xref: /linux/fs/ext4/extents.c (revision 7265706c8fd57722f622f336ec110cb35f83e739)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 
46 
47 /*
48  * ext_pblock:
49  * combine low and high parts of physical block number into ext4_fsblk_t
50  */
51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
52 {
53 	ext4_fsblk_t block;
54 
55 	block = le32_to_cpu(ex->ee_start_lo);
56 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
57 	return block;
58 }
59 
60 /*
61  * idx_pblock:
62  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
63  */
64 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
65 {
66 	ext4_fsblk_t block;
67 
68 	block = le32_to_cpu(ix->ei_leaf_lo);
69 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
70 	return block;
71 }
72 
73 /*
74  * ext4_ext_store_pblock:
75  * stores a large physical block number into an extent struct,
76  * breaking it into parts
77  */
78 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
79 {
80 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
82 }
83 
84 /*
85  * ext4_idx_store_pblock:
86  * stores a large physical block number into an index struct,
87  * breaking it into parts
88  */
89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
90 {
91 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
93 }
94 
95 static int ext4_ext_journal_restart(handle_t *handle, int needed)
96 {
97 	int err;
98 
99 	if (handle->h_buffer_credits > needed)
100 		return 0;
101 	err = ext4_journal_extend(handle, needed);
102 	if (err <= 0)
103 		return err;
104 	return ext4_journal_restart(handle, needed);
105 }
106 
107 /*
108  * could return:
109  *  - EROFS
110  *  - ENOMEM
111  */
112 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
113 				struct ext4_ext_path *path)
114 {
115 	if (path->p_bh) {
116 		/* path points to block */
117 		return ext4_journal_get_write_access(handle, path->p_bh);
118 	}
119 	/* path points to leaf/index in inode body */
120 	/* we use in-core data, no need to protect them */
121 	return 0;
122 }
123 
124 /*
125  * could return:
126  *  - EROFS
127  *  - ENOMEM
128  *  - EIO
129  */
130 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
131 				struct ext4_ext_path *path)
132 {
133 	int err;
134 	if (path->p_bh) {
135 		/* path points to block */
136 		err = ext4_journal_dirty_metadata(handle, path->p_bh);
137 	} else {
138 		/* path points to leaf/index in inode body */
139 		err = ext4_mark_inode_dirty(handle, inode);
140 	}
141 	return err;
142 }
143 
144 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
145 			      struct ext4_ext_path *path,
146 			      ext4_lblk_t block)
147 {
148 	struct ext4_inode_info *ei = EXT4_I(inode);
149 	ext4_fsblk_t bg_start;
150 	ext4_fsblk_t last_block;
151 	ext4_grpblk_t colour;
152 	int depth;
153 
154 	if (path) {
155 		struct ext4_extent *ex;
156 		depth = path->p_depth;
157 
158 		/* try to predict block placement */
159 		ex = path[depth].p_ext;
160 		if (ex)
161 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
162 
163 		/* it looks like index is empty;
164 		 * try to find starting block from index itself */
165 		if (path[depth].p_bh)
166 			return path[depth].p_bh->b_blocknr;
167 	}
168 
169 	/* OK. use inode's group */
170 	bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
171 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
172 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
173 
174 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
175 		colour = (current->pid % 16) *
176 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
177 	else
178 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
179 	return bg_start + colour + block;
180 }
181 
182 /*
183  * Allocation for a meta data block
184  */
185 static ext4_fsblk_t
186 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
187 			struct ext4_ext_path *path,
188 			struct ext4_extent *ex, int *err)
189 {
190 	ext4_fsblk_t goal, newblock;
191 
192 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
193 	newblock = ext4_new_meta_block(handle, inode, goal, err);
194 	return newblock;
195 }
196 
197 static int ext4_ext_space_block(struct inode *inode)
198 {
199 	int size;
200 
201 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
202 			/ sizeof(struct ext4_extent);
203 #ifdef AGGRESSIVE_TEST
204 	if (size > 6)
205 		size = 6;
206 #endif
207 	return size;
208 }
209 
210 static int ext4_ext_space_block_idx(struct inode *inode)
211 {
212 	int size;
213 
214 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
215 			/ sizeof(struct ext4_extent_idx);
216 #ifdef AGGRESSIVE_TEST
217 	if (size > 5)
218 		size = 5;
219 #endif
220 	return size;
221 }
222 
223 static int ext4_ext_space_root(struct inode *inode)
224 {
225 	int size;
226 
227 	size = sizeof(EXT4_I(inode)->i_data);
228 	size -= sizeof(struct ext4_extent_header);
229 	size /= sizeof(struct ext4_extent);
230 #ifdef AGGRESSIVE_TEST
231 	if (size > 3)
232 		size = 3;
233 #endif
234 	return size;
235 }
236 
237 static int ext4_ext_space_root_idx(struct inode *inode)
238 {
239 	int size;
240 
241 	size = sizeof(EXT4_I(inode)->i_data);
242 	size -= sizeof(struct ext4_extent_header);
243 	size /= sizeof(struct ext4_extent_idx);
244 #ifdef AGGRESSIVE_TEST
245 	if (size > 4)
246 		size = 4;
247 #endif
248 	return size;
249 }
250 
251 /*
252  * Calculate the number of metadata blocks needed
253  * to allocate @blocks
254  * Worse case is one block per extent
255  */
256 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
257 {
258 	int lcap, icap, rcap, leafs, idxs, num;
259 	int newextents = blocks;
260 
261 	rcap = ext4_ext_space_root_idx(inode);
262 	lcap = ext4_ext_space_block(inode);
263 	icap = ext4_ext_space_block_idx(inode);
264 
265 	/* number of new leaf blocks needed */
266 	num = leafs = (newextents + lcap - 1) / lcap;
267 
268 	/*
269 	 * Worse case, we need separate index block(s)
270 	 * to link all new leaf blocks
271 	 */
272 	idxs = (leafs + icap - 1) / icap;
273 	do {
274 		num += idxs;
275 		idxs = (idxs + icap - 1) / icap;
276 	} while (idxs > rcap);
277 
278 	return num;
279 }
280 
281 static int
282 ext4_ext_max_entries(struct inode *inode, int depth)
283 {
284 	int max;
285 
286 	if (depth == ext_depth(inode)) {
287 		if (depth == 0)
288 			max = ext4_ext_space_root(inode);
289 		else
290 			max = ext4_ext_space_root_idx(inode);
291 	} else {
292 		if (depth == 0)
293 			max = ext4_ext_space_block(inode);
294 		else
295 			max = ext4_ext_space_block_idx(inode);
296 	}
297 
298 	return max;
299 }
300 
301 static int __ext4_ext_check_header(const char *function, struct inode *inode,
302 					struct ext4_extent_header *eh,
303 					int depth)
304 {
305 	const char *error_msg;
306 	int max = 0;
307 
308 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
309 		error_msg = "invalid magic";
310 		goto corrupted;
311 	}
312 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
313 		error_msg = "unexpected eh_depth";
314 		goto corrupted;
315 	}
316 	if (unlikely(eh->eh_max == 0)) {
317 		error_msg = "invalid eh_max";
318 		goto corrupted;
319 	}
320 	max = ext4_ext_max_entries(inode, depth);
321 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
322 		error_msg = "too large eh_max";
323 		goto corrupted;
324 	}
325 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
326 		error_msg = "invalid eh_entries";
327 		goto corrupted;
328 	}
329 	return 0;
330 
331 corrupted:
332 	ext4_error(inode->i_sb, function,
333 			"bad header in inode #%lu: %s - magic %x, "
334 			"entries %u, max %u(%u), depth %u(%u)",
335 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
336 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
337 			max, le16_to_cpu(eh->eh_depth), depth);
338 
339 	return -EIO;
340 }
341 
342 #define ext4_ext_check_header(inode, eh, depth)	\
343 	__ext4_ext_check_header(__func__, inode, eh, depth)
344 
345 #ifdef EXT_DEBUG
346 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
347 {
348 	int k, l = path->p_depth;
349 
350 	ext_debug("path:");
351 	for (k = 0; k <= l; k++, path++) {
352 		if (path->p_idx) {
353 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
354 			    idx_pblock(path->p_idx));
355 		} else if (path->p_ext) {
356 			ext_debug("  %d:%d:%llu ",
357 				  le32_to_cpu(path->p_ext->ee_block),
358 				  ext4_ext_get_actual_len(path->p_ext),
359 				  ext_pblock(path->p_ext));
360 		} else
361 			ext_debug("  []");
362 	}
363 	ext_debug("\n");
364 }
365 
366 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
367 {
368 	int depth = ext_depth(inode);
369 	struct ext4_extent_header *eh;
370 	struct ext4_extent *ex;
371 	int i;
372 
373 	if (!path)
374 		return;
375 
376 	eh = path[depth].p_hdr;
377 	ex = EXT_FIRST_EXTENT(eh);
378 
379 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
380 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
381 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
382 	}
383 	ext_debug("\n");
384 }
385 #else
386 #define ext4_ext_show_path(inode,path)
387 #define ext4_ext_show_leaf(inode,path)
388 #endif
389 
390 void ext4_ext_drop_refs(struct ext4_ext_path *path)
391 {
392 	int depth = path->p_depth;
393 	int i;
394 
395 	for (i = 0; i <= depth; i++, path++)
396 		if (path->p_bh) {
397 			brelse(path->p_bh);
398 			path->p_bh = NULL;
399 		}
400 }
401 
402 /*
403  * ext4_ext_binsearch_idx:
404  * binary search for the closest index of the given block
405  * the header must be checked before calling this
406  */
407 static void
408 ext4_ext_binsearch_idx(struct inode *inode,
409 			struct ext4_ext_path *path, ext4_lblk_t block)
410 {
411 	struct ext4_extent_header *eh = path->p_hdr;
412 	struct ext4_extent_idx *r, *l, *m;
413 
414 
415 	ext_debug("binsearch for %u(idx):  ", block);
416 
417 	l = EXT_FIRST_INDEX(eh) + 1;
418 	r = EXT_LAST_INDEX(eh);
419 	while (l <= r) {
420 		m = l + (r - l) / 2;
421 		if (block < le32_to_cpu(m->ei_block))
422 			r = m - 1;
423 		else
424 			l = m + 1;
425 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
426 				m, le32_to_cpu(m->ei_block),
427 				r, le32_to_cpu(r->ei_block));
428 	}
429 
430 	path->p_idx = l - 1;
431 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
432 		  idx_pblock(path->p_idx));
433 
434 #ifdef CHECK_BINSEARCH
435 	{
436 		struct ext4_extent_idx *chix, *ix;
437 		int k;
438 
439 		chix = ix = EXT_FIRST_INDEX(eh);
440 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
441 		  if (k != 0 &&
442 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
443 				printk("k=%d, ix=0x%p, first=0x%p\n", k,
444 					ix, EXT_FIRST_INDEX(eh));
445 				printk("%u <= %u\n",
446 				       le32_to_cpu(ix->ei_block),
447 				       le32_to_cpu(ix[-1].ei_block));
448 			}
449 			BUG_ON(k && le32_to_cpu(ix->ei_block)
450 					   <= le32_to_cpu(ix[-1].ei_block));
451 			if (block < le32_to_cpu(ix->ei_block))
452 				break;
453 			chix = ix;
454 		}
455 		BUG_ON(chix != path->p_idx);
456 	}
457 #endif
458 
459 }
460 
461 /*
462  * ext4_ext_binsearch:
463  * binary search for closest extent of the given block
464  * the header must be checked before calling this
465  */
466 static void
467 ext4_ext_binsearch(struct inode *inode,
468 		struct ext4_ext_path *path, ext4_lblk_t block)
469 {
470 	struct ext4_extent_header *eh = path->p_hdr;
471 	struct ext4_extent *r, *l, *m;
472 
473 	if (eh->eh_entries == 0) {
474 		/*
475 		 * this leaf is empty:
476 		 * we get such a leaf in split/add case
477 		 */
478 		return;
479 	}
480 
481 	ext_debug("binsearch for %u:  ", block);
482 
483 	l = EXT_FIRST_EXTENT(eh) + 1;
484 	r = EXT_LAST_EXTENT(eh);
485 
486 	while (l <= r) {
487 		m = l + (r - l) / 2;
488 		if (block < le32_to_cpu(m->ee_block))
489 			r = m - 1;
490 		else
491 			l = m + 1;
492 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
493 				m, le32_to_cpu(m->ee_block),
494 				r, le32_to_cpu(r->ee_block));
495 	}
496 
497 	path->p_ext = l - 1;
498 	ext_debug("  -> %d:%llu:%d ",
499 			le32_to_cpu(path->p_ext->ee_block),
500 			ext_pblock(path->p_ext),
501 			ext4_ext_get_actual_len(path->p_ext));
502 
503 #ifdef CHECK_BINSEARCH
504 	{
505 		struct ext4_extent *chex, *ex;
506 		int k;
507 
508 		chex = ex = EXT_FIRST_EXTENT(eh);
509 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
510 			BUG_ON(k && le32_to_cpu(ex->ee_block)
511 					  <= le32_to_cpu(ex[-1].ee_block));
512 			if (block < le32_to_cpu(ex->ee_block))
513 				break;
514 			chex = ex;
515 		}
516 		BUG_ON(chex != path->p_ext);
517 	}
518 #endif
519 
520 }
521 
522 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
523 {
524 	struct ext4_extent_header *eh;
525 
526 	eh = ext_inode_hdr(inode);
527 	eh->eh_depth = 0;
528 	eh->eh_entries = 0;
529 	eh->eh_magic = EXT4_EXT_MAGIC;
530 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
531 	ext4_mark_inode_dirty(handle, inode);
532 	ext4_ext_invalidate_cache(inode);
533 	return 0;
534 }
535 
536 struct ext4_ext_path *
537 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
538 					struct ext4_ext_path *path)
539 {
540 	struct ext4_extent_header *eh;
541 	struct buffer_head *bh;
542 	short int depth, i, ppos = 0, alloc = 0;
543 
544 	eh = ext_inode_hdr(inode);
545 	depth = ext_depth(inode);
546 	if (ext4_ext_check_header(inode, eh, depth))
547 		return ERR_PTR(-EIO);
548 
549 
550 	/* account possible depth increase */
551 	if (!path) {
552 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
553 				GFP_NOFS);
554 		if (!path)
555 			return ERR_PTR(-ENOMEM);
556 		alloc = 1;
557 	}
558 	path[0].p_hdr = eh;
559 	path[0].p_bh = NULL;
560 
561 	i = depth;
562 	/* walk through the tree */
563 	while (i) {
564 		ext_debug("depth %d: num %d, max %d\n",
565 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
566 
567 		ext4_ext_binsearch_idx(inode, path + ppos, block);
568 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
569 		path[ppos].p_depth = i;
570 		path[ppos].p_ext = NULL;
571 
572 		bh = sb_bread(inode->i_sb, path[ppos].p_block);
573 		if (!bh)
574 			goto err;
575 
576 		eh = ext_block_hdr(bh);
577 		ppos++;
578 		BUG_ON(ppos > depth);
579 		path[ppos].p_bh = bh;
580 		path[ppos].p_hdr = eh;
581 		i--;
582 
583 		if (ext4_ext_check_header(inode, eh, i))
584 			goto err;
585 	}
586 
587 	path[ppos].p_depth = i;
588 	path[ppos].p_ext = NULL;
589 	path[ppos].p_idx = NULL;
590 
591 	/* find extent */
592 	ext4_ext_binsearch(inode, path + ppos, block);
593 	/* if not an empty leaf */
594 	if (path[ppos].p_ext)
595 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
596 
597 	ext4_ext_show_path(inode, path);
598 
599 	return path;
600 
601 err:
602 	ext4_ext_drop_refs(path);
603 	if (alloc)
604 		kfree(path);
605 	return ERR_PTR(-EIO);
606 }
607 
608 /*
609  * ext4_ext_insert_index:
610  * insert new index [@logical;@ptr] into the block at @curp;
611  * check where to insert: before @curp or after @curp
612  */
613 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
614 				struct ext4_ext_path *curp,
615 				int logical, ext4_fsblk_t ptr)
616 {
617 	struct ext4_extent_idx *ix;
618 	int len, err;
619 
620 	err = ext4_ext_get_access(handle, inode, curp);
621 	if (err)
622 		return err;
623 
624 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
625 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
626 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
627 		/* insert after */
628 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
629 			len = (len - 1) * sizeof(struct ext4_extent_idx);
630 			len = len < 0 ? 0 : len;
631 			ext_debug("insert new index %d after: %llu. "
632 					"move %d from 0x%p to 0x%p\n",
633 					logical, ptr, len,
634 					(curp->p_idx + 1), (curp->p_idx + 2));
635 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
636 		}
637 		ix = curp->p_idx + 1;
638 	} else {
639 		/* insert before */
640 		len = len * sizeof(struct ext4_extent_idx);
641 		len = len < 0 ? 0 : len;
642 		ext_debug("insert new index %d before: %llu. "
643 				"move %d from 0x%p to 0x%p\n",
644 				logical, ptr, len,
645 				curp->p_idx, (curp->p_idx + 1));
646 		memmove(curp->p_idx + 1, curp->p_idx, len);
647 		ix = curp->p_idx;
648 	}
649 
650 	ix->ei_block = cpu_to_le32(logical);
651 	ext4_idx_store_pblock(ix, ptr);
652 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
653 
654 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
655 			     > le16_to_cpu(curp->p_hdr->eh_max));
656 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
657 
658 	err = ext4_ext_dirty(handle, inode, curp);
659 	ext4_std_error(inode->i_sb, err);
660 
661 	return err;
662 }
663 
664 /*
665  * ext4_ext_split:
666  * inserts new subtree into the path, using free index entry
667  * at depth @at:
668  * - allocates all needed blocks (new leaf and all intermediate index blocks)
669  * - makes decision where to split
670  * - moves remaining extents and index entries (right to the split point)
671  *   into the newly allocated blocks
672  * - initializes subtree
673  */
674 static int ext4_ext_split(handle_t *handle, struct inode *inode,
675 				struct ext4_ext_path *path,
676 				struct ext4_extent *newext, int at)
677 {
678 	struct buffer_head *bh = NULL;
679 	int depth = ext_depth(inode);
680 	struct ext4_extent_header *neh;
681 	struct ext4_extent_idx *fidx;
682 	struct ext4_extent *ex;
683 	int i = at, k, m, a;
684 	ext4_fsblk_t newblock, oldblock;
685 	__le32 border;
686 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
687 	int err = 0;
688 
689 	/* make decision: where to split? */
690 	/* FIXME: now decision is simplest: at current extent */
691 
692 	/* if current leaf will be split, then we should use
693 	 * border from split point */
694 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
695 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
696 		border = path[depth].p_ext[1].ee_block;
697 		ext_debug("leaf will be split."
698 				" next leaf starts at %d\n",
699 				  le32_to_cpu(border));
700 	} else {
701 		border = newext->ee_block;
702 		ext_debug("leaf will be added."
703 				" next leaf starts at %d\n",
704 				le32_to_cpu(border));
705 	}
706 
707 	/*
708 	 * If error occurs, then we break processing
709 	 * and mark filesystem read-only. index won't
710 	 * be inserted and tree will be in consistent
711 	 * state. Next mount will repair buffers too.
712 	 */
713 
714 	/*
715 	 * Get array to track all allocated blocks.
716 	 * We need this to handle errors and free blocks
717 	 * upon them.
718 	 */
719 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
720 	if (!ablocks)
721 		return -ENOMEM;
722 
723 	/* allocate all needed blocks */
724 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
725 	for (a = 0; a < depth - at; a++) {
726 		newblock = ext4_ext_new_meta_block(handle, inode, path,
727 						   newext, &err);
728 		if (newblock == 0)
729 			goto cleanup;
730 		ablocks[a] = newblock;
731 	}
732 
733 	/* initialize new leaf */
734 	newblock = ablocks[--a];
735 	BUG_ON(newblock == 0);
736 	bh = sb_getblk(inode->i_sb, newblock);
737 	if (!bh) {
738 		err = -EIO;
739 		goto cleanup;
740 	}
741 	lock_buffer(bh);
742 
743 	err = ext4_journal_get_create_access(handle, bh);
744 	if (err)
745 		goto cleanup;
746 
747 	neh = ext_block_hdr(bh);
748 	neh->eh_entries = 0;
749 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
750 	neh->eh_magic = EXT4_EXT_MAGIC;
751 	neh->eh_depth = 0;
752 	ex = EXT_FIRST_EXTENT(neh);
753 
754 	/* move remainder of path[depth] to the new leaf */
755 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
756 	/* start copy from next extent */
757 	/* TODO: we could do it by single memmove */
758 	m = 0;
759 	path[depth].p_ext++;
760 	while (path[depth].p_ext <=
761 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
762 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
763 				le32_to_cpu(path[depth].p_ext->ee_block),
764 				ext_pblock(path[depth].p_ext),
765 				ext4_ext_get_actual_len(path[depth].p_ext),
766 				newblock);
767 		/*memmove(ex++, path[depth].p_ext++,
768 				sizeof(struct ext4_extent));
769 		neh->eh_entries++;*/
770 		path[depth].p_ext++;
771 		m++;
772 	}
773 	if (m) {
774 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
775 		le16_add_cpu(&neh->eh_entries, m);
776 	}
777 
778 	set_buffer_uptodate(bh);
779 	unlock_buffer(bh);
780 
781 	err = ext4_journal_dirty_metadata(handle, bh);
782 	if (err)
783 		goto cleanup;
784 	brelse(bh);
785 	bh = NULL;
786 
787 	/* correct old leaf */
788 	if (m) {
789 		err = ext4_ext_get_access(handle, inode, path + depth);
790 		if (err)
791 			goto cleanup;
792 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
793 		err = ext4_ext_dirty(handle, inode, path + depth);
794 		if (err)
795 			goto cleanup;
796 
797 	}
798 
799 	/* create intermediate indexes */
800 	k = depth - at - 1;
801 	BUG_ON(k < 0);
802 	if (k)
803 		ext_debug("create %d intermediate indices\n", k);
804 	/* insert new index into current index block */
805 	/* current depth stored in i var */
806 	i = depth - 1;
807 	while (k--) {
808 		oldblock = newblock;
809 		newblock = ablocks[--a];
810 		bh = sb_getblk(inode->i_sb, newblock);
811 		if (!bh) {
812 			err = -EIO;
813 			goto cleanup;
814 		}
815 		lock_buffer(bh);
816 
817 		err = ext4_journal_get_create_access(handle, bh);
818 		if (err)
819 			goto cleanup;
820 
821 		neh = ext_block_hdr(bh);
822 		neh->eh_entries = cpu_to_le16(1);
823 		neh->eh_magic = EXT4_EXT_MAGIC;
824 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
825 		neh->eh_depth = cpu_to_le16(depth - i);
826 		fidx = EXT_FIRST_INDEX(neh);
827 		fidx->ei_block = border;
828 		ext4_idx_store_pblock(fidx, oldblock);
829 
830 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
831 				i, newblock, le32_to_cpu(border), oldblock);
832 		/* copy indexes */
833 		m = 0;
834 		path[i].p_idx++;
835 
836 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
837 				EXT_MAX_INDEX(path[i].p_hdr));
838 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
839 				EXT_LAST_INDEX(path[i].p_hdr));
840 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
841 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
842 					le32_to_cpu(path[i].p_idx->ei_block),
843 					idx_pblock(path[i].p_idx),
844 					newblock);
845 			/*memmove(++fidx, path[i].p_idx++,
846 					sizeof(struct ext4_extent_idx));
847 			neh->eh_entries++;
848 			BUG_ON(neh->eh_entries > neh->eh_max);*/
849 			path[i].p_idx++;
850 			m++;
851 		}
852 		if (m) {
853 			memmove(++fidx, path[i].p_idx - m,
854 				sizeof(struct ext4_extent_idx) * m);
855 			le16_add_cpu(&neh->eh_entries, m);
856 		}
857 		set_buffer_uptodate(bh);
858 		unlock_buffer(bh);
859 
860 		err = ext4_journal_dirty_metadata(handle, bh);
861 		if (err)
862 			goto cleanup;
863 		brelse(bh);
864 		bh = NULL;
865 
866 		/* correct old index */
867 		if (m) {
868 			err = ext4_ext_get_access(handle, inode, path + i);
869 			if (err)
870 				goto cleanup;
871 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
872 			err = ext4_ext_dirty(handle, inode, path + i);
873 			if (err)
874 				goto cleanup;
875 		}
876 
877 		i--;
878 	}
879 
880 	/* insert new index */
881 	err = ext4_ext_insert_index(handle, inode, path + at,
882 				    le32_to_cpu(border), newblock);
883 
884 cleanup:
885 	if (bh) {
886 		if (buffer_locked(bh))
887 			unlock_buffer(bh);
888 		brelse(bh);
889 	}
890 
891 	if (err) {
892 		/* free all allocated blocks in error case */
893 		for (i = 0; i < depth; i++) {
894 			if (!ablocks[i])
895 				continue;
896 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
897 		}
898 	}
899 	kfree(ablocks);
900 
901 	return err;
902 }
903 
904 /*
905  * ext4_ext_grow_indepth:
906  * implements tree growing procedure:
907  * - allocates new block
908  * - moves top-level data (index block or leaf) into the new block
909  * - initializes new top-level, creating index that points to the
910  *   just created block
911  */
912 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
913 					struct ext4_ext_path *path,
914 					struct ext4_extent *newext)
915 {
916 	struct ext4_ext_path *curp = path;
917 	struct ext4_extent_header *neh;
918 	struct ext4_extent_idx *fidx;
919 	struct buffer_head *bh;
920 	ext4_fsblk_t newblock;
921 	int err = 0;
922 
923 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
924 	if (newblock == 0)
925 		return err;
926 
927 	bh = sb_getblk(inode->i_sb, newblock);
928 	if (!bh) {
929 		err = -EIO;
930 		ext4_std_error(inode->i_sb, err);
931 		return err;
932 	}
933 	lock_buffer(bh);
934 
935 	err = ext4_journal_get_create_access(handle, bh);
936 	if (err) {
937 		unlock_buffer(bh);
938 		goto out;
939 	}
940 
941 	/* move top-level index/leaf into new block */
942 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
943 
944 	/* set size of new block */
945 	neh = ext_block_hdr(bh);
946 	/* old root could have indexes or leaves
947 	 * so calculate e_max right way */
948 	if (ext_depth(inode))
949 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
950 	else
951 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
952 	neh->eh_magic = EXT4_EXT_MAGIC;
953 	set_buffer_uptodate(bh);
954 	unlock_buffer(bh);
955 
956 	err = ext4_journal_dirty_metadata(handle, bh);
957 	if (err)
958 		goto out;
959 
960 	/* create index in new top-level index: num,max,pointer */
961 	err = ext4_ext_get_access(handle, inode, curp);
962 	if (err)
963 		goto out;
964 
965 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
966 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
967 	curp->p_hdr->eh_entries = cpu_to_le16(1);
968 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
969 
970 	if (path[0].p_hdr->eh_depth)
971 		curp->p_idx->ei_block =
972 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
973 	else
974 		curp->p_idx->ei_block =
975 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
976 	ext4_idx_store_pblock(curp->p_idx, newblock);
977 
978 	neh = ext_inode_hdr(inode);
979 	fidx = EXT_FIRST_INDEX(neh);
980 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
981 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
982 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
983 
984 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
985 	err = ext4_ext_dirty(handle, inode, curp);
986 out:
987 	brelse(bh);
988 
989 	return err;
990 }
991 
992 /*
993  * ext4_ext_create_new_leaf:
994  * finds empty index and adds new leaf.
995  * if no free index is found, then it requests in-depth growing.
996  */
997 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
998 					struct ext4_ext_path *path,
999 					struct ext4_extent *newext)
1000 {
1001 	struct ext4_ext_path *curp;
1002 	int depth, i, err = 0;
1003 
1004 repeat:
1005 	i = depth = ext_depth(inode);
1006 
1007 	/* walk up to the tree and look for free index entry */
1008 	curp = path + depth;
1009 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1010 		i--;
1011 		curp--;
1012 	}
1013 
1014 	/* we use already allocated block for index block,
1015 	 * so subsequent data blocks should be contiguous */
1016 	if (EXT_HAS_FREE_INDEX(curp)) {
1017 		/* if we found index with free entry, then use that
1018 		 * entry: create all needed subtree and add new leaf */
1019 		err = ext4_ext_split(handle, inode, path, newext, i);
1020 		if (err)
1021 			goto out;
1022 
1023 		/* refill path */
1024 		ext4_ext_drop_refs(path);
1025 		path = ext4_ext_find_extent(inode,
1026 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1027 				    path);
1028 		if (IS_ERR(path))
1029 			err = PTR_ERR(path);
1030 	} else {
1031 		/* tree is full, time to grow in depth */
1032 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1033 		if (err)
1034 			goto out;
1035 
1036 		/* refill path */
1037 		ext4_ext_drop_refs(path);
1038 		path = ext4_ext_find_extent(inode,
1039 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1040 				    path);
1041 		if (IS_ERR(path)) {
1042 			err = PTR_ERR(path);
1043 			goto out;
1044 		}
1045 
1046 		/*
1047 		 * only first (depth 0 -> 1) produces free space;
1048 		 * in all other cases we have to split the grown tree
1049 		 */
1050 		depth = ext_depth(inode);
1051 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1052 			/* now we need to split */
1053 			goto repeat;
1054 		}
1055 	}
1056 
1057 out:
1058 	return err;
1059 }
1060 
1061 /*
1062  * search the closest allocated block to the left for *logical
1063  * and returns it at @logical + it's physical address at @phys
1064  * if *logical is the smallest allocated block, the function
1065  * returns 0 at @phys
1066  * return value contains 0 (success) or error code
1067  */
1068 int
1069 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1070 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1071 {
1072 	struct ext4_extent_idx *ix;
1073 	struct ext4_extent *ex;
1074 	int depth, ee_len;
1075 
1076 	BUG_ON(path == NULL);
1077 	depth = path->p_depth;
1078 	*phys = 0;
1079 
1080 	if (depth == 0 && path->p_ext == NULL)
1081 		return 0;
1082 
1083 	/* usually extent in the path covers blocks smaller
1084 	 * then *logical, but it can be that extent is the
1085 	 * first one in the file */
1086 
1087 	ex = path[depth].p_ext;
1088 	ee_len = ext4_ext_get_actual_len(ex);
1089 	if (*logical < le32_to_cpu(ex->ee_block)) {
1090 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1091 		while (--depth >= 0) {
1092 			ix = path[depth].p_idx;
1093 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1094 		}
1095 		return 0;
1096 	}
1097 
1098 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1099 
1100 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1101 	*phys = ext_pblock(ex) + ee_len - 1;
1102 	return 0;
1103 }
1104 
1105 /*
1106  * search the closest allocated block to the right for *logical
1107  * and returns it at @logical + it's physical address at @phys
1108  * if *logical is the smallest allocated block, the function
1109  * returns 0 at @phys
1110  * return value contains 0 (success) or error code
1111  */
1112 int
1113 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1114 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1115 {
1116 	struct buffer_head *bh = NULL;
1117 	struct ext4_extent_header *eh;
1118 	struct ext4_extent_idx *ix;
1119 	struct ext4_extent *ex;
1120 	ext4_fsblk_t block;
1121 	int depth, ee_len;
1122 
1123 	BUG_ON(path == NULL);
1124 	depth = path->p_depth;
1125 	*phys = 0;
1126 
1127 	if (depth == 0 && path->p_ext == NULL)
1128 		return 0;
1129 
1130 	/* usually extent in the path covers blocks smaller
1131 	 * then *logical, but it can be that extent is the
1132 	 * first one in the file */
1133 
1134 	ex = path[depth].p_ext;
1135 	ee_len = ext4_ext_get_actual_len(ex);
1136 	if (*logical < le32_to_cpu(ex->ee_block)) {
1137 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1138 		while (--depth >= 0) {
1139 			ix = path[depth].p_idx;
1140 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1141 		}
1142 		*logical = le32_to_cpu(ex->ee_block);
1143 		*phys = ext_pblock(ex);
1144 		return 0;
1145 	}
1146 
1147 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1148 
1149 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1150 		/* next allocated block in this leaf */
1151 		ex++;
1152 		*logical = le32_to_cpu(ex->ee_block);
1153 		*phys = ext_pblock(ex);
1154 		return 0;
1155 	}
1156 
1157 	/* go up and search for index to the right */
1158 	while (--depth >= 0) {
1159 		ix = path[depth].p_idx;
1160 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1161 			break;
1162 	}
1163 
1164 	if (depth < 0) {
1165 		/* we've gone up to the root and
1166 		 * found no index to the right */
1167 		return 0;
1168 	}
1169 
1170 	/* we've found index to the right, let's
1171 	 * follow it and find the closest allocated
1172 	 * block to the right */
1173 	ix++;
1174 	block = idx_pblock(ix);
1175 	while (++depth < path->p_depth) {
1176 		bh = sb_bread(inode->i_sb, block);
1177 		if (bh == NULL)
1178 			return -EIO;
1179 		eh = ext_block_hdr(bh);
1180 		if (ext4_ext_check_header(inode, eh, depth)) {
1181 			put_bh(bh);
1182 			return -EIO;
1183 		}
1184 		ix = EXT_FIRST_INDEX(eh);
1185 		block = idx_pblock(ix);
1186 		put_bh(bh);
1187 	}
1188 
1189 	bh = sb_bread(inode->i_sb, block);
1190 	if (bh == NULL)
1191 		return -EIO;
1192 	eh = ext_block_hdr(bh);
1193 	if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1194 		put_bh(bh);
1195 		return -EIO;
1196 	}
1197 	ex = EXT_FIRST_EXTENT(eh);
1198 	*logical = le32_to_cpu(ex->ee_block);
1199 	*phys = ext_pblock(ex);
1200 	put_bh(bh);
1201 	return 0;
1202 
1203 }
1204 
1205 /*
1206  * ext4_ext_next_allocated_block:
1207  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1208  * NOTE: it considers block number from index entry as
1209  * allocated block. Thus, index entries have to be consistent
1210  * with leaves.
1211  */
1212 static ext4_lblk_t
1213 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1214 {
1215 	int depth;
1216 
1217 	BUG_ON(path == NULL);
1218 	depth = path->p_depth;
1219 
1220 	if (depth == 0 && path->p_ext == NULL)
1221 		return EXT_MAX_BLOCK;
1222 
1223 	while (depth >= 0) {
1224 		if (depth == path->p_depth) {
1225 			/* leaf */
1226 			if (path[depth].p_ext !=
1227 					EXT_LAST_EXTENT(path[depth].p_hdr))
1228 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1229 		} else {
1230 			/* index */
1231 			if (path[depth].p_idx !=
1232 					EXT_LAST_INDEX(path[depth].p_hdr))
1233 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1234 		}
1235 		depth--;
1236 	}
1237 
1238 	return EXT_MAX_BLOCK;
1239 }
1240 
1241 /*
1242  * ext4_ext_next_leaf_block:
1243  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1244  */
1245 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1246 					struct ext4_ext_path *path)
1247 {
1248 	int depth;
1249 
1250 	BUG_ON(path == NULL);
1251 	depth = path->p_depth;
1252 
1253 	/* zero-tree has no leaf blocks at all */
1254 	if (depth == 0)
1255 		return EXT_MAX_BLOCK;
1256 
1257 	/* go to index block */
1258 	depth--;
1259 
1260 	while (depth >= 0) {
1261 		if (path[depth].p_idx !=
1262 				EXT_LAST_INDEX(path[depth].p_hdr))
1263 			return (ext4_lblk_t)
1264 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1265 		depth--;
1266 	}
1267 
1268 	return EXT_MAX_BLOCK;
1269 }
1270 
1271 /*
1272  * ext4_ext_correct_indexes:
1273  * if leaf gets modified and modified extent is first in the leaf,
1274  * then we have to correct all indexes above.
1275  * TODO: do we need to correct tree in all cases?
1276  */
1277 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1278 				struct ext4_ext_path *path)
1279 {
1280 	struct ext4_extent_header *eh;
1281 	int depth = ext_depth(inode);
1282 	struct ext4_extent *ex;
1283 	__le32 border;
1284 	int k, err = 0;
1285 
1286 	eh = path[depth].p_hdr;
1287 	ex = path[depth].p_ext;
1288 	BUG_ON(ex == NULL);
1289 	BUG_ON(eh == NULL);
1290 
1291 	if (depth == 0) {
1292 		/* there is no tree at all */
1293 		return 0;
1294 	}
1295 
1296 	if (ex != EXT_FIRST_EXTENT(eh)) {
1297 		/* we correct tree if first leaf got modified only */
1298 		return 0;
1299 	}
1300 
1301 	/*
1302 	 * TODO: we need correction if border is smaller than current one
1303 	 */
1304 	k = depth - 1;
1305 	border = path[depth].p_ext->ee_block;
1306 	err = ext4_ext_get_access(handle, inode, path + k);
1307 	if (err)
1308 		return err;
1309 	path[k].p_idx->ei_block = border;
1310 	err = ext4_ext_dirty(handle, inode, path + k);
1311 	if (err)
1312 		return err;
1313 
1314 	while (k--) {
1315 		/* change all left-side indexes */
1316 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1317 			break;
1318 		err = ext4_ext_get_access(handle, inode, path + k);
1319 		if (err)
1320 			break;
1321 		path[k].p_idx->ei_block = border;
1322 		err = ext4_ext_dirty(handle, inode, path + k);
1323 		if (err)
1324 			break;
1325 	}
1326 
1327 	return err;
1328 }
1329 
1330 static int
1331 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1332 				struct ext4_extent *ex2)
1333 {
1334 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1335 
1336 	/*
1337 	 * Make sure that either both extents are uninitialized, or
1338 	 * both are _not_.
1339 	 */
1340 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1341 		return 0;
1342 
1343 	if (ext4_ext_is_uninitialized(ex1))
1344 		max_len = EXT_UNINIT_MAX_LEN;
1345 	else
1346 		max_len = EXT_INIT_MAX_LEN;
1347 
1348 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1349 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1350 
1351 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1352 			le32_to_cpu(ex2->ee_block))
1353 		return 0;
1354 
1355 	/*
1356 	 * To allow future support for preallocated extents to be added
1357 	 * as an RO_COMPAT feature, refuse to merge to extents if
1358 	 * this can result in the top bit of ee_len being set.
1359 	 */
1360 	if (ext1_ee_len + ext2_ee_len > max_len)
1361 		return 0;
1362 #ifdef AGGRESSIVE_TEST
1363 	if (ext1_ee_len >= 4)
1364 		return 0;
1365 #endif
1366 
1367 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1368 		return 1;
1369 	return 0;
1370 }
1371 
1372 /*
1373  * This function tries to merge the "ex" extent to the next extent in the tree.
1374  * It always tries to merge towards right. If you want to merge towards
1375  * left, pass "ex - 1" as argument instead of "ex".
1376  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1377  * 1 if they got merged.
1378  */
1379 int ext4_ext_try_to_merge(struct inode *inode,
1380 			  struct ext4_ext_path *path,
1381 			  struct ext4_extent *ex)
1382 {
1383 	struct ext4_extent_header *eh;
1384 	unsigned int depth, len;
1385 	int merge_done = 0;
1386 	int uninitialized = 0;
1387 
1388 	depth = ext_depth(inode);
1389 	BUG_ON(path[depth].p_hdr == NULL);
1390 	eh = path[depth].p_hdr;
1391 
1392 	while (ex < EXT_LAST_EXTENT(eh)) {
1393 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1394 			break;
1395 		/* merge with next extent! */
1396 		if (ext4_ext_is_uninitialized(ex))
1397 			uninitialized = 1;
1398 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1399 				+ ext4_ext_get_actual_len(ex + 1));
1400 		if (uninitialized)
1401 			ext4_ext_mark_uninitialized(ex);
1402 
1403 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1404 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1405 				* sizeof(struct ext4_extent);
1406 			memmove(ex + 1, ex + 2, len);
1407 		}
1408 		le16_add_cpu(&eh->eh_entries, -1);
1409 		merge_done = 1;
1410 		WARN_ON(eh->eh_entries == 0);
1411 		if (!eh->eh_entries)
1412 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1413 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1414 	}
1415 
1416 	return merge_done;
1417 }
1418 
1419 /*
1420  * check if a portion of the "newext" extent overlaps with an
1421  * existing extent.
1422  *
1423  * If there is an overlap discovered, it updates the length of the newext
1424  * such that there will be no overlap, and then returns 1.
1425  * If there is no overlap found, it returns 0.
1426  */
1427 unsigned int ext4_ext_check_overlap(struct inode *inode,
1428 				    struct ext4_extent *newext,
1429 				    struct ext4_ext_path *path)
1430 {
1431 	ext4_lblk_t b1, b2;
1432 	unsigned int depth, len1;
1433 	unsigned int ret = 0;
1434 
1435 	b1 = le32_to_cpu(newext->ee_block);
1436 	len1 = ext4_ext_get_actual_len(newext);
1437 	depth = ext_depth(inode);
1438 	if (!path[depth].p_ext)
1439 		goto out;
1440 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1441 
1442 	/*
1443 	 * get the next allocated block if the extent in the path
1444 	 * is before the requested block(s)
1445 	 */
1446 	if (b2 < b1) {
1447 		b2 = ext4_ext_next_allocated_block(path);
1448 		if (b2 == EXT_MAX_BLOCK)
1449 			goto out;
1450 	}
1451 
1452 	/* check for wrap through zero on extent logical start block*/
1453 	if (b1 + len1 < b1) {
1454 		len1 = EXT_MAX_BLOCK - b1;
1455 		newext->ee_len = cpu_to_le16(len1);
1456 		ret = 1;
1457 	}
1458 
1459 	/* check for overlap */
1460 	if (b1 + len1 > b2) {
1461 		newext->ee_len = cpu_to_le16(b2 - b1);
1462 		ret = 1;
1463 	}
1464 out:
1465 	return ret;
1466 }
1467 
1468 /*
1469  * ext4_ext_insert_extent:
1470  * tries to merge requsted extent into the existing extent or
1471  * inserts requested extent as new one into the tree,
1472  * creating new leaf in the no-space case.
1473  */
1474 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1475 				struct ext4_ext_path *path,
1476 				struct ext4_extent *newext)
1477 {
1478 	struct ext4_extent_header * eh;
1479 	struct ext4_extent *ex, *fex;
1480 	struct ext4_extent *nearex; /* nearest extent */
1481 	struct ext4_ext_path *npath = NULL;
1482 	int depth, len, err;
1483 	ext4_lblk_t next;
1484 	unsigned uninitialized = 0;
1485 
1486 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1487 	depth = ext_depth(inode);
1488 	ex = path[depth].p_ext;
1489 	BUG_ON(path[depth].p_hdr == NULL);
1490 
1491 	/* try to insert block into found extent and return */
1492 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1493 		ext_debug("append %d block to %d:%d (from %llu)\n",
1494 				ext4_ext_get_actual_len(newext),
1495 				le32_to_cpu(ex->ee_block),
1496 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1497 		err = ext4_ext_get_access(handle, inode, path + depth);
1498 		if (err)
1499 			return err;
1500 
1501 		/*
1502 		 * ext4_can_extents_be_merged should have checked that either
1503 		 * both extents are uninitialized, or both aren't. Thus we
1504 		 * need to check only one of them here.
1505 		 */
1506 		if (ext4_ext_is_uninitialized(ex))
1507 			uninitialized = 1;
1508 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1509 					+ ext4_ext_get_actual_len(newext));
1510 		if (uninitialized)
1511 			ext4_ext_mark_uninitialized(ex);
1512 		eh = path[depth].p_hdr;
1513 		nearex = ex;
1514 		goto merge;
1515 	}
1516 
1517 repeat:
1518 	depth = ext_depth(inode);
1519 	eh = path[depth].p_hdr;
1520 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1521 		goto has_space;
1522 
1523 	/* probably next leaf has space for us? */
1524 	fex = EXT_LAST_EXTENT(eh);
1525 	next = ext4_ext_next_leaf_block(inode, path);
1526 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1527 	    && next != EXT_MAX_BLOCK) {
1528 		ext_debug("next leaf block - %d\n", next);
1529 		BUG_ON(npath != NULL);
1530 		npath = ext4_ext_find_extent(inode, next, NULL);
1531 		if (IS_ERR(npath))
1532 			return PTR_ERR(npath);
1533 		BUG_ON(npath->p_depth != path->p_depth);
1534 		eh = npath[depth].p_hdr;
1535 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1536 			ext_debug("next leaf isnt full(%d)\n",
1537 				  le16_to_cpu(eh->eh_entries));
1538 			path = npath;
1539 			goto repeat;
1540 		}
1541 		ext_debug("next leaf has no free space(%d,%d)\n",
1542 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1543 	}
1544 
1545 	/*
1546 	 * There is no free space in the found leaf.
1547 	 * We're gonna add a new leaf in the tree.
1548 	 */
1549 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1550 	if (err)
1551 		goto cleanup;
1552 	depth = ext_depth(inode);
1553 	eh = path[depth].p_hdr;
1554 
1555 has_space:
1556 	nearex = path[depth].p_ext;
1557 
1558 	err = ext4_ext_get_access(handle, inode, path + depth);
1559 	if (err)
1560 		goto cleanup;
1561 
1562 	if (!nearex) {
1563 		/* there is no extent in this leaf, create first one */
1564 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1565 				le32_to_cpu(newext->ee_block),
1566 				ext_pblock(newext),
1567 				ext4_ext_get_actual_len(newext));
1568 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1569 	} else if (le32_to_cpu(newext->ee_block)
1570 			   > le32_to_cpu(nearex->ee_block)) {
1571 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1572 		if (nearex != EXT_LAST_EXTENT(eh)) {
1573 			len = EXT_MAX_EXTENT(eh) - nearex;
1574 			len = (len - 1) * sizeof(struct ext4_extent);
1575 			len = len < 0 ? 0 : len;
1576 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1577 					"move %d from 0x%p to 0x%p\n",
1578 					le32_to_cpu(newext->ee_block),
1579 					ext_pblock(newext),
1580 					ext4_ext_get_actual_len(newext),
1581 					nearex, len, nearex + 1, nearex + 2);
1582 			memmove(nearex + 2, nearex + 1, len);
1583 		}
1584 		path[depth].p_ext = nearex + 1;
1585 	} else {
1586 		BUG_ON(newext->ee_block == nearex->ee_block);
1587 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1588 		len = len < 0 ? 0 : len;
1589 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1590 				"move %d from 0x%p to 0x%p\n",
1591 				le32_to_cpu(newext->ee_block),
1592 				ext_pblock(newext),
1593 				ext4_ext_get_actual_len(newext),
1594 				nearex, len, nearex + 1, nearex + 2);
1595 		memmove(nearex + 1, nearex, len);
1596 		path[depth].p_ext = nearex;
1597 	}
1598 
1599 	le16_add_cpu(&eh->eh_entries, 1);
1600 	nearex = path[depth].p_ext;
1601 	nearex->ee_block = newext->ee_block;
1602 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1603 	nearex->ee_len = newext->ee_len;
1604 
1605 merge:
1606 	/* try to merge extents to the right */
1607 	ext4_ext_try_to_merge(inode, path, nearex);
1608 
1609 	/* try to merge extents to the left */
1610 
1611 	/* time to correct all indexes above */
1612 	err = ext4_ext_correct_indexes(handle, inode, path);
1613 	if (err)
1614 		goto cleanup;
1615 
1616 	err = ext4_ext_dirty(handle, inode, path + depth);
1617 
1618 cleanup:
1619 	if (npath) {
1620 		ext4_ext_drop_refs(npath);
1621 		kfree(npath);
1622 	}
1623 	ext4_ext_tree_changed(inode);
1624 	ext4_ext_invalidate_cache(inode);
1625 	return err;
1626 }
1627 
1628 static void
1629 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1630 			__u32 len, ext4_fsblk_t start, int type)
1631 {
1632 	struct ext4_ext_cache *cex;
1633 	BUG_ON(len == 0);
1634 	cex = &EXT4_I(inode)->i_cached_extent;
1635 	cex->ec_type = type;
1636 	cex->ec_block = block;
1637 	cex->ec_len = len;
1638 	cex->ec_start = start;
1639 }
1640 
1641 /*
1642  * ext4_ext_put_gap_in_cache:
1643  * calculate boundaries of the gap that the requested block fits into
1644  * and cache this gap
1645  */
1646 static void
1647 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1648 				ext4_lblk_t block)
1649 {
1650 	int depth = ext_depth(inode);
1651 	unsigned long len;
1652 	ext4_lblk_t lblock;
1653 	struct ext4_extent *ex;
1654 
1655 	ex = path[depth].p_ext;
1656 	if (ex == NULL) {
1657 		/* there is no extent yet, so gap is [0;-] */
1658 		lblock = 0;
1659 		len = EXT_MAX_BLOCK;
1660 		ext_debug("cache gap(whole file):");
1661 	} else if (block < le32_to_cpu(ex->ee_block)) {
1662 		lblock = block;
1663 		len = le32_to_cpu(ex->ee_block) - block;
1664 		ext_debug("cache gap(before): %u [%u:%u]",
1665 				block,
1666 				le32_to_cpu(ex->ee_block),
1667 				 ext4_ext_get_actual_len(ex));
1668 	} else if (block >= le32_to_cpu(ex->ee_block)
1669 			+ ext4_ext_get_actual_len(ex)) {
1670 		ext4_lblk_t next;
1671 		lblock = le32_to_cpu(ex->ee_block)
1672 			+ ext4_ext_get_actual_len(ex);
1673 
1674 		next = ext4_ext_next_allocated_block(path);
1675 		ext_debug("cache gap(after): [%u:%u] %u",
1676 				le32_to_cpu(ex->ee_block),
1677 				ext4_ext_get_actual_len(ex),
1678 				block);
1679 		BUG_ON(next == lblock);
1680 		len = next - lblock;
1681 	} else {
1682 		lblock = len = 0;
1683 		BUG();
1684 	}
1685 
1686 	ext_debug(" -> %u:%lu\n", lblock, len);
1687 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1688 }
1689 
1690 static int
1691 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1692 			struct ext4_extent *ex)
1693 {
1694 	struct ext4_ext_cache *cex;
1695 
1696 	cex = &EXT4_I(inode)->i_cached_extent;
1697 
1698 	/* has cache valid data? */
1699 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1700 		return EXT4_EXT_CACHE_NO;
1701 
1702 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1703 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1704 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1705 		ex->ee_block = cpu_to_le32(cex->ec_block);
1706 		ext4_ext_store_pblock(ex, cex->ec_start);
1707 		ex->ee_len = cpu_to_le16(cex->ec_len);
1708 		ext_debug("%u cached by %u:%u:%llu\n",
1709 				block,
1710 				cex->ec_block, cex->ec_len, cex->ec_start);
1711 		return cex->ec_type;
1712 	}
1713 
1714 	/* not in cache */
1715 	return EXT4_EXT_CACHE_NO;
1716 }
1717 
1718 /*
1719  * ext4_ext_rm_idx:
1720  * removes index from the index block.
1721  * It's used in truncate case only, thus all requests are for
1722  * last index in the block only.
1723  */
1724 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1725 			struct ext4_ext_path *path)
1726 {
1727 	struct buffer_head *bh;
1728 	int err;
1729 	ext4_fsblk_t leaf;
1730 
1731 	/* free index block */
1732 	path--;
1733 	leaf = idx_pblock(path->p_idx);
1734 	BUG_ON(path->p_hdr->eh_entries == 0);
1735 	err = ext4_ext_get_access(handle, inode, path);
1736 	if (err)
1737 		return err;
1738 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1739 	err = ext4_ext_dirty(handle, inode, path);
1740 	if (err)
1741 		return err;
1742 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1743 	bh = sb_find_get_block(inode->i_sb, leaf);
1744 	ext4_forget(handle, 1, inode, bh, leaf);
1745 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1746 	return err;
1747 }
1748 
1749 /*
1750  * ext4_ext_calc_credits_for_insert:
1751  * This routine returns max. credits that the extent tree can consume.
1752  * It should be OK for low-performance paths like ->writepage()
1753  * To allow many writing processes to fit into a single transaction,
1754  * the caller should calculate credits under i_data_sem and
1755  * pass the actual path.
1756  */
1757 int ext4_ext_calc_credits_for_insert(struct inode *inode,
1758 						struct ext4_ext_path *path)
1759 {
1760 	int depth, needed;
1761 
1762 	if (path) {
1763 		/* probably there is space in leaf? */
1764 		depth = ext_depth(inode);
1765 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1766 				< le16_to_cpu(path[depth].p_hdr->eh_max))
1767 			return 1;
1768 	}
1769 
1770 	/*
1771 	 * given 32-bit logical block (4294967296 blocks), max. tree
1772 	 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1773 	 * Let's also add one more level for imbalance.
1774 	 */
1775 	depth = 5;
1776 
1777 	/* allocation of new data block(s) */
1778 	needed = 2;
1779 
1780 	/*
1781 	 * tree can be full, so it would need to grow in depth:
1782 	 * we need one credit to modify old root, credits for
1783 	 * new root will be added in split accounting
1784 	 */
1785 	needed += 1;
1786 
1787 	/*
1788 	 * Index split can happen, we would need:
1789 	 *    allocate intermediate indexes (bitmap + group)
1790 	 *  + change two blocks at each level, but root (already included)
1791 	 */
1792 	needed += (depth * 2) + (depth * 2);
1793 
1794 	/* any allocation modifies superblock */
1795 	needed += 1;
1796 
1797 	return needed;
1798 }
1799 
1800 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1801 				struct ext4_extent *ex,
1802 				ext4_lblk_t from, ext4_lblk_t to)
1803 {
1804 	struct buffer_head *bh;
1805 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
1806 	int i, metadata = 0;
1807 
1808 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1809 		metadata = 1;
1810 #ifdef EXTENTS_STATS
1811 	{
1812 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1813 		spin_lock(&sbi->s_ext_stats_lock);
1814 		sbi->s_ext_blocks += ee_len;
1815 		sbi->s_ext_extents++;
1816 		if (ee_len < sbi->s_ext_min)
1817 			sbi->s_ext_min = ee_len;
1818 		if (ee_len > sbi->s_ext_max)
1819 			sbi->s_ext_max = ee_len;
1820 		if (ext_depth(inode) > sbi->s_depth_max)
1821 			sbi->s_depth_max = ext_depth(inode);
1822 		spin_unlock(&sbi->s_ext_stats_lock);
1823 	}
1824 #endif
1825 	if (from >= le32_to_cpu(ex->ee_block)
1826 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1827 		/* tail removal */
1828 		ext4_lblk_t num;
1829 		ext4_fsblk_t start;
1830 
1831 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
1832 		start = ext_pblock(ex) + ee_len - num;
1833 		ext_debug("free last %u blocks starting %llu\n", num, start);
1834 		for (i = 0; i < num; i++) {
1835 			bh = sb_find_get_block(inode->i_sb, start + i);
1836 			ext4_forget(handle, 0, inode, bh, start + i);
1837 		}
1838 		ext4_free_blocks(handle, inode, start, num, metadata);
1839 	} else if (from == le32_to_cpu(ex->ee_block)
1840 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1841 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1842 			from, to, le32_to_cpu(ex->ee_block), ee_len);
1843 	} else {
1844 		printk(KERN_INFO "strange request: removal(2) "
1845 				"%u-%u from %u:%u\n",
1846 				from, to, le32_to_cpu(ex->ee_block), ee_len);
1847 	}
1848 	return 0;
1849 }
1850 
1851 static int
1852 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1853 		struct ext4_ext_path *path, ext4_lblk_t start)
1854 {
1855 	int err = 0, correct_index = 0;
1856 	int depth = ext_depth(inode), credits;
1857 	struct ext4_extent_header *eh;
1858 	ext4_lblk_t a, b, block;
1859 	unsigned num;
1860 	ext4_lblk_t ex_ee_block;
1861 	unsigned short ex_ee_len;
1862 	unsigned uninitialized = 0;
1863 	struct ext4_extent *ex;
1864 
1865 	/* the header must be checked already in ext4_ext_remove_space() */
1866 	ext_debug("truncate since %u in leaf\n", start);
1867 	if (!path[depth].p_hdr)
1868 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1869 	eh = path[depth].p_hdr;
1870 	BUG_ON(eh == NULL);
1871 
1872 	/* find where to start removing */
1873 	ex = EXT_LAST_EXTENT(eh);
1874 
1875 	ex_ee_block = le32_to_cpu(ex->ee_block);
1876 	if (ext4_ext_is_uninitialized(ex))
1877 		uninitialized = 1;
1878 	ex_ee_len = ext4_ext_get_actual_len(ex);
1879 
1880 	while (ex >= EXT_FIRST_EXTENT(eh) &&
1881 			ex_ee_block + ex_ee_len > start) {
1882 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1883 		path[depth].p_ext = ex;
1884 
1885 		a = ex_ee_block > start ? ex_ee_block : start;
1886 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1887 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1888 
1889 		ext_debug("  border %u:%u\n", a, b);
1890 
1891 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1892 			block = 0;
1893 			num = 0;
1894 			BUG();
1895 		} else if (a != ex_ee_block) {
1896 			/* remove tail of the extent */
1897 			block = ex_ee_block;
1898 			num = a - block;
1899 		} else if (b != ex_ee_block + ex_ee_len - 1) {
1900 			/* remove head of the extent */
1901 			block = a;
1902 			num = b - a;
1903 			/* there is no "make a hole" API yet */
1904 			BUG();
1905 		} else {
1906 			/* remove whole extent: excellent! */
1907 			block = ex_ee_block;
1908 			num = 0;
1909 			BUG_ON(a != ex_ee_block);
1910 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1911 		}
1912 
1913 		/*
1914 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
1915 		 * descriptor) for each block group; assume two block
1916 		 * groups plus ex_ee_len/blocks_per_block_group for
1917 		 * the worst case
1918 		 */
1919 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
1920 		if (ex == EXT_FIRST_EXTENT(eh)) {
1921 			correct_index = 1;
1922 			credits += (ext_depth(inode)) + 1;
1923 		}
1924 #ifdef CONFIG_QUOTA
1925 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1926 #endif
1927 
1928 		err = ext4_ext_journal_restart(handle, credits);
1929 		if (err)
1930 			goto out;
1931 
1932 		err = ext4_ext_get_access(handle, inode, path + depth);
1933 		if (err)
1934 			goto out;
1935 
1936 		err = ext4_remove_blocks(handle, inode, ex, a, b);
1937 		if (err)
1938 			goto out;
1939 
1940 		if (num == 0) {
1941 			/* this extent is removed; mark slot entirely unused */
1942 			ext4_ext_store_pblock(ex, 0);
1943 			le16_add_cpu(&eh->eh_entries, -1);
1944 		}
1945 
1946 		ex->ee_block = cpu_to_le32(block);
1947 		ex->ee_len = cpu_to_le16(num);
1948 		/*
1949 		 * Do not mark uninitialized if all the blocks in the
1950 		 * extent have been removed.
1951 		 */
1952 		if (uninitialized && num)
1953 			ext4_ext_mark_uninitialized(ex);
1954 
1955 		err = ext4_ext_dirty(handle, inode, path + depth);
1956 		if (err)
1957 			goto out;
1958 
1959 		ext_debug("new extent: %u:%u:%llu\n", block, num,
1960 				ext_pblock(ex));
1961 		ex--;
1962 		ex_ee_block = le32_to_cpu(ex->ee_block);
1963 		ex_ee_len = ext4_ext_get_actual_len(ex);
1964 	}
1965 
1966 	if (correct_index && eh->eh_entries)
1967 		err = ext4_ext_correct_indexes(handle, inode, path);
1968 
1969 	/* if this leaf is free, then we should
1970 	 * remove it from index block above */
1971 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1972 		err = ext4_ext_rm_idx(handle, inode, path + depth);
1973 
1974 out:
1975 	return err;
1976 }
1977 
1978 /*
1979  * ext4_ext_more_to_rm:
1980  * returns 1 if current index has to be freed (even partial)
1981  */
1982 static int
1983 ext4_ext_more_to_rm(struct ext4_ext_path *path)
1984 {
1985 	BUG_ON(path->p_idx == NULL);
1986 
1987 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1988 		return 0;
1989 
1990 	/*
1991 	 * if truncate on deeper level happened, it wasn't partial,
1992 	 * so we have to consider current index for truncation
1993 	 */
1994 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
1995 		return 0;
1996 	return 1;
1997 }
1998 
1999 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2000 {
2001 	struct super_block *sb = inode->i_sb;
2002 	int depth = ext_depth(inode);
2003 	struct ext4_ext_path *path;
2004 	handle_t *handle;
2005 	int i = 0, err = 0;
2006 
2007 	ext_debug("truncate since %u\n", start);
2008 
2009 	/* probably first extent we're gonna free will be last in block */
2010 	handle = ext4_journal_start(inode, depth + 1);
2011 	if (IS_ERR(handle))
2012 		return PTR_ERR(handle);
2013 
2014 	ext4_ext_invalidate_cache(inode);
2015 
2016 	/*
2017 	 * We start scanning from right side, freeing all the blocks
2018 	 * after i_size and walking into the tree depth-wise.
2019 	 */
2020 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2021 	if (path == NULL) {
2022 		ext4_journal_stop(handle);
2023 		return -ENOMEM;
2024 	}
2025 	path[0].p_hdr = ext_inode_hdr(inode);
2026 	if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
2027 		err = -EIO;
2028 		goto out;
2029 	}
2030 	path[0].p_depth = depth;
2031 
2032 	while (i >= 0 && err == 0) {
2033 		if (i == depth) {
2034 			/* this is leaf block */
2035 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2036 			/* root level has p_bh == NULL, brelse() eats this */
2037 			brelse(path[i].p_bh);
2038 			path[i].p_bh = NULL;
2039 			i--;
2040 			continue;
2041 		}
2042 
2043 		/* this is index block */
2044 		if (!path[i].p_hdr) {
2045 			ext_debug("initialize header\n");
2046 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2047 		}
2048 
2049 		if (!path[i].p_idx) {
2050 			/* this level hasn't been touched yet */
2051 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2052 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2053 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2054 				  path[i].p_hdr,
2055 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2056 		} else {
2057 			/* we were already here, see at next index */
2058 			path[i].p_idx--;
2059 		}
2060 
2061 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2062 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2063 				path[i].p_idx);
2064 		if (ext4_ext_more_to_rm(path + i)) {
2065 			struct buffer_head *bh;
2066 			/* go to the next level */
2067 			ext_debug("move to level %d (block %llu)\n",
2068 				  i + 1, idx_pblock(path[i].p_idx));
2069 			memset(path + i + 1, 0, sizeof(*path));
2070 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2071 			if (!bh) {
2072 				/* should we reset i_size? */
2073 				err = -EIO;
2074 				break;
2075 			}
2076 			if (WARN_ON(i + 1 > depth)) {
2077 				err = -EIO;
2078 				break;
2079 			}
2080 			if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2081 							depth - i - 1)) {
2082 				err = -EIO;
2083 				break;
2084 			}
2085 			path[i + 1].p_bh = bh;
2086 
2087 			/* save actual number of indexes since this
2088 			 * number is changed at the next iteration */
2089 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2090 			i++;
2091 		} else {
2092 			/* we finished processing this index, go up */
2093 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2094 				/* index is empty, remove it;
2095 				 * handle must be already prepared by the
2096 				 * truncatei_leaf() */
2097 				err = ext4_ext_rm_idx(handle, inode, path + i);
2098 			}
2099 			/* root level has p_bh == NULL, brelse() eats this */
2100 			brelse(path[i].p_bh);
2101 			path[i].p_bh = NULL;
2102 			i--;
2103 			ext_debug("return to level %d\n", i);
2104 		}
2105 	}
2106 
2107 	/* TODO: flexible tree reduction should be here */
2108 	if (path->p_hdr->eh_entries == 0) {
2109 		/*
2110 		 * truncate to zero freed all the tree,
2111 		 * so we need to correct eh_depth
2112 		 */
2113 		err = ext4_ext_get_access(handle, inode, path);
2114 		if (err == 0) {
2115 			ext_inode_hdr(inode)->eh_depth = 0;
2116 			ext_inode_hdr(inode)->eh_max =
2117 				cpu_to_le16(ext4_ext_space_root(inode));
2118 			err = ext4_ext_dirty(handle, inode, path);
2119 		}
2120 	}
2121 out:
2122 	ext4_ext_tree_changed(inode);
2123 	ext4_ext_drop_refs(path);
2124 	kfree(path);
2125 	ext4_journal_stop(handle);
2126 
2127 	return err;
2128 }
2129 
2130 /*
2131  * called at mount time
2132  */
2133 void ext4_ext_init(struct super_block *sb)
2134 {
2135 	/*
2136 	 * possible initialization would be here
2137 	 */
2138 
2139 	if (test_opt(sb, EXTENTS)) {
2140 		printk("EXT4-fs: file extents enabled");
2141 #ifdef AGGRESSIVE_TEST
2142 		printk(", aggressive tests");
2143 #endif
2144 #ifdef CHECK_BINSEARCH
2145 		printk(", check binsearch");
2146 #endif
2147 #ifdef EXTENTS_STATS
2148 		printk(", stats");
2149 #endif
2150 		printk("\n");
2151 #ifdef EXTENTS_STATS
2152 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2153 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2154 		EXT4_SB(sb)->s_ext_max = 0;
2155 #endif
2156 	}
2157 }
2158 
2159 /*
2160  * called at umount time
2161  */
2162 void ext4_ext_release(struct super_block *sb)
2163 {
2164 	if (!test_opt(sb, EXTENTS))
2165 		return;
2166 
2167 #ifdef EXTENTS_STATS
2168 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2169 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2170 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2171 			sbi->s_ext_blocks, sbi->s_ext_extents,
2172 			sbi->s_ext_blocks / sbi->s_ext_extents);
2173 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2174 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2175 	}
2176 #endif
2177 }
2178 
2179 static void bi_complete(struct bio *bio, int error)
2180 {
2181 	complete((struct completion *)bio->bi_private);
2182 }
2183 
2184 /* FIXME!! we need to try to merge to left or right after zero-out  */
2185 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2186 {
2187 	int ret = -EIO;
2188 	struct bio *bio;
2189 	int blkbits, blocksize;
2190 	sector_t ee_pblock;
2191 	struct completion event;
2192 	unsigned int ee_len, len, done, offset;
2193 
2194 
2195 	blkbits   = inode->i_blkbits;
2196 	blocksize = inode->i_sb->s_blocksize;
2197 	ee_len    = ext4_ext_get_actual_len(ex);
2198 	ee_pblock = ext_pblock(ex);
2199 
2200 	/* convert ee_pblock to 512 byte sectors */
2201 	ee_pblock = ee_pblock << (blkbits - 9);
2202 
2203 	while (ee_len > 0) {
2204 
2205 		if (ee_len > BIO_MAX_PAGES)
2206 			len = BIO_MAX_PAGES;
2207 		else
2208 			len = ee_len;
2209 
2210 		bio = bio_alloc(GFP_NOIO, len);
2211 		if (!bio)
2212 			return -ENOMEM;
2213 		bio->bi_sector = ee_pblock;
2214 		bio->bi_bdev   = inode->i_sb->s_bdev;
2215 
2216 		done = 0;
2217 		offset = 0;
2218 		while (done < len) {
2219 			ret = bio_add_page(bio, ZERO_PAGE(0),
2220 							blocksize, offset);
2221 			if (ret != blocksize) {
2222 				/*
2223 				 * We can't add any more pages because of
2224 				 * hardware limitations.  Start a new bio.
2225 				 */
2226 				break;
2227 			}
2228 			done++;
2229 			offset += blocksize;
2230 			if (offset >= PAGE_CACHE_SIZE)
2231 				offset = 0;
2232 		}
2233 
2234 		init_completion(&event);
2235 		bio->bi_private = &event;
2236 		bio->bi_end_io = bi_complete;
2237 		submit_bio(WRITE, bio);
2238 		wait_for_completion(&event);
2239 
2240 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2241 			ret = 0;
2242 		else {
2243 			ret = -EIO;
2244 			break;
2245 		}
2246 		bio_put(bio);
2247 		ee_len    -= done;
2248 		ee_pblock += done  << (blkbits - 9);
2249 	}
2250 	return ret;
2251 }
2252 
2253 #define EXT4_EXT_ZERO_LEN 7
2254 
2255 /*
2256  * This function is called by ext4_ext_get_blocks() if someone tries to write
2257  * to an uninitialized extent. It may result in splitting the uninitialized
2258  * extent into multiple extents (upto three - one initialized and two
2259  * uninitialized).
2260  * There are three possibilities:
2261  *   a> There is no split required: Entire extent should be initialized
2262  *   b> Splits in two extents: Write is happening at either end of the extent
2263  *   c> Splits in three extents: Somone is writing in middle of the extent
2264  */
2265 static int ext4_ext_convert_to_initialized(handle_t *handle,
2266 						struct inode *inode,
2267 						struct ext4_ext_path *path,
2268 						ext4_lblk_t iblock,
2269 						unsigned long max_blocks)
2270 {
2271 	struct ext4_extent *ex, newex, orig_ex;
2272 	struct ext4_extent *ex1 = NULL;
2273 	struct ext4_extent *ex2 = NULL;
2274 	struct ext4_extent *ex3 = NULL;
2275 	struct ext4_extent_header *eh;
2276 	ext4_lblk_t ee_block;
2277 	unsigned int allocated, ee_len, depth;
2278 	ext4_fsblk_t newblock;
2279 	int err = 0;
2280 	int ret = 0;
2281 
2282 	depth = ext_depth(inode);
2283 	eh = path[depth].p_hdr;
2284 	ex = path[depth].p_ext;
2285 	ee_block = le32_to_cpu(ex->ee_block);
2286 	ee_len = ext4_ext_get_actual_len(ex);
2287 	allocated = ee_len - (iblock - ee_block);
2288 	newblock = iblock - ee_block + ext_pblock(ex);
2289 	ex2 = ex;
2290 	orig_ex.ee_block = ex->ee_block;
2291 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2292 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2293 
2294 	err = ext4_ext_get_access(handle, inode, path + depth);
2295 	if (err)
2296 		goto out;
2297 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2298 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2299 		err =  ext4_ext_zeroout(inode, &orig_ex);
2300 		if (err)
2301 			goto fix_extent_len;
2302 		/* update the extent length and mark as initialized */
2303 		ex->ee_block = orig_ex.ee_block;
2304 		ex->ee_len   = orig_ex.ee_len;
2305 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2306 		ext4_ext_dirty(handle, inode, path + depth);
2307 		/* zeroed the full extent */
2308 		return allocated;
2309 	}
2310 
2311 	/* ex1: ee_block to iblock - 1 : uninitialized */
2312 	if (iblock > ee_block) {
2313 		ex1 = ex;
2314 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2315 		ext4_ext_mark_uninitialized(ex1);
2316 		ex2 = &newex;
2317 	}
2318 	/*
2319 	 * for sanity, update the length of the ex2 extent before
2320 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2321 	 * overlap of blocks.
2322 	 */
2323 	if (!ex1 && allocated > max_blocks)
2324 		ex2->ee_len = cpu_to_le16(max_blocks);
2325 	/* ex3: to ee_block + ee_len : uninitialised */
2326 	if (allocated > max_blocks) {
2327 		unsigned int newdepth;
2328 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2329 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2330 			/*
2331 			 * iblock == ee_block is handled by the zerouout
2332 			 * at the beginning.
2333 			 * Mark first half uninitialized.
2334 			 * Mark second half initialized and zero out the
2335 			 * initialized extent
2336 			 */
2337 			ex->ee_block = orig_ex.ee_block;
2338 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2339 			ext4_ext_mark_uninitialized(ex);
2340 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2341 			ext4_ext_dirty(handle, inode, path + depth);
2342 
2343 			ex3 = &newex;
2344 			ex3->ee_block = cpu_to_le32(iblock);
2345 			ext4_ext_store_pblock(ex3, newblock);
2346 			ex3->ee_len = cpu_to_le16(allocated);
2347 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2348 			if (err == -ENOSPC) {
2349 				err =  ext4_ext_zeroout(inode, &orig_ex);
2350 				if (err)
2351 					goto fix_extent_len;
2352 				ex->ee_block = orig_ex.ee_block;
2353 				ex->ee_len   = orig_ex.ee_len;
2354 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2355 				ext4_ext_dirty(handle, inode, path + depth);
2356 				/* blocks available from iblock */
2357 				return allocated;
2358 
2359 			} else if (err)
2360 				goto fix_extent_len;
2361 
2362 			/*
2363 			 * We need to zero out the second half because
2364 			 * an fallocate request can update file size and
2365 			 * converting the second half to initialized extent
2366 			 * implies that we can leak some junk data to user
2367 			 * space.
2368 			 */
2369 			err =  ext4_ext_zeroout(inode, ex3);
2370 			if (err) {
2371 				/*
2372 				 * We should actually mark the
2373 				 * second half as uninit and return error
2374 				 * Insert would have changed the extent
2375 				 */
2376 				depth = ext_depth(inode);
2377 				ext4_ext_drop_refs(path);
2378 				path = ext4_ext_find_extent(inode,
2379 								iblock, path);
2380 				if (IS_ERR(path)) {
2381 					err = PTR_ERR(path);
2382 					return err;
2383 				}
2384 				/* get the second half extent details */
2385 				ex = path[depth].p_ext;
2386 				err = ext4_ext_get_access(handle, inode,
2387 								path + depth);
2388 				if (err)
2389 					return err;
2390 				ext4_ext_mark_uninitialized(ex);
2391 				ext4_ext_dirty(handle, inode, path + depth);
2392 				return err;
2393 			}
2394 
2395 			/* zeroed the second half */
2396 			return allocated;
2397 		}
2398 		ex3 = &newex;
2399 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2400 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2401 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2402 		ext4_ext_mark_uninitialized(ex3);
2403 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2404 		if (err == -ENOSPC) {
2405 			err =  ext4_ext_zeroout(inode, &orig_ex);
2406 			if (err)
2407 				goto fix_extent_len;
2408 			/* update the extent length and mark as initialized */
2409 			ex->ee_block = orig_ex.ee_block;
2410 			ex->ee_len   = orig_ex.ee_len;
2411 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2412 			ext4_ext_dirty(handle, inode, path + depth);
2413 			/* zeroed the full extent */
2414 			/* blocks available from iblock */
2415 			return allocated;
2416 
2417 		} else if (err)
2418 			goto fix_extent_len;
2419 		/*
2420 		 * The depth, and hence eh & ex might change
2421 		 * as part of the insert above.
2422 		 */
2423 		newdepth = ext_depth(inode);
2424 		/*
2425 		 * update the extent length after successfull insert of the
2426 		 * split extent
2427 		 */
2428 		orig_ex.ee_len = cpu_to_le16(ee_len -
2429 						ext4_ext_get_actual_len(ex3));
2430 		depth = newdepth;
2431 		ext4_ext_drop_refs(path);
2432 		path = ext4_ext_find_extent(inode, iblock, path);
2433 		if (IS_ERR(path)) {
2434 			err = PTR_ERR(path);
2435 			goto out;
2436 		}
2437 		eh = path[depth].p_hdr;
2438 		ex = path[depth].p_ext;
2439 		if (ex2 != &newex)
2440 			ex2 = ex;
2441 
2442 		err = ext4_ext_get_access(handle, inode, path + depth);
2443 		if (err)
2444 			goto out;
2445 
2446 		allocated = max_blocks;
2447 
2448 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2449 		 * to insert a extent in the middle zerout directly
2450 		 * otherwise give the extent a chance to merge to left
2451 		 */
2452 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2453 							iblock != ee_block) {
2454 			err =  ext4_ext_zeroout(inode, &orig_ex);
2455 			if (err)
2456 				goto fix_extent_len;
2457 			/* update the extent length and mark as initialized */
2458 			ex->ee_block = orig_ex.ee_block;
2459 			ex->ee_len   = orig_ex.ee_len;
2460 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2461 			ext4_ext_dirty(handle, inode, path + depth);
2462 			/* zero out the first half */
2463 			/* blocks available from iblock */
2464 			return allocated;
2465 		}
2466 	}
2467 	/*
2468 	 * If there was a change of depth as part of the
2469 	 * insertion of ex3 above, we need to update the length
2470 	 * of the ex1 extent again here
2471 	 */
2472 	if (ex1 && ex1 != ex) {
2473 		ex1 = ex;
2474 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2475 		ext4_ext_mark_uninitialized(ex1);
2476 		ex2 = &newex;
2477 	}
2478 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2479 	ex2->ee_block = cpu_to_le32(iblock);
2480 	ext4_ext_store_pblock(ex2, newblock);
2481 	ex2->ee_len = cpu_to_le16(allocated);
2482 	if (ex2 != ex)
2483 		goto insert;
2484 	/*
2485 	 * New (initialized) extent starts from the first block
2486 	 * in the current extent. i.e., ex2 == ex
2487 	 * We have to see if it can be merged with the extent
2488 	 * on the left.
2489 	 */
2490 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2491 		/*
2492 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2493 		 * since it merges towards right _only_.
2494 		 */
2495 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2496 		if (ret) {
2497 			err = ext4_ext_correct_indexes(handle, inode, path);
2498 			if (err)
2499 				goto out;
2500 			depth = ext_depth(inode);
2501 			ex2--;
2502 		}
2503 	}
2504 	/*
2505 	 * Try to Merge towards right. This might be required
2506 	 * only when the whole extent is being written to.
2507 	 * i.e. ex2 == ex and ex3 == NULL.
2508 	 */
2509 	if (!ex3) {
2510 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2511 		if (ret) {
2512 			err = ext4_ext_correct_indexes(handle, inode, path);
2513 			if (err)
2514 				goto out;
2515 		}
2516 	}
2517 	/* Mark modified extent as dirty */
2518 	err = ext4_ext_dirty(handle, inode, path + depth);
2519 	goto out;
2520 insert:
2521 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2522 	if (err == -ENOSPC) {
2523 		err =  ext4_ext_zeroout(inode, &orig_ex);
2524 		if (err)
2525 			goto fix_extent_len;
2526 		/* update the extent length and mark as initialized */
2527 		ex->ee_block = orig_ex.ee_block;
2528 		ex->ee_len   = orig_ex.ee_len;
2529 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2530 		ext4_ext_dirty(handle, inode, path + depth);
2531 		/* zero out the first half */
2532 		return allocated;
2533 	} else if (err)
2534 		goto fix_extent_len;
2535 out:
2536 	return err ? err : allocated;
2537 
2538 fix_extent_len:
2539 	ex->ee_block = orig_ex.ee_block;
2540 	ex->ee_len   = orig_ex.ee_len;
2541 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2542 	ext4_ext_mark_uninitialized(ex);
2543 	ext4_ext_dirty(handle, inode, path + depth);
2544 	return err;
2545 }
2546 
2547 /*
2548  * Block allocation/map/preallocation routine for extents based files
2549  *
2550  *
2551  * Need to be called with
2552  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2553  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2554  *
2555  * return > 0, number of of blocks already mapped/allocated
2556  *          if create == 0 and these are pre-allocated blocks
2557  *          	buffer head is unmapped
2558  *          otherwise blocks are mapped
2559  *
2560  * return = 0, if plain look up failed (blocks have not been allocated)
2561  *          buffer head is unmapped
2562  *
2563  * return < 0, error case.
2564  */
2565 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2566 			ext4_lblk_t iblock,
2567 			unsigned long max_blocks, struct buffer_head *bh_result,
2568 			int create, int extend_disksize)
2569 {
2570 	struct ext4_ext_path *path = NULL;
2571 	struct ext4_extent_header *eh;
2572 	struct ext4_extent newex, *ex;
2573 	ext4_fsblk_t goal, newblock;
2574 	int err = 0, depth, ret;
2575 	unsigned long allocated = 0;
2576 	struct ext4_allocation_request ar;
2577 	loff_t disksize;
2578 
2579 	__clear_bit(BH_New, &bh_result->b_state);
2580 	ext_debug("blocks %u/%lu requested for inode %u\n",
2581 			iblock, max_blocks, inode->i_ino);
2582 
2583 	/* check in cache */
2584 	goal = ext4_ext_in_cache(inode, iblock, &newex);
2585 	if (goal) {
2586 		if (goal == EXT4_EXT_CACHE_GAP) {
2587 			if (!create) {
2588 				/*
2589 				 * block isn't allocated yet and
2590 				 * user doesn't want to allocate it
2591 				 */
2592 				goto out2;
2593 			}
2594 			/* we should allocate requested block */
2595 		} else if (goal == EXT4_EXT_CACHE_EXTENT) {
2596 			/* block is already allocated */
2597 			newblock = iblock
2598 				   - le32_to_cpu(newex.ee_block)
2599 				   + ext_pblock(&newex);
2600 			/* number of remaining blocks in the extent */
2601 			allocated = ext4_ext_get_actual_len(&newex) -
2602 					(iblock - le32_to_cpu(newex.ee_block));
2603 			goto out;
2604 		} else {
2605 			BUG();
2606 		}
2607 	}
2608 
2609 	/* find extent for this block */
2610 	path = ext4_ext_find_extent(inode, iblock, NULL);
2611 	if (IS_ERR(path)) {
2612 		err = PTR_ERR(path);
2613 		path = NULL;
2614 		goto out2;
2615 	}
2616 
2617 	depth = ext_depth(inode);
2618 
2619 	/*
2620 	 * consistent leaf must not be empty;
2621 	 * this situation is possible, though, _during_ tree modification;
2622 	 * this is why assert can't be put in ext4_ext_find_extent()
2623 	 */
2624 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2625 	eh = path[depth].p_hdr;
2626 
2627 	ex = path[depth].p_ext;
2628 	if (ex) {
2629 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2630 		ext4_fsblk_t ee_start = ext_pblock(ex);
2631 		unsigned short ee_len;
2632 
2633 		/*
2634 		 * Uninitialized extents are treated as holes, except that
2635 		 * we split out initialized portions during a write.
2636 		 */
2637 		ee_len = ext4_ext_get_actual_len(ex);
2638 		/* if found extent covers block, simply return it */
2639 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2640 			newblock = iblock - ee_block + ee_start;
2641 			/* number of remaining blocks in the extent */
2642 			allocated = ee_len - (iblock - ee_block);
2643 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2644 					ee_block, ee_len, newblock);
2645 
2646 			/* Do not put uninitialized extent in the cache */
2647 			if (!ext4_ext_is_uninitialized(ex)) {
2648 				ext4_ext_put_in_cache(inode, ee_block,
2649 							ee_len, ee_start,
2650 							EXT4_EXT_CACHE_EXTENT);
2651 				goto out;
2652 			}
2653 			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2654 				goto out;
2655 			if (!create) {
2656 				/*
2657 				 * We have blocks reserved already.  We
2658 				 * return allocated blocks so that delalloc
2659 				 * won't do block reservation for us.  But
2660 				 * the buffer head will be unmapped so that
2661 				 * a read from the block returns 0s.
2662 				 */
2663 				if (allocated > max_blocks)
2664 					allocated = max_blocks;
2665 				set_buffer_unwritten(bh_result);
2666 				goto out2;
2667 			}
2668 
2669 			ret = ext4_ext_convert_to_initialized(handle, inode,
2670 								path, iblock,
2671 								max_blocks);
2672 			if (ret <= 0) {
2673 				err = ret;
2674 				goto out2;
2675 			} else
2676 				allocated = ret;
2677 			goto outnew;
2678 		}
2679 	}
2680 
2681 	/*
2682 	 * requested block isn't allocated yet;
2683 	 * we couldn't try to create block if create flag is zero
2684 	 */
2685 	if (!create) {
2686 		/*
2687 		 * put just found gap into cache to speed up
2688 		 * subsequent requests
2689 		 */
2690 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2691 		goto out2;
2692 	}
2693 	/*
2694 	 * Okay, we need to do block allocation.  Lazily initialize the block
2695 	 * allocation info here if necessary.
2696 	 */
2697 	if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2698 		ext4_init_block_alloc_info(inode);
2699 
2700 	/* find neighbour allocated blocks */
2701 	ar.lleft = iblock;
2702 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2703 	if (err)
2704 		goto out2;
2705 	ar.lright = iblock;
2706 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2707 	if (err)
2708 		goto out2;
2709 
2710 	/*
2711 	 * See if request is beyond maximum number of blocks we can have in
2712 	 * a single extent. For an initialized extent this limit is
2713 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2714 	 * EXT_UNINIT_MAX_LEN.
2715 	 */
2716 	if (max_blocks > EXT_INIT_MAX_LEN &&
2717 	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2718 		max_blocks = EXT_INIT_MAX_LEN;
2719 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2720 		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2721 		max_blocks = EXT_UNINIT_MAX_LEN;
2722 
2723 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2724 	newex.ee_block = cpu_to_le32(iblock);
2725 	newex.ee_len = cpu_to_le16(max_blocks);
2726 	err = ext4_ext_check_overlap(inode, &newex, path);
2727 	if (err)
2728 		allocated = ext4_ext_get_actual_len(&newex);
2729 	else
2730 		allocated = max_blocks;
2731 
2732 	/* allocate new block */
2733 	ar.inode = inode;
2734 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2735 	ar.logical = iblock;
2736 	ar.len = allocated;
2737 	if (S_ISREG(inode->i_mode))
2738 		ar.flags = EXT4_MB_HINT_DATA;
2739 	else
2740 		/* disable in-core preallocation for non-regular files */
2741 		ar.flags = 0;
2742 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2743 	if (!newblock)
2744 		goto out2;
2745 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2746 			goal, newblock, allocated);
2747 
2748 	/* try to insert new extent into found leaf and return */
2749 	ext4_ext_store_pblock(&newex, newblock);
2750 	newex.ee_len = cpu_to_le16(ar.len);
2751 	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2752 		ext4_ext_mark_uninitialized(&newex);
2753 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2754 	if (err) {
2755 		/* free data blocks we just allocated */
2756 		/* not a good idea to call discard here directly,
2757 		 * but otherwise we'd need to call it every free() */
2758 		ext4_mb_discard_inode_preallocations(inode);
2759 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2760 					ext4_ext_get_actual_len(&newex), 0);
2761 		goto out2;
2762 	}
2763 
2764 	/* previous routine could use block we allocated */
2765 	newblock = ext_pblock(&newex);
2766 	allocated = ext4_ext_get_actual_len(&newex);
2767 outnew:
2768 	if (extend_disksize) {
2769 		disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2770 		if (disksize > i_size_read(inode))
2771 			disksize = i_size_read(inode);
2772 		if (disksize > EXT4_I(inode)->i_disksize)
2773 			EXT4_I(inode)->i_disksize = disksize;
2774 	}
2775 
2776 	set_buffer_new(bh_result);
2777 
2778 	/* Cache only when it is _not_ an uninitialized extent */
2779 	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2780 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2781 						EXT4_EXT_CACHE_EXTENT);
2782 out:
2783 	if (allocated > max_blocks)
2784 		allocated = max_blocks;
2785 	ext4_ext_show_leaf(inode, path);
2786 	set_buffer_mapped(bh_result);
2787 	bh_result->b_bdev = inode->i_sb->s_bdev;
2788 	bh_result->b_blocknr = newblock;
2789 out2:
2790 	if (path) {
2791 		ext4_ext_drop_refs(path);
2792 		kfree(path);
2793 	}
2794 	return err ? err : allocated;
2795 }
2796 
2797 void ext4_ext_truncate(struct inode *inode)
2798 {
2799 	struct address_space *mapping = inode->i_mapping;
2800 	struct super_block *sb = inode->i_sb;
2801 	ext4_lblk_t last_block;
2802 	handle_t *handle;
2803 	int err = 0;
2804 
2805 	/*
2806 	 * probably first extent we're gonna free will be last in block
2807 	 */
2808 	err = ext4_writepage_trans_blocks(inode) + 3;
2809 	handle = ext4_journal_start(inode, err);
2810 	if (IS_ERR(handle))
2811 		return;
2812 
2813 	if (inode->i_size & (sb->s_blocksize - 1))
2814 		ext4_block_truncate_page(handle, mapping, inode->i_size);
2815 
2816 	if (ext4_orphan_add(handle, inode))
2817 		goto out_stop;
2818 
2819 	down_write(&EXT4_I(inode)->i_data_sem);
2820 	ext4_ext_invalidate_cache(inode);
2821 
2822 	ext4_mb_discard_inode_preallocations(inode);
2823 
2824 	/*
2825 	 * TODO: optimization is possible here.
2826 	 * Probably we need not scan at all,
2827 	 * because page truncation is enough.
2828 	 */
2829 
2830 	/* we have to know where to truncate from in crash case */
2831 	EXT4_I(inode)->i_disksize = inode->i_size;
2832 	ext4_mark_inode_dirty(handle, inode);
2833 
2834 	last_block = (inode->i_size + sb->s_blocksize - 1)
2835 			>> EXT4_BLOCK_SIZE_BITS(sb);
2836 	err = ext4_ext_remove_space(inode, last_block);
2837 
2838 	/* In a multi-transaction truncate, we only make the final
2839 	 * transaction synchronous.
2840 	 */
2841 	if (IS_SYNC(inode))
2842 		handle->h_sync = 1;
2843 
2844 out_stop:
2845 	up_write(&EXT4_I(inode)->i_data_sem);
2846 	/*
2847 	 * If this was a simple ftruncate() and the file will remain alive,
2848 	 * then we need to clear up the orphan record which we created above.
2849 	 * However, if this was a real unlink then we were called by
2850 	 * ext4_delete_inode(), and we allow that function to clean up the
2851 	 * orphan info for us.
2852 	 */
2853 	if (inode->i_nlink)
2854 		ext4_orphan_del(handle, inode);
2855 
2856 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2857 	ext4_mark_inode_dirty(handle, inode);
2858 	ext4_journal_stop(handle);
2859 }
2860 
2861 /*
2862  * ext4_ext_writepage_trans_blocks:
2863  * calculate max number of blocks we could modify
2864  * in order to allocate new block for an inode
2865  */
2866 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num)
2867 {
2868 	int needed;
2869 
2870 	needed = ext4_ext_calc_credits_for_insert(inode, NULL);
2871 
2872 	/* caller wants to allocate num blocks, but note it includes sb */
2873 	needed = needed * num - (num - 1);
2874 
2875 #ifdef CONFIG_QUOTA
2876 	needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2877 #endif
2878 
2879 	return needed;
2880 }
2881 
2882 static void ext4_falloc_update_inode(struct inode *inode,
2883 				int mode, loff_t new_size, int update_ctime)
2884 {
2885 	struct timespec now;
2886 
2887 	if (update_ctime) {
2888 		now = current_fs_time(inode->i_sb);
2889 		if (!timespec_equal(&inode->i_ctime, &now))
2890 			inode->i_ctime = now;
2891 	}
2892 	/*
2893 	 * Update only when preallocation was requested beyond
2894 	 * the file size.
2895 	 */
2896 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2897 				new_size > i_size_read(inode)) {
2898 		i_size_write(inode, new_size);
2899 		EXT4_I(inode)->i_disksize = new_size;
2900 	}
2901 
2902 }
2903 
2904 /*
2905  * preallocate space for a file. This implements ext4's fallocate inode
2906  * operation, which gets called from sys_fallocate system call.
2907  * For block-mapped files, posix_fallocate should fall back to the method
2908  * of writing zeroes to the required new blocks (the same behavior which is
2909  * expected for file systems which do not support fallocate() system call).
2910  */
2911 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
2912 {
2913 	handle_t *handle;
2914 	ext4_lblk_t block;
2915 	loff_t new_size;
2916 	unsigned long max_blocks;
2917 	int ret = 0;
2918 	int ret2 = 0;
2919 	int retries = 0;
2920 	struct buffer_head map_bh;
2921 	unsigned int credits, blkbits = inode->i_blkbits;
2922 
2923 	/*
2924 	 * currently supporting (pre)allocate mode for extent-based
2925 	 * files _only_
2926 	 */
2927 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
2928 		return -EOPNOTSUPP;
2929 
2930 	/* preallocation to directories is currently not supported */
2931 	if (S_ISDIR(inode->i_mode))
2932 		return -ENODEV;
2933 
2934 	block = offset >> blkbits;
2935 	/*
2936 	 * We can't just convert len to max_blocks because
2937 	 * If blocksize = 4096 offset = 3072 and len = 2048
2938 	 */
2939 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
2940 							- block;
2941 	/*
2942 	 * credits to insert 1 extent into extent tree + buffers to be able to
2943 	 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2944 	 */
2945 	credits = EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + 3;
2946 	mutex_lock(&inode->i_mutex);
2947 retry:
2948 	while (ret >= 0 && ret < max_blocks) {
2949 		block = block + ret;
2950 		max_blocks = max_blocks - ret;
2951 		handle = ext4_journal_start(inode, credits);
2952 		if (IS_ERR(handle)) {
2953 			ret = PTR_ERR(handle);
2954 			break;
2955 		}
2956 		ret = ext4_get_blocks_wrap(handle, inode, block,
2957 					  max_blocks, &map_bh,
2958 					  EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
2959 		if (ret <= 0) {
2960 #ifdef EXT4FS_DEBUG
2961 			WARN_ON(ret <= 0);
2962 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
2963 				    "returned error inode#%lu, block=%u, "
2964 				    "max_blocks=%lu", __func__,
2965 				    inode->i_ino, block, max_blocks);
2966 #endif
2967 			ext4_mark_inode_dirty(handle, inode);
2968 			ret2 = ext4_journal_stop(handle);
2969 			break;
2970 		}
2971 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
2972 						blkbits) >> blkbits))
2973 			new_size = offset + len;
2974 		else
2975 			new_size = (block + ret) << blkbits;
2976 
2977 		ext4_falloc_update_inode(inode, mode, new_size,
2978 						buffer_new(&map_bh));
2979 		ext4_mark_inode_dirty(handle, inode);
2980 		ret2 = ext4_journal_stop(handle);
2981 		if (ret2)
2982 			break;
2983 	}
2984 	if (ret == -ENOSPC &&
2985 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
2986 		ret = 0;
2987 		goto retry;
2988 	}
2989 	mutex_unlock(&inode->i_mutex);
2990 	return ret > 0 ? ret2 : ret;
2991 }
2992