1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!ext4_has_metadata_csum(inode->i_sb)) 77 return 1; 78 79 et = find_ext4_extent_tail(eh); 80 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 81 return 0; 82 return 1; 83 } 84 85 static void ext4_extent_block_csum_set(struct inode *inode, 86 struct ext4_extent_header *eh) 87 { 88 struct ext4_extent_tail *et; 89 90 if (!ext4_has_metadata_csum(inode->i_sb)) 91 return; 92 93 et = find_ext4_extent_tail(eh); 94 et->et_checksum = ext4_extent_block_csum(inode, eh); 95 } 96 97 static int ext4_split_extent(handle_t *handle, 98 struct inode *inode, 99 struct ext4_ext_path **ppath, 100 struct ext4_map_blocks *map, 101 int split_flag, 102 int flags); 103 104 static int ext4_split_extent_at(handle_t *handle, 105 struct inode *inode, 106 struct ext4_ext_path **ppath, 107 ext4_lblk_t split, 108 int split_flag, 109 int flags); 110 111 static int ext4_find_delayed_extent(struct inode *inode, 112 struct extent_status *newes); 113 114 static int ext4_ext_truncate_extend_restart(handle_t *handle, 115 struct inode *inode, 116 int needed) 117 { 118 int err; 119 120 if (!ext4_handle_valid(handle)) 121 return 0; 122 if (handle->h_buffer_credits > needed) 123 return 0; 124 err = ext4_journal_extend(handle, needed); 125 if (err <= 0) 126 return err; 127 err = ext4_truncate_restart_trans(handle, inode, needed); 128 if (err == 0) 129 err = -EAGAIN; 130 131 return err; 132 } 133 134 /* 135 * could return: 136 * - EROFS 137 * - ENOMEM 138 */ 139 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 140 struct ext4_ext_path *path) 141 { 142 if (path->p_bh) { 143 /* path points to block */ 144 BUFFER_TRACE(path->p_bh, "get_write_access"); 145 return ext4_journal_get_write_access(handle, path->p_bh); 146 } 147 /* path points to leaf/index in inode body */ 148 /* we use in-core data, no need to protect them */ 149 return 0; 150 } 151 152 /* 153 * could return: 154 * - EROFS 155 * - ENOMEM 156 * - EIO 157 */ 158 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 159 struct inode *inode, struct ext4_ext_path *path) 160 { 161 int err; 162 163 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 static inline int 293 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 294 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 295 int nofail) 296 { 297 struct ext4_ext_path *path = *ppath; 298 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 299 300 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 301 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 302 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 303 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 304 } 305 306 /* 307 * Calculate the number of metadata blocks needed 308 * to allocate @blocks 309 * Worse case is one block per extent 310 */ 311 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 312 { 313 struct ext4_inode_info *ei = EXT4_I(inode); 314 int idxs; 315 316 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 317 / sizeof(struct ext4_extent_idx)); 318 319 /* 320 * If the new delayed allocation block is contiguous with the 321 * previous da block, it can share index blocks with the 322 * previous block, so we only need to allocate a new index 323 * block every idxs leaf blocks. At ldxs**2 blocks, we need 324 * an additional index block, and at ldxs**3 blocks, yet 325 * another index blocks. 326 */ 327 if (ei->i_da_metadata_calc_len && 328 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 329 int num = 0; 330 331 if ((ei->i_da_metadata_calc_len % idxs) == 0) 332 num++; 333 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 334 num++; 335 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 336 num++; 337 ei->i_da_metadata_calc_len = 0; 338 } else 339 ei->i_da_metadata_calc_len++; 340 ei->i_da_metadata_calc_last_lblock++; 341 return num; 342 } 343 344 /* 345 * In the worst case we need a new set of index blocks at 346 * every level of the inode's extent tree. 347 */ 348 ei->i_da_metadata_calc_len = 1; 349 ei->i_da_metadata_calc_last_lblock = lblock; 350 return ext_depth(inode) + 1; 351 } 352 353 static int 354 ext4_ext_max_entries(struct inode *inode, int depth) 355 { 356 int max; 357 358 if (depth == ext_depth(inode)) { 359 if (depth == 0) 360 max = ext4_ext_space_root(inode, 1); 361 else 362 max = ext4_ext_space_root_idx(inode, 1); 363 } else { 364 if (depth == 0) 365 max = ext4_ext_space_block(inode, 1); 366 else 367 max = ext4_ext_space_block_idx(inode, 1); 368 } 369 370 return max; 371 } 372 373 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 374 { 375 ext4_fsblk_t block = ext4_ext_pblock(ext); 376 int len = ext4_ext_get_actual_len(ext); 377 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 378 ext4_lblk_t last = lblock + len - 1; 379 380 if (lblock > last) 381 return 0; 382 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 383 } 384 385 static int ext4_valid_extent_idx(struct inode *inode, 386 struct ext4_extent_idx *ext_idx) 387 { 388 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 389 390 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 391 } 392 393 static int ext4_valid_extent_entries(struct inode *inode, 394 struct ext4_extent_header *eh, 395 int depth) 396 { 397 unsigned short entries; 398 if (eh->eh_entries == 0) 399 return 1; 400 401 entries = le16_to_cpu(eh->eh_entries); 402 403 if (depth == 0) { 404 /* leaf entries */ 405 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 406 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 407 ext4_fsblk_t pblock = 0; 408 ext4_lblk_t lblock = 0; 409 ext4_lblk_t prev = 0; 410 int len = 0; 411 while (entries) { 412 if (!ext4_valid_extent(inode, ext)) 413 return 0; 414 415 /* Check for overlapping extents */ 416 lblock = le32_to_cpu(ext->ee_block); 417 len = ext4_ext_get_actual_len(ext); 418 if ((lblock <= prev) && prev) { 419 pblock = ext4_ext_pblock(ext); 420 es->s_last_error_block = cpu_to_le64(pblock); 421 return 0; 422 } 423 ext++; 424 entries--; 425 prev = lblock + len - 1; 426 } 427 } else { 428 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 429 while (entries) { 430 if (!ext4_valid_extent_idx(inode, ext_idx)) 431 return 0; 432 ext_idx++; 433 entries--; 434 } 435 } 436 return 1; 437 } 438 439 static int __ext4_ext_check(const char *function, unsigned int line, 440 struct inode *inode, struct ext4_extent_header *eh, 441 int depth, ext4_fsblk_t pblk) 442 { 443 const char *error_msg; 444 int max = 0; 445 446 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 447 error_msg = "invalid magic"; 448 goto corrupted; 449 } 450 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 451 error_msg = "unexpected eh_depth"; 452 goto corrupted; 453 } 454 if (unlikely(eh->eh_max == 0)) { 455 error_msg = "invalid eh_max"; 456 goto corrupted; 457 } 458 max = ext4_ext_max_entries(inode, depth); 459 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 460 error_msg = "too large eh_max"; 461 goto corrupted; 462 } 463 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 464 error_msg = "invalid eh_entries"; 465 goto corrupted; 466 } 467 if (!ext4_valid_extent_entries(inode, eh, depth)) { 468 error_msg = "invalid extent entries"; 469 goto corrupted; 470 } 471 /* Verify checksum on non-root extent tree nodes */ 472 if (ext_depth(inode) != depth && 473 !ext4_extent_block_csum_verify(inode, eh)) { 474 error_msg = "extent tree corrupted"; 475 goto corrupted; 476 } 477 return 0; 478 479 corrupted: 480 ext4_error_inode(inode, function, line, 0, 481 "pblk %llu bad header/extent: %s - magic %x, " 482 "entries %u, max %u(%u), depth %u(%u)", 483 (unsigned long long) pblk, error_msg, 484 le16_to_cpu(eh->eh_magic), 485 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 486 max, le16_to_cpu(eh->eh_depth), depth); 487 return -EIO; 488 } 489 490 #define ext4_ext_check(inode, eh, depth, pblk) \ 491 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 492 493 int ext4_ext_check_inode(struct inode *inode) 494 { 495 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 496 } 497 498 static struct buffer_head * 499 __read_extent_tree_block(const char *function, unsigned int line, 500 struct inode *inode, ext4_fsblk_t pblk, int depth, 501 int flags) 502 { 503 struct buffer_head *bh; 504 int err; 505 506 bh = sb_getblk(inode->i_sb, pblk); 507 if (unlikely(!bh)) 508 return ERR_PTR(-ENOMEM); 509 510 if (!bh_uptodate_or_lock(bh)) { 511 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 512 err = bh_submit_read(bh); 513 if (err < 0) 514 goto errout; 515 } 516 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 517 return bh; 518 err = __ext4_ext_check(function, line, inode, 519 ext_block_hdr(bh), depth, pblk); 520 if (err) 521 goto errout; 522 set_buffer_verified(bh); 523 /* 524 * If this is a leaf block, cache all of its entries 525 */ 526 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 527 struct ext4_extent_header *eh = ext_block_hdr(bh); 528 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 529 ext4_lblk_t prev = 0; 530 int i; 531 532 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 533 unsigned int status = EXTENT_STATUS_WRITTEN; 534 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 535 int len = ext4_ext_get_actual_len(ex); 536 537 if (prev && (prev != lblk)) 538 ext4_es_cache_extent(inode, prev, 539 lblk - prev, ~0, 540 EXTENT_STATUS_HOLE); 541 542 if (ext4_ext_is_unwritten(ex)) 543 status = EXTENT_STATUS_UNWRITTEN; 544 ext4_es_cache_extent(inode, lblk, len, 545 ext4_ext_pblock(ex), status); 546 prev = lblk + len; 547 } 548 } 549 return bh; 550 errout: 551 put_bh(bh); 552 return ERR_PTR(err); 553 554 } 555 556 #define read_extent_tree_block(inode, pblk, depth, flags) \ 557 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 558 (depth), (flags)) 559 560 /* 561 * This function is called to cache a file's extent information in the 562 * extent status tree 563 */ 564 int ext4_ext_precache(struct inode *inode) 565 { 566 struct ext4_inode_info *ei = EXT4_I(inode); 567 struct ext4_ext_path *path = NULL; 568 struct buffer_head *bh; 569 int i = 0, depth, ret = 0; 570 571 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 572 return 0; /* not an extent-mapped inode */ 573 574 down_read(&ei->i_data_sem); 575 depth = ext_depth(inode); 576 577 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 578 GFP_NOFS); 579 if (path == NULL) { 580 up_read(&ei->i_data_sem); 581 return -ENOMEM; 582 } 583 584 /* Don't cache anything if there are no external extent blocks */ 585 if (depth == 0) 586 goto out; 587 path[0].p_hdr = ext_inode_hdr(inode); 588 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 589 if (ret) 590 goto out; 591 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 592 while (i >= 0) { 593 /* 594 * If this is a leaf block or we've reached the end of 595 * the index block, go up 596 */ 597 if ((i == depth) || 598 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 599 brelse(path[i].p_bh); 600 path[i].p_bh = NULL; 601 i--; 602 continue; 603 } 604 bh = read_extent_tree_block(inode, 605 ext4_idx_pblock(path[i].p_idx++), 606 depth - i - 1, 607 EXT4_EX_FORCE_CACHE); 608 if (IS_ERR(bh)) { 609 ret = PTR_ERR(bh); 610 break; 611 } 612 i++; 613 path[i].p_bh = bh; 614 path[i].p_hdr = ext_block_hdr(bh); 615 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 616 } 617 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 618 out: 619 up_read(&ei->i_data_sem); 620 ext4_ext_drop_refs(path); 621 kfree(path); 622 return ret; 623 } 624 625 #ifdef EXT_DEBUG 626 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 627 { 628 int k, l = path->p_depth; 629 630 ext_debug("path:"); 631 for (k = 0; k <= l; k++, path++) { 632 if (path->p_idx) { 633 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 634 ext4_idx_pblock(path->p_idx)); 635 } else if (path->p_ext) { 636 ext_debug(" %d:[%d]%d:%llu ", 637 le32_to_cpu(path->p_ext->ee_block), 638 ext4_ext_is_unwritten(path->p_ext), 639 ext4_ext_get_actual_len(path->p_ext), 640 ext4_ext_pblock(path->p_ext)); 641 } else 642 ext_debug(" []"); 643 } 644 ext_debug("\n"); 645 } 646 647 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 648 { 649 int depth = ext_depth(inode); 650 struct ext4_extent_header *eh; 651 struct ext4_extent *ex; 652 int i; 653 654 if (!path) 655 return; 656 657 eh = path[depth].p_hdr; 658 ex = EXT_FIRST_EXTENT(eh); 659 660 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 661 662 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 663 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 664 ext4_ext_is_unwritten(ex), 665 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 666 } 667 ext_debug("\n"); 668 } 669 670 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 671 ext4_fsblk_t newblock, int level) 672 { 673 int depth = ext_depth(inode); 674 struct ext4_extent *ex; 675 676 if (depth != level) { 677 struct ext4_extent_idx *idx; 678 idx = path[level].p_idx; 679 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 680 ext_debug("%d: move %d:%llu in new index %llu\n", level, 681 le32_to_cpu(idx->ei_block), 682 ext4_idx_pblock(idx), 683 newblock); 684 idx++; 685 } 686 687 return; 688 } 689 690 ex = path[depth].p_ext; 691 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 692 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 693 le32_to_cpu(ex->ee_block), 694 ext4_ext_pblock(ex), 695 ext4_ext_is_unwritten(ex), 696 ext4_ext_get_actual_len(ex), 697 newblock); 698 ex++; 699 } 700 } 701 702 #else 703 #define ext4_ext_show_path(inode, path) 704 #define ext4_ext_show_leaf(inode, path) 705 #define ext4_ext_show_move(inode, path, newblock, level) 706 #endif 707 708 void ext4_ext_drop_refs(struct ext4_ext_path *path) 709 { 710 int depth, i; 711 712 if (!path) 713 return; 714 depth = path->p_depth; 715 for (i = 0; i <= depth; i++, path++) 716 if (path->p_bh) { 717 brelse(path->p_bh); 718 path->p_bh = NULL; 719 } 720 } 721 722 /* 723 * ext4_ext_binsearch_idx: 724 * binary search for the closest index of the given block 725 * the header must be checked before calling this 726 */ 727 static void 728 ext4_ext_binsearch_idx(struct inode *inode, 729 struct ext4_ext_path *path, ext4_lblk_t block) 730 { 731 struct ext4_extent_header *eh = path->p_hdr; 732 struct ext4_extent_idx *r, *l, *m; 733 734 735 ext_debug("binsearch for %u(idx): ", block); 736 737 l = EXT_FIRST_INDEX(eh) + 1; 738 r = EXT_LAST_INDEX(eh); 739 while (l <= r) { 740 m = l + (r - l) / 2; 741 if (block < le32_to_cpu(m->ei_block)) 742 r = m - 1; 743 else 744 l = m + 1; 745 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 746 m, le32_to_cpu(m->ei_block), 747 r, le32_to_cpu(r->ei_block)); 748 } 749 750 path->p_idx = l - 1; 751 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 752 ext4_idx_pblock(path->p_idx)); 753 754 #ifdef CHECK_BINSEARCH 755 { 756 struct ext4_extent_idx *chix, *ix; 757 int k; 758 759 chix = ix = EXT_FIRST_INDEX(eh); 760 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 761 if (k != 0 && 762 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 763 printk(KERN_DEBUG "k=%d, ix=0x%p, " 764 "first=0x%p\n", k, 765 ix, EXT_FIRST_INDEX(eh)); 766 printk(KERN_DEBUG "%u <= %u\n", 767 le32_to_cpu(ix->ei_block), 768 le32_to_cpu(ix[-1].ei_block)); 769 } 770 BUG_ON(k && le32_to_cpu(ix->ei_block) 771 <= le32_to_cpu(ix[-1].ei_block)); 772 if (block < le32_to_cpu(ix->ei_block)) 773 break; 774 chix = ix; 775 } 776 BUG_ON(chix != path->p_idx); 777 } 778 #endif 779 780 } 781 782 /* 783 * ext4_ext_binsearch: 784 * binary search for closest extent of the given block 785 * the header must be checked before calling this 786 */ 787 static void 788 ext4_ext_binsearch(struct inode *inode, 789 struct ext4_ext_path *path, ext4_lblk_t block) 790 { 791 struct ext4_extent_header *eh = path->p_hdr; 792 struct ext4_extent *r, *l, *m; 793 794 if (eh->eh_entries == 0) { 795 /* 796 * this leaf is empty: 797 * we get such a leaf in split/add case 798 */ 799 return; 800 } 801 802 ext_debug("binsearch for %u: ", block); 803 804 l = EXT_FIRST_EXTENT(eh) + 1; 805 r = EXT_LAST_EXTENT(eh); 806 807 while (l <= r) { 808 m = l + (r - l) / 2; 809 if (block < le32_to_cpu(m->ee_block)) 810 r = m - 1; 811 else 812 l = m + 1; 813 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 814 m, le32_to_cpu(m->ee_block), 815 r, le32_to_cpu(r->ee_block)); 816 } 817 818 path->p_ext = l - 1; 819 ext_debug(" -> %d:%llu:[%d]%d ", 820 le32_to_cpu(path->p_ext->ee_block), 821 ext4_ext_pblock(path->p_ext), 822 ext4_ext_is_unwritten(path->p_ext), 823 ext4_ext_get_actual_len(path->p_ext)); 824 825 #ifdef CHECK_BINSEARCH 826 { 827 struct ext4_extent *chex, *ex; 828 int k; 829 830 chex = ex = EXT_FIRST_EXTENT(eh); 831 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 832 BUG_ON(k && le32_to_cpu(ex->ee_block) 833 <= le32_to_cpu(ex[-1].ee_block)); 834 if (block < le32_to_cpu(ex->ee_block)) 835 break; 836 chex = ex; 837 } 838 BUG_ON(chex != path->p_ext); 839 } 840 #endif 841 842 } 843 844 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 845 { 846 struct ext4_extent_header *eh; 847 848 eh = ext_inode_hdr(inode); 849 eh->eh_depth = 0; 850 eh->eh_entries = 0; 851 eh->eh_magic = EXT4_EXT_MAGIC; 852 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 853 ext4_mark_inode_dirty(handle, inode); 854 return 0; 855 } 856 857 struct ext4_ext_path * 858 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 859 struct ext4_ext_path **orig_path, int flags) 860 { 861 struct ext4_extent_header *eh; 862 struct buffer_head *bh; 863 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 864 short int depth, i, ppos = 0; 865 int ret; 866 867 eh = ext_inode_hdr(inode); 868 depth = ext_depth(inode); 869 870 if (path) { 871 ext4_ext_drop_refs(path); 872 if (depth > path[0].p_maxdepth) { 873 kfree(path); 874 *orig_path = path = NULL; 875 } 876 } 877 if (!path) { 878 /* account possible depth increase */ 879 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 880 GFP_NOFS); 881 if (unlikely(!path)) 882 return ERR_PTR(-ENOMEM); 883 path[0].p_maxdepth = depth + 1; 884 } 885 path[0].p_hdr = eh; 886 path[0].p_bh = NULL; 887 888 i = depth; 889 /* walk through the tree */ 890 while (i) { 891 ext_debug("depth %d: num %d, max %d\n", 892 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 893 894 ext4_ext_binsearch_idx(inode, path + ppos, block); 895 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 896 path[ppos].p_depth = i; 897 path[ppos].p_ext = NULL; 898 899 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 900 flags); 901 if (unlikely(IS_ERR(bh))) { 902 ret = PTR_ERR(bh); 903 goto err; 904 } 905 906 eh = ext_block_hdr(bh); 907 ppos++; 908 if (unlikely(ppos > depth)) { 909 put_bh(bh); 910 EXT4_ERROR_INODE(inode, 911 "ppos %d > depth %d", ppos, depth); 912 ret = -EIO; 913 goto err; 914 } 915 path[ppos].p_bh = bh; 916 path[ppos].p_hdr = eh; 917 } 918 919 path[ppos].p_depth = i; 920 path[ppos].p_ext = NULL; 921 path[ppos].p_idx = NULL; 922 923 /* find extent */ 924 ext4_ext_binsearch(inode, path + ppos, block); 925 /* if not an empty leaf */ 926 if (path[ppos].p_ext) 927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 928 929 ext4_ext_show_path(inode, path); 930 931 return path; 932 933 err: 934 ext4_ext_drop_refs(path); 935 kfree(path); 936 if (orig_path) 937 *orig_path = NULL; 938 return ERR_PTR(ret); 939 } 940 941 /* 942 * ext4_ext_insert_index: 943 * insert new index [@logical;@ptr] into the block at @curp; 944 * check where to insert: before @curp or after @curp 945 */ 946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 947 struct ext4_ext_path *curp, 948 int logical, ext4_fsblk_t ptr) 949 { 950 struct ext4_extent_idx *ix; 951 int len, err; 952 953 err = ext4_ext_get_access(handle, inode, curp); 954 if (err) 955 return err; 956 957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 958 EXT4_ERROR_INODE(inode, 959 "logical %d == ei_block %d!", 960 logical, le32_to_cpu(curp->p_idx->ei_block)); 961 return -EIO; 962 } 963 964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 965 >= le16_to_cpu(curp->p_hdr->eh_max))) { 966 EXT4_ERROR_INODE(inode, 967 "eh_entries %d >= eh_max %d!", 968 le16_to_cpu(curp->p_hdr->eh_entries), 969 le16_to_cpu(curp->p_hdr->eh_max)); 970 return -EIO; 971 } 972 973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 974 /* insert after */ 975 ext_debug("insert new index %d after: %llu\n", logical, ptr); 976 ix = curp->p_idx + 1; 977 } else { 978 /* insert before */ 979 ext_debug("insert new index %d before: %llu\n", logical, ptr); 980 ix = curp->p_idx; 981 } 982 983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 984 BUG_ON(len < 0); 985 if (len > 0) { 986 ext_debug("insert new index %d: " 987 "move %d indices from 0x%p to 0x%p\n", 988 logical, len, ix, ix + 1); 989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 990 } 991 992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 994 return -EIO; 995 } 996 997 ix->ei_block = cpu_to_le32(logical); 998 ext4_idx_store_pblock(ix, ptr); 999 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1000 1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1003 return -EIO; 1004 } 1005 1006 err = ext4_ext_dirty(handle, inode, curp); 1007 ext4_std_error(inode->i_sb, err); 1008 1009 return err; 1010 } 1011 1012 /* 1013 * ext4_ext_split: 1014 * inserts new subtree into the path, using free index entry 1015 * at depth @at: 1016 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1017 * - makes decision where to split 1018 * - moves remaining extents and index entries (right to the split point) 1019 * into the newly allocated blocks 1020 * - initializes subtree 1021 */ 1022 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1023 unsigned int flags, 1024 struct ext4_ext_path *path, 1025 struct ext4_extent *newext, int at) 1026 { 1027 struct buffer_head *bh = NULL; 1028 int depth = ext_depth(inode); 1029 struct ext4_extent_header *neh; 1030 struct ext4_extent_idx *fidx; 1031 int i = at, k, m, a; 1032 ext4_fsblk_t newblock, oldblock; 1033 __le32 border; 1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1035 int err = 0; 1036 1037 /* make decision: where to split? */ 1038 /* FIXME: now decision is simplest: at current extent */ 1039 1040 /* if current leaf will be split, then we should use 1041 * border from split point */ 1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1044 return -EIO; 1045 } 1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1047 border = path[depth].p_ext[1].ee_block; 1048 ext_debug("leaf will be split." 1049 " next leaf starts at %d\n", 1050 le32_to_cpu(border)); 1051 } else { 1052 border = newext->ee_block; 1053 ext_debug("leaf will be added." 1054 " next leaf starts at %d\n", 1055 le32_to_cpu(border)); 1056 } 1057 1058 /* 1059 * If error occurs, then we break processing 1060 * and mark filesystem read-only. index won't 1061 * be inserted and tree will be in consistent 1062 * state. Next mount will repair buffers too. 1063 */ 1064 1065 /* 1066 * Get array to track all allocated blocks. 1067 * We need this to handle errors and free blocks 1068 * upon them. 1069 */ 1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1071 if (!ablocks) 1072 return -ENOMEM; 1073 1074 /* allocate all needed blocks */ 1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1076 for (a = 0; a < depth - at; a++) { 1077 newblock = ext4_ext_new_meta_block(handle, inode, path, 1078 newext, &err, flags); 1079 if (newblock == 0) 1080 goto cleanup; 1081 ablocks[a] = newblock; 1082 } 1083 1084 /* initialize new leaf */ 1085 newblock = ablocks[--a]; 1086 if (unlikely(newblock == 0)) { 1087 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1088 err = -EIO; 1089 goto cleanup; 1090 } 1091 bh = sb_getblk(inode->i_sb, newblock); 1092 if (unlikely(!bh)) { 1093 err = -ENOMEM; 1094 goto cleanup; 1095 } 1096 lock_buffer(bh); 1097 1098 err = ext4_journal_get_create_access(handle, bh); 1099 if (err) 1100 goto cleanup; 1101 1102 neh = ext_block_hdr(bh); 1103 neh->eh_entries = 0; 1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1105 neh->eh_magic = EXT4_EXT_MAGIC; 1106 neh->eh_depth = 0; 1107 1108 /* move remainder of path[depth] to the new leaf */ 1109 if (unlikely(path[depth].p_hdr->eh_entries != 1110 path[depth].p_hdr->eh_max)) { 1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1112 path[depth].p_hdr->eh_entries, 1113 path[depth].p_hdr->eh_max); 1114 err = -EIO; 1115 goto cleanup; 1116 } 1117 /* start copy from next extent */ 1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1119 ext4_ext_show_move(inode, path, newblock, depth); 1120 if (m) { 1121 struct ext4_extent *ex; 1122 ex = EXT_FIRST_EXTENT(neh); 1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1124 le16_add_cpu(&neh->eh_entries, m); 1125 } 1126 1127 ext4_extent_block_csum_set(inode, neh); 1128 set_buffer_uptodate(bh); 1129 unlock_buffer(bh); 1130 1131 err = ext4_handle_dirty_metadata(handle, inode, bh); 1132 if (err) 1133 goto cleanup; 1134 brelse(bh); 1135 bh = NULL; 1136 1137 /* correct old leaf */ 1138 if (m) { 1139 err = ext4_ext_get_access(handle, inode, path + depth); 1140 if (err) 1141 goto cleanup; 1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1143 err = ext4_ext_dirty(handle, inode, path + depth); 1144 if (err) 1145 goto cleanup; 1146 1147 } 1148 1149 /* create intermediate indexes */ 1150 k = depth - at - 1; 1151 if (unlikely(k < 0)) { 1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1153 err = -EIO; 1154 goto cleanup; 1155 } 1156 if (k) 1157 ext_debug("create %d intermediate indices\n", k); 1158 /* insert new index into current index block */ 1159 /* current depth stored in i var */ 1160 i = depth - 1; 1161 while (k--) { 1162 oldblock = newblock; 1163 newblock = ablocks[--a]; 1164 bh = sb_getblk(inode->i_sb, newblock); 1165 if (unlikely(!bh)) { 1166 err = -ENOMEM; 1167 goto cleanup; 1168 } 1169 lock_buffer(bh); 1170 1171 err = ext4_journal_get_create_access(handle, bh); 1172 if (err) 1173 goto cleanup; 1174 1175 neh = ext_block_hdr(bh); 1176 neh->eh_entries = cpu_to_le16(1); 1177 neh->eh_magic = EXT4_EXT_MAGIC; 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1179 neh->eh_depth = cpu_to_le16(depth - i); 1180 fidx = EXT_FIRST_INDEX(neh); 1181 fidx->ei_block = border; 1182 ext4_idx_store_pblock(fidx, oldblock); 1183 1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1185 i, newblock, le32_to_cpu(border), oldblock); 1186 1187 /* move remainder of path[i] to the new index block */ 1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1189 EXT_LAST_INDEX(path[i].p_hdr))) { 1190 EXT4_ERROR_INODE(inode, 1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1192 le32_to_cpu(path[i].p_ext->ee_block)); 1193 err = -EIO; 1194 goto cleanup; 1195 } 1196 /* start copy indexes */ 1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1199 EXT_MAX_INDEX(path[i].p_hdr)); 1200 ext4_ext_show_move(inode, path, newblock, i); 1201 if (m) { 1202 memmove(++fidx, path[i].p_idx, 1203 sizeof(struct ext4_extent_idx) * m); 1204 le16_add_cpu(&neh->eh_entries, m); 1205 } 1206 ext4_extent_block_csum_set(inode, neh); 1207 set_buffer_uptodate(bh); 1208 unlock_buffer(bh); 1209 1210 err = ext4_handle_dirty_metadata(handle, inode, bh); 1211 if (err) 1212 goto cleanup; 1213 brelse(bh); 1214 bh = NULL; 1215 1216 /* correct old index */ 1217 if (m) { 1218 err = ext4_ext_get_access(handle, inode, path + i); 1219 if (err) 1220 goto cleanup; 1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1222 err = ext4_ext_dirty(handle, inode, path + i); 1223 if (err) 1224 goto cleanup; 1225 } 1226 1227 i--; 1228 } 1229 1230 /* insert new index */ 1231 err = ext4_ext_insert_index(handle, inode, path + at, 1232 le32_to_cpu(border), newblock); 1233 1234 cleanup: 1235 if (bh) { 1236 if (buffer_locked(bh)) 1237 unlock_buffer(bh); 1238 brelse(bh); 1239 } 1240 1241 if (err) { 1242 /* free all allocated blocks in error case */ 1243 for (i = 0; i < depth; i++) { 1244 if (!ablocks[i]) 1245 continue; 1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1247 EXT4_FREE_BLOCKS_METADATA); 1248 } 1249 } 1250 kfree(ablocks); 1251 1252 return err; 1253 } 1254 1255 /* 1256 * ext4_ext_grow_indepth: 1257 * implements tree growing procedure: 1258 * - allocates new block 1259 * - moves top-level data (index block or leaf) into the new block 1260 * - initializes new top-level, creating index that points to the 1261 * just created block 1262 */ 1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1264 unsigned int flags) 1265 { 1266 struct ext4_extent_header *neh; 1267 struct buffer_head *bh; 1268 ext4_fsblk_t newblock, goal = 0; 1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1270 int err = 0; 1271 1272 /* Try to prepend new index to old one */ 1273 if (ext_depth(inode)) 1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1275 if (goal > le32_to_cpu(es->s_first_data_block)) { 1276 flags |= EXT4_MB_HINT_TRY_GOAL; 1277 goal--; 1278 } else 1279 goal = ext4_inode_to_goal_block(inode); 1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1281 NULL, &err); 1282 if (newblock == 0) 1283 return err; 1284 1285 bh = sb_getblk(inode->i_sb, newblock); 1286 if (unlikely(!bh)) 1287 return -ENOMEM; 1288 lock_buffer(bh); 1289 1290 err = ext4_journal_get_create_access(handle, bh); 1291 if (err) { 1292 unlock_buffer(bh); 1293 goto out; 1294 } 1295 1296 /* move top-level index/leaf into new block */ 1297 memmove(bh->b_data, EXT4_I(inode)->i_data, 1298 sizeof(EXT4_I(inode)->i_data)); 1299 1300 /* set size of new block */ 1301 neh = ext_block_hdr(bh); 1302 /* old root could have indexes or leaves 1303 * so calculate e_max right way */ 1304 if (ext_depth(inode)) 1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1306 else 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1308 neh->eh_magic = EXT4_EXT_MAGIC; 1309 ext4_extent_block_csum_set(inode, neh); 1310 set_buffer_uptodate(bh); 1311 unlock_buffer(bh); 1312 1313 err = ext4_handle_dirty_metadata(handle, inode, bh); 1314 if (err) 1315 goto out; 1316 1317 /* Update top-level index: num,max,pointer */ 1318 neh = ext_inode_hdr(inode); 1319 neh->eh_entries = cpu_to_le16(1); 1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1321 if (neh->eh_depth == 0) { 1322 /* Root extent block becomes index block */ 1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1324 EXT_FIRST_INDEX(neh)->ei_block = 1325 EXT_FIRST_EXTENT(neh)->ee_block; 1326 } 1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1331 1332 le16_add_cpu(&neh->eh_depth, 1); 1333 ext4_mark_inode_dirty(handle, inode); 1334 out: 1335 brelse(bh); 1336 1337 return err; 1338 } 1339 1340 /* 1341 * ext4_ext_create_new_leaf: 1342 * finds empty index and adds new leaf. 1343 * if no free index is found, then it requests in-depth growing. 1344 */ 1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1346 unsigned int mb_flags, 1347 unsigned int gb_flags, 1348 struct ext4_ext_path **ppath, 1349 struct ext4_extent *newext) 1350 { 1351 struct ext4_ext_path *path = *ppath; 1352 struct ext4_ext_path *curp; 1353 int depth, i, err = 0; 1354 1355 repeat: 1356 i = depth = ext_depth(inode); 1357 1358 /* walk up to the tree and look for free index entry */ 1359 curp = path + depth; 1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1361 i--; 1362 curp--; 1363 } 1364 1365 /* we use already allocated block for index block, 1366 * so subsequent data blocks should be contiguous */ 1367 if (EXT_HAS_FREE_INDEX(curp)) { 1368 /* if we found index with free entry, then use that 1369 * entry: create all needed subtree and add new leaf */ 1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1371 if (err) 1372 goto out; 1373 1374 /* refill path */ 1375 path = ext4_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 ppath, gb_flags); 1378 if (IS_ERR(path)) 1379 err = PTR_ERR(path); 1380 } else { 1381 /* tree is full, time to grow in depth */ 1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1383 if (err) 1384 goto out; 1385 1386 /* refill path */ 1387 path = ext4_find_extent(inode, 1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1389 ppath, gb_flags); 1390 if (IS_ERR(path)) { 1391 err = PTR_ERR(path); 1392 goto out; 1393 } 1394 1395 /* 1396 * only first (depth 0 -> 1) produces free space; 1397 * in all other cases we have to split the grown tree 1398 */ 1399 depth = ext_depth(inode); 1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1401 /* now we need to split */ 1402 goto repeat; 1403 } 1404 } 1405 1406 out: 1407 return err; 1408 } 1409 1410 /* 1411 * search the closest allocated block to the left for *logical 1412 * and returns it at @logical + it's physical address at @phys 1413 * if *logical is the smallest allocated block, the function 1414 * returns 0 at @phys 1415 * return value contains 0 (success) or error code 1416 */ 1417 static int ext4_ext_search_left(struct inode *inode, 1418 struct ext4_ext_path *path, 1419 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1420 { 1421 struct ext4_extent_idx *ix; 1422 struct ext4_extent *ex; 1423 int depth, ee_len; 1424 1425 if (unlikely(path == NULL)) { 1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1427 return -EIO; 1428 } 1429 depth = path->p_depth; 1430 *phys = 0; 1431 1432 if (depth == 0 && path->p_ext == NULL) 1433 return 0; 1434 1435 /* usually extent in the path covers blocks smaller 1436 * then *logical, but it can be that extent is the 1437 * first one in the file */ 1438 1439 ex = path[depth].p_ext; 1440 ee_len = ext4_ext_get_actual_len(ex); 1441 if (*logical < le32_to_cpu(ex->ee_block)) { 1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1443 EXT4_ERROR_INODE(inode, 1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1445 *logical, le32_to_cpu(ex->ee_block)); 1446 return -EIO; 1447 } 1448 while (--depth >= 0) { 1449 ix = path[depth].p_idx; 1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1451 EXT4_ERROR_INODE(inode, 1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1456 depth); 1457 return -EIO; 1458 } 1459 } 1460 return 0; 1461 } 1462 1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1464 EXT4_ERROR_INODE(inode, 1465 "logical %d < ee_block %d + ee_len %d!", 1466 *logical, le32_to_cpu(ex->ee_block), ee_len); 1467 return -EIO; 1468 } 1469 1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1471 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1472 return 0; 1473 } 1474 1475 /* 1476 * search the closest allocated block to the right for *logical 1477 * and returns it at @logical + it's physical address at @phys 1478 * if *logical is the largest allocated block, the function 1479 * returns 0 at @phys 1480 * return value contains 0 (success) or error code 1481 */ 1482 static int ext4_ext_search_right(struct inode *inode, 1483 struct ext4_ext_path *path, 1484 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1485 struct ext4_extent **ret_ex) 1486 { 1487 struct buffer_head *bh = NULL; 1488 struct ext4_extent_header *eh; 1489 struct ext4_extent_idx *ix; 1490 struct ext4_extent *ex; 1491 ext4_fsblk_t block; 1492 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1493 int ee_len; 1494 1495 if (unlikely(path == NULL)) { 1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1497 return -EIO; 1498 } 1499 depth = path->p_depth; 1500 *phys = 0; 1501 1502 if (depth == 0 && path->p_ext == NULL) 1503 return 0; 1504 1505 /* usually extent in the path covers blocks smaller 1506 * then *logical, but it can be that extent is the 1507 * first one in the file */ 1508 1509 ex = path[depth].p_ext; 1510 ee_len = ext4_ext_get_actual_len(ex); 1511 if (*logical < le32_to_cpu(ex->ee_block)) { 1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1513 EXT4_ERROR_INODE(inode, 1514 "first_extent(path[%d].p_hdr) != ex", 1515 depth); 1516 return -EIO; 1517 } 1518 while (--depth >= 0) { 1519 ix = path[depth].p_idx; 1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1521 EXT4_ERROR_INODE(inode, 1522 "ix != EXT_FIRST_INDEX *logical %d!", 1523 *logical); 1524 return -EIO; 1525 } 1526 } 1527 goto found_extent; 1528 } 1529 1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1531 EXT4_ERROR_INODE(inode, 1532 "logical %d < ee_block %d + ee_len %d!", 1533 *logical, le32_to_cpu(ex->ee_block), ee_len); 1534 return -EIO; 1535 } 1536 1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1538 /* next allocated block in this leaf */ 1539 ex++; 1540 goto found_extent; 1541 } 1542 1543 /* go up and search for index to the right */ 1544 while (--depth >= 0) { 1545 ix = path[depth].p_idx; 1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1547 goto got_index; 1548 } 1549 1550 /* we've gone up to the root and found no index to the right */ 1551 return 0; 1552 1553 got_index: 1554 /* we've found index to the right, let's 1555 * follow it and find the closest allocated 1556 * block to the right */ 1557 ix++; 1558 block = ext4_idx_pblock(ix); 1559 while (++depth < path->p_depth) { 1560 /* subtract from p_depth to get proper eh_depth */ 1561 bh = read_extent_tree_block(inode, block, 1562 path->p_depth - depth, 0); 1563 if (IS_ERR(bh)) 1564 return PTR_ERR(bh); 1565 eh = ext_block_hdr(bh); 1566 ix = EXT_FIRST_INDEX(eh); 1567 block = ext4_idx_pblock(ix); 1568 put_bh(bh); 1569 } 1570 1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1572 if (IS_ERR(bh)) 1573 return PTR_ERR(bh); 1574 eh = ext_block_hdr(bh); 1575 ex = EXT_FIRST_EXTENT(eh); 1576 found_extent: 1577 *logical = le32_to_cpu(ex->ee_block); 1578 *phys = ext4_ext_pblock(ex); 1579 *ret_ex = ex; 1580 if (bh) 1581 put_bh(bh); 1582 return 0; 1583 } 1584 1585 /* 1586 * ext4_ext_next_allocated_block: 1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1588 * NOTE: it considers block number from index entry as 1589 * allocated block. Thus, index entries have to be consistent 1590 * with leaves. 1591 */ 1592 ext4_lblk_t 1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1594 { 1595 int depth; 1596 1597 BUG_ON(path == NULL); 1598 depth = path->p_depth; 1599 1600 if (depth == 0 && path->p_ext == NULL) 1601 return EXT_MAX_BLOCKS; 1602 1603 while (depth >= 0) { 1604 if (depth == path->p_depth) { 1605 /* leaf */ 1606 if (path[depth].p_ext && 1607 path[depth].p_ext != 1608 EXT_LAST_EXTENT(path[depth].p_hdr)) 1609 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1610 } else { 1611 /* index */ 1612 if (path[depth].p_idx != 1613 EXT_LAST_INDEX(path[depth].p_hdr)) 1614 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1615 } 1616 depth--; 1617 } 1618 1619 return EXT_MAX_BLOCKS; 1620 } 1621 1622 /* 1623 * ext4_ext_next_leaf_block: 1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1625 */ 1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1627 { 1628 int depth; 1629 1630 BUG_ON(path == NULL); 1631 depth = path->p_depth; 1632 1633 /* zero-tree has no leaf blocks at all */ 1634 if (depth == 0) 1635 return EXT_MAX_BLOCKS; 1636 1637 /* go to index block */ 1638 depth--; 1639 1640 while (depth >= 0) { 1641 if (path[depth].p_idx != 1642 EXT_LAST_INDEX(path[depth].p_hdr)) 1643 return (ext4_lblk_t) 1644 le32_to_cpu(path[depth].p_idx[1].ei_block); 1645 depth--; 1646 } 1647 1648 return EXT_MAX_BLOCKS; 1649 } 1650 1651 /* 1652 * ext4_ext_correct_indexes: 1653 * if leaf gets modified and modified extent is first in the leaf, 1654 * then we have to correct all indexes above. 1655 * TODO: do we need to correct tree in all cases? 1656 */ 1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1658 struct ext4_ext_path *path) 1659 { 1660 struct ext4_extent_header *eh; 1661 int depth = ext_depth(inode); 1662 struct ext4_extent *ex; 1663 __le32 border; 1664 int k, err = 0; 1665 1666 eh = path[depth].p_hdr; 1667 ex = path[depth].p_ext; 1668 1669 if (unlikely(ex == NULL || eh == NULL)) { 1670 EXT4_ERROR_INODE(inode, 1671 "ex %p == NULL or eh %p == NULL", ex, eh); 1672 return -EIO; 1673 } 1674 1675 if (depth == 0) { 1676 /* there is no tree at all */ 1677 return 0; 1678 } 1679 1680 if (ex != EXT_FIRST_EXTENT(eh)) { 1681 /* we correct tree if first leaf got modified only */ 1682 return 0; 1683 } 1684 1685 /* 1686 * TODO: we need correction if border is smaller than current one 1687 */ 1688 k = depth - 1; 1689 border = path[depth].p_ext->ee_block; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 return err; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 return err; 1697 1698 while (k--) { 1699 /* change all left-side indexes */ 1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1701 break; 1702 err = ext4_ext_get_access(handle, inode, path + k); 1703 if (err) 1704 break; 1705 path[k].p_idx->ei_block = border; 1706 err = ext4_ext_dirty(handle, inode, path + k); 1707 if (err) 1708 break; 1709 } 1710 1711 return err; 1712 } 1713 1714 int 1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1716 struct ext4_extent *ex2) 1717 { 1718 unsigned short ext1_ee_len, ext2_ee_len; 1719 1720 /* 1721 * Make sure that both extents are initialized. We don't merge 1722 * unwritten extents so that we can be sure that end_io code has 1723 * the extent that was written properly split out and conversion to 1724 * initialized is trivial. 1725 */ 1726 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1727 return 0; 1728 1729 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1730 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1731 1732 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1733 le32_to_cpu(ex2->ee_block)) 1734 return 0; 1735 1736 /* 1737 * To allow future support for preallocated extents to be added 1738 * as an RO_COMPAT feature, refuse to merge to extents if 1739 * this can result in the top bit of ee_len being set. 1740 */ 1741 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1742 return 0; 1743 if (ext4_ext_is_unwritten(ex1) && 1744 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1745 atomic_read(&EXT4_I(inode)->i_unwritten) || 1746 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1747 return 0; 1748 #ifdef AGGRESSIVE_TEST 1749 if (ext1_ee_len >= 4) 1750 return 0; 1751 #endif 1752 1753 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1754 return 1; 1755 return 0; 1756 } 1757 1758 /* 1759 * This function tries to merge the "ex" extent to the next extent in the tree. 1760 * It always tries to merge towards right. If you want to merge towards 1761 * left, pass "ex - 1" as argument instead of "ex". 1762 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1763 * 1 if they got merged. 1764 */ 1765 static int ext4_ext_try_to_merge_right(struct inode *inode, 1766 struct ext4_ext_path *path, 1767 struct ext4_extent *ex) 1768 { 1769 struct ext4_extent_header *eh; 1770 unsigned int depth, len; 1771 int merge_done = 0, unwritten; 1772 1773 depth = ext_depth(inode); 1774 BUG_ON(path[depth].p_hdr == NULL); 1775 eh = path[depth].p_hdr; 1776 1777 while (ex < EXT_LAST_EXTENT(eh)) { 1778 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1779 break; 1780 /* merge with next extent! */ 1781 unwritten = ext4_ext_is_unwritten(ex); 1782 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1783 + ext4_ext_get_actual_len(ex + 1)); 1784 if (unwritten) 1785 ext4_ext_mark_unwritten(ex); 1786 1787 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1788 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1789 * sizeof(struct ext4_extent); 1790 memmove(ex + 1, ex + 2, len); 1791 } 1792 le16_add_cpu(&eh->eh_entries, -1); 1793 merge_done = 1; 1794 WARN_ON(eh->eh_entries == 0); 1795 if (!eh->eh_entries) 1796 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1797 } 1798 1799 return merge_done; 1800 } 1801 1802 /* 1803 * This function does a very simple check to see if we can collapse 1804 * an extent tree with a single extent tree leaf block into the inode. 1805 */ 1806 static void ext4_ext_try_to_merge_up(handle_t *handle, 1807 struct inode *inode, 1808 struct ext4_ext_path *path) 1809 { 1810 size_t s; 1811 unsigned max_root = ext4_ext_space_root(inode, 0); 1812 ext4_fsblk_t blk; 1813 1814 if ((path[0].p_depth != 1) || 1815 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1816 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1817 return; 1818 1819 /* 1820 * We need to modify the block allocation bitmap and the block 1821 * group descriptor to release the extent tree block. If we 1822 * can't get the journal credits, give up. 1823 */ 1824 if (ext4_journal_extend(handle, 2)) 1825 return; 1826 1827 /* 1828 * Copy the extent data up to the inode 1829 */ 1830 blk = ext4_idx_pblock(path[0].p_idx); 1831 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1832 sizeof(struct ext4_extent_idx); 1833 s += sizeof(struct ext4_extent_header); 1834 1835 path[1].p_maxdepth = path[0].p_maxdepth; 1836 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1837 path[0].p_depth = 0; 1838 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1839 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1840 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1841 1842 brelse(path[1].p_bh); 1843 ext4_free_blocks(handle, inode, NULL, blk, 1, 1844 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1845 } 1846 1847 /* 1848 * This function tries to merge the @ex extent to neighbours in the tree. 1849 * return 1 if merge left else 0. 1850 */ 1851 static void ext4_ext_try_to_merge(handle_t *handle, 1852 struct inode *inode, 1853 struct ext4_ext_path *path, 1854 struct ext4_extent *ex) { 1855 struct ext4_extent_header *eh; 1856 unsigned int depth; 1857 int merge_done = 0; 1858 1859 depth = ext_depth(inode); 1860 BUG_ON(path[depth].p_hdr == NULL); 1861 eh = path[depth].p_hdr; 1862 1863 if (ex > EXT_FIRST_EXTENT(eh)) 1864 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1865 1866 if (!merge_done) 1867 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1868 1869 ext4_ext_try_to_merge_up(handle, inode, path); 1870 } 1871 1872 /* 1873 * check if a portion of the "newext" extent overlaps with an 1874 * existing extent. 1875 * 1876 * If there is an overlap discovered, it updates the length of the newext 1877 * such that there will be no overlap, and then returns 1. 1878 * If there is no overlap found, it returns 0. 1879 */ 1880 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1881 struct inode *inode, 1882 struct ext4_extent *newext, 1883 struct ext4_ext_path *path) 1884 { 1885 ext4_lblk_t b1, b2; 1886 unsigned int depth, len1; 1887 unsigned int ret = 0; 1888 1889 b1 = le32_to_cpu(newext->ee_block); 1890 len1 = ext4_ext_get_actual_len(newext); 1891 depth = ext_depth(inode); 1892 if (!path[depth].p_ext) 1893 goto out; 1894 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1895 1896 /* 1897 * get the next allocated block if the extent in the path 1898 * is before the requested block(s) 1899 */ 1900 if (b2 < b1) { 1901 b2 = ext4_ext_next_allocated_block(path); 1902 if (b2 == EXT_MAX_BLOCKS) 1903 goto out; 1904 b2 = EXT4_LBLK_CMASK(sbi, b2); 1905 } 1906 1907 /* check for wrap through zero on extent logical start block*/ 1908 if (b1 + len1 < b1) { 1909 len1 = EXT_MAX_BLOCKS - b1; 1910 newext->ee_len = cpu_to_le16(len1); 1911 ret = 1; 1912 } 1913 1914 /* check for overlap */ 1915 if (b1 + len1 > b2) { 1916 newext->ee_len = cpu_to_le16(b2 - b1); 1917 ret = 1; 1918 } 1919 out: 1920 return ret; 1921 } 1922 1923 /* 1924 * ext4_ext_insert_extent: 1925 * tries to merge requsted extent into the existing extent or 1926 * inserts requested extent as new one into the tree, 1927 * creating new leaf in the no-space case. 1928 */ 1929 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1930 struct ext4_ext_path **ppath, 1931 struct ext4_extent *newext, int gb_flags) 1932 { 1933 struct ext4_ext_path *path = *ppath; 1934 struct ext4_extent_header *eh; 1935 struct ext4_extent *ex, *fex; 1936 struct ext4_extent *nearex; /* nearest extent */ 1937 struct ext4_ext_path *npath = NULL; 1938 int depth, len, err; 1939 ext4_lblk_t next; 1940 int mb_flags = 0, unwritten; 1941 1942 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1943 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1944 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1945 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1946 return -EIO; 1947 } 1948 depth = ext_depth(inode); 1949 ex = path[depth].p_ext; 1950 eh = path[depth].p_hdr; 1951 if (unlikely(path[depth].p_hdr == NULL)) { 1952 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1953 return -EIO; 1954 } 1955 1956 /* try to insert block into found extent and return */ 1957 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1958 1959 /* 1960 * Try to see whether we should rather test the extent on 1961 * right from ex, or from the left of ex. This is because 1962 * ext4_find_extent() can return either extent on the 1963 * left, or on the right from the searched position. This 1964 * will make merging more effective. 1965 */ 1966 if (ex < EXT_LAST_EXTENT(eh) && 1967 (le32_to_cpu(ex->ee_block) + 1968 ext4_ext_get_actual_len(ex) < 1969 le32_to_cpu(newext->ee_block))) { 1970 ex += 1; 1971 goto prepend; 1972 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1973 (le32_to_cpu(newext->ee_block) + 1974 ext4_ext_get_actual_len(newext) < 1975 le32_to_cpu(ex->ee_block))) 1976 ex -= 1; 1977 1978 /* Try to append newex to the ex */ 1979 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1980 ext_debug("append [%d]%d block to %u:[%d]%d" 1981 "(from %llu)\n", 1982 ext4_ext_is_unwritten(newext), 1983 ext4_ext_get_actual_len(newext), 1984 le32_to_cpu(ex->ee_block), 1985 ext4_ext_is_unwritten(ex), 1986 ext4_ext_get_actual_len(ex), 1987 ext4_ext_pblock(ex)); 1988 err = ext4_ext_get_access(handle, inode, 1989 path + depth); 1990 if (err) 1991 return err; 1992 unwritten = ext4_ext_is_unwritten(ex); 1993 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1994 + ext4_ext_get_actual_len(newext)); 1995 if (unwritten) 1996 ext4_ext_mark_unwritten(ex); 1997 eh = path[depth].p_hdr; 1998 nearex = ex; 1999 goto merge; 2000 } 2001 2002 prepend: 2003 /* Try to prepend newex to the ex */ 2004 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2005 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2006 "(from %llu)\n", 2007 le32_to_cpu(newext->ee_block), 2008 ext4_ext_is_unwritten(newext), 2009 ext4_ext_get_actual_len(newext), 2010 le32_to_cpu(ex->ee_block), 2011 ext4_ext_is_unwritten(ex), 2012 ext4_ext_get_actual_len(ex), 2013 ext4_ext_pblock(ex)); 2014 err = ext4_ext_get_access(handle, inode, 2015 path + depth); 2016 if (err) 2017 return err; 2018 2019 unwritten = ext4_ext_is_unwritten(ex); 2020 ex->ee_block = newext->ee_block; 2021 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2022 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2023 + ext4_ext_get_actual_len(newext)); 2024 if (unwritten) 2025 ext4_ext_mark_unwritten(ex); 2026 eh = path[depth].p_hdr; 2027 nearex = ex; 2028 goto merge; 2029 } 2030 } 2031 2032 depth = ext_depth(inode); 2033 eh = path[depth].p_hdr; 2034 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2035 goto has_space; 2036 2037 /* probably next leaf has space for us? */ 2038 fex = EXT_LAST_EXTENT(eh); 2039 next = EXT_MAX_BLOCKS; 2040 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2041 next = ext4_ext_next_leaf_block(path); 2042 if (next != EXT_MAX_BLOCKS) { 2043 ext_debug("next leaf block - %u\n", next); 2044 BUG_ON(npath != NULL); 2045 npath = ext4_find_extent(inode, next, NULL, 0); 2046 if (IS_ERR(npath)) 2047 return PTR_ERR(npath); 2048 BUG_ON(npath->p_depth != path->p_depth); 2049 eh = npath[depth].p_hdr; 2050 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2051 ext_debug("next leaf isn't full(%d)\n", 2052 le16_to_cpu(eh->eh_entries)); 2053 path = npath; 2054 goto has_space; 2055 } 2056 ext_debug("next leaf has no free space(%d,%d)\n", 2057 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2058 } 2059 2060 /* 2061 * There is no free space in the found leaf. 2062 * We're gonna add a new leaf in the tree. 2063 */ 2064 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2065 mb_flags |= EXT4_MB_USE_RESERVED; 2066 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2067 ppath, newext); 2068 if (err) 2069 goto cleanup; 2070 depth = ext_depth(inode); 2071 eh = path[depth].p_hdr; 2072 2073 has_space: 2074 nearex = path[depth].p_ext; 2075 2076 err = ext4_ext_get_access(handle, inode, path + depth); 2077 if (err) 2078 goto cleanup; 2079 2080 if (!nearex) { 2081 /* there is no extent in this leaf, create first one */ 2082 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2083 le32_to_cpu(newext->ee_block), 2084 ext4_ext_pblock(newext), 2085 ext4_ext_is_unwritten(newext), 2086 ext4_ext_get_actual_len(newext)); 2087 nearex = EXT_FIRST_EXTENT(eh); 2088 } else { 2089 if (le32_to_cpu(newext->ee_block) 2090 > le32_to_cpu(nearex->ee_block)) { 2091 /* Insert after */ 2092 ext_debug("insert %u:%llu:[%d]%d before: " 2093 "nearest %p\n", 2094 le32_to_cpu(newext->ee_block), 2095 ext4_ext_pblock(newext), 2096 ext4_ext_is_unwritten(newext), 2097 ext4_ext_get_actual_len(newext), 2098 nearex); 2099 nearex++; 2100 } else { 2101 /* Insert before */ 2102 BUG_ON(newext->ee_block == nearex->ee_block); 2103 ext_debug("insert %u:%llu:[%d]%d after: " 2104 "nearest %p\n", 2105 le32_to_cpu(newext->ee_block), 2106 ext4_ext_pblock(newext), 2107 ext4_ext_is_unwritten(newext), 2108 ext4_ext_get_actual_len(newext), 2109 nearex); 2110 } 2111 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2112 if (len > 0) { 2113 ext_debug("insert %u:%llu:[%d]%d: " 2114 "move %d extents from 0x%p to 0x%p\n", 2115 le32_to_cpu(newext->ee_block), 2116 ext4_ext_pblock(newext), 2117 ext4_ext_is_unwritten(newext), 2118 ext4_ext_get_actual_len(newext), 2119 len, nearex, nearex + 1); 2120 memmove(nearex + 1, nearex, 2121 len * sizeof(struct ext4_extent)); 2122 } 2123 } 2124 2125 le16_add_cpu(&eh->eh_entries, 1); 2126 path[depth].p_ext = nearex; 2127 nearex->ee_block = newext->ee_block; 2128 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2129 nearex->ee_len = newext->ee_len; 2130 2131 merge: 2132 /* try to merge extents */ 2133 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2134 ext4_ext_try_to_merge(handle, inode, path, nearex); 2135 2136 2137 /* time to correct all indexes above */ 2138 err = ext4_ext_correct_indexes(handle, inode, path); 2139 if (err) 2140 goto cleanup; 2141 2142 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2143 2144 cleanup: 2145 ext4_ext_drop_refs(npath); 2146 kfree(npath); 2147 return err; 2148 } 2149 2150 static int ext4_fill_fiemap_extents(struct inode *inode, 2151 ext4_lblk_t block, ext4_lblk_t num, 2152 struct fiemap_extent_info *fieinfo) 2153 { 2154 struct ext4_ext_path *path = NULL; 2155 struct ext4_extent *ex; 2156 struct extent_status es; 2157 ext4_lblk_t next, next_del, start = 0, end = 0; 2158 ext4_lblk_t last = block + num; 2159 int exists, depth = 0, err = 0; 2160 unsigned int flags = 0; 2161 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2162 2163 while (block < last && block != EXT_MAX_BLOCKS) { 2164 num = last - block; 2165 /* find extent for this block */ 2166 down_read(&EXT4_I(inode)->i_data_sem); 2167 2168 path = ext4_find_extent(inode, block, &path, 0); 2169 if (IS_ERR(path)) { 2170 up_read(&EXT4_I(inode)->i_data_sem); 2171 err = PTR_ERR(path); 2172 path = NULL; 2173 break; 2174 } 2175 2176 depth = ext_depth(inode); 2177 if (unlikely(path[depth].p_hdr == NULL)) { 2178 up_read(&EXT4_I(inode)->i_data_sem); 2179 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2180 err = -EIO; 2181 break; 2182 } 2183 ex = path[depth].p_ext; 2184 next = ext4_ext_next_allocated_block(path); 2185 2186 flags = 0; 2187 exists = 0; 2188 if (!ex) { 2189 /* there is no extent yet, so try to allocate 2190 * all requested space */ 2191 start = block; 2192 end = block + num; 2193 } else if (le32_to_cpu(ex->ee_block) > block) { 2194 /* need to allocate space before found extent */ 2195 start = block; 2196 end = le32_to_cpu(ex->ee_block); 2197 if (block + num < end) 2198 end = block + num; 2199 } else if (block >= le32_to_cpu(ex->ee_block) 2200 + ext4_ext_get_actual_len(ex)) { 2201 /* need to allocate space after found extent */ 2202 start = block; 2203 end = block + num; 2204 if (end >= next) 2205 end = next; 2206 } else if (block >= le32_to_cpu(ex->ee_block)) { 2207 /* 2208 * some part of requested space is covered 2209 * by found extent 2210 */ 2211 start = block; 2212 end = le32_to_cpu(ex->ee_block) 2213 + ext4_ext_get_actual_len(ex); 2214 if (block + num < end) 2215 end = block + num; 2216 exists = 1; 2217 } else { 2218 BUG(); 2219 } 2220 BUG_ON(end <= start); 2221 2222 if (!exists) { 2223 es.es_lblk = start; 2224 es.es_len = end - start; 2225 es.es_pblk = 0; 2226 } else { 2227 es.es_lblk = le32_to_cpu(ex->ee_block); 2228 es.es_len = ext4_ext_get_actual_len(ex); 2229 es.es_pblk = ext4_ext_pblock(ex); 2230 if (ext4_ext_is_unwritten(ex)) 2231 flags |= FIEMAP_EXTENT_UNWRITTEN; 2232 } 2233 2234 /* 2235 * Find delayed extent and update es accordingly. We call 2236 * it even in !exists case to find out whether es is the 2237 * last existing extent or not. 2238 */ 2239 next_del = ext4_find_delayed_extent(inode, &es); 2240 if (!exists && next_del) { 2241 exists = 1; 2242 flags |= (FIEMAP_EXTENT_DELALLOC | 2243 FIEMAP_EXTENT_UNKNOWN); 2244 } 2245 up_read(&EXT4_I(inode)->i_data_sem); 2246 2247 if (unlikely(es.es_len == 0)) { 2248 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2249 err = -EIO; 2250 break; 2251 } 2252 2253 /* 2254 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2255 * we need to check next == EXT_MAX_BLOCKS because it is 2256 * possible that an extent is with unwritten and delayed 2257 * status due to when an extent is delayed allocated and 2258 * is allocated by fallocate status tree will track both of 2259 * them in a extent. 2260 * 2261 * So we could return a unwritten and delayed extent, and 2262 * its block is equal to 'next'. 2263 */ 2264 if (next == next_del && next == EXT_MAX_BLOCKS) { 2265 flags |= FIEMAP_EXTENT_LAST; 2266 if (unlikely(next_del != EXT_MAX_BLOCKS || 2267 next != EXT_MAX_BLOCKS)) { 2268 EXT4_ERROR_INODE(inode, 2269 "next extent == %u, next " 2270 "delalloc extent = %u", 2271 next, next_del); 2272 err = -EIO; 2273 break; 2274 } 2275 } 2276 2277 if (exists) { 2278 err = fiemap_fill_next_extent(fieinfo, 2279 (__u64)es.es_lblk << blksize_bits, 2280 (__u64)es.es_pblk << blksize_bits, 2281 (__u64)es.es_len << blksize_bits, 2282 flags); 2283 if (err < 0) 2284 break; 2285 if (err == 1) { 2286 err = 0; 2287 break; 2288 } 2289 } 2290 2291 block = es.es_lblk + es.es_len; 2292 } 2293 2294 ext4_ext_drop_refs(path); 2295 kfree(path); 2296 return err; 2297 } 2298 2299 /* 2300 * ext4_ext_put_gap_in_cache: 2301 * calculate boundaries of the gap that the requested block fits into 2302 * and cache this gap 2303 */ 2304 static void 2305 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2306 ext4_lblk_t block) 2307 { 2308 int depth = ext_depth(inode); 2309 ext4_lblk_t len; 2310 ext4_lblk_t lblock; 2311 struct ext4_extent *ex; 2312 struct extent_status es; 2313 2314 ex = path[depth].p_ext; 2315 if (ex == NULL) { 2316 /* there is no extent yet, so gap is [0;-] */ 2317 lblock = 0; 2318 len = EXT_MAX_BLOCKS; 2319 ext_debug("cache gap(whole file):"); 2320 } else if (block < le32_to_cpu(ex->ee_block)) { 2321 lblock = block; 2322 len = le32_to_cpu(ex->ee_block) - block; 2323 ext_debug("cache gap(before): %u [%u:%u]", 2324 block, 2325 le32_to_cpu(ex->ee_block), 2326 ext4_ext_get_actual_len(ex)); 2327 } else if (block >= le32_to_cpu(ex->ee_block) 2328 + ext4_ext_get_actual_len(ex)) { 2329 ext4_lblk_t next; 2330 lblock = le32_to_cpu(ex->ee_block) 2331 + ext4_ext_get_actual_len(ex); 2332 2333 next = ext4_ext_next_allocated_block(path); 2334 ext_debug("cache gap(after): [%u:%u] %u", 2335 le32_to_cpu(ex->ee_block), 2336 ext4_ext_get_actual_len(ex), 2337 block); 2338 BUG_ON(next == lblock); 2339 len = next - lblock; 2340 } else { 2341 BUG(); 2342 } 2343 2344 ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es); 2345 if (es.es_len) { 2346 /* There's delayed extent containing lblock? */ 2347 if (es.es_lblk <= lblock) 2348 return; 2349 len = min(es.es_lblk - lblock, len); 2350 } 2351 ext_debug(" -> %u:%u\n", lblock, len); 2352 ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE); 2353 } 2354 2355 /* 2356 * ext4_ext_rm_idx: 2357 * removes index from the index block. 2358 */ 2359 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2360 struct ext4_ext_path *path, int depth) 2361 { 2362 int err; 2363 ext4_fsblk_t leaf; 2364 2365 /* free index block */ 2366 depth--; 2367 path = path + depth; 2368 leaf = ext4_idx_pblock(path->p_idx); 2369 if (unlikely(path->p_hdr->eh_entries == 0)) { 2370 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2371 return -EIO; 2372 } 2373 err = ext4_ext_get_access(handle, inode, path); 2374 if (err) 2375 return err; 2376 2377 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2378 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2379 len *= sizeof(struct ext4_extent_idx); 2380 memmove(path->p_idx, path->p_idx + 1, len); 2381 } 2382 2383 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2384 err = ext4_ext_dirty(handle, inode, path); 2385 if (err) 2386 return err; 2387 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2388 trace_ext4_ext_rm_idx(inode, leaf); 2389 2390 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2391 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2392 2393 while (--depth >= 0) { 2394 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2395 break; 2396 path--; 2397 err = ext4_ext_get_access(handle, inode, path); 2398 if (err) 2399 break; 2400 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2401 err = ext4_ext_dirty(handle, inode, path); 2402 if (err) 2403 break; 2404 } 2405 return err; 2406 } 2407 2408 /* 2409 * ext4_ext_calc_credits_for_single_extent: 2410 * This routine returns max. credits that needed to insert an extent 2411 * to the extent tree. 2412 * When pass the actual path, the caller should calculate credits 2413 * under i_data_sem. 2414 */ 2415 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2416 struct ext4_ext_path *path) 2417 { 2418 if (path) { 2419 int depth = ext_depth(inode); 2420 int ret = 0; 2421 2422 /* probably there is space in leaf? */ 2423 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2424 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2425 2426 /* 2427 * There are some space in the leaf tree, no 2428 * need to account for leaf block credit 2429 * 2430 * bitmaps and block group descriptor blocks 2431 * and other metadata blocks still need to be 2432 * accounted. 2433 */ 2434 /* 1 bitmap, 1 block group descriptor */ 2435 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2436 return ret; 2437 } 2438 } 2439 2440 return ext4_chunk_trans_blocks(inode, nrblocks); 2441 } 2442 2443 /* 2444 * How many index/leaf blocks need to change/allocate to add @extents extents? 2445 * 2446 * If we add a single extent, then in the worse case, each tree level 2447 * index/leaf need to be changed in case of the tree split. 2448 * 2449 * If more extents are inserted, they could cause the whole tree split more 2450 * than once, but this is really rare. 2451 */ 2452 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2453 { 2454 int index; 2455 int depth; 2456 2457 /* If we are converting the inline data, only one is needed here. */ 2458 if (ext4_has_inline_data(inode)) 2459 return 1; 2460 2461 depth = ext_depth(inode); 2462 2463 if (extents <= 1) 2464 index = depth * 2; 2465 else 2466 index = depth * 3; 2467 2468 return index; 2469 } 2470 2471 static inline int get_default_free_blocks_flags(struct inode *inode) 2472 { 2473 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2474 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2475 else if (ext4_should_journal_data(inode)) 2476 return EXT4_FREE_BLOCKS_FORGET; 2477 return 0; 2478 } 2479 2480 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2481 struct ext4_extent *ex, 2482 long long *partial_cluster, 2483 ext4_lblk_t from, ext4_lblk_t to) 2484 { 2485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2486 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2487 ext4_fsblk_t pblk; 2488 int flags = get_default_free_blocks_flags(inode); 2489 2490 /* 2491 * For bigalloc file systems, we never free a partial cluster 2492 * at the beginning of the extent. Instead, we make a note 2493 * that we tried freeing the cluster, and check to see if we 2494 * need to free it on a subsequent call to ext4_remove_blocks, 2495 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2496 */ 2497 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2498 2499 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2500 /* 2501 * If we have a partial cluster, and it's different from the 2502 * cluster of the last block, we need to explicitly free the 2503 * partial cluster here. 2504 */ 2505 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2506 if (*partial_cluster > 0 && 2507 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2508 ext4_free_blocks(handle, inode, NULL, 2509 EXT4_C2B(sbi, *partial_cluster), 2510 sbi->s_cluster_ratio, flags); 2511 *partial_cluster = 0; 2512 } 2513 2514 #ifdef EXTENTS_STATS 2515 { 2516 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2517 spin_lock(&sbi->s_ext_stats_lock); 2518 sbi->s_ext_blocks += ee_len; 2519 sbi->s_ext_extents++; 2520 if (ee_len < sbi->s_ext_min) 2521 sbi->s_ext_min = ee_len; 2522 if (ee_len > sbi->s_ext_max) 2523 sbi->s_ext_max = ee_len; 2524 if (ext_depth(inode) > sbi->s_depth_max) 2525 sbi->s_depth_max = ext_depth(inode); 2526 spin_unlock(&sbi->s_ext_stats_lock); 2527 } 2528 #endif 2529 if (from >= le32_to_cpu(ex->ee_block) 2530 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2531 /* tail removal */ 2532 ext4_lblk_t num; 2533 long long first_cluster; 2534 2535 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2536 pblk = ext4_ext_pblock(ex) + ee_len - num; 2537 /* 2538 * Usually we want to free partial cluster at the end of the 2539 * extent, except for the situation when the cluster is still 2540 * used by any other extent (partial_cluster is negative). 2541 */ 2542 if (*partial_cluster < 0 && 2543 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2544 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2545 2546 ext_debug("free last %u blocks starting %llu partial %lld\n", 2547 num, pblk, *partial_cluster); 2548 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2549 /* 2550 * If the block range to be freed didn't start at the 2551 * beginning of a cluster, and we removed the entire 2552 * extent and the cluster is not used by any other extent, 2553 * save the partial cluster here, since we might need to 2554 * delete if we determine that the truncate or punch hole 2555 * operation has removed all of the blocks in the cluster. 2556 * If that cluster is used by another extent, preserve its 2557 * negative value so it isn't freed later on. 2558 * 2559 * If the whole extent wasn't freed, we've reached the 2560 * start of the truncated/punched region and have finished 2561 * removing blocks. If there's a partial cluster here it's 2562 * shared with the remainder of the extent and is no longer 2563 * a candidate for removal. 2564 */ 2565 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2566 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2567 if (first_cluster != -*partial_cluster) 2568 *partial_cluster = first_cluster; 2569 } else { 2570 *partial_cluster = 0; 2571 } 2572 } else 2573 ext4_error(sbi->s_sb, "strange request: removal(2) " 2574 "%u-%u from %u:%u\n", 2575 from, to, le32_to_cpu(ex->ee_block), ee_len); 2576 return 0; 2577 } 2578 2579 2580 /* 2581 * ext4_ext_rm_leaf() Removes the extents associated with the 2582 * blocks appearing between "start" and "end". Both "start" 2583 * and "end" must appear in the same extent or EIO is returned. 2584 * 2585 * @handle: The journal handle 2586 * @inode: The files inode 2587 * @path: The path to the leaf 2588 * @partial_cluster: The cluster which we'll have to free if all extents 2589 * has been released from it. However, if this value is 2590 * negative, it's a cluster just to the right of the 2591 * punched region and it must not be freed. 2592 * @start: The first block to remove 2593 * @end: The last block to remove 2594 */ 2595 static int 2596 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2597 struct ext4_ext_path *path, 2598 long long *partial_cluster, 2599 ext4_lblk_t start, ext4_lblk_t end) 2600 { 2601 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2602 int err = 0, correct_index = 0; 2603 int depth = ext_depth(inode), credits; 2604 struct ext4_extent_header *eh; 2605 ext4_lblk_t a, b; 2606 unsigned num; 2607 ext4_lblk_t ex_ee_block; 2608 unsigned short ex_ee_len; 2609 unsigned unwritten = 0; 2610 struct ext4_extent *ex; 2611 ext4_fsblk_t pblk; 2612 2613 /* the header must be checked already in ext4_ext_remove_space() */ 2614 ext_debug("truncate since %u in leaf to %u\n", start, end); 2615 if (!path[depth].p_hdr) 2616 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2617 eh = path[depth].p_hdr; 2618 if (unlikely(path[depth].p_hdr == NULL)) { 2619 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2620 return -EIO; 2621 } 2622 /* find where to start removing */ 2623 ex = path[depth].p_ext; 2624 if (!ex) 2625 ex = EXT_LAST_EXTENT(eh); 2626 2627 ex_ee_block = le32_to_cpu(ex->ee_block); 2628 ex_ee_len = ext4_ext_get_actual_len(ex); 2629 2630 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2631 2632 while (ex >= EXT_FIRST_EXTENT(eh) && 2633 ex_ee_block + ex_ee_len > start) { 2634 2635 if (ext4_ext_is_unwritten(ex)) 2636 unwritten = 1; 2637 else 2638 unwritten = 0; 2639 2640 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2641 unwritten, ex_ee_len); 2642 path[depth].p_ext = ex; 2643 2644 a = ex_ee_block > start ? ex_ee_block : start; 2645 b = ex_ee_block+ex_ee_len - 1 < end ? 2646 ex_ee_block+ex_ee_len - 1 : end; 2647 2648 ext_debug(" border %u:%u\n", a, b); 2649 2650 /* If this extent is beyond the end of the hole, skip it */ 2651 if (end < ex_ee_block) { 2652 /* 2653 * We're going to skip this extent and move to another, 2654 * so note that its first cluster is in use to avoid 2655 * freeing it when removing blocks. Eventually, the 2656 * right edge of the truncated/punched region will 2657 * be just to the left. 2658 */ 2659 if (sbi->s_cluster_ratio > 1) { 2660 pblk = ext4_ext_pblock(ex); 2661 *partial_cluster = 2662 -(long long) EXT4_B2C(sbi, pblk); 2663 } 2664 ex--; 2665 ex_ee_block = le32_to_cpu(ex->ee_block); 2666 ex_ee_len = ext4_ext_get_actual_len(ex); 2667 continue; 2668 } else if (b != ex_ee_block + ex_ee_len - 1) { 2669 EXT4_ERROR_INODE(inode, 2670 "can not handle truncate %u:%u " 2671 "on extent %u:%u", 2672 start, end, ex_ee_block, 2673 ex_ee_block + ex_ee_len - 1); 2674 err = -EIO; 2675 goto out; 2676 } else if (a != ex_ee_block) { 2677 /* remove tail of the extent */ 2678 num = a - ex_ee_block; 2679 } else { 2680 /* remove whole extent: excellent! */ 2681 num = 0; 2682 } 2683 /* 2684 * 3 for leaf, sb, and inode plus 2 (bmap and group 2685 * descriptor) for each block group; assume two block 2686 * groups plus ex_ee_len/blocks_per_block_group for 2687 * the worst case 2688 */ 2689 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2690 if (ex == EXT_FIRST_EXTENT(eh)) { 2691 correct_index = 1; 2692 credits += (ext_depth(inode)) + 1; 2693 } 2694 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2695 2696 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2697 if (err) 2698 goto out; 2699 2700 err = ext4_ext_get_access(handle, inode, path + depth); 2701 if (err) 2702 goto out; 2703 2704 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2705 a, b); 2706 if (err) 2707 goto out; 2708 2709 if (num == 0) 2710 /* this extent is removed; mark slot entirely unused */ 2711 ext4_ext_store_pblock(ex, 0); 2712 2713 ex->ee_len = cpu_to_le16(num); 2714 /* 2715 * Do not mark unwritten if all the blocks in the 2716 * extent have been removed. 2717 */ 2718 if (unwritten && num) 2719 ext4_ext_mark_unwritten(ex); 2720 /* 2721 * If the extent was completely released, 2722 * we need to remove it from the leaf 2723 */ 2724 if (num == 0) { 2725 if (end != EXT_MAX_BLOCKS - 1) { 2726 /* 2727 * For hole punching, we need to scoot all the 2728 * extents up when an extent is removed so that 2729 * we dont have blank extents in the middle 2730 */ 2731 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2732 sizeof(struct ext4_extent)); 2733 2734 /* Now get rid of the one at the end */ 2735 memset(EXT_LAST_EXTENT(eh), 0, 2736 sizeof(struct ext4_extent)); 2737 } 2738 le16_add_cpu(&eh->eh_entries, -1); 2739 } 2740 2741 err = ext4_ext_dirty(handle, inode, path + depth); 2742 if (err) 2743 goto out; 2744 2745 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2746 ext4_ext_pblock(ex)); 2747 ex--; 2748 ex_ee_block = le32_to_cpu(ex->ee_block); 2749 ex_ee_len = ext4_ext_get_actual_len(ex); 2750 } 2751 2752 if (correct_index && eh->eh_entries) 2753 err = ext4_ext_correct_indexes(handle, inode, path); 2754 2755 /* 2756 * If there's a partial cluster and at least one extent remains in 2757 * the leaf, free the partial cluster if it isn't shared with the 2758 * current extent. If it is shared with the current extent 2759 * we zero partial_cluster because we've reached the start of the 2760 * truncated/punched region and we're done removing blocks. 2761 */ 2762 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2763 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2764 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2765 ext4_free_blocks(handle, inode, NULL, 2766 EXT4_C2B(sbi, *partial_cluster), 2767 sbi->s_cluster_ratio, 2768 get_default_free_blocks_flags(inode)); 2769 } 2770 *partial_cluster = 0; 2771 } 2772 2773 /* if this leaf is free, then we should 2774 * remove it from index block above */ 2775 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2776 err = ext4_ext_rm_idx(handle, inode, path, depth); 2777 2778 out: 2779 return err; 2780 } 2781 2782 /* 2783 * ext4_ext_more_to_rm: 2784 * returns 1 if current index has to be freed (even partial) 2785 */ 2786 static int 2787 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2788 { 2789 BUG_ON(path->p_idx == NULL); 2790 2791 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2792 return 0; 2793 2794 /* 2795 * if truncate on deeper level happened, it wasn't partial, 2796 * so we have to consider current index for truncation 2797 */ 2798 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2799 return 0; 2800 return 1; 2801 } 2802 2803 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2804 ext4_lblk_t end) 2805 { 2806 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2807 int depth = ext_depth(inode); 2808 struct ext4_ext_path *path = NULL; 2809 long long partial_cluster = 0; 2810 handle_t *handle; 2811 int i = 0, err = 0; 2812 2813 ext_debug("truncate since %u to %u\n", start, end); 2814 2815 /* probably first extent we're gonna free will be last in block */ 2816 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2817 if (IS_ERR(handle)) 2818 return PTR_ERR(handle); 2819 2820 again: 2821 trace_ext4_ext_remove_space(inode, start, end, depth); 2822 2823 /* 2824 * Check if we are removing extents inside the extent tree. If that 2825 * is the case, we are going to punch a hole inside the extent tree 2826 * so we have to check whether we need to split the extent covering 2827 * the last block to remove so we can easily remove the part of it 2828 * in ext4_ext_rm_leaf(). 2829 */ 2830 if (end < EXT_MAX_BLOCKS - 1) { 2831 struct ext4_extent *ex; 2832 ext4_lblk_t ee_block, ex_end, lblk; 2833 ext4_fsblk_t pblk; 2834 2835 /* find extent for or closest extent to this block */ 2836 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2837 if (IS_ERR(path)) { 2838 ext4_journal_stop(handle); 2839 return PTR_ERR(path); 2840 } 2841 depth = ext_depth(inode); 2842 /* Leaf not may not exist only if inode has no blocks at all */ 2843 ex = path[depth].p_ext; 2844 if (!ex) { 2845 if (depth) { 2846 EXT4_ERROR_INODE(inode, 2847 "path[%d].p_hdr == NULL", 2848 depth); 2849 err = -EIO; 2850 } 2851 goto out; 2852 } 2853 2854 ee_block = le32_to_cpu(ex->ee_block); 2855 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2856 2857 /* 2858 * See if the last block is inside the extent, if so split 2859 * the extent at 'end' block so we can easily remove the 2860 * tail of the first part of the split extent in 2861 * ext4_ext_rm_leaf(). 2862 */ 2863 if (end >= ee_block && end < ex_end) { 2864 2865 /* 2866 * If we're going to split the extent, note that 2867 * the cluster containing the block after 'end' is 2868 * in use to avoid freeing it when removing blocks. 2869 */ 2870 if (sbi->s_cluster_ratio > 1) { 2871 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2872 partial_cluster = 2873 -(long long) EXT4_B2C(sbi, pblk); 2874 } 2875 2876 /* 2877 * Split the extent in two so that 'end' is the last 2878 * block in the first new extent. Also we should not 2879 * fail removing space due to ENOSPC so try to use 2880 * reserved block if that happens. 2881 */ 2882 err = ext4_force_split_extent_at(handle, inode, &path, 2883 end + 1, 1); 2884 if (err < 0) 2885 goto out; 2886 2887 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2888 /* 2889 * If there's an extent to the right its first cluster 2890 * contains the immediate right boundary of the 2891 * truncated/punched region. Set partial_cluster to 2892 * its negative value so it won't be freed if shared 2893 * with the current extent. The end < ee_block case 2894 * is handled in ext4_ext_rm_leaf(). 2895 */ 2896 lblk = ex_end + 1; 2897 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2898 &ex); 2899 if (err) 2900 goto out; 2901 if (pblk) 2902 partial_cluster = 2903 -(long long) EXT4_B2C(sbi, pblk); 2904 } 2905 } 2906 /* 2907 * We start scanning from right side, freeing all the blocks 2908 * after i_size and walking into the tree depth-wise. 2909 */ 2910 depth = ext_depth(inode); 2911 if (path) { 2912 int k = i = depth; 2913 while (--k > 0) 2914 path[k].p_block = 2915 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2916 } else { 2917 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2918 GFP_NOFS); 2919 if (path == NULL) { 2920 ext4_journal_stop(handle); 2921 return -ENOMEM; 2922 } 2923 path[0].p_maxdepth = path[0].p_depth = depth; 2924 path[0].p_hdr = ext_inode_hdr(inode); 2925 i = 0; 2926 2927 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2928 err = -EIO; 2929 goto out; 2930 } 2931 } 2932 err = 0; 2933 2934 while (i >= 0 && err == 0) { 2935 if (i == depth) { 2936 /* this is leaf block */ 2937 err = ext4_ext_rm_leaf(handle, inode, path, 2938 &partial_cluster, start, 2939 end); 2940 /* root level has p_bh == NULL, brelse() eats this */ 2941 brelse(path[i].p_bh); 2942 path[i].p_bh = NULL; 2943 i--; 2944 continue; 2945 } 2946 2947 /* this is index block */ 2948 if (!path[i].p_hdr) { 2949 ext_debug("initialize header\n"); 2950 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2951 } 2952 2953 if (!path[i].p_idx) { 2954 /* this level hasn't been touched yet */ 2955 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2956 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2957 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2958 path[i].p_hdr, 2959 le16_to_cpu(path[i].p_hdr->eh_entries)); 2960 } else { 2961 /* we were already here, see at next index */ 2962 path[i].p_idx--; 2963 } 2964 2965 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2966 i, EXT_FIRST_INDEX(path[i].p_hdr), 2967 path[i].p_idx); 2968 if (ext4_ext_more_to_rm(path + i)) { 2969 struct buffer_head *bh; 2970 /* go to the next level */ 2971 ext_debug("move to level %d (block %llu)\n", 2972 i + 1, ext4_idx_pblock(path[i].p_idx)); 2973 memset(path + i + 1, 0, sizeof(*path)); 2974 bh = read_extent_tree_block(inode, 2975 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2976 EXT4_EX_NOCACHE); 2977 if (IS_ERR(bh)) { 2978 /* should we reset i_size? */ 2979 err = PTR_ERR(bh); 2980 break; 2981 } 2982 /* Yield here to deal with large extent trees. 2983 * Should be a no-op if we did IO above. */ 2984 cond_resched(); 2985 if (WARN_ON(i + 1 > depth)) { 2986 err = -EIO; 2987 break; 2988 } 2989 path[i + 1].p_bh = bh; 2990 2991 /* save actual number of indexes since this 2992 * number is changed at the next iteration */ 2993 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2994 i++; 2995 } else { 2996 /* we finished processing this index, go up */ 2997 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2998 /* index is empty, remove it; 2999 * handle must be already prepared by the 3000 * truncatei_leaf() */ 3001 err = ext4_ext_rm_idx(handle, inode, path, i); 3002 } 3003 /* root level has p_bh == NULL, brelse() eats this */ 3004 brelse(path[i].p_bh); 3005 path[i].p_bh = NULL; 3006 i--; 3007 ext_debug("return to level %d\n", i); 3008 } 3009 } 3010 3011 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3012 partial_cluster, path->p_hdr->eh_entries); 3013 3014 /* 3015 * If we still have something in the partial cluster and we have removed 3016 * even the first extent, then we should free the blocks in the partial 3017 * cluster as well. (This code will only run when there are no leaves 3018 * to the immediate left of the truncated/punched region.) 3019 */ 3020 if (partial_cluster > 0 && err == 0) { 3021 /* don't zero partial_cluster since it's not used afterwards */ 3022 ext4_free_blocks(handle, inode, NULL, 3023 EXT4_C2B(sbi, partial_cluster), 3024 sbi->s_cluster_ratio, 3025 get_default_free_blocks_flags(inode)); 3026 } 3027 3028 /* TODO: flexible tree reduction should be here */ 3029 if (path->p_hdr->eh_entries == 0) { 3030 /* 3031 * truncate to zero freed all the tree, 3032 * so we need to correct eh_depth 3033 */ 3034 err = ext4_ext_get_access(handle, inode, path); 3035 if (err == 0) { 3036 ext_inode_hdr(inode)->eh_depth = 0; 3037 ext_inode_hdr(inode)->eh_max = 3038 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3039 err = ext4_ext_dirty(handle, inode, path); 3040 } 3041 } 3042 out: 3043 ext4_ext_drop_refs(path); 3044 kfree(path); 3045 path = NULL; 3046 if (err == -EAGAIN) 3047 goto again; 3048 ext4_journal_stop(handle); 3049 3050 return err; 3051 } 3052 3053 /* 3054 * called at mount time 3055 */ 3056 void ext4_ext_init(struct super_block *sb) 3057 { 3058 /* 3059 * possible initialization would be here 3060 */ 3061 3062 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3063 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3064 printk(KERN_INFO "EXT4-fs: file extents enabled" 3065 #ifdef AGGRESSIVE_TEST 3066 ", aggressive tests" 3067 #endif 3068 #ifdef CHECK_BINSEARCH 3069 ", check binsearch" 3070 #endif 3071 #ifdef EXTENTS_STATS 3072 ", stats" 3073 #endif 3074 "\n"); 3075 #endif 3076 #ifdef EXTENTS_STATS 3077 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3078 EXT4_SB(sb)->s_ext_min = 1 << 30; 3079 EXT4_SB(sb)->s_ext_max = 0; 3080 #endif 3081 } 3082 } 3083 3084 /* 3085 * called at umount time 3086 */ 3087 void ext4_ext_release(struct super_block *sb) 3088 { 3089 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3090 return; 3091 3092 #ifdef EXTENTS_STATS 3093 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3094 struct ext4_sb_info *sbi = EXT4_SB(sb); 3095 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3096 sbi->s_ext_blocks, sbi->s_ext_extents, 3097 sbi->s_ext_blocks / sbi->s_ext_extents); 3098 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3099 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3100 } 3101 #endif 3102 } 3103 3104 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3105 { 3106 ext4_lblk_t ee_block; 3107 ext4_fsblk_t ee_pblock; 3108 unsigned int ee_len; 3109 3110 ee_block = le32_to_cpu(ex->ee_block); 3111 ee_len = ext4_ext_get_actual_len(ex); 3112 ee_pblock = ext4_ext_pblock(ex); 3113 3114 if (ee_len == 0) 3115 return 0; 3116 3117 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3118 EXTENT_STATUS_WRITTEN); 3119 } 3120 3121 /* FIXME!! we need to try to merge to left or right after zero-out */ 3122 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3123 { 3124 ext4_fsblk_t ee_pblock; 3125 unsigned int ee_len; 3126 int ret; 3127 3128 ee_len = ext4_ext_get_actual_len(ex); 3129 ee_pblock = ext4_ext_pblock(ex); 3130 3131 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3132 if (ret > 0) 3133 ret = 0; 3134 3135 return ret; 3136 } 3137 3138 /* 3139 * ext4_split_extent_at() splits an extent at given block. 3140 * 3141 * @handle: the journal handle 3142 * @inode: the file inode 3143 * @path: the path to the extent 3144 * @split: the logical block where the extent is splitted. 3145 * @split_flags: indicates if the extent could be zeroout if split fails, and 3146 * the states(init or unwritten) of new extents. 3147 * @flags: flags used to insert new extent to extent tree. 3148 * 3149 * 3150 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3151 * of which are deterimined by split_flag. 3152 * 3153 * There are two cases: 3154 * a> the extent are splitted into two extent. 3155 * b> split is not needed, and just mark the extent. 3156 * 3157 * return 0 on success. 3158 */ 3159 static int ext4_split_extent_at(handle_t *handle, 3160 struct inode *inode, 3161 struct ext4_ext_path **ppath, 3162 ext4_lblk_t split, 3163 int split_flag, 3164 int flags) 3165 { 3166 struct ext4_ext_path *path = *ppath; 3167 ext4_fsblk_t newblock; 3168 ext4_lblk_t ee_block; 3169 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3170 struct ext4_extent *ex2 = NULL; 3171 unsigned int ee_len, depth; 3172 int err = 0; 3173 3174 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3175 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3176 3177 ext_debug("ext4_split_extents_at: inode %lu, logical" 3178 "block %llu\n", inode->i_ino, (unsigned long long)split); 3179 3180 ext4_ext_show_leaf(inode, path); 3181 3182 depth = ext_depth(inode); 3183 ex = path[depth].p_ext; 3184 ee_block = le32_to_cpu(ex->ee_block); 3185 ee_len = ext4_ext_get_actual_len(ex); 3186 newblock = split - ee_block + ext4_ext_pblock(ex); 3187 3188 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3189 BUG_ON(!ext4_ext_is_unwritten(ex) && 3190 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3191 EXT4_EXT_MARK_UNWRIT1 | 3192 EXT4_EXT_MARK_UNWRIT2)); 3193 3194 err = ext4_ext_get_access(handle, inode, path + depth); 3195 if (err) 3196 goto out; 3197 3198 if (split == ee_block) { 3199 /* 3200 * case b: block @split is the block that the extent begins with 3201 * then we just change the state of the extent, and splitting 3202 * is not needed. 3203 */ 3204 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3205 ext4_ext_mark_unwritten(ex); 3206 else 3207 ext4_ext_mark_initialized(ex); 3208 3209 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3210 ext4_ext_try_to_merge(handle, inode, path, ex); 3211 3212 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3213 goto out; 3214 } 3215 3216 /* case a */ 3217 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3218 ex->ee_len = cpu_to_le16(split - ee_block); 3219 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3220 ext4_ext_mark_unwritten(ex); 3221 3222 /* 3223 * path may lead to new leaf, not to original leaf any more 3224 * after ext4_ext_insert_extent() returns, 3225 */ 3226 err = ext4_ext_dirty(handle, inode, path + depth); 3227 if (err) 3228 goto fix_extent_len; 3229 3230 ex2 = &newex; 3231 ex2->ee_block = cpu_to_le32(split); 3232 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3233 ext4_ext_store_pblock(ex2, newblock); 3234 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3235 ext4_ext_mark_unwritten(ex2); 3236 3237 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3238 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3239 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3240 if (split_flag & EXT4_EXT_DATA_VALID1) { 3241 err = ext4_ext_zeroout(inode, ex2); 3242 zero_ex.ee_block = ex2->ee_block; 3243 zero_ex.ee_len = cpu_to_le16( 3244 ext4_ext_get_actual_len(ex2)); 3245 ext4_ext_store_pblock(&zero_ex, 3246 ext4_ext_pblock(ex2)); 3247 } else { 3248 err = ext4_ext_zeroout(inode, ex); 3249 zero_ex.ee_block = ex->ee_block; 3250 zero_ex.ee_len = cpu_to_le16( 3251 ext4_ext_get_actual_len(ex)); 3252 ext4_ext_store_pblock(&zero_ex, 3253 ext4_ext_pblock(ex)); 3254 } 3255 } else { 3256 err = ext4_ext_zeroout(inode, &orig_ex); 3257 zero_ex.ee_block = orig_ex.ee_block; 3258 zero_ex.ee_len = cpu_to_le16( 3259 ext4_ext_get_actual_len(&orig_ex)); 3260 ext4_ext_store_pblock(&zero_ex, 3261 ext4_ext_pblock(&orig_ex)); 3262 } 3263 3264 if (err) 3265 goto fix_extent_len; 3266 /* update the extent length and mark as initialized */ 3267 ex->ee_len = cpu_to_le16(ee_len); 3268 ext4_ext_try_to_merge(handle, inode, path, ex); 3269 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3270 if (err) 3271 goto fix_extent_len; 3272 3273 /* update extent status tree */ 3274 err = ext4_zeroout_es(inode, &zero_ex); 3275 3276 goto out; 3277 } else if (err) 3278 goto fix_extent_len; 3279 3280 out: 3281 ext4_ext_show_leaf(inode, path); 3282 return err; 3283 3284 fix_extent_len: 3285 ex->ee_len = orig_ex.ee_len; 3286 ext4_ext_dirty(handle, inode, path + path->p_depth); 3287 return err; 3288 } 3289 3290 /* 3291 * ext4_split_extents() splits an extent and mark extent which is covered 3292 * by @map as split_flags indicates 3293 * 3294 * It may result in splitting the extent into multiple extents (up to three) 3295 * There are three possibilities: 3296 * a> There is no split required 3297 * b> Splits in two extents: Split is happening at either end of the extent 3298 * c> Splits in three extents: Somone is splitting in middle of the extent 3299 * 3300 */ 3301 static int ext4_split_extent(handle_t *handle, 3302 struct inode *inode, 3303 struct ext4_ext_path **ppath, 3304 struct ext4_map_blocks *map, 3305 int split_flag, 3306 int flags) 3307 { 3308 struct ext4_ext_path *path = *ppath; 3309 ext4_lblk_t ee_block; 3310 struct ext4_extent *ex; 3311 unsigned int ee_len, depth; 3312 int err = 0; 3313 int unwritten; 3314 int split_flag1, flags1; 3315 int allocated = map->m_len; 3316 3317 depth = ext_depth(inode); 3318 ex = path[depth].p_ext; 3319 ee_block = le32_to_cpu(ex->ee_block); 3320 ee_len = ext4_ext_get_actual_len(ex); 3321 unwritten = ext4_ext_is_unwritten(ex); 3322 3323 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3324 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3325 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3326 if (unwritten) 3327 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3328 EXT4_EXT_MARK_UNWRIT2; 3329 if (split_flag & EXT4_EXT_DATA_VALID2) 3330 split_flag1 |= EXT4_EXT_DATA_VALID1; 3331 err = ext4_split_extent_at(handle, inode, ppath, 3332 map->m_lblk + map->m_len, split_flag1, flags1); 3333 if (err) 3334 goto out; 3335 } else { 3336 allocated = ee_len - (map->m_lblk - ee_block); 3337 } 3338 /* 3339 * Update path is required because previous ext4_split_extent_at() may 3340 * result in split of original leaf or extent zeroout. 3341 */ 3342 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3343 if (IS_ERR(path)) 3344 return PTR_ERR(path); 3345 depth = ext_depth(inode); 3346 ex = path[depth].p_ext; 3347 if (!ex) { 3348 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3349 (unsigned long) map->m_lblk); 3350 return -EIO; 3351 } 3352 unwritten = ext4_ext_is_unwritten(ex); 3353 split_flag1 = 0; 3354 3355 if (map->m_lblk >= ee_block) { 3356 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3357 if (unwritten) { 3358 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3359 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3360 EXT4_EXT_MARK_UNWRIT2); 3361 } 3362 err = ext4_split_extent_at(handle, inode, ppath, 3363 map->m_lblk, split_flag1, flags); 3364 if (err) 3365 goto out; 3366 } 3367 3368 ext4_ext_show_leaf(inode, path); 3369 out: 3370 return err ? err : allocated; 3371 } 3372 3373 /* 3374 * This function is called by ext4_ext_map_blocks() if someone tries to write 3375 * to an unwritten extent. It may result in splitting the unwritten 3376 * extent into multiple extents (up to three - one initialized and two 3377 * unwritten). 3378 * There are three possibilities: 3379 * a> There is no split required: Entire extent should be initialized 3380 * b> Splits in two extents: Write is happening at either end of the extent 3381 * c> Splits in three extents: Somone is writing in middle of the extent 3382 * 3383 * Pre-conditions: 3384 * - The extent pointed to by 'path' is unwritten. 3385 * - The extent pointed to by 'path' contains a superset 3386 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3387 * 3388 * Post-conditions on success: 3389 * - the returned value is the number of blocks beyond map->l_lblk 3390 * that are allocated and initialized. 3391 * It is guaranteed to be >= map->m_len. 3392 */ 3393 static int ext4_ext_convert_to_initialized(handle_t *handle, 3394 struct inode *inode, 3395 struct ext4_map_blocks *map, 3396 struct ext4_ext_path **ppath, 3397 int flags) 3398 { 3399 struct ext4_ext_path *path = *ppath; 3400 struct ext4_sb_info *sbi; 3401 struct ext4_extent_header *eh; 3402 struct ext4_map_blocks split_map; 3403 struct ext4_extent zero_ex; 3404 struct ext4_extent *ex, *abut_ex; 3405 ext4_lblk_t ee_block, eof_block; 3406 unsigned int ee_len, depth, map_len = map->m_len; 3407 int allocated = 0, max_zeroout = 0; 3408 int err = 0; 3409 int split_flag = 0; 3410 3411 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3412 "block %llu, max_blocks %u\n", inode->i_ino, 3413 (unsigned long long)map->m_lblk, map_len); 3414 3415 sbi = EXT4_SB(inode->i_sb); 3416 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3417 inode->i_sb->s_blocksize_bits; 3418 if (eof_block < map->m_lblk + map_len) 3419 eof_block = map->m_lblk + map_len; 3420 3421 depth = ext_depth(inode); 3422 eh = path[depth].p_hdr; 3423 ex = path[depth].p_ext; 3424 ee_block = le32_to_cpu(ex->ee_block); 3425 ee_len = ext4_ext_get_actual_len(ex); 3426 zero_ex.ee_len = 0; 3427 3428 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3429 3430 /* Pre-conditions */ 3431 BUG_ON(!ext4_ext_is_unwritten(ex)); 3432 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3433 3434 /* 3435 * Attempt to transfer newly initialized blocks from the currently 3436 * unwritten extent to its neighbor. This is much cheaper 3437 * than an insertion followed by a merge as those involve costly 3438 * memmove() calls. Transferring to the left is the common case in 3439 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3440 * followed by append writes. 3441 * 3442 * Limitations of the current logic: 3443 * - L1: we do not deal with writes covering the whole extent. 3444 * This would require removing the extent if the transfer 3445 * is possible. 3446 * - L2: we only attempt to merge with an extent stored in the 3447 * same extent tree node. 3448 */ 3449 if ((map->m_lblk == ee_block) && 3450 /* See if we can merge left */ 3451 (map_len < ee_len) && /*L1*/ 3452 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3453 ext4_lblk_t prev_lblk; 3454 ext4_fsblk_t prev_pblk, ee_pblk; 3455 unsigned int prev_len; 3456 3457 abut_ex = ex - 1; 3458 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3459 prev_len = ext4_ext_get_actual_len(abut_ex); 3460 prev_pblk = ext4_ext_pblock(abut_ex); 3461 ee_pblk = ext4_ext_pblock(ex); 3462 3463 /* 3464 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3465 * upon those conditions: 3466 * - C1: abut_ex is initialized, 3467 * - C2: abut_ex is logically abutting ex, 3468 * - C3: abut_ex is physically abutting ex, 3469 * - C4: abut_ex can receive the additional blocks without 3470 * overflowing the (initialized) length limit. 3471 */ 3472 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3473 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3474 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3475 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3476 err = ext4_ext_get_access(handle, inode, path + depth); 3477 if (err) 3478 goto out; 3479 3480 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3481 map, ex, abut_ex); 3482 3483 /* Shift the start of ex by 'map_len' blocks */ 3484 ex->ee_block = cpu_to_le32(ee_block + map_len); 3485 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3486 ex->ee_len = cpu_to_le16(ee_len - map_len); 3487 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3488 3489 /* Extend abut_ex by 'map_len' blocks */ 3490 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3491 3492 /* Result: number of initialized blocks past m_lblk */ 3493 allocated = map_len; 3494 } 3495 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3496 (map_len < ee_len) && /*L1*/ 3497 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3498 /* See if we can merge right */ 3499 ext4_lblk_t next_lblk; 3500 ext4_fsblk_t next_pblk, ee_pblk; 3501 unsigned int next_len; 3502 3503 abut_ex = ex + 1; 3504 next_lblk = le32_to_cpu(abut_ex->ee_block); 3505 next_len = ext4_ext_get_actual_len(abut_ex); 3506 next_pblk = ext4_ext_pblock(abut_ex); 3507 ee_pblk = ext4_ext_pblock(ex); 3508 3509 /* 3510 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3511 * upon those conditions: 3512 * - C1: abut_ex is initialized, 3513 * - C2: abut_ex is logically abutting ex, 3514 * - C3: abut_ex is physically abutting ex, 3515 * - C4: abut_ex can receive the additional blocks without 3516 * overflowing the (initialized) length limit. 3517 */ 3518 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3519 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3520 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3521 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3522 err = ext4_ext_get_access(handle, inode, path + depth); 3523 if (err) 3524 goto out; 3525 3526 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3527 map, ex, abut_ex); 3528 3529 /* Shift the start of abut_ex by 'map_len' blocks */ 3530 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3531 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3532 ex->ee_len = cpu_to_le16(ee_len - map_len); 3533 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3534 3535 /* Extend abut_ex by 'map_len' blocks */ 3536 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3537 3538 /* Result: number of initialized blocks past m_lblk */ 3539 allocated = map_len; 3540 } 3541 } 3542 if (allocated) { 3543 /* Mark the block containing both extents as dirty */ 3544 ext4_ext_dirty(handle, inode, path + depth); 3545 3546 /* Update path to point to the right extent */ 3547 path[depth].p_ext = abut_ex; 3548 goto out; 3549 } else 3550 allocated = ee_len - (map->m_lblk - ee_block); 3551 3552 WARN_ON(map->m_lblk < ee_block); 3553 /* 3554 * It is safe to convert extent to initialized via explicit 3555 * zeroout only if extent is fully inside i_size or new_size. 3556 */ 3557 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3558 3559 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3560 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3561 (inode->i_sb->s_blocksize_bits - 10); 3562 3563 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3564 if (max_zeroout && (ee_len <= max_zeroout)) { 3565 err = ext4_ext_zeroout(inode, ex); 3566 if (err) 3567 goto out; 3568 zero_ex.ee_block = ex->ee_block; 3569 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3570 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3571 3572 err = ext4_ext_get_access(handle, inode, path + depth); 3573 if (err) 3574 goto out; 3575 ext4_ext_mark_initialized(ex); 3576 ext4_ext_try_to_merge(handle, inode, path, ex); 3577 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3578 goto out; 3579 } 3580 3581 /* 3582 * four cases: 3583 * 1. split the extent into three extents. 3584 * 2. split the extent into two extents, zeroout the first half. 3585 * 3. split the extent into two extents, zeroout the second half. 3586 * 4. split the extent into two extents with out zeroout. 3587 */ 3588 split_map.m_lblk = map->m_lblk; 3589 split_map.m_len = map->m_len; 3590 3591 if (max_zeroout && (allocated > map->m_len)) { 3592 if (allocated <= max_zeroout) { 3593 /* case 3 */ 3594 zero_ex.ee_block = 3595 cpu_to_le32(map->m_lblk); 3596 zero_ex.ee_len = cpu_to_le16(allocated); 3597 ext4_ext_store_pblock(&zero_ex, 3598 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3599 err = ext4_ext_zeroout(inode, &zero_ex); 3600 if (err) 3601 goto out; 3602 split_map.m_lblk = map->m_lblk; 3603 split_map.m_len = allocated; 3604 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3605 /* case 2 */ 3606 if (map->m_lblk != ee_block) { 3607 zero_ex.ee_block = ex->ee_block; 3608 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3609 ee_block); 3610 ext4_ext_store_pblock(&zero_ex, 3611 ext4_ext_pblock(ex)); 3612 err = ext4_ext_zeroout(inode, &zero_ex); 3613 if (err) 3614 goto out; 3615 } 3616 3617 split_map.m_lblk = ee_block; 3618 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3619 allocated = map->m_len; 3620 } 3621 } 3622 3623 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3624 flags); 3625 if (err > 0) 3626 err = 0; 3627 out: 3628 /* If we have gotten a failure, don't zero out status tree */ 3629 if (!err) 3630 err = ext4_zeroout_es(inode, &zero_ex); 3631 return err ? err : allocated; 3632 } 3633 3634 /* 3635 * This function is called by ext4_ext_map_blocks() from 3636 * ext4_get_blocks_dio_write() when DIO to write 3637 * to an unwritten extent. 3638 * 3639 * Writing to an unwritten extent may result in splitting the unwritten 3640 * extent into multiple initialized/unwritten extents (up to three) 3641 * There are three possibilities: 3642 * a> There is no split required: Entire extent should be unwritten 3643 * b> Splits in two extents: Write is happening at either end of the extent 3644 * c> Splits in three extents: Somone is writing in middle of the extent 3645 * 3646 * This works the same way in the case of initialized -> unwritten conversion. 3647 * 3648 * One of more index blocks maybe needed if the extent tree grow after 3649 * the unwritten extent split. To prevent ENOSPC occur at the IO 3650 * complete, we need to split the unwritten extent before DIO submit 3651 * the IO. The unwritten extent called at this time will be split 3652 * into three unwritten extent(at most). After IO complete, the part 3653 * being filled will be convert to initialized by the end_io callback function 3654 * via ext4_convert_unwritten_extents(). 3655 * 3656 * Returns the size of unwritten extent to be written on success. 3657 */ 3658 static int ext4_split_convert_extents(handle_t *handle, 3659 struct inode *inode, 3660 struct ext4_map_blocks *map, 3661 struct ext4_ext_path **ppath, 3662 int flags) 3663 { 3664 struct ext4_ext_path *path = *ppath; 3665 ext4_lblk_t eof_block; 3666 ext4_lblk_t ee_block; 3667 struct ext4_extent *ex; 3668 unsigned int ee_len; 3669 int split_flag = 0, depth; 3670 3671 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3672 __func__, inode->i_ino, 3673 (unsigned long long)map->m_lblk, map->m_len); 3674 3675 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3676 inode->i_sb->s_blocksize_bits; 3677 if (eof_block < map->m_lblk + map->m_len) 3678 eof_block = map->m_lblk + map->m_len; 3679 /* 3680 * It is safe to convert extent to initialized via explicit 3681 * zeroout only if extent is fully insde i_size or new_size. 3682 */ 3683 depth = ext_depth(inode); 3684 ex = path[depth].p_ext; 3685 ee_block = le32_to_cpu(ex->ee_block); 3686 ee_len = ext4_ext_get_actual_len(ex); 3687 3688 /* Convert to unwritten */ 3689 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3690 split_flag |= EXT4_EXT_DATA_VALID1; 3691 /* Convert to initialized */ 3692 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3693 split_flag |= ee_block + ee_len <= eof_block ? 3694 EXT4_EXT_MAY_ZEROOUT : 0; 3695 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3696 } 3697 flags |= EXT4_GET_BLOCKS_PRE_IO; 3698 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3699 } 3700 3701 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3702 struct inode *inode, 3703 struct ext4_map_blocks *map, 3704 struct ext4_ext_path **ppath) 3705 { 3706 struct ext4_ext_path *path = *ppath; 3707 struct ext4_extent *ex; 3708 ext4_lblk_t ee_block; 3709 unsigned int ee_len; 3710 int depth; 3711 int err = 0; 3712 3713 depth = ext_depth(inode); 3714 ex = path[depth].p_ext; 3715 ee_block = le32_to_cpu(ex->ee_block); 3716 ee_len = ext4_ext_get_actual_len(ex); 3717 3718 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3719 "block %llu, max_blocks %u\n", inode->i_ino, 3720 (unsigned long long)ee_block, ee_len); 3721 3722 /* If extent is larger than requested it is a clear sign that we still 3723 * have some extent state machine issues left. So extent_split is still 3724 * required. 3725 * TODO: Once all related issues will be fixed this situation should be 3726 * illegal. 3727 */ 3728 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3729 #ifdef EXT4_DEBUG 3730 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3731 " len %u; IO logical block %llu, len %u\n", 3732 inode->i_ino, (unsigned long long)ee_block, ee_len, 3733 (unsigned long long)map->m_lblk, map->m_len); 3734 #endif 3735 err = ext4_split_convert_extents(handle, inode, map, ppath, 3736 EXT4_GET_BLOCKS_CONVERT); 3737 if (err < 0) 3738 return err; 3739 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3740 if (IS_ERR(path)) 3741 return PTR_ERR(path); 3742 depth = ext_depth(inode); 3743 ex = path[depth].p_ext; 3744 } 3745 3746 err = ext4_ext_get_access(handle, inode, path + depth); 3747 if (err) 3748 goto out; 3749 /* first mark the extent as initialized */ 3750 ext4_ext_mark_initialized(ex); 3751 3752 /* note: ext4_ext_correct_indexes() isn't needed here because 3753 * borders are not changed 3754 */ 3755 ext4_ext_try_to_merge(handle, inode, path, ex); 3756 3757 /* Mark modified extent as dirty */ 3758 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3759 out: 3760 ext4_ext_show_leaf(inode, path); 3761 return err; 3762 } 3763 3764 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3765 sector_t block, int count) 3766 { 3767 int i; 3768 for (i = 0; i < count; i++) 3769 unmap_underlying_metadata(bdev, block + i); 3770 } 3771 3772 /* 3773 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3774 */ 3775 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3776 ext4_lblk_t lblk, 3777 struct ext4_ext_path *path, 3778 unsigned int len) 3779 { 3780 int i, depth; 3781 struct ext4_extent_header *eh; 3782 struct ext4_extent *last_ex; 3783 3784 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3785 return 0; 3786 3787 depth = ext_depth(inode); 3788 eh = path[depth].p_hdr; 3789 3790 /* 3791 * We're going to remove EOFBLOCKS_FL entirely in future so we 3792 * do not care for this case anymore. Simply remove the flag 3793 * if there are no extents. 3794 */ 3795 if (unlikely(!eh->eh_entries)) 3796 goto out; 3797 last_ex = EXT_LAST_EXTENT(eh); 3798 /* 3799 * We should clear the EOFBLOCKS_FL flag if we are writing the 3800 * last block in the last extent in the file. We test this by 3801 * first checking to see if the caller to 3802 * ext4_ext_get_blocks() was interested in the last block (or 3803 * a block beyond the last block) in the current extent. If 3804 * this turns out to be false, we can bail out from this 3805 * function immediately. 3806 */ 3807 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3808 ext4_ext_get_actual_len(last_ex)) 3809 return 0; 3810 /* 3811 * If the caller does appear to be planning to write at or 3812 * beyond the end of the current extent, we then test to see 3813 * if the current extent is the last extent in the file, by 3814 * checking to make sure it was reached via the rightmost node 3815 * at each level of the tree. 3816 */ 3817 for (i = depth-1; i >= 0; i--) 3818 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3819 return 0; 3820 out: 3821 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3822 return ext4_mark_inode_dirty(handle, inode); 3823 } 3824 3825 /** 3826 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3827 * 3828 * Return 1 if there is a delalloc block in the range, otherwise 0. 3829 */ 3830 int ext4_find_delalloc_range(struct inode *inode, 3831 ext4_lblk_t lblk_start, 3832 ext4_lblk_t lblk_end) 3833 { 3834 struct extent_status es; 3835 3836 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3837 if (es.es_len == 0) 3838 return 0; /* there is no delay extent in this tree */ 3839 else if (es.es_lblk <= lblk_start && 3840 lblk_start < es.es_lblk + es.es_len) 3841 return 1; 3842 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3843 return 1; 3844 else 3845 return 0; 3846 } 3847 3848 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3849 { 3850 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3851 ext4_lblk_t lblk_start, lblk_end; 3852 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3853 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3854 3855 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3856 } 3857 3858 /** 3859 * Determines how many complete clusters (out of those specified by the 'map') 3860 * are under delalloc and were reserved quota for. 3861 * This function is called when we are writing out the blocks that were 3862 * originally written with their allocation delayed, but then the space was 3863 * allocated using fallocate() before the delayed allocation could be resolved. 3864 * The cases to look for are: 3865 * ('=' indicated delayed allocated blocks 3866 * '-' indicates non-delayed allocated blocks) 3867 * (a) partial clusters towards beginning and/or end outside of allocated range 3868 * are not delalloc'ed. 3869 * Ex: 3870 * |----c---=|====c====|====c====|===-c----| 3871 * |++++++ allocated ++++++| 3872 * ==> 4 complete clusters in above example 3873 * 3874 * (b) partial cluster (outside of allocated range) towards either end is 3875 * marked for delayed allocation. In this case, we will exclude that 3876 * cluster. 3877 * Ex: 3878 * |----====c========|========c========| 3879 * |++++++ allocated ++++++| 3880 * ==> 1 complete clusters in above example 3881 * 3882 * Ex: 3883 * |================c================| 3884 * |++++++ allocated ++++++| 3885 * ==> 0 complete clusters in above example 3886 * 3887 * The ext4_da_update_reserve_space will be called only if we 3888 * determine here that there were some "entire" clusters that span 3889 * this 'allocated' range. 3890 * In the non-bigalloc case, this function will just end up returning num_blks 3891 * without ever calling ext4_find_delalloc_range. 3892 */ 3893 static unsigned int 3894 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3895 unsigned int num_blks) 3896 { 3897 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3898 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3899 ext4_lblk_t lblk_from, lblk_to, c_offset; 3900 unsigned int allocated_clusters = 0; 3901 3902 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3903 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3904 3905 /* max possible clusters for this allocation */ 3906 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3907 3908 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3909 3910 /* Check towards left side */ 3911 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3912 if (c_offset) { 3913 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3914 lblk_to = lblk_from + c_offset - 1; 3915 3916 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3917 allocated_clusters--; 3918 } 3919 3920 /* Now check towards right. */ 3921 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3922 if (allocated_clusters && c_offset) { 3923 lblk_from = lblk_start + num_blks; 3924 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3925 3926 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3927 allocated_clusters--; 3928 } 3929 3930 return allocated_clusters; 3931 } 3932 3933 static int 3934 convert_initialized_extent(handle_t *handle, struct inode *inode, 3935 struct ext4_map_blocks *map, 3936 struct ext4_ext_path **ppath, int flags, 3937 unsigned int allocated, ext4_fsblk_t newblock) 3938 { 3939 struct ext4_ext_path *path = *ppath; 3940 struct ext4_extent *ex; 3941 ext4_lblk_t ee_block; 3942 unsigned int ee_len; 3943 int depth; 3944 int err = 0; 3945 3946 /* 3947 * Make sure that the extent is no bigger than we support with 3948 * unwritten extent 3949 */ 3950 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3951 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3952 3953 depth = ext_depth(inode); 3954 ex = path[depth].p_ext; 3955 ee_block = le32_to_cpu(ex->ee_block); 3956 ee_len = ext4_ext_get_actual_len(ex); 3957 3958 ext_debug("%s: inode %lu, logical" 3959 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3960 (unsigned long long)ee_block, ee_len); 3961 3962 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3963 err = ext4_split_convert_extents(handle, inode, map, ppath, 3964 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3965 if (err < 0) 3966 return err; 3967 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3968 if (IS_ERR(path)) 3969 return PTR_ERR(path); 3970 depth = ext_depth(inode); 3971 ex = path[depth].p_ext; 3972 if (!ex) { 3973 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3974 (unsigned long) map->m_lblk); 3975 return -EIO; 3976 } 3977 } 3978 3979 err = ext4_ext_get_access(handle, inode, path + depth); 3980 if (err) 3981 return err; 3982 /* first mark the extent as unwritten */ 3983 ext4_ext_mark_unwritten(ex); 3984 3985 /* note: ext4_ext_correct_indexes() isn't needed here because 3986 * borders are not changed 3987 */ 3988 ext4_ext_try_to_merge(handle, inode, path, ex); 3989 3990 /* Mark modified extent as dirty */ 3991 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3992 if (err) 3993 return err; 3994 ext4_ext_show_leaf(inode, path); 3995 3996 ext4_update_inode_fsync_trans(handle, inode, 1); 3997 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3998 if (err) 3999 return err; 4000 map->m_flags |= EXT4_MAP_UNWRITTEN; 4001 if (allocated > map->m_len) 4002 allocated = map->m_len; 4003 map->m_len = allocated; 4004 return allocated; 4005 } 4006 4007 static int 4008 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4009 struct ext4_map_blocks *map, 4010 struct ext4_ext_path **ppath, int flags, 4011 unsigned int allocated, ext4_fsblk_t newblock) 4012 { 4013 struct ext4_ext_path *path = *ppath; 4014 int ret = 0; 4015 int err = 0; 4016 ext4_io_end_t *io = ext4_inode_aio(inode); 4017 4018 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4019 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4020 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4021 flags, allocated); 4022 ext4_ext_show_leaf(inode, path); 4023 4024 /* 4025 * When writing into unwritten space, we should not fail to 4026 * allocate metadata blocks for the new extent block if needed. 4027 */ 4028 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4029 4030 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4031 allocated, newblock); 4032 4033 /* get_block() before submit the IO, split the extent */ 4034 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4035 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4036 flags | EXT4_GET_BLOCKS_CONVERT); 4037 if (ret <= 0) 4038 goto out; 4039 /* 4040 * Flag the inode(non aio case) or end_io struct (aio case) 4041 * that this IO needs to conversion to written when IO is 4042 * completed 4043 */ 4044 if (io) 4045 ext4_set_io_unwritten_flag(inode, io); 4046 else 4047 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4048 map->m_flags |= EXT4_MAP_UNWRITTEN; 4049 goto out; 4050 } 4051 /* IO end_io complete, convert the filled extent to written */ 4052 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4053 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4054 ppath); 4055 if (ret >= 0) { 4056 ext4_update_inode_fsync_trans(handle, inode, 1); 4057 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4058 path, map->m_len); 4059 } else 4060 err = ret; 4061 map->m_flags |= EXT4_MAP_MAPPED; 4062 map->m_pblk = newblock; 4063 if (allocated > map->m_len) 4064 allocated = map->m_len; 4065 map->m_len = allocated; 4066 goto out2; 4067 } 4068 /* buffered IO case */ 4069 /* 4070 * repeat fallocate creation request 4071 * we already have an unwritten extent 4072 */ 4073 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4074 map->m_flags |= EXT4_MAP_UNWRITTEN; 4075 goto map_out; 4076 } 4077 4078 /* buffered READ or buffered write_begin() lookup */ 4079 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4080 /* 4081 * We have blocks reserved already. We 4082 * return allocated blocks so that delalloc 4083 * won't do block reservation for us. But 4084 * the buffer head will be unmapped so that 4085 * a read from the block returns 0s. 4086 */ 4087 map->m_flags |= EXT4_MAP_UNWRITTEN; 4088 goto out1; 4089 } 4090 4091 /* buffered write, writepage time, convert*/ 4092 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4093 if (ret >= 0) 4094 ext4_update_inode_fsync_trans(handle, inode, 1); 4095 out: 4096 if (ret <= 0) { 4097 err = ret; 4098 goto out2; 4099 } else 4100 allocated = ret; 4101 map->m_flags |= EXT4_MAP_NEW; 4102 /* 4103 * if we allocated more blocks than requested 4104 * we need to make sure we unmap the extra block 4105 * allocated. The actual needed block will get 4106 * unmapped later when we find the buffer_head marked 4107 * new. 4108 */ 4109 if (allocated > map->m_len) { 4110 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4111 newblock + map->m_len, 4112 allocated - map->m_len); 4113 allocated = map->m_len; 4114 } 4115 map->m_len = allocated; 4116 4117 /* 4118 * If we have done fallocate with the offset that is already 4119 * delayed allocated, we would have block reservation 4120 * and quota reservation done in the delayed write path. 4121 * But fallocate would have already updated quota and block 4122 * count for this offset. So cancel these reservation 4123 */ 4124 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4125 unsigned int reserved_clusters; 4126 reserved_clusters = get_reserved_cluster_alloc(inode, 4127 map->m_lblk, map->m_len); 4128 if (reserved_clusters) 4129 ext4_da_update_reserve_space(inode, 4130 reserved_clusters, 4131 0); 4132 } 4133 4134 map_out: 4135 map->m_flags |= EXT4_MAP_MAPPED; 4136 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4137 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4138 map->m_len); 4139 if (err < 0) 4140 goto out2; 4141 } 4142 out1: 4143 if (allocated > map->m_len) 4144 allocated = map->m_len; 4145 ext4_ext_show_leaf(inode, path); 4146 map->m_pblk = newblock; 4147 map->m_len = allocated; 4148 out2: 4149 return err ? err : allocated; 4150 } 4151 4152 /* 4153 * get_implied_cluster_alloc - check to see if the requested 4154 * allocation (in the map structure) overlaps with a cluster already 4155 * allocated in an extent. 4156 * @sb The filesystem superblock structure 4157 * @map The requested lblk->pblk mapping 4158 * @ex The extent structure which might contain an implied 4159 * cluster allocation 4160 * 4161 * This function is called by ext4_ext_map_blocks() after we failed to 4162 * find blocks that were already in the inode's extent tree. Hence, 4163 * we know that the beginning of the requested region cannot overlap 4164 * the extent from the inode's extent tree. There are three cases we 4165 * want to catch. The first is this case: 4166 * 4167 * |--- cluster # N--| 4168 * |--- extent ---| |---- requested region ---| 4169 * |==========| 4170 * 4171 * The second case that we need to test for is this one: 4172 * 4173 * |--------- cluster # N ----------------| 4174 * |--- requested region --| |------- extent ----| 4175 * |=======================| 4176 * 4177 * The third case is when the requested region lies between two extents 4178 * within the same cluster: 4179 * |------------- cluster # N-------------| 4180 * |----- ex -----| |---- ex_right ----| 4181 * |------ requested region ------| 4182 * |================| 4183 * 4184 * In each of the above cases, we need to set the map->m_pblk and 4185 * map->m_len so it corresponds to the return the extent labelled as 4186 * "|====|" from cluster #N, since it is already in use for data in 4187 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4188 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4189 * as a new "allocated" block region. Otherwise, we will return 0 and 4190 * ext4_ext_map_blocks() will then allocate one or more new clusters 4191 * by calling ext4_mb_new_blocks(). 4192 */ 4193 static int get_implied_cluster_alloc(struct super_block *sb, 4194 struct ext4_map_blocks *map, 4195 struct ext4_extent *ex, 4196 struct ext4_ext_path *path) 4197 { 4198 struct ext4_sb_info *sbi = EXT4_SB(sb); 4199 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4200 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4201 ext4_lblk_t rr_cluster_start; 4202 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4203 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4204 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4205 4206 /* The extent passed in that we are trying to match */ 4207 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4208 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4209 4210 /* The requested region passed into ext4_map_blocks() */ 4211 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4212 4213 if ((rr_cluster_start == ex_cluster_end) || 4214 (rr_cluster_start == ex_cluster_start)) { 4215 if (rr_cluster_start == ex_cluster_end) 4216 ee_start += ee_len - 1; 4217 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4218 map->m_len = min(map->m_len, 4219 (unsigned) sbi->s_cluster_ratio - c_offset); 4220 /* 4221 * Check for and handle this case: 4222 * 4223 * |--------- cluster # N-------------| 4224 * |------- extent ----| 4225 * |--- requested region ---| 4226 * |===========| 4227 */ 4228 4229 if (map->m_lblk < ee_block) 4230 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4231 4232 /* 4233 * Check for the case where there is already another allocated 4234 * block to the right of 'ex' but before the end of the cluster. 4235 * 4236 * |------------- cluster # N-------------| 4237 * |----- ex -----| |---- ex_right ----| 4238 * |------ requested region ------| 4239 * |================| 4240 */ 4241 if (map->m_lblk > ee_block) { 4242 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4243 map->m_len = min(map->m_len, next - map->m_lblk); 4244 } 4245 4246 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4247 return 1; 4248 } 4249 4250 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4251 return 0; 4252 } 4253 4254 4255 /* 4256 * Block allocation/map/preallocation routine for extents based files 4257 * 4258 * 4259 * Need to be called with 4260 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4261 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4262 * 4263 * return > 0, number of of blocks already mapped/allocated 4264 * if create == 0 and these are pre-allocated blocks 4265 * buffer head is unmapped 4266 * otherwise blocks are mapped 4267 * 4268 * return = 0, if plain look up failed (blocks have not been allocated) 4269 * buffer head is unmapped 4270 * 4271 * return < 0, error case. 4272 */ 4273 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4274 struct ext4_map_blocks *map, int flags) 4275 { 4276 struct ext4_ext_path *path = NULL; 4277 struct ext4_extent newex, *ex, *ex2; 4278 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4279 ext4_fsblk_t newblock = 0; 4280 int free_on_err = 0, err = 0, depth, ret; 4281 unsigned int allocated = 0, offset = 0; 4282 unsigned int allocated_clusters = 0; 4283 struct ext4_allocation_request ar; 4284 ext4_io_end_t *io = ext4_inode_aio(inode); 4285 ext4_lblk_t cluster_offset; 4286 int set_unwritten = 0; 4287 bool map_from_cluster = false; 4288 4289 ext_debug("blocks %u/%u requested for inode %lu\n", 4290 map->m_lblk, map->m_len, inode->i_ino); 4291 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4292 4293 /* find extent for this block */ 4294 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4295 if (IS_ERR(path)) { 4296 err = PTR_ERR(path); 4297 path = NULL; 4298 goto out2; 4299 } 4300 4301 depth = ext_depth(inode); 4302 4303 /* 4304 * consistent leaf must not be empty; 4305 * this situation is possible, though, _during_ tree modification; 4306 * this is why assert can't be put in ext4_find_extent() 4307 */ 4308 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4309 EXT4_ERROR_INODE(inode, "bad extent address " 4310 "lblock: %lu, depth: %d pblock %lld", 4311 (unsigned long) map->m_lblk, depth, 4312 path[depth].p_block); 4313 err = -EIO; 4314 goto out2; 4315 } 4316 4317 ex = path[depth].p_ext; 4318 if (ex) { 4319 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4320 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4321 unsigned short ee_len; 4322 4323 4324 /* 4325 * unwritten extents are treated as holes, except that 4326 * we split out initialized portions during a write. 4327 */ 4328 ee_len = ext4_ext_get_actual_len(ex); 4329 4330 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4331 4332 /* if found extent covers block, simply return it */ 4333 if (in_range(map->m_lblk, ee_block, ee_len)) { 4334 newblock = map->m_lblk - ee_block + ee_start; 4335 /* number of remaining blocks in the extent */ 4336 allocated = ee_len - (map->m_lblk - ee_block); 4337 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4338 ee_block, ee_len, newblock); 4339 4340 /* 4341 * If the extent is initialized check whether the 4342 * caller wants to convert it to unwritten. 4343 */ 4344 if ((!ext4_ext_is_unwritten(ex)) && 4345 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4346 allocated = convert_initialized_extent( 4347 handle, inode, map, &path, 4348 flags, allocated, newblock); 4349 goto out2; 4350 } else if (!ext4_ext_is_unwritten(ex)) 4351 goto out; 4352 4353 ret = ext4_ext_handle_unwritten_extents( 4354 handle, inode, map, &path, flags, 4355 allocated, newblock); 4356 if (ret < 0) 4357 err = ret; 4358 else 4359 allocated = ret; 4360 goto out2; 4361 } 4362 } 4363 4364 /* 4365 * requested block isn't allocated yet; 4366 * we couldn't try to create block if create flag is zero 4367 */ 4368 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4369 /* 4370 * put just found gap into cache to speed up 4371 * subsequent requests 4372 */ 4373 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4374 goto out2; 4375 } 4376 4377 /* 4378 * Okay, we need to do block allocation. 4379 */ 4380 newex.ee_block = cpu_to_le32(map->m_lblk); 4381 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4382 4383 /* 4384 * If we are doing bigalloc, check to see if the extent returned 4385 * by ext4_find_extent() implies a cluster we can use. 4386 */ 4387 if (cluster_offset && ex && 4388 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4389 ar.len = allocated = map->m_len; 4390 newblock = map->m_pblk; 4391 map_from_cluster = true; 4392 goto got_allocated_blocks; 4393 } 4394 4395 /* find neighbour allocated blocks */ 4396 ar.lleft = map->m_lblk; 4397 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4398 if (err) 4399 goto out2; 4400 ar.lright = map->m_lblk; 4401 ex2 = NULL; 4402 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4403 if (err) 4404 goto out2; 4405 4406 /* Check if the extent after searching to the right implies a 4407 * cluster we can use. */ 4408 if ((sbi->s_cluster_ratio > 1) && ex2 && 4409 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4410 ar.len = allocated = map->m_len; 4411 newblock = map->m_pblk; 4412 map_from_cluster = true; 4413 goto got_allocated_blocks; 4414 } 4415 4416 /* 4417 * See if request is beyond maximum number of blocks we can have in 4418 * a single extent. For an initialized extent this limit is 4419 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4420 * EXT_UNWRITTEN_MAX_LEN. 4421 */ 4422 if (map->m_len > EXT_INIT_MAX_LEN && 4423 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4424 map->m_len = EXT_INIT_MAX_LEN; 4425 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4426 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4427 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4428 4429 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4430 newex.ee_len = cpu_to_le16(map->m_len); 4431 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4432 if (err) 4433 allocated = ext4_ext_get_actual_len(&newex); 4434 else 4435 allocated = map->m_len; 4436 4437 /* allocate new block */ 4438 ar.inode = inode; 4439 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4440 ar.logical = map->m_lblk; 4441 /* 4442 * We calculate the offset from the beginning of the cluster 4443 * for the logical block number, since when we allocate a 4444 * physical cluster, the physical block should start at the 4445 * same offset from the beginning of the cluster. This is 4446 * needed so that future calls to get_implied_cluster_alloc() 4447 * work correctly. 4448 */ 4449 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4450 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4451 ar.goal -= offset; 4452 ar.logical -= offset; 4453 if (S_ISREG(inode->i_mode)) 4454 ar.flags = EXT4_MB_HINT_DATA; 4455 else 4456 /* disable in-core preallocation for non-regular files */ 4457 ar.flags = 0; 4458 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4459 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4460 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4461 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4462 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4463 if (!newblock) 4464 goto out2; 4465 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4466 ar.goal, newblock, allocated); 4467 free_on_err = 1; 4468 allocated_clusters = ar.len; 4469 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4470 if (ar.len > allocated) 4471 ar.len = allocated; 4472 4473 got_allocated_blocks: 4474 /* try to insert new extent into found leaf and return */ 4475 ext4_ext_store_pblock(&newex, newblock + offset); 4476 newex.ee_len = cpu_to_le16(ar.len); 4477 /* Mark unwritten */ 4478 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4479 ext4_ext_mark_unwritten(&newex); 4480 map->m_flags |= EXT4_MAP_UNWRITTEN; 4481 /* 4482 * io_end structure was created for every IO write to an 4483 * unwritten extent. To avoid unnecessary conversion, 4484 * here we flag the IO that really needs the conversion. 4485 * For non asycn direct IO case, flag the inode state 4486 * that we need to perform conversion when IO is done. 4487 */ 4488 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4489 set_unwritten = 1; 4490 } 4491 4492 err = 0; 4493 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4494 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4495 path, ar.len); 4496 if (!err) 4497 err = ext4_ext_insert_extent(handle, inode, &path, 4498 &newex, flags); 4499 4500 if (!err && set_unwritten) { 4501 if (io) 4502 ext4_set_io_unwritten_flag(inode, io); 4503 else 4504 ext4_set_inode_state(inode, 4505 EXT4_STATE_DIO_UNWRITTEN); 4506 } 4507 4508 if (err && free_on_err) { 4509 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4510 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4511 /* free data blocks we just allocated */ 4512 /* not a good idea to call discard here directly, 4513 * but otherwise we'd need to call it every free() */ 4514 ext4_discard_preallocations(inode); 4515 ext4_free_blocks(handle, inode, NULL, newblock, 4516 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4517 goto out2; 4518 } 4519 4520 /* previous routine could use block we allocated */ 4521 newblock = ext4_ext_pblock(&newex); 4522 allocated = ext4_ext_get_actual_len(&newex); 4523 if (allocated > map->m_len) 4524 allocated = map->m_len; 4525 map->m_flags |= EXT4_MAP_NEW; 4526 4527 /* 4528 * Update reserved blocks/metadata blocks after successful 4529 * block allocation which had been deferred till now. 4530 */ 4531 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4532 unsigned int reserved_clusters; 4533 /* 4534 * Check how many clusters we had reserved this allocated range 4535 */ 4536 reserved_clusters = get_reserved_cluster_alloc(inode, 4537 map->m_lblk, allocated); 4538 if (map_from_cluster) { 4539 if (reserved_clusters) { 4540 /* 4541 * We have clusters reserved for this range. 4542 * But since we are not doing actual allocation 4543 * and are simply using blocks from previously 4544 * allocated cluster, we should release the 4545 * reservation and not claim quota. 4546 */ 4547 ext4_da_update_reserve_space(inode, 4548 reserved_clusters, 0); 4549 } 4550 } else { 4551 BUG_ON(allocated_clusters < reserved_clusters); 4552 if (reserved_clusters < allocated_clusters) { 4553 struct ext4_inode_info *ei = EXT4_I(inode); 4554 int reservation = allocated_clusters - 4555 reserved_clusters; 4556 /* 4557 * It seems we claimed few clusters outside of 4558 * the range of this allocation. We should give 4559 * it back to the reservation pool. This can 4560 * happen in the following case: 4561 * 4562 * * Suppose s_cluster_ratio is 4 (i.e., each 4563 * cluster has 4 blocks. Thus, the clusters 4564 * are [0-3],[4-7],[8-11]... 4565 * * First comes delayed allocation write for 4566 * logical blocks 10 & 11. Since there were no 4567 * previous delayed allocated blocks in the 4568 * range [8-11], we would reserve 1 cluster 4569 * for this write. 4570 * * Next comes write for logical blocks 3 to 8. 4571 * In this case, we will reserve 2 clusters 4572 * (for [0-3] and [4-7]; and not for [8-11] as 4573 * that range has a delayed allocated blocks. 4574 * Thus total reserved clusters now becomes 3. 4575 * * Now, during the delayed allocation writeout 4576 * time, we will first write blocks [3-8] and 4577 * allocate 3 clusters for writing these 4578 * blocks. Also, we would claim all these 4579 * three clusters above. 4580 * * Now when we come here to writeout the 4581 * blocks [10-11], we would expect to claim 4582 * the reservation of 1 cluster we had made 4583 * (and we would claim it since there are no 4584 * more delayed allocated blocks in the range 4585 * [8-11]. But our reserved cluster count had 4586 * already gone to 0. 4587 * 4588 * Thus, at the step 4 above when we determine 4589 * that there are still some unwritten delayed 4590 * allocated blocks outside of our current 4591 * block range, we should increment the 4592 * reserved clusters count so that when the 4593 * remaining blocks finally gets written, we 4594 * could claim them. 4595 */ 4596 dquot_reserve_block(inode, 4597 EXT4_C2B(sbi, reservation)); 4598 spin_lock(&ei->i_block_reservation_lock); 4599 ei->i_reserved_data_blocks += reservation; 4600 spin_unlock(&ei->i_block_reservation_lock); 4601 } 4602 /* 4603 * We will claim quota for all newly allocated blocks. 4604 * We're updating the reserved space *after* the 4605 * correction above so we do not accidentally free 4606 * all the metadata reservation because we might 4607 * actually need it later on. 4608 */ 4609 ext4_da_update_reserve_space(inode, allocated_clusters, 4610 1); 4611 } 4612 } 4613 4614 /* 4615 * Cache the extent and update transaction to commit on fdatasync only 4616 * when it is _not_ an unwritten extent. 4617 */ 4618 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4619 ext4_update_inode_fsync_trans(handle, inode, 1); 4620 else 4621 ext4_update_inode_fsync_trans(handle, inode, 0); 4622 out: 4623 if (allocated > map->m_len) 4624 allocated = map->m_len; 4625 ext4_ext_show_leaf(inode, path); 4626 map->m_flags |= EXT4_MAP_MAPPED; 4627 map->m_pblk = newblock; 4628 map->m_len = allocated; 4629 out2: 4630 ext4_ext_drop_refs(path); 4631 kfree(path); 4632 4633 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4634 err ? err : allocated); 4635 return err ? err : allocated; 4636 } 4637 4638 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4639 { 4640 struct super_block *sb = inode->i_sb; 4641 ext4_lblk_t last_block; 4642 int err = 0; 4643 4644 /* 4645 * TODO: optimization is possible here. 4646 * Probably we need not scan at all, 4647 * because page truncation is enough. 4648 */ 4649 4650 /* we have to know where to truncate from in crash case */ 4651 EXT4_I(inode)->i_disksize = inode->i_size; 4652 ext4_mark_inode_dirty(handle, inode); 4653 4654 last_block = (inode->i_size + sb->s_blocksize - 1) 4655 >> EXT4_BLOCK_SIZE_BITS(sb); 4656 retry: 4657 err = ext4_es_remove_extent(inode, last_block, 4658 EXT_MAX_BLOCKS - last_block); 4659 if (err == -ENOMEM) { 4660 cond_resched(); 4661 congestion_wait(BLK_RW_ASYNC, HZ/50); 4662 goto retry; 4663 } 4664 if (err) { 4665 ext4_std_error(inode->i_sb, err); 4666 return; 4667 } 4668 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4669 ext4_std_error(inode->i_sb, err); 4670 } 4671 4672 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4673 ext4_lblk_t len, loff_t new_size, 4674 int flags, int mode) 4675 { 4676 struct inode *inode = file_inode(file); 4677 handle_t *handle; 4678 int ret = 0; 4679 int ret2 = 0; 4680 int retries = 0; 4681 struct ext4_map_blocks map; 4682 unsigned int credits; 4683 loff_t epos; 4684 4685 map.m_lblk = offset; 4686 map.m_len = len; 4687 /* 4688 * Don't normalize the request if it can fit in one extent so 4689 * that it doesn't get unnecessarily split into multiple 4690 * extents. 4691 */ 4692 if (len <= EXT_UNWRITTEN_MAX_LEN) 4693 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4694 4695 /* 4696 * credits to insert 1 extent into extent tree 4697 */ 4698 credits = ext4_chunk_trans_blocks(inode, len); 4699 4700 retry: 4701 while (ret >= 0 && len) { 4702 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4703 credits); 4704 if (IS_ERR(handle)) { 4705 ret = PTR_ERR(handle); 4706 break; 4707 } 4708 ret = ext4_map_blocks(handle, inode, &map, flags); 4709 if (ret <= 0) { 4710 ext4_debug("inode #%lu: block %u: len %u: " 4711 "ext4_ext_map_blocks returned %d", 4712 inode->i_ino, map.m_lblk, 4713 map.m_len, ret); 4714 ext4_mark_inode_dirty(handle, inode); 4715 ret2 = ext4_journal_stop(handle); 4716 break; 4717 } 4718 map.m_lblk += ret; 4719 map.m_len = len = len - ret; 4720 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4721 inode->i_ctime = ext4_current_time(inode); 4722 if (new_size) { 4723 if (epos > new_size) 4724 epos = new_size; 4725 if (ext4_update_inode_size(inode, epos) & 0x1) 4726 inode->i_mtime = inode->i_ctime; 4727 } else { 4728 if (epos > inode->i_size) 4729 ext4_set_inode_flag(inode, 4730 EXT4_INODE_EOFBLOCKS); 4731 } 4732 ext4_mark_inode_dirty(handle, inode); 4733 ret2 = ext4_journal_stop(handle); 4734 if (ret2) 4735 break; 4736 } 4737 if (ret == -ENOSPC && 4738 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4739 ret = 0; 4740 goto retry; 4741 } 4742 4743 return ret > 0 ? ret2 : ret; 4744 } 4745 4746 static long ext4_zero_range(struct file *file, loff_t offset, 4747 loff_t len, int mode) 4748 { 4749 struct inode *inode = file_inode(file); 4750 handle_t *handle = NULL; 4751 unsigned int max_blocks; 4752 loff_t new_size = 0; 4753 int ret = 0; 4754 int flags; 4755 int credits; 4756 int partial_begin, partial_end; 4757 loff_t start, end; 4758 ext4_lblk_t lblk; 4759 struct address_space *mapping = inode->i_mapping; 4760 unsigned int blkbits = inode->i_blkbits; 4761 4762 trace_ext4_zero_range(inode, offset, len, mode); 4763 4764 if (!S_ISREG(inode->i_mode)) 4765 return -EINVAL; 4766 4767 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4768 if (ext4_should_journal_data(inode)) { 4769 ret = ext4_force_commit(inode->i_sb); 4770 if (ret) 4771 return ret; 4772 } 4773 4774 /* 4775 * Write out all dirty pages to avoid race conditions 4776 * Then release them. 4777 */ 4778 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4779 ret = filemap_write_and_wait_range(mapping, offset, 4780 offset + len - 1); 4781 if (ret) 4782 return ret; 4783 } 4784 4785 /* 4786 * Round up offset. This is not fallocate, we neet to zero out 4787 * blocks, so convert interior block aligned part of the range to 4788 * unwritten and possibly manually zero out unaligned parts of the 4789 * range. 4790 */ 4791 start = round_up(offset, 1 << blkbits); 4792 end = round_down((offset + len), 1 << blkbits); 4793 4794 if (start < offset || end > offset + len) 4795 return -EINVAL; 4796 partial_begin = offset & ((1 << blkbits) - 1); 4797 partial_end = (offset + len) & ((1 << blkbits) - 1); 4798 4799 lblk = start >> blkbits; 4800 max_blocks = (end >> blkbits); 4801 if (max_blocks < lblk) 4802 max_blocks = 0; 4803 else 4804 max_blocks -= lblk; 4805 4806 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT | 4807 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4808 EXT4_EX_NOCACHE; 4809 if (mode & FALLOC_FL_KEEP_SIZE) 4810 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4811 4812 mutex_lock(&inode->i_mutex); 4813 4814 /* 4815 * Indirect files do not support unwritten extnets 4816 */ 4817 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4818 ret = -EOPNOTSUPP; 4819 goto out_mutex; 4820 } 4821 4822 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4823 offset + len > i_size_read(inode)) { 4824 new_size = offset + len; 4825 ret = inode_newsize_ok(inode, new_size); 4826 if (ret) 4827 goto out_mutex; 4828 /* 4829 * If we have a partial block after EOF we have to allocate 4830 * the entire block. 4831 */ 4832 if (partial_end) 4833 max_blocks += 1; 4834 } 4835 4836 if (max_blocks > 0) { 4837 4838 /* Now release the pages and zero block aligned part of pages*/ 4839 truncate_pagecache_range(inode, start, end - 1); 4840 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4841 4842 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4843 ext4_inode_block_unlocked_dio(inode); 4844 inode_dio_wait(inode); 4845 4846 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4847 flags, mode); 4848 if (ret) 4849 goto out_dio; 4850 /* 4851 * Remove entire range from the extent status tree. 4852 * 4853 * ext4_es_remove_extent(inode, lblk, max_blocks) is 4854 * NOT sufficient. I'm not sure why this is the case, 4855 * but let's be conservative and remove the extent 4856 * status tree for the entire inode. There should be 4857 * no outstanding delalloc extents thanks to the 4858 * filemap_write_and_wait_range() call above. 4859 */ 4860 ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 4861 if (ret) 4862 goto out_dio; 4863 } 4864 if (!partial_begin && !partial_end) 4865 goto out_dio; 4866 4867 /* 4868 * In worst case we have to writeout two nonadjacent unwritten 4869 * blocks and update the inode 4870 */ 4871 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4872 if (ext4_should_journal_data(inode)) 4873 credits += 2; 4874 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4875 if (IS_ERR(handle)) { 4876 ret = PTR_ERR(handle); 4877 ext4_std_error(inode->i_sb, ret); 4878 goto out_dio; 4879 } 4880 4881 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4882 if (new_size) { 4883 ext4_update_inode_size(inode, new_size); 4884 } else { 4885 /* 4886 * Mark that we allocate beyond EOF so the subsequent truncate 4887 * can proceed even if the new size is the same as i_size. 4888 */ 4889 if ((offset + len) > i_size_read(inode)) 4890 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4891 } 4892 ext4_mark_inode_dirty(handle, inode); 4893 4894 /* Zero out partial block at the edges of the range */ 4895 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4896 4897 if (file->f_flags & O_SYNC) 4898 ext4_handle_sync(handle); 4899 4900 ext4_journal_stop(handle); 4901 out_dio: 4902 ext4_inode_resume_unlocked_dio(inode); 4903 out_mutex: 4904 mutex_unlock(&inode->i_mutex); 4905 return ret; 4906 } 4907 4908 /* 4909 * preallocate space for a file. This implements ext4's fallocate file 4910 * operation, which gets called from sys_fallocate system call. 4911 * For block-mapped files, posix_fallocate should fall back to the method 4912 * of writing zeroes to the required new blocks (the same behavior which is 4913 * expected for file systems which do not support fallocate() system call). 4914 */ 4915 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4916 { 4917 struct inode *inode = file_inode(file); 4918 loff_t new_size = 0; 4919 unsigned int max_blocks; 4920 int ret = 0; 4921 int flags; 4922 ext4_lblk_t lblk; 4923 unsigned int blkbits = inode->i_blkbits; 4924 4925 /* Return error if mode is not supported */ 4926 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4927 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4928 return -EOPNOTSUPP; 4929 4930 if (mode & FALLOC_FL_PUNCH_HOLE) 4931 return ext4_punch_hole(inode, offset, len); 4932 4933 ret = ext4_convert_inline_data(inode); 4934 if (ret) 4935 return ret; 4936 4937 /* 4938 * currently supporting (pre)allocate mode for extent-based 4939 * files _only_ 4940 */ 4941 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4942 return -EOPNOTSUPP; 4943 4944 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4945 return ext4_collapse_range(inode, offset, len); 4946 4947 if (mode & FALLOC_FL_ZERO_RANGE) 4948 return ext4_zero_range(file, offset, len, mode); 4949 4950 trace_ext4_fallocate_enter(inode, offset, len, mode); 4951 lblk = offset >> blkbits; 4952 /* 4953 * We can't just convert len to max_blocks because 4954 * If blocksize = 4096 offset = 3072 and len = 2048 4955 */ 4956 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4957 - lblk; 4958 4959 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4960 if (mode & FALLOC_FL_KEEP_SIZE) 4961 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4962 4963 mutex_lock(&inode->i_mutex); 4964 4965 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4966 offset + len > i_size_read(inode)) { 4967 new_size = offset + len; 4968 ret = inode_newsize_ok(inode, new_size); 4969 if (ret) 4970 goto out; 4971 } 4972 4973 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4974 flags, mode); 4975 if (ret) 4976 goto out; 4977 4978 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4979 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4980 EXT4_I(inode)->i_sync_tid); 4981 } 4982 out: 4983 mutex_unlock(&inode->i_mutex); 4984 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4985 return ret; 4986 } 4987 4988 /* 4989 * This function convert a range of blocks to written extents 4990 * The caller of this function will pass the start offset and the size. 4991 * all unwritten extents within this range will be converted to 4992 * written extents. 4993 * 4994 * This function is called from the direct IO end io call back 4995 * function, to convert the fallocated extents after IO is completed. 4996 * Returns 0 on success. 4997 */ 4998 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4999 loff_t offset, ssize_t len) 5000 { 5001 unsigned int max_blocks; 5002 int ret = 0; 5003 int ret2 = 0; 5004 struct ext4_map_blocks map; 5005 unsigned int credits, blkbits = inode->i_blkbits; 5006 5007 map.m_lblk = offset >> blkbits; 5008 /* 5009 * We can't just convert len to max_blocks because 5010 * If blocksize = 4096 offset = 3072 and len = 2048 5011 */ 5012 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5013 map.m_lblk); 5014 /* 5015 * This is somewhat ugly but the idea is clear: When transaction is 5016 * reserved, everything goes into it. Otherwise we rather start several 5017 * smaller transactions for conversion of each extent separately. 5018 */ 5019 if (handle) { 5020 handle = ext4_journal_start_reserved(handle, 5021 EXT4_HT_EXT_CONVERT); 5022 if (IS_ERR(handle)) 5023 return PTR_ERR(handle); 5024 credits = 0; 5025 } else { 5026 /* 5027 * credits to insert 1 extent into extent tree 5028 */ 5029 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5030 } 5031 while (ret >= 0 && ret < max_blocks) { 5032 map.m_lblk += ret; 5033 map.m_len = (max_blocks -= ret); 5034 if (credits) { 5035 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5036 credits); 5037 if (IS_ERR(handle)) { 5038 ret = PTR_ERR(handle); 5039 break; 5040 } 5041 } 5042 ret = ext4_map_blocks(handle, inode, &map, 5043 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5044 if (ret <= 0) 5045 ext4_warning(inode->i_sb, 5046 "inode #%lu: block %u: len %u: " 5047 "ext4_ext_map_blocks returned %d", 5048 inode->i_ino, map.m_lblk, 5049 map.m_len, ret); 5050 ext4_mark_inode_dirty(handle, inode); 5051 if (credits) 5052 ret2 = ext4_journal_stop(handle); 5053 if (ret <= 0 || ret2) 5054 break; 5055 } 5056 if (!credits) 5057 ret2 = ext4_journal_stop(handle); 5058 return ret > 0 ? ret2 : ret; 5059 } 5060 5061 /* 5062 * If newes is not existing extent (newes->ec_pblk equals zero) find 5063 * delayed extent at start of newes and update newes accordingly and 5064 * return start of the next delayed extent. 5065 * 5066 * If newes is existing extent (newes->ec_pblk is not equal zero) 5067 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5068 * extent found. Leave newes unmodified. 5069 */ 5070 static int ext4_find_delayed_extent(struct inode *inode, 5071 struct extent_status *newes) 5072 { 5073 struct extent_status es; 5074 ext4_lblk_t block, next_del; 5075 5076 if (newes->es_pblk == 0) { 5077 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5078 newes->es_lblk + newes->es_len - 1, &es); 5079 5080 /* 5081 * No extent in extent-tree contains block @newes->es_pblk, 5082 * then the block may stay in 1)a hole or 2)delayed-extent. 5083 */ 5084 if (es.es_len == 0) 5085 /* A hole found. */ 5086 return 0; 5087 5088 if (es.es_lblk > newes->es_lblk) { 5089 /* A hole found. */ 5090 newes->es_len = min(es.es_lblk - newes->es_lblk, 5091 newes->es_len); 5092 return 0; 5093 } 5094 5095 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5096 } 5097 5098 block = newes->es_lblk + newes->es_len; 5099 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5100 if (es.es_len == 0) 5101 next_del = EXT_MAX_BLOCKS; 5102 else 5103 next_del = es.es_lblk; 5104 5105 return next_del; 5106 } 5107 /* fiemap flags we can handle specified here */ 5108 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5109 5110 static int ext4_xattr_fiemap(struct inode *inode, 5111 struct fiemap_extent_info *fieinfo) 5112 { 5113 __u64 physical = 0; 5114 __u64 length; 5115 __u32 flags = FIEMAP_EXTENT_LAST; 5116 int blockbits = inode->i_sb->s_blocksize_bits; 5117 int error = 0; 5118 5119 /* in-inode? */ 5120 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5121 struct ext4_iloc iloc; 5122 int offset; /* offset of xattr in inode */ 5123 5124 error = ext4_get_inode_loc(inode, &iloc); 5125 if (error) 5126 return error; 5127 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5128 offset = EXT4_GOOD_OLD_INODE_SIZE + 5129 EXT4_I(inode)->i_extra_isize; 5130 physical += offset; 5131 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5132 flags |= FIEMAP_EXTENT_DATA_INLINE; 5133 brelse(iloc.bh); 5134 } else { /* external block */ 5135 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5136 length = inode->i_sb->s_blocksize; 5137 } 5138 5139 if (physical) 5140 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5141 length, flags); 5142 return (error < 0 ? error : 0); 5143 } 5144 5145 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5146 __u64 start, __u64 len) 5147 { 5148 ext4_lblk_t start_blk; 5149 int error = 0; 5150 5151 if (ext4_has_inline_data(inode)) { 5152 int has_inline = 1; 5153 5154 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5155 start, len); 5156 5157 if (has_inline) 5158 return error; 5159 } 5160 5161 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5162 error = ext4_ext_precache(inode); 5163 if (error) 5164 return error; 5165 } 5166 5167 /* fallback to generic here if not in extents fmt */ 5168 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5169 return generic_block_fiemap(inode, fieinfo, start, len, 5170 ext4_get_block); 5171 5172 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5173 return -EBADR; 5174 5175 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5176 error = ext4_xattr_fiemap(inode, fieinfo); 5177 } else { 5178 ext4_lblk_t len_blks; 5179 __u64 last_blk; 5180 5181 start_blk = start >> inode->i_sb->s_blocksize_bits; 5182 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5183 if (last_blk >= EXT_MAX_BLOCKS) 5184 last_blk = EXT_MAX_BLOCKS-1; 5185 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5186 5187 /* 5188 * Walk the extent tree gathering extent information 5189 * and pushing extents back to the user. 5190 */ 5191 error = ext4_fill_fiemap_extents(inode, start_blk, 5192 len_blks, fieinfo); 5193 } 5194 return error; 5195 } 5196 5197 /* 5198 * ext4_access_path: 5199 * Function to access the path buffer for marking it dirty. 5200 * It also checks if there are sufficient credits left in the journal handle 5201 * to update path. 5202 */ 5203 static int 5204 ext4_access_path(handle_t *handle, struct inode *inode, 5205 struct ext4_ext_path *path) 5206 { 5207 int credits, err; 5208 5209 if (!ext4_handle_valid(handle)) 5210 return 0; 5211 5212 /* 5213 * Check if need to extend journal credits 5214 * 3 for leaf, sb, and inode plus 2 (bmap and group 5215 * descriptor) for each block group; assume two block 5216 * groups 5217 */ 5218 if (handle->h_buffer_credits < 7) { 5219 credits = ext4_writepage_trans_blocks(inode); 5220 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5221 /* EAGAIN is success */ 5222 if (err && err != -EAGAIN) 5223 return err; 5224 } 5225 5226 err = ext4_ext_get_access(handle, inode, path); 5227 return err; 5228 } 5229 5230 /* 5231 * ext4_ext_shift_path_extents: 5232 * Shift the extents of a path structure lying between path[depth].p_ext 5233 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5234 * from starting block for each extent. 5235 */ 5236 static int 5237 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5238 struct inode *inode, handle_t *handle, 5239 ext4_lblk_t *start) 5240 { 5241 int depth, err = 0; 5242 struct ext4_extent *ex_start, *ex_last; 5243 bool update = 0; 5244 depth = path->p_depth; 5245 5246 while (depth >= 0) { 5247 if (depth == path->p_depth) { 5248 ex_start = path[depth].p_ext; 5249 if (!ex_start) 5250 return -EIO; 5251 5252 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5253 5254 err = ext4_access_path(handle, inode, path + depth); 5255 if (err) 5256 goto out; 5257 5258 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5259 update = 1; 5260 5261 *start = le32_to_cpu(ex_last->ee_block) + 5262 ext4_ext_get_actual_len(ex_last); 5263 5264 while (ex_start <= ex_last) { 5265 le32_add_cpu(&ex_start->ee_block, -shift); 5266 /* Try to merge to the left. */ 5267 if ((ex_start > 5268 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5269 ext4_ext_try_to_merge_right(inode, 5270 path, ex_start - 1)) 5271 ex_last--; 5272 else 5273 ex_start++; 5274 } 5275 err = ext4_ext_dirty(handle, inode, path + depth); 5276 if (err) 5277 goto out; 5278 5279 if (--depth < 0 || !update) 5280 break; 5281 } 5282 5283 /* Update index too */ 5284 err = ext4_access_path(handle, inode, path + depth); 5285 if (err) 5286 goto out; 5287 5288 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5289 err = ext4_ext_dirty(handle, inode, path + depth); 5290 if (err) 5291 goto out; 5292 5293 /* we are done if current index is not a starting index */ 5294 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5295 break; 5296 5297 depth--; 5298 } 5299 5300 out: 5301 return err; 5302 } 5303 5304 /* 5305 * ext4_ext_shift_extents: 5306 * All the extents which lies in the range from start to the last allocated 5307 * block for the file are shifted downwards by shift blocks. 5308 * On success, 0 is returned, error otherwise. 5309 */ 5310 static int 5311 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5312 ext4_lblk_t start, ext4_lblk_t shift) 5313 { 5314 struct ext4_ext_path *path; 5315 int ret = 0, depth; 5316 struct ext4_extent *extent; 5317 ext4_lblk_t stop_block; 5318 ext4_lblk_t ex_start, ex_end; 5319 5320 /* Let path point to the last extent */ 5321 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5322 if (IS_ERR(path)) 5323 return PTR_ERR(path); 5324 5325 depth = path->p_depth; 5326 extent = path[depth].p_ext; 5327 if (!extent) 5328 goto out; 5329 5330 stop_block = le32_to_cpu(extent->ee_block) + 5331 ext4_ext_get_actual_len(extent); 5332 5333 /* Nothing to shift, if hole is at the end of file */ 5334 if (start >= stop_block) 5335 goto out; 5336 5337 /* 5338 * Don't start shifting extents until we make sure the hole is big 5339 * enough to accomodate the shift. 5340 */ 5341 path = ext4_find_extent(inode, start - 1, &path, 0); 5342 if (IS_ERR(path)) 5343 return PTR_ERR(path); 5344 depth = path->p_depth; 5345 extent = path[depth].p_ext; 5346 if (extent) { 5347 ex_start = le32_to_cpu(extent->ee_block); 5348 ex_end = le32_to_cpu(extent->ee_block) + 5349 ext4_ext_get_actual_len(extent); 5350 } else { 5351 ex_start = 0; 5352 ex_end = 0; 5353 } 5354 5355 if ((start == ex_start && shift > ex_start) || 5356 (shift > start - ex_end)) 5357 return -EINVAL; 5358 5359 /* Its safe to start updating extents */ 5360 while (start < stop_block) { 5361 path = ext4_find_extent(inode, start, &path, 0); 5362 if (IS_ERR(path)) 5363 return PTR_ERR(path); 5364 depth = path->p_depth; 5365 extent = path[depth].p_ext; 5366 if (!extent) { 5367 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5368 (unsigned long) start); 5369 return -EIO; 5370 } 5371 if (start > le32_to_cpu(extent->ee_block)) { 5372 /* Hole, move to the next extent */ 5373 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5374 path[depth].p_ext++; 5375 } else { 5376 start = ext4_ext_next_allocated_block(path); 5377 continue; 5378 } 5379 } 5380 ret = ext4_ext_shift_path_extents(path, shift, inode, 5381 handle, &start); 5382 if (ret) 5383 break; 5384 } 5385 out: 5386 ext4_ext_drop_refs(path); 5387 kfree(path); 5388 return ret; 5389 } 5390 5391 /* 5392 * ext4_collapse_range: 5393 * This implements the fallocate's collapse range functionality for ext4 5394 * Returns: 0 and non-zero on error. 5395 */ 5396 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5397 { 5398 struct super_block *sb = inode->i_sb; 5399 ext4_lblk_t punch_start, punch_stop; 5400 handle_t *handle; 5401 unsigned int credits; 5402 loff_t new_size, ioffset; 5403 int ret; 5404 5405 /* Collapse range works only on fs block size aligned offsets. */ 5406 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5407 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5408 return -EINVAL; 5409 5410 if (!S_ISREG(inode->i_mode)) 5411 return -EINVAL; 5412 5413 trace_ext4_collapse_range(inode, offset, len); 5414 5415 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5416 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5417 5418 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5419 if (ext4_should_journal_data(inode)) { 5420 ret = ext4_force_commit(inode->i_sb); 5421 if (ret) 5422 return ret; 5423 } 5424 5425 /* 5426 * Need to round down offset to be aligned with page size boundary 5427 * for page size > block size. 5428 */ 5429 ioffset = round_down(offset, PAGE_SIZE); 5430 5431 /* Write out all dirty pages */ 5432 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5433 LLONG_MAX); 5434 if (ret) 5435 return ret; 5436 5437 /* Take mutex lock */ 5438 mutex_lock(&inode->i_mutex); 5439 5440 /* 5441 * There is no need to overlap collapse range with EOF, in which case 5442 * it is effectively a truncate operation 5443 */ 5444 if (offset + len >= i_size_read(inode)) { 5445 ret = -EINVAL; 5446 goto out_mutex; 5447 } 5448 5449 /* Currently just for extent based files */ 5450 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5451 ret = -EOPNOTSUPP; 5452 goto out_mutex; 5453 } 5454 5455 truncate_pagecache(inode, ioffset); 5456 5457 /* Wait for existing dio to complete */ 5458 ext4_inode_block_unlocked_dio(inode); 5459 inode_dio_wait(inode); 5460 5461 credits = ext4_writepage_trans_blocks(inode); 5462 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5463 if (IS_ERR(handle)) { 5464 ret = PTR_ERR(handle); 5465 goto out_dio; 5466 } 5467 5468 down_write(&EXT4_I(inode)->i_data_sem); 5469 ext4_discard_preallocations(inode); 5470 5471 ret = ext4_es_remove_extent(inode, punch_start, 5472 EXT_MAX_BLOCKS - punch_start); 5473 if (ret) { 5474 up_write(&EXT4_I(inode)->i_data_sem); 5475 goto out_stop; 5476 } 5477 5478 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5479 if (ret) { 5480 up_write(&EXT4_I(inode)->i_data_sem); 5481 goto out_stop; 5482 } 5483 ext4_discard_preallocations(inode); 5484 5485 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5486 punch_stop - punch_start); 5487 if (ret) { 5488 up_write(&EXT4_I(inode)->i_data_sem); 5489 goto out_stop; 5490 } 5491 5492 new_size = i_size_read(inode) - len; 5493 i_size_write(inode, new_size); 5494 EXT4_I(inode)->i_disksize = new_size; 5495 5496 up_write(&EXT4_I(inode)->i_data_sem); 5497 if (IS_SYNC(inode)) 5498 ext4_handle_sync(handle); 5499 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5500 ext4_mark_inode_dirty(handle, inode); 5501 5502 out_stop: 5503 ext4_journal_stop(handle); 5504 out_dio: 5505 ext4_inode_resume_unlocked_dio(inode); 5506 out_mutex: 5507 mutex_unlock(&inode->i_mutex); 5508 return ret; 5509 } 5510 5511 /** 5512 * ext4_swap_extents - Swap extents between two inodes 5513 * 5514 * @inode1: First inode 5515 * @inode2: Second inode 5516 * @lblk1: Start block for first inode 5517 * @lblk2: Start block for second inode 5518 * @count: Number of blocks to swap 5519 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5520 * @erp: Pointer to save error value 5521 * 5522 * This helper routine does exactly what is promise "swap extents". All other 5523 * stuff such as page-cache locking consistency, bh mapping consistency or 5524 * extent's data copying must be performed by caller. 5525 * Locking: 5526 * i_mutex is held for both inodes 5527 * i_data_sem is locked for write for both inodes 5528 * Assumptions: 5529 * All pages from requested range are locked for both inodes 5530 */ 5531 int 5532 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5533 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5534 ext4_lblk_t count, int unwritten, int *erp) 5535 { 5536 struct ext4_ext_path *path1 = NULL; 5537 struct ext4_ext_path *path2 = NULL; 5538 int replaced_count = 0; 5539 5540 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5541 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5542 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5543 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5544 5545 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5546 if (unlikely(*erp)) 5547 return 0; 5548 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5549 if (unlikely(*erp)) 5550 return 0; 5551 5552 while (count) { 5553 struct ext4_extent *ex1, *ex2, tmp_ex; 5554 ext4_lblk_t e1_blk, e2_blk; 5555 int e1_len, e2_len, len; 5556 int split = 0; 5557 5558 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5559 if (unlikely(IS_ERR(path1))) { 5560 *erp = PTR_ERR(path1); 5561 path1 = NULL; 5562 finish: 5563 count = 0; 5564 goto repeat; 5565 } 5566 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5567 if (unlikely(IS_ERR(path2))) { 5568 *erp = PTR_ERR(path2); 5569 path2 = NULL; 5570 goto finish; 5571 } 5572 ex1 = path1[path1->p_depth].p_ext; 5573 ex2 = path2[path2->p_depth].p_ext; 5574 /* Do we have somthing to swap ? */ 5575 if (unlikely(!ex2 || !ex1)) 5576 goto finish; 5577 5578 e1_blk = le32_to_cpu(ex1->ee_block); 5579 e2_blk = le32_to_cpu(ex2->ee_block); 5580 e1_len = ext4_ext_get_actual_len(ex1); 5581 e2_len = ext4_ext_get_actual_len(ex2); 5582 5583 /* Hole handling */ 5584 if (!in_range(lblk1, e1_blk, e1_len) || 5585 !in_range(lblk2, e2_blk, e2_len)) { 5586 ext4_lblk_t next1, next2; 5587 5588 /* if hole after extent, then go to next extent */ 5589 next1 = ext4_ext_next_allocated_block(path1); 5590 next2 = ext4_ext_next_allocated_block(path2); 5591 /* If hole before extent, then shift to that extent */ 5592 if (e1_blk > lblk1) 5593 next1 = e1_blk; 5594 if (e2_blk > lblk2) 5595 next2 = e1_blk; 5596 /* Do we have something to swap */ 5597 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5598 goto finish; 5599 /* Move to the rightest boundary */ 5600 len = next1 - lblk1; 5601 if (len < next2 - lblk2) 5602 len = next2 - lblk2; 5603 if (len > count) 5604 len = count; 5605 lblk1 += len; 5606 lblk2 += len; 5607 count -= len; 5608 goto repeat; 5609 } 5610 5611 /* Prepare left boundary */ 5612 if (e1_blk < lblk1) { 5613 split = 1; 5614 *erp = ext4_force_split_extent_at(handle, inode1, 5615 &path1, lblk1, 0); 5616 if (unlikely(*erp)) 5617 goto finish; 5618 } 5619 if (e2_blk < lblk2) { 5620 split = 1; 5621 *erp = ext4_force_split_extent_at(handle, inode2, 5622 &path2, lblk2, 0); 5623 if (unlikely(*erp)) 5624 goto finish; 5625 } 5626 /* ext4_split_extent_at() may result in leaf extent split, 5627 * path must to be revalidated. */ 5628 if (split) 5629 goto repeat; 5630 5631 /* Prepare right boundary */ 5632 len = count; 5633 if (len > e1_blk + e1_len - lblk1) 5634 len = e1_blk + e1_len - lblk1; 5635 if (len > e2_blk + e2_len - lblk2) 5636 len = e2_blk + e2_len - lblk2; 5637 5638 if (len != e1_len) { 5639 split = 1; 5640 *erp = ext4_force_split_extent_at(handle, inode1, 5641 &path1, lblk1 + len, 0); 5642 if (unlikely(*erp)) 5643 goto finish; 5644 } 5645 if (len != e2_len) { 5646 split = 1; 5647 *erp = ext4_force_split_extent_at(handle, inode2, 5648 &path2, lblk2 + len, 0); 5649 if (*erp) 5650 goto finish; 5651 } 5652 /* ext4_split_extent_at() may result in leaf extent split, 5653 * path must to be revalidated. */ 5654 if (split) 5655 goto repeat; 5656 5657 BUG_ON(e2_len != e1_len); 5658 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5659 if (unlikely(*erp)) 5660 goto finish; 5661 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5662 if (unlikely(*erp)) 5663 goto finish; 5664 5665 /* Both extents are fully inside boundaries. Swap it now */ 5666 tmp_ex = *ex1; 5667 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5668 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5669 ex1->ee_len = cpu_to_le16(e2_len); 5670 ex2->ee_len = cpu_to_le16(e1_len); 5671 if (unwritten) 5672 ext4_ext_mark_unwritten(ex2); 5673 if (ext4_ext_is_unwritten(&tmp_ex)) 5674 ext4_ext_mark_unwritten(ex1); 5675 5676 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5677 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5678 *erp = ext4_ext_dirty(handle, inode2, path2 + 5679 path2->p_depth); 5680 if (unlikely(*erp)) 5681 goto finish; 5682 *erp = ext4_ext_dirty(handle, inode1, path1 + 5683 path1->p_depth); 5684 /* 5685 * Looks scarry ah..? second inode already points to new blocks, 5686 * and it was successfully dirtied. But luckily error may happen 5687 * only due to journal error, so full transaction will be 5688 * aborted anyway. 5689 */ 5690 if (unlikely(*erp)) 5691 goto finish; 5692 lblk1 += len; 5693 lblk2 += len; 5694 replaced_count += len; 5695 count -= len; 5696 5697 repeat: 5698 ext4_ext_drop_refs(path1); 5699 kfree(path1); 5700 ext4_ext_drop_refs(path2); 5701 kfree(path2); 5702 path1 = path2 = NULL; 5703 } 5704 return replaced_count; 5705 } 5706