1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/jbd2.h> 36 #include <linux/highuid.h> 37 #include <linux/pagemap.h> 38 #include <linux/quotaops.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <linux/falloc.h> 42 #include <asm/uaccess.h> 43 #include <linux/fiemap.h> 44 #include "ext4_jbd2.h" 45 #include "ext4_extents.h" 46 47 48 /* 49 * ext_pblock: 50 * combine low and high parts of physical block number into ext4_fsblk_t 51 */ 52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex) 53 { 54 ext4_fsblk_t block; 55 56 block = le32_to_cpu(ex->ee_start_lo); 57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; 58 return block; 59 } 60 61 /* 62 * idx_pblock: 63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t 64 */ 65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix) 66 { 67 ext4_fsblk_t block; 68 69 block = le32_to_cpu(ix->ei_leaf_lo); 70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; 71 return block; 72 } 73 74 /* 75 * ext4_ext_store_pblock: 76 * stores a large physical block number into an extent struct, 77 * breaking it into parts 78 */ 79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) 80 { 81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 83 } 84 85 /* 86 * ext4_idx_store_pblock: 87 * stores a large physical block number into an index struct, 88 * breaking it into parts 89 */ 90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) 91 { 92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 94 } 95 96 static int ext4_ext_truncate_extend_restart(handle_t *handle, 97 struct inode *inode, 98 int needed) 99 { 100 int err; 101 102 if (!ext4_handle_valid(handle)) 103 return 0; 104 if (handle->h_buffer_credits > needed) 105 return 0; 106 err = ext4_journal_extend(handle, needed); 107 if (err <= 0) 108 return err; 109 err = ext4_truncate_restart_trans(handle, inode, needed); 110 /* 111 * We have dropped i_data_sem so someone might have cached again 112 * an extent we are going to truncate. 113 */ 114 ext4_ext_invalidate_cache(inode); 115 116 return err; 117 } 118 119 /* 120 * could return: 121 * - EROFS 122 * - ENOMEM 123 */ 124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 125 struct ext4_ext_path *path) 126 { 127 if (path->p_bh) { 128 /* path points to block */ 129 return ext4_journal_get_write_access(handle, path->p_bh); 130 } 131 /* path points to leaf/index in inode body */ 132 /* we use in-core data, no need to protect them */ 133 return 0; 134 } 135 136 /* 137 * could return: 138 * - EROFS 139 * - ENOMEM 140 * - EIO 141 */ 142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 int err; 146 if (path->p_bh) { 147 /* path points to block */ 148 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh); 149 } else { 150 /* path points to leaf/index in inode body */ 151 err = ext4_mark_inode_dirty(handle, inode); 152 } 153 return err; 154 } 155 156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 157 struct ext4_ext_path *path, 158 ext4_lblk_t block) 159 { 160 struct ext4_inode_info *ei = EXT4_I(inode); 161 ext4_fsblk_t bg_start; 162 ext4_fsblk_t last_block; 163 ext4_grpblk_t colour; 164 ext4_group_t block_group; 165 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 166 int depth; 167 168 if (path) { 169 struct ext4_extent *ex; 170 depth = path->p_depth; 171 172 /* try to predict block placement */ 173 ex = path[depth].p_ext; 174 if (ex) 175 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block)); 176 177 /* it looks like index is empty; 178 * try to find starting block from index itself */ 179 if (path[depth].p_bh) 180 return path[depth].p_bh->b_blocknr; 181 } 182 183 /* OK. use inode's group */ 184 block_group = ei->i_block_group; 185 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 186 /* 187 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME 188 * block groups per flexgroup, reserve the first block 189 * group for directories and special files. Regular 190 * files will start at the second block group. This 191 * tends to speed up directory access and improves 192 * fsck times. 193 */ 194 block_group &= ~(flex_size-1); 195 if (S_ISREG(inode->i_mode)) 196 block_group++; 197 } 198 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) + 199 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block); 200 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 201 202 /* 203 * If we are doing delayed allocation, we don't need take 204 * colour into account. 205 */ 206 if (test_opt(inode->i_sb, DELALLOC)) 207 return bg_start; 208 209 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 210 colour = (current->pid % 16) * 211 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 212 else 213 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 214 return bg_start + colour + block; 215 } 216 217 /* 218 * Allocation for a meta data block 219 */ 220 static ext4_fsblk_t 221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 222 struct ext4_ext_path *path, 223 struct ext4_extent *ex, int *err) 224 { 225 ext4_fsblk_t goal, newblock; 226 227 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 228 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err); 229 return newblock; 230 } 231 232 static inline int ext4_ext_space_block(struct inode *inode, int check) 233 { 234 int size; 235 236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 237 / sizeof(struct ext4_extent); 238 if (!check) { 239 #ifdef AGGRESSIVE_TEST 240 if (size > 6) 241 size = 6; 242 #endif 243 } 244 return size; 245 } 246 247 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 248 { 249 int size; 250 251 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 252 / sizeof(struct ext4_extent_idx); 253 if (!check) { 254 #ifdef AGGRESSIVE_TEST 255 if (size > 5) 256 size = 5; 257 #endif 258 } 259 return size; 260 } 261 262 static inline int ext4_ext_space_root(struct inode *inode, int check) 263 { 264 int size; 265 266 size = sizeof(EXT4_I(inode)->i_data); 267 size -= sizeof(struct ext4_extent_header); 268 size /= sizeof(struct ext4_extent); 269 if (!check) { 270 #ifdef AGGRESSIVE_TEST 271 if (size > 3) 272 size = 3; 273 #endif 274 } 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 if (!check) { 286 #ifdef AGGRESSIVE_TEST 287 if (size > 4) 288 size = 4; 289 #endif 290 } 291 return size; 292 } 293 294 /* 295 * Calculate the number of metadata blocks needed 296 * to allocate @blocks 297 * Worse case is one block per extent 298 */ 299 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks) 300 { 301 int lcap, icap, rcap, leafs, idxs, num; 302 int newextents = blocks; 303 304 rcap = ext4_ext_space_root_idx(inode, 0); 305 lcap = ext4_ext_space_block(inode, 0); 306 icap = ext4_ext_space_block_idx(inode, 0); 307 308 /* number of new leaf blocks needed */ 309 num = leafs = (newextents + lcap - 1) / lcap; 310 311 /* 312 * Worse case, we need separate index block(s) 313 * to link all new leaf blocks 314 */ 315 idxs = (leafs + icap - 1) / icap; 316 do { 317 num += idxs; 318 idxs = (idxs + icap - 1) / icap; 319 } while (idxs > rcap); 320 321 return num; 322 } 323 324 static int 325 ext4_ext_max_entries(struct inode *inode, int depth) 326 { 327 int max; 328 329 if (depth == ext_depth(inode)) { 330 if (depth == 0) 331 max = ext4_ext_space_root(inode, 1); 332 else 333 max = ext4_ext_space_root_idx(inode, 1); 334 } else { 335 if (depth == 0) 336 max = ext4_ext_space_block(inode, 1); 337 else 338 max = ext4_ext_space_block_idx(inode, 1); 339 } 340 341 return max; 342 } 343 344 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 345 { 346 ext4_fsblk_t block = ext_pblock(ext); 347 int len = ext4_ext_get_actual_len(ext); 348 349 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 350 } 351 352 static int ext4_valid_extent_idx(struct inode *inode, 353 struct ext4_extent_idx *ext_idx) 354 { 355 ext4_fsblk_t block = idx_pblock(ext_idx); 356 357 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 358 } 359 360 static int ext4_valid_extent_entries(struct inode *inode, 361 struct ext4_extent_header *eh, 362 int depth) 363 { 364 struct ext4_extent *ext; 365 struct ext4_extent_idx *ext_idx; 366 unsigned short entries; 367 if (eh->eh_entries == 0) 368 return 1; 369 370 entries = le16_to_cpu(eh->eh_entries); 371 372 if (depth == 0) { 373 /* leaf entries */ 374 ext = EXT_FIRST_EXTENT(eh); 375 while (entries) { 376 if (!ext4_valid_extent(inode, ext)) 377 return 0; 378 ext++; 379 entries--; 380 } 381 } else { 382 ext_idx = EXT_FIRST_INDEX(eh); 383 while (entries) { 384 if (!ext4_valid_extent_idx(inode, ext_idx)) 385 return 0; 386 ext_idx++; 387 entries--; 388 } 389 } 390 return 1; 391 } 392 393 static int __ext4_ext_check(const char *function, struct inode *inode, 394 struct ext4_extent_header *eh, 395 int depth) 396 { 397 const char *error_msg; 398 int max = 0; 399 400 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 401 error_msg = "invalid magic"; 402 goto corrupted; 403 } 404 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 405 error_msg = "unexpected eh_depth"; 406 goto corrupted; 407 } 408 if (unlikely(eh->eh_max == 0)) { 409 error_msg = "invalid eh_max"; 410 goto corrupted; 411 } 412 max = ext4_ext_max_entries(inode, depth); 413 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 414 error_msg = "too large eh_max"; 415 goto corrupted; 416 } 417 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 418 error_msg = "invalid eh_entries"; 419 goto corrupted; 420 } 421 if (!ext4_valid_extent_entries(inode, eh, depth)) { 422 error_msg = "invalid extent entries"; 423 goto corrupted; 424 } 425 return 0; 426 427 corrupted: 428 ext4_error(inode->i_sb, function, 429 "bad header/extent in inode #%lu: %s - magic %x, " 430 "entries %u, max %u(%u), depth %u(%u)", 431 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic), 432 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 433 max, le16_to_cpu(eh->eh_depth), depth); 434 435 return -EIO; 436 } 437 438 #define ext4_ext_check(inode, eh, depth) \ 439 __ext4_ext_check(__func__, inode, eh, depth) 440 441 int ext4_ext_check_inode(struct inode *inode) 442 { 443 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 444 } 445 446 #ifdef EXT_DEBUG 447 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 448 { 449 int k, l = path->p_depth; 450 451 ext_debug("path:"); 452 for (k = 0; k <= l; k++, path++) { 453 if (path->p_idx) { 454 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 455 idx_pblock(path->p_idx)); 456 } else if (path->p_ext) { 457 ext_debug(" %d:[%d]%d:%llu ", 458 le32_to_cpu(path->p_ext->ee_block), 459 ext4_ext_is_uninitialized(path->p_ext), 460 ext4_ext_get_actual_len(path->p_ext), 461 ext_pblock(path->p_ext)); 462 } else 463 ext_debug(" []"); 464 } 465 ext_debug("\n"); 466 } 467 468 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 469 { 470 int depth = ext_depth(inode); 471 struct ext4_extent_header *eh; 472 struct ext4_extent *ex; 473 int i; 474 475 if (!path) 476 return; 477 478 eh = path[depth].p_hdr; 479 ex = EXT_FIRST_EXTENT(eh); 480 481 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 482 483 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 484 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 485 ext4_ext_is_uninitialized(ex), 486 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 487 } 488 ext_debug("\n"); 489 } 490 #else 491 #define ext4_ext_show_path(inode, path) 492 #define ext4_ext_show_leaf(inode, path) 493 #endif 494 495 void ext4_ext_drop_refs(struct ext4_ext_path *path) 496 { 497 int depth = path->p_depth; 498 int i; 499 500 for (i = 0; i <= depth; i++, path++) 501 if (path->p_bh) { 502 brelse(path->p_bh); 503 path->p_bh = NULL; 504 } 505 } 506 507 /* 508 * ext4_ext_binsearch_idx: 509 * binary search for the closest index of the given block 510 * the header must be checked before calling this 511 */ 512 static void 513 ext4_ext_binsearch_idx(struct inode *inode, 514 struct ext4_ext_path *path, ext4_lblk_t block) 515 { 516 struct ext4_extent_header *eh = path->p_hdr; 517 struct ext4_extent_idx *r, *l, *m; 518 519 520 ext_debug("binsearch for %u(idx): ", block); 521 522 l = EXT_FIRST_INDEX(eh) + 1; 523 r = EXT_LAST_INDEX(eh); 524 while (l <= r) { 525 m = l + (r - l) / 2; 526 if (block < le32_to_cpu(m->ei_block)) 527 r = m - 1; 528 else 529 l = m + 1; 530 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 531 m, le32_to_cpu(m->ei_block), 532 r, le32_to_cpu(r->ei_block)); 533 } 534 535 path->p_idx = l - 1; 536 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 537 idx_pblock(path->p_idx)); 538 539 #ifdef CHECK_BINSEARCH 540 { 541 struct ext4_extent_idx *chix, *ix; 542 int k; 543 544 chix = ix = EXT_FIRST_INDEX(eh); 545 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 546 if (k != 0 && 547 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 548 printk(KERN_DEBUG "k=%d, ix=0x%p, " 549 "first=0x%p\n", k, 550 ix, EXT_FIRST_INDEX(eh)); 551 printk(KERN_DEBUG "%u <= %u\n", 552 le32_to_cpu(ix->ei_block), 553 le32_to_cpu(ix[-1].ei_block)); 554 } 555 BUG_ON(k && le32_to_cpu(ix->ei_block) 556 <= le32_to_cpu(ix[-1].ei_block)); 557 if (block < le32_to_cpu(ix->ei_block)) 558 break; 559 chix = ix; 560 } 561 BUG_ON(chix != path->p_idx); 562 } 563 #endif 564 565 } 566 567 /* 568 * ext4_ext_binsearch: 569 * binary search for closest extent of the given block 570 * the header must be checked before calling this 571 */ 572 static void 573 ext4_ext_binsearch(struct inode *inode, 574 struct ext4_ext_path *path, ext4_lblk_t block) 575 { 576 struct ext4_extent_header *eh = path->p_hdr; 577 struct ext4_extent *r, *l, *m; 578 579 if (eh->eh_entries == 0) { 580 /* 581 * this leaf is empty: 582 * we get such a leaf in split/add case 583 */ 584 return; 585 } 586 587 ext_debug("binsearch for %u: ", block); 588 589 l = EXT_FIRST_EXTENT(eh) + 1; 590 r = EXT_LAST_EXTENT(eh); 591 592 while (l <= r) { 593 m = l + (r - l) / 2; 594 if (block < le32_to_cpu(m->ee_block)) 595 r = m - 1; 596 else 597 l = m + 1; 598 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 599 m, le32_to_cpu(m->ee_block), 600 r, le32_to_cpu(r->ee_block)); 601 } 602 603 path->p_ext = l - 1; 604 ext_debug(" -> %d:%llu:[%d]%d ", 605 le32_to_cpu(path->p_ext->ee_block), 606 ext_pblock(path->p_ext), 607 ext4_ext_is_uninitialized(path->p_ext), 608 ext4_ext_get_actual_len(path->p_ext)); 609 610 #ifdef CHECK_BINSEARCH 611 { 612 struct ext4_extent *chex, *ex; 613 int k; 614 615 chex = ex = EXT_FIRST_EXTENT(eh); 616 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 617 BUG_ON(k && le32_to_cpu(ex->ee_block) 618 <= le32_to_cpu(ex[-1].ee_block)); 619 if (block < le32_to_cpu(ex->ee_block)) 620 break; 621 chex = ex; 622 } 623 BUG_ON(chex != path->p_ext); 624 } 625 #endif 626 627 } 628 629 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 630 { 631 struct ext4_extent_header *eh; 632 633 eh = ext_inode_hdr(inode); 634 eh->eh_depth = 0; 635 eh->eh_entries = 0; 636 eh->eh_magic = EXT4_EXT_MAGIC; 637 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 638 ext4_mark_inode_dirty(handle, inode); 639 ext4_ext_invalidate_cache(inode); 640 return 0; 641 } 642 643 struct ext4_ext_path * 644 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 645 struct ext4_ext_path *path) 646 { 647 struct ext4_extent_header *eh; 648 struct buffer_head *bh; 649 short int depth, i, ppos = 0, alloc = 0; 650 651 eh = ext_inode_hdr(inode); 652 depth = ext_depth(inode); 653 654 /* account possible depth increase */ 655 if (!path) { 656 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 657 GFP_NOFS); 658 if (!path) 659 return ERR_PTR(-ENOMEM); 660 alloc = 1; 661 } 662 path[0].p_hdr = eh; 663 path[0].p_bh = NULL; 664 665 i = depth; 666 /* walk through the tree */ 667 while (i) { 668 int need_to_validate = 0; 669 670 ext_debug("depth %d: num %d, max %d\n", 671 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 672 673 ext4_ext_binsearch_idx(inode, path + ppos, block); 674 path[ppos].p_block = idx_pblock(path[ppos].p_idx); 675 path[ppos].p_depth = i; 676 path[ppos].p_ext = NULL; 677 678 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 679 if (unlikely(!bh)) 680 goto err; 681 if (!bh_uptodate_or_lock(bh)) { 682 if (bh_submit_read(bh) < 0) { 683 put_bh(bh); 684 goto err; 685 } 686 /* validate the extent entries */ 687 need_to_validate = 1; 688 } 689 eh = ext_block_hdr(bh); 690 ppos++; 691 BUG_ON(ppos > depth); 692 path[ppos].p_bh = bh; 693 path[ppos].p_hdr = eh; 694 i--; 695 696 if (need_to_validate && ext4_ext_check(inode, eh, i)) 697 goto err; 698 } 699 700 path[ppos].p_depth = i; 701 path[ppos].p_ext = NULL; 702 path[ppos].p_idx = NULL; 703 704 /* find extent */ 705 ext4_ext_binsearch(inode, path + ppos, block); 706 /* if not an empty leaf */ 707 if (path[ppos].p_ext) 708 path[ppos].p_block = ext_pblock(path[ppos].p_ext); 709 710 ext4_ext_show_path(inode, path); 711 712 return path; 713 714 err: 715 ext4_ext_drop_refs(path); 716 if (alloc) 717 kfree(path); 718 return ERR_PTR(-EIO); 719 } 720 721 /* 722 * ext4_ext_insert_index: 723 * insert new index [@logical;@ptr] into the block at @curp; 724 * check where to insert: before @curp or after @curp 725 */ 726 int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 727 struct ext4_ext_path *curp, 728 int logical, ext4_fsblk_t ptr) 729 { 730 struct ext4_extent_idx *ix; 731 int len, err; 732 733 err = ext4_ext_get_access(handle, inode, curp); 734 if (err) 735 return err; 736 737 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block)); 738 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx; 739 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 740 /* insert after */ 741 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) { 742 len = (len - 1) * sizeof(struct ext4_extent_idx); 743 len = len < 0 ? 0 : len; 744 ext_debug("insert new index %d after: %llu. " 745 "move %d from 0x%p to 0x%p\n", 746 logical, ptr, len, 747 (curp->p_idx + 1), (curp->p_idx + 2)); 748 memmove(curp->p_idx + 2, curp->p_idx + 1, len); 749 } 750 ix = curp->p_idx + 1; 751 } else { 752 /* insert before */ 753 len = len * sizeof(struct ext4_extent_idx); 754 len = len < 0 ? 0 : len; 755 ext_debug("insert new index %d before: %llu. " 756 "move %d from 0x%p to 0x%p\n", 757 logical, ptr, len, 758 curp->p_idx, (curp->p_idx + 1)); 759 memmove(curp->p_idx + 1, curp->p_idx, len); 760 ix = curp->p_idx; 761 } 762 763 ix->ei_block = cpu_to_le32(logical); 764 ext4_idx_store_pblock(ix, ptr); 765 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 766 767 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries) 768 > le16_to_cpu(curp->p_hdr->eh_max)); 769 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr)); 770 771 err = ext4_ext_dirty(handle, inode, curp); 772 ext4_std_error(inode->i_sb, err); 773 774 return err; 775 } 776 777 /* 778 * ext4_ext_split: 779 * inserts new subtree into the path, using free index entry 780 * at depth @at: 781 * - allocates all needed blocks (new leaf and all intermediate index blocks) 782 * - makes decision where to split 783 * - moves remaining extents and index entries (right to the split point) 784 * into the newly allocated blocks 785 * - initializes subtree 786 */ 787 static int ext4_ext_split(handle_t *handle, struct inode *inode, 788 struct ext4_ext_path *path, 789 struct ext4_extent *newext, int at) 790 { 791 struct buffer_head *bh = NULL; 792 int depth = ext_depth(inode); 793 struct ext4_extent_header *neh; 794 struct ext4_extent_idx *fidx; 795 struct ext4_extent *ex; 796 int i = at, k, m, a; 797 ext4_fsblk_t newblock, oldblock; 798 __le32 border; 799 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 800 int err = 0; 801 802 /* make decision: where to split? */ 803 /* FIXME: now decision is simplest: at current extent */ 804 805 /* if current leaf will be split, then we should use 806 * border from split point */ 807 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr)); 808 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 809 border = path[depth].p_ext[1].ee_block; 810 ext_debug("leaf will be split." 811 " next leaf starts at %d\n", 812 le32_to_cpu(border)); 813 } else { 814 border = newext->ee_block; 815 ext_debug("leaf will be added." 816 " next leaf starts at %d\n", 817 le32_to_cpu(border)); 818 } 819 820 /* 821 * If error occurs, then we break processing 822 * and mark filesystem read-only. index won't 823 * be inserted and tree will be in consistent 824 * state. Next mount will repair buffers too. 825 */ 826 827 /* 828 * Get array to track all allocated blocks. 829 * We need this to handle errors and free blocks 830 * upon them. 831 */ 832 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 833 if (!ablocks) 834 return -ENOMEM; 835 836 /* allocate all needed blocks */ 837 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 838 for (a = 0; a < depth - at; a++) { 839 newblock = ext4_ext_new_meta_block(handle, inode, path, 840 newext, &err); 841 if (newblock == 0) 842 goto cleanup; 843 ablocks[a] = newblock; 844 } 845 846 /* initialize new leaf */ 847 newblock = ablocks[--a]; 848 BUG_ON(newblock == 0); 849 bh = sb_getblk(inode->i_sb, newblock); 850 if (!bh) { 851 err = -EIO; 852 goto cleanup; 853 } 854 lock_buffer(bh); 855 856 err = ext4_journal_get_create_access(handle, bh); 857 if (err) 858 goto cleanup; 859 860 neh = ext_block_hdr(bh); 861 neh->eh_entries = 0; 862 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 863 neh->eh_magic = EXT4_EXT_MAGIC; 864 neh->eh_depth = 0; 865 ex = EXT_FIRST_EXTENT(neh); 866 867 /* move remainder of path[depth] to the new leaf */ 868 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max); 869 /* start copy from next extent */ 870 /* TODO: we could do it by single memmove */ 871 m = 0; 872 path[depth].p_ext++; 873 while (path[depth].p_ext <= 874 EXT_MAX_EXTENT(path[depth].p_hdr)) { 875 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 876 le32_to_cpu(path[depth].p_ext->ee_block), 877 ext_pblock(path[depth].p_ext), 878 ext4_ext_is_uninitialized(path[depth].p_ext), 879 ext4_ext_get_actual_len(path[depth].p_ext), 880 newblock); 881 /*memmove(ex++, path[depth].p_ext++, 882 sizeof(struct ext4_extent)); 883 neh->eh_entries++;*/ 884 path[depth].p_ext++; 885 m++; 886 } 887 if (m) { 888 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m); 889 le16_add_cpu(&neh->eh_entries, m); 890 } 891 892 set_buffer_uptodate(bh); 893 unlock_buffer(bh); 894 895 err = ext4_handle_dirty_metadata(handle, inode, bh); 896 if (err) 897 goto cleanup; 898 brelse(bh); 899 bh = NULL; 900 901 /* correct old leaf */ 902 if (m) { 903 err = ext4_ext_get_access(handle, inode, path + depth); 904 if (err) 905 goto cleanup; 906 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 907 err = ext4_ext_dirty(handle, inode, path + depth); 908 if (err) 909 goto cleanup; 910 911 } 912 913 /* create intermediate indexes */ 914 k = depth - at - 1; 915 BUG_ON(k < 0); 916 if (k) 917 ext_debug("create %d intermediate indices\n", k); 918 /* insert new index into current index block */ 919 /* current depth stored in i var */ 920 i = depth - 1; 921 while (k--) { 922 oldblock = newblock; 923 newblock = ablocks[--a]; 924 bh = sb_getblk(inode->i_sb, newblock); 925 if (!bh) { 926 err = -EIO; 927 goto cleanup; 928 } 929 lock_buffer(bh); 930 931 err = ext4_journal_get_create_access(handle, bh); 932 if (err) 933 goto cleanup; 934 935 neh = ext_block_hdr(bh); 936 neh->eh_entries = cpu_to_le16(1); 937 neh->eh_magic = EXT4_EXT_MAGIC; 938 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 939 neh->eh_depth = cpu_to_le16(depth - i); 940 fidx = EXT_FIRST_INDEX(neh); 941 fidx->ei_block = border; 942 ext4_idx_store_pblock(fidx, oldblock); 943 944 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 945 i, newblock, le32_to_cpu(border), oldblock); 946 /* copy indexes */ 947 m = 0; 948 path[i].p_idx++; 949 950 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 951 EXT_MAX_INDEX(path[i].p_hdr)); 952 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) != 953 EXT_LAST_INDEX(path[i].p_hdr)); 954 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) { 955 ext_debug("%d: move %d:%llu in new index %llu\n", i, 956 le32_to_cpu(path[i].p_idx->ei_block), 957 idx_pblock(path[i].p_idx), 958 newblock); 959 /*memmove(++fidx, path[i].p_idx++, 960 sizeof(struct ext4_extent_idx)); 961 neh->eh_entries++; 962 BUG_ON(neh->eh_entries > neh->eh_max);*/ 963 path[i].p_idx++; 964 m++; 965 } 966 if (m) { 967 memmove(++fidx, path[i].p_idx - m, 968 sizeof(struct ext4_extent_idx) * m); 969 le16_add_cpu(&neh->eh_entries, m); 970 } 971 set_buffer_uptodate(bh); 972 unlock_buffer(bh); 973 974 err = ext4_handle_dirty_metadata(handle, inode, bh); 975 if (err) 976 goto cleanup; 977 brelse(bh); 978 bh = NULL; 979 980 /* correct old index */ 981 if (m) { 982 err = ext4_ext_get_access(handle, inode, path + i); 983 if (err) 984 goto cleanup; 985 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 986 err = ext4_ext_dirty(handle, inode, path + i); 987 if (err) 988 goto cleanup; 989 } 990 991 i--; 992 } 993 994 /* insert new index */ 995 err = ext4_ext_insert_index(handle, inode, path + at, 996 le32_to_cpu(border), newblock); 997 998 cleanup: 999 if (bh) { 1000 if (buffer_locked(bh)) 1001 unlock_buffer(bh); 1002 brelse(bh); 1003 } 1004 1005 if (err) { 1006 /* free all allocated blocks in error case */ 1007 for (i = 0; i < depth; i++) { 1008 if (!ablocks[i]) 1009 continue; 1010 ext4_free_blocks(handle, inode, ablocks[i], 1, 1); 1011 } 1012 } 1013 kfree(ablocks); 1014 1015 return err; 1016 } 1017 1018 /* 1019 * ext4_ext_grow_indepth: 1020 * implements tree growing procedure: 1021 * - allocates new block 1022 * - moves top-level data (index block or leaf) into the new block 1023 * - initializes new top-level, creating index that points to the 1024 * just created block 1025 */ 1026 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1027 struct ext4_ext_path *path, 1028 struct ext4_extent *newext) 1029 { 1030 struct ext4_ext_path *curp = path; 1031 struct ext4_extent_header *neh; 1032 struct ext4_extent_idx *fidx; 1033 struct buffer_head *bh; 1034 ext4_fsblk_t newblock; 1035 int err = 0; 1036 1037 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err); 1038 if (newblock == 0) 1039 return err; 1040 1041 bh = sb_getblk(inode->i_sb, newblock); 1042 if (!bh) { 1043 err = -EIO; 1044 ext4_std_error(inode->i_sb, err); 1045 return err; 1046 } 1047 lock_buffer(bh); 1048 1049 err = ext4_journal_get_create_access(handle, bh); 1050 if (err) { 1051 unlock_buffer(bh); 1052 goto out; 1053 } 1054 1055 /* move top-level index/leaf into new block */ 1056 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data)); 1057 1058 /* set size of new block */ 1059 neh = ext_block_hdr(bh); 1060 /* old root could have indexes or leaves 1061 * so calculate e_max right way */ 1062 if (ext_depth(inode)) 1063 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1064 else 1065 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1066 neh->eh_magic = EXT4_EXT_MAGIC; 1067 set_buffer_uptodate(bh); 1068 unlock_buffer(bh); 1069 1070 err = ext4_handle_dirty_metadata(handle, inode, bh); 1071 if (err) 1072 goto out; 1073 1074 /* create index in new top-level index: num,max,pointer */ 1075 err = ext4_ext_get_access(handle, inode, curp); 1076 if (err) 1077 goto out; 1078 1079 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC; 1080 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1081 curp->p_hdr->eh_entries = cpu_to_le16(1); 1082 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr); 1083 1084 if (path[0].p_hdr->eh_depth) 1085 curp->p_idx->ei_block = 1086 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block; 1087 else 1088 curp->p_idx->ei_block = 1089 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block; 1090 ext4_idx_store_pblock(curp->p_idx, newblock); 1091 1092 neh = ext_inode_hdr(inode); 1093 fidx = EXT_FIRST_INDEX(neh); 1094 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1095 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1096 le32_to_cpu(fidx->ei_block), idx_pblock(fidx)); 1097 1098 neh->eh_depth = cpu_to_le16(path->p_depth + 1); 1099 err = ext4_ext_dirty(handle, inode, curp); 1100 out: 1101 brelse(bh); 1102 1103 return err; 1104 } 1105 1106 /* 1107 * ext4_ext_create_new_leaf: 1108 * finds empty index and adds new leaf. 1109 * if no free index is found, then it requests in-depth growing. 1110 */ 1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1112 struct ext4_ext_path *path, 1113 struct ext4_extent *newext) 1114 { 1115 struct ext4_ext_path *curp; 1116 int depth, i, err = 0; 1117 1118 repeat: 1119 i = depth = ext_depth(inode); 1120 1121 /* walk up to the tree and look for free index entry */ 1122 curp = path + depth; 1123 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1124 i--; 1125 curp--; 1126 } 1127 1128 /* we use already allocated block for index block, 1129 * so subsequent data blocks should be contiguous */ 1130 if (EXT_HAS_FREE_INDEX(curp)) { 1131 /* if we found index with free entry, then use that 1132 * entry: create all needed subtree and add new leaf */ 1133 err = ext4_ext_split(handle, inode, path, newext, i); 1134 if (err) 1135 goto out; 1136 1137 /* refill path */ 1138 ext4_ext_drop_refs(path); 1139 path = ext4_ext_find_extent(inode, 1140 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1141 path); 1142 if (IS_ERR(path)) 1143 err = PTR_ERR(path); 1144 } else { 1145 /* tree is full, time to grow in depth */ 1146 err = ext4_ext_grow_indepth(handle, inode, path, newext); 1147 if (err) 1148 goto out; 1149 1150 /* refill path */ 1151 ext4_ext_drop_refs(path); 1152 path = ext4_ext_find_extent(inode, 1153 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1154 path); 1155 if (IS_ERR(path)) { 1156 err = PTR_ERR(path); 1157 goto out; 1158 } 1159 1160 /* 1161 * only first (depth 0 -> 1) produces free space; 1162 * in all other cases we have to split the grown tree 1163 */ 1164 depth = ext_depth(inode); 1165 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1166 /* now we need to split */ 1167 goto repeat; 1168 } 1169 } 1170 1171 out: 1172 return err; 1173 } 1174 1175 /* 1176 * search the closest allocated block to the left for *logical 1177 * and returns it at @logical + it's physical address at @phys 1178 * if *logical is the smallest allocated block, the function 1179 * returns 0 at @phys 1180 * return value contains 0 (success) or error code 1181 */ 1182 int 1183 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path, 1184 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1185 { 1186 struct ext4_extent_idx *ix; 1187 struct ext4_extent *ex; 1188 int depth, ee_len; 1189 1190 BUG_ON(path == NULL); 1191 depth = path->p_depth; 1192 *phys = 0; 1193 1194 if (depth == 0 && path->p_ext == NULL) 1195 return 0; 1196 1197 /* usually extent in the path covers blocks smaller 1198 * then *logical, but it can be that extent is the 1199 * first one in the file */ 1200 1201 ex = path[depth].p_ext; 1202 ee_len = ext4_ext_get_actual_len(ex); 1203 if (*logical < le32_to_cpu(ex->ee_block)) { 1204 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1205 while (--depth >= 0) { 1206 ix = path[depth].p_idx; 1207 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1208 } 1209 return 0; 1210 } 1211 1212 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1213 1214 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1215 *phys = ext_pblock(ex) + ee_len - 1; 1216 return 0; 1217 } 1218 1219 /* 1220 * search the closest allocated block to the right for *logical 1221 * and returns it at @logical + it's physical address at @phys 1222 * if *logical is the smallest allocated block, the function 1223 * returns 0 at @phys 1224 * return value contains 0 (success) or error code 1225 */ 1226 int 1227 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path, 1228 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1229 { 1230 struct buffer_head *bh = NULL; 1231 struct ext4_extent_header *eh; 1232 struct ext4_extent_idx *ix; 1233 struct ext4_extent *ex; 1234 ext4_fsblk_t block; 1235 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1236 int ee_len; 1237 1238 BUG_ON(path == NULL); 1239 depth = path->p_depth; 1240 *phys = 0; 1241 1242 if (depth == 0 && path->p_ext == NULL) 1243 return 0; 1244 1245 /* usually extent in the path covers blocks smaller 1246 * then *logical, but it can be that extent is the 1247 * first one in the file */ 1248 1249 ex = path[depth].p_ext; 1250 ee_len = ext4_ext_get_actual_len(ex); 1251 if (*logical < le32_to_cpu(ex->ee_block)) { 1252 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1253 while (--depth >= 0) { 1254 ix = path[depth].p_idx; 1255 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1256 } 1257 *logical = le32_to_cpu(ex->ee_block); 1258 *phys = ext_pblock(ex); 1259 return 0; 1260 } 1261 1262 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1263 1264 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1265 /* next allocated block in this leaf */ 1266 ex++; 1267 *logical = le32_to_cpu(ex->ee_block); 1268 *phys = ext_pblock(ex); 1269 return 0; 1270 } 1271 1272 /* go up and search for index to the right */ 1273 while (--depth >= 0) { 1274 ix = path[depth].p_idx; 1275 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1276 goto got_index; 1277 } 1278 1279 /* we've gone up to the root and found no index to the right */ 1280 return 0; 1281 1282 got_index: 1283 /* we've found index to the right, let's 1284 * follow it and find the closest allocated 1285 * block to the right */ 1286 ix++; 1287 block = idx_pblock(ix); 1288 while (++depth < path->p_depth) { 1289 bh = sb_bread(inode->i_sb, block); 1290 if (bh == NULL) 1291 return -EIO; 1292 eh = ext_block_hdr(bh); 1293 /* subtract from p_depth to get proper eh_depth */ 1294 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1295 put_bh(bh); 1296 return -EIO; 1297 } 1298 ix = EXT_FIRST_INDEX(eh); 1299 block = idx_pblock(ix); 1300 put_bh(bh); 1301 } 1302 1303 bh = sb_bread(inode->i_sb, block); 1304 if (bh == NULL) 1305 return -EIO; 1306 eh = ext_block_hdr(bh); 1307 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1308 put_bh(bh); 1309 return -EIO; 1310 } 1311 ex = EXT_FIRST_EXTENT(eh); 1312 *logical = le32_to_cpu(ex->ee_block); 1313 *phys = ext_pblock(ex); 1314 put_bh(bh); 1315 return 0; 1316 } 1317 1318 /* 1319 * ext4_ext_next_allocated_block: 1320 * returns allocated block in subsequent extent or EXT_MAX_BLOCK. 1321 * NOTE: it considers block number from index entry as 1322 * allocated block. Thus, index entries have to be consistent 1323 * with leaves. 1324 */ 1325 static ext4_lblk_t 1326 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1327 { 1328 int depth; 1329 1330 BUG_ON(path == NULL); 1331 depth = path->p_depth; 1332 1333 if (depth == 0 && path->p_ext == NULL) 1334 return EXT_MAX_BLOCK; 1335 1336 while (depth >= 0) { 1337 if (depth == path->p_depth) { 1338 /* leaf */ 1339 if (path[depth].p_ext != 1340 EXT_LAST_EXTENT(path[depth].p_hdr)) 1341 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1342 } else { 1343 /* index */ 1344 if (path[depth].p_idx != 1345 EXT_LAST_INDEX(path[depth].p_hdr)) 1346 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1347 } 1348 depth--; 1349 } 1350 1351 return EXT_MAX_BLOCK; 1352 } 1353 1354 /* 1355 * ext4_ext_next_leaf_block: 1356 * returns first allocated block from next leaf or EXT_MAX_BLOCK 1357 */ 1358 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode, 1359 struct ext4_ext_path *path) 1360 { 1361 int depth; 1362 1363 BUG_ON(path == NULL); 1364 depth = path->p_depth; 1365 1366 /* zero-tree has no leaf blocks at all */ 1367 if (depth == 0) 1368 return EXT_MAX_BLOCK; 1369 1370 /* go to index block */ 1371 depth--; 1372 1373 while (depth >= 0) { 1374 if (path[depth].p_idx != 1375 EXT_LAST_INDEX(path[depth].p_hdr)) 1376 return (ext4_lblk_t) 1377 le32_to_cpu(path[depth].p_idx[1].ei_block); 1378 depth--; 1379 } 1380 1381 return EXT_MAX_BLOCK; 1382 } 1383 1384 /* 1385 * ext4_ext_correct_indexes: 1386 * if leaf gets modified and modified extent is first in the leaf, 1387 * then we have to correct all indexes above. 1388 * TODO: do we need to correct tree in all cases? 1389 */ 1390 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1391 struct ext4_ext_path *path) 1392 { 1393 struct ext4_extent_header *eh; 1394 int depth = ext_depth(inode); 1395 struct ext4_extent *ex; 1396 __le32 border; 1397 int k, err = 0; 1398 1399 eh = path[depth].p_hdr; 1400 ex = path[depth].p_ext; 1401 BUG_ON(ex == NULL); 1402 BUG_ON(eh == NULL); 1403 1404 if (depth == 0) { 1405 /* there is no tree at all */ 1406 return 0; 1407 } 1408 1409 if (ex != EXT_FIRST_EXTENT(eh)) { 1410 /* we correct tree if first leaf got modified only */ 1411 return 0; 1412 } 1413 1414 /* 1415 * TODO: we need correction if border is smaller than current one 1416 */ 1417 k = depth - 1; 1418 border = path[depth].p_ext->ee_block; 1419 err = ext4_ext_get_access(handle, inode, path + k); 1420 if (err) 1421 return err; 1422 path[k].p_idx->ei_block = border; 1423 err = ext4_ext_dirty(handle, inode, path + k); 1424 if (err) 1425 return err; 1426 1427 while (k--) { 1428 /* change all left-side indexes */ 1429 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1430 break; 1431 err = ext4_ext_get_access(handle, inode, path + k); 1432 if (err) 1433 break; 1434 path[k].p_idx->ei_block = border; 1435 err = ext4_ext_dirty(handle, inode, path + k); 1436 if (err) 1437 break; 1438 } 1439 1440 return err; 1441 } 1442 1443 int 1444 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1445 struct ext4_extent *ex2) 1446 { 1447 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1448 1449 /* 1450 * Make sure that either both extents are uninitialized, or 1451 * both are _not_. 1452 */ 1453 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1454 return 0; 1455 1456 if (ext4_ext_is_uninitialized(ex1)) 1457 max_len = EXT_UNINIT_MAX_LEN; 1458 else 1459 max_len = EXT_INIT_MAX_LEN; 1460 1461 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1462 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1463 1464 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1465 le32_to_cpu(ex2->ee_block)) 1466 return 0; 1467 1468 /* 1469 * To allow future support for preallocated extents to be added 1470 * as an RO_COMPAT feature, refuse to merge to extents if 1471 * this can result in the top bit of ee_len being set. 1472 */ 1473 if (ext1_ee_len + ext2_ee_len > max_len) 1474 return 0; 1475 #ifdef AGGRESSIVE_TEST 1476 if (ext1_ee_len >= 4) 1477 return 0; 1478 #endif 1479 1480 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2)) 1481 return 1; 1482 return 0; 1483 } 1484 1485 /* 1486 * This function tries to merge the "ex" extent to the next extent in the tree. 1487 * It always tries to merge towards right. If you want to merge towards 1488 * left, pass "ex - 1" as argument instead of "ex". 1489 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1490 * 1 if they got merged. 1491 */ 1492 int ext4_ext_try_to_merge(struct inode *inode, 1493 struct ext4_ext_path *path, 1494 struct ext4_extent *ex) 1495 { 1496 struct ext4_extent_header *eh; 1497 unsigned int depth, len; 1498 int merge_done = 0; 1499 int uninitialized = 0; 1500 1501 depth = ext_depth(inode); 1502 BUG_ON(path[depth].p_hdr == NULL); 1503 eh = path[depth].p_hdr; 1504 1505 while (ex < EXT_LAST_EXTENT(eh)) { 1506 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1507 break; 1508 /* merge with next extent! */ 1509 if (ext4_ext_is_uninitialized(ex)) 1510 uninitialized = 1; 1511 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1512 + ext4_ext_get_actual_len(ex + 1)); 1513 if (uninitialized) 1514 ext4_ext_mark_uninitialized(ex); 1515 1516 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1517 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1518 * sizeof(struct ext4_extent); 1519 memmove(ex + 1, ex + 2, len); 1520 } 1521 le16_add_cpu(&eh->eh_entries, -1); 1522 merge_done = 1; 1523 WARN_ON(eh->eh_entries == 0); 1524 if (!eh->eh_entries) 1525 ext4_error(inode->i_sb, "ext4_ext_try_to_merge", 1526 "inode#%lu, eh->eh_entries = 0!", inode->i_ino); 1527 } 1528 1529 return merge_done; 1530 } 1531 1532 /* 1533 * check if a portion of the "newext" extent overlaps with an 1534 * existing extent. 1535 * 1536 * If there is an overlap discovered, it updates the length of the newext 1537 * such that there will be no overlap, and then returns 1. 1538 * If there is no overlap found, it returns 0. 1539 */ 1540 unsigned int ext4_ext_check_overlap(struct inode *inode, 1541 struct ext4_extent *newext, 1542 struct ext4_ext_path *path) 1543 { 1544 ext4_lblk_t b1, b2; 1545 unsigned int depth, len1; 1546 unsigned int ret = 0; 1547 1548 b1 = le32_to_cpu(newext->ee_block); 1549 len1 = ext4_ext_get_actual_len(newext); 1550 depth = ext_depth(inode); 1551 if (!path[depth].p_ext) 1552 goto out; 1553 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1554 1555 /* 1556 * get the next allocated block if the extent in the path 1557 * is before the requested block(s) 1558 */ 1559 if (b2 < b1) { 1560 b2 = ext4_ext_next_allocated_block(path); 1561 if (b2 == EXT_MAX_BLOCK) 1562 goto out; 1563 } 1564 1565 /* check for wrap through zero on extent logical start block*/ 1566 if (b1 + len1 < b1) { 1567 len1 = EXT_MAX_BLOCK - b1; 1568 newext->ee_len = cpu_to_le16(len1); 1569 ret = 1; 1570 } 1571 1572 /* check for overlap */ 1573 if (b1 + len1 > b2) { 1574 newext->ee_len = cpu_to_le16(b2 - b1); 1575 ret = 1; 1576 } 1577 out: 1578 return ret; 1579 } 1580 1581 /* 1582 * ext4_ext_insert_extent: 1583 * tries to merge requsted extent into the existing extent or 1584 * inserts requested extent as new one into the tree, 1585 * creating new leaf in the no-space case. 1586 */ 1587 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1588 struct ext4_ext_path *path, 1589 struct ext4_extent *newext, int flag) 1590 { 1591 struct ext4_extent_header *eh; 1592 struct ext4_extent *ex, *fex; 1593 struct ext4_extent *nearex; /* nearest extent */ 1594 struct ext4_ext_path *npath = NULL; 1595 int depth, len, err; 1596 ext4_lblk_t next; 1597 unsigned uninitialized = 0; 1598 1599 BUG_ON(ext4_ext_get_actual_len(newext) == 0); 1600 depth = ext_depth(inode); 1601 ex = path[depth].p_ext; 1602 BUG_ON(path[depth].p_hdr == NULL); 1603 1604 /* try to insert block into found extent and return */ 1605 if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT) 1606 && ext4_can_extents_be_merged(inode, ex, newext)) { 1607 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n", 1608 ext4_ext_is_uninitialized(newext), 1609 ext4_ext_get_actual_len(newext), 1610 le32_to_cpu(ex->ee_block), 1611 ext4_ext_is_uninitialized(ex), 1612 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 1613 err = ext4_ext_get_access(handle, inode, path + depth); 1614 if (err) 1615 return err; 1616 1617 /* 1618 * ext4_can_extents_be_merged should have checked that either 1619 * both extents are uninitialized, or both aren't. Thus we 1620 * need to check only one of them here. 1621 */ 1622 if (ext4_ext_is_uninitialized(ex)) 1623 uninitialized = 1; 1624 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1625 + ext4_ext_get_actual_len(newext)); 1626 if (uninitialized) 1627 ext4_ext_mark_uninitialized(ex); 1628 eh = path[depth].p_hdr; 1629 nearex = ex; 1630 goto merge; 1631 } 1632 1633 repeat: 1634 depth = ext_depth(inode); 1635 eh = path[depth].p_hdr; 1636 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1637 goto has_space; 1638 1639 /* probably next leaf has space for us? */ 1640 fex = EXT_LAST_EXTENT(eh); 1641 next = ext4_ext_next_leaf_block(inode, path); 1642 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block) 1643 && next != EXT_MAX_BLOCK) { 1644 ext_debug("next leaf block - %d\n", next); 1645 BUG_ON(npath != NULL); 1646 npath = ext4_ext_find_extent(inode, next, NULL); 1647 if (IS_ERR(npath)) 1648 return PTR_ERR(npath); 1649 BUG_ON(npath->p_depth != path->p_depth); 1650 eh = npath[depth].p_hdr; 1651 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1652 ext_debug("next leaf isnt full(%d)\n", 1653 le16_to_cpu(eh->eh_entries)); 1654 path = npath; 1655 goto repeat; 1656 } 1657 ext_debug("next leaf has no free space(%d,%d)\n", 1658 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1659 } 1660 1661 /* 1662 * There is no free space in the found leaf. 1663 * We're gonna add a new leaf in the tree. 1664 */ 1665 err = ext4_ext_create_new_leaf(handle, inode, path, newext); 1666 if (err) 1667 goto cleanup; 1668 depth = ext_depth(inode); 1669 eh = path[depth].p_hdr; 1670 1671 has_space: 1672 nearex = path[depth].p_ext; 1673 1674 err = ext4_ext_get_access(handle, inode, path + depth); 1675 if (err) 1676 goto cleanup; 1677 1678 if (!nearex) { 1679 /* there is no extent in this leaf, create first one */ 1680 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n", 1681 le32_to_cpu(newext->ee_block), 1682 ext_pblock(newext), 1683 ext4_ext_is_uninitialized(newext), 1684 ext4_ext_get_actual_len(newext)); 1685 path[depth].p_ext = EXT_FIRST_EXTENT(eh); 1686 } else if (le32_to_cpu(newext->ee_block) 1687 > le32_to_cpu(nearex->ee_block)) { 1688 /* BUG_ON(newext->ee_block == nearex->ee_block); */ 1689 if (nearex != EXT_LAST_EXTENT(eh)) { 1690 len = EXT_MAX_EXTENT(eh) - nearex; 1691 len = (len - 1) * sizeof(struct ext4_extent); 1692 len = len < 0 ? 0 : len; 1693 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, " 1694 "move %d from 0x%p to 0x%p\n", 1695 le32_to_cpu(newext->ee_block), 1696 ext_pblock(newext), 1697 ext4_ext_is_uninitialized(newext), 1698 ext4_ext_get_actual_len(newext), 1699 nearex, len, nearex + 1, nearex + 2); 1700 memmove(nearex + 2, nearex + 1, len); 1701 } 1702 path[depth].p_ext = nearex + 1; 1703 } else { 1704 BUG_ON(newext->ee_block == nearex->ee_block); 1705 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); 1706 len = len < 0 ? 0 : len; 1707 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, " 1708 "move %d from 0x%p to 0x%p\n", 1709 le32_to_cpu(newext->ee_block), 1710 ext_pblock(newext), 1711 ext4_ext_is_uninitialized(newext), 1712 ext4_ext_get_actual_len(newext), 1713 nearex, len, nearex + 1, nearex + 2); 1714 memmove(nearex + 1, nearex, len); 1715 path[depth].p_ext = nearex; 1716 } 1717 1718 le16_add_cpu(&eh->eh_entries, 1); 1719 nearex = path[depth].p_ext; 1720 nearex->ee_block = newext->ee_block; 1721 ext4_ext_store_pblock(nearex, ext_pblock(newext)); 1722 nearex->ee_len = newext->ee_len; 1723 1724 merge: 1725 /* try to merge extents to the right */ 1726 if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT) 1727 ext4_ext_try_to_merge(inode, path, nearex); 1728 1729 /* try to merge extents to the left */ 1730 1731 /* time to correct all indexes above */ 1732 err = ext4_ext_correct_indexes(handle, inode, path); 1733 if (err) 1734 goto cleanup; 1735 1736 err = ext4_ext_dirty(handle, inode, path + depth); 1737 1738 cleanup: 1739 if (npath) { 1740 ext4_ext_drop_refs(npath); 1741 kfree(npath); 1742 } 1743 ext4_ext_invalidate_cache(inode); 1744 return err; 1745 } 1746 1747 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1748 ext4_lblk_t num, ext_prepare_callback func, 1749 void *cbdata) 1750 { 1751 struct ext4_ext_path *path = NULL; 1752 struct ext4_ext_cache cbex; 1753 struct ext4_extent *ex; 1754 ext4_lblk_t next, start = 0, end = 0; 1755 ext4_lblk_t last = block + num; 1756 int depth, exists, err = 0; 1757 1758 BUG_ON(func == NULL); 1759 BUG_ON(inode == NULL); 1760 1761 while (block < last && block != EXT_MAX_BLOCK) { 1762 num = last - block; 1763 /* find extent for this block */ 1764 path = ext4_ext_find_extent(inode, block, path); 1765 if (IS_ERR(path)) { 1766 err = PTR_ERR(path); 1767 path = NULL; 1768 break; 1769 } 1770 1771 depth = ext_depth(inode); 1772 BUG_ON(path[depth].p_hdr == NULL); 1773 ex = path[depth].p_ext; 1774 next = ext4_ext_next_allocated_block(path); 1775 1776 exists = 0; 1777 if (!ex) { 1778 /* there is no extent yet, so try to allocate 1779 * all requested space */ 1780 start = block; 1781 end = block + num; 1782 } else if (le32_to_cpu(ex->ee_block) > block) { 1783 /* need to allocate space before found extent */ 1784 start = block; 1785 end = le32_to_cpu(ex->ee_block); 1786 if (block + num < end) 1787 end = block + num; 1788 } else if (block >= le32_to_cpu(ex->ee_block) 1789 + ext4_ext_get_actual_len(ex)) { 1790 /* need to allocate space after found extent */ 1791 start = block; 1792 end = block + num; 1793 if (end >= next) 1794 end = next; 1795 } else if (block >= le32_to_cpu(ex->ee_block)) { 1796 /* 1797 * some part of requested space is covered 1798 * by found extent 1799 */ 1800 start = block; 1801 end = le32_to_cpu(ex->ee_block) 1802 + ext4_ext_get_actual_len(ex); 1803 if (block + num < end) 1804 end = block + num; 1805 exists = 1; 1806 } else { 1807 BUG(); 1808 } 1809 BUG_ON(end <= start); 1810 1811 if (!exists) { 1812 cbex.ec_block = start; 1813 cbex.ec_len = end - start; 1814 cbex.ec_start = 0; 1815 cbex.ec_type = EXT4_EXT_CACHE_GAP; 1816 } else { 1817 cbex.ec_block = le32_to_cpu(ex->ee_block); 1818 cbex.ec_len = ext4_ext_get_actual_len(ex); 1819 cbex.ec_start = ext_pblock(ex); 1820 cbex.ec_type = EXT4_EXT_CACHE_EXTENT; 1821 } 1822 1823 BUG_ON(cbex.ec_len == 0); 1824 err = func(inode, path, &cbex, ex, cbdata); 1825 ext4_ext_drop_refs(path); 1826 1827 if (err < 0) 1828 break; 1829 1830 if (err == EXT_REPEAT) 1831 continue; 1832 else if (err == EXT_BREAK) { 1833 err = 0; 1834 break; 1835 } 1836 1837 if (ext_depth(inode) != depth) { 1838 /* depth was changed. we have to realloc path */ 1839 kfree(path); 1840 path = NULL; 1841 } 1842 1843 block = cbex.ec_block + cbex.ec_len; 1844 } 1845 1846 if (path) { 1847 ext4_ext_drop_refs(path); 1848 kfree(path); 1849 } 1850 1851 return err; 1852 } 1853 1854 static void 1855 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1856 __u32 len, ext4_fsblk_t start, int type) 1857 { 1858 struct ext4_ext_cache *cex; 1859 BUG_ON(len == 0); 1860 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1861 cex = &EXT4_I(inode)->i_cached_extent; 1862 cex->ec_type = type; 1863 cex->ec_block = block; 1864 cex->ec_len = len; 1865 cex->ec_start = start; 1866 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1867 } 1868 1869 /* 1870 * ext4_ext_put_gap_in_cache: 1871 * calculate boundaries of the gap that the requested block fits into 1872 * and cache this gap 1873 */ 1874 static void 1875 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1876 ext4_lblk_t block) 1877 { 1878 int depth = ext_depth(inode); 1879 unsigned long len; 1880 ext4_lblk_t lblock; 1881 struct ext4_extent *ex; 1882 1883 ex = path[depth].p_ext; 1884 if (ex == NULL) { 1885 /* there is no extent yet, so gap is [0;-] */ 1886 lblock = 0; 1887 len = EXT_MAX_BLOCK; 1888 ext_debug("cache gap(whole file):"); 1889 } else if (block < le32_to_cpu(ex->ee_block)) { 1890 lblock = block; 1891 len = le32_to_cpu(ex->ee_block) - block; 1892 ext_debug("cache gap(before): %u [%u:%u]", 1893 block, 1894 le32_to_cpu(ex->ee_block), 1895 ext4_ext_get_actual_len(ex)); 1896 } else if (block >= le32_to_cpu(ex->ee_block) 1897 + ext4_ext_get_actual_len(ex)) { 1898 ext4_lblk_t next; 1899 lblock = le32_to_cpu(ex->ee_block) 1900 + ext4_ext_get_actual_len(ex); 1901 1902 next = ext4_ext_next_allocated_block(path); 1903 ext_debug("cache gap(after): [%u:%u] %u", 1904 le32_to_cpu(ex->ee_block), 1905 ext4_ext_get_actual_len(ex), 1906 block); 1907 BUG_ON(next == lblock); 1908 len = next - lblock; 1909 } else { 1910 lblock = len = 0; 1911 BUG(); 1912 } 1913 1914 ext_debug(" -> %u:%lu\n", lblock, len); 1915 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP); 1916 } 1917 1918 static int 1919 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 1920 struct ext4_extent *ex) 1921 { 1922 struct ext4_ext_cache *cex; 1923 int ret = EXT4_EXT_CACHE_NO; 1924 1925 /* 1926 * We borrow i_block_reservation_lock to protect i_cached_extent 1927 */ 1928 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1929 cex = &EXT4_I(inode)->i_cached_extent; 1930 1931 /* has cache valid data? */ 1932 if (cex->ec_type == EXT4_EXT_CACHE_NO) 1933 goto errout; 1934 1935 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP && 1936 cex->ec_type != EXT4_EXT_CACHE_EXTENT); 1937 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) { 1938 ex->ee_block = cpu_to_le32(cex->ec_block); 1939 ext4_ext_store_pblock(ex, cex->ec_start); 1940 ex->ee_len = cpu_to_le16(cex->ec_len); 1941 ext_debug("%u cached by %u:%u:%llu\n", 1942 block, 1943 cex->ec_block, cex->ec_len, cex->ec_start); 1944 ret = cex->ec_type; 1945 } 1946 errout: 1947 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1948 return ret; 1949 } 1950 1951 /* 1952 * ext4_ext_rm_idx: 1953 * removes index from the index block. 1954 * It's used in truncate case only, thus all requests are for 1955 * last index in the block only. 1956 */ 1957 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 1958 struct ext4_ext_path *path) 1959 { 1960 struct buffer_head *bh; 1961 int err; 1962 ext4_fsblk_t leaf; 1963 1964 /* free index block */ 1965 path--; 1966 leaf = idx_pblock(path->p_idx); 1967 BUG_ON(path->p_hdr->eh_entries == 0); 1968 err = ext4_ext_get_access(handle, inode, path); 1969 if (err) 1970 return err; 1971 le16_add_cpu(&path->p_hdr->eh_entries, -1); 1972 err = ext4_ext_dirty(handle, inode, path); 1973 if (err) 1974 return err; 1975 ext_debug("index is empty, remove it, free block %llu\n", leaf); 1976 bh = sb_find_get_block(inode->i_sb, leaf); 1977 ext4_forget(handle, 1, inode, bh, leaf); 1978 ext4_free_blocks(handle, inode, leaf, 1, 1); 1979 return err; 1980 } 1981 1982 /* 1983 * ext4_ext_calc_credits_for_single_extent: 1984 * This routine returns max. credits that needed to insert an extent 1985 * to the extent tree. 1986 * When pass the actual path, the caller should calculate credits 1987 * under i_data_sem. 1988 */ 1989 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 1990 struct ext4_ext_path *path) 1991 { 1992 if (path) { 1993 int depth = ext_depth(inode); 1994 int ret = 0; 1995 1996 /* probably there is space in leaf? */ 1997 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 1998 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 1999 2000 /* 2001 * There are some space in the leaf tree, no 2002 * need to account for leaf block credit 2003 * 2004 * bitmaps and block group descriptor blocks 2005 * and other metadat blocks still need to be 2006 * accounted. 2007 */ 2008 /* 1 bitmap, 1 block group descriptor */ 2009 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2010 return ret; 2011 } 2012 } 2013 2014 return ext4_chunk_trans_blocks(inode, nrblocks); 2015 } 2016 2017 /* 2018 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2019 * 2020 * if nrblocks are fit in a single extent (chunk flag is 1), then 2021 * in the worse case, each tree level index/leaf need to be changed 2022 * if the tree split due to insert a new extent, then the old tree 2023 * index/leaf need to be updated too 2024 * 2025 * If the nrblocks are discontiguous, they could cause 2026 * the whole tree split more than once, but this is really rare. 2027 */ 2028 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2029 { 2030 int index; 2031 int depth = ext_depth(inode); 2032 2033 if (chunk) 2034 index = depth * 2; 2035 else 2036 index = depth * 3; 2037 2038 return index; 2039 } 2040 2041 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2042 struct ext4_extent *ex, 2043 ext4_lblk_t from, ext4_lblk_t to) 2044 { 2045 struct buffer_head *bh; 2046 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2047 int i, metadata = 0; 2048 2049 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2050 metadata = 1; 2051 #ifdef EXTENTS_STATS 2052 { 2053 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2054 spin_lock(&sbi->s_ext_stats_lock); 2055 sbi->s_ext_blocks += ee_len; 2056 sbi->s_ext_extents++; 2057 if (ee_len < sbi->s_ext_min) 2058 sbi->s_ext_min = ee_len; 2059 if (ee_len > sbi->s_ext_max) 2060 sbi->s_ext_max = ee_len; 2061 if (ext_depth(inode) > sbi->s_depth_max) 2062 sbi->s_depth_max = ext_depth(inode); 2063 spin_unlock(&sbi->s_ext_stats_lock); 2064 } 2065 #endif 2066 if (from >= le32_to_cpu(ex->ee_block) 2067 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2068 /* tail removal */ 2069 ext4_lblk_t num; 2070 ext4_fsblk_t start; 2071 2072 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2073 start = ext_pblock(ex) + ee_len - num; 2074 ext_debug("free last %u blocks starting %llu\n", num, start); 2075 for (i = 0; i < num; i++) { 2076 bh = sb_find_get_block(inode->i_sb, start + i); 2077 ext4_forget(handle, 0, inode, bh, start + i); 2078 } 2079 ext4_free_blocks(handle, inode, start, num, metadata); 2080 } else if (from == le32_to_cpu(ex->ee_block) 2081 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2082 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n", 2083 from, to, le32_to_cpu(ex->ee_block), ee_len); 2084 } else { 2085 printk(KERN_INFO "strange request: removal(2) " 2086 "%u-%u from %u:%u\n", 2087 from, to, le32_to_cpu(ex->ee_block), ee_len); 2088 } 2089 return 0; 2090 } 2091 2092 static int 2093 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2094 struct ext4_ext_path *path, ext4_lblk_t start) 2095 { 2096 int err = 0, correct_index = 0; 2097 int depth = ext_depth(inode), credits; 2098 struct ext4_extent_header *eh; 2099 ext4_lblk_t a, b, block; 2100 unsigned num; 2101 ext4_lblk_t ex_ee_block; 2102 unsigned short ex_ee_len; 2103 unsigned uninitialized = 0; 2104 struct ext4_extent *ex; 2105 2106 /* the header must be checked already in ext4_ext_remove_space() */ 2107 ext_debug("truncate since %u in leaf\n", start); 2108 if (!path[depth].p_hdr) 2109 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2110 eh = path[depth].p_hdr; 2111 BUG_ON(eh == NULL); 2112 2113 /* find where to start removing */ 2114 ex = EXT_LAST_EXTENT(eh); 2115 2116 ex_ee_block = le32_to_cpu(ex->ee_block); 2117 ex_ee_len = ext4_ext_get_actual_len(ex); 2118 2119 while (ex >= EXT_FIRST_EXTENT(eh) && 2120 ex_ee_block + ex_ee_len > start) { 2121 2122 if (ext4_ext_is_uninitialized(ex)) 2123 uninitialized = 1; 2124 else 2125 uninitialized = 0; 2126 2127 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2128 uninitialized, ex_ee_len); 2129 path[depth].p_ext = ex; 2130 2131 a = ex_ee_block > start ? ex_ee_block : start; 2132 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ? 2133 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK; 2134 2135 ext_debug(" border %u:%u\n", a, b); 2136 2137 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) { 2138 block = 0; 2139 num = 0; 2140 BUG(); 2141 } else if (a != ex_ee_block) { 2142 /* remove tail of the extent */ 2143 block = ex_ee_block; 2144 num = a - block; 2145 } else if (b != ex_ee_block + ex_ee_len - 1) { 2146 /* remove head of the extent */ 2147 block = a; 2148 num = b - a; 2149 /* there is no "make a hole" API yet */ 2150 BUG(); 2151 } else { 2152 /* remove whole extent: excellent! */ 2153 block = ex_ee_block; 2154 num = 0; 2155 BUG_ON(a != ex_ee_block); 2156 BUG_ON(b != ex_ee_block + ex_ee_len - 1); 2157 } 2158 2159 /* 2160 * 3 for leaf, sb, and inode plus 2 (bmap and group 2161 * descriptor) for each block group; assume two block 2162 * groups plus ex_ee_len/blocks_per_block_group for 2163 * the worst case 2164 */ 2165 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2166 if (ex == EXT_FIRST_EXTENT(eh)) { 2167 correct_index = 1; 2168 credits += (ext_depth(inode)) + 1; 2169 } 2170 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 2171 2172 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2173 if (err) 2174 goto out; 2175 2176 err = ext4_ext_get_access(handle, inode, path + depth); 2177 if (err) 2178 goto out; 2179 2180 err = ext4_remove_blocks(handle, inode, ex, a, b); 2181 if (err) 2182 goto out; 2183 2184 if (num == 0) { 2185 /* this extent is removed; mark slot entirely unused */ 2186 ext4_ext_store_pblock(ex, 0); 2187 le16_add_cpu(&eh->eh_entries, -1); 2188 } 2189 2190 ex->ee_block = cpu_to_le32(block); 2191 ex->ee_len = cpu_to_le16(num); 2192 /* 2193 * Do not mark uninitialized if all the blocks in the 2194 * extent have been removed. 2195 */ 2196 if (uninitialized && num) 2197 ext4_ext_mark_uninitialized(ex); 2198 2199 err = ext4_ext_dirty(handle, inode, path + depth); 2200 if (err) 2201 goto out; 2202 2203 ext_debug("new extent: %u:%u:%llu\n", block, num, 2204 ext_pblock(ex)); 2205 ex--; 2206 ex_ee_block = le32_to_cpu(ex->ee_block); 2207 ex_ee_len = ext4_ext_get_actual_len(ex); 2208 } 2209 2210 if (correct_index && eh->eh_entries) 2211 err = ext4_ext_correct_indexes(handle, inode, path); 2212 2213 /* if this leaf is free, then we should 2214 * remove it from index block above */ 2215 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2216 err = ext4_ext_rm_idx(handle, inode, path + depth); 2217 2218 out: 2219 return err; 2220 } 2221 2222 /* 2223 * ext4_ext_more_to_rm: 2224 * returns 1 if current index has to be freed (even partial) 2225 */ 2226 static int 2227 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2228 { 2229 BUG_ON(path->p_idx == NULL); 2230 2231 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2232 return 0; 2233 2234 /* 2235 * if truncate on deeper level happened, it wasn't partial, 2236 * so we have to consider current index for truncation 2237 */ 2238 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2239 return 0; 2240 return 1; 2241 } 2242 2243 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) 2244 { 2245 struct super_block *sb = inode->i_sb; 2246 int depth = ext_depth(inode); 2247 struct ext4_ext_path *path; 2248 handle_t *handle; 2249 int i = 0, err = 0; 2250 2251 ext_debug("truncate since %u\n", start); 2252 2253 /* probably first extent we're gonna free will be last in block */ 2254 handle = ext4_journal_start(inode, depth + 1); 2255 if (IS_ERR(handle)) 2256 return PTR_ERR(handle); 2257 2258 ext4_ext_invalidate_cache(inode); 2259 2260 /* 2261 * We start scanning from right side, freeing all the blocks 2262 * after i_size and walking into the tree depth-wise. 2263 */ 2264 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2265 if (path == NULL) { 2266 ext4_journal_stop(handle); 2267 return -ENOMEM; 2268 } 2269 path[0].p_hdr = ext_inode_hdr(inode); 2270 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2271 err = -EIO; 2272 goto out; 2273 } 2274 path[0].p_depth = depth; 2275 2276 while (i >= 0 && err == 0) { 2277 if (i == depth) { 2278 /* this is leaf block */ 2279 err = ext4_ext_rm_leaf(handle, inode, path, start); 2280 /* root level has p_bh == NULL, brelse() eats this */ 2281 brelse(path[i].p_bh); 2282 path[i].p_bh = NULL; 2283 i--; 2284 continue; 2285 } 2286 2287 /* this is index block */ 2288 if (!path[i].p_hdr) { 2289 ext_debug("initialize header\n"); 2290 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2291 } 2292 2293 if (!path[i].p_idx) { 2294 /* this level hasn't been touched yet */ 2295 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2296 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2297 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2298 path[i].p_hdr, 2299 le16_to_cpu(path[i].p_hdr->eh_entries)); 2300 } else { 2301 /* we were already here, see at next index */ 2302 path[i].p_idx--; 2303 } 2304 2305 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2306 i, EXT_FIRST_INDEX(path[i].p_hdr), 2307 path[i].p_idx); 2308 if (ext4_ext_more_to_rm(path + i)) { 2309 struct buffer_head *bh; 2310 /* go to the next level */ 2311 ext_debug("move to level %d (block %llu)\n", 2312 i + 1, idx_pblock(path[i].p_idx)); 2313 memset(path + i + 1, 0, sizeof(*path)); 2314 bh = sb_bread(sb, idx_pblock(path[i].p_idx)); 2315 if (!bh) { 2316 /* should we reset i_size? */ 2317 err = -EIO; 2318 break; 2319 } 2320 if (WARN_ON(i + 1 > depth)) { 2321 err = -EIO; 2322 break; 2323 } 2324 if (ext4_ext_check(inode, ext_block_hdr(bh), 2325 depth - i - 1)) { 2326 err = -EIO; 2327 break; 2328 } 2329 path[i + 1].p_bh = bh; 2330 2331 /* save actual number of indexes since this 2332 * number is changed at the next iteration */ 2333 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2334 i++; 2335 } else { 2336 /* we finished processing this index, go up */ 2337 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2338 /* index is empty, remove it; 2339 * handle must be already prepared by the 2340 * truncatei_leaf() */ 2341 err = ext4_ext_rm_idx(handle, inode, path + i); 2342 } 2343 /* root level has p_bh == NULL, brelse() eats this */ 2344 brelse(path[i].p_bh); 2345 path[i].p_bh = NULL; 2346 i--; 2347 ext_debug("return to level %d\n", i); 2348 } 2349 } 2350 2351 /* TODO: flexible tree reduction should be here */ 2352 if (path->p_hdr->eh_entries == 0) { 2353 /* 2354 * truncate to zero freed all the tree, 2355 * so we need to correct eh_depth 2356 */ 2357 err = ext4_ext_get_access(handle, inode, path); 2358 if (err == 0) { 2359 ext_inode_hdr(inode)->eh_depth = 0; 2360 ext_inode_hdr(inode)->eh_max = 2361 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2362 err = ext4_ext_dirty(handle, inode, path); 2363 } 2364 } 2365 out: 2366 ext4_ext_drop_refs(path); 2367 kfree(path); 2368 ext4_journal_stop(handle); 2369 2370 return err; 2371 } 2372 2373 /* 2374 * called at mount time 2375 */ 2376 void ext4_ext_init(struct super_block *sb) 2377 { 2378 /* 2379 * possible initialization would be here 2380 */ 2381 2382 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2383 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2384 printk(KERN_INFO "EXT4-fs: file extents enabled"); 2385 #ifdef AGGRESSIVE_TEST 2386 printk(", aggressive tests"); 2387 #endif 2388 #ifdef CHECK_BINSEARCH 2389 printk(", check binsearch"); 2390 #endif 2391 #ifdef EXTENTS_STATS 2392 printk(", stats"); 2393 #endif 2394 printk("\n"); 2395 #endif 2396 #ifdef EXTENTS_STATS 2397 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2398 EXT4_SB(sb)->s_ext_min = 1 << 30; 2399 EXT4_SB(sb)->s_ext_max = 0; 2400 #endif 2401 } 2402 } 2403 2404 /* 2405 * called at umount time 2406 */ 2407 void ext4_ext_release(struct super_block *sb) 2408 { 2409 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2410 return; 2411 2412 #ifdef EXTENTS_STATS 2413 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2414 struct ext4_sb_info *sbi = EXT4_SB(sb); 2415 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2416 sbi->s_ext_blocks, sbi->s_ext_extents, 2417 sbi->s_ext_blocks / sbi->s_ext_extents); 2418 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2419 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2420 } 2421 #endif 2422 } 2423 2424 static void bi_complete(struct bio *bio, int error) 2425 { 2426 complete((struct completion *)bio->bi_private); 2427 } 2428 2429 /* FIXME!! we need to try to merge to left or right after zero-out */ 2430 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2431 { 2432 int ret = -EIO; 2433 struct bio *bio; 2434 int blkbits, blocksize; 2435 sector_t ee_pblock; 2436 struct completion event; 2437 unsigned int ee_len, len, done, offset; 2438 2439 2440 blkbits = inode->i_blkbits; 2441 blocksize = inode->i_sb->s_blocksize; 2442 ee_len = ext4_ext_get_actual_len(ex); 2443 ee_pblock = ext_pblock(ex); 2444 2445 /* convert ee_pblock to 512 byte sectors */ 2446 ee_pblock = ee_pblock << (blkbits - 9); 2447 2448 while (ee_len > 0) { 2449 2450 if (ee_len > BIO_MAX_PAGES) 2451 len = BIO_MAX_PAGES; 2452 else 2453 len = ee_len; 2454 2455 bio = bio_alloc(GFP_NOIO, len); 2456 bio->bi_sector = ee_pblock; 2457 bio->bi_bdev = inode->i_sb->s_bdev; 2458 2459 done = 0; 2460 offset = 0; 2461 while (done < len) { 2462 ret = bio_add_page(bio, ZERO_PAGE(0), 2463 blocksize, offset); 2464 if (ret != blocksize) { 2465 /* 2466 * We can't add any more pages because of 2467 * hardware limitations. Start a new bio. 2468 */ 2469 break; 2470 } 2471 done++; 2472 offset += blocksize; 2473 if (offset >= PAGE_CACHE_SIZE) 2474 offset = 0; 2475 } 2476 2477 init_completion(&event); 2478 bio->bi_private = &event; 2479 bio->bi_end_io = bi_complete; 2480 submit_bio(WRITE, bio); 2481 wait_for_completion(&event); 2482 2483 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 2484 ret = 0; 2485 else { 2486 ret = -EIO; 2487 break; 2488 } 2489 bio_put(bio); 2490 ee_len -= done; 2491 ee_pblock += done << (blkbits - 9); 2492 } 2493 return ret; 2494 } 2495 2496 #define EXT4_EXT_ZERO_LEN 7 2497 /* 2498 * This function is called by ext4_ext_get_blocks() if someone tries to write 2499 * to an uninitialized extent. It may result in splitting the uninitialized 2500 * extent into multiple extents (upto three - one initialized and two 2501 * uninitialized). 2502 * There are three possibilities: 2503 * a> There is no split required: Entire extent should be initialized 2504 * b> Splits in two extents: Write is happening at either end of the extent 2505 * c> Splits in three extents: Somone is writing in middle of the extent 2506 */ 2507 static int ext4_ext_convert_to_initialized(handle_t *handle, 2508 struct inode *inode, 2509 struct ext4_ext_path *path, 2510 ext4_lblk_t iblock, 2511 unsigned int max_blocks) 2512 { 2513 struct ext4_extent *ex, newex, orig_ex; 2514 struct ext4_extent *ex1 = NULL; 2515 struct ext4_extent *ex2 = NULL; 2516 struct ext4_extent *ex3 = NULL; 2517 struct ext4_extent_header *eh; 2518 ext4_lblk_t ee_block; 2519 unsigned int allocated, ee_len, depth; 2520 ext4_fsblk_t newblock; 2521 int err = 0; 2522 int ret = 0; 2523 2524 depth = ext_depth(inode); 2525 eh = path[depth].p_hdr; 2526 ex = path[depth].p_ext; 2527 ee_block = le32_to_cpu(ex->ee_block); 2528 ee_len = ext4_ext_get_actual_len(ex); 2529 allocated = ee_len - (iblock - ee_block); 2530 newblock = iblock - ee_block + ext_pblock(ex); 2531 ex2 = ex; 2532 orig_ex.ee_block = ex->ee_block; 2533 orig_ex.ee_len = cpu_to_le16(ee_len); 2534 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex)); 2535 2536 err = ext4_ext_get_access(handle, inode, path + depth); 2537 if (err) 2538 goto out; 2539 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 2540 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) { 2541 err = ext4_ext_zeroout(inode, &orig_ex); 2542 if (err) 2543 goto fix_extent_len; 2544 /* update the extent length and mark as initialized */ 2545 ex->ee_block = orig_ex.ee_block; 2546 ex->ee_len = orig_ex.ee_len; 2547 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2548 ext4_ext_dirty(handle, inode, path + depth); 2549 /* zeroed the full extent */ 2550 return allocated; 2551 } 2552 2553 /* ex1: ee_block to iblock - 1 : uninitialized */ 2554 if (iblock > ee_block) { 2555 ex1 = ex; 2556 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2557 ext4_ext_mark_uninitialized(ex1); 2558 ex2 = &newex; 2559 } 2560 /* 2561 * for sanity, update the length of the ex2 extent before 2562 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2563 * overlap of blocks. 2564 */ 2565 if (!ex1 && allocated > max_blocks) 2566 ex2->ee_len = cpu_to_le16(max_blocks); 2567 /* ex3: to ee_block + ee_len : uninitialised */ 2568 if (allocated > max_blocks) { 2569 unsigned int newdepth; 2570 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */ 2571 if (allocated <= EXT4_EXT_ZERO_LEN) { 2572 /* 2573 * iblock == ee_block is handled by the zerouout 2574 * at the beginning. 2575 * Mark first half uninitialized. 2576 * Mark second half initialized and zero out the 2577 * initialized extent 2578 */ 2579 ex->ee_block = orig_ex.ee_block; 2580 ex->ee_len = cpu_to_le16(ee_len - allocated); 2581 ext4_ext_mark_uninitialized(ex); 2582 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2583 ext4_ext_dirty(handle, inode, path + depth); 2584 2585 ex3 = &newex; 2586 ex3->ee_block = cpu_to_le32(iblock); 2587 ext4_ext_store_pblock(ex3, newblock); 2588 ex3->ee_len = cpu_to_le16(allocated); 2589 err = ext4_ext_insert_extent(handle, inode, path, 2590 ex3, 0); 2591 if (err == -ENOSPC) { 2592 err = ext4_ext_zeroout(inode, &orig_ex); 2593 if (err) 2594 goto fix_extent_len; 2595 ex->ee_block = orig_ex.ee_block; 2596 ex->ee_len = orig_ex.ee_len; 2597 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2598 ext4_ext_dirty(handle, inode, path + depth); 2599 /* blocks available from iblock */ 2600 return allocated; 2601 2602 } else if (err) 2603 goto fix_extent_len; 2604 2605 /* 2606 * We need to zero out the second half because 2607 * an fallocate request can update file size and 2608 * converting the second half to initialized extent 2609 * implies that we can leak some junk data to user 2610 * space. 2611 */ 2612 err = ext4_ext_zeroout(inode, ex3); 2613 if (err) { 2614 /* 2615 * We should actually mark the 2616 * second half as uninit and return error 2617 * Insert would have changed the extent 2618 */ 2619 depth = ext_depth(inode); 2620 ext4_ext_drop_refs(path); 2621 path = ext4_ext_find_extent(inode, 2622 iblock, path); 2623 if (IS_ERR(path)) { 2624 err = PTR_ERR(path); 2625 return err; 2626 } 2627 /* get the second half extent details */ 2628 ex = path[depth].p_ext; 2629 err = ext4_ext_get_access(handle, inode, 2630 path + depth); 2631 if (err) 2632 return err; 2633 ext4_ext_mark_uninitialized(ex); 2634 ext4_ext_dirty(handle, inode, path + depth); 2635 return err; 2636 } 2637 2638 /* zeroed the second half */ 2639 return allocated; 2640 } 2641 ex3 = &newex; 2642 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2643 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2644 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2645 ext4_ext_mark_uninitialized(ex3); 2646 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0); 2647 if (err == -ENOSPC) { 2648 err = ext4_ext_zeroout(inode, &orig_ex); 2649 if (err) 2650 goto fix_extent_len; 2651 /* update the extent length and mark as initialized */ 2652 ex->ee_block = orig_ex.ee_block; 2653 ex->ee_len = orig_ex.ee_len; 2654 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2655 ext4_ext_dirty(handle, inode, path + depth); 2656 /* zeroed the full extent */ 2657 /* blocks available from iblock */ 2658 return allocated; 2659 2660 } else if (err) 2661 goto fix_extent_len; 2662 /* 2663 * The depth, and hence eh & ex might change 2664 * as part of the insert above. 2665 */ 2666 newdepth = ext_depth(inode); 2667 /* 2668 * update the extent length after successful insert of the 2669 * split extent 2670 */ 2671 orig_ex.ee_len = cpu_to_le16(ee_len - 2672 ext4_ext_get_actual_len(ex3)); 2673 depth = newdepth; 2674 ext4_ext_drop_refs(path); 2675 path = ext4_ext_find_extent(inode, iblock, path); 2676 if (IS_ERR(path)) { 2677 err = PTR_ERR(path); 2678 goto out; 2679 } 2680 eh = path[depth].p_hdr; 2681 ex = path[depth].p_ext; 2682 if (ex2 != &newex) 2683 ex2 = ex; 2684 2685 err = ext4_ext_get_access(handle, inode, path + depth); 2686 if (err) 2687 goto out; 2688 2689 allocated = max_blocks; 2690 2691 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying 2692 * to insert a extent in the middle zerout directly 2693 * otherwise give the extent a chance to merge to left 2694 */ 2695 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN && 2696 iblock != ee_block) { 2697 err = ext4_ext_zeroout(inode, &orig_ex); 2698 if (err) 2699 goto fix_extent_len; 2700 /* update the extent length and mark as initialized */ 2701 ex->ee_block = orig_ex.ee_block; 2702 ex->ee_len = orig_ex.ee_len; 2703 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2704 ext4_ext_dirty(handle, inode, path + depth); 2705 /* zero out the first half */ 2706 /* blocks available from iblock */ 2707 return allocated; 2708 } 2709 } 2710 /* 2711 * If there was a change of depth as part of the 2712 * insertion of ex3 above, we need to update the length 2713 * of the ex1 extent again here 2714 */ 2715 if (ex1 && ex1 != ex) { 2716 ex1 = ex; 2717 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2718 ext4_ext_mark_uninitialized(ex1); 2719 ex2 = &newex; 2720 } 2721 /* ex2: iblock to iblock + maxblocks-1 : initialised */ 2722 ex2->ee_block = cpu_to_le32(iblock); 2723 ext4_ext_store_pblock(ex2, newblock); 2724 ex2->ee_len = cpu_to_le16(allocated); 2725 if (ex2 != ex) 2726 goto insert; 2727 /* 2728 * New (initialized) extent starts from the first block 2729 * in the current extent. i.e., ex2 == ex 2730 * We have to see if it can be merged with the extent 2731 * on the left. 2732 */ 2733 if (ex2 > EXT_FIRST_EXTENT(eh)) { 2734 /* 2735 * To merge left, pass "ex2 - 1" to try_to_merge(), 2736 * since it merges towards right _only_. 2737 */ 2738 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1); 2739 if (ret) { 2740 err = ext4_ext_correct_indexes(handle, inode, path); 2741 if (err) 2742 goto out; 2743 depth = ext_depth(inode); 2744 ex2--; 2745 } 2746 } 2747 /* 2748 * Try to Merge towards right. This might be required 2749 * only when the whole extent is being written to. 2750 * i.e. ex2 == ex and ex3 == NULL. 2751 */ 2752 if (!ex3) { 2753 ret = ext4_ext_try_to_merge(inode, path, ex2); 2754 if (ret) { 2755 err = ext4_ext_correct_indexes(handle, inode, path); 2756 if (err) 2757 goto out; 2758 } 2759 } 2760 /* Mark modified extent as dirty */ 2761 err = ext4_ext_dirty(handle, inode, path + depth); 2762 goto out; 2763 insert: 2764 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0); 2765 if (err == -ENOSPC) { 2766 err = ext4_ext_zeroout(inode, &orig_ex); 2767 if (err) 2768 goto fix_extent_len; 2769 /* update the extent length and mark as initialized */ 2770 ex->ee_block = orig_ex.ee_block; 2771 ex->ee_len = orig_ex.ee_len; 2772 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2773 ext4_ext_dirty(handle, inode, path + depth); 2774 /* zero out the first half */ 2775 return allocated; 2776 } else if (err) 2777 goto fix_extent_len; 2778 out: 2779 ext4_ext_show_leaf(inode, path); 2780 return err ? err : allocated; 2781 2782 fix_extent_len: 2783 ex->ee_block = orig_ex.ee_block; 2784 ex->ee_len = orig_ex.ee_len; 2785 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2786 ext4_ext_mark_uninitialized(ex); 2787 ext4_ext_dirty(handle, inode, path + depth); 2788 return err; 2789 } 2790 2791 /* 2792 * This function is called by ext4_ext_get_blocks() from 2793 * ext4_get_blocks_dio_write() when DIO to write 2794 * to an uninitialized extent. 2795 * 2796 * Writing to an uninitized extent may result in splitting the uninitialized 2797 * extent into multiple /intialized unintialized extents (up to three) 2798 * There are three possibilities: 2799 * a> There is no split required: Entire extent should be uninitialized 2800 * b> Splits in two extents: Write is happening at either end of the extent 2801 * c> Splits in three extents: Somone is writing in middle of the extent 2802 * 2803 * One of more index blocks maybe needed if the extent tree grow after 2804 * the unintialized extent split. To prevent ENOSPC occur at the IO 2805 * complete, we need to split the uninitialized extent before DIO submit 2806 * the IO. The uninitilized extent called at this time will be split 2807 * into three uninitialized extent(at most). After IO complete, the part 2808 * being filled will be convert to initialized by the end_io callback function 2809 * via ext4_convert_unwritten_extents(). 2810 * 2811 * Returns the size of uninitialized extent to be written on success. 2812 */ 2813 static int ext4_split_unwritten_extents(handle_t *handle, 2814 struct inode *inode, 2815 struct ext4_ext_path *path, 2816 ext4_lblk_t iblock, 2817 unsigned int max_blocks, 2818 int flags) 2819 { 2820 struct ext4_extent *ex, newex, orig_ex; 2821 struct ext4_extent *ex1 = NULL; 2822 struct ext4_extent *ex2 = NULL; 2823 struct ext4_extent *ex3 = NULL; 2824 struct ext4_extent_header *eh; 2825 ext4_lblk_t ee_block; 2826 unsigned int allocated, ee_len, depth; 2827 ext4_fsblk_t newblock; 2828 int err = 0; 2829 2830 ext_debug("ext4_split_unwritten_extents: inode %lu," 2831 "iblock %llu, max_blocks %u\n", inode->i_ino, 2832 (unsigned long long)iblock, max_blocks); 2833 depth = ext_depth(inode); 2834 eh = path[depth].p_hdr; 2835 ex = path[depth].p_ext; 2836 ee_block = le32_to_cpu(ex->ee_block); 2837 ee_len = ext4_ext_get_actual_len(ex); 2838 allocated = ee_len - (iblock - ee_block); 2839 newblock = iblock - ee_block + ext_pblock(ex); 2840 ex2 = ex; 2841 orig_ex.ee_block = ex->ee_block; 2842 orig_ex.ee_len = cpu_to_le16(ee_len); 2843 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex)); 2844 2845 /* 2846 * If the uninitialized extent begins at the same logical 2847 * block where the write begins, and the write completely 2848 * covers the extent, then we don't need to split it. 2849 */ 2850 if ((iblock == ee_block) && (allocated <= max_blocks)) 2851 return allocated; 2852 2853 err = ext4_ext_get_access(handle, inode, path + depth); 2854 if (err) 2855 goto out; 2856 /* ex1: ee_block to iblock - 1 : uninitialized */ 2857 if (iblock > ee_block) { 2858 ex1 = ex; 2859 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2860 ext4_ext_mark_uninitialized(ex1); 2861 ex2 = &newex; 2862 } 2863 /* 2864 * for sanity, update the length of the ex2 extent before 2865 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2866 * overlap of blocks. 2867 */ 2868 if (!ex1 && allocated > max_blocks) 2869 ex2->ee_len = cpu_to_le16(max_blocks); 2870 /* ex3: to ee_block + ee_len : uninitialised */ 2871 if (allocated > max_blocks) { 2872 unsigned int newdepth; 2873 ex3 = &newex; 2874 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2875 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2876 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2877 ext4_ext_mark_uninitialized(ex3); 2878 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags); 2879 if (err == -ENOSPC) { 2880 err = ext4_ext_zeroout(inode, &orig_ex); 2881 if (err) 2882 goto fix_extent_len; 2883 /* update the extent length and mark as initialized */ 2884 ex->ee_block = orig_ex.ee_block; 2885 ex->ee_len = orig_ex.ee_len; 2886 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2887 ext4_ext_dirty(handle, inode, path + depth); 2888 /* zeroed the full extent */ 2889 /* blocks available from iblock */ 2890 return allocated; 2891 2892 } else if (err) 2893 goto fix_extent_len; 2894 /* 2895 * The depth, and hence eh & ex might change 2896 * as part of the insert above. 2897 */ 2898 newdepth = ext_depth(inode); 2899 /* 2900 * update the extent length after successful insert of the 2901 * split extent 2902 */ 2903 orig_ex.ee_len = cpu_to_le16(ee_len - 2904 ext4_ext_get_actual_len(ex3)); 2905 depth = newdepth; 2906 ext4_ext_drop_refs(path); 2907 path = ext4_ext_find_extent(inode, iblock, path); 2908 if (IS_ERR(path)) { 2909 err = PTR_ERR(path); 2910 goto out; 2911 } 2912 eh = path[depth].p_hdr; 2913 ex = path[depth].p_ext; 2914 if (ex2 != &newex) 2915 ex2 = ex; 2916 2917 err = ext4_ext_get_access(handle, inode, path + depth); 2918 if (err) 2919 goto out; 2920 2921 allocated = max_blocks; 2922 } 2923 /* 2924 * If there was a change of depth as part of the 2925 * insertion of ex3 above, we need to update the length 2926 * of the ex1 extent again here 2927 */ 2928 if (ex1 && ex1 != ex) { 2929 ex1 = ex; 2930 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2931 ext4_ext_mark_uninitialized(ex1); 2932 ex2 = &newex; 2933 } 2934 /* 2935 * ex2: iblock to iblock + maxblocks-1 : to be direct IO written, 2936 * uninitialised still. 2937 */ 2938 ex2->ee_block = cpu_to_le32(iblock); 2939 ext4_ext_store_pblock(ex2, newblock); 2940 ex2->ee_len = cpu_to_le16(allocated); 2941 ext4_ext_mark_uninitialized(ex2); 2942 if (ex2 != ex) 2943 goto insert; 2944 /* Mark modified extent as dirty */ 2945 err = ext4_ext_dirty(handle, inode, path + depth); 2946 ext_debug("out here\n"); 2947 goto out; 2948 insert: 2949 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2950 if (err == -ENOSPC) { 2951 err = ext4_ext_zeroout(inode, &orig_ex); 2952 if (err) 2953 goto fix_extent_len; 2954 /* update the extent length and mark as initialized */ 2955 ex->ee_block = orig_ex.ee_block; 2956 ex->ee_len = orig_ex.ee_len; 2957 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2958 ext4_ext_dirty(handle, inode, path + depth); 2959 /* zero out the first half */ 2960 return allocated; 2961 } else if (err) 2962 goto fix_extent_len; 2963 out: 2964 ext4_ext_show_leaf(inode, path); 2965 return err ? err : allocated; 2966 2967 fix_extent_len: 2968 ex->ee_block = orig_ex.ee_block; 2969 ex->ee_len = orig_ex.ee_len; 2970 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2971 ext4_ext_mark_uninitialized(ex); 2972 ext4_ext_dirty(handle, inode, path + depth); 2973 return err; 2974 } 2975 static int ext4_convert_unwritten_extents_dio(handle_t *handle, 2976 struct inode *inode, 2977 struct ext4_ext_path *path) 2978 { 2979 struct ext4_extent *ex; 2980 struct ext4_extent_header *eh; 2981 int depth; 2982 int err = 0; 2983 int ret = 0; 2984 2985 depth = ext_depth(inode); 2986 eh = path[depth].p_hdr; 2987 ex = path[depth].p_ext; 2988 2989 err = ext4_ext_get_access(handle, inode, path + depth); 2990 if (err) 2991 goto out; 2992 /* first mark the extent as initialized */ 2993 ext4_ext_mark_initialized(ex); 2994 2995 /* 2996 * We have to see if it can be merged with the extent 2997 * on the left. 2998 */ 2999 if (ex > EXT_FIRST_EXTENT(eh)) { 3000 /* 3001 * To merge left, pass "ex - 1" to try_to_merge(), 3002 * since it merges towards right _only_. 3003 */ 3004 ret = ext4_ext_try_to_merge(inode, path, ex - 1); 3005 if (ret) { 3006 err = ext4_ext_correct_indexes(handle, inode, path); 3007 if (err) 3008 goto out; 3009 depth = ext_depth(inode); 3010 ex--; 3011 } 3012 } 3013 /* 3014 * Try to Merge towards right. 3015 */ 3016 ret = ext4_ext_try_to_merge(inode, path, ex); 3017 if (ret) { 3018 err = ext4_ext_correct_indexes(handle, inode, path); 3019 if (err) 3020 goto out; 3021 depth = ext_depth(inode); 3022 } 3023 /* Mark modified extent as dirty */ 3024 err = ext4_ext_dirty(handle, inode, path + depth); 3025 out: 3026 ext4_ext_show_leaf(inode, path); 3027 return err; 3028 } 3029 3030 static int 3031 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3032 ext4_lblk_t iblock, unsigned int max_blocks, 3033 struct ext4_ext_path *path, int flags, 3034 unsigned int allocated, struct buffer_head *bh_result, 3035 ext4_fsblk_t newblock) 3036 { 3037 int ret = 0; 3038 int err = 0; 3039 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3040 3041 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical" 3042 "block %llu, max_blocks %u, flags %d, allocated %u", 3043 inode->i_ino, (unsigned long long)iblock, max_blocks, 3044 flags, allocated); 3045 ext4_ext_show_leaf(inode, path); 3046 3047 /* DIO get_block() before submit the IO, split the extent */ 3048 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) { 3049 ret = ext4_split_unwritten_extents(handle, 3050 inode, path, iblock, 3051 max_blocks, flags); 3052 /* 3053 * Flag the inode(non aio case) or end_io struct (aio case) 3054 * that this IO needs to convertion to written when IO is 3055 * completed 3056 */ 3057 if (io) 3058 io->flag = DIO_AIO_UNWRITTEN; 3059 else 3060 EXT4_I(inode)->i_state |= EXT4_STATE_DIO_UNWRITTEN; 3061 goto out; 3062 } 3063 /* async DIO end_io complete, convert the filled extent to written */ 3064 if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) { 3065 ret = ext4_convert_unwritten_extents_dio(handle, inode, 3066 path); 3067 goto out2; 3068 } 3069 /* buffered IO case */ 3070 /* 3071 * repeat fallocate creation request 3072 * we already have an unwritten extent 3073 */ 3074 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3075 goto map_out; 3076 3077 /* buffered READ or buffered write_begin() lookup */ 3078 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3079 /* 3080 * We have blocks reserved already. We 3081 * return allocated blocks so that delalloc 3082 * won't do block reservation for us. But 3083 * the buffer head will be unmapped so that 3084 * a read from the block returns 0s. 3085 */ 3086 set_buffer_unwritten(bh_result); 3087 goto out1; 3088 } 3089 3090 /* buffered write, writepage time, convert*/ 3091 ret = ext4_ext_convert_to_initialized(handle, inode, 3092 path, iblock, 3093 max_blocks); 3094 out: 3095 if (ret <= 0) { 3096 err = ret; 3097 goto out2; 3098 } else 3099 allocated = ret; 3100 set_buffer_new(bh_result); 3101 map_out: 3102 set_buffer_mapped(bh_result); 3103 out1: 3104 if (allocated > max_blocks) 3105 allocated = max_blocks; 3106 ext4_ext_show_leaf(inode, path); 3107 bh_result->b_bdev = inode->i_sb->s_bdev; 3108 bh_result->b_blocknr = newblock; 3109 out2: 3110 if (path) { 3111 ext4_ext_drop_refs(path); 3112 kfree(path); 3113 } 3114 return err ? err : allocated; 3115 } 3116 /* 3117 * Block allocation/map/preallocation routine for extents based files 3118 * 3119 * 3120 * Need to be called with 3121 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3122 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3123 * 3124 * return > 0, number of of blocks already mapped/allocated 3125 * if create == 0 and these are pre-allocated blocks 3126 * buffer head is unmapped 3127 * otherwise blocks are mapped 3128 * 3129 * return = 0, if plain look up failed (blocks have not been allocated) 3130 * buffer head is unmapped 3131 * 3132 * return < 0, error case. 3133 */ 3134 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode, 3135 ext4_lblk_t iblock, 3136 unsigned int max_blocks, struct buffer_head *bh_result, 3137 int flags) 3138 { 3139 struct ext4_ext_path *path = NULL; 3140 struct ext4_extent_header *eh; 3141 struct ext4_extent newex, *ex; 3142 ext4_fsblk_t newblock; 3143 int err = 0, depth, ret, cache_type; 3144 unsigned int allocated = 0; 3145 struct ext4_allocation_request ar; 3146 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3147 3148 __clear_bit(BH_New, &bh_result->b_state); 3149 ext_debug("blocks %u/%u requested for inode %lu\n", 3150 iblock, max_blocks, inode->i_ino); 3151 3152 /* check in cache */ 3153 cache_type = ext4_ext_in_cache(inode, iblock, &newex); 3154 if (cache_type) { 3155 if (cache_type == EXT4_EXT_CACHE_GAP) { 3156 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3157 /* 3158 * block isn't allocated yet and 3159 * user doesn't want to allocate it 3160 */ 3161 goto out2; 3162 } 3163 /* we should allocate requested block */ 3164 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) { 3165 /* block is already allocated */ 3166 newblock = iblock 3167 - le32_to_cpu(newex.ee_block) 3168 + ext_pblock(&newex); 3169 /* number of remaining blocks in the extent */ 3170 allocated = ext4_ext_get_actual_len(&newex) - 3171 (iblock - le32_to_cpu(newex.ee_block)); 3172 goto out; 3173 } else { 3174 BUG(); 3175 } 3176 } 3177 3178 /* find extent for this block */ 3179 path = ext4_ext_find_extent(inode, iblock, NULL); 3180 if (IS_ERR(path)) { 3181 err = PTR_ERR(path); 3182 path = NULL; 3183 goto out2; 3184 } 3185 3186 depth = ext_depth(inode); 3187 3188 /* 3189 * consistent leaf must not be empty; 3190 * this situation is possible, though, _during_ tree modification; 3191 * this is why assert can't be put in ext4_ext_find_extent() 3192 */ 3193 BUG_ON(path[depth].p_ext == NULL && depth != 0); 3194 eh = path[depth].p_hdr; 3195 3196 ex = path[depth].p_ext; 3197 if (ex) { 3198 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3199 ext4_fsblk_t ee_start = ext_pblock(ex); 3200 unsigned short ee_len; 3201 3202 /* 3203 * Uninitialized extents are treated as holes, except that 3204 * we split out initialized portions during a write. 3205 */ 3206 ee_len = ext4_ext_get_actual_len(ex); 3207 /* if found extent covers block, simply return it */ 3208 if (iblock >= ee_block && iblock < ee_block + ee_len) { 3209 newblock = iblock - ee_block + ee_start; 3210 /* number of remaining blocks in the extent */ 3211 allocated = ee_len - (iblock - ee_block); 3212 ext_debug("%u fit into %u:%d -> %llu\n", iblock, 3213 ee_block, ee_len, newblock); 3214 3215 /* Do not put uninitialized extent in the cache */ 3216 if (!ext4_ext_is_uninitialized(ex)) { 3217 ext4_ext_put_in_cache(inode, ee_block, 3218 ee_len, ee_start, 3219 EXT4_EXT_CACHE_EXTENT); 3220 goto out; 3221 } 3222 ret = ext4_ext_handle_uninitialized_extents(handle, 3223 inode, iblock, max_blocks, path, 3224 flags, allocated, bh_result, newblock); 3225 return ret; 3226 } 3227 } 3228 3229 /* 3230 * requested block isn't allocated yet; 3231 * we couldn't try to create block if create flag is zero 3232 */ 3233 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3234 /* 3235 * put just found gap into cache to speed up 3236 * subsequent requests 3237 */ 3238 ext4_ext_put_gap_in_cache(inode, path, iblock); 3239 goto out2; 3240 } 3241 /* 3242 * Okay, we need to do block allocation. 3243 */ 3244 3245 /* find neighbour allocated blocks */ 3246 ar.lleft = iblock; 3247 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3248 if (err) 3249 goto out2; 3250 ar.lright = iblock; 3251 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright); 3252 if (err) 3253 goto out2; 3254 3255 /* 3256 * See if request is beyond maximum number of blocks we can have in 3257 * a single extent. For an initialized extent this limit is 3258 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3259 * EXT_UNINIT_MAX_LEN. 3260 */ 3261 if (max_blocks > EXT_INIT_MAX_LEN && 3262 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3263 max_blocks = EXT_INIT_MAX_LEN; 3264 else if (max_blocks > EXT_UNINIT_MAX_LEN && 3265 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3266 max_blocks = EXT_UNINIT_MAX_LEN; 3267 3268 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */ 3269 newex.ee_block = cpu_to_le32(iblock); 3270 newex.ee_len = cpu_to_le16(max_blocks); 3271 err = ext4_ext_check_overlap(inode, &newex, path); 3272 if (err) 3273 allocated = ext4_ext_get_actual_len(&newex); 3274 else 3275 allocated = max_blocks; 3276 3277 /* allocate new block */ 3278 ar.inode = inode; 3279 ar.goal = ext4_ext_find_goal(inode, path, iblock); 3280 ar.logical = iblock; 3281 ar.len = allocated; 3282 if (S_ISREG(inode->i_mode)) 3283 ar.flags = EXT4_MB_HINT_DATA; 3284 else 3285 /* disable in-core preallocation for non-regular files */ 3286 ar.flags = 0; 3287 newblock = ext4_mb_new_blocks(handle, &ar, &err); 3288 if (!newblock) 3289 goto out2; 3290 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 3291 ar.goal, newblock, allocated); 3292 3293 /* try to insert new extent into found leaf and return */ 3294 ext4_ext_store_pblock(&newex, newblock); 3295 newex.ee_len = cpu_to_le16(ar.len); 3296 /* Mark uninitialized */ 3297 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 3298 ext4_ext_mark_uninitialized(&newex); 3299 /* 3300 * io_end structure was created for every async 3301 * direct IO write to the middle of the file. 3302 * To avoid unecessary convertion for every aio dio rewrite 3303 * to the mid of file, here we flag the IO that is really 3304 * need the convertion. 3305 * For non asycn direct IO case, flag the inode state 3306 * that we need to perform convertion when IO is done. 3307 */ 3308 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) { 3309 if (io) 3310 io->flag = DIO_AIO_UNWRITTEN; 3311 else 3312 EXT4_I(inode)->i_state |= 3313 EXT4_STATE_DIO_UNWRITTEN;; 3314 } 3315 } 3316 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3317 if (err) { 3318 /* free data blocks we just allocated */ 3319 /* not a good idea to call discard here directly, 3320 * but otherwise we'd need to call it every free() */ 3321 ext4_discard_preallocations(inode); 3322 ext4_free_blocks(handle, inode, ext_pblock(&newex), 3323 ext4_ext_get_actual_len(&newex), 0); 3324 goto out2; 3325 } 3326 3327 /* previous routine could use block we allocated */ 3328 newblock = ext_pblock(&newex); 3329 allocated = ext4_ext_get_actual_len(&newex); 3330 set_buffer_new(bh_result); 3331 3332 /* Cache only when it is _not_ an uninitialized extent */ 3333 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 3334 ext4_ext_put_in_cache(inode, iblock, allocated, newblock, 3335 EXT4_EXT_CACHE_EXTENT); 3336 out: 3337 if (allocated > max_blocks) 3338 allocated = max_blocks; 3339 ext4_ext_show_leaf(inode, path); 3340 set_buffer_mapped(bh_result); 3341 bh_result->b_bdev = inode->i_sb->s_bdev; 3342 bh_result->b_blocknr = newblock; 3343 out2: 3344 if (path) { 3345 ext4_ext_drop_refs(path); 3346 kfree(path); 3347 } 3348 return err ? err : allocated; 3349 } 3350 3351 void ext4_ext_truncate(struct inode *inode) 3352 { 3353 struct address_space *mapping = inode->i_mapping; 3354 struct super_block *sb = inode->i_sb; 3355 ext4_lblk_t last_block; 3356 handle_t *handle; 3357 int err = 0; 3358 3359 /* 3360 * probably first extent we're gonna free will be last in block 3361 */ 3362 err = ext4_writepage_trans_blocks(inode); 3363 handle = ext4_journal_start(inode, err); 3364 if (IS_ERR(handle)) 3365 return; 3366 3367 if (inode->i_size & (sb->s_blocksize - 1)) 3368 ext4_block_truncate_page(handle, mapping, inode->i_size); 3369 3370 if (ext4_orphan_add(handle, inode)) 3371 goto out_stop; 3372 3373 down_write(&EXT4_I(inode)->i_data_sem); 3374 ext4_ext_invalidate_cache(inode); 3375 3376 ext4_discard_preallocations(inode); 3377 3378 /* 3379 * TODO: optimization is possible here. 3380 * Probably we need not scan at all, 3381 * because page truncation is enough. 3382 */ 3383 3384 /* we have to know where to truncate from in crash case */ 3385 EXT4_I(inode)->i_disksize = inode->i_size; 3386 ext4_mark_inode_dirty(handle, inode); 3387 3388 last_block = (inode->i_size + sb->s_blocksize - 1) 3389 >> EXT4_BLOCK_SIZE_BITS(sb); 3390 err = ext4_ext_remove_space(inode, last_block); 3391 3392 /* In a multi-transaction truncate, we only make the final 3393 * transaction synchronous. 3394 */ 3395 if (IS_SYNC(inode)) 3396 ext4_handle_sync(handle); 3397 3398 out_stop: 3399 up_write(&EXT4_I(inode)->i_data_sem); 3400 /* 3401 * If this was a simple ftruncate() and the file will remain alive, 3402 * then we need to clear up the orphan record which we created above. 3403 * However, if this was a real unlink then we were called by 3404 * ext4_delete_inode(), and we allow that function to clean up the 3405 * orphan info for us. 3406 */ 3407 if (inode->i_nlink) 3408 ext4_orphan_del(handle, inode); 3409 3410 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3411 ext4_mark_inode_dirty(handle, inode); 3412 ext4_journal_stop(handle); 3413 } 3414 3415 static void ext4_falloc_update_inode(struct inode *inode, 3416 int mode, loff_t new_size, int update_ctime) 3417 { 3418 struct timespec now; 3419 3420 if (update_ctime) { 3421 now = current_fs_time(inode->i_sb); 3422 if (!timespec_equal(&inode->i_ctime, &now)) 3423 inode->i_ctime = now; 3424 } 3425 /* 3426 * Update only when preallocation was requested beyond 3427 * the file size. 3428 */ 3429 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3430 if (new_size > i_size_read(inode)) 3431 i_size_write(inode, new_size); 3432 if (new_size > EXT4_I(inode)->i_disksize) 3433 ext4_update_i_disksize(inode, new_size); 3434 } 3435 3436 } 3437 3438 /* 3439 * preallocate space for a file. This implements ext4's fallocate inode 3440 * operation, which gets called from sys_fallocate system call. 3441 * For block-mapped files, posix_fallocate should fall back to the method 3442 * of writing zeroes to the required new blocks (the same behavior which is 3443 * expected for file systems which do not support fallocate() system call). 3444 */ 3445 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) 3446 { 3447 handle_t *handle; 3448 ext4_lblk_t block; 3449 loff_t new_size; 3450 unsigned int max_blocks; 3451 int ret = 0; 3452 int ret2 = 0; 3453 int retries = 0; 3454 struct buffer_head map_bh; 3455 unsigned int credits, blkbits = inode->i_blkbits; 3456 3457 /* 3458 * currently supporting (pre)allocate mode for extent-based 3459 * files _only_ 3460 */ 3461 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 3462 return -EOPNOTSUPP; 3463 3464 /* preallocation to directories is currently not supported */ 3465 if (S_ISDIR(inode->i_mode)) 3466 return -ENODEV; 3467 3468 block = offset >> blkbits; 3469 /* 3470 * We can't just convert len to max_blocks because 3471 * If blocksize = 4096 offset = 3072 and len = 2048 3472 */ 3473 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 3474 - block; 3475 /* 3476 * credits to insert 1 extent into extent tree 3477 */ 3478 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3479 mutex_lock(&inode->i_mutex); 3480 retry: 3481 while (ret >= 0 && ret < max_blocks) { 3482 block = block + ret; 3483 max_blocks = max_blocks - ret; 3484 handle = ext4_journal_start(inode, credits); 3485 if (IS_ERR(handle)) { 3486 ret = PTR_ERR(handle); 3487 break; 3488 } 3489 map_bh.b_state = 0; 3490 ret = ext4_get_blocks(handle, inode, block, 3491 max_blocks, &map_bh, 3492 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT); 3493 if (ret <= 0) { 3494 #ifdef EXT4FS_DEBUG 3495 WARN_ON(ret <= 0); 3496 printk(KERN_ERR "%s: ext4_ext_get_blocks " 3497 "returned error inode#%lu, block=%u, " 3498 "max_blocks=%u", __func__, 3499 inode->i_ino, block, max_blocks); 3500 #endif 3501 ext4_mark_inode_dirty(handle, inode); 3502 ret2 = ext4_journal_stop(handle); 3503 break; 3504 } 3505 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 3506 blkbits) >> blkbits)) 3507 new_size = offset + len; 3508 else 3509 new_size = (block + ret) << blkbits; 3510 3511 ext4_falloc_update_inode(inode, mode, new_size, 3512 buffer_new(&map_bh)); 3513 ext4_mark_inode_dirty(handle, inode); 3514 ret2 = ext4_journal_stop(handle); 3515 if (ret2) 3516 break; 3517 } 3518 if (ret == -ENOSPC && 3519 ext4_should_retry_alloc(inode->i_sb, &retries)) { 3520 ret = 0; 3521 goto retry; 3522 } 3523 mutex_unlock(&inode->i_mutex); 3524 return ret > 0 ? ret2 : ret; 3525 } 3526 3527 /* 3528 * This function convert a range of blocks to written extents 3529 * The caller of this function will pass the start offset and the size. 3530 * all unwritten extents within this range will be converted to 3531 * written extents. 3532 * 3533 * This function is called from the direct IO end io call back 3534 * function, to convert the fallocated extents after IO is completed. 3535 * Returns 0 on success. 3536 */ 3537 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 3538 loff_t len) 3539 { 3540 handle_t *handle; 3541 ext4_lblk_t block; 3542 unsigned int max_blocks; 3543 int ret = 0; 3544 int ret2 = 0; 3545 struct buffer_head map_bh; 3546 unsigned int credits, blkbits = inode->i_blkbits; 3547 3548 block = offset >> blkbits; 3549 /* 3550 * We can't just convert len to max_blocks because 3551 * If blocksize = 4096 offset = 3072 and len = 2048 3552 */ 3553 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 3554 - block; 3555 /* 3556 * credits to insert 1 extent into extent tree 3557 */ 3558 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3559 while (ret >= 0 && ret < max_blocks) { 3560 block = block + ret; 3561 max_blocks = max_blocks - ret; 3562 handle = ext4_journal_start(inode, credits); 3563 if (IS_ERR(handle)) { 3564 ret = PTR_ERR(handle); 3565 break; 3566 } 3567 map_bh.b_state = 0; 3568 ret = ext4_get_blocks(handle, inode, block, 3569 max_blocks, &map_bh, 3570 EXT4_GET_BLOCKS_DIO_CONVERT_EXT); 3571 if (ret <= 0) { 3572 WARN_ON(ret <= 0); 3573 printk(KERN_ERR "%s: ext4_ext_get_blocks " 3574 "returned error inode#%lu, block=%u, " 3575 "max_blocks=%u", __func__, 3576 inode->i_ino, block, max_blocks); 3577 } 3578 ext4_mark_inode_dirty(handle, inode); 3579 ret2 = ext4_journal_stop(handle); 3580 if (ret <= 0 || ret2 ) 3581 break; 3582 } 3583 return ret > 0 ? ret2 : ret; 3584 } 3585 /* 3586 * Callback function called for each extent to gather FIEMAP information. 3587 */ 3588 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path, 3589 struct ext4_ext_cache *newex, struct ext4_extent *ex, 3590 void *data) 3591 { 3592 struct fiemap_extent_info *fieinfo = data; 3593 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 3594 __u64 logical; 3595 __u64 physical; 3596 __u64 length; 3597 __u32 flags = 0; 3598 int error; 3599 3600 logical = (__u64)newex->ec_block << blksize_bits; 3601 3602 if (newex->ec_type == EXT4_EXT_CACHE_GAP) { 3603 pgoff_t offset; 3604 struct page *page; 3605 struct buffer_head *bh = NULL; 3606 3607 offset = logical >> PAGE_SHIFT; 3608 page = find_get_page(inode->i_mapping, offset); 3609 if (!page || !page_has_buffers(page)) 3610 return EXT_CONTINUE; 3611 3612 bh = page_buffers(page); 3613 3614 if (!bh) 3615 return EXT_CONTINUE; 3616 3617 if (buffer_delay(bh)) { 3618 flags |= FIEMAP_EXTENT_DELALLOC; 3619 page_cache_release(page); 3620 } else { 3621 page_cache_release(page); 3622 return EXT_CONTINUE; 3623 } 3624 } 3625 3626 physical = (__u64)newex->ec_start << blksize_bits; 3627 length = (__u64)newex->ec_len << blksize_bits; 3628 3629 if (ex && ext4_ext_is_uninitialized(ex)) 3630 flags |= FIEMAP_EXTENT_UNWRITTEN; 3631 3632 /* 3633 * If this extent reaches EXT_MAX_BLOCK, it must be last. 3634 * 3635 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK, 3636 * this also indicates no more allocated blocks. 3637 * 3638 * XXX this might miss a single-block extent at EXT_MAX_BLOCK 3639 */ 3640 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK || 3641 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) { 3642 loff_t size = i_size_read(inode); 3643 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb); 3644 3645 flags |= FIEMAP_EXTENT_LAST; 3646 if ((flags & FIEMAP_EXTENT_DELALLOC) && 3647 logical+length > size) 3648 length = (size - logical + bs - 1) & ~(bs-1); 3649 } 3650 3651 error = fiemap_fill_next_extent(fieinfo, logical, physical, 3652 length, flags); 3653 if (error < 0) 3654 return error; 3655 if (error == 1) 3656 return EXT_BREAK; 3657 3658 return EXT_CONTINUE; 3659 } 3660 3661 /* fiemap flags we can handle specified here */ 3662 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 3663 3664 static int ext4_xattr_fiemap(struct inode *inode, 3665 struct fiemap_extent_info *fieinfo) 3666 { 3667 __u64 physical = 0; 3668 __u64 length; 3669 __u32 flags = FIEMAP_EXTENT_LAST; 3670 int blockbits = inode->i_sb->s_blocksize_bits; 3671 int error = 0; 3672 3673 /* in-inode? */ 3674 if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) { 3675 struct ext4_iloc iloc; 3676 int offset; /* offset of xattr in inode */ 3677 3678 error = ext4_get_inode_loc(inode, &iloc); 3679 if (error) 3680 return error; 3681 physical = iloc.bh->b_blocknr << blockbits; 3682 offset = EXT4_GOOD_OLD_INODE_SIZE + 3683 EXT4_I(inode)->i_extra_isize; 3684 physical += offset; 3685 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 3686 flags |= FIEMAP_EXTENT_DATA_INLINE; 3687 } else { /* external block */ 3688 physical = EXT4_I(inode)->i_file_acl << blockbits; 3689 length = inode->i_sb->s_blocksize; 3690 } 3691 3692 if (physical) 3693 error = fiemap_fill_next_extent(fieinfo, 0, physical, 3694 length, flags); 3695 return (error < 0 ? error : 0); 3696 } 3697 3698 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3699 __u64 start, __u64 len) 3700 { 3701 ext4_lblk_t start_blk; 3702 ext4_lblk_t len_blks; 3703 int error = 0; 3704 3705 /* fallback to generic here if not in extents fmt */ 3706 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 3707 return generic_block_fiemap(inode, fieinfo, start, len, 3708 ext4_get_block); 3709 3710 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 3711 return -EBADR; 3712 3713 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 3714 error = ext4_xattr_fiemap(inode, fieinfo); 3715 } else { 3716 start_blk = start >> inode->i_sb->s_blocksize_bits; 3717 len_blks = len >> inode->i_sb->s_blocksize_bits; 3718 3719 /* 3720 * Walk the extent tree gathering extent information. 3721 * ext4_ext_fiemap_cb will push extents back to user. 3722 */ 3723 down_read(&EXT4_I(inode)->i_data_sem); 3724 error = ext4_ext_walk_space(inode, start_blk, len_blks, 3725 ext4_ext_fiemap_cb, fieinfo); 3726 up_read(&EXT4_I(inode)->i_data_sem); 3727 } 3728 3729 return error; 3730 } 3731 3732