xref: /linux/fs/ext4/extents.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 					    struct inode *inode,
98 					    int needed)
99 {
100 	int err;
101 
102 	if (!ext4_handle_valid(handle))
103 		return 0;
104 	if (handle->h_buffer_credits > needed)
105 		return 0;
106 	err = ext4_journal_extend(handle, needed);
107 	if (err <= 0)
108 		return err;
109 	err = ext4_truncate_restart_trans(handle, inode, needed);
110 	/*
111 	 * We have dropped i_data_sem so someone might have cached again
112 	 * an extent we are going to truncate.
113 	 */
114 	ext4_ext_invalidate_cache(inode);
115 
116 	return err;
117 }
118 
119 /*
120  * could return:
121  *  - EROFS
122  *  - ENOMEM
123  */
124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
125 				struct ext4_ext_path *path)
126 {
127 	if (path->p_bh) {
128 		/* path points to block */
129 		return ext4_journal_get_write_access(handle, path->p_bh);
130 	}
131 	/* path points to leaf/index in inode body */
132 	/* we use in-core data, no need to protect them */
133 	return 0;
134 }
135 
136 /*
137  * could return:
138  *  - EROFS
139  *  - ENOMEM
140  *  - EIO
141  */
142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	int err;
146 	if (path->p_bh) {
147 		/* path points to block */
148 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
149 	} else {
150 		/* path points to leaf/index in inode body */
151 		err = ext4_mark_inode_dirty(handle, inode);
152 	}
153 	return err;
154 }
155 
156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
157 			      struct ext4_ext_path *path,
158 			      ext4_lblk_t block)
159 {
160 	struct ext4_inode_info *ei = EXT4_I(inode);
161 	ext4_fsblk_t bg_start;
162 	ext4_fsblk_t last_block;
163 	ext4_grpblk_t colour;
164 	ext4_group_t block_group;
165 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
166 	int depth;
167 
168 	if (path) {
169 		struct ext4_extent *ex;
170 		depth = path->p_depth;
171 
172 		/* try to predict block placement */
173 		ex = path[depth].p_ext;
174 		if (ex)
175 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
176 
177 		/* it looks like index is empty;
178 		 * try to find starting block from index itself */
179 		if (path[depth].p_bh)
180 			return path[depth].p_bh->b_blocknr;
181 	}
182 
183 	/* OK. use inode's group */
184 	block_group = ei->i_block_group;
185 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
186 		/*
187 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
188 		 * block groups per flexgroup, reserve the first block
189 		 * group for directories and special files.  Regular
190 		 * files will start at the second block group.  This
191 		 * tends to speed up directory access and improves
192 		 * fsck times.
193 		 */
194 		block_group &= ~(flex_size-1);
195 		if (S_ISREG(inode->i_mode))
196 			block_group++;
197 	}
198 	bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
199 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
200 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
201 
202 	/*
203 	 * If we are doing delayed allocation, we don't need take
204 	 * colour into account.
205 	 */
206 	if (test_opt(inode->i_sb, DELALLOC))
207 		return bg_start;
208 
209 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
210 		colour = (current->pid % 16) *
211 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
212 	else
213 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
214 	return bg_start + colour + block;
215 }
216 
217 /*
218  * Allocation for a meta data block
219  */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 			struct ext4_ext_path *path,
223 			struct ext4_extent *ex, int *err)
224 {
225 	ext4_fsblk_t goal, newblock;
226 
227 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
229 	return newblock;
230 }
231 
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
233 {
234 	int size;
235 
236 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 			/ sizeof(struct ext4_extent);
238 	if (!check) {
239 #ifdef AGGRESSIVE_TEST
240 		if (size > 6)
241 			size = 6;
242 #endif
243 	}
244 	return size;
245 }
246 
247 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
248 {
249 	int size;
250 
251 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
252 			/ sizeof(struct ext4_extent_idx);
253 	if (!check) {
254 #ifdef AGGRESSIVE_TEST
255 		if (size > 5)
256 			size = 5;
257 #endif
258 	}
259 	return size;
260 }
261 
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
263 {
264 	int size;
265 
266 	size = sizeof(EXT4_I(inode)->i_data);
267 	size -= sizeof(struct ext4_extent_header);
268 	size /= sizeof(struct ext4_extent);
269 	if (!check) {
270 #ifdef AGGRESSIVE_TEST
271 		if (size > 3)
272 			size = 3;
273 #endif
274 	}
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 	if (!check) {
286 #ifdef AGGRESSIVE_TEST
287 		if (size > 4)
288 			size = 4;
289 #endif
290 	}
291 	return size;
292 }
293 
294 /*
295  * Calculate the number of metadata blocks needed
296  * to allocate @blocks
297  * Worse case is one block per extent
298  */
299 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
300 {
301 	int lcap, icap, rcap, leafs, idxs, num;
302 	int newextents = blocks;
303 
304 	rcap = ext4_ext_space_root_idx(inode, 0);
305 	lcap = ext4_ext_space_block(inode, 0);
306 	icap = ext4_ext_space_block_idx(inode, 0);
307 
308 	/* number of new leaf blocks needed */
309 	num = leafs = (newextents + lcap - 1) / lcap;
310 
311 	/*
312 	 * Worse case, we need separate index block(s)
313 	 * to link all new leaf blocks
314 	 */
315 	idxs = (leafs + icap - 1) / icap;
316 	do {
317 		num += idxs;
318 		idxs = (idxs + icap - 1) / icap;
319 	} while (idxs > rcap);
320 
321 	return num;
322 }
323 
324 static int
325 ext4_ext_max_entries(struct inode *inode, int depth)
326 {
327 	int max;
328 
329 	if (depth == ext_depth(inode)) {
330 		if (depth == 0)
331 			max = ext4_ext_space_root(inode, 1);
332 		else
333 			max = ext4_ext_space_root_idx(inode, 1);
334 	} else {
335 		if (depth == 0)
336 			max = ext4_ext_space_block(inode, 1);
337 		else
338 			max = ext4_ext_space_block_idx(inode, 1);
339 	}
340 
341 	return max;
342 }
343 
344 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
345 {
346 	ext4_fsblk_t block = ext_pblock(ext);
347 	int len = ext4_ext_get_actual_len(ext);
348 
349 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
350 }
351 
352 static int ext4_valid_extent_idx(struct inode *inode,
353 				struct ext4_extent_idx *ext_idx)
354 {
355 	ext4_fsblk_t block = idx_pblock(ext_idx);
356 
357 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
358 }
359 
360 static int ext4_valid_extent_entries(struct inode *inode,
361 				struct ext4_extent_header *eh,
362 				int depth)
363 {
364 	struct ext4_extent *ext;
365 	struct ext4_extent_idx *ext_idx;
366 	unsigned short entries;
367 	if (eh->eh_entries == 0)
368 		return 1;
369 
370 	entries = le16_to_cpu(eh->eh_entries);
371 
372 	if (depth == 0) {
373 		/* leaf entries */
374 		ext = EXT_FIRST_EXTENT(eh);
375 		while (entries) {
376 			if (!ext4_valid_extent(inode, ext))
377 				return 0;
378 			ext++;
379 			entries--;
380 		}
381 	} else {
382 		ext_idx = EXT_FIRST_INDEX(eh);
383 		while (entries) {
384 			if (!ext4_valid_extent_idx(inode, ext_idx))
385 				return 0;
386 			ext_idx++;
387 			entries--;
388 		}
389 	}
390 	return 1;
391 }
392 
393 static int __ext4_ext_check(const char *function, struct inode *inode,
394 					struct ext4_extent_header *eh,
395 					int depth)
396 {
397 	const char *error_msg;
398 	int max = 0;
399 
400 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
401 		error_msg = "invalid magic";
402 		goto corrupted;
403 	}
404 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
405 		error_msg = "unexpected eh_depth";
406 		goto corrupted;
407 	}
408 	if (unlikely(eh->eh_max == 0)) {
409 		error_msg = "invalid eh_max";
410 		goto corrupted;
411 	}
412 	max = ext4_ext_max_entries(inode, depth);
413 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
414 		error_msg = "too large eh_max";
415 		goto corrupted;
416 	}
417 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
418 		error_msg = "invalid eh_entries";
419 		goto corrupted;
420 	}
421 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
422 		error_msg = "invalid extent entries";
423 		goto corrupted;
424 	}
425 	return 0;
426 
427 corrupted:
428 	ext4_error(inode->i_sb, function,
429 			"bad header/extent in inode #%lu: %s - magic %x, "
430 			"entries %u, max %u(%u), depth %u(%u)",
431 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
432 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
433 			max, le16_to_cpu(eh->eh_depth), depth);
434 
435 	return -EIO;
436 }
437 
438 #define ext4_ext_check(inode, eh, depth)	\
439 	__ext4_ext_check(__func__, inode, eh, depth)
440 
441 int ext4_ext_check_inode(struct inode *inode)
442 {
443 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
444 }
445 
446 #ifdef EXT_DEBUG
447 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
448 {
449 	int k, l = path->p_depth;
450 
451 	ext_debug("path:");
452 	for (k = 0; k <= l; k++, path++) {
453 		if (path->p_idx) {
454 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
455 			    idx_pblock(path->p_idx));
456 		} else if (path->p_ext) {
457 			ext_debug("  %d:[%d]%d:%llu ",
458 				  le32_to_cpu(path->p_ext->ee_block),
459 				  ext4_ext_is_uninitialized(path->p_ext),
460 				  ext4_ext_get_actual_len(path->p_ext),
461 				  ext_pblock(path->p_ext));
462 		} else
463 			ext_debug("  []");
464 	}
465 	ext_debug("\n");
466 }
467 
468 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
469 {
470 	int depth = ext_depth(inode);
471 	struct ext4_extent_header *eh;
472 	struct ext4_extent *ex;
473 	int i;
474 
475 	if (!path)
476 		return;
477 
478 	eh = path[depth].p_hdr;
479 	ex = EXT_FIRST_EXTENT(eh);
480 
481 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
482 
483 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
484 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
485 			  ext4_ext_is_uninitialized(ex),
486 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
487 	}
488 	ext_debug("\n");
489 }
490 #else
491 #define ext4_ext_show_path(inode, path)
492 #define ext4_ext_show_leaf(inode, path)
493 #endif
494 
495 void ext4_ext_drop_refs(struct ext4_ext_path *path)
496 {
497 	int depth = path->p_depth;
498 	int i;
499 
500 	for (i = 0; i <= depth; i++, path++)
501 		if (path->p_bh) {
502 			brelse(path->p_bh);
503 			path->p_bh = NULL;
504 		}
505 }
506 
507 /*
508  * ext4_ext_binsearch_idx:
509  * binary search for the closest index of the given block
510  * the header must be checked before calling this
511  */
512 static void
513 ext4_ext_binsearch_idx(struct inode *inode,
514 			struct ext4_ext_path *path, ext4_lblk_t block)
515 {
516 	struct ext4_extent_header *eh = path->p_hdr;
517 	struct ext4_extent_idx *r, *l, *m;
518 
519 
520 	ext_debug("binsearch for %u(idx):  ", block);
521 
522 	l = EXT_FIRST_INDEX(eh) + 1;
523 	r = EXT_LAST_INDEX(eh);
524 	while (l <= r) {
525 		m = l + (r - l) / 2;
526 		if (block < le32_to_cpu(m->ei_block))
527 			r = m - 1;
528 		else
529 			l = m + 1;
530 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
531 				m, le32_to_cpu(m->ei_block),
532 				r, le32_to_cpu(r->ei_block));
533 	}
534 
535 	path->p_idx = l - 1;
536 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
537 		  idx_pblock(path->p_idx));
538 
539 #ifdef CHECK_BINSEARCH
540 	{
541 		struct ext4_extent_idx *chix, *ix;
542 		int k;
543 
544 		chix = ix = EXT_FIRST_INDEX(eh);
545 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
546 		  if (k != 0 &&
547 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
548 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
549 				       "first=0x%p\n", k,
550 				       ix, EXT_FIRST_INDEX(eh));
551 				printk(KERN_DEBUG "%u <= %u\n",
552 				       le32_to_cpu(ix->ei_block),
553 				       le32_to_cpu(ix[-1].ei_block));
554 			}
555 			BUG_ON(k && le32_to_cpu(ix->ei_block)
556 					   <= le32_to_cpu(ix[-1].ei_block));
557 			if (block < le32_to_cpu(ix->ei_block))
558 				break;
559 			chix = ix;
560 		}
561 		BUG_ON(chix != path->p_idx);
562 	}
563 #endif
564 
565 }
566 
567 /*
568  * ext4_ext_binsearch:
569  * binary search for closest extent of the given block
570  * the header must be checked before calling this
571  */
572 static void
573 ext4_ext_binsearch(struct inode *inode,
574 		struct ext4_ext_path *path, ext4_lblk_t block)
575 {
576 	struct ext4_extent_header *eh = path->p_hdr;
577 	struct ext4_extent *r, *l, *m;
578 
579 	if (eh->eh_entries == 0) {
580 		/*
581 		 * this leaf is empty:
582 		 * we get such a leaf in split/add case
583 		 */
584 		return;
585 	}
586 
587 	ext_debug("binsearch for %u:  ", block);
588 
589 	l = EXT_FIRST_EXTENT(eh) + 1;
590 	r = EXT_LAST_EXTENT(eh);
591 
592 	while (l <= r) {
593 		m = l + (r - l) / 2;
594 		if (block < le32_to_cpu(m->ee_block))
595 			r = m - 1;
596 		else
597 			l = m + 1;
598 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
599 				m, le32_to_cpu(m->ee_block),
600 				r, le32_to_cpu(r->ee_block));
601 	}
602 
603 	path->p_ext = l - 1;
604 	ext_debug("  -> %d:%llu:[%d]%d ",
605 			le32_to_cpu(path->p_ext->ee_block),
606 			ext_pblock(path->p_ext),
607 			ext4_ext_is_uninitialized(path->p_ext),
608 			ext4_ext_get_actual_len(path->p_ext));
609 
610 #ifdef CHECK_BINSEARCH
611 	{
612 		struct ext4_extent *chex, *ex;
613 		int k;
614 
615 		chex = ex = EXT_FIRST_EXTENT(eh);
616 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
617 			BUG_ON(k && le32_to_cpu(ex->ee_block)
618 					  <= le32_to_cpu(ex[-1].ee_block));
619 			if (block < le32_to_cpu(ex->ee_block))
620 				break;
621 			chex = ex;
622 		}
623 		BUG_ON(chex != path->p_ext);
624 	}
625 #endif
626 
627 }
628 
629 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
630 {
631 	struct ext4_extent_header *eh;
632 
633 	eh = ext_inode_hdr(inode);
634 	eh->eh_depth = 0;
635 	eh->eh_entries = 0;
636 	eh->eh_magic = EXT4_EXT_MAGIC;
637 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
638 	ext4_mark_inode_dirty(handle, inode);
639 	ext4_ext_invalidate_cache(inode);
640 	return 0;
641 }
642 
643 struct ext4_ext_path *
644 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
645 					struct ext4_ext_path *path)
646 {
647 	struct ext4_extent_header *eh;
648 	struct buffer_head *bh;
649 	short int depth, i, ppos = 0, alloc = 0;
650 
651 	eh = ext_inode_hdr(inode);
652 	depth = ext_depth(inode);
653 
654 	/* account possible depth increase */
655 	if (!path) {
656 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
657 				GFP_NOFS);
658 		if (!path)
659 			return ERR_PTR(-ENOMEM);
660 		alloc = 1;
661 	}
662 	path[0].p_hdr = eh;
663 	path[0].p_bh = NULL;
664 
665 	i = depth;
666 	/* walk through the tree */
667 	while (i) {
668 		int need_to_validate = 0;
669 
670 		ext_debug("depth %d: num %d, max %d\n",
671 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
672 
673 		ext4_ext_binsearch_idx(inode, path + ppos, block);
674 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
675 		path[ppos].p_depth = i;
676 		path[ppos].p_ext = NULL;
677 
678 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
679 		if (unlikely(!bh))
680 			goto err;
681 		if (!bh_uptodate_or_lock(bh)) {
682 			if (bh_submit_read(bh) < 0) {
683 				put_bh(bh);
684 				goto err;
685 			}
686 			/* validate the extent entries */
687 			need_to_validate = 1;
688 		}
689 		eh = ext_block_hdr(bh);
690 		ppos++;
691 		BUG_ON(ppos > depth);
692 		path[ppos].p_bh = bh;
693 		path[ppos].p_hdr = eh;
694 		i--;
695 
696 		if (need_to_validate && ext4_ext_check(inode, eh, i))
697 			goto err;
698 	}
699 
700 	path[ppos].p_depth = i;
701 	path[ppos].p_ext = NULL;
702 	path[ppos].p_idx = NULL;
703 
704 	/* find extent */
705 	ext4_ext_binsearch(inode, path + ppos, block);
706 	/* if not an empty leaf */
707 	if (path[ppos].p_ext)
708 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
709 
710 	ext4_ext_show_path(inode, path);
711 
712 	return path;
713 
714 err:
715 	ext4_ext_drop_refs(path);
716 	if (alloc)
717 		kfree(path);
718 	return ERR_PTR(-EIO);
719 }
720 
721 /*
722  * ext4_ext_insert_index:
723  * insert new index [@logical;@ptr] into the block at @curp;
724  * check where to insert: before @curp or after @curp
725  */
726 int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
727 				struct ext4_ext_path *curp,
728 				int logical, ext4_fsblk_t ptr)
729 {
730 	struct ext4_extent_idx *ix;
731 	int len, err;
732 
733 	err = ext4_ext_get_access(handle, inode, curp);
734 	if (err)
735 		return err;
736 
737 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
738 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
739 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
740 		/* insert after */
741 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
742 			len = (len - 1) * sizeof(struct ext4_extent_idx);
743 			len = len < 0 ? 0 : len;
744 			ext_debug("insert new index %d after: %llu. "
745 					"move %d from 0x%p to 0x%p\n",
746 					logical, ptr, len,
747 					(curp->p_idx + 1), (curp->p_idx + 2));
748 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
749 		}
750 		ix = curp->p_idx + 1;
751 	} else {
752 		/* insert before */
753 		len = len * sizeof(struct ext4_extent_idx);
754 		len = len < 0 ? 0 : len;
755 		ext_debug("insert new index %d before: %llu. "
756 				"move %d from 0x%p to 0x%p\n",
757 				logical, ptr, len,
758 				curp->p_idx, (curp->p_idx + 1));
759 		memmove(curp->p_idx + 1, curp->p_idx, len);
760 		ix = curp->p_idx;
761 	}
762 
763 	ix->ei_block = cpu_to_le32(logical);
764 	ext4_idx_store_pblock(ix, ptr);
765 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
766 
767 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
768 			     > le16_to_cpu(curp->p_hdr->eh_max));
769 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
770 
771 	err = ext4_ext_dirty(handle, inode, curp);
772 	ext4_std_error(inode->i_sb, err);
773 
774 	return err;
775 }
776 
777 /*
778  * ext4_ext_split:
779  * inserts new subtree into the path, using free index entry
780  * at depth @at:
781  * - allocates all needed blocks (new leaf and all intermediate index blocks)
782  * - makes decision where to split
783  * - moves remaining extents and index entries (right to the split point)
784  *   into the newly allocated blocks
785  * - initializes subtree
786  */
787 static int ext4_ext_split(handle_t *handle, struct inode *inode,
788 				struct ext4_ext_path *path,
789 				struct ext4_extent *newext, int at)
790 {
791 	struct buffer_head *bh = NULL;
792 	int depth = ext_depth(inode);
793 	struct ext4_extent_header *neh;
794 	struct ext4_extent_idx *fidx;
795 	struct ext4_extent *ex;
796 	int i = at, k, m, a;
797 	ext4_fsblk_t newblock, oldblock;
798 	__le32 border;
799 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
800 	int err = 0;
801 
802 	/* make decision: where to split? */
803 	/* FIXME: now decision is simplest: at current extent */
804 
805 	/* if current leaf will be split, then we should use
806 	 * border from split point */
807 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
808 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
809 		border = path[depth].p_ext[1].ee_block;
810 		ext_debug("leaf will be split."
811 				" next leaf starts at %d\n",
812 				  le32_to_cpu(border));
813 	} else {
814 		border = newext->ee_block;
815 		ext_debug("leaf will be added."
816 				" next leaf starts at %d\n",
817 				le32_to_cpu(border));
818 	}
819 
820 	/*
821 	 * If error occurs, then we break processing
822 	 * and mark filesystem read-only. index won't
823 	 * be inserted and tree will be in consistent
824 	 * state. Next mount will repair buffers too.
825 	 */
826 
827 	/*
828 	 * Get array to track all allocated blocks.
829 	 * We need this to handle errors and free blocks
830 	 * upon them.
831 	 */
832 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
833 	if (!ablocks)
834 		return -ENOMEM;
835 
836 	/* allocate all needed blocks */
837 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
838 	for (a = 0; a < depth - at; a++) {
839 		newblock = ext4_ext_new_meta_block(handle, inode, path,
840 						   newext, &err);
841 		if (newblock == 0)
842 			goto cleanup;
843 		ablocks[a] = newblock;
844 	}
845 
846 	/* initialize new leaf */
847 	newblock = ablocks[--a];
848 	BUG_ON(newblock == 0);
849 	bh = sb_getblk(inode->i_sb, newblock);
850 	if (!bh) {
851 		err = -EIO;
852 		goto cleanup;
853 	}
854 	lock_buffer(bh);
855 
856 	err = ext4_journal_get_create_access(handle, bh);
857 	if (err)
858 		goto cleanup;
859 
860 	neh = ext_block_hdr(bh);
861 	neh->eh_entries = 0;
862 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
863 	neh->eh_magic = EXT4_EXT_MAGIC;
864 	neh->eh_depth = 0;
865 	ex = EXT_FIRST_EXTENT(neh);
866 
867 	/* move remainder of path[depth] to the new leaf */
868 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
869 	/* start copy from next extent */
870 	/* TODO: we could do it by single memmove */
871 	m = 0;
872 	path[depth].p_ext++;
873 	while (path[depth].p_ext <=
874 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
875 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
876 				le32_to_cpu(path[depth].p_ext->ee_block),
877 				ext_pblock(path[depth].p_ext),
878 				ext4_ext_is_uninitialized(path[depth].p_ext),
879 				ext4_ext_get_actual_len(path[depth].p_ext),
880 				newblock);
881 		/*memmove(ex++, path[depth].p_ext++,
882 				sizeof(struct ext4_extent));
883 		neh->eh_entries++;*/
884 		path[depth].p_ext++;
885 		m++;
886 	}
887 	if (m) {
888 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
889 		le16_add_cpu(&neh->eh_entries, m);
890 	}
891 
892 	set_buffer_uptodate(bh);
893 	unlock_buffer(bh);
894 
895 	err = ext4_handle_dirty_metadata(handle, inode, bh);
896 	if (err)
897 		goto cleanup;
898 	brelse(bh);
899 	bh = NULL;
900 
901 	/* correct old leaf */
902 	if (m) {
903 		err = ext4_ext_get_access(handle, inode, path + depth);
904 		if (err)
905 			goto cleanup;
906 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
907 		err = ext4_ext_dirty(handle, inode, path + depth);
908 		if (err)
909 			goto cleanup;
910 
911 	}
912 
913 	/* create intermediate indexes */
914 	k = depth - at - 1;
915 	BUG_ON(k < 0);
916 	if (k)
917 		ext_debug("create %d intermediate indices\n", k);
918 	/* insert new index into current index block */
919 	/* current depth stored in i var */
920 	i = depth - 1;
921 	while (k--) {
922 		oldblock = newblock;
923 		newblock = ablocks[--a];
924 		bh = sb_getblk(inode->i_sb, newblock);
925 		if (!bh) {
926 			err = -EIO;
927 			goto cleanup;
928 		}
929 		lock_buffer(bh);
930 
931 		err = ext4_journal_get_create_access(handle, bh);
932 		if (err)
933 			goto cleanup;
934 
935 		neh = ext_block_hdr(bh);
936 		neh->eh_entries = cpu_to_le16(1);
937 		neh->eh_magic = EXT4_EXT_MAGIC;
938 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
939 		neh->eh_depth = cpu_to_le16(depth - i);
940 		fidx = EXT_FIRST_INDEX(neh);
941 		fidx->ei_block = border;
942 		ext4_idx_store_pblock(fidx, oldblock);
943 
944 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
945 				i, newblock, le32_to_cpu(border), oldblock);
946 		/* copy indexes */
947 		m = 0;
948 		path[i].p_idx++;
949 
950 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
951 				EXT_MAX_INDEX(path[i].p_hdr));
952 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
953 				EXT_LAST_INDEX(path[i].p_hdr));
954 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
955 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
956 					le32_to_cpu(path[i].p_idx->ei_block),
957 					idx_pblock(path[i].p_idx),
958 					newblock);
959 			/*memmove(++fidx, path[i].p_idx++,
960 					sizeof(struct ext4_extent_idx));
961 			neh->eh_entries++;
962 			BUG_ON(neh->eh_entries > neh->eh_max);*/
963 			path[i].p_idx++;
964 			m++;
965 		}
966 		if (m) {
967 			memmove(++fidx, path[i].p_idx - m,
968 				sizeof(struct ext4_extent_idx) * m);
969 			le16_add_cpu(&neh->eh_entries, m);
970 		}
971 		set_buffer_uptodate(bh);
972 		unlock_buffer(bh);
973 
974 		err = ext4_handle_dirty_metadata(handle, inode, bh);
975 		if (err)
976 			goto cleanup;
977 		brelse(bh);
978 		bh = NULL;
979 
980 		/* correct old index */
981 		if (m) {
982 			err = ext4_ext_get_access(handle, inode, path + i);
983 			if (err)
984 				goto cleanup;
985 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
986 			err = ext4_ext_dirty(handle, inode, path + i);
987 			if (err)
988 				goto cleanup;
989 		}
990 
991 		i--;
992 	}
993 
994 	/* insert new index */
995 	err = ext4_ext_insert_index(handle, inode, path + at,
996 				    le32_to_cpu(border), newblock);
997 
998 cleanup:
999 	if (bh) {
1000 		if (buffer_locked(bh))
1001 			unlock_buffer(bh);
1002 		brelse(bh);
1003 	}
1004 
1005 	if (err) {
1006 		/* free all allocated blocks in error case */
1007 		for (i = 0; i < depth; i++) {
1008 			if (!ablocks[i])
1009 				continue;
1010 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
1011 		}
1012 	}
1013 	kfree(ablocks);
1014 
1015 	return err;
1016 }
1017 
1018 /*
1019  * ext4_ext_grow_indepth:
1020  * implements tree growing procedure:
1021  * - allocates new block
1022  * - moves top-level data (index block or leaf) into the new block
1023  * - initializes new top-level, creating index that points to the
1024  *   just created block
1025  */
1026 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1027 					struct ext4_ext_path *path,
1028 					struct ext4_extent *newext)
1029 {
1030 	struct ext4_ext_path *curp = path;
1031 	struct ext4_extent_header *neh;
1032 	struct ext4_extent_idx *fidx;
1033 	struct buffer_head *bh;
1034 	ext4_fsblk_t newblock;
1035 	int err = 0;
1036 
1037 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1038 	if (newblock == 0)
1039 		return err;
1040 
1041 	bh = sb_getblk(inode->i_sb, newblock);
1042 	if (!bh) {
1043 		err = -EIO;
1044 		ext4_std_error(inode->i_sb, err);
1045 		return err;
1046 	}
1047 	lock_buffer(bh);
1048 
1049 	err = ext4_journal_get_create_access(handle, bh);
1050 	if (err) {
1051 		unlock_buffer(bh);
1052 		goto out;
1053 	}
1054 
1055 	/* move top-level index/leaf into new block */
1056 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1057 
1058 	/* set size of new block */
1059 	neh = ext_block_hdr(bh);
1060 	/* old root could have indexes or leaves
1061 	 * so calculate e_max right way */
1062 	if (ext_depth(inode))
1063 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1064 	else
1065 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1066 	neh->eh_magic = EXT4_EXT_MAGIC;
1067 	set_buffer_uptodate(bh);
1068 	unlock_buffer(bh);
1069 
1070 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1071 	if (err)
1072 		goto out;
1073 
1074 	/* create index in new top-level index: num,max,pointer */
1075 	err = ext4_ext_get_access(handle, inode, curp);
1076 	if (err)
1077 		goto out;
1078 
1079 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1080 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1081 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1082 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1083 
1084 	if (path[0].p_hdr->eh_depth)
1085 		curp->p_idx->ei_block =
1086 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1087 	else
1088 		curp->p_idx->ei_block =
1089 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1090 	ext4_idx_store_pblock(curp->p_idx, newblock);
1091 
1092 	neh = ext_inode_hdr(inode);
1093 	fidx = EXT_FIRST_INDEX(neh);
1094 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1095 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1096 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1097 
1098 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1099 	err = ext4_ext_dirty(handle, inode, curp);
1100 out:
1101 	brelse(bh);
1102 
1103 	return err;
1104 }
1105 
1106 /*
1107  * ext4_ext_create_new_leaf:
1108  * finds empty index and adds new leaf.
1109  * if no free index is found, then it requests in-depth growing.
1110  */
1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1112 					struct ext4_ext_path *path,
1113 					struct ext4_extent *newext)
1114 {
1115 	struct ext4_ext_path *curp;
1116 	int depth, i, err = 0;
1117 
1118 repeat:
1119 	i = depth = ext_depth(inode);
1120 
1121 	/* walk up to the tree and look for free index entry */
1122 	curp = path + depth;
1123 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1124 		i--;
1125 		curp--;
1126 	}
1127 
1128 	/* we use already allocated block for index block,
1129 	 * so subsequent data blocks should be contiguous */
1130 	if (EXT_HAS_FREE_INDEX(curp)) {
1131 		/* if we found index with free entry, then use that
1132 		 * entry: create all needed subtree and add new leaf */
1133 		err = ext4_ext_split(handle, inode, path, newext, i);
1134 		if (err)
1135 			goto out;
1136 
1137 		/* refill path */
1138 		ext4_ext_drop_refs(path);
1139 		path = ext4_ext_find_extent(inode,
1140 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1141 				    path);
1142 		if (IS_ERR(path))
1143 			err = PTR_ERR(path);
1144 	} else {
1145 		/* tree is full, time to grow in depth */
1146 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1147 		if (err)
1148 			goto out;
1149 
1150 		/* refill path */
1151 		ext4_ext_drop_refs(path);
1152 		path = ext4_ext_find_extent(inode,
1153 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1154 				    path);
1155 		if (IS_ERR(path)) {
1156 			err = PTR_ERR(path);
1157 			goto out;
1158 		}
1159 
1160 		/*
1161 		 * only first (depth 0 -> 1) produces free space;
1162 		 * in all other cases we have to split the grown tree
1163 		 */
1164 		depth = ext_depth(inode);
1165 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1166 			/* now we need to split */
1167 			goto repeat;
1168 		}
1169 	}
1170 
1171 out:
1172 	return err;
1173 }
1174 
1175 /*
1176  * search the closest allocated block to the left for *logical
1177  * and returns it at @logical + it's physical address at @phys
1178  * if *logical is the smallest allocated block, the function
1179  * returns 0 at @phys
1180  * return value contains 0 (success) or error code
1181  */
1182 int
1183 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1184 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1185 {
1186 	struct ext4_extent_idx *ix;
1187 	struct ext4_extent *ex;
1188 	int depth, ee_len;
1189 
1190 	BUG_ON(path == NULL);
1191 	depth = path->p_depth;
1192 	*phys = 0;
1193 
1194 	if (depth == 0 && path->p_ext == NULL)
1195 		return 0;
1196 
1197 	/* usually extent in the path covers blocks smaller
1198 	 * then *logical, but it can be that extent is the
1199 	 * first one in the file */
1200 
1201 	ex = path[depth].p_ext;
1202 	ee_len = ext4_ext_get_actual_len(ex);
1203 	if (*logical < le32_to_cpu(ex->ee_block)) {
1204 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1205 		while (--depth >= 0) {
1206 			ix = path[depth].p_idx;
1207 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1208 		}
1209 		return 0;
1210 	}
1211 
1212 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1213 
1214 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1215 	*phys = ext_pblock(ex) + ee_len - 1;
1216 	return 0;
1217 }
1218 
1219 /*
1220  * search the closest allocated block to the right for *logical
1221  * and returns it at @logical + it's physical address at @phys
1222  * if *logical is the smallest allocated block, the function
1223  * returns 0 at @phys
1224  * return value contains 0 (success) or error code
1225  */
1226 int
1227 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1228 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1229 {
1230 	struct buffer_head *bh = NULL;
1231 	struct ext4_extent_header *eh;
1232 	struct ext4_extent_idx *ix;
1233 	struct ext4_extent *ex;
1234 	ext4_fsblk_t block;
1235 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1236 	int ee_len;
1237 
1238 	BUG_ON(path == NULL);
1239 	depth = path->p_depth;
1240 	*phys = 0;
1241 
1242 	if (depth == 0 && path->p_ext == NULL)
1243 		return 0;
1244 
1245 	/* usually extent in the path covers blocks smaller
1246 	 * then *logical, but it can be that extent is the
1247 	 * first one in the file */
1248 
1249 	ex = path[depth].p_ext;
1250 	ee_len = ext4_ext_get_actual_len(ex);
1251 	if (*logical < le32_to_cpu(ex->ee_block)) {
1252 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1253 		while (--depth >= 0) {
1254 			ix = path[depth].p_idx;
1255 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1256 		}
1257 		*logical = le32_to_cpu(ex->ee_block);
1258 		*phys = ext_pblock(ex);
1259 		return 0;
1260 	}
1261 
1262 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1263 
1264 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1265 		/* next allocated block in this leaf */
1266 		ex++;
1267 		*logical = le32_to_cpu(ex->ee_block);
1268 		*phys = ext_pblock(ex);
1269 		return 0;
1270 	}
1271 
1272 	/* go up and search for index to the right */
1273 	while (--depth >= 0) {
1274 		ix = path[depth].p_idx;
1275 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1276 			goto got_index;
1277 	}
1278 
1279 	/* we've gone up to the root and found no index to the right */
1280 	return 0;
1281 
1282 got_index:
1283 	/* we've found index to the right, let's
1284 	 * follow it and find the closest allocated
1285 	 * block to the right */
1286 	ix++;
1287 	block = idx_pblock(ix);
1288 	while (++depth < path->p_depth) {
1289 		bh = sb_bread(inode->i_sb, block);
1290 		if (bh == NULL)
1291 			return -EIO;
1292 		eh = ext_block_hdr(bh);
1293 		/* subtract from p_depth to get proper eh_depth */
1294 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1295 			put_bh(bh);
1296 			return -EIO;
1297 		}
1298 		ix = EXT_FIRST_INDEX(eh);
1299 		block = idx_pblock(ix);
1300 		put_bh(bh);
1301 	}
1302 
1303 	bh = sb_bread(inode->i_sb, block);
1304 	if (bh == NULL)
1305 		return -EIO;
1306 	eh = ext_block_hdr(bh);
1307 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1308 		put_bh(bh);
1309 		return -EIO;
1310 	}
1311 	ex = EXT_FIRST_EXTENT(eh);
1312 	*logical = le32_to_cpu(ex->ee_block);
1313 	*phys = ext_pblock(ex);
1314 	put_bh(bh);
1315 	return 0;
1316 }
1317 
1318 /*
1319  * ext4_ext_next_allocated_block:
1320  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1321  * NOTE: it considers block number from index entry as
1322  * allocated block. Thus, index entries have to be consistent
1323  * with leaves.
1324  */
1325 static ext4_lblk_t
1326 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1327 {
1328 	int depth;
1329 
1330 	BUG_ON(path == NULL);
1331 	depth = path->p_depth;
1332 
1333 	if (depth == 0 && path->p_ext == NULL)
1334 		return EXT_MAX_BLOCK;
1335 
1336 	while (depth >= 0) {
1337 		if (depth == path->p_depth) {
1338 			/* leaf */
1339 			if (path[depth].p_ext !=
1340 					EXT_LAST_EXTENT(path[depth].p_hdr))
1341 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1342 		} else {
1343 			/* index */
1344 			if (path[depth].p_idx !=
1345 					EXT_LAST_INDEX(path[depth].p_hdr))
1346 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1347 		}
1348 		depth--;
1349 	}
1350 
1351 	return EXT_MAX_BLOCK;
1352 }
1353 
1354 /*
1355  * ext4_ext_next_leaf_block:
1356  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1357  */
1358 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1359 					struct ext4_ext_path *path)
1360 {
1361 	int depth;
1362 
1363 	BUG_ON(path == NULL);
1364 	depth = path->p_depth;
1365 
1366 	/* zero-tree has no leaf blocks at all */
1367 	if (depth == 0)
1368 		return EXT_MAX_BLOCK;
1369 
1370 	/* go to index block */
1371 	depth--;
1372 
1373 	while (depth >= 0) {
1374 		if (path[depth].p_idx !=
1375 				EXT_LAST_INDEX(path[depth].p_hdr))
1376 			return (ext4_lblk_t)
1377 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1378 		depth--;
1379 	}
1380 
1381 	return EXT_MAX_BLOCK;
1382 }
1383 
1384 /*
1385  * ext4_ext_correct_indexes:
1386  * if leaf gets modified and modified extent is first in the leaf,
1387  * then we have to correct all indexes above.
1388  * TODO: do we need to correct tree in all cases?
1389  */
1390 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1391 				struct ext4_ext_path *path)
1392 {
1393 	struct ext4_extent_header *eh;
1394 	int depth = ext_depth(inode);
1395 	struct ext4_extent *ex;
1396 	__le32 border;
1397 	int k, err = 0;
1398 
1399 	eh = path[depth].p_hdr;
1400 	ex = path[depth].p_ext;
1401 	BUG_ON(ex == NULL);
1402 	BUG_ON(eh == NULL);
1403 
1404 	if (depth == 0) {
1405 		/* there is no tree at all */
1406 		return 0;
1407 	}
1408 
1409 	if (ex != EXT_FIRST_EXTENT(eh)) {
1410 		/* we correct tree if first leaf got modified only */
1411 		return 0;
1412 	}
1413 
1414 	/*
1415 	 * TODO: we need correction if border is smaller than current one
1416 	 */
1417 	k = depth - 1;
1418 	border = path[depth].p_ext->ee_block;
1419 	err = ext4_ext_get_access(handle, inode, path + k);
1420 	if (err)
1421 		return err;
1422 	path[k].p_idx->ei_block = border;
1423 	err = ext4_ext_dirty(handle, inode, path + k);
1424 	if (err)
1425 		return err;
1426 
1427 	while (k--) {
1428 		/* change all left-side indexes */
1429 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1430 			break;
1431 		err = ext4_ext_get_access(handle, inode, path + k);
1432 		if (err)
1433 			break;
1434 		path[k].p_idx->ei_block = border;
1435 		err = ext4_ext_dirty(handle, inode, path + k);
1436 		if (err)
1437 			break;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 int
1444 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1445 				struct ext4_extent *ex2)
1446 {
1447 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1448 
1449 	/*
1450 	 * Make sure that either both extents are uninitialized, or
1451 	 * both are _not_.
1452 	 */
1453 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1454 		return 0;
1455 
1456 	if (ext4_ext_is_uninitialized(ex1))
1457 		max_len = EXT_UNINIT_MAX_LEN;
1458 	else
1459 		max_len = EXT_INIT_MAX_LEN;
1460 
1461 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1462 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1463 
1464 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1465 			le32_to_cpu(ex2->ee_block))
1466 		return 0;
1467 
1468 	/*
1469 	 * To allow future support for preallocated extents to be added
1470 	 * as an RO_COMPAT feature, refuse to merge to extents if
1471 	 * this can result in the top bit of ee_len being set.
1472 	 */
1473 	if (ext1_ee_len + ext2_ee_len > max_len)
1474 		return 0;
1475 #ifdef AGGRESSIVE_TEST
1476 	if (ext1_ee_len >= 4)
1477 		return 0;
1478 #endif
1479 
1480 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1481 		return 1;
1482 	return 0;
1483 }
1484 
1485 /*
1486  * This function tries to merge the "ex" extent to the next extent in the tree.
1487  * It always tries to merge towards right. If you want to merge towards
1488  * left, pass "ex - 1" as argument instead of "ex".
1489  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1490  * 1 if they got merged.
1491  */
1492 int ext4_ext_try_to_merge(struct inode *inode,
1493 			  struct ext4_ext_path *path,
1494 			  struct ext4_extent *ex)
1495 {
1496 	struct ext4_extent_header *eh;
1497 	unsigned int depth, len;
1498 	int merge_done = 0;
1499 	int uninitialized = 0;
1500 
1501 	depth = ext_depth(inode);
1502 	BUG_ON(path[depth].p_hdr == NULL);
1503 	eh = path[depth].p_hdr;
1504 
1505 	while (ex < EXT_LAST_EXTENT(eh)) {
1506 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1507 			break;
1508 		/* merge with next extent! */
1509 		if (ext4_ext_is_uninitialized(ex))
1510 			uninitialized = 1;
1511 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1512 				+ ext4_ext_get_actual_len(ex + 1));
1513 		if (uninitialized)
1514 			ext4_ext_mark_uninitialized(ex);
1515 
1516 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1517 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1518 				* sizeof(struct ext4_extent);
1519 			memmove(ex + 1, ex + 2, len);
1520 		}
1521 		le16_add_cpu(&eh->eh_entries, -1);
1522 		merge_done = 1;
1523 		WARN_ON(eh->eh_entries == 0);
1524 		if (!eh->eh_entries)
1525 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1526 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1527 	}
1528 
1529 	return merge_done;
1530 }
1531 
1532 /*
1533  * check if a portion of the "newext" extent overlaps with an
1534  * existing extent.
1535  *
1536  * If there is an overlap discovered, it updates the length of the newext
1537  * such that there will be no overlap, and then returns 1.
1538  * If there is no overlap found, it returns 0.
1539  */
1540 unsigned int ext4_ext_check_overlap(struct inode *inode,
1541 				    struct ext4_extent *newext,
1542 				    struct ext4_ext_path *path)
1543 {
1544 	ext4_lblk_t b1, b2;
1545 	unsigned int depth, len1;
1546 	unsigned int ret = 0;
1547 
1548 	b1 = le32_to_cpu(newext->ee_block);
1549 	len1 = ext4_ext_get_actual_len(newext);
1550 	depth = ext_depth(inode);
1551 	if (!path[depth].p_ext)
1552 		goto out;
1553 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1554 
1555 	/*
1556 	 * get the next allocated block if the extent in the path
1557 	 * is before the requested block(s)
1558 	 */
1559 	if (b2 < b1) {
1560 		b2 = ext4_ext_next_allocated_block(path);
1561 		if (b2 == EXT_MAX_BLOCK)
1562 			goto out;
1563 	}
1564 
1565 	/* check for wrap through zero on extent logical start block*/
1566 	if (b1 + len1 < b1) {
1567 		len1 = EXT_MAX_BLOCK - b1;
1568 		newext->ee_len = cpu_to_le16(len1);
1569 		ret = 1;
1570 	}
1571 
1572 	/* check for overlap */
1573 	if (b1 + len1 > b2) {
1574 		newext->ee_len = cpu_to_le16(b2 - b1);
1575 		ret = 1;
1576 	}
1577 out:
1578 	return ret;
1579 }
1580 
1581 /*
1582  * ext4_ext_insert_extent:
1583  * tries to merge requsted extent into the existing extent or
1584  * inserts requested extent as new one into the tree,
1585  * creating new leaf in the no-space case.
1586  */
1587 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1588 				struct ext4_ext_path *path,
1589 				struct ext4_extent *newext, int flag)
1590 {
1591 	struct ext4_extent_header *eh;
1592 	struct ext4_extent *ex, *fex;
1593 	struct ext4_extent *nearex; /* nearest extent */
1594 	struct ext4_ext_path *npath = NULL;
1595 	int depth, len, err;
1596 	ext4_lblk_t next;
1597 	unsigned uninitialized = 0;
1598 
1599 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1600 	depth = ext_depth(inode);
1601 	ex = path[depth].p_ext;
1602 	BUG_ON(path[depth].p_hdr == NULL);
1603 
1604 	/* try to insert block into found extent and return */
1605 	if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1606 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1607 		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1608 				ext4_ext_is_uninitialized(newext),
1609 				ext4_ext_get_actual_len(newext),
1610 				le32_to_cpu(ex->ee_block),
1611 				ext4_ext_is_uninitialized(ex),
1612 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1613 		err = ext4_ext_get_access(handle, inode, path + depth);
1614 		if (err)
1615 			return err;
1616 
1617 		/*
1618 		 * ext4_can_extents_be_merged should have checked that either
1619 		 * both extents are uninitialized, or both aren't. Thus we
1620 		 * need to check only one of them here.
1621 		 */
1622 		if (ext4_ext_is_uninitialized(ex))
1623 			uninitialized = 1;
1624 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1625 					+ ext4_ext_get_actual_len(newext));
1626 		if (uninitialized)
1627 			ext4_ext_mark_uninitialized(ex);
1628 		eh = path[depth].p_hdr;
1629 		nearex = ex;
1630 		goto merge;
1631 	}
1632 
1633 repeat:
1634 	depth = ext_depth(inode);
1635 	eh = path[depth].p_hdr;
1636 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1637 		goto has_space;
1638 
1639 	/* probably next leaf has space for us? */
1640 	fex = EXT_LAST_EXTENT(eh);
1641 	next = ext4_ext_next_leaf_block(inode, path);
1642 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1643 	    && next != EXT_MAX_BLOCK) {
1644 		ext_debug("next leaf block - %d\n", next);
1645 		BUG_ON(npath != NULL);
1646 		npath = ext4_ext_find_extent(inode, next, NULL);
1647 		if (IS_ERR(npath))
1648 			return PTR_ERR(npath);
1649 		BUG_ON(npath->p_depth != path->p_depth);
1650 		eh = npath[depth].p_hdr;
1651 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1652 			ext_debug("next leaf isnt full(%d)\n",
1653 				  le16_to_cpu(eh->eh_entries));
1654 			path = npath;
1655 			goto repeat;
1656 		}
1657 		ext_debug("next leaf has no free space(%d,%d)\n",
1658 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1659 	}
1660 
1661 	/*
1662 	 * There is no free space in the found leaf.
1663 	 * We're gonna add a new leaf in the tree.
1664 	 */
1665 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1666 	if (err)
1667 		goto cleanup;
1668 	depth = ext_depth(inode);
1669 	eh = path[depth].p_hdr;
1670 
1671 has_space:
1672 	nearex = path[depth].p_ext;
1673 
1674 	err = ext4_ext_get_access(handle, inode, path + depth);
1675 	if (err)
1676 		goto cleanup;
1677 
1678 	if (!nearex) {
1679 		/* there is no extent in this leaf, create first one */
1680 		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1681 				le32_to_cpu(newext->ee_block),
1682 				ext_pblock(newext),
1683 				ext4_ext_is_uninitialized(newext),
1684 				ext4_ext_get_actual_len(newext));
1685 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1686 	} else if (le32_to_cpu(newext->ee_block)
1687 			   > le32_to_cpu(nearex->ee_block)) {
1688 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1689 		if (nearex != EXT_LAST_EXTENT(eh)) {
1690 			len = EXT_MAX_EXTENT(eh) - nearex;
1691 			len = (len - 1) * sizeof(struct ext4_extent);
1692 			len = len < 0 ? 0 : len;
1693 			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1694 					"move %d from 0x%p to 0x%p\n",
1695 					le32_to_cpu(newext->ee_block),
1696 					ext_pblock(newext),
1697 					ext4_ext_is_uninitialized(newext),
1698 					ext4_ext_get_actual_len(newext),
1699 					nearex, len, nearex + 1, nearex + 2);
1700 			memmove(nearex + 2, nearex + 1, len);
1701 		}
1702 		path[depth].p_ext = nearex + 1;
1703 	} else {
1704 		BUG_ON(newext->ee_block == nearex->ee_block);
1705 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1706 		len = len < 0 ? 0 : len;
1707 		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1708 				"move %d from 0x%p to 0x%p\n",
1709 				le32_to_cpu(newext->ee_block),
1710 				ext_pblock(newext),
1711 				ext4_ext_is_uninitialized(newext),
1712 				ext4_ext_get_actual_len(newext),
1713 				nearex, len, nearex + 1, nearex + 2);
1714 		memmove(nearex + 1, nearex, len);
1715 		path[depth].p_ext = nearex;
1716 	}
1717 
1718 	le16_add_cpu(&eh->eh_entries, 1);
1719 	nearex = path[depth].p_ext;
1720 	nearex->ee_block = newext->ee_block;
1721 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1722 	nearex->ee_len = newext->ee_len;
1723 
1724 merge:
1725 	/* try to merge extents to the right */
1726 	if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1727 		ext4_ext_try_to_merge(inode, path, nearex);
1728 
1729 	/* try to merge extents to the left */
1730 
1731 	/* time to correct all indexes above */
1732 	err = ext4_ext_correct_indexes(handle, inode, path);
1733 	if (err)
1734 		goto cleanup;
1735 
1736 	err = ext4_ext_dirty(handle, inode, path + depth);
1737 
1738 cleanup:
1739 	if (npath) {
1740 		ext4_ext_drop_refs(npath);
1741 		kfree(npath);
1742 	}
1743 	ext4_ext_invalidate_cache(inode);
1744 	return err;
1745 }
1746 
1747 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1748 			ext4_lblk_t num, ext_prepare_callback func,
1749 			void *cbdata)
1750 {
1751 	struct ext4_ext_path *path = NULL;
1752 	struct ext4_ext_cache cbex;
1753 	struct ext4_extent *ex;
1754 	ext4_lblk_t next, start = 0, end = 0;
1755 	ext4_lblk_t last = block + num;
1756 	int depth, exists, err = 0;
1757 
1758 	BUG_ON(func == NULL);
1759 	BUG_ON(inode == NULL);
1760 
1761 	while (block < last && block != EXT_MAX_BLOCK) {
1762 		num = last - block;
1763 		/* find extent for this block */
1764 		path = ext4_ext_find_extent(inode, block, path);
1765 		if (IS_ERR(path)) {
1766 			err = PTR_ERR(path);
1767 			path = NULL;
1768 			break;
1769 		}
1770 
1771 		depth = ext_depth(inode);
1772 		BUG_ON(path[depth].p_hdr == NULL);
1773 		ex = path[depth].p_ext;
1774 		next = ext4_ext_next_allocated_block(path);
1775 
1776 		exists = 0;
1777 		if (!ex) {
1778 			/* there is no extent yet, so try to allocate
1779 			 * all requested space */
1780 			start = block;
1781 			end = block + num;
1782 		} else if (le32_to_cpu(ex->ee_block) > block) {
1783 			/* need to allocate space before found extent */
1784 			start = block;
1785 			end = le32_to_cpu(ex->ee_block);
1786 			if (block + num < end)
1787 				end = block + num;
1788 		} else if (block >= le32_to_cpu(ex->ee_block)
1789 					+ ext4_ext_get_actual_len(ex)) {
1790 			/* need to allocate space after found extent */
1791 			start = block;
1792 			end = block + num;
1793 			if (end >= next)
1794 				end = next;
1795 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1796 			/*
1797 			 * some part of requested space is covered
1798 			 * by found extent
1799 			 */
1800 			start = block;
1801 			end = le32_to_cpu(ex->ee_block)
1802 				+ ext4_ext_get_actual_len(ex);
1803 			if (block + num < end)
1804 				end = block + num;
1805 			exists = 1;
1806 		} else {
1807 			BUG();
1808 		}
1809 		BUG_ON(end <= start);
1810 
1811 		if (!exists) {
1812 			cbex.ec_block = start;
1813 			cbex.ec_len = end - start;
1814 			cbex.ec_start = 0;
1815 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1816 		} else {
1817 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1818 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1819 			cbex.ec_start = ext_pblock(ex);
1820 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1821 		}
1822 
1823 		BUG_ON(cbex.ec_len == 0);
1824 		err = func(inode, path, &cbex, ex, cbdata);
1825 		ext4_ext_drop_refs(path);
1826 
1827 		if (err < 0)
1828 			break;
1829 
1830 		if (err == EXT_REPEAT)
1831 			continue;
1832 		else if (err == EXT_BREAK) {
1833 			err = 0;
1834 			break;
1835 		}
1836 
1837 		if (ext_depth(inode) != depth) {
1838 			/* depth was changed. we have to realloc path */
1839 			kfree(path);
1840 			path = NULL;
1841 		}
1842 
1843 		block = cbex.ec_block + cbex.ec_len;
1844 	}
1845 
1846 	if (path) {
1847 		ext4_ext_drop_refs(path);
1848 		kfree(path);
1849 	}
1850 
1851 	return err;
1852 }
1853 
1854 static void
1855 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1856 			__u32 len, ext4_fsblk_t start, int type)
1857 {
1858 	struct ext4_ext_cache *cex;
1859 	BUG_ON(len == 0);
1860 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1861 	cex = &EXT4_I(inode)->i_cached_extent;
1862 	cex->ec_type = type;
1863 	cex->ec_block = block;
1864 	cex->ec_len = len;
1865 	cex->ec_start = start;
1866 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1867 }
1868 
1869 /*
1870  * ext4_ext_put_gap_in_cache:
1871  * calculate boundaries of the gap that the requested block fits into
1872  * and cache this gap
1873  */
1874 static void
1875 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1876 				ext4_lblk_t block)
1877 {
1878 	int depth = ext_depth(inode);
1879 	unsigned long len;
1880 	ext4_lblk_t lblock;
1881 	struct ext4_extent *ex;
1882 
1883 	ex = path[depth].p_ext;
1884 	if (ex == NULL) {
1885 		/* there is no extent yet, so gap is [0;-] */
1886 		lblock = 0;
1887 		len = EXT_MAX_BLOCK;
1888 		ext_debug("cache gap(whole file):");
1889 	} else if (block < le32_to_cpu(ex->ee_block)) {
1890 		lblock = block;
1891 		len = le32_to_cpu(ex->ee_block) - block;
1892 		ext_debug("cache gap(before): %u [%u:%u]",
1893 				block,
1894 				le32_to_cpu(ex->ee_block),
1895 				 ext4_ext_get_actual_len(ex));
1896 	} else if (block >= le32_to_cpu(ex->ee_block)
1897 			+ ext4_ext_get_actual_len(ex)) {
1898 		ext4_lblk_t next;
1899 		lblock = le32_to_cpu(ex->ee_block)
1900 			+ ext4_ext_get_actual_len(ex);
1901 
1902 		next = ext4_ext_next_allocated_block(path);
1903 		ext_debug("cache gap(after): [%u:%u] %u",
1904 				le32_to_cpu(ex->ee_block),
1905 				ext4_ext_get_actual_len(ex),
1906 				block);
1907 		BUG_ON(next == lblock);
1908 		len = next - lblock;
1909 	} else {
1910 		lblock = len = 0;
1911 		BUG();
1912 	}
1913 
1914 	ext_debug(" -> %u:%lu\n", lblock, len);
1915 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1916 }
1917 
1918 static int
1919 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1920 			struct ext4_extent *ex)
1921 {
1922 	struct ext4_ext_cache *cex;
1923 	int ret = EXT4_EXT_CACHE_NO;
1924 
1925 	/*
1926 	 * We borrow i_block_reservation_lock to protect i_cached_extent
1927 	 */
1928 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1929 	cex = &EXT4_I(inode)->i_cached_extent;
1930 
1931 	/* has cache valid data? */
1932 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1933 		goto errout;
1934 
1935 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1936 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1937 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1938 		ex->ee_block = cpu_to_le32(cex->ec_block);
1939 		ext4_ext_store_pblock(ex, cex->ec_start);
1940 		ex->ee_len = cpu_to_le16(cex->ec_len);
1941 		ext_debug("%u cached by %u:%u:%llu\n",
1942 				block,
1943 				cex->ec_block, cex->ec_len, cex->ec_start);
1944 		ret = cex->ec_type;
1945 	}
1946 errout:
1947 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1948 	return ret;
1949 }
1950 
1951 /*
1952  * ext4_ext_rm_idx:
1953  * removes index from the index block.
1954  * It's used in truncate case only, thus all requests are for
1955  * last index in the block only.
1956  */
1957 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1958 			struct ext4_ext_path *path)
1959 {
1960 	struct buffer_head *bh;
1961 	int err;
1962 	ext4_fsblk_t leaf;
1963 
1964 	/* free index block */
1965 	path--;
1966 	leaf = idx_pblock(path->p_idx);
1967 	BUG_ON(path->p_hdr->eh_entries == 0);
1968 	err = ext4_ext_get_access(handle, inode, path);
1969 	if (err)
1970 		return err;
1971 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1972 	err = ext4_ext_dirty(handle, inode, path);
1973 	if (err)
1974 		return err;
1975 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1976 	bh = sb_find_get_block(inode->i_sb, leaf);
1977 	ext4_forget(handle, 1, inode, bh, leaf);
1978 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1979 	return err;
1980 }
1981 
1982 /*
1983  * ext4_ext_calc_credits_for_single_extent:
1984  * This routine returns max. credits that needed to insert an extent
1985  * to the extent tree.
1986  * When pass the actual path, the caller should calculate credits
1987  * under i_data_sem.
1988  */
1989 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1990 						struct ext4_ext_path *path)
1991 {
1992 	if (path) {
1993 		int depth = ext_depth(inode);
1994 		int ret = 0;
1995 
1996 		/* probably there is space in leaf? */
1997 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1998 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1999 
2000 			/*
2001 			 *  There are some space in the leaf tree, no
2002 			 *  need to account for leaf block credit
2003 			 *
2004 			 *  bitmaps and block group descriptor blocks
2005 			 *  and other metadat blocks still need to be
2006 			 *  accounted.
2007 			 */
2008 			/* 1 bitmap, 1 block group descriptor */
2009 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2010 			return ret;
2011 		}
2012 	}
2013 
2014 	return ext4_chunk_trans_blocks(inode, nrblocks);
2015 }
2016 
2017 /*
2018  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2019  *
2020  * if nrblocks are fit in a single extent (chunk flag is 1), then
2021  * in the worse case, each tree level index/leaf need to be changed
2022  * if the tree split due to insert a new extent, then the old tree
2023  * index/leaf need to be updated too
2024  *
2025  * If the nrblocks are discontiguous, they could cause
2026  * the whole tree split more than once, but this is really rare.
2027  */
2028 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2029 {
2030 	int index;
2031 	int depth = ext_depth(inode);
2032 
2033 	if (chunk)
2034 		index = depth * 2;
2035 	else
2036 		index = depth * 3;
2037 
2038 	return index;
2039 }
2040 
2041 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2042 				struct ext4_extent *ex,
2043 				ext4_lblk_t from, ext4_lblk_t to)
2044 {
2045 	struct buffer_head *bh;
2046 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2047 	int i, metadata = 0;
2048 
2049 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2050 		metadata = 1;
2051 #ifdef EXTENTS_STATS
2052 	{
2053 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2054 		spin_lock(&sbi->s_ext_stats_lock);
2055 		sbi->s_ext_blocks += ee_len;
2056 		sbi->s_ext_extents++;
2057 		if (ee_len < sbi->s_ext_min)
2058 			sbi->s_ext_min = ee_len;
2059 		if (ee_len > sbi->s_ext_max)
2060 			sbi->s_ext_max = ee_len;
2061 		if (ext_depth(inode) > sbi->s_depth_max)
2062 			sbi->s_depth_max = ext_depth(inode);
2063 		spin_unlock(&sbi->s_ext_stats_lock);
2064 	}
2065 #endif
2066 	if (from >= le32_to_cpu(ex->ee_block)
2067 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2068 		/* tail removal */
2069 		ext4_lblk_t num;
2070 		ext4_fsblk_t start;
2071 
2072 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2073 		start = ext_pblock(ex) + ee_len - num;
2074 		ext_debug("free last %u blocks starting %llu\n", num, start);
2075 		for (i = 0; i < num; i++) {
2076 			bh = sb_find_get_block(inode->i_sb, start + i);
2077 			ext4_forget(handle, 0, inode, bh, start + i);
2078 		}
2079 		ext4_free_blocks(handle, inode, start, num, metadata);
2080 	} else if (from == le32_to_cpu(ex->ee_block)
2081 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2082 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2083 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2084 	} else {
2085 		printk(KERN_INFO "strange request: removal(2) "
2086 				"%u-%u from %u:%u\n",
2087 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2088 	}
2089 	return 0;
2090 }
2091 
2092 static int
2093 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2094 		struct ext4_ext_path *path, ext4_lblk_t start)
2095 {
2096 	int err = 0, correct_index = 0;
2097 	int depth = ext_depth(inode), credits;
2098 	struct ext4_extent_header *eh;
2099 	ext4_lblk_t a, b, block;
2100 	unsigned num;
2101 	ext4_lblk_t ex_ee_block;
2102 	unsigned short ex_ee_len;
2103 	unsigned uninitialized = 0;
2104 	struct ext4_extent *ex;
2105 
2106 	/* the header must be checked already in ext4_ext_remove_space() */
2107 	ext_debug("truncate since %u in leaf\n", start);
2108 	if (!path[depth].p_hdr)
2109 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2110 	eh = path[depth].p_hdr;
2111 	BUG_ON(eh == NULL);
2112 
2113 	/* find where to start removing */
2114 	ex = EXT_LAST_EXTENT(eh);
2115 
2116 	ex_ee_block = le32_to_cpu(ex->ee_block);
2117 	ex_ee_len = ext4_ext_get_actual_len(ex);
2118 
2119 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2120 			ex_ee_block + ex_ee_len > start) {
2121 
2122 		if (ext4_ext_is_uninitialized(ex))
2123 			uninitialized = 1;
2124 		else
2125 			uninitialized = 0;
2126 
2127 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2128 			 uninitialized, ex_ee_len);
2129 		path[depth].p_ext = ex;
2130 
2131 		a = ex_ee_block > start ? ex_ee_block : start;
2132 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2133 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2134 
2135 		ext_debug("  border %u:%u\n", a, b);
2136 
2137 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2138 			block = 0;
2139 			num = 0;
2140 			BUG();
2141 		} else if (a != ex_ee_block) {
2142 			/* remove tail of the extent */
2143 			block = ex_ee_block;
2144 			num = a - block;
2145 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2146 			/* remove head of the extent */
2147 			block = a;
2148 			num = b - a;
2149 			/* there is no "make a hole" API yet */
2150 			BUG();
2151 		} else {
2152 			/* remove whole extent: excellent! */
2153 			block = ex_ee_block;
2154 			num = 0;
2155 			BUG_ON(a != ex_ee_block);
2156 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2157 		}
2158 
2159 		/*
2160 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2161 		 * descriptor) for each block group; assume two block
2162 		 * groups plus ex_ee_len/blocks_per_block_group for
2163 		 * the worst case
2164 		 */
2165 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2166 		if (ex == EXT_FIRST_EXTENT(eh)) {
2167 			correct_index = 1;
2168 			credits += (ext_depth(inode)) + 1;
2169 		}
2170 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2171 
2172 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2173 		if (err)
2174 			goto out;
2175 
2176 		err = ext4_ext_get_access(handle, inode, path + depth);
2177 		if (err)
2178 			goto out;
2179 
2180 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2181 		if (err)
2182 			goto out;
2183 
2184 		if (num == 0) {
2185 			/* this extent is removed; mark slot entirely unused */
2186 			ext4_ext_store_pblock(ex, 0);
2187 			le16_add_cpu(&eh->eh_entries, -1);
2188 		}
2189 
2190 		ex->ee_block = cpu_to_le32(block);
2191 		ex->ee_len = cpu_to_le16(num);
2192 		/*
2193 		 * Do not mark uninitialized if all the blocks in the
2194 		 * extent have been removed.
2195 		 */
2196 		if (uninitialized && num)
2197 			ext4_ext_mark_uninitialized(ex);
2198 
2199 		err = ext4_ext_dirty(handle, inode, path + depth);
2200 		if (err)
2201 			goto out;
2202 
2203 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2204 				ext_pblock(ex));
2205 		ex--;
2206 		ex_ee_block = le32_to_cpu(ex->ee_block);
2207 		ex_ee_len = ext4_ext_get_actual_len(ex);
2208 	}
2209 
2210 	if (correct_index && eh->eh_entries)
2211 		err = ext4_ext_correct_indexes(handle, inode, path);
2212 
2213 	/* if this leaf is free, then we should
2214 	 * remove it from index block above */
2215 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2216 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2217 
2218 out:
2219 	return err;
2220 }
2221 
2222 /*
2223  * ext4_ext_more_to_rm:
2224  * returns 1 if current index has to be freed (even partial)
2225  */
2226 static int
2227 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2228 {
2229 	BUG_ON(path->p_idx == NULL);
2230 
2231 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2232 		return 0;
2233 
2234 	/*
2235 	 * if truncate on deeper level happened, it wasn't partial,
2236 	 * so we have to consider current index for truncation
2237 	 */
2238 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2239 		return 0;
2240 	return 1;
2241 }
2242 
2243 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2244 {
2245 	struct super_block *sb = inode->i_sb;
2246 	int depth = ext_depth(inode);
2247 	struct ext4_ext_path *path;
2248 	handle_t *handle;
2249 	int i = 0, err = 0;
2250 
2251 	ext_debug("truncate since %u\n", start);
2252 
2253 	/* probably first extent we're gonna free will be last in block */
2254 	handle = ext4_journal_start(inode, depth + 1);
2255 	if (IS_ERR(handle))
2256 		return PTR_ERR(handle);
2257 
2258 	ext4_ext_invalidate_cache(inode);
2259 
2260 	/*
2261 	 * We start scanning from right side, freeing all the blocks
2262 	 * after i_size and walking into the tree depth-wise.
2263 	 */
2264 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2265 	if (path == NULL) {
2266 		ext4_journal_stop(handle);
2267 		return -ENOMEM;
2268 	}
2269 	path[0].p_hdr = ext_inode_hdr(inode);
2270 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2271 		err = -EIO;
2272 		goto out;
2273 	}
2274 	path[0].p_depth = depth;
2275 
2276 	while (i >= 0 && err == 0) {
2277 		if (i == depth) {
2278 			/* this is leaf block */
2279 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2280 			/* root level has p_bh == NULL, brelse() eats this */
2281 			brelse(path[i].p_bh);
2282 			path[i].p_bh = NULL;
2283 			i--;
2284 			continue;
2285 		}
2286 
2287 		/* this is index block */
2288 		if (!path[i].p_hdr) {
2289 			ext_debug("initialize header\n");
2290 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2291 		}
2292 
2293 		if (!path[i].p_idx) {
2294 			/* this level hasn't been touched yet */
2295 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2296 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2297 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2298 				  path[i].p_hdr,
2299 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2300 		} else {
2301 			/* we were already here, see at next index */
2302 			path[i].p_idx--;
2303 		}
2304 
2305 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2306 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2307 				path[i].p_idx);
2308 		if (ext4_ext_more_to_rm(path + i)) {
2309 			struct buffer_head *bh;
2310 			/* go to the next level */
2311 			ext_debug("move to level %d (block %llu)\n",
2312 				  i + 1, idx_pblock(path[i].p_idx));
2313 			memset(path + i + 1, 0, sizeof(*path));
2314 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2315 			if (!bh) {
2316 				/* should we reset i_size? */
2317 				err = -EIO;
2318 				break;
2319 			}
2320 			if (WARN_ON(i + 1 > depth)) {
2321 				err = -EIO;
2322 				break;
2323 			}
2324 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2325 							depth - i - 1)) {
2326 				err = -EIO;
2327 				break;
2328 			}
2329 			path[i + 1].p_bh = bh;
2330 
2331 			/* save actual number of indexes since this
2332 			 * number is changed at the next iteration */
2333 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2334 			i++;
2335 		} else {
2336 			/* we finished processing this index, go up */
2337 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2338 				/* index is empty, remove it;
2339 				 * handle must be already prepared by the
2340 				 * truncatei_leaf() */
2341 				err = ext4_ext_rm_idx(handle, inode, path + i);
2342 			}
2343 			/* root level has p_bh == NULL, brelse() eats this */
2344 			brelse(path[i].p_bh);
2345 			path[i].p_bh = NULL;
2346 			i--;
2347 			ext_debug("return to level %d\n", i);
2348 		}
2349 	}
2350 
2351 	/* TODO: flexible tree reduction should be here */
2352 	if (path->p_hdr->eh_entries == 0) {
2353 		/*
2354 		 * truncate to zero freed all the tree,
2355 		 * so we need to correct eh_depth
2356 		 */
2357 		err = ext4_ext_get_access(handle, inode, path);
2358 		if (err == 0) {
2359 			ext_inode_hdr(inode)->eh_depth = 0;
2360 			ext_inode_hdr(inode)->eh_max =
2361 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2362 			err = ext4_ext_dirty(handle, inode, path);
2363 		}
2364 	}
2365 out:
2366 	ext4_ext_drop_refs(path);
2367 	kfree(path);
2368 	ext4_journal_stop(handle);
2369 
2370 	return err;
2371 }
2372 
2373 /*
2374  * called at mount time
2375  */
2376 void ext4_ext_init(struct super_block *sb)
2377 {
2378 	/*
2379 	 * possible initialization would be here
2380 	 */
2381 
2382 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2383 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2384 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2385 #ifdef AGGRESSIVE_TEST
2386 		printk(", aggressive tests");
2387 #endif
2388 #ifdef CHECK_BINSEARCH
2389 		printk(", check binsearch");
2390 #endif
2391 #ifdef EXTENTS_STATS
2392 		printk(", stats");
2393 #endif
2394 		printk("\n");
2395 #endif
2396 #ifdef EXTENTS_STATS
2397 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2398 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2399 		EXT4_SB(sb)->s_ext_max = 0;
2400 #endif
2401 	}
2402 }
2403 
2404 /*
2405  * called at umount time
2406  */
2407 void ext4_ext_release(struct super_block *sb)
2408 {
2409 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2410 		return;
2411 
2412 #ifdef EXTENTS_STATS
2413 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2414 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2415 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2416 			sbi->s_ext_blocks, sbi->s_ext_extents,
2417 			sbi->s_ext_blocks / sbi->s_ext_extents);
2418 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2419 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2420 	}
2421 #endif
2422 }
2423 
2424 static void bi_complete(struct bio *bio, int error)
2425 {
2426 	complete((struct completion *)bio->bi_private);
2427 }
2428 
2429 /* FIXME!! we need to try to merge to left or right after zero-out  */
2430 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2431 {
2432 	int ret = -EIO;
2433 	struct bio *bio;
2434 	int blkbits, blocksize;
2435 	sector_t ee_pblock;
2436 	struct completion event;
2437 	unsigned int ee_len, len, done, offset;
2438 
2439 
2440 	blkbits   = inode->i_blkbits;
2441 	blocksize = inode->i_sb->s_blocksize;
2442 	ee_len    = ext4_ext_get_actual_len(ex);
2443 	ee_pblock = ext_pblock(ex);
2444 
2445 	/* convert ee_pblock to 512 byte sectors */
2446 	ee_pblock = ee_pblock << (blkbits - 9);
2447 
2448 	while (ee_len > 0) {
2449 
2450 		if (ee_len > BIO_MAX_PAGES)
2451 			len = BIO_MAX_PAGES;
2452 		else
2453 			len = ee_len;
2454 
2455 		bio = bio_alloc(GFP_NOIO, len);
2456 		bio->bi_sector = ee_pblock;
2457 		bio->bi_bdev   = inode->i_sb->s_bdev;
2458 
2459 		done = 0;
2460 		offset = 0;
2461 		while (done < len) {
2462 			ret = bio_add_page(bio, ZERO_PAGE(0),
2463 							blocksize, offset);
2464 			if (ret != blocksize) {
2465 				/*
2466 				 * We can't add any more pages because of
2467 				 * hardware limitations.  Start a new bio.
2468 				 */
2469 				break;
2470 			}
2471 			done++;
2472 			offset += blocksize;
2473 			if (offset >= PAGE_CACHE_SIZE)
2474 				offset = 0;
2475 		}
2476 
2477 		init_completion(&event);
2478 		bio->bi_private = &event;
2479 		bio->bi_end_io = bi_complete;
2480 		submit_bio(WRITE, bio);
2481 		wait_for_completion(&event);
2482 
2483 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2484 			ret = 0;
2485 		else {
2486 			ret = -EIO;
2487 			break;
2488 		}
2489 		bio_put(bio);
2490 		ee_len    -= done;
2491 		ee_pblock += done  << (blkbits - 9);
2492 	}
2493 	return ret;
2494 }
2495 
2496 #define EXT4_EXT_ZERO_LEN 7
2497 /*
2498  * This function is called by ext4_ext_get_blocks() if someone tries to write
2499  * to an uninitialized extent. It may result in splitting the uninitialized
2500  * extent into multiple extents (upto three - one initialized and two
2501  * uninitialized).
2502  * There are three possibilities:
2503  *   a> There is no split required: Entire extent should be initialized
2504  *   b> Splits in two extents: Write is happening at either end of the extent
2505  *   c> Splits in three extents: Somone is writing in middle of the extent
2506  */
2507 static int ext4_ext_convert_to_initialized(handle_t *handle,
2508 						struct inode *inode,
2509 						struct ext4_ext_path *path,
2510 						ext4_lblk_t iblock,
2511 						unsigned int max_blocks)
2512 {
2513 	struct ext4_extent *ex, newex, orig_ex;
2514 	struct ext4_extent *ex1 = NULL;
2515 	struct ext4_extent *ex2 = NULL;
2516 	struct ext4_extent *ex3 = NULL;
2517 	struct ext4_extent_header *eh;
2518 	ext4_lblk_t ee_block;
2519 	unsigned int allocated, ee_len, depth;
2520 	ext4_fsblk_t newblock;
2521 	int err = 0;
2522 	int ret = 0;
2523 
2524 	depth = ext_depth(inode);
2525 	eh = path[depth].p_hdr;
2526 	ex = path[depth].p_ext;
2527 	ee_block = le32_to_cpu(ex->ee_block);
2528 	ee_len = ext4_ext_get_actual_len(ex);
2529 	allocated = ee_len - (iblock - ee_block);
2530 	newblock = iblock - ee_block + ext_pblock(ex);
2531 	ex2 = ex;
2532 	orig_ex.ee_block = ex->ee_block;
2533 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2534 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2535 
2536 	err = ext4_ext_get_access(handle, inode, path + depth);
2537 	if (err)
2538 		goto out;
2539 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2540 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2541 		err =  ext4_ext_zeroout(inode, &orig_ex);
2542 		if (err)
2543 			goto fix_extent_len;
2544 		/* update the extent length and mark as initialized */
2545 		ex->ee_block = orig_ex.ee_block;
2546 		ex->ee_len   = orig_ex.ee_len;
2547 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2548 		ext4_ext_dirty(handle, inode, path + depth);
2549 		/* zeroed the full extent */
2550 		return allocated;
2551 	}
2552 
2553 	/* ex1: ee_block to iblock - 1 : uninitialized */
2554 	if (iblock > ee_block) {
2555 		ex1 = ex;
2556 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2557 		ext4_ext_mark_uninitialized(ex1);
2558 		ex2 = &newex;
2559 	}
2560 	/*
2561 	 * for sanity, update the length of the ex2 extent before
2562 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2563 	 * overlap of blocks.
2564 	 */
2565 	if (!ex1 && allocated > max_blocks)
2566 		ex2->ee_len = cpu_to_le16(max_blocks);
2567 	/* ex3: to ee_block + ee_len : uninitialised */
2568 	if (allocated > max_blocks) {
2569 		unsigned int newdepth;
2570 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2571 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2572 			/*
2573 			 * iblock == ee_block is handled by the zerouout
2574 			 * at the beginning.
2575 			 * Mark first half uninitialized.
2576 			 * Mark second half initialized and zero out the
2577 			 * initialized extent
2578 			 */
2579 			ex->ee_block = orig_ex.ee_block;
2580 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2581 			ext4_ext_mark_uninitialized(ex);
2582 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2583 			ext4_ext_dirty(handle, inode, path + depth);
2584 
2585 			ex3 = &newex;
2586 			ex3->ee_block = cpu_to_le32(iblock);
2587 			ext4_ext_store_pblock(ex3, newblock);
2588 			ex3->ee_len = cpu_to_le16(allocated);
2589 			err = ext4_ext_insert_extent(handle, inode, path,
2590 							ex3, 0);
2591 			if (err == -ENOSPC) {
2592 				err =  ext4_ext_zeroout(inode, &orig_ex);
2593 				if (err)
2594 					goto fix_extent_len;
2595 				ex->ee_block = orig_ex.ee_block;
2596 				ex->ee_len   = orig_ex.ee_len;
2597 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2598 				ext4_ext_dirty(handle, inode, path + depth);
2599 				/* blocks available from iblock */
2600 				return allocated;
2601 
2602 			} else if (err)
2603 				goto fix_extent_len;
2604 
2605 			/*
2606 			 * We need to zero out the second half because
2607 			 * an fallocate request can update file size and
2608 			 * converting the second half to initialized extent
2609 			 * implies that we can leak some junk data to user
2610 			 * space.
2611 			 */
2612 			err =  ext4_ext_zeroout(inode, ex3);
2613 			if (err) {
2614 				/*
2615 				 * We should actually mark the
2616 				 * second half as uninit and return error
2617 				 * Insert would have changed the extent
2618 				 */
2619 				depth = ext_depth(inode);
2620 				ext4_ext_drop_refs(path);
2621 				path = ext4_ext_find_extent(inode,
2622 								iblock, path);
2623 				if (IS_ERR(path)) {
2624 					err = PTR_ERR(path);
2625 					return err;
2626 				}
2627 				/* get the second half extent details */
2628 				ex = path[depth].p_ext;
2629 				err = ext4_ext_get_access(handle, inode,
2630 								path + depth);
2631 				if (err)
2632 					return err;
2633 				ext4_ext_mark_uninitialized(ex);
2634 				ext4_ext_dirty(handle, inode, path + depth);
2635 				return err;
2636 			}
2637 
2638 			/* zeroed the second half */
2639 			return allocated;
2640 		}
2641 		ex3 = &newex;
2642 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2643 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2644 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2645 		ext4_ext_mark_uninitialized(ex3);
2646 		err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2647 		if (err == -ENOSPC) {
2648 			err =  ext4_ext_zeroout(inode, &orig_ex);
2649 			if (err)
2650 				goto fix_extent_len;
2651 			/* update the extent length and mark as initialized */
2652 			ex->ee_block = orig_ex.ee_block;
2653 			ex->ee_len   = orig_ex.ee_len;
2654 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2655 			ext4_ext_dirty(handle, inode, path + depth);
2656 			/* zeroed the full extent */
2657 			/* blocks available from iblock */
2658 			return allocated;
2659 
2660 		} else if (err)
2661 			goto fix_extent_len;
2662 		/*
2663 		 * The depth, and hence eh & ex might change
2664 		 * as part of the insert above.
2665 		 */
2666 		newdepth = ext_depth(inode);
2667 		/*
2668 		 * update the extent length after successful insert of the
2669 		 * split extent
2670 		 */
2671 		orig_ex.ee_len = cpu_to_le16(ee_len -
2672 						ext4_ext_get_actual_len(ex3));
2673 		depth = newdepth;
2674 		ext4_ext_drop_refs(path);
2675 		path = ext4_ext_find_extent(inode, iblock, path);
2676 		if (IS_ERR(path)) {
2677 			err = PTR_ERR(path);
2678 			goto out;
2679 		}
2680 		eh = path[depth].p_hdr;
2681 		ex = path[depth].p_ext;
2682 		if (ex2 != &newex)
2683 			ex2 = ex;
2684 
2685 		err = ext4_ext_get_access(handle, inode, path + depth);
2686 		if (err)
2687 			goto out;
2688 
2689 		allocated = max_blocks;
2690 
2691 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2692 		 * to insert a extent in the middle zerout directly
2693 		 * otherwise give the extent a chance to merge to left
2694 		 */
2695 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2696 							iblock != ee_block) {
2697 			err =  ext4_ext_zeroout(inode, &orig_ex);
2698 			if (err)
2699 				goto fix_extent_len;
2700 			/* update the extent length and mark as initialized */
2701 			ex->ee_block = orig_ex.ee_block;
2702 			ex->ee_len   = orig_ex.ee_len;
2703 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2704 			ext4_ext_dirty(handle, inode, path + depth);
2705 			/* zero out the first half */
2706 			/* blocks available from iblock */
2707 			return allocated;
2708 		}
2709 	}
2710 	/*
2711 	 * If there was a change of depth as part of the
2712 	 * insertion of ex3 above, we need to update the length
2713 	 * of the ex1 extent again here
2714 	 */
2715 	if (ex1 && ex1 != ex) {
2716 		ex1 = ex;
2717 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2718 		ext4_ext_mark_uninitialized(ex1);
2719 		ex2 = &newex;
2720 	}
2721 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2722 	ex2->ee_block = cpu_to_le32(iblock);
2723 	ext4_ext_store_pblock(ex2, newblock);
2724 	ex2->ee_len = cpu_to_le16(allocated);
2725 	if (ex2 != ex)
2726 		goto insert;
2727 	/*
2728 	 * New (initialized) extent starts from the first block
2729 	 * in the current extent. i.e., ex2 == ex
2730 	 * We have to see if it can be merged with the extent
2731 	 * on the left.
2732 	 */
2733 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2734 		/*
2735 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2736 		 * since it merges towards right _only_.
2737 		 */
2738 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2739 		if (ret) {
2740 			err = ext4_ext_correct_indexes(handle, inode, path);
2741 			if (err)
2742 				goto out;
2743 			depth = ext_depth(inode);
2744 			ex2--;
2745 		}
2746 	}
2747 	/*
2748 	 * Try to Merge towards right. This might be required
2749 	 * only when the whole extent is being written to.
2750 	 * i.e. ex2 == ex and ex3 == NULL.
2751 	 */
2752 	if (!ex3) {
2753 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2754 		if (ret) {
2755 			err = ext4_ext_correct_indexes(handle, inode, path);
2756 			if (err)
2757 				goto out;
2758 		}
2759 	}
2760 	/* Mark modified extent as dirty */
2761 	err = ext4_ext_dirty(handle, inode, path + depth);
2762 	goto out;
2763 insert:
2764 	err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2765 	if (err == -ENOSPC) {
2766 		err =  ext4_ext_zeroout(inode, &orig_ex);
2767 		if (err)
2768 			goto fix_extent_len;
2769 		/* update the extent length and mark as initialized */
2770 		ex->ee_block = orig_ex.ee_block;
2771 		ex->ee_len   = orig_ex.ee_len;
2772 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2773 		ext4_ext_dirty(handle, inode, path + depth);
2774 		/* zero out the first half */
2775 		return allocated;
2776 	} else if (err)
2777 		goto fix_extent_len;
2778 out:
2779 	ext4_ext_show_leaf(inode, path);
2780 	return err ? err : allocated;
2781 
2782 fix_extent_len:
2783 	ex->ee_block = orig_ex.ee_block;
2784 	ex->ee_len   = orig_ex.ee_len;
2785 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2786 	ext4_ext_mark_uninitialized(ex);
2787 	ext4_ext_dirty(handle, inode, path + depth);
2788 	return err;
2789 }
2790 
2791 /*
2792  * This function is called by ext4_ext_get_blocks() from
2793  * ext4_get_blocks_dio_write() when DIO to write
2794  * to an uninitialized extent.
2795  *
2796  * Writing to an uninitized extent may result in splitting the uninitialized
2797  * extent into multiple /intialized unintialized extents (up to three)
2798  * There are three possibilities:
2799  *   a> There is no split required: Entire extent should be uninitialized
2800  *   b> Splits in two extents: Write is happening at either end of the extent
2801  *   c> Splits in three extents: Somone is writing in middle of the extent
2802  *
2803  * One of more index blocks maybe needed if the extent tree grow after
2804  * the unintialized extent split. To prevent ENOSPC occur at the IO
2805  * complete, we need to split the uninitialized extent before DIO submit
2806  * the IO. The uninitilized extent called at this time will be split
2807  * into three uninitialized extent(at most). After IO complete, the part
2808  * being filled will be convert to initialized by the end_io callback function
2809  * via ext4_convert_unwritten_extents().
2810  *
2811  * Returns the size of uninitialized extent to be written on success.
2812  */
2813 static int ext4_split_unwritten_extents(handle_t *handle,
2814 					struct inode *inode,
2815 					struct ext4_ext_path *path,
2816 					ext4_lblk_t iblock,
2817 					unsigned int max_blocks,
2818 					int flags)
2819 {
2820 	struct ext4_extent *ex, newex, orig_ex;
2821 	struct ext4_extent *ex1 = NULL;
2822 	struct ext4_extent *ex2 = NULL;
2823 	struct ext4_extent *ex3 = NULL;
2824 	struct ext4_extent_header *eh;
2825 	ext4_lblk_t ee_block;
2826 	unsigned int allocated, ee_len, depth;
2827 	ext4_fsblk_t newblock;
2828 	int err = 0;
2829 
2830 	ext_debug("ext4_split_unwritten_extents: inode %lu,"
2831 		  "iblock %llu, max_blocks %u\n", inode->i_ino,
2832 		  (unsigned long long)iblock, max_blocks);
2833 	depth = ext_depth(inode);
2834 	eh = path[depth].p_hdr;
2835 	ex = path[depth].p_ext;
2836 	ee_block = le32_to_cpu(ex->ee_block);
2837 	ee_len = ext4_ext_get_actual_len(ex);
2838 	allocated = ee_len - (iblock - ee_block);
2839 	newblock = iblock - ee_block + ext_pblock(ex);
2840 	ex2 = ex;
2841 	orig_ex.ee_block = ex->ee_block;
2842 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2843 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2844 
2845 	/*
2846  	 * If the uninitialized extent begins at the same logical
2847  	 * block where the write begins, and the write completely
2848  	 * covers the extent, then we don't need to split it.
2849  	 */
2850 	if ((iblock == ee_block) && (allocated <= max_blocks))
2851 		return allocated;
2852 
2853 	err = ext4_ext_get_access(handle, inode, path + depth);
2854 	if (err)
2855 		goto out;
2856 	/* ex1: ee_block to iblock - 1 : uninitialized */
2857 	if (iblock > ee_block) {
2858 		ex1 = ex;
2859 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2860 		ext4_ext_mark_uninitialized(ex1);
2861 		ex2 = &newex;
2862 	}
2863 	/*
2864 	 * for sanity, update the length of the ex2 extent before
2865 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2866 	 * overlap of blocks.
2867 	 */
2868 	if (!ex1 && allocated > max_blocks)
2869 		ex2->ee_len = cpu_to_le16(max_blocks);
2870 	/* ex3: to ee_block + ee_len : uninitialised */
2871 	if (allocated > max_blocks) {
2872 		unsigned int newdepth;
2873 		ex3 = &newex;
2874 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2875 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2876 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2877 		ext4_ext_mark_uninitialized(ex3);
2878 		err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2879 		if (err == -ENOSPC) {
2880 			err =  ext4_ext_zeroout(inode, &orig_ex);
2881 			if (err)
2882 				goto fix_extent_len;
2883 			/* update the extent length and mark as initialized */
2884 			ex->ee_block = orig_ex.ee_block;
2885 			ex->ee_len   = orig_ex.ee_len;
2886 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2887 			ext4_ext_dirty(handle, inode, path + depth);
2888 			/* zeroed the full extent */
2889 			/* blocks available from iblock */
2890 			return allocated;
2891 
2892 		} else if (err)
2893 			goto fix_extent_len;
2894 		/*
2895 		 * The depth, and hence eh & ex might change
2896 		 * as part of the insert above.
2897 		 */
2898 		newdepth = ext_depth(inode);
2899 		/*
2900 		 * update the extent length after successful insert of the
2901 		 * split extent
2902 		 */
2903 		orig_ex.ee_len = cpu_to_le16(ee_len -
2904 						ext4_ext_get_actual_len(ex3));
2905 		depth = newdepth;
2906 		ext4_ext_drop_refs(path);
2907 		path = ext4_ext_find_extent(inode, iblock, path);
2908 		if (IS_ERR(path)) {
2909 			err = PTR_ERR(path);
2910 			goto out;
2911 		}
2912 		eh = path[depth].p_hdr;
2913 		ex = path[depth].p_ext;
2914 		if (ex2 != &newex)
2915 			ex2 = ex;
2916 
2917 		err = ext4_ext_get_access(handle, inode, path + depth);
2918 		if (err)
2919 			goto out;
2920 
2921 		allocated = max_blocks;
2922 	}
2923 	/*
2924 	 * If there was a change of depth as part of the
2925 	 * insertion of ex3 above, we need to update the length
2926 	 * of the ex1 extent again here
2927 	 */
2928 	if (ex1 && ex1 != ex) {
2929 		ex1 = ex;
2930 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2931 		ext4_ext_mark_uninitialized(ex1);
2932 		ex2 = &newex;
2933 	}
2934 	/*
2935 	 * ex2: iblock to iblock + maxblocks-1 : to be direct IO written,
2936 	 * uninitialised still.
2937 	 */
2938 	ex2->ee_block = cpu_to_le32(iblock);
2939 	ext4_ext_store_pblock(ex2, newblock);
2940 	ex2->ee_len = cpu_to_le16(allocated);
2941 	ext4_ext_mark_uninitialized(ex2);
2942 	if (ex2 != ex)
2943 		goto insert;
2944 	/* Mark modified extent as dirty */
2945 	err = ext4_ext_dirty(handle, inode, path + depth);
2946 	ext_debug("out here\n");
2947 	goto out;
2948 insert:
2949 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2950 	if (err == -ENOSPC) {
2951 		err =  ext4_ext_zeroout(inode, &orig_ex);
2952 		if (err)
2953 			goto fix_extent_len;
2954 		/* update the extent length and mark as initialized */
2955 		ex->ee_block = orig_ex.ee_block;
2956 		ex->ee_len   = orig_ex.ee_len;
2957 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2958 		ext4_ext_dirty(handle, inode, path + depth);
2959 		/* zero out the first half */
2960 		return allocated;
2961 	} else if (err)
2962 		goto fix_extent_len;
2963 out:
2964 	ext4_ext_show_leaf(inode, path);
2965 	return err ? err : allocated;
2966 
2967 fix_extent_len:
2968 	ex->ee_block = orig_ex.ee_block;
2969 	ex->ee_len   = orig_ex.ee_len;
2970 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2971 	ext4_ext_mark_uninitialized(ex);
2972 	ext4_ext_dirty(handle, inode, path + depth);
2973 	return err;
2974 }
2975 static int ext4_convert_unwritten_extents_dio(handle_t *handle,
2976 					      struct inode *inode,
2977 					      struct ext4_ext_path *path)
2978 {
2979 	struct ext4_extent *ex;
2980 	struct ext4_extent_header *eh;
2981 	int depth;
2982 	int err = 0;
2983 	int ret = 0;
2984 
2985 	depth = ext_depth(inode);
2986 	eh = path[depth].p_hdr;
2987 	ex = path[depth].p_ext;
2988 
2989 	err = ext4_ext_get_access(handle, inode, path + depth);
2990 	if (err)
2991 		goto out;
2992 	/* first mark the extent as initialized */
2993 	ext4_ext_mark_initialized(ex);
2994 
2995 	/*
2996 	 * We have to see if it can be merged with the extent
2997 	 * on the left.
2998 	 */
2999 	if (ex > EXT_FIRST_EXTENT(eh)) {
3000 		/*
3001 		 * To merge left, pass "ex - 1" to try_to_merge(),
3002 		 * since it merges towards right _only_.
3003 		 */
3004 		ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3005 		if (ret) {
3006 			err = ext4_ext_correct_indexes(handle, inode, path);
3007 			if (err)
3008 				goto out;
3009 			depth = ext_depth(inode);
3010 			ex--;
3011 		}
3012 	}
3013 	/*
3014 	 * Try to Merge towards right.
3015 	 */
3016 	ret = ext4_ext_try_to_merge(inode, path, ex);
3017 	if (ret) {
3018 		err = ext4_ext_correct_indexes(handle, inode, path);
3019 		if (err)
3020 			goto out;
3021 		depth = ext_depth(inode);
3022 	}
3023 	/* Mark modified extent as dirty */
3024 	err = ext4_ext_dirty(handle, inode, path + depth);
3025 out:
3026 	ext4_ext_show_leaf(inode, path);
3027 	return err;
3028 }
3029 
3030 static int
3031 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3032 			ext4_lblk_t iblock, unsigned int max_blocks,
3033 			struct ext4_ext_path *path, int flags,
3034 			unsigned int allocated, struct buffer_head *bh_result,
3035 			ext4_fsblk_t newblock)
3036 {
3037 	int ret = 0;
3038 	int err = 0;
3039 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3040 
3041 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3042 		  "block %llu, max_blocks %u, flags %d, allocated %u",
3043 		  inode->i_ino, (unsigned long long)iblock, max_blocks,
3044 		  flags, allocated);
3045 	ext4_ext_show_leaf(inode, path);
3046 
3047 	/* DIO get_block() before submit the IO, split the extent */
3048 	if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3049 		ret = ext4_split_unwritten_extents(handle,
3050 						inode, path, iblock,
3051 						max_blocks, flags);
3052 		/*
3053 		 * Flag the inode(non aio case) or end_io struct (aio case)
3054 		 * that this IO needs to convertion to written when IO is
3055 		 * completed
3056 		 */
3057 		if (io)
3058 			io->flag = DIO_AIO_UNWRITTEN;
3059 		else
3060 			EXT4_I(inode)->i_state |= EXT4_STATE_DIO_UNWRITTEN;
3061 		goto out;
3062 	}
3063 	/* async DIO end_io complete, convert the filled extent to written */
3064 	if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) {
3065 		ret = ext4_convert_unwritten_extents_dio(handle, inode,
3066 							path);
3067 		goto out2;
3068 	}
3069 	/* buffered IO case */
3070 	/*
3071 	 * repeat fallocate creation request
3072 	 * we already have an unwritten extent
3073 	 */
3074 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3075 		goto map_out;
3076 
3077 	/* buffered READ or buffered write_begin() lookup */
3078 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3079 		/*
3080 		 * We have blocks reserved already.  We
3081 		 * return allocated blocks so that delalloc
3082 		 * won't do block reservation for us.  But
3083 		 * the buffer head will be unmapped so that
3084 		 * a read from the block returns 0s.
3085 		 */
3086 		set_buffer_unwritten(bh_result);
3087 		goto out1;
3088 	}
3089 
3090 	/* buffered write, writepage time, convert*/
3091 	ret = ext4_ext_convert_to_initialized(handle, inode,
3092 						path, iblock,
3093 						max_blocks);
3094 out:
3095 	if (ret <= 0) {
3096 		err = ret;
3097 		goto out2;
3098 	} else
3099 		allocated = ret;
3100 	set_buffer_new(bh_result);
3101 map_out:
3102 	set_buffer_mapped(bh_result);
3103 out1:
3104 	if (allocated > max_blocks)
3105 		allocated = max_blocks;
3106 	ext4_ext_show_leaf(inode, path);
3107 	bh_result->b_bdev = inode->i_sb->s_bdev;
3108 	bh_result->b_blocknr = newblock;
3109 out2:
3110 	if (path) {
3111 		ext4_ext_drop_refs(path);
3112 		kfree(path);
3113 	}
3114 	return err ? err : allocated;
3115 }
3116 /*
3117  * Block allocation/map/preallocation routine for extents based files
3118  *
3119  *
3120  * Need to be called with
3121  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3122  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3123  *
3124  * return > 0, number of of blocks already mapped/allocated
3125  *          if create == 0 and these are pre-allocated blocks
3126  *          	buffer head is unmapped
3127  *          otherwise blocks are mapped
3128  *
3129  * return = 0, if plain look up failed (blocks have not been allocated)
3130  *          buffer head is unmapped
3131  *
3132  * return < 0, error case.
3133  */
3134 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
3135 			ext4_lblk_t iblock,
3136 			unsigned int max_blocks, struct buffer_head *bh_result,
3137 			int flags)
3138 {
3139 	struct ext4_ext_path *path = NULL;
3140 	struct ext4_extent_header *eh;
3141 	struct ext4_extent newex, *ex;
3142 	ext4_fsblk_t newblock;
3143 	int err = 0, depth, ret, cache_type;
3144 	unsigned int allocated = 0;
3145 	struct ext4_allocation_request ar;
3146 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3147 
3148 	__clear_bit(BH_New, &bh_result->b_state);
3149 	ext_debug("blocks %u/%u requested for inode %lu\n",
3150 			iblock, max_blocks, inode->i_ino);
3151 
3152 	/* check in cache */
3153 	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
3154 	if (cache_type) {
3155 		if (cache_type == EXT4_EXT_CACHE_GAP) {
3156 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3157 				/*
3158 				 * block isn't allocated yet and
3159 				 * user doesn't want to allocate it
3160 				 */
3161 				goto out2;
3162 			}
3163 			/* we should allocate requested block */
3164 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
3165 			/* block is already allocated */
3166 			newblock = iblock
3167 				   - le32_to_cpu(newex.ee_block)
3168 				   + ext_pblock(&newex);
3169 			/* number of remaining blocks in the extent */
3170 			allocated = ext4_ext_get_actual_len(&newex) -
3171 					(iblock - le32_to_cpu(newex.ee_block));
3172 			goto out;
3173 		} else {
3174 			BUG();
3175 		}
3176 	}
3177 
3178 	/* find extent for this block */
3179 	path = ext4_ext_find_extent(inode, iblock, NULL);
3180 	if (IS_ERR(path)) {
3181 		err = PTR_ERR(path);
3182 		path = NULL;
3183 		goto out2;
3184 	}
3185 
3186 	depth = ext_depth(inode);
3187 
3188 	/*
3189 	 * consistent leaf must not be empty;
3190 	 * this situation is possible, though, _during_ tree modification;
3191 	 * this is why assert can't be put in ext4_ext_find_extent()
3192 	 */
3193 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
3194 	eh = path[depth].p_hdr;
3195 
3196 	ex = path[depth].p_ext;
3197 	if (ex) {
3198 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3199 		ext4_fsblk_t ee_start = ext_pblock(ex);
3200 		unsigned short ee_len;
3201 
3202 		/*
3203 		 * Uninitialized extents are treated as holes, except that
3204 		 * we split out initialized portions during a write.
3205 		 */
3206 		ee_len = ext4_ext_get_actual_len(ex);
3207 		/* if found extent covers block, simply return it */
3208 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
3209 			newblock = iblock - ee_block + ee_start;
3210 			/* number of remaining blocks in the extent */
3211 			allocated = ee_len - (iblock - ee_block);
3212 			ext_debug("%u fit into %u:%d -> %llu\n", iblock,
3213 					ee_block, ee_len, newblock);
3214 
3215 			/* Do not put uninitialized extent in the cache */
3216 			if (!ext4_ext_is_uninitialized(ex)) {
3217 				ext4_ext_put_in_cache(inode, ee_block,
3218 							ee_len, ee_start,
3219 							EXT4_EXT_CACHE_EXTENT);
3220 				goto out;
3221 			}
3222 			ret = ext4_ext_handle_uninitialized_extents(handle,
3223 					inode, iblock, max_blocks, path,
3224 					flags, allocated, bh_result, newblock);
3225 			return ret;
3226 		}
3227 	}
3228 
3229 	/*
3230 	 * requested block isn't allocated yet;
3231 	 * we couldn't try to create block if create flag is zero
3232 	 */
3233 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3234 		/*
3235 		 * put just found gap into cache to speed up
3236 		 * subsequent requests
3237 		 */
3238 		ext4_ext_put_gap_in_cache(inode, path, iblock);
3239 		goto out2;
3240 	}
3241 	/*
3242 	 * Okay, we need to do block allocation.
3243 	 */
3244 
3245 	/* find neighbour allocated blocks */
3246 	ar.lleft = iblock;
3247 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3248 	if (err)
3249 		goto out2;
3250 	ar.lright = iblock;
3251 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3252 	if (err)
3253 		goto out2;
3254 
3255 	/*
3256 	 * See if request is beyond maximum number of blocks we can have in
3257 	 * a single extent. For an initialized extent this limit is
3258 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3259 	 * EXT_UNINIT_MAX_LEN.
3260 	 */
3261 	if (max_blocks > EXT_INIT_MAX_LEN &&
3262 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3263 		max_blocks = EXT_INIT_MAX_LEN;
3264 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
3265 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3266 		max_blocks = EXT_UNINIT_MAX_LEN;
3267 
3268 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
3269 	newex.ee_block = cpu_to_le32(iblock);
3270 	newex.ee_len = cpu_to_le16(max_blocks);
3271 	err = ext4_ext_check_overlap(inode, &newex, path);
3272 	if (err)
3273 		allocated = ext4_ext_get_actual_len(&newex);
3274 	else
3275 		allocated = max_blocks;
3276 
3277 	/* allocate new block */
3278 	ar.inode = inode;
3279 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
3280 	ar.logical = iblock;
3281 	ar.len = allocated;
3282 	if (S_ISREG(inode->i_mode))
3283 		ar.flags = EXT4_MB_HINT_DATA;
3284 	else
3285 		/* disable in-core preallocation for non-regular files */
3286 		ar.flags = 0;
3287 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3288 	if (!newblock)
3289 		goto out2;
3290 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3291 		  ar.goal, newblock, allocated);
3292 
3293 	/* try to insert new extent into found leaf and return */
3294 	ext4_ext_store_pblock(&newex, newblock);
3295 	newex.ee_len = cpu_to_le16(ar.len);
3296 	/* Mark uninitialized */
3297 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3298 		ext4_ext_mark_uninitialized(&newex);
3299 		/*
3300 		 * io_end structure was created for every async
3301 		 * direct IO write to the middle of the file.
3302 		 * To avoid unecessary convertion for every aio dio rewrite
3303 		 * to the mid of file, here we flag the IO that is really
3304 		 * need the convertion.
3305 		 * For non asycn direct IO case, flag the inode state
3306 		 * that we need to perform convertion when IO is done.
3307 		 */
3308 		if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3309 			if (io)
3310 				io->flag = DIO_AIO_UNWRITTEN;
3311 			else
3312 				EXT4_I(inode)->i_state |=
3313 					EXT4_STATE_DIO_UNWRITTEN;;
3314 		}
3315 	}
3316 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3317 	if (err) {
3318 		/* free data blocks we just allocated */
3319 		/* not a good idea to call discard here directly,
3320 		 * but otherwise we'd need to call it every free() */
3321 		ext4_discard_preallocations(inode);
3322 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
3323 					ext4_ext_get_actual_len(&newex), 0);
3324 		goto out2;
3325 	}
3326 
3327 	/* previous routine could use block we allocated */
3328 	newblock = ext_pblock(&newex);
3329 	allocated = ext4_ext_get_actual_len(&newex);
3330 	set_buffer_new(bh_result);
3331 
3332 	/* Cache only when it is _not_ an uninitialized extent */
3333 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
3334 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
3335 						EXT4_EXT_CACHE_EXTENT);
3336 out:
3337 	if (allocated > max_blocks)
3338 		allocated = max_blocks;
3339 	ext4_ext_show_leaf(inode, path);
3340 	set_buffer_mapped(bh_result);
3341 	bh_result->b_bdev = inode->i_sb->s_bdev;
3342 	bh_result->b_blocknr = newblock;
3343 out2:
3344 	if (path) {
3345 		ext4_ext_drop_refs(path);
3346 		kfree(path);
3347 	}
3348 	return err ? err : allocated;
3349 }
3350 
3351 void ext4_ext_truncate(struct inode *inode)
3352 {
3353 	struct address_space *mapping = inode->i_mapping;
3354 	struct super_block *sb = inode->i_sb;
3355 	ext4_lblk_t last_block;
3356 	handle_t *handle;
3357 	int err = 0;
3358 
3359 	/*
3360 	 * probably first extent we're gonna free will be last in block
3361 	 */
3362 	err = ext4_writepage_trans_blocks(inode);
3363 	handle = ext4_journal_start(inode, err);
3364 	if (IS_ERR(handle))
3365 		return;
3366 
3367 	if (inode->i_size & (sb->s_blocksize - 1))
3368 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3369 
3370 	if (ext4_orphan_add(handle, inode))
3371 		goto out_stop;
3372 
3373 	down_write(&EXT4_I(inode)->i_data_sem);
3374 	ext4_ext_invalidate_cache(inode);
3375 
3376 	ext4_discard_preallocations(inode);
3377 
3378 	/*
3379 	 * TODO: optimization is possible here.
3380 	 * Probably we need not scan at all,
3381 	 * because page truncation is enough.
3382 	 */
3383 
3384 	/* we have to know where to truncate from in crash case */
3385 	EXT4_I(inode)->i_disksize = inode->i_size;
3386 	ext4_mark_inode_dirty(handle, inode);
3387 
3388 	last_block = (inode->i_size + sb->s_blocksize - 1)
3389 			>> EXT4_BLOCK_SIZE_BITS(sb);
3390 	err = ext4_ext_remove_space(inode, last_block);
3391 
3392 	/* In a multi-transaction truncate, we only make the final
3393 	 * transaction synchronous.
3394 	 */
3395 	if (IS_SYNC(inode))
3396 		ext4_handle_sync(handle);
3397 
3398 out_stop:
3399 	up_write(&EXT4_I(inode)->i_data_sem);
3400 	/*
3401 	 * If this was a simple ftruncate() and the file will remain alive,
3402 	 * then we need to clear up the orphan record which we created above.
3403 	 * However, if this was a real unlink then we were called by
3404 	 * ext4_delete_inode(), and we allow that function to clean up the
3405 	 * orphan info for us.
3406 	 */
3407 	if (inode->i_nlink)
3408 		ext4_orphan_del(handle, inode);
3409 
3410 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3411 	ext4_mark_inode_dirty(handle, inode);
3412 	ext4_journal_stop(handle);
3413 }
3414 
3415 static void ext4_falloc_update_inode(struct inode *inode,
3416 				int mode, loff_t new_size, int update_ctime)
3417 {
3418 	struct timespec now;
3419 
3420 	if (update_ctime) {
3421 		now = current_fs_time(inode->i_sb);
3422 		if (!timespec_equal(&inode->i_ctime, &now))
3423 			inode->i_ctime = now;
3424 	}
3425 	/*
3426 	 * Update only when preallocation was requested beyond
3427 	 * the file size.
3428 	 */
3429 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3430 		if (new_size > i_size_read(inode))
3431 			i_size_write(inode, new_size);
3432 		if (new_size > EXT4_I(inode)->i_disksize)
3433 			ext4_update_i_disksize(inode, new_size);
3434 	}
3435 
3436 }
3437 
3438 /*
3439  * preallocate space for a file. This implements ext4's fallocate inode
3440  * operation, which gets called from sys_fallocate system call.
3441  * For block-mapped files, posix_fallocate should fall back to the method
3442  * of writing zeroes to the required new blocks (the same behavior which is
3443  * expected for file systems which do not support fallocate() system call).
3444  */
3445 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3446 {
3447 	handle_t *handle;
3448 	ext4_lblk_t block;
3449 	loff_t new_size;
3450 	unsigned int max_blocks;
3451 	int ret = 0;
3452 	int ret2 = 0;
3453 	int retries = 0;
3454 	struct buffer_head map_bh;
3455 	unsigned int credits, blkbits = inode->i_blkbits;
3456 
3457 	/*
3458 	 * currently supporting (pre)allocate mode for extent-based
3459 	 * files _only_
3460 	 */
3461 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3462 		return -EOPNOTSUPP;
3463 
3464 	/* preallocation to directories is currently not supported */
3465 	if (S_ISDIR(inode->i_mode))
3466 		return -ENODEV;
3467 
3468 	block = offset >> blkbits;
3469 	/*
3470 	 * We can't just convert len to max_blocks because
3471 	 * If blocksize = 4096 offset = 3072 and len = 2048
3472 	 */
3473 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3474 							- block;
3475 	/*
3476 	 * credits to insert 1 extent into extent tree
3477 	 */
3478 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3479 	mutex_lock(&inode->i_mutex);
3480 retry:
3481 	while (ret >= 0 && ret < max_blocks) {
3482 		block = block + ret;
3483 		max_blocks = max_blocks - ret;
3484 		handle = ext4_journal_start(inode, credits);
3485 		if (IS_ERR(handle)) {
3486 			ret = PTR_ERR(handle);
3487 			break;
3488 		}
3489 		map_bh.b_state = 0;
3490 		ret = ext4_get_blocks(handle, inode, block,
3491 				      max_blocks, &map_bh,
3492 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3493 		if (ret <= 0) {
3494 #ifdef EXT4FS_DEBUG
3495 			WARN_ON(ret <= 0);
3496 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3497 				    "returned error inode#%lu, block=%u, "
3498 				    "max_blocks=%u", __func__,
3499 				    inode->i_ino, block, max_blocks);
3500 #endif
3501 			ext4_mark_inode_dirty(handle, inode);
3502 			ret2 = ext4_journal_stop(handle);
3503 			break;
3504 		}
3505 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3506 						blkbits) >> blkbits))
3507 			new_size = offset + len;
3508 		else
3509 			new_size = (block + ret) << blkbits;
3510 
3511 		ext4_falloc_update_inode(inode, mode, new_size,
3512 						buffer_new(&map_bh));
3513 		ext4_mark_inode_dirty(handle, inode);
3514 		ret2 = ext4_journal_stop(handle);
3515 		if (ret2)
3516 			break;
3517 	}
3518 	if (ret == -ENOSPC &&
3519 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3520 		ret = 0;
3521 		goto retry;
3522 	}
3523 	mutex_unlock(&inode->i_mutex);
3524 	return ret > 0 ? ret2 : ret;
3525 }
3526 
3527 /*
3528  * This function convert a range of blocks to written extents
3529  * The caller of this function will pass the start offset and the size.
3530  * all unwritten extents within this range will be converted to
3531  * written extents.
3532  *
3533  * This function is called from the direct IO end io call back
3534  * function, to convert the fallocated extents after IO is completed.
3535  * Returns 0 on success.
3536  */
3537 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3538 				    loff_t len)
3539 {
3540 	handle_t *handle;
3541 	ext4_lblk_t block;
3542 	unsigned int max_blocks;
3543 	int ret = 0;
3544 	int ret2 = 0;
3545 	struct buffer_head map_bh;
3546 	unsigned int credits, blkbits = inode->i_blkbits;
3547 
3548 	block = offset >> blkbits;
3549 	/*
3550 	 * We can't just convert len to max_blocks because
3551 	 * If blocksize = 4096 offset = 3072 and len = 2048
3552 	 */
3553 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3554 							- block;
3555 	/*
3556 	 * credits to insert 1 extent into extent tree
3557 	 */
3558 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3559 	while (ret >= 0 && ret < max_blocks) {
3560 		block = block + ret;
3561 		max_blocks = max_blocks - ret;
3562 		handle = ext4_journal_start(inode, credits);
3563 		if (IS_ERR(handle)) {
3564 			ret = PTR_ERR(handle);
3565 			break;
3566 		}
3567 		map_bh.b_state = 0;
3568 		ret = ext4_get_blocks(handle, inode, block,
3569 				      max_blocks, &map_bh,
3570 				      EXT4_GET_BLOCKS_DIO_CONVERT_EXT);
3571 		if (ret <= 0) {
3572 			WARN_ON(ret <= 0);
3573 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3574 				    "returned error inode#%lu, block=%u, "
3575 				    "max_blocks=%u", __func__,
3576 				    inode->i_ino, block, max_blocks);
3577 		}
3578 		ext4_mark_inode_dirty(handle, inode);
3579 		ret2 = ext4_journal_stop(handle);
3580 		if (ret <= 0 || ret2 )
3581 			break;
3582 	}
3583 	return ret > 0 ? ret2 : ret;
3584 }
3585 /*
3586  * Callback function called for each extent to gather FIEMAP information.
3587  */
3588 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3589 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3590 		       void *data)
3591 {
3592 	struct fiemap_extent_info *fieinfo = data;
3593 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3594 	__u64	logical;
3595 	__u64	physical;
3596 	__u64	length;
3597 	__u32	flags = 0;
3598 	int	error;
3599 
3600 	logical =  (__u64)newex->ec_block << blksize_bits;
3601 
3602 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3603 		pgoff_t offset;
3604 		struct page *page;
3605 		struct buffer_head *bh = NULL;
3606 
3607 		offset = logical >> PAGE_SHIFT;
3608 		page = find_get_page(inode->i_mapping, offset);
3609 		if (!page || !page_has_buffers(page))
3610 			return EXT_CONTINUE;
3611 
3612 		bh = page_buffers(page);
3613 
3614 		if (!bh)
3615 			return EXT_CONTINUE;
3616 
3617 		if (buffer_delay(bh)) {
3618 			flags |= FIEMAP_EXTENT_DELALLOC;
3619 			page_cache_release(page);
3620 		} else {
3621 			page_cache_release(page);
3622 			return EXT_CONTINUE;
3623 		}
3624 	}
3625 
3626 	physical = (__u64)newex->ec_start << blksize_bits;
3627 	length =   (__u64)newex->ec_len << blksize_bits;
3628 
3629 	if (ex && ext4_ext_is_uninitialized(ex))
3630 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3631 
3632 	/*
3633 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3634 	 *
3635 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3636 	 * this also indicates no more allocated blocks.
3637 	 *
3638 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3639 	 */
3640 	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3641 	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3642 		loff_t size = i_size_read(inode);
3643 		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3644 
3645 		flags |= FIEMAP_EXTENT_LAST;
3646 		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3647 		    logical+length > size)
3648 			length = (size - logical + bs - 1) & ~(bs-1);
3649 	}
3650 
3651 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3652 					length, flags);
3653 	if (error < 0)
3654 		return error;
3655 	if (error == 1)
3656 		return EXT_BREAK;
3657 
3658 	return EXT_CONTINUE;
3659 }
3660 
3661 /* fiemap flags we can handle specified here */
3662 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3663 
3664 static int ext4_xattr_fiemap(struct inode *inode,
3665 				struct fiemap_extent_info *fieinfo)
3666 {
3667 	__u64 physical = 0;
3668 	__u64 length;
3669 	__u32 flags = FIEMAP_EXTENT_LAST;
3670 	int blockbits = inode->i_sb->s_blocksize_bits;
3671 	int error = 0;
3672 
3673 	/* in-inode? */
3674 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3675 		struct ext4_iloc iloc;
3676 		int offset;	/* offset of xattr in inode */
3677 
3678 		error = ext4_get_inode_loc(inode, &iloc);
3679 		if (error)
3680 			return error;
3681 		physical = iloc.bh->b_blocknr << blockbits;
3682 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3683 				EXT4_I(inode)->i_extra_isize;
3684 		physical += offset;
3685 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3686 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3687 	} else { /* external block */
3688 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3689 		length = inode->i_sb->s_blocksize;
3690 	}
3691 
3692 	if (physical)
3693 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3694 						length, flags);
3695 	return (error < 0 ? error : 0);
3696 }
3697 
3698 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3699 		__u64 start, __u64 len)
3700 {
3701 	ext4_lblk_t start_blk;
3702 	ext4_lblk_t len_blks;
3703 	int error = 0;
3704 
3705 	/* fallback to generic here if not in extents fmt */
3706 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3707 		return generic_block_fiemap(inode, fieinfo, start, len,
3708 			ext4_get_block);
3709 
3710 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3711 		return -EBADR;
3712 
3713 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3714 		error = ext4_xattr_fiemap(inode, fieinfo);
3715 	} else {
3716 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3717 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3718 
3719 		/*
3720 		 * Walk the extent tree gathering extent information.
3721 		 * ext4_ext_fiemap_cb will push extents back to user.
3722 		 */
3723 		down_read(&EXT4_I(inode)->i_data_sem);
3724 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3725 					  ext4_ext_fiemap_cb, fieinfo);
3726 		up_read(&EXT4_I(inode)->i_data_sem);
3727 	}
3728 
3729 	return error;
3730 }
3731 
3732