_ext_find_extent(inode, end, NULL); 2664 if (IS_ERR(path)) { 2665 ext4_journal_stop(handle); 2666 return PTR_ERR(path); 2667 } 2668 depth = ext_depth(inode); 2669 /* Leaf not may not exist only if inode has no blocks at all */ 2670 ex = path[depth].p_ext; 2671 if (!ex) { 2672 if (depth) { 2673 EXT4_ERROR_INODE(inode, 2674 "path[%d].p_hdr == NULL", 2675 depth); 2676 err = -EIO; 2677 } 2678 goto out; 2679 } 2680 2681 ee_block = le32_to_cpu(ex->ee_block); 2682 2683 /* 2684 * See if the last block is inside the extent, if so split 2685 * the extent at 'end' block so we can easily remove the 2686 * tail of the first part of the split extent in 2687 * ext4_ext_rm_leaf(). 2688 */ 2689 if (end >= ee_block && 2690 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2691 int split_flag = 0; 2692 2693 if (ext4_ext_is_uninitialized(ex)) 2694 split_flag = EXT4_EXT_MARK_UNINIT1 | 2695 EXT4_EXT_MARK_UNINIT2; 2696 2697 /* 2698 * Split the extent in two so that 'end' is the last 2699 * block in the first new extent 2700 */ 2701 err = ext4_split_extent_at(handle, inode, path, 2702 end + 1, split_flag, 2703 EXT4_GET_BLOCKS_PRE_IO | 2704 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2705 2706 if (err < 0) 2707 goto out; 2708 } 2709 } 2710 /* 2711 * We start scanning from right side, freeing all the blocks 2712 * after i_size and walking into the tree depth-wise. 2713 */ 2714 depth = ext_depth(inode); 2715 if (path) { 2716 int k = i = depth; 2717 while (--k > 0) 2718 path[k].p_block = 2719 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2720 } else { 2721 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2722 GFP_NOFS); 2723 if (path == NULL) { 2724 ext4_journal_stop(handle); 2725 return -ENOMEM; 2726 } 2727 path[0].p_depth = depth; 2728 path[0].p_hdr = ext_inode_hdr(inode); 2729 i = 0; 2730 2731 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2732 err = -EIO; 2733 goto out; 2734 } 2735 } 2736 err = 0; 2737 2738 while (i >= 0 && err == 0) { 2739 if (i == depth) { 2740 /* this is leaf block */ 2741 err = ext4_ext_rm_leaf(handle, inode, path, 2742 &partial_cluster, start, 2743 end); 2744 /* root level has p_bh == NULL, brelse() eats this */ 2745 brelse(path[i].p_bh); 2746 path[i].p_bh = NULL; 2747 i--; 2748 continue; 2749 } 2750 2751 /* this is index block */ 2752 if (!path[i].p_hdr) { 2753 ext_debug("initialize header\n"); 2754 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2755 } 2756 2757 if (!path[i].p_idx) { 2758 /* this level hasn't been touched yet */ 2759 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2760 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2761 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2762 path[i].p_hdr, 2763 le16_to_cpu(path[i].p_hdr->eh_entries)); 2764 } else { 2765 /* we were already here, see at next index */ 2766 path[i].p_idx--; 2767 } 2768 2769 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2770 i, EXT_FIRST_INDEX(path[i].p_hdr), 2771 path[i].p_idx); 2772 if (ext4_ext_more_to_rm(path + i)) { 2773 struct buffer_head *bh; 2774 /* go to the next level */ 2775 ext_debug("move to level %d (block %llu)\n", 2776 i + 1, ext4_idx_pblock(path[i].p_idx)); 2777 memset(path + i + 1, 0, sizeof(*path)); 2778 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2779 if (!bh) { 2780 /* should we reset i_size? */ 2781 err = -EIO; 2782 break; 2783 } 2784 if (WARN_ON(i + 1 > depth)) { 2785 err = -EIO; 2786 break; 2787 } 2788 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2789 depth - i - 1, bh)) { 2790 err = -EIO; 2791 break; 2792 } 2793 path[i + 1].p_bh = bh; 2794 2795 /* save actual number of indexes since this 2796 * number is changed at the next iteration */ 2797 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2798 i++; 2799 } else { 2800 /* we finished processing this index, go up */ 2801 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2802 /* index is empty, remove it; 2803 * handle must be already prepared by the 2804 * truncatei_leaf() */ 2805 err = ext4_ext_rm_idx(handle, inode, path + i); 2806 } 2807 /* root level has p_bh == NULL, brelse() eats this */ 2808 brelse(path[i].p_bh); 2809 path[i].p_bh = NULL; 2810 i--; 2811 ext_debug("return to level %d\n", i); 2812 } 2813 } 2814 2815 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2816 path->p_hdr->eh_entries); 2817 2818 /* If we still have something in the partial cluster and we have removed 2819 * even the first extent, then we should free the blocks in the partial 2820 * cluster as well. */ 2821 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2822 int flags = EXT4_FREE_BLOCKS_FORGET; 2823 2824 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2825 flags |= EXT4_FREE_BLOCKS_METADATA; 2826 2827 ext4_free_blocks(handle, inode, NULL, 2828 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2829 EXT4_SB(sb)->s_cluster_ratio, flags); 2830 partial_cluster = 0; 2831 } 2832 2833 /* TODO: flexible tree reduction should be here */ 2834 if (path->p_hdr->eh_entries == 0) { 2835 /* 2836 * truncate to zero freed all the tree, 2837 * so we need to correct eh_depth 2838 */ 2839 err = ext4_ext_get_access(handle, inode, path); 2840 if (err == 0) { 2841 ext_inode_hdr(inode)->eh_depth = 0; 2842 ext_inode_hdr(inode)->eh_max = 2843 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2844 err = ext4_ext_dirty(handle, inode, path); 2845 } 2846 } 2847 out: 2848 ext4_ext_drop_refs(path); 2849 kfree(path); 2850 if (err == -EAGAIN) { 2851 path = NULL; 2852 goto again; 2853 } 2854 ext4_journal_stop(handle); 2855 2856 return err; 2857 } 2858 2859 /* 2860 * called at mount time 2861 */ 2862 void ext4_ext_init(struct super_block *sb) 2863 { 2864 /* 2865 * possible initialization would be here 2866 */ 2867 2868 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2869 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2870 printk(KERN_INFO "EXT4-fs: file extents enabled" 2871 #ifdef AGGRESSIVE_TEST 2872 ", aggressive tests" 2873 #endif 2874 #ifdef CHECK_BINSEARCH 2875 ", check binsearch" 2876 #endif 2877 #ifdef EXTENTS_STATS 2878 ", stats" 2879 #endif 2880 "\n"); 2881 #endif 2882 #ifdef EXTENTS_STATS 2883 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2884 EXT4_SB(sb)->s_ext_min = 1 << 30; 2885 EXT4_SB(sb)->s_ext_max = 0; 2886 #endif 2887 } 2888 } 2889 2890 /* 2891 * called at umount time 2892 */ 2893 void ext4_ext_release(struct super_block *sb) 2894 { 2895 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2896 return; 2897 2898 #ifdef EXTENTS_STATS 2899 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2900 struct ext4_sb_info *sbi = EXT4_SB(sb); 2901 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2902 sbi->s_ext_blocks, sbi->s_ext_extents, 2903 sbi->s_ext_blocks / sbi->s_ext_extents); 2904 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2905 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2906 } 2907 #endif 2908 } 2909 2910 /* FIXME!! we need to try to merge to left or right after zero-out */ 2911 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2912 { 2913 ext4_fsblk_t ee_pblock; 2914 unsigned int ee_len; 2915 int ret; 2916 2917 ee_len = ext4_ext_get_actual_len(ex); 2918 ee_pblock = ext4_ext_pblock(ex); 2919 2920 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2921 if (ret > 0) 2922 ret = 0; 2923 2924 return ret; 2925 } 2926 2927 /* 2928 * ext4_split_extent_at() splits an extent at given block. 2929 * 2930 * @handle: the journal handle 2931 * @inode: the file inode 2932 * @path: the path to the extent 2933 * @split: the logical block where the extent is splitted. 2934 * @split_flags: indicates if the extent could be zeroout if split fails, and 2935 * the states(init or uninit) of new extents. 2936 * @flags: flags used to insert new extent to extent tree. 2937 * 2938 * 2939 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2940 * of which are deterimined by split_flag. 2941 * 2942 * There are two cases: 2943 * a> the extent are splitted into two extent. 2944 * b> split is not needed, and just mark the extent. 2945 * 2946 * return 0 on success. 2947 */ 2948 static int ext4_split_extent_at(handle_t *handle, 2949 struct inode *inode, 2950 struct ext4_ext_path *path, 2951 ext4_lblk_t split, 2952 int split_flag, 2953 int flags) 2954 { 2955 ext4_fsblk_t newblock; 2956 ext4_lblk_t ee_block; 2957 struct ext4_extent *ex, newex, orig_ex; 2958 struct ext4_extent *ex2 = NULL; 2959 unsigned int ee_len, depth; 2960 int err = 0; 2961 2962 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 2963 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 2964 2965 ext_debug("ext4_split_extents_at: inode %lu, logical" 2966 "block %llu\n", inode->i_ino, (unsigned long long)split); 2967 2968 ext4_ext_show_leaf(inode, path); 2969 2970 depth = ext_depth(inode); 2971 ex = path[depth].p_ext; 2972 ee_block = le32_to_cpu(ex->ee_block); 2973 ee_len = ext4_ext_get_actual_len(ex); 2974 newblock = split - ee_block + ext4_ext_pblock(ex); 2975 2976 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2977 2978 err = ext4_ext_get_access(handle, inode, path + depth); 2979 if (err) 2980 goto out; 2981 2982 if (split == ee_block) { 2983 /* 2984 * case b: block @split is the block that the extent begins with 2985 * then we just change the state of the extent, and splitting 2986 * is not needed. 2987 */ 2988 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2989 ext4_ext_mark_uninitialized(ex); 2990 else 2991 ext4_ext_mark_initialized(ex); 2992 2993 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2994 ext4_ext_try_to_merge(handle, inode, path, ex); 2995 2996 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2997 goto out; 2998 } 2999 3000 /* case a */ 3001 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3002 ex->ee_len = cpu_to_le16(split - ee_block); 3003 if (split_flag & EXT4_EXT_MARK_UNINIT1) 3004 ext4_ext_mark_uninitialized(ex); 3005 3006 /* 3007 * path may lead to new leaf, not to original leaf any more 3008 * after ext4_ext_insert_extent() returns, 3009 */ 3010 err = ext4_ext_dirty(handle, inode, path + depth); 3011 if (err) 3012 goto fix_extent_len; 3013 3014 ex2 = &newex; 3015 ex2->ee_block = cpu_to_le32(split); 3016 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3017 ext4_ext_store_pblock(ex2, newblock); 3018 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3019 ext4_ext_mark_uninitialized(ex2); 3020 3021 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3022 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3023 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3024 if (split_flag & EXT4_EXT_DATA_VALID1) 3025 err = ext4_ext_zeroout(inode, ex2); 3026 else 3027 err = ext4_ext_zeroout(inode, ex); 3028 } else 3029 err = ext4_ext_zeroout(inode, &orig_ex); 3030 3031 if (err) 3032 goto fix_extent_len; 3033 /* update the extent length and mark as initialized */ 3034 ex->ee_len = cpu_to_le16(ee_len); 3035 ext4_ext_try_to_merge(handle, inode, path, ex); 3036 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3037 goto out; 3038 } else if (err) 3039 goto fix_extent_len; 3040 3041 out: 3042 ext4_ext_show_leaf(inode, path); 3043 return err; 3044 3045 fix_extent_len: 3046 ex->ee_len = orig_ex.ee_len; 3047 ext4_ext_dirty(handle, inode, path + depth); 3048 return err; 3049 } 3050 3051 /* 3052 * ext4_split_extents() splits an extent and mark extent which is covered 3053 * by @map as split_flags indicates 3054 * 3055 * It may result in splitting the extent into multiple extents (upto three) 3056 * There are three possibilities: 3057 * a> There is no split required 3058 * b> Splits in two extents: Split is happening at either end of the extent 3059 * c> Splits in three extents: Somone is splitting in middle of the extent 3060 * 3061 */ 3062 static int ext4_split_extent(handle_t *handle, 3063 struct inode *inode, 3064 struct ext4_ext_path *path, 3065 struct ext4_map_blocks *map, 3066 int split_flag, 3067 int flags) 3068 { 3069 ext4_lblk_t ee_block; 3070 struct ext4_extent *ex; 3071 unsigned int ee_len, depth; 3072 int err = 0; 3073 int uninitialized; 3074 int split_flag1, flags1; 3075 3076 depth = ext_depth(inode); 3077 ex = path[depth].p_ext; 3078 ee_block = le32_to_cpu(ex->ee_block); 3079 ee_len = ext4_ext_get_actual_len(ex); 3080 uninitialized = ext4_ext_is_uninitialized(ex); 3081 3082 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3083 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3084 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3085 if (uninitialized) 3086 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3087 EXT4_EXT_MARK_UNINIT2; 3088 if (split_flag & EXT4_EXT_DATA_VALID2) 3089 split_flag1 |= EXT4_EXT_DATA_VALID1; 3090 err = ext4_split_extent_at(handle, inode, path, 3091 map->m_lblk + map->m_len, split_flag1, flags1); 3092 if (err) 3093 goto out; 3094 } 3095 3096 ext4_ext_drop_refs(path); 3097 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3098 if (IS_ERR(path)) 3099 return PTR_ERR(path); 3100 3101 if (map->m_lblk >= ee_block) { 3102 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT | 3103 EXT4_EXT_DATA_VALID2); 3104 if (uninitialized) 3105 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3106 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3107 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 3108 err = ext4_split_extent_at(handle, inode, path, 3109 map->m_lblk, split_flag1, flags); 3110 if (err) 3111 goto out; 3112 } 3113 3114 ext4_ext_show_leaf(inode, path); 3115 out: 3116 return err ? err : map->m_len; 3117 } 3118 3119 /* 3120 * This function is called by ext4_ext_map_blocks() if someone tries to write 3121 * to an uninitialized extent. It may result in splitting the uninitialized 3122 * extent into multiple extents (up to three - one initialized and two 3123 * uninitialized). 3124 * There are three possibilities: 3125 * a> There is no split required: Entire extent should be initialized 3126 * b> Splits in two extents: Write is happening at either end of the extent 3127 * c> Splits in three extents: Somone is writing in middle of the extent 3128 * 3129 * Pre-conditions: 3130 * - The extent pointed to by 'path' is uninitialized. 3131 * - The extent pointed to by 'path' contains a superset 3132 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3133 * 3134 * Post-conditions on success: 3135 * - the returned value is the number of blocks beyond map->l_lblk 3136 * that are allocated and initialized. 3137 * It is guaranteed to be >= map->m_len. 3138 */ 3139 static int ext4_ext_convert_to_initialized(handle_t *handle, 3140 struct inode *inode, 3141 struct ext4_map_blocks *map, 3142 struct ext4_ext_path *path) 3143 { 3144 struct ext4_sb_info *sbi; 3145 struct ext4_extent_header *eh; 3146 struct ext4_map_blocks split_map; 3147 struct ext4_extent zero_ex; 3148 struct ext4_extent *ex; 3149 ext4_lblk_t ee_block, eof_block; 3150 unsigned int ee_len, depth; 3151 int allocated, max_zeroout = 0; 3152 int err = 0; 3153 int split_flag = 0; 3154 3155 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3156 "block %llu, max_blocks %u\n", inode->i_ino, 3157 (unsigned long long)map->m_lblk, map->m_len); 3158 3159 sbi = EXT4_SB(inode->i_sb); 3160 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3161 inode->i_sb->s_blocksize_bits; 3162 if (eof_block < map->m_lblk + map->m_len) 3163 eof_block = map->m_lblk + map->m_len; 3164 3165 depth = ext_depth(inode); 3166 eh = path[depth].p_hdr; 3167 ex = path[depth].p_ext; 3168 ee_block = le32_to_cpu(ex->ee_block); 3169 ee_len = ext4_ext_get_actual_len(ex); 3170 allocated = ee_len - (map->m_lblk - ee_block); 3171 3172 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3173 3174 /* Pre-conditions */ 3175 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3176 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3177 3178 /* 3179 * Attempt to transfer newly initialized blocks from the currently 3180 * uninitialized extent to its left neighbor. This is much cheaper 3181 * than an insertion followed by a merge as those involve costly 3182 * memmove() calls. This is the common case in steady state for 3183 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3184 * writes. 3185 * 3186 * Limitations of the current logic: 3187 * - L1: we only deal with writes at the start of the extent. 3188 * The approach could be extended to writes at the end 3189 * of the extent but this scenario was deemed less common. 3190 * - L2: we do not deal with writes covering the whole extent. 3191 * This would require removing the extent if the transfer 3192 * is possible. 3193 * - L3: we only attempt to merge with an extent stored in the 3194 * same extent tree node. 3195 */ 3196 if ((map->m_lblk == ee_block) && /*L1*/ 3197 (map->m_len < ee_len) && /*L2*/ 3198 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3199 struct ext4_extent *prev_ex; 3200 ext4_lblk_t prev_lblk; 3201 ext4_fsblk_t prev_pblk, ee_pblk; 3202 unsigned int prev_len, write_len; 3203 3204 prev_ex = ex - 1; 3205 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3206 prev_len = ext4_ext_get_actual_len(prev_ex); 3207 prev_pblk = ext4_ext_pblock(prev_ex); 3208 ee_pblk = ext4_ext_pblock(ex); 3209 write_len = map->m_len; 3210 3211 /* 3212 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3213 * upon those conditions: 3214 * - C1: prev_ex is initialized, 3215 * - C2: prev_ex is logically abutting ex, 3216 * - C3: prev_ex is physically abutting ex, 3217 * - C4: prev_ex can receive the additional blocks without 3218 * overflowing the (initialized) length limit. 3219 */ 3220 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3221 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3222 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3223 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3224 err = ext4_ext_get_access(handle, inode, path + depth); 3225 if (err) 3226 goto out; 3227 3228 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3229 map, ex, prev_ex); 3230 3231 /* Shift the start of ex by 'write_len' blocks */ 3232 ex->ee_block = cpu_to_le32(ee_block + write_len); 3233 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3234 ex->ee_len = cpu_to_le16(ee_len - write_len); 3235 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3236 3237 /* Extend prev_ex by 'write_len' blocks */ 3238 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3239 3240 /* Mark the block containing both extents as dirty */ 3241 ext4_ext_dirty(handle, inode, path + depth); 3242 3243 /* Update path to point to the right extent */ 3244 path[depth].p_ext = prev_ex; 3245 3246 /* Result: number of initialized blocks past m_lblk */ 3247 allocated = write_len; 3248 goto out; 3249 } 3250 } 3251 3252 WARN_ON(map->m_lblk < ee_block); 3253 /* 3254 * It is safe to convert extent to initialized via explicit 3255 * zeroout only if extent is fully insde i_size or new_size. 3256 */ 3257 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3258 3259 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3260 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3261 inode->i_sb->s_blocksize_bits; 3262 3263 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3264 if (max_zeroout && (ee_len <= max_zeroout)) { 3265 err = ext4_ext_zeroout(inode, ex); 3266 if (err) 3267 goto out; 3268 3269 err = ext4_ext_get_access(handle, inode, path + depth); 3270 if (err) 3271 goto out; 3272 ext4_ext_mark_initialized(ex); 3273 ext4_ext_try_to_merge(handle, inode, path, ex); 3274 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3275 goto out; 3276 } 3277 3278 /* 3279 * four cases: 3280 * 1. split the extent into three extents. 3281 * 2. split the extent into two extents, zeroout the first half. 3282 * 3. split the extent into two extents, zeroout the second half. 3283 * 4. split the extent into two extents with out zeroout. 3284 */ 3285 split_map.m_lblk = map->m_lblk; 3286 split_map.m_len = map->m_len; 3287 3288 if (max_zeroout && (allocated > map->m_len)) { 3289 if (allocated <= max_zeroout) { 3290 /* case 3 */ 3291 zero_ex.ee_block = 3292 cpu_to_le32(map->m_lblk); 3293 zero_ex.ee_len = cpu_to_le16(allocated); 3294 ext4_ext_store_pblock(&zero_ex, 3295 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3296 err = ext4_ext_zeroout(inode, &zero_ex); 3297 if (err) 3298 goto out; 3299 split_map.m_lblk = map->m_lblk; 3300 split_map.m_len = allocated; 3301 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3302 /* case 2 */ 3303 if (map->m_lblk != ee_block) { 3304 zero_ex.ee_block = ex->ee_block; 3305 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3306 ee_block); 3307 ext4_ext_store_pblock(&zero_ex, 3308 ext4_ext_pblock(ex)); 3309 err = ext4_ext_zeroout(inode, &zero_ex); 3310 if (err) 3311 goto out; 3312 } 3313 3314 split_map.m_lblk = ee_block; 3315 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3316 allocated = map->m_len; 3317 } 3318 } 3319 3320 allocated = ext4_split_extent(handle, inode, path, 3321 &split_map, split_flag, 0); 3322 if (allocated < 0) 3323 err = allocated; 3324 3325 out: 3326 return err ? err : allocated; 3327 } 3328 3329 /* 3330 * This function is called by ext4_ext_map_blocks() from 3331 * ext4_get_blocks_dio_write() when DIO to write 3332 * to an uninitialized extent. 3333 * 3334 * Writing to an uninitialized extent may result in splitting the uninitialized 3335 * extent into multiple initialized/uninitialized extents (up to three) 3336 * There are three possibilities: 3337 * a> There is no split required: Entire extent should be uninitialized 3338 * b> Splits in two extents: Write is happening at either end of the extent 3339 * c> Splits in three extents: Somone is writing in middle of the extent 3340 * 3341 * One of more index blocks maybe needed if the extent tree grow after 3342 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3343 * complete, we need to split the uninitialized extent before DIO submit 3344 * the IO. The uninitialized extent called at this time will be split 3345 * into three uninitialized extent(at most). After IO complete, the part 3346 * being filled will be convert to initialized by the end_io callback function 3347 * via ext4_convert_unwritten_extents(). 3348 * 3349 * Returns the size of uninitialized extent to be written on success. 3350 */ 3351 static int ext4_split_unwritten_extents(handle_t *handle, 3352 struct inode *inode, 3353 struct ext4_map_blocks *map, 3354 struct ext4_ext_path *path, 3355 int flags) 3356 { 3357 ext4_lblk_t eof_block; 3358 ext4_lblk_t ee_block; 3359 struct ext4_extent *ex; 3360 unsigned int ee_len; 3361 int split_flag = 0, depth; 3362 3363 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3364 "block %llu, max_blocks %u\n", inode->i_ino, 3365 (unsigned long long)map->m_lblk, map->m_len); 3366 3367 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3368 inode->i_sb->s_blocksize_bits; 3369 if (eof_block < map->m_lblk + map->m_len) 3370 eof_block = map->m_lblk + map->m_len; 3371 /* 3372 * It is safe to convert extent to initialized via explicit 3373 * zeroout only if extent is fully insde i_size or new_size. 3374 */ 3375 depth = ext_depth(inode); 3376 ex = path[depth].p_ext; 3377 ee_block = le32_to_cpu(ex->ee_block); 3378 ee_len = ext4_ext_get_actual_len(ex); 3379 3380 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3381 split_flag |= EXT4_EXT_MARK_UNINIT2; 3382 if (flags & EXT4_GET_BLOCKS_CONVERT) 3383 split_flag |= EXT4_EXT_DATA_VALID2; 3384 flags |= EXT4_GET_BLOCKS_PRE_IO; 3385 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3386 } 3387 3388 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3389 struct inode *inode, 3390 struct ext4_map_blocks *map, 3391 struct ext4_ext_path *path) 3392 { 3393 struct ext4_extent *ex; 3394 ext4_lblk_t ee_block; 3395 unsigned int ee_len; 3396 int depth; 3397 int err = 0; 3398 3399 depth = ext_depth(inode); 3400 ex = path[depth].p_ext; 3401 ee_block = le32_to_cpu(ex->ee_block); 3402 ee_len = ext4_ext_get_actual_len(ex); 3403 3404 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3405 "block %llu, max_blocks %u\n", inode->i_ino, 3406 (unsigned long long)ee_block, ee_len); 3407 3408 /* If extent is larger than requested then split is required */ 3409 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3410 err = ext4_split_unwritten_extents(handle, inode, map, path, 3411 EXT4_GET_BLOCKS_CONVERT); 3412 if (err < 0) 3413 goto out; 3414 ext4_ext_drop_refs(path); 3415 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3416 if (IS_ERR(path)) { 3417 err = PTR_ERR(path); 3418 goto out; 3419 } 3420 depth = ext_depth(inode); 3421 ex = path[depth].p_ext; 3422 } 3423 3424 err = ext4_ext_get_access(handle, inode, path + depth); 3425 if (err) 3426 goto out; 3427 /* first mark the extent as initialized */ 3428 ext4_ext_mark_initialized(ex); 3429 3430 /* note: ext4_ext_correct_indexes() isn't needed here because 3431 * borders are not changed 3432 */ 3433 ext4_ext_try_to_merge(handle, inode, path, ex); 3434 3435 /* Mark modified extent as dirty */ 3436 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3437 out: 3438 ext4_ext_show_leaf(inode, path); 3439 return err; 3440 } 3441 3442 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3443 sector_t block, int count) 3444 { 3445 int i; 3446 for (i = 0; i < count; i++) 3447 unmap_underlying_metadata(bdev, block + i); 3448 } 3449 3450 /* 3451 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3452 */ 3453 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3454 ext4_lblk_t lblk, 3455 struct ext4_ext_path *path, 3456 unsigned int len) 3457 { 3458 int i, depth; 3459 struct ext4_extent_header *eh; 3460 struct ext4_extent *last_ex; 3461 3462 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3463 return 0; 3464 3465 depth = ext_depth(inode); 3466 eh = path[depth].p_hdr; 3467 3468 /* 3469 * We're going to remove EOFBLOCKS_FL entirely in future so we 3470 * do not care for this case anymore. Simply remove the flag 3471 * if there are no extents. 3472 */ 3473 if (unlikely(!eh->eh_entries)) 3474 goto out; 3475 last_ex = EXT_LAST_EXTENT(eh); 3476 /* 3477 * We should clear the EOFBLOCKS_FL flag if we are writing the 3478 * last block in the last extent in the file. We test this by 3479 * first checking to see if the caller to 3480 * ext4_ext_get_blocks() was interested in the last block (or 3481 * a block beyond the last block) in the current extent. If 3482 * this turns out to be false, we can bail out from this 3483 * function immediately. 3484 */ 3485 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3486 ext4_ext_get_actual_len(last_ex)) 3487 return 0; 3488 /* 3489 * If the caller does appear to be planning to write at or 3490 * beyond the end of the current extent, we then test to see 3491 * if the current extent is the last extent in the file, by 3492 * checking to make sure it was reached via the rightmost node 3493 * at each level of the tree. 3494 */ 3495 for (i = depth-1; i >= 0; i--) 3496 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3497 return 0; 3498 out: 3499 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3500 return ext4_mark_inode_dirty(handle, inode); 3501 } 3502 3503 /** 3504 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3505 * 3506 * Return 1 if there is a delalloc block in the range, otherwise 0. 3507 */ 3508 static int ext4_find_delalloc_range(struct inode *inode, 3509 ext4_lblk_t lblk_start, 3510 ext4_lblk_t lblk_end) 3511 { 3512 struct extent_status es; 3513 3514 es.start = lblk_start; 3515 ext4_es_find_extent(inode, &es); 3516 if (es.len == 0) 3517 return 0; /* there is no delay extent in this tree */ 3518 else if (es.start <= lblk_start && lblk_start < es.start + es.len) 3519 return 1; 3520 else if (lblk_start <= es.start && es.start <= lblk_end) 3521 return 1; 3522 else 3523 return 0; 3524 } 3525 3526 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3527 { 3528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3529 ext4_lblk_t lblk_start, lblk_end; 3530 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3531 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3532 3533 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3534 } 3535 3536 /** 3537 * Determines how many complete clusters (out of those specified by the 'map') 3538 * are under delalloc and were reserved quota for. 3539 * This function is called when we are writing out the blocks that were 3540 * originally written with their allocation delayed, but then the space was 3541 * allocated using fallocate() before the delayed allocation could be resolved. 3542 * The cases to look for are: 3543 * ('=' indicated delayed allocated blocks 3544 * '-' indicates non-delayed allocated blocks) 3545 * (a) partial clusters towards beginning and/or end outside of allocated range 3546 * are not delalloc'ed. 3547 * Ex: 3548 * |----c---=|====c====|====c====|===-c----| 3549 * |++++++ allocated ++++++| 3550 * ==> 4 complete clusters in above example 3551 * 3552 * (b) partial cluster (outside of allocated range) towards either end is 3553 * marked for delayed allocation. In this case, we will exclude that 3554 * cluster. 3555 * Ex: 3556 * |----====c========|========c========| 3557 * |++++++ allocated ++++++| 3558 * ==> 1 complete clusters in above example 3559 * 3560 * Ex: 3561 * |================c================| 3562 * |++++++ allocated ++++++| 3563 * ==> 0 complete clusters in above example 3564 * 3565 * The ext4_da_update_reserve_space will be called only if we 3566 * determine here that there were some "entire" clusters that span 3567 * this 'allocated' range. 3568 * In the non-bigalloc case, this function will just end up returning num_blks 3569 * without ever calling ext4_find_delalloc_range. 3570 */ 3571 static unsigned int 3572 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3573 unsigned int num_blks) 3574 { 3575 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3576 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3577 ext4_lblk_t lblk_from, lblk_to, c_offset; 3578 unsigned int allocated_clusters = 0; 3579 3580 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3581 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3582 3583 /* max possible clusters for this allocation */ 3584 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3585 3586 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3587 3588 /* Check towards left side */ 3589 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3590 if (c_offset) { 3591 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3592 lblk_to = lblk_from + c_offset - 1; 3593 3594 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3595 allocated_clusters--; 3596 } 3597 3598 /* Now check towards right. */ 3599 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3600 if (allocated_clusters && c_offset) { 3601 lblk_from = lblk_start + num_blks; 3602 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3603 3604 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3605 allocated_clusters--; 3606 } 3607 3608 return allocated_clusters; 3609 } 3610 3611 static int 3612 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3613 struct ext4_map_blocks *map, 3614 struct ext4_ext_path *path, int flags, 3615 unsigned int allocated, ext4_fsblk_t newblock) 3616 { 3617 int ret = 0; 3618 int err = 0; 3619 ext4_io_end_t *io = ext4_inode_aio(inode); 3620 3621 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3622 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3623 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3624 flags, allocated); 3625 ext4_ext_show_leaf(inode, path); 3626 3627 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3628 allocated, newblock); 3629 3630 /* get_block() before submit the IO, split the extent */ 3631 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3632 ret = ext4_split_unwritten_extents(handle, inode, map, 3633 path, flags); 3634 if (ret <= 0) 3635 goto out; 3636 /* 3637 * Flag the inode(non aio case) or end_io struct (aio case) 3638 * that this IO needs to conversion to written when IO is 3639 * completed 3640 */ 3641 if (io) 3642 ext4_set_io_unwritten_flag(inode, io); 3643 else 3644 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3645 if (ext4_should_dioread_nolock(inode)) 3646 map->m_flags |= EXT4_MAP_UNINIT; 3647 goto out; 3648 } 3649 /* IO end_io complete, convert the filled extent to written */ 3650 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3651 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3652 path); 3653 if (ret >= 0) { 3654 ext4_update_inode_fsync_trans(handle, inode, 1); 3655 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3656 path, map->m_len); 3657 } else 3658 err = ret; 3659 goto out2; 3660 } 3661 /* buffered IO case */ 3662 /* 3663 * repeat fallocate creation request 3664 * we already have an unwritten extent 3665 */ 3666 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3667 goto map_out; 3668 3669 /* buffered READ or buffered write_begin() lookup */ 3670 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3671 /* 3672 * We have blocks reserved already. We 3673 * return allocated blocks so that delalloc 3674 * won't do block reservation for us. But 3675 * the buffer head will be unmapped so that 3676 * a read from the block returns 0s. 3677 */ 3678 map->m_flags |= EXT4_MAP_UNWRITTEN; 3679 goto out1; 3680 } 3681 3682 /* buffered write, writepage time, convert*/ 3683 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3684 if (ret >= 0) 3685 ext4_update_inode_fsync_trans(handle, inode, 1); 3686 out: 3687 if (ret <= 0) { 3688 err = ret; 3689 goto out2; 3690 } else 3691 allocated = ret; 3692 map->m_flags |= EXT4_MAP_NEW; 3693 /* 3694 * if we allocated more blocks than requested 3695 * we need to make sure we unmap the extra block 3696 * allocated. The actual needed block will get 3697 * unmapped later when we find the buffer_head marked 3698 * new. 3699 */ 3700 if (allocated > map->m_len) { 3701 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3702 newblock + map->m_len, 3703 allocated - map->m_len); 3704 allocated = map->m_len; 3705 } 3706 3707 /* 3708 * If we have done fallocate with the offset that is already 3709 * delayed allocated, we would have block reservation 3710 * and quota reservation done in the delayed write path. 3711 * But fallocate would have already updated quota and block 3712 * count for this offset. So cancel these reservation 3713 */ 3714 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3715 unsigned int reserved_clusters; 3716 reserved_clusters = get_reserved_cluster_alloc(inode, 3717 map->m_lblk, map->m_len); 3718 if (reserved_clusters) 3719 ext4_da_update_reserve_space(inode, 3720 reserved_clusters, 3721 0); 3722 } 3723 3724 map_out: 3725 map->m_flags |= EXT4_MAP_MAPPED; 3726 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3727 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3728 map->m_len); 3729 if (err < 0) 3730 goto out2; 3731 } 3732 out1: 3733 if (allocated > map->m_len) 3734 allocated = map->m_len; 3735 ext4_ext_show_leaf(inode, path); 3736 map->m_pblk = newblock; 3737 map->m_len = allocated; 3738 out2: 3739 if (path) { 3740 ext4_ext_drop_refs(path); 3741 kfree(path); 3742 } 3743 return err ? err : allocated; 3744 } 3745 3746 /* 3747 * get_implied_cluster_alloc - check to see if the requested 3748 * allocation (in the map structure) overlaps with a cluster already 3749 * allocated in an extent. 3750 * @sb The filesystem superblock structure 3751 * @map The requested lblk->pblk mapping 3752 * @ex The extent structure which might contain an implied 3753 * cluster allocation 3754 * 3755 * This function is called by ext4_ext_map_blocks() after we failed to 3756 * find blocks that were already in the inode's extent tree. Hence, 3757 * we know that the beginning of the requested region cannot overlap 3758 * the extent from the inode's extent tree. There are three cases we 3759 * want to catch. The first is this case: 3760 * 3761 * |--- cluster # N--| 3762 * |--- extent ---| |---- requested region ---| 3763 * |==========| 3764 * 3765 * The second case that we need to test for is this one: 3766 * 3767 * |--------- cluster # N ----------------| 3768 * |--- requested region --| |------- extent ----| 3769 * |=======================| 3770 * 3771 * The third case is when the requested region lies between two extents 3772 * within the same cluster: 3773 * |------------- cluster # N-------------| 3774 * |----- ex -----| |---- ex_right ----| 3775 * |------ requested region ------| 3776 * |================| 3777 * 3778 * In each of the above cases, we need to set the map->m_pblk and 3779 * map->m_len so it corresponds to the return the extent labelled as 3780 * "|====|" from cluster #N, since it is already in use for data in 3781 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3782 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3783 * as a new "allocated" block region. Otherwise, we will return 0 and 3784 * ext4_ext_map_blocks() will then allocate one or more new clusters 3785 * by calling ext4_mb_new_blocks(). 3786 */ 3787 static int get_implied_cluster_alloc(struct super_block *sb, 3788 struct ext4_map_blocks *map, 3789 struct ext4_extent *ex, 3790 struct ext4_ext_path *path) 3791 { 3792 struct ext4_sb_info *sbi = EXT4_SB(sb); 3793 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3794 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3795 ext4_lblk_t rr_cluster_start; 3796 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3797 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3798 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3799 3800 /* The extent passed in that we are trying to match */ 3801 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3802 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3803 3804 /* The requested region passed into ext4_map_blocks() */ 3805 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3806 3807 if ((rr_cluster_start == ex_cluster_end) || 3808 (rr_cluster_start == ex_cluster_start)) { 3809 if (rr_cluster_start == ex_cluster_end) 3810 ee_start += ee_len - 1; 3811 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3812 c_offset; 3813 map->m_len = min(map->m_len, 3814 (unsigned) sbi->s_cluster_ratio - c_offset); 3815 /* 3816 * Check for and handle this case: 3817 * 3818 * |--------- cluster # N-------------| 3819 * |------- extent ----| 3820 * |--- requested region ---| 3821 * |===========| 3822 */ 3823 3824 if (map->m_lblk < ee_block) 3825 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3826 3827 /* 3828 * Check for the case where there is already another allocated 3829 * block to the right of 'ex' but before the end of the cluster. 3830 * 3831 * |------------- cluster # N-------------| 3832 * |----- ex -----| |---- ex_right ----| 3833 * |------ requested region ------| 3834 * |================| 3835 */ 3836 if (map->m_lblk > ee_block) { 3837 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3838 map->m_len = min(map->m_len, next - map->m_lblk); 3839 } 3840 3841 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3842 return 1; 3843 } 3844 3845 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3846 return 0; 3847 } 3848 3849 3850 /* 3851 * Block allocation/map/preallocation routine for extents based files 3852 * 3853 * 3854 * Need to be called with 3855 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3856 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3857 * 3858 * return > 0, number of of blocks already mapped/allocated 3859 * if create == 0 and these are pre-allocated blocks 3860 * buffer head is unmapped 3861 * otherwise blocks are mapped 3862 * 3863 * return = 0, if plain look up failed (blocks have not been allocated) 3864 * buffer head is unmapped 3865 * 3866 * return < 0, error case. 3867 */ 3868 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3869 struct ext4_map_blocks *map, int flags) 3870 { 3871 struct ext4_ext_path *path = NULL; 3872 struct ext4_extent newex, *ex, *ex2; 3873 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3874 ext4_fsblk_t newblock = 0; 3875 int free_on_err = 0, err = 0, depth; 3876 unsigned int allocated = 0, offset = 0; 3877 unsigned int allocated_clusters = 0; 3878 struct ext4_allocation_request ar; 3879 ext4_io_end_t *io = ext4_inode_aio(inode); 3880 ext4_lblk_t cluster_offset; 3881 int set_unwritten = 0; 3882 3883 ext_debug("blocks %u/%u requested for inode %lu\n", 3884 map->m_lblk, map->m_len, inode->i_ino); 3885 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3886 3887 /* check in cache */ 3888 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3889 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3890 if ((sbi->s_cluster_ratio > 1) && 3891 ext4_find_delalloc_cluster(inode, map->m_lblk)) 3892 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3893 3894 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3895 /* 3896 * block isn't allocated yet and 3897 * user doesn't want to allocate it 3898 */ 3899 goto out2; 3900 } 3901 /* we should allocate requested block */ 3902 } else { 3903 /* block is already allocated */ 3904 if (sbi->s_cluster_ratio > 1) 3905 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3906 newblock = map->m_lblk 3907 - le32_to_cpu(newex.ee_block) 3908 + ext4_ext_pblock(&newex); 3909 /* number of remaining blocks in the extent */ 3910 allocated = ext4_ext_get_actual_len(&newex) - 3911 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3912 goto out; 3913 } 3914 } 3915 3916 /* find extent for this block */ 3917 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3918 if (IS_ERR(path)) { 3919 err = PTR_ERR(path); 3920 path = NULL; 3921 goto out2; 3922 } 3923 3924 depth = ext_depth(inode); 3925 3926 /* 3927 * consistent leaf must not be empty; 3928 * this situation is possible, though, _during_ tree modification; 3929 * this is why assert can't be put in ext4_ext_find_extent() 3930 */ 3931 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3932 EXT4_ERROR_INODE(inode, "bad extent address " 3933 "lblock: %lu, depth: %d pblock %lld", 3934 (unsigned long) map->m_lblk, depth, 3935 path[depth].p_block); 3936 err = -EIO; 3937 goto out2; 3938 } 3939 3940 ex = path[depth].p_ext; 3941 if (ex) { 3942 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3943 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3944 unsigned short ee_len; 3945 3946 /* 3947 * Uninitialized extents are treated as holes, except that 3948 * we split out initialized portions during a write. 3949 */ 3950 ee_len = ext4_ext_get_actual_len(ex); 3951 3952 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3953 3954 /* if found extent covers block, simply return it */ 3955 if (in_range(map->m_lblk, ee_block, ee_len)) { 3956 newblock = map->m_lblk - ee_block + ee_start; 3957 /* number of remaining blocks in the extent */ 3958 allocated = ee_len - (map->m_lblk - ee_block); 3959 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3960 ee_block, ee_len, newblock); 3961 3962 /* 3963 * Do not put uninitialized extent 3964 * in the cache 3965 */ 3966 if (!ext4_ext_is_uninitialized(ex)) { 3967 ext4_ext_put_in_cache(inode, ee_block, 3968 ee_len, ee_start); 3969 goto out; 3970 } 3971 allocated = ext4_ext_handle_uninitialized_extents( 3972 handle, inode, map, path, flags, 3973 allocated, newblock); 3974 goto out3; 3975 } 3976 } 3977 3978 if ((sbi->s_cluster_ratio > 1) && 3979 ext4_find_delalloc_cluster(inode, map->m_lblk)) 3980 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3981 3982 /* 3983 * requested block isn't allocated yet; 3984 * we couldn't try to create block if create flag is zero 3985 */ 3986 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3987 /* 3988 * put just found gap into cache to speed up 3989 * subsequent requests 3990 */ 3991 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3992 goto out2; 3993 } 3994 3995 /* 3996 * Okay, we need to do block allocation. 3997 */ 3998 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 3999 newex.ee_block = cpu_to_le32(map->m_lblk); 4000 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4001 4002 /* 4003 * If we are doing bigalloc, check to see if the extent returned 4004 * by ext4_ext_find_extent() implies a cluster we can use. 4005 */ 4006 if (cluster_offset && ex && 4007 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4008 ar.len = allocated = map->m_len; 4009 newblock = map->m_pblk; 4010 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4011 goto got_allocated_blocks; 4012 } 4013 4014 /* find neighbour allocated blocks */ 4015 ar.lleft = map->m_lblk; 4016 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4017 if (err) 4018 goto out2; 4019 ar.lright = map->m_lblk; 4020 ex2 = NULL; 4021 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4022 if (err) 4023 goto out2; 4024 4025 /* Check if the extent after searching to the right implies a 4026 * cluster we can use. */ 4027 if ((sbi->s_cluster_ratio > 1) && ex2 && 4028 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4029 ar.len = allocated = map->m_len; 4030 newblock = map->m_pblk; 4031 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4032 goto got_allocated_blocks; 4033 } 4034 4035 /* 4036 * See if request is beyond maximum number of blocks we can have in 4037 * a single extent. For an initialized extent this limit is 4038 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4039 * EXT_UNINIT_MAX_LEN. 4040 */ 4041 if (map->m_len > EXT_INIT_MAX_LEN && 4042 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4043 map->m_len = EXT_INIT_MAX_LEN; 4044 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4045 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4046 map->m_len = EXT_UNINIT_MAX_LEN; 4047 4048 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4049 newex.ee_len = cpu_to_le16(map->m_len); 4050 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4051 if (err) 4052 allocated = ext4_ext_get_actual_len(&newex); 4053 else 4054 allocated = map->m_len; 4055 4056 /* allocate new block */ 4057 ar.inode = inode; 4058 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4059 ar.logical = map->m_lblk; 4060 /* 4061 * We calculate the offset from the beginning of the cluster 4062 * for the logical block number, since when we allocate a 4063 * physical cluster, the physical block should start at the 4064 * same offset from the beginning of the cluster. This is 4065 * needed so that future calls to get_implied_cluster_alloc() 4066 * work correctly. 4067 */ 4068 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4069 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4070 ar.goal -= offset; 4071 ar.logical -= offset; 4072 if (S_ISREG(inode->i_mode)) 4073 ar.flags = EXT4_MB_HINT_DATA; 4074 else 4075 /* disable in-core preallocation for non-regular files */ 4076 ar.flags = 0; 4077 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4078 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4079 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4080 if (!newblock) 4081 goto out2; 4082 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4083 ar.goal, newblock, allocated); 4084 free_on_err = 1; 4085 allocated_clusters = ar.len; 4086 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4087 if (ar.len > allocated) 4088 ar.len = allocated; 4089 4090 got_allocated_blocks: 4091 /* try to insert new extent into found leaf and return */ 4092 ext4_ext_store_pblock(&newex, newblock + offset); 4093 newex.ee_len = cpu_to_le16(ar.len); 4094 /* Mark uninitialized */ 4095 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4096 ext4_ext_mark_uninitialized(&newex); 4097 /* 4098 * io_end structure was created for every IO write to an 4099 * uninitialized extent. To avoid unnecessary conversion, 4100 * here we flag the IO that really needs the conversion. 4101 * For non asycn direct IO case, flag the inode state 4102 * that we need to perform conversion when IO is done. 4103 */ 4104 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4105 set_unwritten = 1; 4106 if (ext4_should_dioread_nolock(inode)) 4107 map->m_flags |= EXT4_MAP_UNINIT; 4108 } 4109 4110 err = 0; 4111 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4112 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4113 path, ar.len); 4114 if (!err) 4115 err = ext4_ext_insert_extent(handle, inode, path, 4116 &newex, flags); 4117 4118 if (!err && set_unwritten) { 4119 if (io) 4120 ext4_set_io_unwritten_flag(inode, io); 4121 else 4122 ext4_set_inode_state(inode, 4123 EXT4_STATE_DIO_UNWRITTEN); 4124 } 4125 4126 if (err && free_on_err) { 4127 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4128 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4129 /* free data blocks we just allocated */ 4130 /* not a good idea to call discard here directly, 4131 * but otherwise we'd need to call it every free() */ 4132 ext4_discard_preallocations(inode); 4133 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4134 ext4_ext_get_actual_len(&newex), fb_flags); 4135 goto out2; 4136 } 4137 4138 /* previous routine could use block we allocated */ 4139 newblock = ext4_ext_pblock(&newex); 4140 allocated = ext4_ext_get_actual_len(&newex); 4141 if (allocated > map->m_len) 4142 allocated = map->m_len; 4143 map->m_flags |= EXT4_MAP_NEW; 4144 4145 /* 4146 * Update reserved blocks/metadata blocks after successful 4147 * block allocation which had been deferred till now. 4148 */ 4149 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4150 unsigned int reserved_clusters; 4151 /* 4152 * Check how many clusters we had reserved this allocated range 4153 */ 4154 reserved_clusters = get_reserved_cluster_alloc(inode, 4155 map->m_lblk, allocated); 4156 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4157 if (reserved_clusters) { 4158 /* 4159 * We have clusters reserved for this range. 4160 * But since we are not doing actual allocation 4161 * and are simply using blocks from previously 4162 * allocated cluster, we should release the 4163 * reservation and not claim quota. 4164 */ 4165 ext4_da_update_reserve_space(inode, 4166 reserved_clusters, 0); 4167 } 4168 } else { 4169 BUG_ON(allocated_clusters < reserved_clusters); 4170 /* We will claim quota for all newly allocated blocks.*/ 4171 ext4_da_update_reserve_space(inode, allocated_clusters, 4172 1); 4173 if (reserved_clusters < allocated_clusters) { 4174 struct ext4_inode_info *ei = EXT4_I(inode); 4175 int reservation = allocated_clusters - 4176 reserved_clusters; 4177 /* 4178 * It seems we claimed few clusters outside of 4179 * the range of this allocation. We should give 4180 * it back to the reservation pool. This can 4181 * happen in the following case: 4182 * 4183 * * Suppose s_cluster_ratio is 4 (i.e., each 4184 * cluster has 4 blocks. Thus, the clusters 4185 * are [0-3],[4-7],[8-11]... 4186 * * First comes delayed allocation write for 4187 * logical blocks 10 & 11. Since there were no 4188 * previous delayed allocated blocks in the 4189 * range [8-11], we would reserve 1 cluster 4190 * for this write. 4191 * * Next comes write for logical blocks 3 to 8. 4192 * In this case, we will reserve 2 clusters 4193 * (for [0-3] and [4-7]; and not for [8-11] as 4194 * that range has a delayed allocated blocks. 4195 * Thus total reserved clusters now becomes 3. 4196 * * Now, during the delayed allocation writeout 4197 * time, we will first write blocks [3-8] and 4198 * allocate 3 clusters for writing these 4199 * blocks. Also, we would claim all these 4200 * three clusters above. 4201 * * Now when we come here to writeout the 4202 * blocks [10-11], we would expect to claim 4203 * the reservation of 1 cluster we had made 4204 * (and we would claim it since there are no 4205 * more delayed allocated blocks in the range 4206 * [8-11]. But our reserved cluster count had 4207 * already gone to 0. 4208 * 4209 * Thus, at the step 4 above when we determine 4210 * that there are still some unwritten delayed 4211 * allocated blocks outside of our current 4212 * block range, we should increment the 4213 * reserved clusters count so that when the 4214 * remaining blocks finally gets written, we 4215 * could claim them. 4216 */ 4217 dquot_reserve_block(inode, 4218 EXT4_C2B(sbi, reservation)); 4219 spin_lock(&ei->i_block_reservation_lock); 4220 ei->i_reserved_data_blocks += reservation; 4221 spin_unlock(&ei->i_block_reservation_lock); 4222 } 4223 } 4224 } 4225 4226 /* 4227 * Cache the extent and update transaction to commit on fdatasync only 4228 * when it is _not_ an uninitialized extent. 4229 */ 4230 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 4231 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 4232 ext4_update_inode_fsync_trans(handle, inode, 1); 4233 } else 4234 ext4_update_inode_fsync_trans(handle, inode, 0); 4235 out: 4236 if (allocated > map->m_len) 4237 allocated = map->m_len; 4238 ext4_ext_show_leaf(inode, path); 4239 map->m_flags |= EXT4_MAP_MAPPED; 4240 map->m_pblk = newblock; 4241 map->m_len = allocated; 4242 out2: 4243 if (path) { 4244 ext4_ext_drop_refs(path); 4245 kfree(path); 4246 } 4247 4248 out3: 4249 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated); 4250 4251 return err ? err : allocated; 4252 } 4253 4254 void ext4_ext_truncate(struct inode *inode) 4255 { 4256 struct address_space *mapping = inode->i_mapping; 4257 struct super_block *sb = inode->i_sb; 4258 ext4_lblk_t last_block; 4259 handle_t *handle; 4260 loff_t page_len; 4261 int err = 0; 4262 4263 /* 4264 * finish any pending end_io work so we won't run the risk of 4265 * converting any truncated blocks to initialized later 4266 */ 4267 ext4_flush_unwritten_io(inode); 4268 4269 /* 4270 * probably first extent we're gonna free will be last in block 4271 */ 4272 err = ext4_writepage_trans_blocks(inode); 4273 handle = ext4_journal_start(inode, err); 4274 if (IS_ERR(handle)) 4275 return; 4276 4277 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4278 page_len = PAGE_CACHE_SIZE - 4279 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4280 4281 err = ext4_discard_partial_page_buffers(handle, 4282 mapping, inode->i_size, page_len, 0); 4283 4284 if (err) 4285 goto out_stop; 4286 } 4287 4288 if (ext4_orphan_add(handle, inode)) 4289 goto out_stop; 4290 4291 down_write(&EXT4_I(inode)->i_data_sem); 4292 ext4_ext_invalidate_cache(inode); 4293 4294 ext4_discard_preallocations(inode); 4295 4296 /* 4297 * TODO: optimization is possible here. 4298 * Probably we need not scan at all, 4299 * because page truncation is enough. 4300 */ 4301 4302 /* we have to know where to truncate from in crash case */ 4303 EXT4_I(inode)->i_disksize = inode->i_size; 4304 ext4_mark_inode_dirty(handle, inode); 4305 4306 last_block = (inode->i_size + sb->s_blocksize - 1) 4307 >> EXT4_BLOCK_SIZE_BITS(sb); 4308 err = ext4_es_remove_extent(inode, last_block, 4309 EXT_MAX_BLOCKS - last_block); 4310 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4311 4312 /* In a multi-transaction truncate, we only make the final 4313 * transaction synchronous. 4314 */ 4315 if (IS_SYNC(inode)) 4316 ext4_handle_sync(handle); 4317 4318 up_write(&EXT4_I(inode)->i_data_sem); 4319 4320 out_stop: 4321 /* 4322 * If this was a simple ftruncate() and the file will remain alive, 4323 * then we need to clear up the orphan record which we created above. 4324 * However, if this was a real unlink then we were called by 4325 * ext4_delete_inode(), and we allow that function to clean up the 4326 * orphan info for us. 4327 */ 4328 if (inode->i_nlink) 4329 ext4_orphan_del(handle, inode); 4330 4331 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4332 ext4_mark_inode_dirty(handle, inode); 4333 ext4_journal_stop(handle); 4334 } 4335 4336 static void ext4_falloc_update_inode(struct inode *inode, 4337 int mode, loff_t new_size, int update_ctime) 4338 { 4339 struct timespec now; 4340 4341 if (update_ctime) { 4342 now = current_fs_time(inode->i_sb); 4343 if (!timespec_equal(&inode->i_ctime, &now)) 4344 inode->i_ctime = now; 4345 } 4346 /* 4347 * Update only when preallocation was requested beyond 4348 * the file size. 4349 */ 4350 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4351 if (new_size > i_size_read(inode)) 4352 i_size_write(inode, new_size); 4353 if (new_size > EXT4_I(inode)->i_disksize) 4354 ext4_update_i_disksize(inode, new_size); 4355 } else { 4356 /* 4357 * Mark that we allocate beyond EOF so the subsequent truncate 4358 * can proceed even if the new size is the same as i_size. 4359 */ 4360 if (new_size > i_size_read(inode)) 4361 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4362 } 4363 4364 } 4365 4366 /* 4367 * preallocate space for a file. This implements ext4's fallocate file 4368 * operation, which gets called from sys_fallocate system call. 4369 * For block-mapped files, posix_fallocate should fall back to the method 4370 * of writing zeroes to the required new blocks (the same behavior which is 4371 * expected for file systems which do not support fallocate() system call). 4372 */ 4373 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4374 { 4375 struct inode *inode = file->f_path.dentry->d_inode; 4376 handle_t *handle; 4377 loff_t new_size; 4378 unsigned int max_blocks; 4379 int ret = 0; 4380 int ret2 = 0; 4381 int retries = 0; 4382 int flags; 4383 struct ext4_map_blocks map; 4384 unsigned int credits, blkbits = inode->i_blkbits; 4385 4386 /* 4387 * currently supporting (pre)allocate mode for extent-based 4388 * files _only_ 4389 */ 4390 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4391 return -EOPNOTSUPP; 4392 4393 /* Return error if mode is not supported */ 4394 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4395 return -EOPNOTSUPP; 4396 4397 if (mode & FALLOC_FL_PUNCH_HOLE) 4398 return ext4_punch_hole(file, offset, len); 4399 4400 ret = ext4_convert_inline_data(inode); 4401 if (ret) 4402 return ret; 4403 4404 trace_ext4_fallocate_enter(inode, offset, len, mode); 4405 map.m_lblk = offset >> blkbits; 4406 /* 4407 * We can't just convert len to max_blocks because 4408 * If blocksize = 4096 offset = 3072 and len = 2048 4409 */ 4410 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4411 - map.m_lblk; 4412 /* 4413 * credits to insert 1 extent into extent tree 4414 */ 4415 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4416 mutex_lock(&inode->i_mutex); 4417 ret = inode_newsize_ok(inode, (len + offset)); 4418 if (ret) { 4419 mutex_unlock(&inode->i_mutex); 4420 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4421 return ret; 4422 } 4423 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4424 if (mode & FALLOC_FL_KEEP_SIZE) 4425 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4426 /* 4427 * Don't normalize the request if it can fit in one extent so 4428 * that it doesn't get unnecessarily split into multiple 4429 * extents. 4430 */ 4431 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4432 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4433 4434 /* Prevent race condition between unwritten */ 4435 ext4_flush_unwritten_io(inode); 4436 retry: 4437 while (ret >= 0 && ret < max_blocks) { 4438 map.m_lblk = map.m_lblk + ret; 4439 map.m_len = max_blocks = max_blocks - ret; 4440 handle = ext4_journal_start(inode, credits); 4441 if (IS_ERR(handle)) { 4442 ret = PTR_ERR(handle); 4443 break; 4444 } 4445 ret = ext4_map_blocks(handle, inode, &map, flags); 4446 if (ret <= 0) { 4447 #ifdef EXT4FS_DEBUG 4448 WARN_ON(ret <= 0); 4449 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4450 "returned error inode#%lu, block=%u, " 4451 "max_blocks=%u", __func__, 4452 inode->i_ino, map.m_lblk, max_blocks); 4453 #endif 4454 ext4_mark_inode_dirty(handle, inode); 4455 ret2 = ext4_journal_stop(handle); 4456 break; 4457 } 4458 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4459 blkbits) >> blkbits)) 4460 new_size = offset + len; 4461 else 4462 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4463 4464 ext4_falloc_update_inode(inode, mode, new_size, 4465 (map.m_flags & EXT4_MAP_NEW)); 4466 ext4_mark_inode_dirty(handle, inode); 4467 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4468 ext4_handle_sync(handle); 4469 ret2 = ext4_journal_stop(handle); 4470 if (ret2) 4471 break; 4472 } 4473 if (ret == -ENOSPC && 4474 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4475 ret = 0; 4476 goto retry; 4477 } 4478 mutex_unlock(&inode->i_mutex); 4479 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4480 ret > 0 ? ret2 : ret); 4481 return ret > 0 ? ret2 : ret; 4482 } 4483 4484 /* 4485 * This function convert a range of blocks to written extents 4486 * The caller of this function will pass the start offset and the size. 4487 * all unwritten extents within this range will be converted to 4488 * written extents. 4489 * 4490 * This function is called from the direct IO end io call back 4491 * function, to convert the fallocated extents after IO is completed. 4492 * Returns 0 on success. 4493 */ 4494 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4495 ssize_t len) 4496 { 4497 handle_t *handle; 4498 unsigned int max_blocks; 4499 int ret = 0; 4500 int ret2 = 0; 4501 struct ext4_map_blocks map; 4502 unsigned int credits, blkbits = inode->i_blkbits; 4503 4504 map.m_lblk = offset >> blkbits; 4505 /* 4506 * We can't just convert len to max_blocks because 4507 * If blocksize = 4096 offset = 3072 and len = 2048 4508 */ 4509 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4510 map.m_lblk); 4511 /* 4512 * credits to insert 1 extent into extent tree 4513 */ 4514 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4515 while (ret >= 0 && ret < max_blocks) { 4516 map.m_lblk += ret; 4517 map.m_len = (max_blocks -= ret); 4518 handle = ext4_journal_start(inode, credits); 4519 if (IS_ERR(handle)) { 4520 ret = PTR_ERR(handle); 4521 break; 4522 } 4523 ret = ext4_map_blocks(handle, inode, &map, 4524 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4525 if (ret <= 0) { 4526 WARN_ON(ret <= 0); 4527 ext4_msg(inode->i_sb, KERN_ERR, 4528 "%s:%d: inode #%lu: block %u: len %u: " 4529 "ext4_ext_map_blocks returned %d", 4530 __func__, __LINE__, inode->i_ino, map.m_lblk, 4531 map.m_len, ret); 4532 } 4533 ext4_mark_inode_dirty(handle, inode); 4534 ret2 = ext4_journal_stop(handle); 4535 if (ret <= 0 || ret2 ) 4536 break; 4537 } 4538 return ret > 0 ? ret2 : ret; 4539 } 4540 4541 /* 4542 * If newex is not existing extent (newex->ec_start equals zero) find 4543 * delayed extent at start of newex and update newex accordingly and 4544 * return start of the next delayed extent. 4545 * 4546 * If newex is existing extent (newex->ec_start is not equal zero) 4547 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4548 * extent found. Leave newex unmodified. 4549 */ 4550 static int ext4_find_delayed_extent(struct inode *inode, 4551 struct ext4_ext_cache *newex) 4552 { 4553 struct extent_status es; 4554 ext4_lblk_t next_del; 4555 4556 es.start = newex->ec_block; 4557 next_del = ext4_es_find_extent(inode, &es); 4558 4559 if (newex->ec_start == 0) { 4560 /* 4561 * No extent in extent-tree contains block @newex->ec_start, 4562 * then the block may stay in 1)a hole or 2)delayed-extent. 4563 */ 4564 if (es.len == 0) 4565 /* A hole found. */ 4566 return 0; 4567 4568 if (es.start > newex->ec_block) { 4569 /* A hole found. */ 4570 newex->ec_len = min(es.start - newex->ec_block, 4571 newex->ec_len); 4572 return 0; 4573 } 4574 4575 newex->ec_len = es.start + es.len - newex->ec_block; 4576 } 4577 4578 return next_del; 4579 } 4580 /* fiemap flags we can handle specified here */ 4581 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4582 4583 static int ext4_xattr_fiemap(struct inode *inode, 4584 struct fiemap_extent_info *fieinfo) 4585 { 4586 __u64 physical = 0; 4587 __u64 length; 4588 __u32 flags = FIEMAP_EXTENT_LAST; 4589 int blockbits = inode->i_sb->s_blocksize_bits; 4590 int error = 0; 4591 4592 /* in-inode? */ 4593 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4594 struct ext4_iloc iloc; 4595 int offset; /* offset of xattr in inode */ 4596 4597 error = ext4_get_inode_loc(inode, &iloc); 4598 if (error) 4599 return error; 4600 physical = iloc.bh->b_blocknr << blockbits; 4601 offset = EXT4_GOOD_OLD_INODE_SIZE + 4602 EXT4_I(inode)->i_extra_isize; 4603 physical += offset; 4604 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4605 flags |= FIEMAP_EXTENT_DATA_INLINE; 4606 brelse(iloc.bh); 4607 } else { /* external block */ 4608 physical = EXT4_I(inode)->i_file_acl << blockbits; 4609 length = inode->i_sb->s_blocksize; 4610 } 4611 4612 if (physical) 4613 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4614 length, flags); 4615 return (error < 0 ? error : 0); 4616 } 4617 4618 /* 4619 * ext4_ext_punch_hole 4620 * 4621 * Punches a hole of "length" bytes in a file starting 4622 * at byte "offset" 4623 * 4624 * @inode: The inode of the file to punch a hole in 4625 * @offset: The starting byte offset of the hole 4626 * @length: The length of the hole 4627 * 4628 * Returns the number of blocks removed or negative on err 4629 */ 4630 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4631 { 4632 struct inode *inode = file->f_path.dentry->d_inode; 4633 struct super_block *sb = inode->i_sb; 4634 ext4_lblk_t first_block, stop_block; 4635 struct address_space *mapping = inode->i_mapping; 4636 handle_t *handle; 4637 loff_t first_page, last_page, page_len; 4638 loff_t first_page_offset, last_page_offset; 4639 int credits, err = 0; 4640 4641 /* 4642 * Write out all dirty pages to avoid race conditions 4643 * Then release them. 4644 */ 4645 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4646 err = filemap_write_and_wait_range(mapping, 4647 offset, offset + length - 1); 4648 4649 if (err) 4650 return err; 4651 } 4652 4653 mutex_lock(&inode->i_mutex); 4654 /* It's not possible punch hole on append only file */ 4655 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4656 err = -EPERM; 4657 goto out_mutex; 4658 } 4659 if (IS_SWAPFILE(inode)) { 4660 err = -ETXTBSY; 4661 goto out_mutex; 4662 } 4663 4664 /* No need to punch hole beyond i_size */ 4665 if (offset >= inode->i_size) 4666 goto out_mutex; 4667 4668 /* 4669 * If the hole extends beyond i_size, set the hole 4670 * to end after the page that contains i_size 4671 */ 4672 if (offset + length > inode->i_size) { 4673 length = inode->i_size + 4674 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4675 offset; 4676 } 4677 4678 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4679 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4680 4681 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4682 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4683 4684 /* Now release the pages */ 4685 if (last_page_offset > first_page_offset) { 4686 truncate_pagecache_range(inode, first_page_offset, 4687 last_page_offset - 1); 4688 } 4689 4690 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4691 ext4_inode_block_unlocked_dio(inode); 4692 err = ext4_flush_unwritten_io(inode); 4693 if (err) 4694 goto out_dio; 4695 inode_dio_wait(inode); 4696 4697 credits = ext4_writepage_trans_blocks(inode); 4698 handle = ext4_journal_start(inode, credits); 4699 if (IS_ERR(handle)) { 4700 err = PTR_ERR(handle); 4701 goto out_dio; 4702 } 4703 4704 4705 /* 4706 * Now we need to zero out the non-page-aligned data in the 4707 * pages at the start and tail of the hole, and unmap the buffer 4708 * heads for the block aligned regions of the page that were 4709 * completely zeroed. 4710 */ 4711 if (first_page > last_page) { 4712 /* 4713 * If the file space being truncated is contained within a page 4714 * just zero out and unmap the middle of that page 4715 */ 4716 err = ext4_discard_partial_page_buffers(handle, 4717 mapping, offset, length, 0); 4718 4719 if (err) 4720 goto out; 4721 } else { 4722 /* 4723 * zero out and unmap the partial page that contains 4724 * the start of the hole 4725 */ 4726 page_len = first_page_offset - offset; 4727 if (page_len > 0) { 4728 err = ext4_discard_partial_page_buffers(handle, mapping, 4729 offset, page_len, 0); 4730 if (err) 4731 goto out; 4732 } 4733 4734 /* 4735 * zero out and unmap the partial page that contains 4736 * the end of the hole 4737 */ 4738 page_len = offset + length - last_page_offset; 4739 if (page_len > 0) { 4740 err = ext4_discard_partial_page_buffers(handle, mapping, 4741 last_page_offset, page_len, 0); 4742 if (err) 4743 goto out; 4744 } 4745 } 4746 4747 /* 4748 * If i_size is contained in the last page, we need to 4749 * unmap and zero the partial page after i_size 4750 */ 4751 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4752 inode->i_size % PAGE_CACHE_SIZE != 0) { 4753 4754 page_len = PAGE_CACHE_SIZE - 4755 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4756 4757 if (page_len > 0) { 4758 err = ext4_discard_partial_page_buffers(handle, 4759 mapping, inode->i_size, page_len, 0); 4760 4761 if (err) 4762 goto out; 4763 } 4764 } 4765 4766 first_block = (offset + sb->s_blocksize - 1) >> 4767 EXT4_BLOCK_SIZE_BITS(sb); 4768 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4769 4770 /* If there are no blocks to remove, return now */ 4771 if (first_block >= stop_block) 4772 goto out; 4773 4774 down_write(&EXT4_I(inode)->i_data_sem); 4775 ext4_ext_invalidate_cache(inode); 4776 ext4_discard_preallocations(inode); 4777 4778 err = ext4_es_remove_extent(inode, first_block, 4779 stop_block - first_block); 4780 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4781 4782 ext4_ext_invalidate_cache(inode); 4783 ext4_discard_preallocations(inode); 4784 4785 if (IS_SYNC(inode)) 4786 ext4_handle_sync(handle); 4787 4788 up_write(&EXT4_I(inode)->i_data_sem); 4789 4790 out: 4791 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4792 ext4_mark_inode_dirty(handle, inode); 4793 ext4_journal_stop(handle); 4794 out_dio: 4795 ext4_inode_resume_unlocked_dio(inode); 4796 out_mutex: 4797 mutex_unlock(&inode->i_mutex); 4798 return err; 4799 } 4800 4801 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4802 __u64 start, __u64 len) 4803 { 4804 ext4_lblk_t start_blk; 4805 int error = 0; 4806 4807 if (ext4_has_inline_data(inode)) { 4808 int has_inline = 1; 4809 4810 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4811 4812 if (has_inline) 4813 return error; 4814 } 4815 4816 /* fallback to generic here if not in extents fmt */ 4817 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4818 return generic_block_fiemap(inode, fieinfo, start, len, 4819 ext4_get_block); 4820 4821 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4822 return -EBADR; 4823 4824 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4825 error = ext4_xattr_fiemap(inode, fieinfo); 4826 } else { 4827 ext4_lblk_t len_blks; 4828 __u64 last_blk; 4829 4830 start_blk = start >> inode->i_sb->s_blocksize_bits; 4831 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4832 if (last_blk >= EXT_MAX_BLOCKS) 4833 last_blk = EXT_MAX_BLOCKS-1; 4834 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4835 4836 /* 4837 * Walk the extent tree gathering extent information 4838 * and pushing extents back to the user. 4839 */ 4840 error = ext4_fill_fiemap_extents(inode, start_blk, 4841 len_blks, fieinfo); 4842 } 4843 4844 return error; 4845 } 4846