xref: /linux/fs/ext4/extents.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98 	int err;
99 
100 	if (handle->h_buffer_credits > needed)
101 		return 0;
102 	err = ext4_journal_extend(handle, needed);
103 	if (err <= 0)
104 		return err;
105 	return ext4_journal_restart(handle, needed);
106 }
107 
108 /*
109  * could return:
110  *  - EROFS
111  *  - ENOMEM
112  */
113 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
114 				struct ext4_ext_path *path)
115 {
116 	if (path->p_bh) {
117 		/* path points to block */
118 		return ext4_journal_get_write_access(handle, path->p_bh);
119 	}
120 	/* path points to leaf/index in inode body */
121 	/* we use in-core data, no need to protect them */
122 	return 0;
123 }
124 
125 /*
126  * could return:
127  *  - EROFS
128  *  - ENOMEM
129  *  - EIO
130  */
131 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
132 				struct ext4_ext_path *path)
133 {
134 	int err;
135 	if (path->p_bh) {
136 		/* path points to block */
137 		err = ext4_journal_dirty_metadata(handle, path->p_bh);
138 	} else {
139 		/* path points to leaf/index in inode body */
140 		err = ext4_mark_inode_dirty(handle, inode);
141 	}
142 	return err;
143 }
144 
145 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
146 			      struct ext4_ext_path *path,
147 			      ext4_lblk_t block)
148 {
149 	struct ext4_inode_info *ei = EXT4_I(inode);
150 	ext4_fsblk_t bg_start;
151 	ext4_fsblk_t last_block;
152 	ext4_grpblk_t colour;
153 	int depth;
154 
155 	if (path) {
156 		struct ext4_extent *ex;
157 		depth = path->p_depth;
158 
159 		/* try to predict block placement */
160 		ex = path[depth].p_ext;
161 		if (ex)
162 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
163 
164 		/* it looks like index is empty;
165 		 * try to find starting block from index itself */
166 		if (path[depth].p_bh)
167 			return path[depth].p_bh->b_blocknr;
168 	}
169 
170 	/* OK. use inode's group */
171 	bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
172 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
173 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
174 
175 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
176 		colour = (current->pid % 16) *
177 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
178 	else
179 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
180 	return bg_start + colour + block;
181 }
182 
183 /*
184  * Allocation for a meta data block
185  */
186 static ext4_fsblk_t
187 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
188 			struct ext4_ext_path *path,
189 			struct ext4_extent *ex, int *err)
190 {
191 	ext4_fsblk_t goal, newblock;
192 
193 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
194 	newblock = ext4_new_meta_block(handle, inode, goal, err);
195 	return newblock;
196 }
197 
198 static int ext4_ext_space_block(struct inode *inode)
199 {
200 	int size;
201 
202 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
203 			/ sizeof(struct ext4_extent);
204 #ifdef AGGRESSIVE_TEST
205 	if (size > 6)
206 		size = 6;
207 #endif
208 	return size;
209 }
210 
211 static int ext4_ext_space_block_idx(struct inode *inode)
212 {
213 	int size;
214 
215 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
216 			/ sizeof(struct ext4_extent_idx);
217 #ifdef AGGRESSIVE_TEST
218 	if (size > 5)
219 		size = 5;
220 #endif
221 	return size;
222 }
223 
224 static int ext4_ext_space_root(struct inode *inode)
225 {
226 	int size;
227 
228 	size = sizeof(EXT4_I(inode)->i_data);
229 	size -= sizeof(struct ext4_extent_header);
230 	size /= sizeof(struct ext4_extent);
231 #ifdef AGGRESSIVE_TEST
232 	if (size > 3)
233 		size = 3;
234 #endif
235 	return size;
236 }
237 
238 static int ext4_ext_space_root_idx(struct inode *inode)
239 {
240 	int size;
241 
242 	size = sizeof(EXT4_I(inode)->i_data);
243 	size -= sizeof(struct ext4_extent_header);
244 	size /= sizeof(struct ext4_extent_idx);
245 #ifdef AGGRESSIVE_TEST
246 	if (size > 4)
247 		size = 4;
248 #endif
249 	return size;
250 }
251 
252 /*
253  * Calculate the number of metadata blocks needed
254  * to allocate @blocks
255  * Worse case is one block per extent
256  */
257 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
258 {
259 	int lcap, icap, rcap, leafs, idxs, num;
260 	int newextents = blocks;
261 
262 	rcap = ext4_ext_space_root_idx(inode);
263 	lcap = ext4_ext_space_block(inode);
264 	icap = ext4_ext_space_block_idx(inode);
265 
266 	/* number of new leaf blocks needed */
267 	num = leafs = (newextents + lcap - 1) / lcap;
268 
269 	/*
270 	 * Worse case, we need separate index block(s)
271 	 * to link all new leaf blocks
272 	 */
273 	idxs = (leafs + icap - 1) / icap;
274 	do {
275 		num += idxs;
276 		idxs = (idxs + icap - 1) / icap;
277 	} while (idxs > rcap);
278 
279 	return num;
280 }
281 
282 static int
283 ext4_ext_max_entries(struct inode *inode, int depth)
284 {
285 	int max;
286 
287 	if (depth == ext_depth(inode)) {
288 		if (depth == 0)
289 			max = ext4_ext_space_root(inode);
290 		else
291 			max = ext4_ext_space_root_idx(inode);
292 	} else {
293 		if (depth == 0)
294 			max = ext4_ext_space_block(inode);
295 		else
296 			max = ext4_ext_space_block_idx(inode);
297 	}
298 
299 	return max;
300 }
301 
302 static int __ext4_ext_check_header(const char *function, struct inode *inode,
303 					struct ext4_extent_header *eh,
304 					int depth)
305 {
306 	const char *error_msg;
307 	int max = 0;
308 
309 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
310 		error_msg = "invalid magic";
311 		goto corrupted;
312 	}
313 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
314 		error_msg = "unexpected eh_depth";
315 		goto corrupted;
316 	}
317 	if (unlikely(eh->eh_max == 0)) {
318 		error_msg = "invalid eh_max";
319 		goto corrupted;
320 	}
321 	max = ext4_ext_max_entries(inode, depth);
322 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
323 		error_msg = "too large eh_max";
324 		goto corrupted;
325 	}
326 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
327 		error_msg = "invalid eh_entries";
328 		goto corrupted;
329 	}
330 	return 0;
331 
332 corrupted:
333 	ext4_error(inode->i_sb, function,
334 			"bad header in inode #%lu: %s - magic %x, "
335 			"entries %u, max %u(%u), depth %u(%u)",
336 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
337 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
338 			max, le16_to_cpu(eh->eh_depth), depth);
339 
340 	return -EIO;
341 }
342 
343 #define ext4_ext_check_header(inode, eh, depth)	\
344 	__ext4_ext_check_header(__func__, inode, eh, depth)
345 
346 #ifdef EXT_DEBUG
347 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
348 {
349 	int k, l = path->p_depth;
350 
351 	ext_debug("path:");
352 	for (k = 0; k <= l; k++, path++) {
353 		if (path->p_idx) {
354 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
355 			    idx_pblock(path->p_idx));
356 		} else if (path->p_ext) {
357 			ext_debug("  %d:%d:%llu ",
358 				  le32_to_cpu(path->p_ext->ee_block),
359 				  ext4_ext_get_actual_len(path->p_ext),
360 				  ext_pblock(path->p_ext));
361 		} else
362 			ext_debug("  []");
363 	}
364 	ext_debug("\n");
365 }
366 
367 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
368 {
369 	int depth = ext_depth(inode);
370 	struct ext4_extent_header *eh;
371 	struct ext4_extent *ex;
372 	int i;
373 
374 	if (!path)
375 		return;
376 
377 	eh = path[depth].p_hdr;
378 	ex = EXT_FIRST_EXTENT(eh);
379 
380 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
381 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
382 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
383 	}
384 	ext_debug("\n");
385 }
386 #else
387 #define ext4_ext_show_path(inode, path)
388 #define ext4_ext_show_leaf(inode, path)
389 #endif
390 
391 void ext4_ext_drop_refs(struct ext4_ext_path *path)
392 {
393 	int depth = path->p_depth;
394 	int i;
395 
396 	for (i = 0; i <= depth; i++, path++)
397 		if (path->p_bh) {
398 			brelse(path->p_bh);
399 			path->p_bh = NULL;
400 		}
401 }
402 
403 /*
404  * ext4_ext_binsearch_idx:
405  * binary search for the closest index of the given block
406  * the header must be checked before calling this
407  */
408 static void
409 ext4_ext_binsearch_idx(struct inode *inode,
410 			struct ext4_ext_path *path, ext4_lblk_t block)
411 {
412 	struct ext4_extent_header *eh = path->p_hdr;
413 	struct ext4_extent_idx *r, *l, *m;
414 
415 
416 	ext_debug("binsearch for %u(idx):  ", block);
417 
418 	l = EXT_FIRST_INDEX(eh) + 1;
419 	r = EXT_LAST_INDEX(eh);
420 	while (l <= r) {
421 		m = l + (r - l) / 2;
422 		if (block < le32_to_cpu(m->ei_block))
423 			r = m - 1;
424 		else
425 			l = m + 1;
426 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
427 				m, le32_to_cpu(m->ei_block),
428 				r, le32_to_cpu(r->ei_block));
429 	}
430 
431 	path->p_idx = l - 1;
432 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
433 		  idx_pblock(path->p_idx));
434 
435 #ifdef CHECK_BINSEARCH
436 	{
437 		struct ext4_extent_idx *chix, *ix;
438 		int k;
439 
440 		chix = ix = EXT_FIRST_INDEX(eh);
441 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
442 		  if (k != 0 &&
443 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
444 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
445 				       "first=0x%p\n", k,
446 				       ix, EXT_FIRST_INDEX(eh));
447 				printk(KERN_DEBUG "%u <= %u\n",
448 				       le32_to_cpu(ix->ei_block),
449 				       le32_to_cpu(ix[-1].ei_block));
450 			}
451 			BUG_ON(k && le32_to_cpu(ix->ei_block)
452 					   <= le32_to_cpu(ix[-1].ei_block));
453 			if (block < le32_to_cpu(ix->ei_block))
454 				break;
455 			chix = ix;
456 		}
457 		BUG_ON(chix != path->p_idx);
458 	}
459 #endif
460 
461 }
462 
463 /*
464  * ext4_ext_binsearch:
465  * binary search for closest extent of the given block
466  * the header must be checked before calling this
467  */
468 static void
469 ext4_ext_binsearch(struct inode *inode,
470 		struct ext4_ext_path *path, ext4_lblk_t block)
471 {
472 	struct ext4_extent_header *eh = path->p_hdr;
473 	struct ext4_extent *r, *l, *m;
474 
475 	if (eh->eh_entries == 0) {
476 		/*
477 		 * this leaf is empty:
478 		 * we get such a leaf in split/add case
479 		 */
480 		return;
481 	}
482 
483 	ext_debug("binsearch for %u:  ", block);
484 
485 	l = EXT_FIRST_EXTENT(eh) + 1;
486 	r = EXT_LAST_EXTENT(eh);
487 
488 	while (l <= r) {
489 		m = l + (r - l) / 2;
490 		if (block < le32_to_cpu(m->ee_block))
491 			r = m - 1;
492 		else
493 			l = m + 1;
494 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
495 				m, le32_to_cpu(m->ee_block),
496 				r, le32_to_cpu(r->ee_block));
497 	}
498 
499 	path->p_ext = l - 1;
500 	ext_debug("  -> %d:%llu:%d ",
501 			le32_to_cpu(path->p_ext->ee_block),
502 			ext_pblock(path->p_ext),
503 			ext4_ext_get_actual_len(path->p_ext));
504 
505 #ifdef CHECK_BINSEARCH
506 	{
507 		struct ext4_extent *chex, *ex;
508 		int k;
509 
510 		chex = ex = EXT_FIRST_EXTENT(eh);
511 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
512 			BUG_ON(k && le32_to_cpu(ex->ee_block)
513 					  <= le32_to_cpu(ex[-1].ee_block));
514 			if (block < le32_to_cpu(ex->ee_block))
515 				break;
516 			chex = ex;
517 		}
518 		BUG_ON(chex != path->p_ext);
519 	}
520 #endif
521 
522 }
523 
524 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
525 {
526 	struct ext4_extent_header *eh;
527 
528 	eh = ext_inode_hdr(inode);
529 	eh->eh_depth = 0;
530 	eh->eh_entries = 0;
531 	eh->eh_magic = EXT4_EXT_MAGIC;
532 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
533 	ext4_mark_inode_dirty(handle, inode);
534 	ext4_ext_invalidate_cache(inode);
535 	return 0;
536 }
537 
538 struct ext4_ext_path *
539 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
540 					struct ext4_ext_path *path)
541 {
542 	struct ext4_extent_header *eh;
543 	struct buffer_head *bh;
544 	short int depth, i, ppos = 0, alloc = 0;
545 
546 	eh = ext_inode_hdr(inode);
547 	depth = ext_depth(inode);
548 	if (ext4_ext_check_header(inode, eh, depth))
549 		return ERR_PTR(-EIO);
550 
551 
552 	/* account possible depth increase */
553 	if (!path) {
554 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
555 				GFP_NOFS);
556 		if (!path)
557 			return ERR_PTR(-ENOMEM);
558 		alloc = 1;
559 	}
560 	path[0].p_hdr = eh;
561 	path[0].p_bh = NULL;
562 
563 	i = depth;
564 	/* walk through the tree */
565 	while (i) {
566 		ext_debug("depth %d: num %d, max %d\n",
567 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
568 
569 		ext4_ext_binsearch_idx(inode, path + ppos, block);
570 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
571 		path[ppos].p_depth = i;
572 		path[ppos].p_ext = NULL;
573 
574 		bh = sb_bread(inode->i_sb, path[ppos].p_block);
575 		if (!bh)
576 			goto err;
577 
578 		eh = ext_block_hdr(bh);
579 		ppos++;
580 		BUG_ON(ppos > depth);
581 		path[ppos].p_bh = bh;
582 		path[ppos].p_hdr = eh;
583 		i--;
584 
585 		if (ext4_ext_check_header(inode, eh, i))
586 			goto err;
587 	}
588 
589 	path[ppos].p_depth = i;
590 	path[ppos].p_ext = NULL;
591 	path[ppos].p_idx = NULL;
592 
593 	/* find extent */
594 	ext4_ext_binsearch(inode, path + ppos, block);
595 	/* if not an empty leaf */
596 	if (path[ppos].p_ext)
597 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
598 
599 	ext4_ext_show_path(inode, path);
600 
601 	return path;
602 
603 err:
604 	ext4_ext_drop_refs(path);
605 	if (alloc)
606 		kfree(path);
607 	return ERR_PTR(-EIO);
608 }
609 
610 /*
611  * ext4_ext_insert_index:
612  * insert new index [@logical;@ptr] into the block at @curp;
613  * check where to insert: before @curp or after @curp
614  */
615 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
616 				struct ext4_ext_path *curp,
617 				int logical, ext4_fsblk_t ptr)
618 {
619 	struct ext4_extent_idx *ix;
620 	int len, err;
621 
622 	err = ext4_ext_get_access(handle, inode, curp);
623 	if (err)
624 		return err;
625 
626 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
627 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
628 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
629 		/* insert after */
630 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
631 			len = (len - 1) * sizeof(struct ext4_extent_idx);
632 			len = len < 0 ? 0 : len;
633 			ext_debug("insert new index %d after: %llu. "
634 					"move %d from 0x%p to 0x%p\n",
635 					logical, ptr, len,
636 					(curp->p_idx + 1), (curp->p_idx + 2));
637 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
638 		}
639 		ix = curp->p_idx + 1;
640 	} else {
641 		/* insert before */
642 		len = len * sizeof(struct ext4_extent_idx);
643 		len = len < 0 ? 0 : len;
644 		ext_debug("insert new index %d before: %llu. "
645 				"move %d from 0x%p to 0x%p\n",
646 				logical, ptr, len,
647 				curp->p_idx, (curp->p_idx + 1));
648 		memmove(curp->p_idx + 1, curp->p_idx, len);
649 		ix = curp->p_idx;
650 	}
651 
652 	ix->ei_block = cpu_to_le32(logical);
653 	ext4_idx_store_pblock(ix, ptr);
654 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
655 
656 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
657 			     > le16_to_cpu(curp->p_hdr->eh_max));
658 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
659 
660 	err = ext4_ext_dirty(handle, inode, curp);
661 	ext4_std_error(inode->i_sb, err);
662 
663 	return err;
664 }
665 
666 /*
667  * ext4_ext_split:
668  * inserts new subtree into the path, using free index entry
669  * at depth @at:
670  * - allocates all needed blocks (new leaf and all intermediate index blocks)
671  * - makes decision where to split
672  * - moves remaining extents and index entries (right to the split point)
673  *   into the newly allocated blocks
674  * - initializes subtree
675  */
676 static int ext4_ext_split(handle_t *handle, struct inode *inode,
677 				struct ext4_ext_path *path,
678 				struct ext4_extent *newext, int at)
679 {
680 	struct buffer_head *bh = NULL;
681 	int depth = ext_depth(inode);
682 	struct ext4_extent_header *neh;
683 	struct ext4_extent_idx *fidx;
684 	struct ext4_extent *ex;
685 	int i = at, k, m, a;
686 	ext4_fsblk_t newblock, oldblock;
687 	__le32 border;
688 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
689 	int err = 0;
690 
691 	/* make decision: where to split? */
692 	/* FIXME: now decision is simplest: at current extent */
693 
694 	/* if current leaf will be split, then we should use
695 	 * border from split point */
696 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
697 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
698 		border = path[depth].p_ext[1].ee_block;
699 		ext_debug("leaf will be split."
700 				" next leaf starts at %d\n",
701 				  le32_to_cpu(border));
702 	} else {
703 		border = newext->ee_block;
704 		ext_debug("leaf will be added."
705 				" next leaf starts at %d\n",
706 				le32_to_cpu(border));
707 	}
708 
709 	/*
710 	 * If error occurs, then we break processing
711 	 * and mark filesystem read-only. index won't
712 	 * be inserted and tree will be in consistent
713 	 * state. Next mount will repair buffers too.
714 	 */
715 
716 	/*
717 	 * Get array to track all allocated blocks.
718 	 * We need this to handle errors and free blocks
719 	 * upon them.
720 	 */
721 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
722 	if (!ablocks)
723 		return -ENOMEM;
724 
725 	/* allocate all needed blocks */
726 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
727 	for (a = 0; a < depth - at; a++) {
728 		newblock = ext4_ext_new_meta_block(handle, inode, path,
729 						   newext, &err);
730 		if (newblock == 0)
731 			goto cleanup;
732 		ablocks[a] = newblock;
733 	}
734 
735 	/* initialize new leaf */
736 	newblock = ablocks[--a];
737 	BUG_ON(newblock == 0);
738 	bh = sb_getblk(inode->i_sb, newblock);
739 	if (!bh) {
740 		err = -EIO;
741 		goto cleanup;
742 	}
743 	lock_buffer(bh);
744 
745 	err = ext4_journal_get_create_access(handle, bh);
746 	if (err)
747 		goto cleanup;
748 
749 	neh = ext_block_hdr(bh);
750 	neh->eh_entries = 0;
751 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
752 	neh->eh_magic = EXT4_EXT_MAGIC;
753 	neh->eh_depth = 0;
754 	ex = EXT_FIRST_EXTENT(neh);
755 
756 	/* move remainder of path[depth] to the new leaf */
757 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
758 	/* start copy from next extent */
759 	/* TODO: we could do it by single memmove */
760 	m = 0;
761 	path[depth].p_ext++;
762 	while (path[depth].p_ext <=
763 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
764 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
765 				le32_to_cpu(path[depth].p_ext->ee_block),
766 				ext_pblock(path[depth].p_ext),
767 				ext4_ext_get_actual_len(path[depth].p_ext),
768 				newblock);
769 		/*memmove(ex++, path[depth].p_ext++,
770 				sizeof(struct ext4_extent));
771 		neh->eh_entries++;*/
772 		path[depth].p_ext++;
773 		m++;
774 	}
775 	if (m) {
776 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
777 		le16_add_cpu(&neh->eh_entries, m);
778 	}
779 
780 	set_buffer_uptodate(bh);
781 	unlock_buffer(bh);
782 
783 	err = ext4_journal_dirty_metadata(handle, bh);
784 	if (err)
785 		goto cleanup;
786 	brelse(bh);
787 	bh = NULL;
788 
789 	/* correct old leaf */
790 	if (m) {
791 		err = ext4_ext_get_access(handle, inode, path + depth);
792 		if (err)
793 			goto cleanup;
794 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
795 		err = ext4_ext_dirty(handle, inode, path + depth);
796 		if (err)
797 			goto cleanup;
798 
799 	}
800 
801 	/* create intermediate indexes */
802 	k = depth - at - 1;
803 	BUG_ON(k < 0);
804 	if (k)
805 		ext_debug("create %d intermediate indices\n", k);
806 	/* insert new index into current index block */
807 	/* current depth stored in i var */
808 	i = depth - 1;
809 	while (k--) {
810 		oldblock = newblock;
811 		newblock = ablocks[--a];
812 		bh = sb_getblk(inode->i_sb, newblock);
813 		if (!bh) {
814 			err = -EIO;
815 			goto cleanup;
816 		}
817 		lock_buffer(bh);
818 
819 		err = ext4_journal_get_create_access(handle, bh);
820 		if (err)
821 			goto cleanup;
822 
823 		neh = ext_block_hdr(bh);
824 		neh->eh_entries = cpu_to_le16(1);
825 		neh->eh_magic = EXT4_EXT_MAGIC;
826 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
827 		neh->eh_depth = cpu_to_le16(depth - i);
828 		fidx = EXT_FIRST_INDEX(neh);
829 		fidx->ei_block = border;
830 		ext4_idx_store_pblock(fidx, oldblock);
831 
832 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
833 				i, newblock, le32_to_cpu(border), oldblock);
834 		/* copy indexes */
835 		m = 0;
836 		path[i].p_idx++;
837 
838 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
839 				EXT_MAX_INDEX(path[i].p_hdr));
840 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
841 				EXT_LAST_INDEX(path[i].p_hdr));
842 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
843 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
844 					le32_to_cpu(path[i].p_idx->ei_block),
845 					idx_pblock(path[i].p_idx),
846 					newblock);
847 			/*memmove(++fidx, path[i].p_idx++,
848 					sizeof(struct ext4_extent_idx));
849 			neh->eh_entries++;
850 			BUG_ON(neh->eh_entries > neh->eh_max);*/
851 			path[i].p_idx++;
852 			m++;
853 		}
854 		if (m) {
855 			memmove(++fidx, path[i].p_idx - m,
856 				sizeof(struct ext4_extent_idx) * m);
857 			le16_add_cpu(&neh->eh_entries, m);
858 		}
859 		set_buffer_uptodate(bh);
860 		unlock_buffer(bh);
861 
862 		err = ext4_journal_dirty_metadata(handle, bh);
863 		if (err)
864 			goto cleanup;
865 		brelse(bh);
866 		bh = NULL;
867 
868 		/* correct old index */
869 		if (m) {
870 			err = ext4_ext_get_access(handle, inode, path + i);
871 			if (err)
872 				goto cleanup;
873 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
874 			err = ext4_ext_dirty(handle, inode, path + i);
875 			if (err)
876 				goto cleanup;
877 		}
878 
879 		i--;
880 	}
881 
882 	/* insert new index */
883 	err = ext4_ext_insert_index(handle, inode, path + at,
884 				    le32_to_cpu(border), newblock);
885 
886 cleanup:
887 	if (bh) {
888 		if (buffer_locked(bh))
889 			unlock_buffer(bh);
890 		brelse(bh);
891 	}
892 
893 	if (err) {
894 		/* free all allocated blocks in error case */
895 		for (i = 0; i < depth; i++) {
896 			if (!ablocks[i])
897 				continue;
898 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
899 		}
900 	}
901 	kfree(ablocks);
902 
903 	return err;
904 }
905 
906 /*
907  * ext4_ext_grow_indepth:
908  * implements tree growing procedure:
909  * - allocates new block
910  * - moves top-level data (index block or leaf) into the new block
911  * - initializes new top-level, creating index that points to the
912  *   just created block
913  */
914 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
915 					struct ext4_ext_path *path,
916 					struct ext4_extent *newext)
917 {
918 	struct ext4_ext_path *curp = path;
919 	struct ext4_extent_header *neh;
920 	struct ext4_extent_idx *fidx;
921 	struct buffer_head *bh;
922 	ext4_fsblk_t newblock;
923 	int err = 0;
924 
925 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
926 	if (newblock == 0)
927 		return err;
928 
929 	bh = sb_getblk(inode->i_sb, newblock);
930 	if (!bh) {
931 		err = -EIO;
932 		ext4_std_error(inode->i_sb, err);
933 		return err;
934 	}
935 	lock_buffer(bh);
936 
937 	err = ext4_journal_get_create_access(handle, bh);
938 	if (err) {
939 		unlock_buffer(bh);
940 		goto out;
941 	}
942 
943 	/* move top-level index/leaf into new block */
944 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
945 
946 	/* set size of new block */
947 	neh = ext_block_hdr(bh);
948 	/* old root could have indexes or leaves
949 	 * so calculate e_max right way */
950 	if (ext_depth(inode))
951 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
952 	else
953 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
954 	neh->eh_magic = EXT4_EXT_MAGIC;
955 	set_buffer_uptodate(bh);
956 	unlock_buffer(bh);
957 
958 	err = ext4_journal_dirty_metadata(handle, bh);
959 	if (err)
960 		goto out;
961 
962 	/* create index in new top-level index: num,max,pointer */
963 	err = ext4_ext_get_access(handle, inode, curp);
964 	if (err)
965 		goto out;
966 
967 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
968 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
969 	curp->p_hdr->eh_entries = cpu_to_le16(1);
970 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
971 
972 	if (path[0].p_hdr->eh_depth)
973 		curp->p_idx->ei_block =
974 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
975 	else
976 		curp->p_idx->ei_block =
977 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
978 	ext4_idx_store_pblock(curp->p_idx, newblock);
979 
980 	neh = ext_inode_hdr(inode);
981 	fidx = EXT_FIRST_INDEX(neh);
982 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
983 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
984 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
985 
986 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
987 	err = ext4_ext_dirty(handle, inode, curp);
988 out:
989 	brelse(bh);
990 
991 	return err;
992 }
993 
994 /*
995  * ext4_ext_create_new_leaf:
996  * finds empty index and adds new leaf.
997  * if no free index is found, then it requests in-depth growing.
998  */
999 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1000 					struct ext4_ext_path *path,
1001 					struct ext4_extent *newext)
1002 {
1003 	struct ext4_ext_path *curp;
1004 	int depth, i, err = 0;
1005 
1006 repeat:
1007 	i = depth = ext_depth(inode);
1008 
1009 	/* walk up to the tree and look for free index entry */
1010 	curp = path + depth;
1011 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1012 		i--;
1013 		curp--;
1014 	}
1015 
1016 	/* we use already allocated block for index block,
1017 	 * so subsequent data blocks should be contiguous */
1018 	if (EXT_HAS_FREE_INDEX(curp)) {
1019 		/* if we found index with free entry, then use that
1020 		 * entry: create all needed subtree and add new leaf */
1021 		err = ext4_ext_split(handle, inode, path, newext, i);
1022 		if (err)
1023 			goto out;
1024 
1025 		/* refill path */
1026 		ext4_ext_drop_refs(path);
1027 		path = ext4_ext_find_extent(inode,
1028 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1029 				    path);
1030 		if (IS_ERR(path))
1031 			err = PTR_ERR(path);
1032 	} else {
1033 		/* tree is full, time to grow in depth */
1034 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1035 		if (err)
1036 			goto out;
1037 
1038 		/* refill path */
1039 		ext4_ext_drop_refs(path);
1040 		path = ext4_ext_find_extent(inode,
1041 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1042 				    path);
1043 		if (IS_ERR(path)) {
1044 			err = PTR_ERR(path);
1045 			goto out;
1046 		}
1047 
1048 		/*
1049 		 * only first (depth 0 -> 1) produces free space;
1050 		 * in all other cases we have to split the grown tree
1051 		 */
1052 		depth = ext_depth(inode);
1053 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1054 			/* now we need to split */
1055 			goto repeat;
1056 		}
1057 	}
1058 
1059 out:
1060 	return err;
1061 }
1062 
1063 /*
1064  * search the closest allocated block to the left for *logical
1065  * and returns it at @logical + it's physical address at @phys
1066  * if *logical is the smallest allocated block, the function
1067  * returns 0 at @phys
1068  * return value contains 0 (success) or error code
1069  */
1070 int
1071 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1072 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1073 {
1074 	struct ext4_extent_idx *ix;
1075 	struct ext4_extent *ex;
1076 	int depth, ee_len;
1077 
1078 	BUG_ON(path == NULL);
1079 	depth = path->p_depth;
1080 	*phys = 0;
1081 
1082 	if (depth == 0 && path->p_ext == NULL)
1083 		return 0;
1084 
1085 	/* usually extent in the path covers blocks smaller
1086 	 * then *logical, but it can be that extent is the
1087 	 * first one in the file */
1088 
1089 	ex = path[depth].p_ext;
1090 	ee_len = ext4_ext_get_actual_len(ex);
1091 	if (*logical < le32_to_cpu(ex->ee_block)) {
1092 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1093 		while (--depth >= 0) {
1094 			ix = path[depth].p_idx;
1095 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1096 		}
1097 		return 0;
1098 	}
1099 
1100 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1101 
1102 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1103 	*phys = ext_pblock(ex) + ee_len - 1;
1104 	return 0;
1105 }
1106 
1107 /*
1108  * search the closest allocated block to the right for *logical
1109  * and returns it at @logical + it's physical address at @phys
1110  * if *logical is the smallest allocated block, the function
1111  * returns 0 at @phys
1112  * return value contains 0 (success) or error code
1113  */
1114 int
1115 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1116 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1117 {
1118 	struct buffer_head *bh = NULL;
1119 	struct ext4_extent_header *eh;
1120 	struct ext4_extent_idx *ix;
1121 	struct ext4_extent *ex;
1122 	ext4_fsblk_t block;
1123 	int depth, ee_len;
1124 
1125 	BUG_ON(path == NULL);
1126 	depth = path->p_depth;
1127 	*phys = 0;
1128 
1129 	if (depth == 0 && path->p_ext == NULL)
1130 		return 0;
1131 
1132 	/* usually extent in the path covers blocks smaller
1133 	 * then *logical, but it can be that extent is the
1134 	 * first one in the file */
1135 
1136 	ex = path[depth].p_ext;
1137 	ee_len = ext4_ext_get_actual_len(ex);
1138 	if (*logical < le32_to_cpu(ex->ee_block)) {
1139 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1140 		while (--depth >= 0) {
1141 			ix = path[depth].p_idx;
1142 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1143 		}
1144 		*logical = le32_to_cpu(ex->ee_block);
1145 		*phys = ext_pblock(ex);
1146 		return 0;
1147 	}
1148 
1149 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1150 
1151 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1152 		/* next allocated block in this leaf */
1153 		ex++;
1154 		*logical = le32_to_cpu(ex->ee_block);
1155 		*phys = ext_pblock(ex);
1156 		return 0;
1157 	}
1158 
1159 	/* go up and search for index to the right */
1160 	while (--depth >= 0) {
1161 		ix = path[depth].p_idx;
1162 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1163 			break;
1164 	}
1165 
1166 	if (depth < 0) {
1167 		/* we've gone up to the root and
1168 		 * found no index to the right */
1169 		return 0;
1170 	}
1171 
1172 	/* we've found index to the right, let's
1173 	 * follow it and find the closest allocated
1174 	 * block to the right */
1175 	ix++;
1176 	block = idx_pblock(ix);
1177 	while (++depth < path->p_depth) {
1178 		bh = sb_bread(inode->i_sb, block);
1179 		if (bh == NULL)
1180 			return -EIO;
1181 		eh = ext_block_hdr(bh);
1182 		if (ext4_ext_check_header(inode, eh, depth)) {
1183 			put_bh(bh);
1184 			return -EIO;
1185 		}
1186 		ix = EXT_FIRST_INDEX(eh);
1187 		block = idx_pblock(ix);
1188 		put_bh(bh);
1189 	}
1190 
1191 	bh = sb_bread(inode->i_sb, block);
1192 	if (bh == NULL)
1193 		return -EIO;
1194 	eh = ext_block_hdr(bh);
1195 	if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1196 		put_bh(bh);
1197 		return -EIO;
1198 	}
1199 	ex = EXT_FIRST_EXTENT(eh);
1200 	*logical = le32_to_cpu(ex->ee_block);
1201 	*phys = ext_pblock(ex);
1202 	put_bh(bh);
1203 	return 0;
1204 
1205 }
1206 
1207 /*
1208  * ext4_ext_next_allocated_block:
1209  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1210  * NOTE: it considers block number from index entry as
1211  * allocated block. Thus, index entries have to be consistent
1212  * with leaves.
1213  */
1214 static ext4_lblk_t
1215 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1216 {
1217 	int depth;
1218 
1219 	BUG_ON(path == NULL);
1220 	depth = path->p_depth;
1221 
1222 	if (depth == 0 && path->p_ext == NULL)
1223 		return EXT_MAX_BLOCK;
1224 
1225 	while (depth >= 0) {
1226 		if (depth == path->p_depth) {
1227 			/* leaf */
1228 			if (path[depth].p_ext !=
1229 					EXT_LAST_EXTENT(path[depth].p_hdr))
1230 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1231 		} else {
1232 			/* index */
1233 			if (path[depth].p_idx !=
1234 					EXT_LAST_INDEX(path[depth].p_hdr))
1235 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1236 		}
1237 		depth--;
1238 	}
1239 
1240 	return EXT_MAX_BLOCK;
1241 }
1242 
1243 /*
1244  * ext4_ext_next_leaf_block:
1245  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1246  */
1247 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1248 					struct ext4_ext_path *path)
1249 {
1250 	int depth;
1251 
1252 	BUG_ON(path == NULL);
1253 	depth = path->p_depth;
1254 
1255 	/* zero-tree has no leaf blocks at all */
1256 	if (depth == 0)
1257 		return EXT_MAX_BLOCK;
1258 
1259 	/* go to index block */
1260 	depth--;
1261 
1262 	while (depth >= 0) {
1263 		if (path[depth].p_idx !=
1264 				EXT_LAST_INDEX(path[depth].p_hdr))
1265 			return (ext4_lblk_t)
1266 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1267 		depth--;
1268 	}
1269 
1270 	return EXT_MAX_BLOCK;
1271 }
1272 
1273 /*
1274  * ext4_ext_correct_indexes:
1275  * if leaf gets modified and modified extent is first in the leaf,
1276  * then we have to correct all indexes above.
1277  * TODO: do we need to correct tree in all cases?
1278  */
1279 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1280 				struct ext4_ext_path *path)
1281 {
1282 	struct ext4_extent_header *eh;
1283 	int depth = ext_depth(inode);
1284 	struct ext4_extent *ex;
1285 	__le32 border;
1286 	int k, err = 0;
1287 
1288 	eh = path[depth].p_hdr;
1289 	ex = path[depth].p_ext;
1290 	BUG_ON(ex == NULL);
1291 	BUG_ON(eh == NULL);
1292 
1293 	if (depth == 0) {
1294 		/* there is no tree at all */
1295 		return 0;
1296 	}
1297 
1298 	if (ex != EXT_FIRST_EXTENT(eh)) {
1299 		/* we correct tree if first leaf got modified only */
1300 		return 0;
1301 	}
1302 
1303 	/*
1304 	 * TODO: we need correction if border is smaller than current one
1305 	 */
1306 	k = depth - 1;
1307 	border = path[depth].p_ext->ee_block;
1308 	err = ext4_ext_get_access(handle, inode, path + k);
1309 	if (err)
1310 		return err;
1311 	path[k].p_idx->ei_block = border;
1312 	err = ext4_ext_dirty(handle, inode, path + k);
1313 	if (err)
1314 		return err;
1315 
1316 	while (k--) {
1317 		/* change all left-side indexes */
1318 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1319 			break;
1320 		err = ext4_ext_get_access(handle, inode, path + k);
1321 		if (err)
1322 			break;
1323 		path[k].p_idx->ei_block = border;
1324 		err = ext4_ext_dirty(handle, inode, path + k);
1325 		if (err)
1326 			break;
1327 	}
1328 
1329 	return err;
1330 }
1331 
1332 static int
1333 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1334 				struct ext4_extent *ex2)
1335 {
1336 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1337 
1338 	/*
1339 	 * Make sure that either both extents are uninitialized, or
1340 	 * both are _not_.
1341 	 */
1342 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1343 		return 0;
1344 
1345 	if (ext4_ext_is_uninitialized(ex1))
1346 		max_len = EXT_UNINIT_MAX_LEN;
1347 	else
1348 		max_len = EXT_INIT_MAX_LEN;
1349 
1350 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1351 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1352 
1353 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1354 			le32_to_cpu(ex2->ee_block))
1355 		return 0;
1356 
1357 	/*
1358 	 * To allow future support for preallocated extents to be added
1359 	 * as an RO_COMPAT feature, refuse to merge to extents if
1360 	 * this can result in the top bit of ee_len being set.
1361 	 */
1362 	if (ext1_ee_len + ext2_ee_len > max_len)
1363 		return 0;
1364 #ifdef AGGRESSIVE_TEST
1365 	if (ext1_ee_len >= 4)
1366 		return 0;
1367 #endif
1368 
1369 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1370 		return 1;
1371 	return 0;
1372 }
1373 
1374 /*
1375  * This function tries to merge the "ex" extent to the next extent in the tree.
1376  * It always tries to merge towards right. If you want to merge towards
1377  * left, pass "ex - 1" as argument instead of "ex".
1378  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1379  * 1 if they got merged.
1380  */
1381 int ext4_ext_try_to_merge(struct inode *inode,
1382 			  struct ext4_ext_path *path,
1383 			  struct ext4_extent *ex)
1384 {
1385 	struct ext4_extent_header *eh;
1386 	unsigned int depth, len;
1387 	int merge_done = 0;
1388 	int uninitialized = 0;
1389 
1390 	depth = ext_depth(inode);
1391 	BUG_ON(path[depth].p_hdr == NULL);
1392 	eh = path[depth].p_hdr;
1393 
1394 	while (ex < EXT_LAST_EXTENT(eh)) {
1395 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1396 			break;
1397 		/* merge with next extent! */
1398 		if (ext4_ext_is_uninitialized(ex))
1399 			uninitialized = 1;
1400 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1401 				+ ext4_ext_get_actual_len(ex + 1));
1402 		if (uninitialized)
1403 			ext4_ext_mark_uninitialized(ex);
1404 
1405 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1406 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1407 				* sizeof(struct ext4_extent);
1408 			memmove(ex + 1, ex + 2, len);
1409 		}
1410 		le16_add_cpu(&eh->eh_entries, -1);
1411 		merge_done = 1;
1412 		WARN_ON(eh->eh_entries == 0);
1413 		if (!eh->eh_entries)
1414 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1415 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1416 	}
1417 
1418 	return merge_done;
1419 }
1420 
1421 /*
1422  * check if a portion of the "newext" extent overlaps with an
1423  * existing extent.
1424  *
1425  * If there is an overlap discovered, it updates the length of the newext
1426  * such that there will be no overlap, and then returns 1.
1427  * If there is no overlap found, it returns 0.
1428  */
1429 unsigned int ext4_ext_check_overlap(struct inode *inode,
1430 				    struct ext4_extent *newext,
1431 				    struct ext4_ext_path *path)
1432 {
1433 	ext4_lblk_t b1, b2;
1434 	unsigned int depth, len1;
1435 	unsigned int ret = 0;
1436 
1437 	b1 = le32_to_cpu(newext->ee_block);
1438 	len1 = ext4_ext_get_actual_len(newext);
1439 	depth = ext_depth(inode);
1440 	if (!path[depth].p_ext)
1441 		goto out;
1442 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1443 
1444 	/*
1445 	 * get the next allocated block if the extent in the path
1446 	 * is before the requested block(s)
1447 	 */
1448 	if (b2 < b1) {
1449 		b2 = ext4_ext_next_allocated_block(path);
1450 		if (b2 == EXT_MAX_BLOCK)
1451 			goto out;
1452 	}
1453 
1454 	/* check for wrap through zero on extent logical start block*/
1455 	if (b1 + len1 < b1) {
1456 		len1 = EXT_MAX_BLOCK - b1;
1457 		newext->ee_len = cpu_to_le16(len1);
1458 		ret = 1;
1459 	}
1460 
1461 	/* check for overlap */
1462 	if (b1 + len1 > b2) {
1463 		newext->ee_len = cpu_to_le16(b2 - b1);
1464 		ret = 1;
1465 	}
1466 out:
1467 	return ret;
1468 }
1469 
1470 /*
1471  * ext4_ext_insert_extent:
1472  * tries to merge requsted extent into the existing extent or
1473  * inserts requested extent as new one into the tree,
1474  * creating new leaf in the no-space case.
1475  */
1476 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1477 				struct ext4_ext_path *path,
1478 				struct ext4_extent *newext)
1479 {
1480 	struct ext4_extent_header *eh;
1481 	struct ext4_extent *ex, *fex;
1482 	struct ext4_extent *nearex; /* nearest extent */
1483 	struct ext4_ext_path *npath = NULL;
1484 	int depth, len, err;
1485 	ext4_lblk_t next;
1486 	unsigned uninitialized = 0;
1487 
1488 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1489 	depth = ext_depth(inode);
1490 	ex = path[depth].p_ext;
1491 	BUG_ON(path[depth].p_hdr == NULL);
1492 
1493 	/* try to insert block into found extent and return */
1494 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1495 		ext_debug("append %d block to %d:%d (from %llu)\n",
1496 				ext4_ext_get_actual_len(newext),
1497 				le32_to_cpu(ex->ee_block),
1498 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1499 		err = ext4_ext_get_access(handle, inode, path + depth);
1500 		if (err)
1501 			return err;
1502 
1503 		/*
1504 		 * ext4_can_extents_be_merged should have checked that either
1505 		 * both extents are uninitialized, or both aren't. Thus we
1506 		 * need to check only one of them here.
1507 		 */
1508 		if (ext4_ext_is_uninitialized(ex))
1509 			uninitialized = 1;
1510 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1511 					+ ext4_ext_get_actual_len(newext));
1512 		if (uninitialized)
1513 			ext4_ext_mark_uninitialized(ex);
1514 		eh = path[depth].p_hdr;
1515 		nearex = ex;
1516 		goto merge;
1517 	}
1518 
1519 repeat:
1520 	depth = ext_depth(inode);
1521 	eh = path[depth].p_hdr;
1522 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1523 		goto has_space;
1524 
1525 	/* probably next leaf has space for us? */
1526 	fex = EXT_LAST_EXTENT(eh);
1527 	next = ext4_ext_next_leaf_block(inode, path);
1528 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1529 	    && next != EXT_MAX_BLOCK) {
1530 		ext_debug("next leaf block - %d\n", next);
1531 		BUG_ON(npath != NULL);
1532 		npath = ext4_ext_find_extent(inode, next, NULL);
1533 		if (IS_ERR(npath))
1534 			return PTR_ERR(npath);
1535 		BUG_ON(npath->p_depth != path->p_depth);
1536 		eh = npath[depth].p_hdr;
1537 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1538 			ext_debug("next leaf isnt full(%d)\n",
1539 				  le16_to_cpu(eh->eh_entries));
1540 			path = npath;
1541 			goto repeat;
1542 		}
1543 		ext_debug("next leaf has no free space(%d,%d)\n",
1544 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1545 	}
1546 
1547 	/*
1548 	 * There is no free space in the found leaf.
1549 	 * We're gonna add a new leaf in the tree.
1550 	 */
1551 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1552 	if (err)
1553 		goto cleanup;
1554 	depth = ext_depth(inode);
1555 	eh = path[depth].p_hdr;
1556 
1557 has_space:
1558 	nearex = path[depth].p_ext;
1559 
1560 	err = ext4_ext_get_access(handle, inode, path + depth);
1561 	if (err)
1562 		goto cleanup;
1563 
1564 	if (!nearex) {
1565 		/* there is no extent in this leaf, create first one */
1566 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1567 				le32_to_cpu(newext->ee_block),
1568 				ext_pblock(newext),
1569 				ext4_ext_get_actual_len(newext));
1570 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1571 	} else if (le32_to_cpu(newext->ee_block)
1572 			   > le32_to_cpu(nearex->ee_block)) {
1573 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1574 		if (nearex != EXT_LAST_EXTENT(eh)) {
1575 			len = EXT_MAX_EXTENT(eh) - nearex;
1576 			len = (len - 1) * sizeof(struct ext4_extent);
1577 			len = len < 0 ? 0 : len;
1578 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1579 					"move %d from 0x%p to 0x%p\n",
1580 					le32_to_cpu(newext->ee_block),
1581 					ext_pblock(newext),
1582 					ext4_ext_get_actual_len(newext),
1583 					nearex, len, nearex + 1, nearex + 2);
1584 			memmove(nearex + 2, nearex + 1, len);
1585 		}
1586 		path[depth].p_ext = nearex + 1;
1587 	} else {
1588 		BUG_ON(newext->ee_block == nearex->ee_block);
1589 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1590 		len = len < 0 ? 0 : len;
1591 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1592 				"move %d from 0x%p to 0x%p\n",
1593 				le32_to_cpu(newext->ee_block),
1594 				ext_pblock(newext),
1595 				ext4_ext_get_actual_len(newext),
1596 				nearex, len, nearex + 1, nearex + 2);
1597 		memmove(nearex + 1, nearex, len);
1598 		path[depth].p_ext = nearex;
1599 	}
1600 
1601 	le16_add_cpu(&eh->eh_entries, 1);
1602 	nearex = path[depth].p_ext;
1603 	nearex->ee_block = newext->ee_block;
1604 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1605 	nearex->ee_len = newext->ee_len;
1606 
1607 merge:
1608 	/* try to merge extents to the right */
1609 	ext4_ext_try_to_merge(inode, path, nearex);
1610 
1611 	/* try to merge extents to the left */
1612 
1613 	/* time to correct all indexes above */
1614 	err = ext4_ext_correct_indexes(handle, inode, path);
1615 	if (err)
1616 		goto cleanup;
1617 
1618 	err = ext4_ext_dirty(handle, inode, path + depth);
1619 
1620 cleanup:
1621 	if (npath) {
1622 		ext4_ext_drop_refs(npath);
1623 		kfree(npath);
1624 	}
1625 	ext4_ext_tree_changed(inode);
1626 	ext4_ext_invalidate_cache(inode);
1627 	return err;
1628 }
1629 
1630 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1631 			ext4_lblk_t num, ext_prepare_callback func,
1632 			void *cbdata)
1633 {
1634 	struct ext4_ext_path *path = NULL;
1635 	struct ext4_ext_cache cbex;
1636 	struct ext4_extent *ex;
1637 	ext4_lblk_t next, start = 0, end = 0;
1638 	ext4_lblk_t last = block + num;
1639 	int depth, exists, err = 0;
1640 
1641 	BUG_ON(func == NULL);
1642 	BUG_ON(inode == NULL);
1643 
1644 	while (block < last && block != EXT_MAX_BLOCK) {
1645 		num = last - block;
1646 		/* find extent for this block */
1647 		path = ext4_ext_find_extent(inode, block, path);
1648 		if (IS_ERR(path)) {
1649 			err = PTR_ERR(path);
1650 			path = NULL;
1651 			break;
1652 		}
1653 
1654 		depth = ext_depth(inode);
1655 		BUG_ON(path[depth].p_hdr == NULL);
1656 		ex = path[depth].p_ext;
1657 		next = ext4_ext_next_allocated_block(path);
1658 
1659 		exists = 0;
1660 		if (!ex) {
1661 			/* there is no extent yet, so try to allocate
1662 			 * all requested space */
1663 			start = block;
1664 			end = block + num;
1665 		} else if (le32_to_cpu(ex->ee_block) > block) {
1666 			/* need to allocate space before found extent */
1667 			start = block;
1668 			end = le32_to_cpu(ex->ee_block);
1669 			if (block + num < end)
1670 				end = block + num;
1671 		} else if (block >= le32_to_cpu(ex->ee_block)
1672 					+ ext4_ext_get_actual_len(ex)) {
1673 			/* need to allocate space after found extent */
1674 			start = block;
1675 			end = block + num;
1676 			if (end >= next)
1677 				end = next;
1678 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1679 			/*
1680 			 * some part of requested space is covered
1681 			 * by found extent
1682 			 */
1683 			start = block;
1684 			end = le32_to_cpu(ex->ee_block)
1685 				+ ext4_ext_get_actual_len(ex);
1686 			if (block + num < end)
1687 				end = block + num;
1688 			exists = 1;
1689 		} else {
1690 			BUG();
1691 		}
1692 		BUG_ON(end <= start);
1693 
1694 		if (!exists) {
1695 			cbex.ec_block = start;
1696 			cbex.ec_len = end - start;
1697 			cbex.ec_start = 0;
1698 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1699 		} else {
1700 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1701 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1702 			cbex.ec_start = ext_pblock(ex);
1703 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1704 		}
1705 
1706 		BUG_ON(cbex.ec_len == 0);
1707 		err = func(inode, path, &cbex, ex, cbdata);
1708 		ext4_ext_drop_refs(path);
1709 
1710 		if (err < 0)
1711 			break;
1712 
1713 		if (err == EXT_REPEAT)
1714 			continue;
1715 		else if (err == EXT_BREAK) {
1716 			err = 0;
1717 			break;
1718 		}
1719 
1720 		if (ext_depth(inode) != depth) {
1721 			/* depth was changed. we have to realloc path */
1722 			kfree(path);
1723 			path = NULL;
1724 		}
1725 
1726 		block = cbex.ec_block + cbex.ec_len;
1727 	}
1728 
1729 	if (path) {
1730 		ext4_ext_drop_refs(path);
1731 		kfree(path);
1732 	}
1733 
1734 	return err;
1735 }
1736 
1737 static void
1738 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1739 			__u32 len, ext4_fsblk_t start, int type)
1740 {
1741 	struct ext4_ext_cache *cex;
1742 	BUG_ON(len == 0);
1743 	cex = &EXT4_I(inode)->i_cached_extent;
1744 	cex->ec_type = type;
1745 	cex->ec_block = block;
1746 	cex->ec_len = len;
1747 	cex->ec_start = start;
1748 }
1749 
1750 /*
1751  * ext4_ext_put_gap_in_cache:
1752  * calculate boundaries of the gap that the requested block fits into
1753  * and cache this gap
1754  */
1755 static void
1756 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1757 				ext4_lblk_t block)
1758 {
1759 	int depth = ext_depth(inode);
1760 	unsigned long len;
1761 	ext4_lblk_t lblock;
1762 	struct ext4_extent *ex;
1763 
1764 	ex = path[depth].p_ext;
1765 	if (ex == NULL) {
1766 		/* there is no extent yet, so gap is [0;-] */
1767 		lblock = 0;
1768 		len = EXT_MAX_BLOCK;
1769 		ext_debug("cache gap(whole file):");
1770 	} else if (block < le32_to_cpu(ex->ee_block)) {
1771 		lblock = block;
1772 		len = le32_to_cpu(ex->ee_block) - block;
1773 		ext_debug("cache gap(before): %u [%u:%u]",
1774 				block,
1775 				le32_to_cpu(ex->ee_block),
1776 				 ext4_ext_get_actual_len(ex));
1777 	} else if (block >= le32_to_cpu(ex->ee_block)
1778 			+ ext4_ext_get_actual_len(ex)) {
1779 		ext4_lblk_t next;
1780 		lblock = le32_to_cpu(ex->ee_block)
1781 			+ ext4_ext_get_actual_len(ex);
1782 
1783 		next = ext4_ext_next_allocated_block(path);
1784 		ext_debug("cache gap(after): [%u:%u] %u",
1785 				le32_to_cpu(ex->ee_block),
1786 				ext4_ext_get_actual_len(ex),
1787 				block);
1788 		BUG_ON(next == lblock);
1789 		len = next - lblock;
1790 	} else {
1791 		lblock = len = 0;
1792 		BUG();
1793 	}
1794 
1795 	ext_debug(" -> %u:%lu\n", lblock, len);
1796 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1797 }
1798 
1799 static int
1800 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1801 			struct ext4_extent *ex)
1802 {
1803 	struct ext4_ext_cache *cex;
1804 
1805 	cex = &EXT4_I(inode)->i_cached_extent;
1806 
1807 	/* has cache valid data? */
1808 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1809 		return EXT4_EXT_CACHE_NO;
1810 
1811 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1812 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1813 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1814 		ex->ee_block = cpu_to_le32(cex->ec_block);
1815 		ext4_ext_store_pblock(ex, cex->ec_start);
1816 		ex->ee_len = cpu_to_le16(cex->ec_len);
1817 		ext_debug("%u cached by %u:%u:%llu\n",
1818 				block,
1819 				cex->ec_block, cex->ec_len, cex->ec_start);
1820 		return cex->ec_type;
1821 	}
1822 
1823 	/* not in cache */
1824 	return EXT4_EXT_CACHE_NO;
1825 }
1826 
1827 /*
1828  * ext4_ext_rm_idx:
1829  * removes index from the index block.
1830  * It's used in truncate case only, thus all requests are for
1831  * last index in the block only.
1832  */
1833 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1834 			struct ext4_ext_path *path)
1835 {
1836 	struct buffer_head *bh;
1837 	int err;
1838 	ext4_fsblk_t leaf;
1839 
1840 	/* free index block */
1841 	path--;
1842 	leaf = idx_pblock(path->p_idx);
1843 	BUG_ON(path->p_hdr->eh_entries == 0);
1844 	err = ext4_ext_get_access(handle, inode, path);
1845 	if (err)
1846 		return err;
1847 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1848 	err = ext4_ext_dirty(handle, inode, path);
1849 	if (err)
1850 		return err;
1851 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1852 	bh = sb_find_get_block(inode->i_sb, leaf);
1853 	ext4_forget(handle, 1, inode, bh, leaf);
1854 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1855 	return err;
1856 }
1857 
1858 /*
1859  * ext4_ext_calc_credits_for_single_extent:
1860  * This routine returns max. credits that needed to insert an extent
1861  * to the extent tree.
1862  * When pass the actual path, the caller should calculate credits
1863  * under i_data_sem.
1864  */
1865 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1866 						struct ext4_ext_path *path)
1867 {
1868 	if (path) {
1869 		int depth = ext_depth(inode);
1870 		int ret = 0;
1871 
1872 		/* probably there is space in leaf? */
1873 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1874 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1875 
1876 			/*
1877 			 *  There are some space in the leaf tree, no
1878 			 *  need to account for leaf block credit
1879 			 *
1880 			 *  bitmaps and block group descriptor blocks
1881 			 *  and other metadat blocks still need to be
1882 			 *  accounted.
1883 			 */
1884 			/* 1 bitmap, 1 block group descriptor */
1885 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1886 		}
1887 	}
1888 
1889 	return ext4_chunk_trans_blocks(inode, nrblocks);
1890 }
1891 
1892 /*
1893  * How many index/leaf blocks need to change/allocate to modify nrblocks?
1894  *
1895  * if nrblocks are fit in a single extent (chunk flag is 1), then
1896  * in the worse case, each tree level index/leaf need to be changed
1897  * if the tree split due to insert a new extent, then the old tree
1898  * index/leaf need to be updated too
1899  *
1900  * If the nrblocks are discontiguous, they could cause
1901  * the whole tree split more than once, but this is really rare.
1902  */
1903 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1904 {
1905 	int index;
1906 	int depth = ext_depth(inode);
1907 
1908 	if (chunk)
1909 		index = depth * 2;
1910 	else
1911 		index = depth * 3;
1912 
1913 	return index;
1914 }
1915 
1916 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1917 				struct ext4_extent *ex,
1918 				ext4_lblk_t from, ext4_lblk_t to)
1919 {
1920 	struct buffer_head *bh;
1921 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
1922 	int i, metadata = 0;
1923 
1924 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1925 		metadata = 1;
1926 #ifdef EXTENTS_STATS
1927 	{
1928 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1929 		spin_lock(&sbi->s_ext_stats_lock);
1930 		sbi->s_ext_blocks += ee_len;
1931 		sbi->s_ext_extents++;
1932 		if (ee_len < sbi->s_ext_min)
1933 			sbi->s_ext_min = ee_len;
1934 		if (ee_len > sbi->s_ext_max)
1935 			sbi->s_ext_max = ee_len;
1936 		if (ext_depth(inode) > sbi->s_depth_max)
1937 			sbi->s_depth_max = ext_depth(inode);
1938 		spin_unlock(&sbi->s_ext_stats_lock);
1939 	}
1940 #endif
1941 	if (from >= le32_to_cpu(ex->ee_block)
1942 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1943 		/* tail removal */
1944 		ext4_lblk_t num;
1945 		ext4_fsblk_t start;
1946 
1947 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
1948 		start = ext_pblock(ex) + ee_len - num;
1949 		ext_debug("free last %u blocks starting %llu\n", num, start);
1950 		for (i = 0; i < num; i++) {
1951 			bh = sb_find_get_block(inode->i_sb, start + i);
1952 			ext4_forget(handle, 0, inode, bh, start + i);
1953 		}
1954 		ext4_free_blocks(handle, inode, start, num, metadata);
1955 	} else if (from == le32_to_cpu(ex->ee_block)
1956 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1957 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1958 			from, to, le32_to_cpu(ex->ee_block), ee_len);
1959 	} else {
1960 		printk(KERN_INFO "strange request: removal(2) "
1961 				"%u-%u from %u:%u\n",
1962 				from, to, le32_to_cpu(ex->ee_block), ee_len);
1963 	}
1964 	return 0;
1965 }
1966 
1967 static int
1968 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1969 		struct ext4_ext_path *path, ext4_lblk_t start)
1970 {
1971 	int err = 0, correct_index = 0;
1972 	int depth = ext_depth(inode), credits;
1973 	struct ext4_extent_header *eh;
1974 	ext4_lblk_t a, b, block;
1975 	unsigned num;
1976 	ext4_lblk_t ex_ee_block;
1977 	unsigned short ex_ee_len;
1978 	unsigned uninitialized = 0;
1979 	struct ext4_extent *ex;
1980 
1981 	/* the header must be checked already in ext4_ext_remove_space() */
1982 	ext_debug("truncate since %u in leaf\n", start);
1983 	if (!path[depth].p_hdr)
1984 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1985 	eh = path[depth].p_hdr;
1986 	BUG_ON(eh == NULL);
1987 
1988 	/* find where to start removing */
1989 	ex = EXT_LAST_EXTENT(eh);
1990 
1991 	ex_ee_block = le32_to_cpu(ex->ee_block);
1992 	if (ext4_ext_is_uninitialized(ex))
1993 		uninitialized = 1;
1994 	ex_ee_len = ext4_ext_get_actual_len(ex);
1995 
1996 	while (ex >= EXT_FIRST_EXTENT(eh) &&
1997 			ex_ee_block + ex_ee_len > start) {
1998 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1999 		path[depth].p_ext = ex;
2000 
2001 		a = ex_ee_block > start ? ex_ee_block : start;
2002 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2003 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2004 
2005 		ext_debug("  border %u:%u\n", a, b);
2006 
2007 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2008 			block = 0;
2009 			num = 0;
2010 			BUG();
2011 		} else if (a != ex_ee_block) {
2012 			/* remove tail of the extent */
2013 			block = ex_ee_block;
2014 			num = a - block;
2015 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2016 			/* remove head of the extent */
2017 			block = a;
2018 			num = b - a;
2019 			/* there is no "make a hole" API yet */
2020 			BUG();
2021 		} else {
2022 			/* remove whole extent: excellent! */
2023 			block = ex_ee_block;
2024 			num = 0;
2025 			BUG_ON(a != ex_ee_block);
2026 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2027 		}
2028 
2029 		/*
2030 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2031 		 * descriptor) for each block group; assume two block
2032 		 * groups plus ex_ee_len/blocks_per_block_group for
2033 		 * the worst case
2034 		 */
2035 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2036 		if (ex == EXT_FIRST_EXTENT(eh)) {
2037 			correct_index = 1;
2038 			credits += (ext_depth(inode)) + 1;
2039 		}
2040 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2041 
2042 		err = ext4_ext_journal_restart(handle, credits);
2043 		if (err)
2044 			goto out;
2045 
2046 		err = ext4_ext_get_access(handle, inode, path + depth);
2047 		if (err)
2048 			goto out;
2049 
2050 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2051 		if (err)
2052 			goto out;
2053 
2054 		if (num == 0) {
2055 			/* this extent is removed; mark slot entirely unused */
2056 			ext4_ext_store_pblock(ex, 0);
2057 			le16_add_cpu(&eh->eh_entries, -1);
2058 		}
2059 
2060 		ex->ee_block = cpu_to_le32(block);
2061 		ex->ee_len = cpu_to_le16(num);
2062 		/*
2063 		 * Do not mark uninitialized if all the blocks in the
2064 		 * extent have been removed.
2065 		 */
2066 		if (uninitialized && num)
2067 			ext4_ext_mark_uninitialized(ex);
2068 
2069 		err = ext4_ext_dirty(handle, inode, path + depth);
2070 		if (err)
2071 			goto out;
2072 
2073 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2074 				ext_pblock(ex));
2075 		ex--;
2076 		ex_ee_block = le32_to_cpu(ex->ee_block);
2077 		ex_ee_len = ext4_ext_get_actual_len(ex);
2078 	}
2079 
2080 	if (correct_index && eh->eh_entries)
2081 		err = ext4_ext_correct_indexes(handle, inode, path);
2082 
2083 	/* if this leaf is free, then we should
2084 	 * remove it from index block above */
2085 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2086 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2087 
2088 out:
2089 	return err;
2090 }
2091 
2092 /*
2093  * ext4_ext_more_to_rm:
2094  * returns 1 if current index has to be freed (even partial)
2095  */
2096 static int
2097 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2098 {
2099 	BUG_ON(path->p_idx == NULL);
2100 
2101 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2102 		return 0;
2103 
2104 	/*
2105 	 * if truncate on deeper level happened, it wasn't partial,
2106 	 * so we have to consider current index for truncation
2107 	 */
2108 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2109 		return 0;
2110 	return 1;
2111 }
2112 
2113 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2114 {
2115 	struct super_block *sb = inode->i_sb;
2116 	int depth = ext_depth(inode);
2117 	struct ext4_ext_path *path;
2118 	handle_t *handle;
2119 	int i = 0, err = 0;
2120 
2121 	ext_debug("truncate since %u\n", start);
2122 
2123 	/* probably first extent we're gonna free will be last in block */
2124 	handle = ext4_journal_start(inode, depth + 1);
2125 	if (IS_ERR(handle))
2126 		return PTR_ERR(handle);
2127 
2128 	ext4_ext_invalidate_cache(inode);
2129 
2130 	/*
2131 	 * We start scanning from right side, freeing all the blocks
2132 	 * after i_size and walking into the tree depth-wise.
2133 	 */
2134 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2135 	if (path == NULL) {
2136 		ext4_journal_stop(handle);
2137 		return -ENOMEM;
2138 	}
2139 	path[0].p_hdr = ext_inode_hdr(inode);
2140 	if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
2141 		err = -EIO;
2142 		goto out;
2143 	}
2144 	path[0].p_depth = depth;
2145 
2146 	while (i >= 0 && err == 0) {
2147 		if (i == depth) {
2148 			/* this is leaf block */
2149 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2150 			/* root level has p_bh == NULL, brelse() eats this */
2151 			brelse(path[i].p_bh);
2152 			path[i].p_bh = NULL;
2153 			i--;
2154 			continue;
2155 		}
2156 
2157 		/* this is index block */
2158 		if (!path[i].p_hdr) {
2159 			ext_debug("initialize header\n");
2160 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2161 		}
2162 
2163 		if (!path[i].p_idx) {
2164 			/* this level hasn't been touched yet */
2165 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2166 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2167 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2168 				  path[i].p_hdr,
2169 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2170 		} else {
2171 			/* we were already here, see at next index */
2172 			path[i].p_idx--;
2173 		}
2174 
2175 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2176 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2177 				path[i].p_idx);
2178 		if (ext4_ext_more_to_rm(path + i)) {
2179 			struct buffer_head *bh;
2180 			/* go to the next level */
2181 			ext_debug("move to level %d (block %llu)\n",
2182 				  i + 1, idx_pblock(path[i].p_idx));
2183 			memset(path + i + 1, 0, sizeof(*path));
2184 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2185 			if (!bh) {
2186 				/* should we reset i_size? */
2187 				err = -EIO;
2188 				break;
2189 			}
2190 			if (WARN_ON(i + 1 > depth)) {
2191 				err = -EIO;
2192 				break;
2193 			}
2194 			if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2195 							depth - i - 1)) {
2196 				err = -EIO;
2197 				break;
2198 			}
2199 			path[i + 1].p_bh = bh;
2200 
2201 			/* save actual number of indexes since this
2202 			 * number is changed at the next iteration */
2203 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2204 			i++;
2205 		} else {
2206 			/* we finished processing this index, go up */
2207 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2208 				/* index is empty, remove it;
2209 				 * handle must be already prepared by the
2210 				 * truncatei_leaf() */
2211 				err = ext4_ext_rm_idx(handle, inode, path + i);
2212 			}
2213 			/* root level has p_bh == NULL, brelse() eats this */
2214 			brelse(path[i].p_bh);
2215 			path[i].p_bh = NULL;
2216 			i--;
2217 			ext_debug("return to level %d\n", i);
2218 		}
2219 	}
2220 
2221 	/* TODO: flexible tree reduction should be here */
2222 	if (path->p_hdr->eh_entries == 0) {
2223 		/*
2224 		 * truncate to zero freed all the tree,
2225 		 * so we need to correct eh_depth
2226 		 */
2227 		err = ext4_ext_get_access(handle, inode, path);
2228 		if (err == 0) {
2229 			ext_inode_hdr(inode)->eh_depth = 0;
2230 			ext_inode_hdr(inode)->eh_max =
2231 				cpu_to_le16(ext4_ext_space_root(inode));
2232 			err = ext4_ext_dirty(handle, inode, path);
2233 		}
2234 	}
2235 out:
2236 	ext4_ext_tree_changed(inode);
2237 	ext4_ext_drop_refs(path);
2238 	kfree(path);
2239 	ext4_journal_stop(handle);
2240 
2241 	return err;
2242 }
2243 
2244 /*
2245  * called at mount time
2246  */
2247 void ext4_ext_init(struct super_block *sb)
2248 {
2249 	/*
2250 	 * possible initialization would be here
2251 	 */
2252 
2253 	if (test_opt(sb, EXTENTS)) {
2254 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2255 #ifdef AGGRESSIVE_TEST
2256 		printk(", aggressive tests");
2257 #endif
2258 #ifdef CHECK_BINSEARCH
2259 		printk(", check binsearch");
2260 #endif
2261 #ifdef EXTENTS_STATS
2262 		printk(", stats");
2263 #endif
2264 		printk("\n");
2265 #ifdef EXTENTS_STATS
2266 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2267 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2268 		EXT4_SB(sb)->s_ext_max = 0;
2269 #endif
2270 	}
2271 }
2272 
2273 /*
2274  * called at umount time
2275  */
2276 void ext4_ext_release(struct super_block *sb)
2277 {
2278 	if (!test_opt(sb, EXTENTS))
2279 		return;
2280 
2281 #ifdef EXTENTS_STATS
2282 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2283 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2284 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2285 			sbi->s_ext_blocks, sbi->s_ext_extents,
2286 			sbi->s_ext_blocks / sbi->s_ext_extents);
2287 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2288 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2289 	}
2290 #endif
2291 }
2292 
2293 static void bi_complete(struct bio *bio, int error)
2294 {
2295 	complete((struct completion *)bio->bi_private);
2296 }
2297 
2298 /* FIXME!! we need to try to merge to left or right after zero-out  */
2299 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2300 {
2301 	int ret = -EIO;
2302 	struct bio *bio;
2303 	int blkbits, blocksize;
2304 	sector_t ee_pblock;
2305 	struct completion event;
2306 	unsigned int ee_len, len, done, offset;
2307 
2308 
2309 	blkbits   = inode->i_blkbits;
2310 	blocksize = inode->i_sb->s_blocksize;
2311 	ee_len    = ext4_ext_get_actual_len(ex);
2312 	ee_pblock = ext_pblock(ex);
2313 
2314 	/* convert ee_pblock to 512 byte sectors */
2315 	ee_pblock = ee_pblock << (blkbits - 9);
2316 
2317 	while (ee_len > 0) {
2318 
2319 		if (ee_len > BIO_MAX_PAGES)
2320 			len = BIO_MAX_PAGES;
2321 		else
2322 			len = ee_len;
2323 
2324 		bio = bio_alloc(GFP_NOIO, len);
2325 		if (!bio)
2326 			return -ENOMEM;
2327 		bio->bi_sector = ee_pblock;
2328 		bio->bi_bdev   = inode->i_sb->s_bdev;
2329 
2330 		done = 0;
2331 		offset = 0;
2332 		while (done < len) {
2333 			ret = bio_add_page(bio, ZERO_PAGE(0),
2334 							blocksize, offset);
2335 			if (ret != blocksize) {
2336 				/*
2337 				 * We can't add any more pages because of
2338 				 * hardware limitations.  Start a new bio.
2339 				 */
2340 				break;
2341 			}
2342 			done++;
2343 			offset += blocksize;
2344 			if (offset >= PAGE_CACHE_SIZE)
2345 				offset = 0;
2346 		}
2347 
2348 		init_completion(&event);
2349 		bio->bi_private = &event;
2350 		bio->bi_end_io = bi_complete;
2351 		submit_bio(WRITE, bio);
2352 		wait_for_completion(&event);
2353 
2354 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2355 			ret = 0;
2356 		else {
2357 			ret = -EIO;
2358 			break;
2359 		}
2360 		bio_put(bio);
2361 		ee_len    -= done;
2362 		ee_pblock += done  << (blkbits - 9);
2363 	}
2364 	return ret;
2365 }
2366 
2367 #define EXT4_EXT_ZERO_LEN 7
2368 
2369 /*
2370  * This function is called by ext4_ext_get_blocks() if someone tries to write
2371  * to an uninitialized extent. It may result in splitting the uninitialized
2372  * extent into multiple extents (upto three - one initialized and two
2373  * uninitialized).
2374  * There are three possibilities:
2375  *   a> There is no split required: Entire extent should be initialized
2376  *   b> Splits in two extents: Write is happening at either end of the extent
2377  *   c> Splits in three extents: Somone is writing in middle of the extent
2378  */
2379 static int ext4_ext_convert_to_initialized(handle_t *handle,
2380 						struct inode *inode,
2381 						struct ext4_ext_path *path,
2382 						ext4_lblk_t iblock,
2383 						unsigned long max_blocks)
2384 {
2385 	struct ext4_extent *ex, newex, orig_ex;
2386 	struct ext4_extent *ex1 = NULL;
2387 	struct ext4_extent *ex2 = NULL;
2388 	struct ext4_extent *ex3 = NULL;
2389 	struct ext4_extent_header *eh;
2390 	ext4_lblk_t ee_block;
2391 	unsigned int allocated, ee_len, depth;
2392 	ext4_fsblk_t newblock;
2393 	int err = 0;
2394 	int ret = 0;
2395 
2396 	depth = ext_depth(inode);
2397 	eh = path[depth].p_hdr;
2398 	ex = path[depth].p_ext;
2399 	ee_block = le32_to_cpu(ex->ee_block);
2400 	ee_len = ext4_ext_get_actual_len(ex);
2401 	allocated = ee_len - (iblock - ee_block);
2402 	newblock = iblock - ee_block + ext_pblock(ex);
2403 	ex2 = ex;
2404 	orig_ex.ee_block = ex->ee_block;
2405 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2406 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2407 
2408 	err = ext4_ext_get_access(handle, inode, path + depth);
2409 	if (err)
2410 		goto out;
2411 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2412 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2413 		err =  ext4_ext_zeroout(inode, &orig_ex);
2414 		if (err)
2415 			goto fix_extent_len;
2416 		/* update the extent length and mark as initialized */
2417 		ex->ee_block = orig_ex.ee_block;
2418 		ex->ee_len   = orig_ex.ee_len;
2419 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2420 		ext4_ext_dirty(handle, inode, path + depth);
2421 		/* zeroed the full extent */
2422 		return allocated;
2423 	}
2424 
2425 	/* ex1: ee_block to iblock - 1 : uninitialized */
2426 	if (iblock > ee_block) {
2427 		ex1 = ex;
2428 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2429 		ext4_ext_mark_uninitialized(ex1);
2430 		ex2 = &newex;
2431 	}
2432 	/*
2433 	 * for sanity, update the length of the ex2 extent before
2434 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2435 	 * overlap of blocks.
2436 	 */
2437 	if (!ex1 && allocated > max_blocks)
2438 		ex2->ee_len = cpu_to_le16(max_blocks);
2439 	/* ex3: to ee_block + ee_len : uninitialised */
2440 	if (allocated > max_blocks) {
2441 		unsigned int newdepth;
2442 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2443 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2444 			/*
2445 			 * iblock == ee_block is handled by the zerouout
2446 			 * at the beginning.
2447 			 * Mark first half uninitialized.
2448 			 * Mark second half initialized and zero out the
2449 			 * initialized extent
2450 			 */
2451 			ex->ee_block = orig_ex.ee_block;
2452 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2453 			ext4_ext_mark_uninitialized(ex);
2454 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2455 			ext4_ext_dirty(handle, inode, path + depth);
2456 
2457 			ex3 = &newex;
2458 			ex3->ee_block = cpu_to_le32(iblock);
2459 			ext4_ext_store_pblock(ex3, newblock);
2460 			ex3->ee_len = cpu_to_le16(allocated);
2461 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2462 			if (err == -ENOSPC) {
2463 				err =  ext4_ext_zeroout(inode, &orig_ex);
2464 				if (err)
2465 					goto fix_extent_len;
2466 				ex->ee_block = orig_ex.ee_block;
2467 				ex->ee_len   = orig_ex.ee_len;
2468 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2469 				ext4_ext_dirty(handle, inode, path + depth);
2470 				/* blocks available from iblock */
2471 				return allocated;
2472 
2473 			} else if (err)
2474 				goto fix_extent_len;
2475 
2476 			/*
2477 			 * We need to zero out the second half because
2478 			 * an fallocate request can update file size and
2479 			 * converting the second half to initialized extent
2480 			 * implies that we can leak some junk data to user
2481 			 * space.
2482 			 */
2483 			err =  ext4_ext_zeroout(inode, ex3);
2484 			if (err) {
2485 				/*
2486 				 * We should actually mark the
2487 				 * second half as uninit and return error
2488 				 * Insert would have changed the extent
2489 				 */
2490 				depth = ext_depth(inode);
2491 				ext4_ext_drop_refs(path);
2492 				path = ext4_ext_find_extent(inode,
2493 								iblock, path);
2494 				if (IS_ERR(path)) {
2495 					err = PTR_ERR(path);
2496 					return err;
2497 				}
2498 				/* get the second half extent details */
2499 				ex = path[depth].p_ext;
2500 				err = ext4_ext_get_access(handle, inode,
2501 								path + depth);
2502 				if (err)
2503 					return err;
2504 				ext4_ext_mark_uninitialized(ex);
2505 				ext4_ext_dirty(handle, inode, path + depth);
2506 				return err;
2507 			}
2508 
2509 			/* zeroed the second half */
2510 			return allocated;
2511 		}
2512 		ex3 = &newex;
2513 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2514 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2515 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2516 		ext4_ext_mark_uninitialized(ex3);
2517 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2518 		if (err == -ENOSPC) {
2519 			err =  ext4_ext_zeroout(inode, &orig_ex);
2520 			if (err)
2521 				goto fix_extent_len;
2522 			/* update the extent length and mark as initialized */
2523 			ex->ee_block = orig_ex.ee_block;
2524 			ex->ee_len   = orig_ex.ee_len;
2525 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2526 			ext4_ext_dirty(handle, inode, path + depth);
2527 			/* zeroed the full extent */
2528 			/* blocks available from iblock */
2529 			return allocated;
2530 
2531 		} else if (err)
2532 			goto fix_extent_len;
2533 		/*
2534 		 * The depth, and hence eh & ex might change
2535 		 * as part of the insert above.
2536 		 */
2537 		newdepth = ext_depth(inode);
2538 		/*
2539 		 * update the extent length after successfull insert of the
2540 		 * split extent
2541 		 */
2542 		orig_ex.ee_len = cpu_to_le16(ee_len -
2543 						ext4_ext_get_actual_len(ex3));
2544 		depth = newdepth;
2545 		ext4_ext_drop_refs(path);
2546 		path = ext4_ext_find_extent(inode, iblock, path);
2547 		if (IS_ERR(path)) {
2548 			err = PTR_ERR(path);
2549 			goto out;
2550 		}
2551 		eh = path[depth].p_hdr;
2552 		ex = path[depth].p_ext;
2553 		if (ex2 != &newex)
2554 			ex2 = ex;
2555 
2556 		err = ext4_ext_get_access(handle, inode, path + depth);
2557 		if (err)
2558 			goto out;
2559 
2560 		allocated = max_blocks;
2561 
2562 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2563 		 * to insert a extent in the middle zerout directly
2564 		 * otherwise give the extent a chance to merge to left
2565 		 */
2566 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2567 							iblock != ee_block) {
2568 			err =  ext4_ext_zeroout(inode, &orig_ex);
2569 			if (err)
2570 				goto fix_extent_len;
2571 			/* update the extent length and mark as initialized */
2572 			ex->ee_block = orig_ex.ee_block;
2573 			ex->ee_len   = orig_ex.ee_len;
2574 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2575 			ext4_ext_dirty(handle, inode, path + depth);
2576 			/* zero out the first half */
2577 			/* blocks available from iblock */
2578 			return allocated;
2579 		}
2580 	}
2581 	/*
2582 	 * If there was a change of depth as part of the
2583 	 * insertion of ex3 above, we need to update the length
2584 	 * of the ex1 extent again here
2585 	 */
2586 	if (ex1 && ex1 != ex) {
2587 		ex1 = ex;
2588 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2589 		ext4_ext_mark_uninitialized(ex1);
2590 		ex2 = &newex;
2591 	}
2592 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2593 	ex2->ee_block = cpu_to_le32(iblock);
2594 	ext4_ext_store_pblock(ex2, newblock);
2595 	ex2->ee_len = cpu_to_le16(allocated);
2596 	if (ex2 != ex)
2597 		goto insert;
2598 	/*
2599 	 * New (initialized) extent starts from the first block
2600 	 * in the current extent. i.e., ex2 == ex
2601 	 * We have to see if it can be merged with the extent
2602 	 * on the left.
2603 	 */
2604 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2605 		/*
2606 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2607 		 * since it merges towards right _only_.
2608 		 */
2609 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2610 		if (ret) {
2611 			err = ext4_ext_correct_indexes(handle, inode, path);
2612 			if (err)
2613 				goto out;
2614 			depth = ext_depth(inode);
2615 			ex2--;
2616 		}
2617 	}
2618 	/*
2619 	 * Try to Merge towards right. This might be required
2620 	 * only when the whole extent is being written to.
2621 	 * i.e. ex2 == ex and ex3 == NULL.
2622 	 */
2623 	if (!ex3) {
2624 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2625 		if (ret) {
2626 			err = ext4_ext_correct_indexes(handle, inode, path);
2627 			if (err)
2628 				goto out;
2629 		}
2630 	}
2631 	/* Mark modified extent as dirty */
2632 	err = ext4_ext_dirty(handle, inode, path + depth);
2633 	goto out;
2634 insert:
2635 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2636 	if (err == -ENOSPC) {
2637 		err =  ext4_ext_zeroout(inode, &orig_ex);
2638 		if (err)
2639 			goto fix_extent_len;
2640 		/* update the extent length and mark as initialized */
2641 		ex->ee_block = orig_ex.ee_block;
2642 		ex->ee_len   = orig_ex.ee_len;
2643 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2644 		ext4_ext_dirty(handle, inode, path + depth);
2645 		/* zero out the first half */
2646 		return allocated;
2647 	} else if (err)
2648 		goto fix_extent_len;
2649 out:
2650 	return err ? err : allocated;
2651 
2652 fix_extent_len:
2653 	ex->ee_block = orig_ex.ee_block;
2654 	ex->ee_len   = orig_ex.ee_len;
2655 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2656 	ext4_ext_mark_uninitialized(ex);
2657 	ext4_ext_dirty(handle, inode, path + depth);
2658 	return err;
2659 }
2660 
2661 /*
2662  * Block allocation/map/preallocation routine for extents based files
2663  *
2664  *
2665  * Need to be called with
2666  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2667  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2668  *
2669  * return > 0, number of of blocks already mapped/allocated
2670  *          if create == 0 and these are pre-allocated blocks
2671  *          	buffer head is unmapped
2672  *          otherwise blocks are mapped
2673  *
2674  * return = 0, if plain look up failed (blocks have not been allocated)
2675  *          buffer head is unmapped
2676  *
2677  * return < 0, error case.
2678  */
2679 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2680 			ext4_lblk_t iblock,
2681 			unsigned long max_blocks, struct buffer_head *bh_result,
2682 			int create, int extend_disksize)
2683 {
2684 	struct ext4_ext_path *path = NULL;
2685 	struct ext4_extent_header *eh;
2686 	struct ext4_extent newex, *ex;
2687 	ext4_fsblk_t goal, newblock;
2688 	int err = 0, depth, ret;
2689 	unsigned long allocated = 0;
2690 	struct ext4_allocation_request ar;
2691 	loff_t disksize;
2692 
2693 	__clear_bit(BH_New, &bh_result->b_state);
2694 	ext_debug("blocks %u/%lu requested for inode %u\n",
2695 			iblock, max_blocks, inode->i_ino);
2696 
2697 	/* check in cache */
2698 	goal = ext4_ext_in_cache(inode, iblock, &newex);
2699 	if (goal) {
2700 		if (goal == EXT4_EXT_CACHE_GAP) {
2701 			if (!create) {
2702 				/*
2703 				 * block isn't allocated yet and
2704 				 * user doesn't want to allocate it
2705 				 */
2706 				goto out2;
2707 			}
2708 			/* we should allocate requested block */
2709 		} else if (goal == EXT4_EXT_CACHE_EXTENT) {
2710 			/* block is already allocated */
2711 			newblock = iblock
2712 				   - le32_to_cpu(newex.ee_block)
2713 				   + ext_pblock(&newex);
2714 			/* number of remaining blocks in the extent */
2715 			allocated = ext4_ext_get_actual_len(&newex) -
2716 					(iblock - le32_to_cpu(newex.ee_block));
2717 			goto out;
2718 		} else {
2719 			BUG();
2720 		}
2721 	}
2722 
2723 	/* find extent for this block */
2724 	path = ext4_ext_find_extent(inode, iblock, NULL);
2725 	if (IS_ERR(path)) {
2726 		err = PTR_ERR(path);
2727 		path = NULL;
2728 		goto out2;
2729 	}
2730 
2731 	depth = ext_depth(inode);
2732 
2733 	/*
2734 	 * consistent leaf must not be empty;
2735 	 * this situation is possible, though, _during_ tree modification;
2736 	 * this is why assert can't be put in ext4_ext_find_extent()
2737 	 */
2738 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2739 	eh = path[depth].p_hdr;
2740 
2741 	ex = path[depth].p_ext;
2742 	if (ex) {
2743 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2744 		ext4_fsblk_t ee_start = ext_pblock(ex);
2745 		unsigned short ee_len;
2746 
2747 		/*
2748 		 * Uninitialized extents are treated as holes, except that
2749 		 * we split out initialized portions during a write.
2750 		 */
2751 		ee_len = ext4_ext_get_actual_len(ex);
2752 		/* if found extent covers block, simply return it */
2753 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2754 			newblock = iblock - ee_block + ee_start;
2755 			/* number of remaining blocks in the extent */
2756 			allocated = ee_len - (iblock - ee_block);
2757 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2758 					ee_block, ee_len, newblock);
2759 
2760 			/* Do not put uninitialized extent in the cache */
2761 			if (!ext4_ext_is_uninitialized(ex)) {
2762 				ext4_ext_put_in_cache(inode, ee_block,
2763 							ee_len, ee_start,
2764 							EXT4_EXT_CACHE_EXTENT);
2765 				goto out;
2766 			}
2767 			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2768 				goto out;
2769 			if (!create) {
2770 				/*
2771 				 * We have blocks reserved already.  We
2772 				 * return allocated blocks so that delalloc
2773 				 * won't do block reservation for us.  But
2774 				 * the buffer head will be unmapped so that
2775 				 * a read from the block returns 0s.
2776 				 */
2777 				if (allocated > max_blocks)
2778 					allocated = max_blocks;
2779 				set_buffer_unwritten(bh_result);
2780 				goto out2;
2781 			}
2782 
2783 			ret = ext4_ext_convert_to_initialized(handle, inode,
2784 								path, iblock,
2785 								max_blocks);
2786 			if (ret <= 0) {
2787 				err = ret;
2788 				goto out2;
2789 			} else
2790 				allocated = ret;
2791 			goto outnew;
2792 		}
2793 	}
2794 
2795 	/*
2796 	 * requested block isn't allocated yet;
2797 	 * we couldn't try to create block if create flag is zero
2798 	 */
2799 	if (!create) {
2800 		/*
2801 		 * put just found gap into cache to speed up
2802 		 * subsequent requests
2803 		 */
2804 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2805 		goto out2;
2806 	}
2807 	/*
2808 	 * Okay, we need to do block allocation.
2809 	 */
2810 
2811 	/* find neighbour allocated blocks */
2812 	ar.lleft = iblock;
2813 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2814 	if (err)
2815 		goto out2;
2816 	ar.lright = iblock;
2817 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2818 	if (err)
2819 		goto out2;
2820 
2821 	/*
2822 	 * See if request is beyond maximum number of blocks we can have in
2823 	 * a single extent. For an initialized extent this limit is
2824 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2825 	 * EXT_UNINIT_MAX_LEN.
2826 	 */
2827 	if (max_blocks > EXT_INIT_MAX_LEN &&
2828 	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2829 		max_blocks = EXT_INIT_MAX_LEN;
2830 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2831 		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2832 		max_blocks = EXT_UNINIT_MAX_LEN;
2833 
2834 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2835 	newex.ee_block = cpu_to_le32(iblock);
2836 	newex.ee_len = cpu_to_le16(max_blocks);
2837 	err = ext4_ext_check_overlap(inode, &newex, path);
2838 	if (err)
2839 		allocated = ext4_ext_get_actual_len(&newex);
2840 	else
2841 		allocated = max_blocks;
2842 
2843 	/* allocate new block */
2844 	ar.inode = inode;
2845 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2846 	ar.logical = iblock;
2847 	ar.len = allocated;
2848 	if (S_ISREG(inode->i_mode))
2849 		ar.flags = EXT4_MB_HINT_DATA;
2850 	else
2851 		/* disable in-core preallocation for non-regular files */
2852 		ar.flags = 0;
2853 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2854 	if (!newblock)
2855 		goto out2;
2856 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2857 			goal, newblock, allocated);
2858 
2859 	/* try to insert new extent into found leaf and return */
2860 	ext4_ext_store_pblock(&newex, newblock);
2861 	newex.ee_len = cpu_to_le16(ar.len);
2862 	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2863 		ext4_ext_mark_uninitialized(&newex);
2864 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2865 	if (err) {
2866 		/* free data blocks we just allocated */
2867 		/* not a good idea to call discard here directly,
2868 		 * but otherwise we'd need to call it every free() */
2869 		ext4_discard_preallocations(inode);
2870 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2871 					ext4_ext_get_actual_len(&newex), 0);
2872 		goto out2;
2873 	}
2874 
2875 	/* previous routine could use block we allocated */
2876 	newblock = ext_pblock(&newex);
2877 	allocated = ext4_ext_get_actual_len(&newex);
2878 outnew:
2879 	if (extend_disksize) {
2880 		disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2881 		if (disksize > i_size_read(inode))
2882 			disksize = i_size_read(inode);
2883 		if (disksize > EXT4_I(inode)->i_disksize)
2884 			EXT4_I(inode)->i_disksize = disksize;
2885 	}
2886 
2887 	set_buffer_new(bh_result);
2888 
2889 	/* Cache only when it is _not_ an uninitialized extent */
2890 	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2891 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2892 						EXT4_EXT_CACHE_EXTENT);
2893 out:
2894 	if (allocated > max_blocks)
2895 		allocated = max_blocks;
2896 	ext4_ext_show_leaf(inode, path);
2897 	set_buffer_mapped(bh_result);
2898 	bh_result->b_bdev = inode->i_sb->s_bdev;
2899 	bh_result->b_blocknr = newblock;
2900 out2:
2901 	if (path) {
2902 		ext4_ext_drop_refs(path);
2903 		kfree(path);
2904 	}
2905 	return err ? err : allocated;
2906 }
2907 
2908 void ext4_ext_truncate(struct inode *inode)
2909 {
2910 	struct address_space *mapping = inode->i_mapping;
2911 	struct super_block *sb = inode->i_sb;
2912 	ext4_lblk_t last_block;
2913 	handle_t *handle;
2914 	int err = 0;
2915 
2916 	/*
2917 	 * probably first extent we're gonna free will be last in block
2918 	 */
2919 	err = ext4_writepage_trans_blocks(inode);
2920 	handle = ext4_journal_start(inode, err);
2921 	if (IS_ERR(handle))
2922 		return;
2923 
2924 	if (inode->i_size & (sb->s_blocksize - 1))
2925 		ext4_block_truncate_page(handle, mapping, inode->i_size);
2926 
2927 	if (ext4_orphan_add(handle, inode))
2928 		goto out_stop;
2929 
2930 	down_write(&EXT4_I(inode)->i_data_sem);
2931 	ext4_ext_invalidate_cache(inode);
2932 
2933 	ext4_discard_preallocations(inode);
2934 
2935 	/*
2936 	 * TODO: optimization is possible here.
2937 	 * Probably we need not scan at all,
2938 	 * because page truncation is enough.
2939 	 */
2940 
2941 	/* we have to know where to truncate from in crash case */
2942 	EXT4_I(inode)->i_disksize = inode->i_size;
2943 	ext4_mark_inode_dirty(handle, inode);
2944 
2945 	last_block = (inode->i_size + sb->s_blocksize - 1)
2946 			>> EXT4_BLOCK_SIZE_BITS(sb);
2947 	err = ext4_ext_remove_space(inode, last_block);
2948 
2949 	/* In a multi-transaction truncate, we only make the final
2950 	 * transaction synchronous.
2951 	 */
2952 	if (IS_SYNC(inode))
2953 		handle->h_sync = 1;
2954 
2955 out_stop:
2956 	up_write(&EXT4_I(inode)->i_data_sem);
2957 	/*
2958 	 * If this was a simple ftruncate() and the file will remain alive,
2959 	 * then we need to clear up the orphan record which we created above.
2960 	 * However, if this was a real unlink then we were called by
2961 	 * ext4_delete_inode(), and we allow that function to clean up the
2962 	 * orphan info for us.
2963 	 */
2964 	if (inode->i_nlink)
2965 		ext4_orphan_del(handle, inode);
2966 
2967 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2968 	ext4_mark_inode_dirty(handle, inode);
2969 	ext4_journal_stop(handle);
2970 }
2971 
2972 static void ext4_falloc_update_inode(struct inode *inode,
2973 				int mode, loff_t new_size, int update_ctime)
2974 {
2975 	struct timespec now;
2976 
2977 	if (update_ctime) {
2978 		now = current_fs_time(inode->i_sb);
2979 		if (!timespec_equal(&inode->i_ctime, &now))
2980 			inode->i_ctime = now;
2981 	}
2982 	/*
2983 	 * Update only when preallocation was requested beyond
2984 	 * the file size.
2985 	 */
2986 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2987 		if (new_size > i_size_read(inode))
2988 			i_size_write(inode, new_size);
2989 		if (new_size > EXT4_I(inode)->i_disksize)
2990 			ext4_update_i_disksize(inode, new_size);
2991 	}
2992 
2993 }
2994 
2995 /*
2996  * preallocate space for a file. This implements ext4's fallocate inode
2997  * operation, which gets called from sys_fallocate system call.
2998  * For block-mapped files, posix_fallocate should fall back to the method
2999  * of writing zeroes to the required new blocks (the same behavior which is
3000  * expected for file systems which do not support fallocate() system call).
3001  */
3002 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3003 {
3004 	handle_t *handle;
3005 	ext4_lblk_t block;
3006 	loff_t new_size;
3007 	unsigned long max_blocks;
3008 	int ret = 0;
3009 	int ret2 = 0;
3010 	int retries = 0;
3011 	struct buffer_head map_bh;
3012 	unsigned int credits, blkbits = inode->i_blkbits;
3013 
3014 	/*
3015 	 * currently supporting (pre)allocate mode for extent-based
3016 	 * files _only_
3017 	 */
3018 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3019 		return -EOPNOTSUPP;
3020 
3021 	/* preallocation to directories is currently not supported */
3022 	if (S_ISDIR(inode->i_mode))
3023 		return -ENODEV;
3024 
3025 	block = offset >> blkbits;
3026 	/*
3027 	 * We can't just convert len to max_blocks because
3028 	 * If blocksize = 4096 offset = 3072 and len = 2048
3029 	 */
3030 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3031 							- block;
3032 	/*
3033 	 * credits to insert 1 extent into extent tree
3034 	 */
3035 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3036 	mutex_lock(&inode->i_mutex);
3037 retry:
3038 	while (ret >= 0 && ret < max_blocks) {
3039 		block = block + ret;
3040 		max_blocks = max_blocks - ret;
3041 		handle = ext4_journal_start(inode, credits);
3042 		if (IS_ERR(handle)) {
3043 			ret = PTR_ERR(handle);
3044 			break;
3045 		}
3046 		ret = ext4_get_blocks_wrap(handle, inode, block,
3047 					  max_blocks, &map_bh,
3048 					  EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3049 		if (ret <= 0) {
3050 #ifdef EXT4FS_DEBUG
3051 			WARN_ON(ret <= 0);
3052 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3053 				    "returned error inode#%lu, block=%u, "
3054 				    "max_blocks=%lu", __func__,
3055 				    inode->i_ino, block, max_blocks);
3056 #endif
3057 			ext4_mark_inode_dirty(handle, inode);
3058 			ret2 = ext4_journal_stop(handle);
3059 			break;
3060 		}
3061 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3062 						blkbits) >> blkbits))
3063 			new_size = offset + len;
3064 		else
3065 			new_size = (block + ret) << blkbits;
3066 
3067 		ext4_falloc_update_inode(inode, mode, new_size,
3068 						buffer_new(&map_bh));
3069 		ext4_mark_inode_dirty(handle, inode);
3070 		ret2 = ext4_journal_stop(handle);
3071 		if (ret2)
3072 			break;
3073 	}
3074 	if (ret == -ENOSPC &&
3075 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3076 		ret = 0;
3077 		goto retry;
3078 	}
3079 	mutex_unlock(&inode->i_mutex);
3080 	return ret > 0 ? ret2 : ret;
3081 }
3082 
3083 /*
3084  * Callback function called for each extent to gather FIEMAP information.
3085  */
3086 int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3087 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3088 		       void *data)
3089 {
3090 	struct fiemap_extent_info *fieinfo = data;
3091 	unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3092 	__u64	logical;
3093 	__u64	physical;
3094 	__u64	length;
3095 	__u32	flags = 0;
3096 	int	error;
3097 
3098 	logical =  (__u64)newex->ec_block << blksize_bits;
3099 
3100 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3101 		pgoff_t offset;
3102 		struct page *page;
3103 		struct buffer_head *bh = NULL;
3104 
3105 		offset = logical >> PAGE_SHIFT;
3106 		page = find_get_page(inode->i_mapping, offset);
3107 		if (!page || !page_has_buffers(page))
3108 			return EXT_CONTINUE;
3109 
3110 		bh = page_buffers(page);
3111 
3112 		if (!bh)
3113 			return EXT_CONTINUE;
3114 
3115 		if (buffer_delay(bh)) {
3116 			flags |= FIEMAP_EXTENT_DELALLOC;
3117 			page_cache_release(page);
3118 		} else {
3119 			page_cache_release(page);
3120 			return EXT_CONTINUE;
3121 		}
3122 	}
3123 
3124 	physical = (__u64)newex->ec_start << blksize_bits;
3125 	length =   (__u64)newex->ec_len << blksize_bits;
3126 
3127 	if (ex && ext4_ext_is_uninitialized(ex))
3128 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3129 
3130 	/*
3131 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3132 	 *
3133 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3134 	 * this also indicates no more allocated blocks.
3135 	 *
3136 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3137 	 */
3138 	if (logical + length - 1 == EXT_MAX_BLOCK ||
3139 	    ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3140 		flags |= FIEMAP_EXTENT_LAST;
3141 
3142 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3143 					length, flags);
3144 	if (error < 0)
3145 		return error;
3146 	if (error == 1)
3147 		return EXT_BREAK;
3148 
3149 	return EXT_CONTINUE;
3150 }
3151 
3152 /* fiemap flags we can handle specified here */
3153 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3154 
3155 int ext4_xattr_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo)
3156 {
3157 	__u64 physical = 0;
3158 	__u64 length;
3159 	__u32 flags = FIEMAP_EXTENT_LAST;
3160 	int blockbits = inode->i_sb->s_blocksize_bits;
3161 	int error = 0;
3162 
3163 	/* in-inode? */
3164 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3165 		struct ext4_iloc iloc;
3166 		int offset;	/* offset of xattr in inode */
3167 
3168 		error = ext4_get_inode_loc(inode, &iloc);
3169 		if (error)
3170 			return error;
3171 		physical = iloc.bh->b_blocknr << blockbits;
3172 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3173 				EXT4_I(inode)->i_extra_isize;
3174 		physical += offset;
3175 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3176 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3177 	} else { /* external block */
3178 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3179 		length = inode->i_sb->s_blocksize;
3180 	}
3181 
3182 	if (physical)
3183 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3184 						length, flags);
3185 	return (error < 0 ? error : 0);
3186 }
3187 
3188 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3189 		__u64 start, __u64 len)
3190 {
3191 	ext4_lblk_t start_blk;
3192 	ext4_lblk_t len_blks;
3193 	int error = 0;
3194 
3195 	/* fallback to generic here if not in extents fmt */
3196 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3197 		return generic_block_fiemap(inode, fieinfo, start, len,
3198 			ext4_get_block);
3199 
3200 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3201 		return -EBADR;
3202 
3203 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3204 		error = ext4_xattr_fiemap(inode, fieinfo);
3205 	} else {
3206 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3207 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3208 
3209 		/*
3210 		 * Walk the extent tree gathering extent information.
3211 		 * ext4_ext_fiemap_cb will push extents back to user.
3212 		 */
3213 		down_write(&EXT4_I(inode)->i_data_sem);
3214 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3215 					  ext4_ext_fiemap_cb, fieinfo);
3216 		up_write(&EXT4_I(inode)->i_data_sem);
3217 	}
3218 
3219 	return error;
3220 }
3221 
3222