1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include "ext4_jbd2.h" 32 #include "ext4_extents.h" 33 #include "xattr.h" 34 35 #include <trace/events/ext4.h> 36 37 /* 38 * used by extent splitting. 39 */ 40 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 41 due to ENOSPC */ 42 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 43 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 44 45 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 46 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 47 48 static __le32 ext4_extent_block_csum(struct inode *inode, 49 struct ext4_extent_header *eh) 50 { 51 struct ext4_inode_info *ei = EXT4_I(inode); 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u32 csum; 54 55 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 56 EXT4_EXTENT_TAIL_OFFSET(eh)); 57 return cpu_to_le32(csum); 58 } 59 60 static int ext4_extent_block_csum_verify(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_extent_tail *et; 64 65 if (!ext4_has_metadata_csum(inode->i_sb)) 66 return 1; 67 68 et = find_ext4_extent_tail(eh); 69 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 70 return 0; 71 return 1; 72 } 73 74 static void ext4_extent_block_csum_set(struct inode *inode, 75 struct ext4_extent_header *eh) 76 { 77 struct ext4_extent_tail *et; 78 79 if (!ext4_has_metadata_csum(inode->i_sb)) 80 return; 81 82 et = find_ext4_extent_tail(eh); 83 et->et_checksum = ext4_extent_block_csum(inode, eh); 84 } 85 86 static int ext4_split_extent(handle_t *handle, 87 struct inode *inode, 88 struct ext4_ext_path **ppath, 89 struct ext4_map_blocks *map, 90 int split_flag, 91 int flags); 92 93 static int ext4_split_extent_at(handle_t *handle, 94 struct inode *inode, 95 struct ext4_ext_path **ppath, 96 ext4_lblk_t split, 97 int split_flag, 98 int flags); 99 100 static int ext4_find_delayed_extent(struct inode *inode, 101 struct extent_status *newes); 102 103 static int ext4_ext_truncate_extend_restart(handle_t *handle, 104 struct inode *inode, 105 int needed) 106 { 107 int err; 108 109 if (!ext4_handle_valid(handle)) 110 return 0; 111 if (handle->h_buffer_credits >= needed) 112 return 0; 113 /* 114 * If we need to extend the journal get a few extra blocks 115 * while we're at it for efficiency's sake. 116 */ 117 needed += 3; 118 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits); 119 if (err <= 0) 120 return err; 121 err = ext4_truncate_restart_trans(handle, inode, needed); 122 if (err == 0) 123 err = -EAGAIN; 124 125 return err; 126 } 127 128 /* 129 * could return: 130 * - EROFS 131 * - ENOMEM 132 */ 133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 134 struct ext4_ext_path *path) 135 { 136 if (path->p_bh) { 137 /* path points to block */ 138 BUFFER_TRACE(path->p_bh, "get_write_access"); 139 return ext4_journal_get_write_access(handle, path->p_bh); 140 } 141 /* path points to leaf/index in inode body */ 142 /* we use in-core data, no need to protect them */ 143 return 0; 144 } 145 146 /* 147 * could return: 148 * - EROFS 149 * - ENOMEM 150 * - EIO 151 */ 152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 153 struct inode *inode, struct ext4_ext_path *path) 154 { 155 int err; 156 157 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 158 if (path->p_bh) { 159 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 160 /* path points to block */ 161 err = __ext4_handle_dirty_metadata(where, line, handle, 162 inode, path->p_bh); 163 } else { 164 /* path points to leaf/index in inode body */ 165 err = ext4_mark_inode_dirty(handle, inode); 166 } 167 return err; 168 } 169 170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 171 struct ext4_ext_path *path, 172 ext4_lblk_t block) 173 { 174 if (path) { 175 int depth = path->p_depth; 176 struct ext4_extent *ex; 177 178 /* 179 * Try to predict block placement assuming that we are 180 * filling in a file which will eventually be 181 * non-sparse --- i.e., in the case of libbfd writing 182 * an ELF object sections out-of-order but in a way 183 * the eventually results in a contiguous object or 184 * executable file, or some database extending a table 185 * space file. However, this is actually somewhat 186 * non-ideal if we are writing a sparse file such as 187 * qemu or KVM writing a raw image file that is going 188 * to stay fairly sparse, since it will end up 189 * fragmenting the file system's free space. Maybe we 190 * should have some hueristics or some way to allow 191 * userspace to pass a hint to file system, 192 * especially if the latter case turns out to be 193 * common. 194 */ 195 ex = path[depth].p_ext; 196 if (ex) { 197 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 198 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 199 200 if (block > ext_block) 201 return ext_pblk + (block - ext_block); 202 else 203 return ext_pblk - (ext_block - block); 204 } 205 206 /* it looks like index is empty; 207 * try to find starting block from index itself */ 208 if (path[depth].p_bh) 209 return path[depth].p_bh->b_blocknr; 210 } 211 212 /* OK. use inode's group */ 213 return ext4_inode_to_goal_block(inode); 214 } 215 216 /* 217 * Allocation for a meta data block 218 */ 219 static ext4_fsblk_t 220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 221 struct ext4_ext_path *path, 222 struct ext4_extent *ex, int *err, unsigned int flags) 223 { 224 ext4_fsblk_t goal, newblock; 225 226 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 227 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 228 NULL, err); 229 return newblock; 230 } 231 232 static inline int ext4_ext_space_block(struct inode *inode, int check) 233 { 234 int size; 235 236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 237 / sizeof(struct ext4_extent); 238 #ifdef AGGRESSIVE_TEST 239 if (!check && size > 6) 240 size = 6; 241 #endif 242 return size; 243 } 244 245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 246 { 247 int size; 248 249 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 250 / sizeof(struct ext4_extent_idx); 251 #ifdef AGGRESSIVE_TEST 252 if (!check && size > 5) 253 size = 5; 254 #endif 255 return size; 256 } 257 258 static inline int ext4_ext_space_root(struct inode *inode, int check) 259 { 260 int size; 261 262 size = sizeof(EXT4_I(inode)->i_data); 263 size -= sizeof(struct ext4_extent_header); 264 size /= sizeof(struct ext4_extent); 265 #ifdef AGGRESSIVE_TEST 266 if (!check && size > 3) 267 size = 3; 268 #endif 269 return size; 270 } 271 272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 273 { 274 int size; 275 276 size = sizeof(EXT4_I(inode)->i_data); 277 size -= sizeof(struct ext4_extent_header); 278 size /= sizeof(struct ext4_extent_idx); 279 #ifdef AGGRESSIVE_TEST 280 if (!check && size > 4) 281 size = 4; 282 #endif 283 return size; 284 } 285 286 static inline int 287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 288 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 289 int nofail) 290 { 291 struct ext4_ext_path *path = *ppath; 292 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 293 294 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 295 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 296 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 297 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 298 } 299 300 /* 301 * Calculate the number of metadata blocks needed 302 * to allocate @blocks 303 * Worse case is one block per extent 304 */ 305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 306 { 307 struct ext4_inode_info *ei = EXT4_I(inode); 308 int idxs; 309 310 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 311 / sizeof(struct ext4_extent_idx)); 312 313 /* 314 * If the new delayed allocation block is contiguous with the 315 * previous da block, it can share index blocks with the 316 * previous block, so we only need to allocate a new index 317 * block every idxs leaf blocks. At ldxs**2 blocks, we need 318 * an additional index block, and at ldxs**3 blocks, yet 319 * another index blocks. 320 */ 321 if (ei->i_da_metadata_calc_len && 322 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 323 int num = 0; 324 325 if ((ei->i_da_metadata_calc_len % idxs) == 0) 326 num++; 327 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 328 num++; 329 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 330 num++; 331 ei->i_da_metadata_calc_len = 0; 332 } else 333 ei->i_da_metadata_calc_len++; 334 ei->i_da_metadata_calc_last_lblock++; 335 return num; 336 } 337 338 /* 339 * In the worst case we need a new set of index blocks at 340 * every level of the inode's extent tree. 341 */ 342 ei->i_da_metadata_calc_len = 1; 343 ei->i_da_metadata_calc_last_lblock = lblock; 344 return ext_depth(inode) + 1; 345 } 346 347 static int 348 ext4_ext_max_entries(struct inode *inode, int depth) 349 { 350 int max; 351 352 if (depth == ext_depth(inode)) { 353 if (depth == 0) 354 max = ext4_ext_space_root(inode, 1); 355 else 356 max = ext4_ext_space_root_idx(inode, 1); 357 } else { 358 if (depth == 0) 359 max = ext4_ext_space_block(inode, 1); 360 else 361 max = ext4_ext_space_block_idx(inode, 1); 362 } 363 364 return max; 365 } 366 367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 368 { 369 ext4_fsblk_t block = ext4_ext_pblock(ext); 370 int len = ext4_ext_get_actual_len(ext); 371 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 372 373 /* 374 * We allow neither: 375 * - zero length 376 * - overflow/wrap-around 377 */ 378 if (lblock + len <= lblock) 379 return 0; 380 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 381 } 382 383 static int ext4_valid_extent_idx(struct inode *inode, 384 struct ext4_extent_idx *ext_idx) 385 { 386 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 387 388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 389 } 390 391 static int ext4_valid_extent_entries(struct inode *inode, 392 struct ext4_extent_header *eh, 393 int depth) 394 { 395 unsigned short entries; 396 if (eh->eh_entries == 0) 397 return 1; 398 399 entries = le16_to_cpu(eh->eh_entries); 400 401 if (depth == 0) { 402 /* leaf entries */ 403 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 404 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 405 ext4_fsblk_t pblock = 0; 406 ext4_lblk_t lblock = 0; 407 ext4_lblk_t prev = 0; 408 int len = 0; 409 while (entries) { 410 if (!ext4_valid_extent(inode, ext)) 411 return 0; 412 413 /* Check for overlapping extents */ 414 lblock = le32_to_cpu(ext->ee_block); 415 len = ext4_ext_get_actual_len(ext); 416 if ((lblock <= prev) && prev) { 417 pblock = ext4_ext_pblock(ext); 418 es->s_last_error_block = cpu_to_le64(pblock); 419 return 0; 420 } 421 ext++; 422 entries--; 423 prev = lblock + len - 1; 424 } 425 } else { 426 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 427 while (entries) { 428 if (!ext4_valid_extent_idx(inode, ext_idx)) 429 return 0; 430 ext_idx++; 431 entries--; 432 } 433 } 434 return 1; 435 } 436 437 static int __ext4_ext_check(const char *function, unsigned int line, 438 struct inode *inode, struct ext4_extent_header *eh, 439 int depth, ext4_fsblk_t pblk) 440 { 441 const char *error_msg; 442 int max = 0, err = -EFSCORRUPTED; 443 444 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 445 error_msg = "invalid magic"; 446 goto corrupted; 447 } 448 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 449 error_msg = "unexpected eh_depth"; 450 goto corrupted; 451 } 452 if (unlikely(eh->eh_max == 0)) { 453 error_msg = "invalid eh_max"; 454 goto corrupted; 455 } 456 max = ext4_ext_max_entries(inode, depth); 457 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 458 error_msg = "too large eh_max"; 459 goto corrupted; 460 } 461 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 462 error_msg = "invalid eh_entries"; 463 goto corrupted; 464 } 465 if (!ext4_valid_extent_entries(inode, eh, depth)) { 466 error_msg = "invalid extent entries"; 467 goto corrupted; 468 } 469 if (unlikely(depth > 32)) { 470 error_msg = "too large eh_depth"; 471 goto corrupted; 472 } 473 /* Verify checksum on non-root extent tree nodes */ 474 if (ext_depth(inode) != depth && 475 !ext4_extent_block_csum_verify(inode, eh)) { 476 error_msg = "extent tree corrupted"; 477 err = -EFSBADCRC; 478 goto corrupted; 479 } 480 return 0; 481 482 corrupted: 483 ext4_error_inode(inode, function, line, 0, 484 "pblk %llu bad header/extent: %s - magic %x, " 485 "entries %u, max %u(%u), depth %u(%u)", 486 (unsigned long long) pblk, error_msg, 487 le16_to_cpu(eh->eh_magic), 488 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 489 max, le16_to_cpu(eh->eh_depth), depth); 490 return err; 491 } 492 493 #define ext4_ext_check(inode, eh, depth, pblk) \ 494 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 495 496 int ext4_ext_check_inode(struct inode *inode) 497 { 498 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 499 } 500 501 static struct buffer_head * 502 __read_extent_tree_block(const char *function, unsigned int line, 503 struct inode *inode, ext4_fsblk_t pblk, int depth, 504 int flags) 505 { 506 struct buffer_head *bh; 507 int err; 508 509 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 510 if (unlikely(!bh)) 511 return ERR_PTR(-ENOMEM); 512 513 if (!bh_uptodate_or_lock(bh)) { 514 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 515 err = bh_submit_read(bh); 516 if (err < 0) 517 goto errout; 518 } 519 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 520 return bh; 521 err = __ext4_ext_check(function, line, inode, 522 ext_block_hdr(bh), depth, pblk); 523 if (err) 524 goto errout; 525 set_buffer_verified(bh); 526 /* 527 * If this is a leaf block, cache all of its entries 528 */ 529 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 530 struct ext4_extent_header *eh = ext_block_hdr(bh); 531 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 532 ext4_lblk_t prev = 0; 533 int i; 534 535 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 536 unsigned int status = EXTENT_STATUS_WRITTEN; 537 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 538 int len = ext4_ext_get_actual_len(ex); 539 540 if (prev && (prev != lblk)) 541 ext4_es_cache_extent(inode, prev, 542 lblk - prev, ~0, 543 EXTENT_STATUS_HOLE); 544 545 if (ext4_ext_is_unwritten(ex)) 546 status = EXTENT_STATUS_UNWRITTEN; 547 ext4_es_cache_extent(inode, lblk, len, 548 ext4_ext_pblock(ex), status); 549 prev = lblk + len; 550 } 551 } 552 return bh; 553 errout: 554 put_bh(bh); 555 return ERR_PTR(err); 556 557 } 558 559 #define read_extent_tree_block(inode, pblk, depth, flags) \ 560 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 561 (depth), (flags)) 562 563 /* 564 * This function is called to cache a file's extent information in the 565 * extent status tree 566 */ 567 int ext4_ext_precache(struct inode *inode) 568 { 569 struct ext4_inode_info *ei = EXT4_I(inode); 570 struct ext4_ext_path *path = NULL; 571 struct buffer_head *bh; 572 int i = 0, depth, ret = 0; 573 574 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 575 return 0; /* not an extent-mapped inode */ 576 577 down_read(&ei->i_data_sem); 578 depth = ext_depth(inode); 579 580 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 581 GFP_NOFS); 582 if (path == NULL) { 583 up_read(&ei->i_data_sem); 584 return -ENOMEM; 585 } 586 587 /* Don't cache anything if there are no external extent blocks */ 588 if (depth == 0) 589 goto out; 590 path[0].p_hdr = ext_inode_hdr(inode); 591 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 592 if (ret) 593 goto out; 594 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 595 while (i >= 0) { 596 /* 597 * If this is a leaf block or we've reached the end of 598 * the index block, go up 599 */ 600 if ((i == depth) || 601 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 602 brelse(path[i].p_bh); 603 path[i].p_bh = NULL; 604 i--; 605 continue; 606 } 607 bh = read_extent_tree_block(inode, 608 ext4_idx_pblock(path[i].p_idx++), 609 depth - i - 1, 610 EXT4_EX_FORCE_CACHE); 611 if (IS_ERR(bh)) { 612 ret = PTR_ERR(bh); 613 break; 614 } 615 i++; 616 path[i].p_bh = bh; 617 path[i].p_hdr = ext_block_hdr(bh); 618 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 619 } 620 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 621 out: 622 up_read(&ei->i_data_sem); 623 ext4_ext_drop_refs(path); 624 kfree(path); 625 return ret; 626 } 627 628 #ifdef EXT_DEBUG 629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 630 { 631 int k, l = path->p_depth; 632 633 ext_debug("path:"); 634 for (k = 0; k <= l; k++, path++) { 635 if (path->p_idx) { 636 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 637 ext4_idx_pblock(path->p_idx)); 638 } else if (path->p_ext) { 639 ext_debug(" %d:[%d]%d:%llu ", 640 le32_to_cpu(path->p_ext->ee_block), 641 ext4_ext_is_unwritten(path->p_ext), 642 ext4_ext_get_actual_len(path->p_ext), 643 ext4_ext_pblock(path->p_ext)); 644 } else 645 ext_debug(" []"); 646 } 647 ext_debug("\n"); 648 } 649 650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 651 { 652 int depth = ext_depth(inode); 653 struct ext4_extent_header *eh; 654 struct ext4_extent *ex; 655 int i; 656 657 if (!path) 658 return; 659 660 eh = path[depth].p_hdr; 661 ex = EXT_FIRST_EXTENT(eh); 662 663 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 664 665 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 666 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 667 ext4_ext_is_unwritten(ex), 668 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 669 } 670 ext_debug("\n"); 671 } 672 673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 674 ext4_fsblk_t newblock, int level) 675 { 676 int depth = ext_depth(inode); 677 struct ext4_extent *ex; 678 679 if (depth != level) { 680 struct ext4_extent_idx *idx; 681 idx = path[level].p_idx; 682 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 683 ext_debug("%d: move %d:%llu in new index %llu\n", level, 684 le32_to_cpu(idx->ei_block), 685 ext4_idx_pblock(idx), 686 newblock); 687 idx++; 688 } 689 690 return; 691 } 692 693 ex = path[depth].p_ext; 694 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 695 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 696 le32_to_cpu(ex->ee_block), 697 ext4_ext_pblock(ex), 698 ext4_ext_is_unwritten(ex), 699 ext4_ext_get_actual_len(ex), 700 newblock); 701 ex++; 702 } 703 } 704 705 #else 706 #define ext4_ext_show_path(inode, path) 707 #define ext4_ext_show_leaf(inode, path) 708 #define ext4_ext_show_move(inode, path, newblock, level) 709 #endif 710 711 void ext4_ext_drop_refs(struct ext4_ext_path *path) 712 { 713 int depth, i; 714 715 if (!path) 716 return; 717 depth = path->p_depth; 718 for (i = 0; i <= depth; i++, path++) 719 if (path->p_bh) { 720 brelse(path->p_bh); 721 path->p_bh = NULL; 722 } 723 } 724 725 /* 726 * ext4_ext_binsearch_idx: 727 * binary search for the closest index of the given block 728 * the header must be checked before calling this 729 */ 730 static void 731 ext4_ext_binsearch_idx(struct inode *inode, 732 struct ext4_ext_path *path, ext4_lblk_t block) 733 { 734 struct ext4_extent_header *eh = path->p_hdr; 735 struct ext4_extent_idx *r, *l, *m; 736 737 738 ext_debug("binsearch for %u(idx): ", block); 739 740 l = EXT_FIRST_INDEX(eh) + 1; 741 r = EXT_LAST_INDEX(eh); 742 while (l <= r) { 743 m = l + (r - l) / 2; 744 if (block < le32_to_cpu(m->ei_block)) 745 r = m - 1; 746 else 747 l = m + 1; 748 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 749 m, le32_to_cpu(m->ei_block), 750 r, le32_to_cpu(r->ei_block)); 751 } 752 753 path->p_idx = l - 1; 754 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 755 ext4_idx_pblock(path->p_idx)); 756 757 #ifdef CHECK_BINSEARCH 758 { 759 struct ext4_extent_idx *chix, *ix; 760 int k; 761 762 chix = ix = EXT_FIRST_INDEX(eh); 763 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 764 if (k != 0 && 765 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 766 printk(KERN_DEBUG "k=%d, ix=0x%p, " 767 "first=0x%p\n", k, 768 ix, EXT_FIRST_INDEX(eh)); 769 printk(KERN_DEBUG "%u <= %u\n", 770 le32_to_cpu(ix->ei_block), 771 le32_to_cpu(ix[-1].ei_block)); 772 } 773 BUG_ON(k && le32_to_cpu(ix->ei_block) 774 <= le32_to_cpu(ix[-1].ei_block)); 775 if (block < le32_to_cpu(ix->ei_block)) 776 break; 777 chix = ix; 778 } 779 BUG_ON(chix != path->p_idx); 780 } 781 #endif 782 783 } 784 785 /* 786 * ext4_ext_binsearch: 787 * binary search for closest extent of the given block 788 * the header must be checked before calling this 789 */ 790 static void 791 ext4_ext_binsearch(struct inode *inode, 792 struct ext4_ext_path *path, ext4_lblk_t block) 793 { 794 struct ext4_extent_header *eh = path->p_hdr; 795 struct ext4_extent *r, *l, *m; 796 797 if (eh->eh_entries == 0) { 798 /* 799 * this leaf is empty: 800 * we get such a leaf in split/add case 801 */ 802 return; 803 } 804 805 ext_debug("binsearch for %u: ", block); 806 807 l = EXT_FIRST_EXTENT(eh) + 1; 808 r = EXT_LAST_EXTENT(eh); 809 810 while (l <= r) { 811 m = l + (r - l) / 2; 812 if (block < le32_to_cpu(m->ee_block)) 813 r = m - 1; 814 else 815 l = m + 1; 816 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 817 m, le32_to_cpu(m->ee_block), 818 r, le32_to_cpu(r->ee_block)); 819 } 820 821 path->p_ext = l - 1; 822 ext_debug(" -> %d:%llu:[%d]%d ", 823 le32_to_cpu(path->p_ext->ee_block), 824 ext4_ext_pblock(path->p_ext), 825 ext4_ext_is_unwritten(path->p_ext), 826 ext4_ext_get_actual_len(path->p_ext)); 827 828 #ifdef CHECK_BINSEARCH 829 { 830 struct ext4_extent *chex, *ex; 831 int k; 832 833 chex = ex = EXT_FIRST_EXTENT(eh); 834 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 835 BUG_ON(k && le32_to_cpu(ex->ee_block) 836 <= le32_to_cpu(ex[-1].ee_block)); 837 if (block < le32_to_cpu(ex->ee_block)) 838 break; 839 chex = ex; 840 } 841 BUG_ON(chex != path->p_ext); 842 } 843 #endif 844 845 } 846 847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 848 { 849 struct ext4_extent_header *eh; 850 851 eh = ext_inode_hdr(inode); 852 eh->eh_depth = 0; 853 eh->eh_entries = 0; 854 eh->eh_magic = EXT4_EXT_MAGIC; 855 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 856 ext4_mark_inode_dirty(handle, inode); 857 return 0; 858 } 859 860 struct ext4_ext_path * 861 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 862 struct ext4_ext_path **orig_path, int flags) 863 { 864 struct ext4_extent_header *eh; 865 struct buffer_head *bh; 866 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 867 short int depth, i, ppos = 0; 868 int ret; 869 870 eh = ext_inode_hdr(inode); 871 depth = ext_depth(inode); 872 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 873 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 874 depth); 875 ret = -EFSCORRUPTED; 876 goto err; 877 } 878 879 if (path) { 880 ext4_ext_drop_refs(path); 881 if (depth > path[0].p_maxdepth) { 882 kfree(path); 883 *orig_path = path = NULL; 884 } 885 } 886 if (!path) { 887 /* account possible depth increase */ 888 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 889 GFP_NOFS); 890 if (unlikely(!path)) 891 return ERR_PTR(-ENOMEM); 892 path[0].p_maxdepth = depth + 1; 893 } 894 path[0].p_hdr = eh; 895 path[0].p_bh = NULL; 896 897 i = depth; 898 /* walk through the tree */ 899 while (i) { 900 ext_debug("depth %d: num %d, max %d\n", 901 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 902 903 ext4_ext_binsearch_idx(inode, path + ppos, block); 904 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 905 path[ppos].p_depth = i; 906 path[ppos].p_ext = NULL; 907 908 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 909 flags); 910 if (IS_ERR(bh)) { 911 ret = PTR_ERR(bh); 912 goto err; 913 } 914 915 eh = ext_block_hdr(bh); 916 ppos++; 917 path[ppos].p_bh = bh; 918 path[ppos].p_hdr = eh; 919 } 920 921 path[ppos].p_depth = i; 922 path[ppos].p_ext = NULL; 923 path[ppos].p_idx = NULL; 924 925 /* find extent */ 926 ext4_ext_binsearch(inode, path + ppos, block); 927 /* if not an empty leaf */ 928 if (path[ppos].p_ext) 929 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 930 931 ext4_ext_show_path(inode, path); 932 933 return path; 934 935 err: 936 ext4_ext_drop_refs(path); 937 kfree(path); 938 if (orig_path) 939 *orig_path = NULL; 940 return ERR_PTR(ret); 941 } 942 943 /* 944 * ext4_ext_insert_index: 945 * insert new index [@logical;@ptr] into the block at @curp; 946 * check where to insert: before @curp or after @curp 947 */ 948 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 949 struct ext4_ext_path *curp, 950 int logical, ext4_fsblk_t ptr) 951 { 952 struct ext4_extent_idx *ix; 953 int len, err; 954 955 err = ext4_ext_get_access(handle, inode, curp); 956 if (err) 957 return err; 958 959 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 960 EXT4_ERROR_INODE(inode, 961 "logical %d == ei_block %d!", 962 logical, le32_to_cpu(curp->p_idx->ei_block)); 963 return -EFSCORRUPTED; 964 } 965 966 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 967 >= le16_to_cpu(curp->p_hdr->eh_max))) { 968 EXT4_ERROR_INODE(inode, 969 "eh_entries %d >= eh_max %d!", 970 le16_to_cpu(curp->p_hdr->eh_entries), 971 le16_to_cpu(curp->p_hdr->eh_max)); 972 return -EFSCORRUPTED; 973 } 974 975 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 976 /* insert after */ 977 ext_debug("insert new index %d after: %llu\n", logical, ptr); 978 ix = curp->p_idx + 1; 979 } else { 980 /* insert before */ 981 ext_debug("insert new index %d before: %llu\n", logical, ptr); 982 ix = curp->p_idx; 983 } 984 985 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 986 BUG_ON(len < 0); 987 if (len > 0) { 988 ext_debug("insert new index %d: " 989 "move %d indices from 0x%p to 0x%p\n", 990 logical, len, ix, ix + 1); 991 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 992 } 993 994 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 995 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 996 return -EFSCORRUPTED; 997 } 998 999 ix->ei_block = cpu_to_le32(logical); 1000 ext4_idx_store_pblock(ix, ptr); 1001 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1002 1003 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1004 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1005 return -EFSCORRUPTED; 1006 } 1007 1008 err = ext4_ext_dirty(handle, inode, curp); 1009 ext4_std_error(inode->i_sb, err); 1010 1011 return err; 1012 } 1013 1014 /* 1015 * ext4_ext_split: 1016 * inserts new subtree into the path, using free index entry 1017 * at depth @at: 1018 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1019 * - makes decision where to split 1020 * - moves remaining extents and index entries (right to the split point) 1021 * into the newly allocated blocks 1022 * - initializes subtree 1023 */ 1024 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1025 unsigned int flags, 1026 struct ext4_ext_path *path, 1027 struct ext4_extent *newext, int at) 1028 { 1029 struct buffer_head *bh = NULL; 1030 int depth = ext_depth(inode); 1031 struct ext4_extent_header *neh; 1032 struct ext4_extent_idx *fidx; 1033 int i = at, k, m, a; 1034 ext4_fsblk_t newblock, oldblock; 1035 __le32 border; 1036 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1037 int err = 0; 1038 1039 /* make decision: where to split? */ 1040 /* FIXME: now decision is simplest: at current extent */ 1041 1042 /* if current leaf will be split, then we should use 1043 * border from split point */ 1044 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1045 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1046 return -EFSCORRUPTED; 1047 } 1048 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1049 border = path[depth].p_ext[1].ee_block; 1050 ext_debug("leaf will be split." 1051 " next leaf starts at %d\n", 1052 le32_to_cpu(border)); 1053 } else { 1054 border = newext->ee_block; 1055 ext_debug("leaf will be added." 1056 " next leaf starts at %d\n", 1057 le32_to_cpu(border)); 1058 } 1059 1060 /* 1061 * If error occurs, then we break processing 1062 * and mark filesystem read-only. index won't 1063 * be inserted and tree will be in consistent 1064 * state. Next mount will repair buffers too. 1065 */ 1066 1067 /* 1068 * Get array to track all allocated blocks. 1069 * We need this to handle errors and free blocks 1070 * upon them. 1071 */ 1072 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS); 1073 if (!ablocks) 1074 return -ENOMEM; 1075 1076 /* allocate all needed blocks */ 1077 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1078 for (a = 0; a < depth - at; a++) { 1079 newblock = ext4_ext_new_meta_block(handle, inode, path, 1080 newext, &err, flags); 1081 if (newblock == 0) 1082 goto cleanup; 1083 ablocks[a] = newblock; 1084 } 1085 1086 /* initialize new leaf */ 1087 newblock = ablocks[--a]; 1088 if (unlikely(newblock == 0)) { 1089 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1090 err = -EFSCORRUPTED; 1091 goto cleanup; 1092 } 1093 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1094 if (unlikely(!bh)) { 1095 err = -ENOMEM; 1096 goto cleanup; 1097 } 1098 lock_buffer(bh); 1099 1100 err = ext4_journal_get_create_access(handle, bh); 1101 if (err) 1102 goto cleanup; 1103 1104 neh = ext_block_hdr(bh); 1105 neh->eh_entries = 0; 1106 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1107 neh->eh_magic = EXT4_EXT_MAGIC; 1108 neh->eh_depth = 0; 1109 1110 /* move remainder of path[depth] to the new leaf */ 1111 if (unlikely(path[depth].p_hdr->eh_entries != 1112 path[depth].p_hdr->eh_max)) { 1113 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1114 path[depth].p_hdr->eh_entries, 1115 path[depth].p_hdr->eh_max); 1116 err = -EFSCORRUPTED; 1117 goto cleanup; 1118 } 1119 /* start copy from next extent */ 1120 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1121 ext4_ext_show_move(inode, path, newblock, depth); 1122 if (m) { 1123 struct ext4_extent *ex; 1124 ex = EXT_FIRST_EXTENT(neh); 1125 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1126 le16_add_cpu(&neh->eh_entries, m); 1127 } 1128 1129 ext4_extent_block_csum_set(inode, neh); 1130 set_buffer_uptodate(bh); 1131 unlock_buffer(bh); 1132 1133 err = ext4_handle_dirty_metadata(handle, inode, bh); 1134 if (err) 1135 goto cleanup; 1136 brelse(bh); 1137 bh = NULL; 1138 1139 /* correct old leaf */ 1140 if (m) { 1141 err = ext4_ext_get_access(handle, inode, path + depth); 1142 if (err) 1143 goto cleanup; 1144 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1145 err = ext4_ext_dirty(handle, inode, path + depth); 1146 if (err) 1147 goto cleanup; 1148 1149 } 1150 1151 /* create intermediate indexes */ 1152 k = depth - at - 1; 1153 if (unlikely(k < 0)) { 1154 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1155 err = -EFSCORRUPTED; 1156 goto cleanup; 1157 } 1158 if (k) 1159 ext_debug("create %d intermediate indices\n", k); 1160 /* insert new index into current index block */ 1161 /* current depth stored in i var */ 1162 i = depth - 1; 1163 while (k--) { 1164 oldblock = newblock; 1165 newblock = ablocks[--a]; 1166 bh = sb_getblk(inode->i_sb, newblock); 1167 if (unlikely(!bh)) { 1168 err = -ENOMEM; 1169 goto cleanup; 1170 } 1171 lock_buffer(bh); 1172 1173 err = ext4_journal_get_create_access(handle, bh); 1174 if (err) 1175 goto cleanup; 1176 1177 neh = ext_block_hdr(bh); 1178 neh->eh_entries = cpu_to_le16(1); 1179 neh->eh_magic = EXT4_EXT_MAGIC; 1180 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1181 neh->eh_depth = cpu_to_le16(depth - i); 1182 fidx = EXT_FIRST_INDEX(neh); 1183 fidx->ei_block = border; 1184 ext4_idx_store_pblock(fidx, oldblock); 1185 1186 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1187 i, newblock, le32_to_cpu(border), oldblock); 1188 1189 /* move remainder of path[i] to the new index block */ 1190 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1191 EXT_LAST_INDEX(path[i].p_hdr))) { 1192 EXT4_ERROR_INODE(inode, 1193 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1194 le32_to_cpu(path[i].p_ext->ee_block)); 1195 err = -EFSCORRUPTED; 1196 goto cleanup; 1197 } 1198 /* start copy indexes */ 1199 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1200 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1201 EXT_MAX_INDEX(path[i].p_hdr)); 1202 ext4_ext_show_move(inode, path, newblock, i); 1203 if (m) { 1204 memmove(++fidx, path[i].p_idx, 1205 sizeof(struct ext4_extent_idx) * m); 1206 le16_add_cpu(&neh->eh_entries, m); 1207 } 1208 ext4_extent_block_csum_set(inode, neh); 1209 set_buffer_uptodate(bh); 1210 unlock_buffer(bh); 1211 1212 err = ext4_handle_dirty_metadata(handle, inode, bh); 1213 if (err) 1214 goto cleanup; 1215 brelse(bh); 1216 bh = NULL; 1217 1218 /* correct old index */ 1219 if (m) { 1220 err = ext4_ext_get_access(handle, inode, path + i); 1221 if (err) 1222 goto cleanup; 1223 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1224 err = ext4_ext_dirty(handle, inode, path + i); 1225 if (err) 1226 goto cleanup; 1227 } 1228 1229 i--; 1230 } 1231 1232 /* insert new index */ 1233 err = ext4_ext_insert_index(handle, inode, path + at, 1234 le32_to_cpu(border), newblock); 1235 1236 cleanup: 1237 if (bh) { 1238 if (buffer_locked(bh)) 1239 unlock_buffer(bh); 1240 brelse(bh); 1241 } 1242 1243 if (err) { 1244 /* free all allocated blocks in error case */ 1245 for (i = 0; i < depth; i++) { 1246 if (!ablocks[i]) 1247 continue; 1248 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1249 EXT4_FREE_BLOCKS_METADATA); 1250 } 1251 } 1252 kfree(ablocks); 1253 1254 return err; 1255 } 1256 1257 /* 1258 * ext4_ext_grow_indepth: 1259 * implements tree growing procedure: 1260 * - allocates new block 1261 * - moves top-level data (index block or leaf) into the new block 1262 * - initializes new top-level, creating index that points to the 1263 * just created block 1264 */ 1265 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1266 unsigned int flags) 1267 { 1268 struct ext4_extent_header *neh; 1269 struct buffer_head *bh; 1270 ext4_fsblk_t newblock, goal = 0; 1271 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1272 int err = 0; 1273 1274 /* Try to prepend new index to old one */ 1275 if (ext_depth(inode)) 1276 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1277 if (goal > le32_to_cpu(es->s_first_data_block)) { 1278 flags |= EXT4_MB_HINT_TRY_GOAL; 1279 goal--; 1280 } else 1281 goal = ext4_inode_to_goal_block(inode); 1282 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1283 NULL, &err); 1284 if (newblock == 0) 1285 return err; 1286 1287 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1288 if (unlikely(!bh)) 1289 return -ENOMEM; 1290 lock_buffer(bh); 1291 1292 err = ext4_journal_get_create_access(handle, bh); 1293 if (err) { 1294 unlock_buffer(bh); 1295 goto out; 1296 } 1297 1298 /* move top-level index/leaf into new block */ 1299 memmove(bh->b_data, EXT4_I(inode)->i_data, 1300 sizeof(EXT4_I(inode)->i_data)); 1301 1302 /* set size of new block */ 1303 neh = ext_block_hdr(bh); 1304 /* old root could have indexes or leaves 1305 * so calculate e_max right way */ 1306 if (ext_depth(inode)) 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1308 else 1309 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1310 neh->eh_magic = EXT4_EXT_MAGIC; 1311 ext4_extent_block_csum_set(inode, neh); 1312 set_buffer_uptodate(bh); 1313 unlock_buffer(bh); 1314 1315 err = ext4_handle_dirty_metadata(handle, inode, bh); 1316 if (err) 1317 goto out; 1318 1319 /* Update top-level index: num,max,pointer */ 1320 neh = ext_inode_hdr(inode); 1321 neh->eh_entries = cpu_to_le16(1); 1322 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1323 if (neh->eh_depth == 0) { 1324 /* Root extent block becomes index block */ 1325 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1326 EXT_FIRST_INDEX(neh)->ei_block = 1327 EXT_FIRST_EXTENT(neh)->ee_block; 1328 } 1329 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1330 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1331 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1332 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1333 1334 le16_add_cpu(&neh->eh_depth, 1); 1335 ext4_mark_inode_dirty(handle, inode); 1336 out: 1337 brelse(bh); 1338 1339 return err; 1340 } 1341 1342 /* 1343 * ext4_ext_create_new_leaf: 1344 * finds empty index and adds new leaf. 1345 * if no free index is found, then it requests in-depth growing. 1346 */ 1347 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1348 unsigned int mb_flags, 1349 unsigned int gb_flags, 1350 struct ext4_ext_path **ppath, 1351 struct ext4_extent *newext) 1352 { 1353 struct ext4_ext_path *path = *ppath; 1354 struct ext4_ext_path *curp; 1355 int depth, i, err = 0; 1356 1357 repeat: 1358 i = depth = ext_depth(inode); 1359 1360 /* walk up to the tree and look for free index entry */ 1361 curp = path + depth; 1362 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1363 i--; 1364 curp--; 1365 } 1366 1367 /* we use already allocated block for index block, 1368 * so subsequent data blocks should be contiguous */ 1369 if (EXT_HAS_FREE_INDEX(curp)) { 1370 /* if we found index with free entry, then use that 1371 * entry: create all needed subtree and add new leaf */ 1372 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1373 if (err) 1374 goto out; 1375 1376 /* refill path */ 1377 path = ext4_find_extent(inode, 1378 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1379 ppath, gb_flags); 1380 if (IS_ERR(path)) 1381 err = PTR_ERR(path); 1382 } else { 1383 /* tree is full, time to grow in depth */ 1384 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1385 if (err) 1386 goto out; 1387 1388 /* refill path */ 1389 path = ext4_find_extent(inode, 1390 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1391 ppath, gb_flags); 1392 if (IS_ERR(path)) { 1393 err = PTR_ERR(path); 1394 goto out; 1395 } 1396 1397 /* 1398 * only first (depth 0 -> 1) produces free space; 1399 * in all other cases we have to split the grown tree 1400 */ 1401 depth = ext_depth(inode); 1402 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1403 /* now we need to split */ 1404 goto repeat; 1405 } 1406 } 1407 1408 out: 1409 return err; 1410 } 1411 1412 /* 1413 * search the closest allocated block to the left for *logical 1414 * and returns it at @logical + it's physical address at @phys 1415 * if *logical is the smallest allocated block, the function 1416 * returns 0 at @phys 1417 * return value contains 0 (success) or error code 1418 */ 1419 static int ext4_ext_search_left(struct inode *inode, 1420 struct ext4_ext_path *path, 1421 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1422 { 1423 struct ext4_extent_idx *ix; 1424 struct ext4_extent *ex; 1425 int depth, ee_len; 1426 1427 if (unlikely(path == NULL)) { 1428 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1429 return -EFSCORRUPTED; 1430 } 1431 depth = path->p_depth; 1432 *phys = 0; 1433 1434 if (depth == 0 && path->p_ext == NULL) 1435 return 0; 1436 1437 /* usually extent in the path covers blocks smaller 1438 * then *logical, but it can be that extent is the 1439 * first one in the file */ 1440 1441 ex = path[depth].p_ext; 1442 ee_len = ext4_ext_get_actual_len(ex); 1443 if (*logical < le32_to_cpu(ex->ee_block)) { 1444 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1445 EXT4_ERROR_INODE(inode, 1446 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1447 *logical, le32_to_cpu(ex->ee_block)); 1448 return -EFSCORRUPTED; 1449 } 1450 while (--depth >= 0) { 1451 ix = path[depth].p_idx; 1452 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1453 EXT4_ERROR_INODE(inode, 1454 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1455 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1456 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1457 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1458 depth); 1459 return -EFSCORRUPTED; 1460 } 1461 } 1462 return 0; 1463 } 1464 1465 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1466 EXT4_ERROR_INODE(inode, 1467 "logical %d < ee_block %d + ee_len %d!", 1468 *logical, le32_to_cpu(ex->ee_block), ee_len); 1469 return -EFSCORRUPTED; 1470 } 1471 1472 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1473 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1474 return 0; 1475 } 1476 1477 /* 1478 * search the closest allocated block to the right for *logical 1479 * and returns it at @logical + it's physical address at @phys 1480 * if *logical is the largest allocated block, the function 1481 * returns 0 at @phys 1482 * return value contains 0 (success) or error code 1483 */ 1484 static int ext4_ext_search_right(struct inode *inode, 1485 struct ext4_ext_path *path, 1486 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1487 struct ext4_extent **ret_ex) 1488 { 1489 struct buffer_head *bh = NULL; 1490 struct ext4_extent_header *eh; 1491 struct ext4_extent_idx *ix; 1492 struct ext4_extent *ex; 1493 ext4_fsblk_t block; 1494 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1495 int ee_len; 1496 1497 if (unlikely(path == NULL)) { 1498 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1499 return -EFSCORRUPTED; 1500 } 1501 depth = path->p_depth; 1502 *phys = 0; 1503 1504 if (depth == 0 && path->p_ext == NULL) 1505 return 0; 1506 1507 /* usually extent in the path covers blocks smaller 1508 * then *logical, but it can be that extent is the 1509 * first one in the file */ 1510 1511 ex = path[depth].p_ext; 1512 ee_len = ext4_ext_get_actual_len(ex); 1513 if (*logical < le32_to_cpu(ex->ee_block)) { 1514 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1515 EXT4_ERROR_INODE(inode, 1516 "first_extent(path[%d].p_hdr) != ex", 1517 depth); 1518 return -EFSCORRUPTED; 1519 } 1520 while (--depth >= 0) { 1521 ix = path[depth].p_idx; 1522 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1523 EXT4_ERROR_INODE(inode, 1524 "ix != EXT_FIRST_INDEX *logical %d!", 1525 *logical); 1526 return -EFSCORRUPTED; 1527 } 1528 } 1529 goto found_extent; 1530 } 1531 1532 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1533 EXT4_ERROR_INODE(inode, 1534 "logical %d < ee_block %d + ee_len %d!", 1535 *logical, le32_to_cpu(ex->ee_block), ee_len); 1536 return -EFSCORRUPTED; 1537 } 1538 1539 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1540 /* next allocated block in this leaf */ 1541 ex++; 1542 goto found_extent; 1543 } 1544 1545 /* go up and search for index to the right */ 1546 while (--depth >= 0) { 1547 ix = path[depth].p_idx; 1548 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1549 goto got_index; 1550 } 1551 1552 /* we've gone up to the root and found no index to the right */ 1553 return 0; 1554 1555 got_index: 1556 /* we've found index to the right, let's 1557 * follow it and find the closest allocated 1558 * block to the right */ 1559 ix++; 1560 block = ext4_idx_pblock(ix); 1561 while (++depth < path->p_depth) { 1562 /* subtract from p_depth to get proper eh_depth */ 1563 bh = read_extent_tree_block(inode, block, 1564 path->p_depth - depth, 0); 1565 if (IS_ERR(bh)) 1566 return PTR_ERR(bh); 1567 eh = ext_block_hdr(bh); 1568 ix = EXT_FIRST_INDEX(eh); 1569 block = ext4_idx_pblock(ix); 1570 put_bh(bh); 1571 } 1572 1573 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1574 if (IS_ERR(bh)) 1575 return PTR_ERR(bh); 1576 eh = ext_block_hdr(bh); 1577 ex = EXT_FIRST_EXTENT(eh); 1578 found_extent: 1579 *logical = le32_to_cpu(ex->ee_block); 1580 *phys = ext4_ext_pblock(ex); 1581 *ret_ex = ex; 1582 if (bh) 1583 put_bh(bh); 1584 return 0; 1585 } 1586 1587 /* 1588 * ext4_ext_next_allocated_block: 1589 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1590 * NOTE: it considers block number from index entry as 1591 * allocated block. Thus, index entries have to be consistent 1592 * with leaves. 1593 */ 1594 ext4_lblk_t 1595 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1596 { 1597 int depth; 1598 1599 BUG_ON(path == NULL); 1600 depth = path->p_depth; 1601 1602 if (depth == 0 && path->p_ext == NULL) 1603 return EXT_MAX_BLOCKS; 1604 1605 while (depth >= 0) { 1606 if (depth == path->p_depth) { 1607 /* leaf */ 1608 if (path[depth].p_ext && 1609 path[depth].p_ext != 1610 EXT_LAST_EXTENT(path[depth].p_hdr)) 1611 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1612 } else { 1613 /* index */ 1614 if (path[depth].p_idx != 1615 EXT_LAST_INDEX(path[depth].p_hdr)) 1616 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1617 } 1618 depth--; 1619 } 1620 1621 return EXT_MAX_BLOCKS; 1622 } 1623 1624 /* 1625 * ext4_ext_next_leaf_block: 1626 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1627 */ 1628 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1629 { 1630 int depth; 1631 1632 BUG_ON(path == NULL); 1633 depth = path->p_depth; 1634 1635 /* zero-tree has no leaf blocks at all */ 1636 if (depth == 0) 1637 return EXT_MAX_BLOCKS; 1638 1639 /* go to index block */ 1640 depth--; 1641 1642 while (depth >= 0) { 1643 if (path[depth].p_idx != 1644 EXT_LAST_INDEX(path[depth].p_hdr)) 1645 return (ext4_lblk_t) 1646 le32_to_cpu(path[depth].p_idx[1].ei_block); 1647 depth--; 1648 } 1649 1650 return EXT_MAX_BLOCKS; 1651 } 1652 1653 /* 1654 * ext4_ext_correct_indexes: 1655 * if leaf gets modified and modified extent is first in the leaf, 1656 * then we have to correct all indexes above. 1657 * TODO: do we need to correct tree in all cases? 1658 */ 1659 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1660 struct ext4_ext_path *path) 1661 { 1662 struct ext4_extent_header *eh; 1663 int depth = ext_depth(inode); 1664 struct ext4_extent *ex; 1665 __le32 border; 1666 int k, err = 0; 1667 1668 eh = path[depth].p_hdr; 1669 ex = path[depth].p_ext; 1670 1671 if (unlikely(ex == NULL || eh == NULL)) { 1672 EXT4_ERROR_INODE(inode, 1673 "ex %p == NULL or eh %p == NULL", ex, eh); 1674 return -EFSCORRUPTED; 1675 } 1676 1677 if (depth == 0) { 1678 /* there is no tree at all */ 1679 return 0; 1680 } 1681 1682 if (ex != EXT_FIRST_EXTENT(eh)) { 1683 /* we correct tree if first leaf got modified only */ 1684 return 0; 1685 } 1686 1687 /* 1688 * TODO: we need correction if border is smaller than current one 1689 */ 1690 k = depth - 1; 1691 border = path[depth].p_ext->ee_block; 1692 err = ext4_ext_get_access(handle, inode, path + k); 1693 if (err) 1694 return err; 1695 path[k].p_idx->ei_block = border; 1696 err = ext4_ext_dirty(handle, inode, path + k); 1697 if (err) 1698 return err; 1699 1700 while (k--) { 1701 /* change all left-side indexes */ 1702 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1703 break; 1704 err = ext4_ext_get_access(handle, inode, path + k); 1705 if (err) 1706 break; 1707 path[k].p_idx->ei_block = border; 1708 err = ext4_ext_dirty(handle, inode, path + k); 1709 if (err) 1710 break; 1711 } 1712 1713 return err; 1714 } 1715 1716 int 1717 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1718 struct ext4_extent *ex2) 1719 { 1720 unsigned short ext1_ee_len, ext2_ee_len; 1721 1722 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1723 return 0; 1724 1725 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1726 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1727 1728 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1729 le32_to_cpu(ex2->ee_block)) 1730 return 0; 1731 1732 /* 1733 * To allow future support for preallocated extents to be added 1734 * as an RO_COMPAT feature, refuse to merge to extents if 1735 * this can result in the top bit of ee_len being set. 1736 */ 1737 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1738 return 0; 1739 /* 1740 * The check for IO to unwritten extent is somewhat racy as we 1741 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after 1742 * dropping i_data_sem. But reserved blocks should save us in that 1743 * case. 1744 */ 1745 if (ext4_ext_is_unwritten(ex1) && 1746 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1747 atomic_read(&EXT4_I(inode)->i_unwritten) || 1748 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1749 return 0; 1750 #ifdef AGGRESSIVE_TEST 1751 if (ext1_ee_len >= 4) 1752 return 0; 1753 #endif 1754 1755 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1756 return 1; 1757 return 0; 1758 } 1759 1760 /* 1761 * This function tries to merge the "ex" extent to the next extent in the tree. 1762 * It always tries to merge towards right. If you want to merge towards 1763 * left, pass "ex - 1" as argument instead of "ex". 1764 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1765 * 1 if they got merged. 1766 */ 1767 static int ext4_ext_try_to_merge_right(struct inode *inode, 1768 struct ext4_ext_path *path, 1769 struct ext4_extent *ex) 1770 { 1771 struct ext4_extent_header *eh; 1772 unsigned int depth, len; 1773 int merge_done = 0, unwritten; 1774 1775 depth = ext_depth(inode); 1776 BUG_ON(path[depth].p_hdr == NULL); 1777 eh = path[depth].p_hdr; 1778 1779 while (ex < EXT_LAST_EXTENT(eh)) { 1780 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1781 break; 1782 /* merge with next extent! */ 1783 unwritten = ext4_ext_is_unwritten(ex); 1784 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1785 + ext4_ext_get_actual_len(ex + 1)); 1786 if (unwritten) 1787 ext4_ext_mark_unwritten(ex); 1788 1789 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1790 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1791 * sizeof(struct ext4_extent); 1792 memmove(ex + 1, ex + 2, len); 1793 } 1794 le16_add_cpu(&eh->eh_entries, -1); 1795 merge_done = 1; 1796 WARN_ON(eh->eh_entries == 0); 1797 if (!eh->eh_entries) 1798 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1799 } 1800 1801 return merge_done; 1802 } 1803 1804 /* 1805 * This function does a very simple check to see if we can collapse 1806 * an extent tree with a single extent tree leaf block into the inode. 1807 */ 1808 static void ext4_ext_try_to_merge_up(handle_t *handle, 1809 struct inode *inode, 1810 struct ext4_ext_path *path) 1811 { 1812 size_t s; 1813 unsigned max_root = ext4_ext_space_root(inode, 0); 1814 ext4_fsblk_t blk; 1815 1816 if ((path[0].p_depth != 1) || 1817 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1818 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1819 return; 1820 1821 /* 1822 * We need to modify the block allocation bitmap and the block 1823 * group descriptor to release the extent tree block. If we 1824 * can't get the journal credits, give up. 1825 */ 1826 if (ext4_journal_extend(handle, 2)) 1827 return; 1828 1829 /* 1830 * Copy the extent data up to the inode 1831 */ 1832 blk = ext4_idx_pblock(path[0].p_idx); 1833 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1834 sizeof(struct ext4_extent_idx); 1835 s += sizeof(struct ext4_extent_header); 1836 1837 path[1].p_maxdepth = path[0].p_maxdepth; 1838 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1839 path[0].p_depth = 0; 1840 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1841 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1842 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1843 1844 brelse(path[1].p_bh); 1845 ext4_free_blocks(handle, inode, NULL, blk, 1, 1846 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1847 } 1848 1849 /* 1850 * This function tries to merge the @ex extent to neighbours in the tree. 1851 * return 1 if merge left else 0. 1852 */ 1853 static void ext4_ext_try_to_merge(handle_t *handle, 1854 struct inode *inode, 1855 struct ext4_ext_path *path, 1856 struct ext4_extent *ex) { 1857 struct ext4_extent_header *eh; 1858 unsigned int depth; 1859 int merge_done = 0; 1860 1861 depth = ext_depth(inode); 1862 BUG_ON(path[depth].p_hdr == NULL); 1863 eh = path[depth].p_hdr; 1864 1865 if (ex > EXT_FIRST_EXTENT(eh)) 1866 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1867 1868 if (!merge_done) 1869 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1870 1871 ext4_ext_try_to_merge_up(handle, inode, path); 1872 } 1873 1874 /* 1875 * check if a portion of the "newext" extent overlaps with an 1876 * existing extent. 1877 * 1878 * If there is an overlap discovered, it updates the length of the newext 1879 * such that there will be no overlap, and then returns 1. 1880 * If there is no overlap found, it returns 0. 1881 */ 1882 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1883 struct inode *inode, 1884 struct ext4_extent *newext, 1885 struct ext4_ext_path *path) 1886 { 1887 ext4_lblk_t b1, b2; 1888 unsigned int depth, len1; 1889 unsigned int ret = 0; 1890 1891 b1 = le32_to_cpu(newext->ee_block); 1892 len1 = ext4_ext_get_actual_len(newext); 1893 depth = ext_depth(inode); 1894 if (!path[depth].p_ext) 1895 goto out; 1896 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1897 1898 /* 1899 * get the next allocated block if the extent in the path 1900 * is before the requested block(s) 1901 */ 1902 if (b2 < b1) { 1903 b2 = ext4_ext_next_allocated_block(path); 1904 if (b2 == EXT_MAX_BLOCKS) 1905 goto out; 1906 b2 = EXT4_LBLK_CMASK(sbi, b2); 1907 } 1908 1909 /* check for wrap through zero on extent logical start block*/ 1910 if (b1 + len1 < b1) { 1911 len1 = EXT_MAX_BLOCKS - b1; 1912 newext->ee_len = cpu_to_le16(len1); 1913 ret = 1; 1914 } 1915 1916 /* check for overlap */ 1917 if (b1 + len1 > b2) { 1918 newext->ee_len = cpu_to_le16(b2 - b1); 1919 ret = 1; 1920 } 1921 out: 1922 return ret; 1923 } 1924 1925 /* 1926 * ext4_ext_insert_extent: 1927 * tries to merge requsted extent into the existing extent or 1928 * inserts requested extent as new one into the tree, 1929 * creating new leaf in the no-space case. 1930 */ 1931 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1932 struct ext4_ext_path **ppath, 1933 struct ext4_extent *newext, int gb_flags) 1934 { 1935 struct ext4_ext_path *path = *ppath; 1936 struct ext4_extent_header *eh; 1937 struct ext4_extent *ex, *fex; 1938 struct ext4_extent *nearex; /* nearest extent */ 1939 struct ext4_ext_path *npath = NULL; 1940 int depth, len, err; 1941 ext4_lblk_t next; 1942 int mb_flags = 0, unwritten; 1943 1944 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1945 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1946 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1947 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1948 return -EFSCORRUPTED; 1949 } 1950 depth = ext_depth(inode); 1951 ex = path[depth].p_ext; 1952 eh = path[depth].p_hdr; 1953 if (unlikely(path[depth].p_hdr == NULL)) { 1954 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1955 return -EFSCORRUPTED; 1956 } 1957 1958 /* try to insert block into found extent and return */ 1959 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1960 1961 /* 1962 * Try to see whether we should rather test the extent on 1963 * right from ex, or from the left of ex. This is because 1964 * ext4_find_extent() can return either extent on the 1965 * left, or on the right from the searched position. This 1966 * will make merging more effective. 1967 */ 1968 if (ex < EXT_LAST_EXTENT(eh) && 1969 (le32_to_cpu(ex->ee_block) + 1970 ext4_ext_get_actual_len(ex) < 1971 le32_to_cpu(newext->ee_block))) { 1972 ex += 1; 1973 goto prepend; 1974 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1975 (le32_to_cpu(newext->ee_block) + 1976 ext4_ext_get_actual_len(newext) < 1977 le32_to_cpu(ex->ee_block))) 1978 ex -= 1; 1979 1980 /* Try to append newex to the ex */ 1981 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1982 ext_debug("append [%d]%d block to %u:[%d]%d" 1983 "(from %llu)\n", 1984 ext4_ext_is_unwritten(newext), 1985 ext4_ext_get_actual_len(newext), 1986 le32_to_cpu(ex->ee_block), 1987 ext4_ext_is_unwritten(ex), 1988 ext4_ext_get_actual_len(ex), 1989 ext4_ext_pblock(ex)); 1990 err = ext4_ext_get_access(handle, inode, 1991 path + depth); 1992 if (err) 1993 return err; 1994 unwritten = ext4_ext_is_unwritten(ex); 1995 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1996 + ext4_ext_get_actual_len(newext)); 1997 if (unwritten) 1998 ext4_ext_mark_unwritten(ex); 1999 eh = path[depth].p_hdr; 2000 nearex = ex; 2001 goto merge; 2002 } 2003 2004 prepend: 2005 /* Try to prepend newex to the ex */ 2006 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2007 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2008 "(from %llu)\n", 2009 le32_to_cpu(newext->ee_block), 2010 ext4_ext_is_unwritten(newext), 2011 ext4_ext_get_actual_len(newext), 2012 le32_to_cpu(ex->ee_block), 2013 ext4_ext_is_unwritten(ex), 2014 ext4_ext_get_actual_len(ex), 2015 ext4_ext_pblock(ex)); 2016 err = ext4_ext_get_access(handle, inode, 2017 path + depth); 2018 if (err) 2019 return err; 2020 2021 unwritten = ext4_ext_is_unwritten(ex); 2022 ex->ee_block = newext->ee_block; 2023 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2024 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2025 + ext4_ext_get_actual_len(newext)); 2026 if (unwritten) 2027 ext4_ext_mark_unwritten(ex); 2028 eh = path[depth].p_hdr; 2029 nearex = ex; 2030 goto merge; 2031 } 2032 } 2033 2034 depth = ext_depth(inode); 2035 eh = path[depth].p_hdr; 2036 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2037 goto has_space; 2038 2039 /* probably next leaf has space for us? */ 2040 fex = EXT_LAST_EXTENT(eh); 2041 next = EXT_MAX_BLOCKS; 2042 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2043 next = ext4_ext_next_leaf_block(path); 2044 if (next != EXT_MAX_BLOCKS) { 2045 ext_debug("next leaf block - %u\n", next); 2046 BUG_ON(npath != NULL); 2047 npath = ext4_find_extent(inode, next, NULL, 0); 2048 if (IS_ERR(npath)) 2049 return PTR_ERR(npath); 2050 BUG_ON(npath->p_depth != path->p_depth); 2051 eh = npath[depth].p_hdr; 2052 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2053 ext_debug("next leaf isn't full(%d)\n", 2054 le16_to_cpu(eh->eh_entries)); 2055 path = npath; 2056 goto has_space; 2057 } 2058 ext_debug("next leaf has no free space(%d,%d)\n", 2059 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2060 } 2061 2062 /* 2063 * There is no free space in the found leaf. 2064 * We're gonna add a new leaf in the tree. 2065 */ 2066 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2067 mb_flags |= EXT4_MB_USE_RESERVED; 2068 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2069 ppath, newext); 2070 if (err) 2071 goto cleanup; 2072 depth = ext_depth(inode); 2073 eh = path[depth].p_hdr; 2074 2075 has_space: 2076 nearex = path[depth].p_ext; 2077 2078 err = ext4_ext_get_access(handle, inode, path + depth); 2079 if (err) 2080 goto cleanup; 2081 2082 if (!nearex) { 2083 /* there is no extent in this leaf, create first one */ 2084 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2085 le32_to_cpu(newext->ee_block), 2086 ext4_ext_pblock(newext), 2087 ext4_ext_is_unwritten(newext), 2088 ext4_ext_get_actual_len(newext)); 2089 nearex = EXT_FIRST_EXTENT(eh); 2090 } else { 2091 if (le32_to_cpu(newext->ee_block) 2092 > le32_to_cpu(nearex->ee_block)) { 2093 /* Insert after */ 2094 ext_debug("insert %u:%llu:[%d]%d before: " 2095 "nearest %p\n", 2096 le32_to_cpu(newext->ee_block), 2097 ext4_ext_pblock(newext), 2098 ext4_ext_is_unwritten(newext), 2099 ext4_ext_get_actual_len(newext), 2100 nearex); 2101 nearex++; 2102 } else { 2103 /* Insert before */ 2104 BUG_ON(newext->ee_block == nearex->ee_block); 2105 ext_debug("insert %u:%llu:[%d]%d after: " 2106 "nearest %p\n", 2107 le32_to_cpu(newext->ee_block), 2108 ext4_ext_pblock(newext), 2109 ext4_ext_is_unwritten(newext), 2110 ext4_ext_get_actual_len(newext), 2111 nearex); 2112 } 2113 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2114 if (len > 0) { 2115 ext_debug("insert %u:%llu:[%d]%d: " 2116 "move %d extents from 0x%p to 0x%p\n", 2117 le32_to_cpu(newext->ee_block), 2118 ext4_ext_pblock(newext), 2119 ext4_ext_is_unwritten(newext), 2120 ext4_ext_get_actual_len(newext), 2121 len, nearex, nearex + 1); 2122 memmove(nearex + 1, nearex, 2123 len * sizeof(struct ext4_extent)); 2124 } 2125 } 2126 2127 le16_add_cpu(&eh->eh_entries, 1); 2128 path[depth].p_ext = nearex; 2129 nearex->ee_block = newext->ee_block; 2130 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2131 nearex->ee_len = newext->ee_len; 2132 2133 merge: 2134 /* try to merge extents */ 2135 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2136 ext4_ext_try_to_merge(handle, inode, path, nearex); 2137 2138 2139 /* time to correct all indexes above */ 2140 err = ext4_ext_correct_indexes(handle, inode, path); 2141 if (err) 2142 goto cleanup; 2143 2144 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2145 2146 cleanup: 2147 ext4_ext_drop_refs(npath); 2148 kfree(npath); 2149 return err; 2150 } 2151 2152 static int ext4_fill_fiemap_extents(struct inode *inode, 2153 ext4_lblk_t block, ext4_lblk_t num, 2154 struct fiemap_extent_info *fieinfo) 2155 { 2156 struct ext4_ext_path *path = NULL; 2157 struct ext4_extent *ex; 2158 struct extent_status es; 2159 ext4_lblk_t next, next_del, start = 0, end = 0; 2160 ext4_lblk_t last = block + num; 2161 int exists, depth = 0, err = 0; 2162 unsigned int flags = 0; 2163 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2164 2165 while (block < last && block != EXT_MAX_BLOCKS) { 2166 num = last - block; 2167 /* find extent for this block */ 2168 down_read(&EXT4_I(inode)->i_data_sem); 2169 2170 path = ext4_find_extent(inode, block, &path, 0); 2171 if (IS_ERR(path)) { 2172 up_read(&EXT4_I(inode)->i_data_sem); 2173 err = PTR_ERR(path); 2174 path = NULL; 2175 break; 2176 } 2177 2178 depth = ext_depth(inode); 2179 if (unlikely(path[depth].p_hdr == NULL)) { 2180 up_read(&EXT4_I(inode)->i_data_sem); 2181 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2182 err = -EFSCORRUPTED; 2183 break; 2184 } 2185 ex = path[depth].p_ext; 2186 next = ext4_ext_next_allocated_block(path); 2187 2188 flags = 0; 2189 exists = 0; 2190 if (!ex) { 2191 /* there is no extent yet, so try to allocate 2192 * all requested space */ 2193 start = block; 2194 end = block + num; 2195 } else if (le32_to_cpu(ex->ee_block) > block) { 2196 /* need to allocate space before found extent */ 2197 start = block; 2198 end = le32_to_cpu(ex->ee_block); 2199 if (block + num < end) 2200 end = block + num; 2201 } else if (block >= le32_to_cpu(ex->ee_block) 2202 + ext4_ext_get_actual_len(ex)) { 2203 /* need to allocate space after found extent */ 2204 start = block; 2205 end = block + num; 2206 if (end >= next) 2207 end = next; 2208 } else if (block >= le32_to_cpu(ex->ee_block)) { 2209 /* 2210 * some part of requested space is covered 2211 * by found extent 2212 */ 2213 start = block; 2214 end = le32_to_cpu(ex->ee_block) 2215 + ext4_ext_get_actual_len(ex); 2216 if (block + num < end) 2217 end = block + num; 2218 exists = 1; 2219 } else { 2220 BUG(); 2221 } 2222 BUG_ON(end <= start); 2223 2224 if (!exists) { 2225 es.es_lblk = start; 2226 es.es_len = end - start; 2227 es.es_pblk = 0; 2228 } else { 2229 es.es_lblk = le32_to_cpu(ex->ee_block); 2230 es.es_len = ext4_ext_get_actual_len(ex); 2231 es.es_pblk = ext4_ext_pblock(ex); 2232 if (ext4_ext_is_unwritten(ex)) 2233 flags |= FIEMAP_EXTENT_UNWRITTEN; 2234 } 2235 2236 /* 2237 * Find delayed extent and update es accordingly. We call 2238 * it even in !exists case to find out whether es is the 2239 * last existing extent or not. 2240 */ 2241 next_del = ext4_find_delayed_extent(inode, &es); 2242 if (!exists && next_del) { 2243 exists = 1; 2244 flags |= (FIEMAP_EXTENT_DELALLOC | 2245 FIEMAP_EXTENT_UNKNOWN); 2246 } 2247 up_read(&EXT4_I(inode)->i_data_sem); 2248 2249 if (unlikely(es.es_len == 0)) { 2250 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2251 err = -EFSCORRUPTED; 2252 break; 2253 } 2254 2255 /* 2256 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2257 * we need to check next == EXT_MAX_BLOCKS because it is 2258 * possible that an extent is with unwritten and delayed 2259 * status due to when an extent is delayed allocated and 2260 * is allocated by fallocate status tree will track both of 2261 * them in a extent. 2262 * 2263 * So we could return a unwritten and delayed extent, and 2264 * its block is equal to 'next'. 2265 */ 2266 if (next == next_del && next == EXT_MAX_BLOCKS) { 2267 flags |= FIEMAP_EXTENT_LAST; 2268 if (unlikely(next_del != EXT_MAX_BLOCKS || 2269 next != EXT_MAX_BLOCKS)) { 2270 EXT4_ERROR_INODE(inode, 2271 "next extent == %u, next " 2272 "delalloc extent = %u", 2273 next, next_del); 2274 err = -EFSCORRUPTED; 2275 break; 2276 } 2277 } 2278 2279 if (exists) { 2280 err = fiemap_fill_next_extent(fieinfo, 2281 (__u64)es.es_lblk << blksize_bits, 2282 (__u64)es.es_pblk << blksize_bits, 2283 (__u64)es.es_len << blksize_bits, 2284 flags); 2285 if (err < 0) 2286 break; 2287 if (err == 1) { 2288 err = 0; 2289 break; 2290 } 2291 } 2292 2293 block = es.es_lblk + es.es_len; 2294 } 2295 2296 ext4_ext_drop_refs(path); 2297 kfree(path); 2298 return err; 2299 } 2300 2301 /* 2302 * ext4_ext_determine_hole - determine hole around given block 2303 * @inode: inode we lookup in 2304 * @path: path in extent tree to @lblk 2305 * @lblk: pointer to logical block around which we want to determine hole 2306 * 2307 * Determine hole length (and start if easily possible) around given logical 2308 * block. We don't try too hard to find the beginning of the hole but @path 2309 * actually points to extent before @lblk, we provide it. 2310 * 2311 * The function returns the length of a hole starting at @lblk. We update @lblk 2312 * to the beginning of the hole if we managed to find it. 2313 */ 2314 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2315 struct ext4_ext_path *path, 2316 ext4_lblk_t *lblk) 2317 { 2318 int depth = ext_depth(inode); 2319 struct ext4_extent *ex; 2320 ext4_lblk_t len; 2321 2322 ex = path[depth].p_ext; 2323 if (ex == NULL) { 2324 /* there is no extent yet, so gap is [0;-] */ 2325 *lblk = 0; 2326 len = EXT_MAX_BLOCKS; 2327 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2328 len = le32_to_cpu(ex->ee_block) - *lblk; 2329 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2330 + ext4_ext_get_actual_len(ex)) { 2331 ext4_lblk_t next; 2332 2333 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2334 next = ext4_ext_next_allocated_block(path); 2335 BUG_ON(next == *lblk); 2336 len = next - *lblk; 2337 } else { 2338 BUG(); 2339 } 2340 return len; 2341 } 2342 2343 /* 2344 * ext4_ext_put_gap_in_cache: 2345 * calculate boundaries of the gap that the requested block fits into 2346 * and cache this gap 2347 */ 2348 static void 2349 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2350 ext4_lblk_t hole_len) 2351 { 2352 struct extent_status es; 2353 2354 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2355 hole_start + hole_len - 1, &es); 2356 if (es.es_len) { 2357 /* There's delayed extent containing lblock? */ 2358 if (es.es_lblk <= hole_start) 2359 return; 2360 hole_len = min(es.es_lblk - hole_start, hole_len); 2361 } 2362 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2363 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2364 EXTENT_STATUS_HOLE); 2365 } 2366 2367 /* 2368 * ext4_ext_rm_idx: 2369 * removes index from the index block. 2370 */ 2371 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2372 struct ext4_ext_path *path, int depth) 2373 { 2374 int err; 2375 ext4_fsblk_t leaf; 2376 2377 /* free index block */ 2378 depth--; 2379 path = path + depth; 2380 leaf = ext4_idx_pblock(path->p_idx); 2381 if (unlikely(path->p_hdr->eh_entries == 0)) { 2382 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2383 return -EFSCORRUPTED; 2384 } 2385 err = ext4_ext_get_access(handle, inode, path); 2386 if (err) 2387 return err; 2388 2389 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2390 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2391 len *= sizeof(struct ext4_extent_idx); 2392 memmove(path->p_idx, path->p_idx + 1, len); 2393 } 2394 2395 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2396 err = ext4_ext_dirty(handle, inode, path); 2397 if (err) 2398 return err; 2399 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2400 trace_ext4_ext_rm_idx(inode, leaf); 2401 2402 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2403 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2404 2405 while (--depth >= 0) { 2406 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2407 break; 2408 path--; 2409 err = ext4_ext_get_access(handle, inode, path); 2410 if (err) 2411 break; 2412 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2413 err = ext4_ext_dirty(handle, inode, path); 2414 if (err) 2415 break; 2416 } 2417 return err; 2418 } 2419 2420 /* 2421 * ext4_ext_calc_credits_for_single_extent: 2422 * This routine returns max. credits that needed to insert an extent 2423 * to the extent tree. 2424 * When pass the actual path, the caller should calculate credits 2425 * under i_data_sem. 2426 */ 2427 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2428 struct ext4_ext_path *path) 2429 { 2430 if (path) { 2431 int depth = ext_depth(inode); 2432 int ret = 0; 2433 2434 /* probably there is space in leaf? */ 2435 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2436 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2437 2438 /* 2439 * There are some space in the leaf tree, no 2440 * need to account for leaf block credit 2441 * 2442 * bitmaps and block group descriptor blocks 2443 * and other metadata blocks still need to be 2444 * accounted. 2445 */ 2446 /* 1 bitmap, 1 block group descriptor */ 2447 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2448 return ret; 2449 } 2450 } 2451 2452 return ext4_chunk_trans_blocks(inode, nrblocks); 2453 } 2454 2455 /* 2456 * How many index/leaf blocks need to change/allocate to add @extents extents? 2457 * 2458 * If we add a single extent, then in the worse case, each tree level 2459 * index/leaf need to be changed in case of the tree split. 2460 * 2461 * If more extents are inserted, they could cause the whole tree split more 2462 * than once, but this is really rare. 2463 */ 2464 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2465 { 2466 int index; 2467 int depth; 2468 2469 /* If we are converting the inline data, only one is needed here. */ 2470 if (ext4_has_inline_data(inode)) 2471 return 1; 2472 2473 depth = ext_depth(inode); 2474 2475 if (extents <= 1) 2476 index = depth * 2; 2477 else 2478 index = depth * 3; 2479 2480 return index; 2481 } 2482 2483 static inline int get_default_free_blocks_flags(struct inode *inode) 2484 { 2485 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2486 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2487 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2488 else if (ext4_should_journal_data(inode)) 2489 return EXT4_FREE_BLOCKS_FORGET; 2490 return 0; 2491 } 2492 2493 /* 2494 * ext4_rereserve_cluster - increment the reserved cluster count when 2495 * freeing a cluster with a pending reservation 2496 * 2497 * @inode - file containing the cluster 2498 * @lblk - logical block in cluster to be reserved 2499 * 2500 * Increments the reserved cluster count and adjusts quota in a bigalloc 2501 * file system when freeing a partial cluster containing at least one 2502 * delayed and unwritten block. A partial cluster meeting that 2503 * requirement will have a pending reservation. If so, the 2504 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2505 * defer reserved and allocated space accounting to a subsequent call 2506 * to this function. 2507 */ 2508 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2509 { 2510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2511 struct ext4_inode_info *ei = EXT4_I(inode); 2512 2513 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2514 2515 spin_lock(&ei->i_block_reservation_lock); 2516 ei->i_reserved_data_blocks++; 2517 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2518 spin_unlock(&ei->i_block_reservation_lock); 2519 2520 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2521 ext4_remove_pending(inode, lblk); 2522 } 2523 2524 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2525 struct ext4_extent *ex, 2526 struct partial_cluster *partial, 2527 ext4_lblk_t from, ext4_lblk_t to) 2528 { 2529 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2530 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2531 ext4_fsblk_t last_pblk, pblk; 2532 ext4_lblk_t num; 2533 int flags; 2534 2535 /* only extent tail removal is allowed */ 2536 if (from < le32_to_cpu(ex->ee_block) || 2537 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2538 ext4_error(sbi->s_sb, 2539 "strange request: removal(2) %u-%u from %u:%u", 2540 from, to, le32_to_cpu(ex->ee_block), ee_len); 2541 return 0; 2542 } 2543 2544 #ifdef EXTENTS_STATS 2545 spin_lock(&sbi->s_ext_stats_lock); 2546 sbi->s_ext_blocks += ee_len; 2547 sbi->s_ext_extents++; 2548 if (ee_len < sbi->s_ext_min) 2549 sbi->s_ext_min = ee_len; 2550 if (ee_len > sbi->s_ext_max) 2551 sbi->s_ext_max = ee_len; 2552 if (ext_depth(inode) > sbi->s_depth_max) 2553 sbi->s_depth_max = ext_depth(inode); 2554 spin_unlock(&sbi->s_ext_stats_lock); 2555 #endif 2556 2557 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2558 2559 /* 2560 * if we have a partial cluster, and it's different from the 2561 * cluster of the last block in the extent, we free it 2562 */ 2563 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2564 2565 if (partial->state != initial && 2566 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2567 if (partial->state == tofree) { 2568 flags = get_default_free_blocks_flags(inode); 2569 if (ext4_is_pending(inode, partial->lblk)) 2570 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2571 ext4_free_blocks(handle, inode, NULL, 2572 EXT4_C2B(sbi, partial->pclu), 2573 sbi->s_cluster_ratio, flags); 2574 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2575 ext4_rereserve_cluster(inode, partial->lblk); 2576 } 2577 partial->state = initial; 2578 } 2579 2580 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2581 pblk = ext4_ext_pblock(ex) + ee_len - num; 2582 2583 /* 2584 * We free the partial cluster at the end of the extent (if any), 2585 * unless the cluster is used by another extent (partial_cluster 2586 * state is nofree). If a partial cluster exists here, it must be 2587 * shared with the last block in the extent. 2588 */ 2589 flags = get_default_free_blocks_flags(inode); 2590 2591 /* partial, left end cluster aligned, right end unaligned */ 2592 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2593 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2594 (partial->state != nofree)) { 2595 if (ext4_is_pending(inode, to)) 2596 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2597 ext4_free_blocks(handle, inode, NULL, 2598 EXT4_PBLK_CMASK(sbi, last_pblk), 2599 sbi->s_cluster_ratio, flags); 2600 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2601 ext4_rereserve_cluster(inode, to); 2602 partial->state = initial; 2603 flags = get_default_free_blocks_flags(inode); 2604 } 2605 2606 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2607 2608 /* 2609 * For bigalloc file systems, we never free a partial cluster 2610 * at the beginning of the extent. Instead, we check to see if we 2611 * need to free it on a subsequent call to ext4_remove_blocks, 2612 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2613 */ 2614 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2615 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2616 2617 /* reset the partial cluster if we've freed past it */ 2618 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2619 partial->state = initial; 2620 2621 /* 2622 * If we've freed the entire extent but the beginning is not left 2623 * cluster aligned and is not marked as ineligible for freeing we 2624 * record the partial cluster at the beginning of the extent. It 2625 * wasn't freed by the preceding ext4_free_blocks() call, and we 2626 * need to look farther to the left to determine if it's to be freed 2627 * (not shared with another extent). Else, reset the partial 2628 * cluster - we're either done freeing or the beginning of the 2629 * extent is left cluster aligned. 2630 */ 2631 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2632 if (partial->state == initial) { 2633 partial->pclu = EXT4_B2C(sbi, pblk); 2634 partial->lblk = from; 2635 partial->state = tofree; 2636 } 2637 } else { 2638 partial->state = initial; 2639 } 2640 2641 return 0; 2642 } 2643 2644 /* 2645 * ext4_ext_rm_leaf() Removes the extents associated with the 2646 * blocks appearing between "start" and "end". Both "start" 2647 * and "end" must appear in the same extent or EIO is returned. 2648 * 2649 * @handle: The journal handle 2650 * @inode: The files inode 2651 * @path: The path to the leaf 2652 * @partial_cluster: The cluster which we'll have to free if all extents 2653 * has been released from it. However, if this value is 2654 * negative, it's a cluster just to the right of the 2655 * punched region and it must not be freed. 2656 * @start: The first block to remove 2657 * @end: The last block to remove 2658 */ 2659 static int 2660 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2661 struct ext4_ext_path *path, 2662 struct partial_cluster *partial, 2663 ext4_lblk_t start, ext4_lblk_t end) 2664 { 2665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2666 int err = 0, correct_index = 0; 2667 int depth = ext_depth(inode), credits; 2668 struct ext4_extent_header *eh; 2669 ext4_lblk_t a, b; 2670 unsigned num; 2671 ext4_lblk_t ex_ee_block; 2672 unsigned short ex_ee_len; 2673 unsigned unwritten = 0; 2674 struct ext4_extent *ex; 2675 ext4_fsblk_t pblk; 2676 2677 /* the header must be checked already in ext4_ext_remove_space() */ 2678 ext_debug("truncate since %u in leaf to %u\n", start, end); 2679 if (!path[depth].p_hdr) 2680 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2681 eh = path[depth].p_hdr; 2682 if (unlikely(path[depth].p_hdr == NULL)) { 2683 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2684 return -EFSCORRUPTED; 2685 } 2686 /* find where to start removing */ 2687 ex = path[depth].p_ext; 2688 if (!ex) 2689 ex = EXT_LAST_EXTENT(eh); 2690 2691 ex_ee_block = le32_to_cpu(ex->ee_block); 2692 ex_ee_len = ext4_ext_get_actual_len(ex); 2693 2694 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2695 2696 while (ex >= EXT_FIRST_EXTENT(eh) && 2697 ex_ee_block + ex_ee_len > start) { 2698 2699 if (ext4_ext_is_unwritten(ex)) 2700 unwritten = 1; 2701 else 2702 unwritten = 0; 2703 2704 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2705 unwritten, ex_ee_len); 2706 path[depth].p_ext = ex; 2707 2708 a = ex_ee_block > start ? ex_ee_block : start; 2709 b = ex_ee_block+ex_ee_len - 1 < end ? 2710 ex_ee_block+ex_ee_len - 1 : end; 2711 2712 ext_debug(" border %u:%u\n", a, b); 2713 2714 /* If this extent is beyond the end of the hole, skip it */ 2715 if (end < ex_ee_block) { 2716 /* 2717 * We're going to skip this extent and move to another, 2718 * so note that its first cluster is in use to avoid 2719 * freeing it when removing blocks. Eventually, the 2720 * right edge of the truncated/punched region will 2721 * be just to the left. 2722 */ 2723 if (sbi->s_cluster_ratio > 1) { 2724 pblk = ext4_ext_pblock(ex); 2725 partial->pclu = EXT4_B2C(sbi, pblk); 2726 partial->state = nofree; 2727 } 2728 ex--; 2729 ex_ee_block = le32_to_cpu(ex->ee_block); 2730 ex_ee_len = ext4_ext_get_actual_len(ex); 2731 continue; 2732 } else if (b != ex_ee_block + ex_ee_len - 1) { 2733 EXT4_ERROR_INODE(inode, 2734 "can not handle truncate %u:%u " 2735 "on extent %u:%u", 2736 start, end, ex_ee_block, 2737 ex_ee_block + ex_ee_len - 1); 2738 err = -EFSCORRUPTED; 2739 goto out; 2740 } else if (a != ex_ee_block) { 2741 /* remove tail of the extent */ 2742 num = a - ex_ee_block; 2743 } else { 2744 /* remove whole extent: excellent! */ 2745 num = 0; 2746 } 2747 /* 2748 * 3 for leaf, sb, and inode plus 2 (bmap and group 2749 * descriptor) for each block group; assume two block 2750 * groups plus ex_ee_len/blocks_per_block_group for 2751 * the worst case 2752 */ 2753 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2754 if (ex == EXT_FIRST_EXTENT(eh)) { 2755 correct_index = 1; 2756 credits += (ext_depth(inode)) + 1; 2757 } 2758 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2759 2760 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2761 if (err) 2762 goto out; 2763 2764 err = ext4_ext_get_access(handle, inode, path + depth); 2765 if (err) 2766 goto out; 2767 2768 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2769 if (err) 2770 goto out; 2771 2772 if (num == 0) 2773 /* this extent is removed; mark slot entirely unused */ 2774 ext4_ext_store_pblock(ex, 0); 2775 2776 ex->ee_len = cpu_to_le16(num); 2777 /* 2778 * Do not mark unwritten if all the blocks in the 2779 * extent have been removed. 2780 */ 2781 if (unwritten && num) 2782 ext4_ext_mark_unwritten(ex); 2783 /* 2784 * If the extent was completely released, 2785 * we need to remove it from the leaf 2786 */ 2787 if (num == 0) { 2788 if (end != EXT_MAX_BLOCKS - 1) { 2789 /* 2790 * For hole punching, we need to scoot all the 2791 * extents up when an extent is removed so that 2792 * we dont have blank extents in the middle 2793 */ 2794 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2795 sizeof(struct ext4_extent)); 2796 2797 /* Now get rid of the one at the end */ 2798 memset(EXT_LAST_EXTENT(eh), 0, 2799 sizeof(struct ext4_extent)); 2800 } 2801 le16_add_cpu(&eh->eh_entries, -1); 2802 } 2803 2804 err = ext4_ext_dirty(handle, inode, path + depth); 2805 if (err) 2806 goto out; 2807 2808 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2809 ext4_ext_pblock(ex)); 2810 ex--; 2811 ex_ee_block = le32_to_cpu(ex->ee_block); 2812 ex_ee_len = ext4_ext_get_actual_len(ex); 2813 } 2814 2815 if (correct_index && eh->eh_entries) 2816 err = ext4_ext_correct_indexes(handle, inode, path); 2817 2818 /* 2819 * If there's a partial cluster and at least one extent remains in 2820 * the leaf, free the partial cluster if it isn't shared with the 2821 * current extent. If it is shared with the current extent 2822 * we reset the partial cluster because we've reached the start of the 2823 * truncated/punched region and we're done removing blocks. 2824 */ 2825 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2826 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2827 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2828 int flags = get_default_free_blocks_flags(inode); 2829 2830 if (ext4_is_pending(inode, partial->lblk)) 2831 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2832 ext4_free_blocks(handle, inode, NULL, 2833 EXT4_C2B(sbi, partial->pclu), 2834 sbi->s_cluster_ratio, flags); 2835 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2836 ext4_rereserve_cluster(inode, partial->lblk); 2837 } 2838 partial->state = initial; 2839 } 2840 2841 /* if this leaf is free, then we should 2842 * remove it from index block above */ 2843 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2844 err = ext4_ext_rm_idx(handle, inode, path, depth); 2845 2846 out: 2847 return err; 2848 } 2849 2850 /* 2851 * ext4_ext_more_to_rm: 2852 * returns 1 if current index has to be freed (even partial) 2853 */ 2854 static int 2855 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2856 { 2857 BUG_ON(path->p_idx == NULL); 2858 2859 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2860 return 0; 2861 2862 /* 2863 * if truncate on deeper level happened, it wasn't partial, 2864 * so we have to consider current index for truncation 2865 */ 2866 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2867 return 0; 2868 return 1; 2869 } 2870 2871 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2872 ext4_lblk_t end) 2873 { 2874 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2875 int depth = ext_depth(inode); 2876 struct ext4_ext_path *path = NULL; 2877 struct partial_cluster partial; 2878 handle_t *handle; 2879 int i = 0, err = 0; 2880 2881 partial.pclu = 0; 2882 partial.lblk = 0; 2883 partial.state = initial; 2884 2885 ext_debug("truncate since %u to %u\n", start, end); 2886 2887 /* probably first extent we're gonna free will be last in block */ 2888 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2889 if (IS_ERR(handle)) 2890 return PTR_ERR(handle); 2891 2892 again: 2893 trace_ext4_ext_remove_space(inode, start, end, depth); 2894 2895 /* 2896 * Check if we are removing extents inside the extent tree. If that 2897 * is the case, we are going to punch a hole inside the extent tree 2898 * so we have to check whether we need to split the extent covering 2899 * the last block to remove so we can easily remove the part of it 2900 * in ext4_ext_rm_leaf(). 2901 */ 2902 if (end < EXT_MAX_BLOCKS - 1) { 2903 struct ext4_extent *ex; 2904 ext4_lblk_t ee_block, ex_end, lblk; 2905 ext4_fsblk_t pblk; 2906 2907 /* find extent for or closest extent to this block */ 2908 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2909 if (IS_ERR(path)) { 2910 ext4_journal_stop(handle); 2911 return PTR_ERR(path); 2912 } 2913 depth = ext_depth(inode); 2914 /* Leaf not may not exist only if inode has no blocks at all */ 2915 ex = path[depth].p_ext; 2916 if (!ex) { 2917 if (depth) { 2918 EXT4_ERROR_INODE(inode, 2919 "path[%d].p_hdr == NULL", 2920 depth); 2921 err = -EFSCORRUPTED; 2922 } 2923 goto out; 2924 } 2925 2926 ee_block = le32_to_cpu(ex->ee_block); 2927 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2928 2929 /* 2930 * See if the last block is inside the extent, if so split 2931 * the extent at 'end' block so we can easily remove the 2932 * tail of the first part of the split extent in 2933 * ext4_ext_rm_leaf(). 2934 */ 2935 if (end >= ee_block && end < ex_end) { 2936 2937 /* 2938 * If we're going to split the extent, note that 2939 * the cluster containing the block after 'end' is 2940 * in use to avoid freeing it when removing blocks. 2941 */ 2942 if (sbi->s_cluster_ratio > 1) { 2943 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2944 partial.pclu = EXT4_B2C(sbi, pblk); 2945 partial.state = nofree; 2946 } 2947 2948 /* 2949 * Split the extent in two so that 'end' is the last 2950 * block in the first new extent. Also we should not 2951 * fail removing space due to ENOSPC so try to use 2952 * reserved block if that happens. 2953 */ 2954 err = ext4_force_split_extent_at(handle, inode, &path, 2955 end + 1, 1); 2956 if (err < 0) 2957 goto out; 2958 2959 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end && 2960 partial.state == initial) { 2961 /* 2962 * If we're punching, there's an extent to the right. 2963 * If the partial cluster hasn't been set, set it to 2964 * that extent's first cluster and its state to nofree 2965 * so it won't be freed should it contain blocks to be 2966 * removed. If it's already set (tofree/nofree), we're 2967 * retrying and keep the original partial cluster info 2968 * so a cluster marked tofree as a result of earlier 2969 * extent removal is not lost. 2970 */ 2971 lblk = ex_end + 1; 2972 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2973 &ex); 2974 if (err) 2975 goto out; 2976 if (pblk) { 2977 partial.pclu = EXT4_B2C(sbi, pblk); 2978 partial.state = nofree; 2979 } 2980 } 2981 } 2982 /* 2983 * We start scanning from right side, freeing all the blocks 2984 * after i_size and walking into the tree depth-wise. 2985 */ 2986 depth = ext_depth(inode); 2987 if (path) { 2988 int k = i = depth; 2989 while (--k > 0) 2990 path[k].p_block = 2991 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2992 } else { 2993 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2994 GFP_NOFS); 2995 if (path == NULL) { 2996 ext4_journal_stop(handle); 2997 return -ENOMEM; 2998 } 2999 path[0].p_maxdepth = path[0].p_depth = depth; 3000 path[0].p_hdr = ext_inode_hdr(inode); 3001 i = 0; 3002 3003 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 3004 err = -EFSCORRUPTED; 3005 goto out; 3006 } 3007 } 3008 err = 0; 3009 3010 while (i >= 0 && err == 0) { 3011 if (i == depth) { 3012 /* this is leaf block */ 3013 err = ext4_ext_rm_leaf(handle, inode, path, 3014 &partial, start, end); 3015 /* root level has p_bh == NULL, brelse() eats this */ 3016 brelse(path[i].p_bh); 3017 path[i].p_bh = NULL; 3018 i--; 3019 continue; 3020 } 3021 3022 /* this is index block */ 3023 if (!path[i].p_hdr) { 3024 ext_debug("initialize header\n"); 3025 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 3026 } 3027 3028 if (!path[i].p_idx) { 3029 /* this level hasn't been touched yet */ 3030 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 3031 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 3032 ext_debug("init index ptr: hdr 0x%p, num %d\n", 3033 path[i].p_hdr, 3034 le16_to_cpu(path[i].p_hdr->eh_entries)); 3035 } else { 3036 /* we were already here, see at next index */ 3037 path[i].p_idx--; 3038 } 3039 3040 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 3041 i, EXT_FIRST_INDEX(path[i].p_hdr), 3042 path[i].p_idx); 3043 if (ext4_ext_more_to_rm(path + i)) { 3044 struct buffer_head *bh; 3045 /* go to the next level */ 3046 ext_debug("move to level %d (block %llu)\n", 3047 i + 1, ext4_idx_pblock(path[i].p_idx)); 3048 memset(path + i + 1, 0, sizeof(*path)); 3049 bh = read_extent_tree_block(inode, 3050 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 3051 EXT4_EX_NOCACHE); 3052 if (IS_ERR(bh)) { 3053 /* should we reset i_size? */ 3054 err = PTR_ERR(bh); 3055 break; 3056 } 3057 /* Yield here to deal with large extent trees. 3058 * Should be a no-op if we did IO above. */ 3059 cond_resched(); 3060 if (WARN_ON(i + 1 > depth)) { 3061 err = -EFSCORRUPTED; 3062 break; 3063 } 3064 path[i + 1].p_bh = bh; 3065 3066 /* save actual number of indexes since this 3067 * number is changed at the next iteration */ 3068 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 3069 i++; 3070 } else { 3071 /* we finished processing this index, go up */ 3072 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 3073 /* index is empty, remove it; 3074 * handle must be already prepared by the 3075 * truncatei_leaf() */ 3076 err = ext4_ext_rm_idx(handle, inode, path, i); 3077 } 3078 /* root level has p_bh == NULL, brelse() eats this */ 3079 brelse(path[i].p_bh); 3080 path[i].p_bh = NULL; 3081 i--; 3082 ext_debug("return to level %d\n", i); 3083 } 3084 } 3085 3086 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 3087 path->p_hdr->eh_entries); 3088 3089 /* 3090 * if there's a partial cluster and we have removed the first extent 3091 * in the file, then we also free the partial cluster, if any 3092 */ 3093 if (partial.state == tofree && err == 0) { 3094 int flags = get_default_free_blocks_flags(inode); 3095 3096 if (ext4_is_pending(inode, partial.lblk)) 3097 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 3098 ext4_free_blocks(handle, inode, NULL, 3099 EXT4_C2B(sbi, partial.pclu), 3100 sbi->s_cluster_ratio, flags); 3101 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 3102 ext4_rereserve_cluster(inode, partial.lblk); 3103 partial.state = initial; 3104 } 3105 3106 /* TODO: flexible tree reduction should be here */ 3107 if (path->p_hdr->eh_entries == 0) { 3108 /* 3109 * truncate to zero freed all the tree, 3110 * so we need to correct eh_depth 3111 */ 3112 err = ext4_ext_get_access(handle, inode, path); 3113 if (err == 0) { 3114 ext_inode_hdr(inode)->eh_depth = 0; 3115 ext_inode_hdr(inode)->eh_max = 3116 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3117 err = ext4_ext_dirty(handle, inode, path); 3118 } 3119 } 3120 out: 3121 ext4_ext_drop_refs(path); 3122 kfree(path); 3123 path = NULL; 3124 if (err == -EAGAIN) 3125 goto again; 3126 ext4_journal_stop(handle); 3127 3128 return err; 3129 } 3130 3131 /* 3132 * called at mount time 3133 */ 3134 void ext4_ext_init(struct super_block *sb) 3135 { 3136 /* 3137 * possible initialization would be here 3138 */ 3139 3140 if (ext4_has_feature_extents(sb)) { 3141 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3142 printk(KERN_INFO "EXT4-fs: file extents enabled" 3143 #ifdef AGGRESSIVE_TEST 3144 ", aggressive tests" 3145 #endif 3146 #ifdef CHECK_BINSEARCH 3147 ", check binsearch" 3148 #endif 3149 #ifdef EXTENTS_STATS 3150 ", stats" 3151 #endif 3152 "\n"); 3153 #endif 3154 #ifdef EXTENTS_STATS 3155 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3156 EXT4_SB(sb)->s_ext_min = 1 << 30; 3157 EXT4_SB(sb)->s_ext_max = 0; 3158 #endif 3159 } 3160 } 3161 3162 /* 3163 * called at umount time 3164 */ 3165 void ext4_ext_release(struct super_block *sb) 3166 { 3167 if (!ext4_has_feature_extents(sb)) 3168 return; 3169 3170 #ifdef EXTENTS_STATS 3171 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3172 struct ext4_sb_info *sbi = EXT4_SB(sb); 3173 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3174 sbi->s_ext_blocks, sbi->s_ext_extents, 3175 sbi->s_ext_blocks / sbi->s_ext_extents); 3176 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3177 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3178 } 3179 #endif 3180 } 3181 3182 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3183 { 3184 ext4_lblk_t ee_block; 3185 ext4_fsblk_t ee_pblock; 3186 unsigned int ee_len; 3187 3188 ee_block = le32_to_cpu(ex->ee_block); 3189 ee_len = ext4_ext_get_actual_len(ex); 3190 ee_pblock = ext4_ext_pblock(ex); 3191 3192 if (ee_len == 0) 3193 return 0; 3194 3195 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3196 EXTENT_STATUS_WRITTEN); 3197 } 3198 3199 /* FIXME!! we need to try to merge to left or right after zero-out */ 3200 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3201 { 3202 ext4_fsblk_t ee_pblock; 3203 unsigned int ee_len; 3204 3205 ee_len = ext4_ext_get_actual_len(ex); 3206 ee_pblock = ext4_ext_pblock(ex); 3207 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3208 ee_len); 3209 } 3210 3211 /* 3212 * ext4_split_extent_at() splits an extent at given block. 3213 * 3214 * @handle: the journal handle 3215 * @inode: the file inode 3216 * @path: the path to the extent 3217 * @split: the logical block where the extent is splitted. 3218 * @split_flags: indicates if the extent could be zeroout if split fails, and 3219 * the states(init or unwritten) of new extents. 3220 * @flags: flags used to insert new extent to extent tree. 3221 * 3222 * 3223 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3224 * of which are deterimined by split_flag. 3225 * 3226 * There are two cases: 3227 * a> the extent are splitted into two extent. 3228 * b> split is not needed, and just mark the extent. 3229 * 3230 * return 0 on success. 3231 */ 3232 static int ext4_split_extent_at(handle_t *handle, 3233 struct inode *inode, 3234 struct ext4_ext_path **ppath, 3235 ext4_lblk_t split, 3236 int split_flag, 3237 int flags) 3238 { 3239 struct ext4_ext_path *path = *ppath; 3240 ext4_fsblk_t newblock; 3241 ext4_lblk_t ee_block; 3242 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3243 struct ext4_extent *ex2 = NULL; 3244 unsigned int ee_len, depth; 3245 int err = 0; 3246 3247 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3248 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3249 3250 ext_debug("ext4_split_extents_at: inode %lu, logical" 3251 "block %llu\n", inode->i_ino, (unsigned long long)split); 3252 3253 ext4_ext_show_leaf(inode, path); 3254 3255 depth = ext_depth(inode); 3256 ex = path[depth].p_ext; 3257 ee_block = le32_to_cpu(ex->ee_block); 3258 ee_len = ext4_ext_get_actual_len(ex); 3259 newblock = split - ee_block + ext4_ext_pblock(ex); 3260 3261 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3262 BUG_ON(!ext4_ext_is_unwritten(ex) && 3263 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3264 EXT4_EXT_MARK_UNWRIT1 | 3265 EXT4_EXT_MARK_UNWRIT2)); 3266 3267 err = ext4_ext_get_access(handle, inode, path + depth); 3268 if (err) 3269 goto out; 3270 3271 if (split == ee_block) { 3272 /* 3273 * case b: block @split is the block that the extent begins with 3274 * then we just change the state of the extent, and splitting 3275 * is not needed. 3276 */ 3277 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3278 ext4_ext_mark_unwritten(ex); 3279 else 3280 ext4_ext_mark_initialized(ex); 3281 3282 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3283 ext4_ext_try_to_merge(handle, inode, path, ex); 3284 3285 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3286 goto out; 3287 } 3288 3289 /* case a */ 3290 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3291 ex->ee_len = cpu_to_le16(split - ee_block); 3292 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3293 ext4_ext_mark_unwritten(ex); 3294 3295 /* 3296 * path may lead to new leaf, not to original leaf any more 3297 * after ext4_ext_insert_extent() returns, 3298 */ 3299 err = ext4_ext_dirty(handle, inode, path + depth); 3300 if (err) 3301 goto fix_extent_len; 3302 3303 ex2 = &newex; 3304 ex2->ee_block = cpu_to_le32(split); 3305 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3306 ext4_ext_store_pblock(ex2, newblock); 3307 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3308 ext4_ext_mark_unwritten(ex2); 3309 3310 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3311 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3312 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3313 if (split_flag & EXT4_EXT_DATA_VALID1) { 3314 err = ext4_ext_zeroout(inode, ex2); 3315 zero_ex.ee_block = ex2->ee_block; 3316 zero_ex.ee_len = cpu_to_le16( 3317 ext4_ext_get_actual_len(ex2)); 3318 ext4_ext_store_pblock(&zero_ex, 3319 ext4_ext_pblock(ex2)); 3320 } else { 3321 err = ext4_ext_zeroout(inode, ex); 3322 zero_ex.ee_block = ex->ee_block; 3323 zero_ex.ee_len = cpu_to_le16( 3324 ext4_ext_get_actual_len(ex)); 3325 ext4_ext_store_pblock(&zero_ex, 3326 ext4_ext_pblock(ex)); 3327 } 3328 } else { 3329 err = ext4_ext_zeroout(inode, &orig_ex); 3330 zero_ex.ee_block = orig_ex.ee_block; 3331 zero_ex.ee_len = cpu_to_le16( 3332 ext4_ext_get_actual_len(&orig_ex)); 3333 ext4_ext_store_pblock(&zero_ex, 3334 ext4_ext_pblock(&orig_ex)); 3335 } 3336 3337 if (err) 3338 goto fix_extent_len; 3339 /* update the extent length and mark as initialized */ 3340 ex->ee_len = cpu_to_le16(ee_len); 3341 ext4_ext_try_to_merge(handle, inode, path, ex); 3342 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3343 if (err) 3344 goto fix_extent_len; 3345 3346 /* update extent status tree */ 3347 err = ext4_zeroout_es(inode, &zero_ex); 3348 3349 goto out; 3350 } else if (err) 3351 goto fix_extent_len; 3352 3353 out: 3354 ext4_ext_show_leaf(inode, path); 3355 return err; 3356 3357 fix_extent_len: 3358 ex->ee_len = orig_ex.ee_len; 3359 ext4_ext_dirty(handle, inode, path + path->p_depth); 3360 return err; 3361 } 3362 3363 /* 3364 * ext4_split_extents() splits an extent and mark extent which is covered 3365 * by @map as split_flags indicates 3366 * 3367 * It may result in splitting the extent into multiple extents (up to three) 3368 * There are three possibilities: 3369 * a> There is no split required 3370 * b> Splits in two extents: Split is happening at either end of the extent 3371 * c> Splits in three extents: Somone is splitting in middle of the extent 3372 * 3373 */ 3374 static int ext4_split_extent(handle_t *handle, 3375 struct inode *inode, 3376 struct ext4_ext_path **ppath, 3377 struct ext4_map_blocks *map, 3378 int split_flag, 3379 int flags) 3380 { 3381 struct ext4_ext_path *path = *ppath; 3382 ext4_lblk_t ee_block; 3383 struct ext4_extent *ex; 3384 unsigned int ee_len, depth; 3385 int err = 0; 3386 int unwritten; 3387 int split_flag1, flags1; 3388 int allocated = map->m_len; 3389 3390 depth = ext_depth(inode); 3391 ex = path[depth].p_ext; 3392 ee_block = le32_to_cpu(ex->ee_block); 3393 ee_len = ext4_ext_get_actual_len(ex); 3394 unwritten = ext4_ext_is_unwritten(ex); 3395 3396 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3397 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3398 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3399 if (unwritten) 3400 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3401 EXT4_EXT_MARK_UNWRIT2; 3402 if (split_flag & EXT4_EXT_DATA_VALID2) 3403 split_flag1 |= EXT4_EXT_DATA_VALID1; 3404 err = ext4_split_extent_at(handle, inode, ppath, 3405 map->m_lblk + map->m_len, split_flag1, flags1); 3406 if (err) 3407 goto out; 3408 } else { 3409 allocated = ee_len - (map->m_lblk - ee_block); 3410 } 3411 /* 3412 * Update path is required because previous ext4_split_extent_at() may 3413 * result in split of original leaf or extent zeroout. 3414 */ 3415 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3416 if (IS_ERR(path)) 3417 return PTR_ERR(path); 3418 depth = ext_depth(inode); 3419 ex = path[depth].p_ext; 3420 if (!ex) { 3421 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3422 (unsigned long) map->m_lblk); 3423 return -EFSCORRUPTED; 3424 } 3425 unwritten = ext4_ext_is_unwritten(ex); 3426 split_flag1 = 0; 3427 3428 if (map->m_lblk >= ee_block) { 3429 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3430 if (unwritten) { 3431 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3432 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3433 EXT4_EXT_MARK_UNWRIT2); 3434 } 3435 err = ext4_split_extent_at(handle, inode, ppath, 3436 map->m_lblk, split_flag1, flags); 3437 if (err) 3438 goto out; 3439 } 3440 3441 ext4_ext_show_leaf(inode, path); 3442 out: 3443 return err ? err : allocated; 3444 } 3445 3446 /* 3447 * This function is called by ext4_ext_map_blocks() if someone tries to write 3448 * to an unwritten extent. It may result in splitting the unwritten 3449 * extent into multiple extents (up to three - one initialized and two 3450 * unwritten). 3451 * There are three possibilities: 3452 * a> There is no split required: Entire extent should be initialized 3453 * b> Splits in two extents: Write is happening at either end of the extent 3454 * c> Splits in three extents: Somone is writing in middle of the extent 3455 * 3456 * Pre-conditions: 3457 * - The extent pointed to by 'path' is unwritten. 3458 * - The extent pointed to by 'path' contains a superset 3459 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3460 * 3461 * Post-conditions on success: 3462 * - the returned value is the number of blocks beyond map->l_lblk 3463 * that are allocated and initialized. 3464 * It is guaranteed to be >= map->m_len. 3465 */ 3466 static int ext4_ext_convert_to_initialized(handle_t *handle, 3467 struct inode *inode, 3468 struct ext4_map_blocks *map, 3469 struct ext4_ext_path **ppath, 3470 int flags) 3471 { 3472 struct ext4_ext_path *path = *ppath; 3473 struct ext4_sb_info *sbi; 3474 struct ext4_extent_header *eh; 3475 struct ext4_map_blocks split_map; 3476 struct ext4_extent zero_ex1, zero_ex2; 3477 struct ext4_extent *ex, *abut_ex; 3478 ext4_lblk_t ee_block, eof_block; 3479 unsigned int ee_len, depth, map_len = map->m_len; 3480 int allocated = 0, max_zeroout = 0; 3481 int err = 0; 3482 int split_flag = EXT4_EXT_DATA_VALID2; 3483 3484 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3485 "block %llu, max_blocks %u\n", inode->i_ino, 3486 (unsigned long long)map->m_lblk, map_len); 3487 3488 sbi = EXT4_SB(inode->i_sb); 3489 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3490 inode->i_sb->s_blocksize_bits; 3491 if (eof_block < map->m_lblk + map_len) 3492 eof_block = map->m_lblk + map_len; 3493 3494 depth = ext_depth(inode); 3495 eh = path[depth].p_hdr; 3496 ex = path[depth].p_ext; 3497 ee_block = le32_to_cpu(ex->ee_block); 3498 ee_len = ext4_ext_get_actual_len(ex); 3499 zero_ex1.ee_len = 0; 3500 zero_ex2.ee_len = 0; 3501 3502 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3503 3504 /* Pre-conditions */ 3505 BUG_ON(!ext4_ext_is_unwritten(ex)); 3506 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3507 3508 /* 3509 * Attempt to transfer newly initialized blocks from the currently 3510 * unwritten extent to its neighbor. This is much cheaper 3511 * than an insertion followed by a merge as those involve costly 3512 * memmove() calls. Transferring to the left is the common case in 3513 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3514 * followed by append writes. 3515 * 3516 * Limitations of the current logic: 3517 * - L1: we do not deal with writes covering the whole extent. 3518 * This would require removing the extent if the transfer 3519 * is possible. 3520 * - L2: we only attempt to merge with an extent stored in the 3521 * same extent tree node. 3522 */ 3523 if ((map->m_lblk == ee_block) && 3524 /* See if we can merge left */ 3525 (map_len < ee_len) && /*L1*/ 3526 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3527 ext4_lblk_t prev_lblk; 3528 ext4_fsblk_t prev_pblk, ee_pblk; 3529 unsigned int prev_len; 3530 3531 abut_ex = ex - 1; 3532 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3533 prev_len = ext4_ext_get_actual_len(abut_ex); 3534 prev_pblk = ext4_ext_pblock(abut_ex); 3535 ee_pblk = ext4_ext_pblock(ex); 3536 3537 /* 3538 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3539 * upon those conditions: 3540 * - C1: abut_ex is initialized, 3541 * - C2: abut_ex is logically abutting ex, 3542 * - C3: abut_ex is physically abutting ex, 3543 * - C4: abut_ex can receive the additional blocks without 3544 * overflowing the (initialized) length limit. 3545 */ 3546 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3547 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3548 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3549 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3550 err = ext4_ext_get_access(handle, inode, path + depth); 3551 if (err) 3552 goto out; 3553 3554 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3555 map, ex, abut_ex); 3556 3557 /* Shift the start of ex by 'map_len' blocks */ 3558 ex->ee_block = cpu_to_le32(ee_block + map_len); 3559 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3560 ex->ee_len = cpu_to_le16(ee_len - map_len); 3561 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3562 3563 /* Extend abut_ex by 'map_len' blocks */ 3564 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3565 3566 /* Result: number of initialized blocks past m_lblk */ 3567 allocated = map_len; 3568 } 3569 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3570 (map_len < ee_len) && /*L1*/ 3571 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3572 /* See if we can merge right */ 3573 ext4_lblk_t next_lblk; 3574 ext4_fsblk_t next_pblk, ee_pblk; 3575 unsigned int next_len; 3576 3577 abut_ex = ex + 1; 3578 next_lblk = le32_to_cpu(abut_ex->ee_block); 3579 next_len = ext4_ext_get_actual_len(abut_ex); 3580 next_pblk = ext4_ext_pblock(abut_ex); 3581 ee_pblk = ext4_ext_pblock(ex); 3582 3583 /* 3584 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3585 * upon those conditions: 3586 * - C1: abut_ex is initialized, 3587 * - C2: abut_ex is logically abutting ex, 3588 * - C3: abut_ex is physically abutting ex, 3589 * - C4: abut_ex can receive the additional blocks without 3590 * overflowing the (initialized) length limit. 3591 */ 3592 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3593 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3594 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3595 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3596 err = ext4_ext_get_access(handle, inode, path + depth); 3597 if (err) 3598 goto out; 3599 3600 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3601 map, ex, abut_ex); 3602 3603 /* Shift the start of abut_ex by 'map_len' blocks */ 3604 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3605 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3606 ex->ee_len = cpu_to_le16(ee_len - map_len); 3607 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3608 3609 /* Extend abut_ex by 'map_len' blocks */ 3610 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3611 3612 /* Result: number of initialized blocks past m_lblk */ 3613 allocated = map_len; 3614 } 3615 } 3616 if (allocated) { 3617 /* Mark the block containing both extents as dirty */ 3618 ext4_ext_dirty(handle, inode, path + depth); 3619 3620 /* Update path to point to the right extent */ 3621 path[depth].p_ext = abut_ex; 3622 goto out; 3623 } else 3624 allocated = ee_len - (map->m_lblk - ee_block); 3625 3626 WARN_ON(map->m_lblk < ee_block); 3627 /* 3628 * It is safe to convert extent to initialized via explicit 3629 * zeroout only if extent is fully inside i_size or new_size. 3630 */ 3631 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3632 3633 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3634 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3635 (inode->i_sb->s_blocksize_bits - 10); 3636 3637 if (IS_ENCRYPTED(inode)) 3638 max_zeroout = 0; 3639 3640 /* 3641 * five cases: 3642 * 1. split the extent into three extents. 3643 * 2. split the extent into two extents, zeroout the head of the first 3644 * extent. 3645 * 3. split the extent into two extents, zeroout the tail of the second 3646 * extent. 3647 * 4. split the extent into two extents with out zeroout. 3648 * 5. no splitting needed, just possibly zeroout the head and / or the 3649 * tail of the extent. 3650 */ 3651 split_map.m_lblk = map->m_lblk; 3652 split_map.m_len = map->m_len; 3653 3654 if (max_zeroout && (allocated > split_map.m_len)) { 3655 if (allocated <= max_zeroout) { 3656 /* case 3 or 5 */ 3657 zero_ex1.ee_block = 3658 cpu_to_le32(split_map.m_lblk + 3659 split_map.m_len); 3660 zero_ex1.ee_len = 3661 cpu_to_le16(allocated - split_map.m_len); 3662 ext4_ext_store_pblock(&zero_ex1, 3663 ext4_ext_pblock(ex) + split_map.m_lblk + 3664 split_map.m_len - ee_block); 3665 err = ext4_ext_zeroout(inode, &zero_ex1); 3666 if (err) 3667 goto out; 3668 split_map.m_len = allocated; 3669 } 3670 if (split_map.m_lblk - ee_block + split_map.m_len < 3671 max_zeroout) { 3672 /* case 2 or 5 */ 3673 if (split_map.m_lblk != ee_block) { 3674 zero_ex2.ee_block = ex->ee_block; 3675 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3676 ee_block); 3677 ext4_ext_store_pblock(&zero_ex2, 3678 ext4_ext_pblock(ex)); 3679 err = ext4_ext_zeroout(inode, &zero_ex2); 3680 if (err) 3681 goto out; 3682 } 3683 3684 split_map.m_len += split_map.m_lblk - ee_block; 3685 split_map.m_lblk = ee_block; 3686 allocated = map->m_len; 3687 } 3688 } 3689 3690 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3691 flags); 3692 if (err > 0) 3693 err = 0; 3694 out: 3695 /* If we have gotten a failure, don't zero out status tree */ 3696 if (!err) { 3697 err = ext4_zeroout_es(inode, &zero_ex1); 3698 if (!err) 3699 err = ext4_zeroout_es(inode, &zero_ex2); 3700 } 3701 return err ? err : allocated; 3702 } 3703 3704 /* 3705 * This function is called by ext4_ext_map_blocks() from 3706 * ext4_get_blocks_dio_write() when DIO to write 3707 * to an unwritten extent. 3708 * 3709 * Writing to an unwritten extent may result in splitting the unwritten 3710 * extent into multiple initialized/unwritten extents (up to three) 3711 * There are three possibilities: 3712 * a> There is no split required: Entire extent should be unwritten 3713 * b> Splits in two extents: Write is happening at either end of the extent 3714 * c> Splits in three extents: Somone is writing in middle of the extent 3715 * 3716 * This works the same way in the case of initialized -> unwritten conversion. 3717 * 3718 * One of more index blocks maybe needed if the extent tree grow after 3719 * the unwritten extent split. To prevent ENOSPC occur at the IO 3720 * complete, we need to split the unwritten extent before DIO submit 3721 * the IO. The unwritten extent called at this time will be split 3722 * into three unwritten extent(at most). After IO complete, the part 3723 * being filled will be convert to initialized by the end_io callback function 3724 * via ext4_convert_unwritten_extents(). 3725 * 3726 * Returns the size of unwritten extent to be written on success. 3727 */ 3728 static int ext4_split_convert_extents(handle_t *handle, 3729 struct inode *inode, 3730 struct ext4_map_blocks *map, 3731 struct ext4_ext_path **ppath, 3732 int flags) 3733 { 3734 struct ext4_ext_path *path = *ppath; 3735 ext4_lblk_t eof_block; 3736 ext4_lblk_t ee_block; 3737 struct ext4_extent *ex; 3738 unsigned int ee_len; 3739 int split_flag = 0, depth; 3740 3741 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3742 __func__, inode->i_ino, 3743 (unsigned long long)map->m_lblk, map->m_len); 3744 3745 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3746 inode->i_sb->s_blocksize_bits; 3747 if (eof_block < map->m_lblk + map->m_len) 3748 eof_block = map->m_lblk + map->m_len; 3749 /* 3750 * It is safe to convert extent to initialized via explicit 3751 * zeroout only if extent is fully insde i_size or new_size. 3752 */ 3753 depth = ext_depth(inode); 3754 ex = path[depth].p_ext; 3755 ee_block = le32_to_cpu(ex->ee_block); 3756 ee_len = ext4_ext_get_actual_len(ex); 3757 3758 /* Convert to unwritten */ 3759 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3760 split_flag |= EXT4_EXT_DATA_VALID1; 3761 /* Convert to initialized */ 3762 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3763 split_flag |= ee_block + ee_len <= eof_block ? 3764 EXT4_EXT_MAY_ZEROOUT : 0; 3765 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3766 } 3767 flags |= EXT4_GET_BLOCKS_PRE_IO; 3768 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3769 } 3770 3771 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3772 struct inode *inode, 3773 struct ext4_map_blocks *map, 3774 struct ext4_ext_path **ppath) 3775 { 3776 struct ext4_ext_path *path = *ppath; 3777 struct ext4_extent *ex; 3778 ext4_lblk_t ee_block; 3779 unsigned int ee_len; 3780 int depth; 3781 int err = 0; 3782 3783 depth = ext_depth(inode); 3784 ex = path[depth].p_ext; 3785 ee_block = le32_to_cpu(ex->ee_block); 3786 ee_len = ext4_ext_get_actual_len(ex); 3787 3788 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3789 "block %llu, max_blocks %u\n", inode->i_ino, 3790 (unsigned long long)ee_block, ee_len); 3791 3792 /* If extent is larger than requested it is a clear sign that we still 3793 * have some extent state machine issues left. So extent_split is still 3794 * required. 3795 * TODO: Once all related issues will be fixed this situation should be 3796 * illegal. 3797 */ 3798 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3799 #ifdef EXT4_DEBUG 3800 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3801 " len %u; IO logical block %llu, len %u", 3802 inode->i_ino, (unsigned long long)ee_block, ee_len, 3803 (unsigned long long)map->m_lblk, map->m_len); 3804 #endif 3805 err = ext4_split_convert_extents(handle, inode, map, ppath, 3806 EXT4_GET_BLOCKS_CONVERT); 3807 if (err < 0) 3808 return err; 3809 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3810 if (IS_ERR(path)) 3811 return PTR_ERR(path); 3812 depth = ext_depth(inode); 3813 ex = path[depth].p_ext; 3814 } 3815 3816 err = ext4_ext_get_access(handle, inode, path + depth); 3817 if (err) 3818 goto out; 3819 /* first mark the extent as initialized */ 3820 ext4_ext_mark_initialized(ex); 3821 3822 /* note: ext4_ext_correct_indexes() isn't needed here because 3823 * borders are not changed 3824 */ 3825 ext4_ext_try_to_merge(handle, inode, path, ex); 3826 3827 /* Mark modified extent as dirty */ 3828 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3829 out: 3830 ext4_ext_show_leaf(inode, path); 3831 return err; 3832 } 3833 3834 /* 3835 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3836 */ 3837 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3838 ext4_lblk_t lblk, 3839 struct ext4_ext_path *path, 3840 unsigned int len) 3841 { 3842 int i, depth; 3843 struct ext4_extent_header *eh; 3844 struct ext4_extent *last_ex; 3845 3846 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3847 return 0; 3848 3849 depth = ext_depth(inode); 3850 eh = path[depth].p_hdr; 3851 3852 /* 3853 * We're going to remove EOFBLOCKS_FL entirely in future so we 3854 * do not care for this case anymore. Simply remove the flag 3855 * if there are no extents. 3856 */ 3857 if (unlikely(!eh->eh_entries)) 3858 goto out; 3859 last_ex = EXT_LAST_EXTENT(eh); 3860 /* 3861 * We should clear the EOFBLOCKS_FL flag if we are writing the 3862 * last block in the last extent in the file. We test this by 3863 * first checking to see if the caller to 3864 * ext4_ext_get_blocks() was interested in the last block (or 3865 * a block beyond the last block) in the current extent. If 3866 * this turns out to be false, we can bail out from this 3867 * function immediately. 3868 */ 3869 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3870 ext4_ext_get_actual_len(last_ex)) 3871 return 0; 3872 /* 3873 * If the caller does appear to be planning to write at or 3874 * beyond the end of the current extent, we then test to see 3875 * if the current extent is the last extent in the file, by 3876 * checking to make sure it was reached via the rightmost node 3877 * at each level of the tree. 3878 */ 3879 for (i = depth-1; i >= 0; i--) 3880 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3881 return 0; 3882 out: 3883 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3884 return ext4_mark_inode_dirty(handle, inode); 3885 } 3886 3887 static int 3888 convert_initialized_extent(handle_t *handle, struct inode *inode, 3889 struct ext4_map_blocks *map, 3890 struct ext4_ext_path **ppath, 3891 unsigned int allocated) 3892 { 3893 struct ext4_ext_path *path = *ppath; 3894 struct ext4_extent *ex; 3895 ext4_lblk_t ee_block; 3896 unsigned int ee_len; 3897 int depth; 3898 int err = 0; 3899 3900 /* 3901 * Make sure that the extent is no bigger than we support with 3902 * unwritten extent 3903 */ 3904 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3905 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3906 3907 depth = ext_depth(inode); 3908 ex = path[depth].p_ext; 3909 ee_block = le32_to_cpu(ex->ee_block); 3910 ee_len = ext4_ext_get_actual_len(ex); 3911 3912 ext_debug("%s: inode %lu, logical" 3913 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3914 (unsigned long long)ee_block, ee_len); 3915 3916 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3917 err = ext4_split_convert_extents(handle, inode, map, ppath, 3918 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3919 if (err < 0) 3920 return err; 3921 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3922 if (IS_ERR(path)) 3923 return PTR_ERR(path); 3924 depth = ext_depth(inode); 3925 ex = path[depth].p_ext; 3926 if (!ex) { 3927 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3928 (unsigned long) map->m_lblk); 3929 return -EFSCORRUPTED; 3930 } 3931 } 3932 3933 err = ext4_ext_get_access(handle, inode, path + depth); 3934 if (err) 3935 return err; 3936 /* first mark the extent as unwritten */ 3937 ext4_ext_mark_unwritten(ex); 3938 3939 /* note: ext4_ext_correct_indexes() isn't needed here because 3940 * borders are not changed 3941 */ 3942 ext4_ext_try_to_merge(handle, inode, path, ex); 3943 3944 /* Mark modified extent as dirty */ 3945 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3946 if (err) 3947 return err; 3948 ext4_ext_show_leaf(inode, path); 3949 3950 ext4_update_inode_fsync_trans(handle, inode, 1); 3951 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3952 if (err) 3953 return err; 3954 map->m_flags |= EXT4_MAP_UNWRITTEN; 3955 if (allocated > map->m_len) 3956 allocated = map->m_len; 3957 map->m_len = allocated; 3958 return allocated; 3959 } 3960 3961 static int 3962 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3963 struct ext4_map_blocks *map, 3964 struct ext4_ext_path **ppath, int flags, 3965 unsigned int allocated, ext4_fsblk_t newblock) 3966 { 3967 struct ext4_ext_path *path = *ppath; 3968 int ret = 0; 3969 int err = 0; 3970 3971 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 3972 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3973 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3974 flags, allocated); 3975 ext4_ext_show_leaf(inode, path); 3976 3977 /* 3978 * When writing into unwritten space, we should not fail to 3979 * allocate metadata blocks for the new extent block if needed. 3980 */ 3981 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3982 3983 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 3984 allocated, newblock); 3985 3986 /* get_block() before submit the IO, split the extent */ 3987 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 3988 ret = ext4_split_convert_extents(handle, inode, map, ppath, 3989 flags | EXT4_GET_BLOCKS_CONVERT); 3990 if (ret <= 0) 3991 goto out; 3992 map->m_flags |= EXT4_MAP_UNWRITTEN; 3993 goto out; 3994 } 3995 /* IO end_io complete, convert the filled extent to written */ 3996 if (flags & EXT4_GET_BLOCKS_CONVERT) { 3997 if (flags & EXT4_GET_BLOCKS_ZERO) { 3998 if (allocated > map->m_len) 3999 allocated = map->m_len; 4000 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 4001 allocated); 4002 if (err < 0) 4003 goto out2; 4004 } 4005 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4006 ppath); 4007 if (ret >= 0) { 4008 ext4_update_inode_fsync_trans(handle, inode, 1); 4009 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4010 path, map->m_len); 4011 } else 4012 err = ret; 4013 map->m_flags |= EXT4_MAP_MAPPED; 4014 map->m_pblk = newblock; 4015 if (allocated > map->m_len) 4016 allocated = map->m_len; 4017 map->m_len = allocated; 4018 goto out2; 4019 } 4020 /* buffered IO case */ 4021 /* 4022 * repeat fallocate creation request 4023 * we already have an unwritten extent 4024 */ 4025 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4026 map->m_flags |= EXT4_MAP_UNWRITTEN; 4027 goto map_out; 4028 } 4029 4030 /* buffered READ or buffered write_begin() lookup */ 4031 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4032 /* 4033 * We have blocks reserved already. We 4034 * return allocated blocks so that delalloc 4035 * won't do block reservation for us. But 4036 * the buffer head will be unmapped so that 4037 * a read from the block returns 0s. 4038 */ 4039 map->m_flags |= EXT4_MAP_UNWRITTEN; 4040 goto out1; 4041 } 4042 4043 /* buffered write, writepage time, convert*/ 4044 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4045 if (ret >= 0) 4046 ext4_update_inode_fsync_trans(handle, inode, 1); 4047 out: 4048 if (ret <= 0) { 4049 err = ret; 4050 goto out2; 4051 } else 4052 allocated = ret; 4053 map->m_flags |= EXT4_MAP_NEW; 4054 if (allocated > map->m_len) 4055 allocated = map->m_len; 4056 map->m_len = allocated; 4057 4058 map_out: 4059 map->m_flags |= EXT4_MAP_MAPPED; 4060 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4061 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4062 map->m_len); 4063 if (err < 0) 4064 goto out2; 4065 } 4066 out1: 4067 if (allocated > map->m_len) 4068 allocated = map->m_len; 4069 ext4_ext_show_leaf(inode, path); 4070 map->m_pblk = newblock; 4071 map->m_len = allocated; 4072 out2: 4073 return err ? err : allocated; 4074 } 4075 4076 /* 4077 * get_implied_cluster_alloc - check to see if the requested 4078 * allocation (in the map structure) overlaps with a cluster already 4079 * allocated in an extent. 4080 * @sb The filesystem superblock structure 4081 * @map The requested lblk->pblk mapping 4082 * @ex The extent structure which might contain an implied 4083 * cluster allocation 4084 * 4085 * This function is called by ext4_ext_map_blocks() after we failed to 4086 * find blocks that were already in the inode's extent tree. Hence, 4087 * we know that the beginning of the requested region cannot overlap 4088 * the extent from the inode's extent tree. There are three cases we 4089 * want to catch. The first is this case: 4090 * 4091 * |--- cluster # N--| 4092 * |--- extent ---| |---- requested region ---| 4093 * |==========| 4094 * 4095 * The second case that we need to test for is this one: 4096 * 4097 * |--------- cluster # N ----------------| 4098 * |--- requested region --| |------- extent ----| 4099 * |=======================| 4100 * 4101 * The third case is when the requested region lies between two extents 4102 * within the same cluster: 4103 * |------------- cluster # N-------------| 4104 * |----- ex -----| |---- ex_right ----| 4105 * |------ requested region ------| 4106 * |================| 4107 * 4108 * In each of the above cases, we need to set the map->m_pblk and 4109 * map->m_len so it corresponds to the return the extent labelled as 4110 * "|====|" from cluster #N, since it is already in use for data in 4111 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4112 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4113 * as a new "allocated" block region. Otherwise, we will return 0 and 4114 * ext4_ext_map_blocks() will then allocate one or more new clusters 4115 * by calling ext4_mb_new_blocks(). 4116 */ 4117 static int get_implied_cluster_alloc(struct super_block *sb, 4118 struct ext4_map_blocks *map, 4119 struct ext4_extent *ex, 4120 struct ext4_ext_path *path) 4121 { 4122 struct ext4_sb_info *sbi = EXT4_SB(sb); 4123 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4124 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4125 ext4_lblk_t rr_cluster_start; 4126 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4127 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4128 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4129 4130 /* The extent passed in that we are trying to match */ 4131 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4132 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4133 4134 /* The requested region passed into ext4_map_blocks() */ 4135 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4136 4137 if ((rr_cluster_start == ex_cluster_end) || 4138 (rr_cluster_start == ex_cluster_start)) { 4139 if (rr_cluster_start == ex_cluster_end) 4140 ee_start += ee_len - 1; 4141 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4142 map->m_len = min(map->m_len, 4143 (unsigned) sbi->s_cluster_ratio - c_offset); 4144 /* 4145 * Check for and handle this case: 4146 * 4147 * |--------- cluster # N-------------| 4148 * |------- extent ----| 4149 * |--- requested region ---| 4150 * |===========| 4151 */ 4152 4153 if (map->m_lblk < ee_block) 4154 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4155 4156 /* 4157 * Check for the case where there is already another allocated 4158 * block to the right of 'ex' but before the end of the cluster. 4159 * 4160 * |------------- cluster # N-------------| 4161 * |----- ex -----| |---- ex_right ----| 4162 * |------ requested region ------| 4163 * |================| 4164 */ 4165 if (map->m_lblk > ee_block) { 4166 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4167 map->m_len = min(map->m_len, next - map->m_lblk); 4168 } 4169 4170 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4171 return 1; 4172 } 4173 4174 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4175 return 0; 4176 } 4177 4178 4179 /* 4180 * Block allocation/map/preallocation routine for extents based files 4181 * 4182 * 4183 * Need to be called with 4184 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4185 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4186 * 4187 * return > 0, number of of blocks already mapped/allocated 4188 * if create == 0 and these are pre-allocated blocks 4189 * buffer head is unmapped 4190 * otherwise blocks are mapped 4191 * 4192 * return = 0, if plain look up failed (blocks have not been allocated) 4193 * buffer head is unmapped 4194 * 4195 * return < 0, error case. 4196 */ 4197 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4198 struct ext4_map_blocks *map, int flags) 4199 { 4200 struct ext4_ext_path *path = NULL; 4201 struct ext4_extent newex, *ex, *ex2; 4202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4203 ext4_fsblk_t newblock = 0; 4204 int free_on_err = 0, err = 0, depth, ret; 4205 unsigned int allocated = 0, offset = 0; 4206 unsigned int allocated_clusters = 0; 4207 struct ext4_allocation_request ar; 4208 ext4_lblk_t cluster_offset; 4209 bool map_from_cluster = false; 4210 4211 ext_debug("blocks %u/%u requested for inode %lu\n", 4212 map->m_lblk, map->m_len, inode->i_ino); 4213 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4214 4215 /* find extent for this block */ 4216 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4217 if (IS_ERR(path)) { 4218 err = PTR_ERR(path); 4219 path = NULL; 4220 goto out2; 4221 } 4222 4223 depth = ext_depth(inode); 4224 4225 /* 4226 * consistent leaf must not be empty; 4227 * this situation is possible, though, _during_ tree modification; 4228 * this is why assert can't be put in ext4_find_extent() 4229 */ 4230 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4231 EXT4_ERROR_INODE(inode, "bad extent address " 4232 "lblock: %lu, depth: %d pblock %lld", 4233 (unsigned long) map->m_lblk, depth, 4234 path[depth].p_block); 4235 err = -EFSCORRUPTED; 4236 goto out2; 4237 } 4238 4239 ex = path[depth].p_ext; 4240 if (ex) { 4241 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4242 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4243 unsigned short ee_len; 4244 4245 4246 /* 4247 * unwritten extents are treated as holes, except that 4248 * we split out initialized portions during a write. 4249 */ 4250 ee_len = ext4_ext_get_actual_len(ex); 4251 4252 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4253 4254 /* if found extent covers block, simply return it */ 4255 if (in_range(map->m_lblk, ee_block, ee_len)) { 4256 newblock = map->m_lblk - ee_block + ee_start; 4257 /* number of remaining blocks in the extent */ 4258 allocated = ee_len - (map->m_lblk - ee_block); 4259 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4260 ee_block, ee_len, newblock); 4261 4262 /* 4263 * If the extent is initialized check whether the 4264 * caller wants to convert it to unwritten. 4265 */ 4266 if ((!ext4_ext_is_unwritten(ex)) && 4267 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4268 allocated = convert_initialized_extent( 4269 handle, inode, map, &path, 4270 allocated); 4271 goto out2; 4272 } else if (!ext4_ext_is_unwritten(ex)) 4273 goto out; 4274 4275 ret = ext4_ext_handle_unwritten_extents( 4276 handle, inode, map, &path, flags, 4277 allocated, newblock); 4278 if (ret < 0) 4279 err = ret; 4280 else 4281 allocated = ret; 4282 goto out2; 4283 } 4284 } 4285 4286 /* 4287 * requested block isn't allocated yet; 4288 * we couldn't try to create block if create flag is zero 4289 */ 4290 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4291 ext4_lblk_t hole_start, hole_len; 4292 4293 hole_start = map->m_lblk; 4294 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4295 /* 4296 * put just found gap into cache to speed up 4297 * subsequent requests 4298 */ 4299 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4300 4301 /* Update hole_len to reflect hole size after map->m_lblk */ 4302 if (hole_start != map->m_lblk) 4303 hole_len -= map->m_lblk - hole_start; 4304 map->m_pblk = 0; 4305 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4306 4307 goto out2; 4308 } 4309 4310 /* 4311 * Okay, we need to do block allocation. 4312 */ 4313 newex.ee_block = cpu_to_le32(map->m_lblk); 4314 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4315 4316 /* 4317 * If we are doing bigalloc, check to see if the extent returned 4318 * by ext4_find_extent() implies a cluster we can use. 4319 */ 4320 if (cluster_offset && ex && 4321 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4322 ar.len = allocated = map->m_len; 4323 newblock = map->m_pblk; 4324 map_from_cluster = true; 4325 goto got_allocated_blocks; 4326 } 4327 4328 /* find neighbour allocated blocks */ 4329 ar.lleft = map->m_lblk; 4330 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4331 if (err) 4332 goto out2; 4333 ar.lright = map->m_lblk; 4334 ex2 = NULL; 4335 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4336 if (err) 4337 goto out2; 4338 4339 /* Check if the extent after searching to the right implies a 4340 * cluster we can use. */ 4341 if ((sbi->s_cluster_ratio > 1) && ex2 && 4342 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4343 ar.len = allocated = map->m_len; 4344 newblock = map->m_pblk; 4345 map_from_cluster = true; 4346 goto got_allocated_blocks; 4347 } 4348 4349 /* 4350 * See if request is beyond maximum number of blocks we can have in 4351 * a single extent. For an initialized extent this limit is 4352 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4353 * EXT_UNWRITTEN_MAX_LEN. 4354 */ 4355 if (map->m_len > EXT_INIT_MAX_LEN && 4356 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4357 map->m_len = EXT_INIT_MAX_LEN; 4358 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4359 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4360 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4361 4362 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4363 newex.ee_len = cpu_to_le16(map->m_len); 4364 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4365 if (err) 4366 allocated = ext4_ext_get_actual_len(&newex); 4367 else 4368 allocated = map->m_len; 4369 4370 /* allocate new block */ 4371 ar.inode = inode; 4372 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4373 ar.logical = map->m_lblk; 4374 /* 4375 * We calculate the offset from the beginning of the cluster 4376 * for the logical block number, since when we allocate a 4377 * physical cluster, the physical block should start at the 4378 * same offset from the beginning of the cluster. This is 4379 * needed so that future calls to get_implied_cluster_alloc() 4380 * work correctly. 4381 */ 4382 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4383 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4384 ar.goal -= offset; 4385 ar.logical -= offset; 4386 if (S_ISREG(inode->i_mode)) 4387 ar.flags = EXT4_MB_HINT_DATA; 4388 else 4389 /* disable in-core preallocation for non-regular files */ 4390 ar.flags = 0; 4391 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4392 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4393 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4394 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4395 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4396 ar.flags |= EXT4_MB_USE_RESERVED; 4397 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4398 if (!newblock) 4399 goto out2; 4400 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4401 ar.goal, newblock, allocated); 4402 free_on_err = 1; 4403 allocated_clusters = ar.len; 4404 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4405 if (ar.len > allocated) 4406 ar.len = allocated; 4407 4408 got_allocated_blocks: 4409 /* try to insert new extent into found leaf and return */ 4410 ext4_ext_store_pblock(&newex, newblock + offset); 4411 newex.ee_len = cpu_to_le16(ar.len); 4412 /* Mark unwritten */ 4413 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4414 ext4_ext_mark_unwritten(&newex); 4415 map->m_flags |= EXT4_MAP_UNWRITTEN; 4416 } 4417 4418 err = 0; 4419 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4420 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4421 path, ar.len); 4422 if (!err) 4423 err = ext4_ext_insert_extent(handle, inode, &path, 4424 &newex, flags); 4425 4426 if (err && free_on_err) { 4427 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4428 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4429 /* free data blocks we just allocated */ 4430 /* not a good idea to call discard here directly, 4431 * but otherwise we'd need to call it every free() */ 4432 ext4_discard_preallocations(inode); 4433 ext4_free_blocks(handle, inode, NULL, newblock, 4434 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4435 goto out2; 4436 } 4437 4438 /* previous routine could use block we allocated */ 4439 newblock = ext4_ext_pblock(&newex); 4440 allocated = ext4_ext_get_actual_len(&newex); 4441 if (allocated > map->m_len) 4442 allocated = map->m_len; 4443 map->m_flags |= EXT4_MAP_NEW; 4444 4445 /* 4446 * Reduce the reserved cluster count to reflect successful deferred 4447 * allocation of delayed allocated clusters or direct allocation of 4448 * clusters discovered to be delayed allocated. Once allocated, a 4449 * cluster is not included in the reserved count. 4450 */ 4451 if (test_opt(inode->i_sb, DELALLOC) && !map_from_cluster) { 4452 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4453 /* 4454 * When allocating delayed allocated clusters, simply 4455 * reduce the reserved cluster count and claim quota 4456 */ 4457 ext4_da_update_reserve_space(inode, allocated_clusters, 4458 1); 4459 } else { 4460 ext4_lblk_t lblk, len; 4461 unsigned int n; 4462 4463 /* 4464 * When allocating non-delayed allocated clusters 4465 * (from fallocate, filemap, DIO, or clusters 4466 * allocated when delalloc has been disabled by 4467 * ext4_nonda_switch), reduce the reserved cluster 4468 * count by the number of allocated clusters that 4469 * have previously been delayed allocated. Quota 4470 * has been claimed by ext4_mb_new_blocks() above, 4471 * so release the quota reservations made for any 4472 * previously delayed allocated clusters. 4473 */ 4474 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4475 len = allocated_clusters << sbi->s_cluster_bits; 4476 n = ext4_es_delayed_clu(inode, lblk, len); 4477 if (n > 0) 4478 ext4_da_update_reserve_space(inode, (int) n, 0); 4479 } 4480 } 4481 4482 /* 4483 * Cache the extent and update transaction to commit on fdatasync only 4484 * when it is _not_ an unwritten extent. 4485 */ 4486 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4487 ext4_update_inode_fsync_trans(handle, inode, 1); 4488 else 4489 ext4_update_inode_fsync_trans(handle, inode, 0); 4490 out: 4491 if (allocated > map->m_len) 4492 allocated = map->m_len; 4493 ext4_ext_show_leaf(inode, path); 4494 map->m_flags |= EXT4_MAP_MAPPED; 4495 map->m_pblk = newblock; 4496 map->m_len = allocated; 4497 out2: 4498 ext4_ext_drop_refs(path); 4499 kfree(path); 4500 4501 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4502 err ? err : allocated); 4503 return err ? err : allocated; 4504 } 4505 4506 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4507 { 4508 struct super_block *sb = inode->i_sb; 4509 ext4_lblk_t last_block; 4510 int err = 0; 4511 4512 /* 4513 * TODO: optimization is possible here. 4514 * Probably we need not scan at all, 4515 * because page truncation is enough. 4516 */ 4517 4518 /* we have to know where to truncate from in crash case */ 4519 EXT4_I(inode)->i_disksize = inode->i_size; 4520 err = ext4_mark_inode_dirty(handle, inode); 4521 if (err) 4522 return err; 4523 4524 last_block = (inode->i_size + sb->s_blocksize - 1) 4525 >> EXT4_BLOCK_SIZE_BITS(sb); 4526 retry: 4527 err = ext4_es_remove_extent(inode, last_block, 4528 EXT_MAX_BLOCKS - last_block); 4529 if (err == -ENOMEM) { 4530 cond_resched(); 4531 congestion_wait(BLK_RW_ASYNC, HZ/50); 4532 goto retry; 4533 } 4534 if (err) 4535 return err; 4536 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4537 } 4538 4539 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4540 ext4_lblk_t len, loff_t new_size, 4541 int flags) 4542 { 4543 struct inode *inode = file_inode(file); 4544 handle_t *handle; 4545 int ret = 0; 4546 int ret2 = 0; 4547 int retries = 0; 4548 int depth = 0; 4549 struct ext4_map_blocks map; 4550 unsigned int credits; 4551 loff_t epos; 4552 4553 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4554 map.m_lblk = offset; 4555 map.m_len = len; 4556 /* 4557 * Don't normalize the request if it can fit in one extent so 4558 * that it doesn't get unnecessarily split into multiple 4559 * extents. 4560 */ 4561 if (len <= EXT_UNWRITTEN_MAX_LEN) 4562 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4563 4564 /* 4565 * credits to insert 1 extent into extent tree 4566 */ 4567 credits = ext4_chunk_trans_blocks(inode, len); 4568 depth = ext_depth(inode); 4569 4570 retry: 4571 while (ret >= 0 && len) { 4572 /* 4573 * Recalculate credits when extent tree depth changes. 4574 */ 4575 if (depth != ext_depth(inode)) { 4576 credits = ext4_chunk_trans_blocks(inode, len); 4577 depth = ext_depth(inode); 4578 } 4579 4580 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4581 credits); 4582 if (IS_ERR(handle)) { 4583 ret = PTR_ERR(handle); 4584 break; 4585 } 4586 ret = ext4_map_blocks(handle, inode, &map, flags); 4587 if (ret <= 0) { 4588 ext4_debug("inode #%lu: block %u: len %u: " 4589 "ext4_ext_map_blocks returned %d", 4590 inode->i_ino, map.m_lblk, 4591 map.m_len, ret); 4592 ext4_mark_inode_dirty(handle, inode); 4593 ret2 = ext4_journal_stop(handle); 4594 break; 4595 } 4596 map.m_lblk += ret; 4597 map.m_len = len = len - ret; 4598 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4599 inode->i_ctime = current_time(inode); 4600 if (new_size) { 4601 if (epos > new_size) 4602 epos = new_size; 4603 if (ext4_update_inode_size(inode, epos) & 0x1) 4604 inode->i_mtime = inode->i_ctime; 4605 } else { 4606 if (epos > inode->i_size) 4607 ext4_set_inode_flag(inode, 4608 EXT4_INODE_EOFBLOCKS); 4609 } 4610 ext4_mark_inode_dirty(handle, inode); 4611 ext4_update_inode_fsync_trans(handle, inode, 1); 4612 ret2 = ext4_journal_stop(handle); 4613 if (ret2) 4614 break; 4615 } 4616 if (ret == -ENOSPC && 4617 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4618 ret = 0; 4619 goto retry; 4620 } 4621 4622 return ret > 0 ? ret2 : ret; 4623 } 4624 4625 static long ext4_zero_range(struct file *file, loff_t offset, 4626 loff_t len, int mode) 4627 { 4628 struct inode *inode = file_inode(file); 4629 handle_t *handle = NULL; 4630 unsigned int max_blocks; 4631 loff_t new_size = 0; 4632 int ret = 0; 4633 int flags; 4634 int credits; 4635 int partial_begin, partial_end; 4636 loff_t start, end; 4637 ext4_lblk_t lblk; 4638 unsigned int blkbits = inode->i_blkbits; 4639 4640 trace_ext4_zero_range(inode, offset, len, mode); 4641 4642 if (!S_ISREG(inode->i_mode)) 4643 return -EINVAL; 4644 4645 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4646 if (ext4_should_journal_data(inode)) { 4647 ret = ext4_force_commit(inode->i_sb); 4648 if (ret) 4649 return ret; 4650 } 4651 4652 /* 4653 * Round up offset. This is not fallocate, we neet to zero out 4654 * blocks, so convert interior block aligned part of the range to 4655 * unwritten and possibly manually zero out unaligned parts of the 4656 * range. 4657 */ 4658 start = round_up(offset, 1 << blkbits); 4659 end = round_down((offset + len), 1 << blkbits); 4660 4661 if (start < offset || end > offset + len) 4662 return -EINVAL; 4663 partial_begin = offset & ((1 << blkbits) - 1); 4664 partial_end = (offset + len) & ((1 << blkbits) - 1); 4665 4666 lblk = start >> blkbits; 4667 max_blocks = (end >> blkbits); 4668 if (max_blocks < lblk) 4669 max_blocks = 0; 4670 else 4671 max_blocks -= lblk; 4672 4673 inode_lock(inode); 4674 4675 /* 4676 * Indirect files do not support unwritten extnets 4677 */ 4678 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4679 ret = -EOPNOTSUPP; 4680 goto out_mutex; 4681 } 4682 4683 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4684 (offset + len > i_size_read(inode) || 4685 offset + len > EXT4_I(inode)->i_disksize)) { 4686 new_size = offset + len; 4687 ret = inode_newsize_ok(inode, new_size); 4688 if (ret) 4689 goto out_mutex; 4690 } 4691 4692 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4693 if (mode & FALLOC_FL_KEEP_SIZE) 4694 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4695 4696 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4697 inode_dio_wait(inode); 4698 4699 /* Preallocate the range including the unaligned edges */ 4700 if (partial_begin || partial_end) { 4701 ret = ext4_alloc_file_blocks(file, 4702 round_down(offset, 1 << blkbits) >> blkbits, 4703 (round_up((offset + len), 1 << blkbits) - 4704 round_down(offset, 1 << blkbits)) >> blkbits, 4705 new_size, flags); 4706 if (ret) 4707 goto out_mutex; 4708 4709 } 4710 4711 /* Zero range excluding the unaligned edges */ 4712 if (max_blocks > 0) { 4713 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4714 EXT4_EX_NOCACHE); 4715 4716 /* 4717 * Prevent page faults from reinstantiating pages we have 4718 * released from page cache. 4719 */ 4720 down_write(&EXT4_I(inode)->i_mmap_sem); 4721 4722 ret = ext4_break_layouts(inode); 4723 if (ret) { 4724 up_write(&EXT4_I(inode)->i_mmap_sem); 4725 goto out_mutex; 4726 } 4727 4728 ret = ext4_update_disksize_before_punch(inode, offset, len); 4729 if (ret) { 4730 up_write(&EXT4_I(inode)->i_mmap_sem); 4731 goto out_mutex; 4732 } 4733 /* Now release the pages and zero block aligned part of pages */ 4734 truncate_pagecache_range(inode, start, end - 1); 4735 inode->i_mtime = inode->i_ctime = current_time(inode); 4736 4737 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4738 flags); 4739 up_write(&EXT4_I(inode)->i_mmap_sem); 4740 if (ret) 4741 goto out_mutex; 4742 } 4743 if (!partial_begin && !partial_end) 4744 goto out_mutex; 4745 4746 /* 4747 * In worst case we have to writeout two nonadjacent unwritten 4748 * blocks and update the inode 4749 */ 4750 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4751 if (ext4_should_journal_data(inode)) 4752 credits += 2; 4753 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4754 if (IS_ERR(handle)) { 4755 ret = PTR_ERR(handle); 4756 ext4_std_error(inode->i_sb, ret); 4757 goto out_mutex; 4758 } 4759 4760 inode->i_mtime = inode->i_ctime = current_time(inode); 4761 if (new_size) { 4762 ext4_update_inode_size(inode, new_size); 4763 } else { 4764 /* 4765 * Mark that we allocate beyond EOF so the subsequent truncate 4766 * can proceed even if the new size is the same as i_size. 4767 */ 4768 if ((offset + len) > i_size_read(inode)) 4769 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4770 } 4771 ext4_mark_inode_dirty(handle, inode); 4772 4773 /* Zero out partial block at the edges of the range */ 4774 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4775 if (ret >= 0) 4776 ext4_update_inode_fsync_trans(handle, inode, 1); 4777 4778 if (file->f_flags & O_SYNC) 4779 ext4_handle_sync(handle); 4780 4781 ext4_journal_stop(handle); 4782 out_mutex: 4783 inode_unlock(inode); 4784 return ret; 4785 } 4786 4787 /* 4788 * preallocate space for a file. This implements ext4's fallocate file 4789 * operation, which gets called from sys_fallocate system call. 4790 * For block-mapped files, posix_fallocate should fall back to the method 4791 * of writing zeroes to the required new blocks (the same behavior which is 4792 * expected for file systems which do not support fallocate() system call). 4793 */ 4794 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4795 { 4796 struct inode *inode = file_inode(file); 4797 loff_t new_size = 0; 4798 unsigned int max_blocks; 4799 int ret = 0; 4800 int flags; 4801 ext4_lblk_t lblk; 4802 unsigned int blkbits = inode->i_blkbits; 4803 4804 /* 4805 * Encrypted inodes can't handle collapse range or insert 4806 * range since we would need to re-encrypt blocks with a 4807 * different IV or XTS tweak (which are based on the logical 4808 * block number). 4809 * 4810 * XXX It's not clear why zero range isn't working, but we'll 4811 * leave it disabled for encrypted inodes for now. This is a 4812 * bug we should fix.... 4813 */ 4814 if (IS_ENCRYPTED(inode) && 4815 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4816 FALLOC_FL_ZERO_RANGE))) 4817 return -EOPNOTSUPP; 4818 4819 /* Return error if mode is not supported */ 4820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4821 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4822 FALLOC_FL_INSERT_RANGE)) 4823 return -EOPNOTSUPP; 4824 4825 if (mode & FALLOC_FL_PUNCH_HOLE) 4826 return ext4_punch_hole(inode, offset, len); 4827 4828 ret = ext4_convert_inline_data(inode); 4829 if (ret) 4830 return ret; 4831 4832 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4833 return ext4_collapse_range(inode, offset, len); 4834 4835 if (mode & FALLOC_FL_INSERT_RANGE) 4836 return ext4_insert_range(inode, offset, len); 4837 4838 if (mode & FALLOC_FL_ZERO_RANGE) 4839 return ext4_zero_range(file, offset, len, mode); 4840 4841 trace_ext4_fallocate_enter(inode, offset, len, mode); 4842 lblk = offset >> blkbits; 4843 4844 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4845 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4846 if (mode & FALLOC_FL_KEEP_SIZE) 4847 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4848 4849 inode_lock(inode); 4850 4851 /* 4852 * We only support preallocation for extent-based files only 4853 */ 4854 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4855 ret = -EOPNOTSUPP; 4856 goto out; 4857 } 4858 4859 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4860 (offset + len > i_size_read(inode) || 4861 offset + len > EXT4_I(inode)->i_disksize)) { 4862 new_size = offset + len; 4863 ret = inode_newsize_ok(inode, new_size); 4864 if (ret) 4865 goto out; 4866 } 4867 4868 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4869 inode_dio_wait(inode); 4870 4871 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4872 if (ret) 4873 goto out; 4874 4875 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4876 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4877 EXT4_I(inode)->i_sync_tid); 4878 } 4879 out: 4880 inode_unlock(inode); 4881 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4882 return ret; 4883 } 4884 4885 /* 4886 * This function convert a range of blocks to written extents 4887 * The caller of this function will pass the start offset and the size. 4888 * all unwritten extents within this range will be converted to 4889 * written extents. 4890 * 4891 * This function is called from the direct IO end io call back 4892 * function, to convert the fallocated extents after IO is completed. 4893 * Returns 0 on success. 4894 */ 4895 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4896 loff_t offset, ssize_t len) 4897 { 4898 unsigned int max_blocks; 4899 int ret = 0; 4900 int ret2 = 0; 4901 struct ext4_map_blocks map; 4902 unsigned int credits, blkbits = inode->i_blkbits; 4903 4904 map.m_lblk = offset >> blkbits; 4905 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4906 4907 /* 4908 * This is somewhat ugly but the idea is clear: When transaction is 4909 * reserved, everything goes into it. Otherwise we rather start several 4910 * smaller transactions for conversion of each extent separately. 4911 */ 4912 if (handle) { 4913 handle = ext4_journal_start_reserved(handle, 4914 EXT4_HT_EXT_CONVERT); 4915 if (IS_ERR(handle)) 4916 return PTR_ERR(handle); 4917 credits = 0; 4918 } else { 4919 /* 4920 * credits to insert 1 extent into extent tree 4921 */ 4922 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4923 } 4924 while (ret >= 0 && ret < max_blocks) { 4925 map.m_lblk += ret; 4926 map.m_len = (max_blocks -= ret); 4927 if (credits) { 4928 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4929 credits); 4930 if (IS_ERR(handle)) { 4931 ret = PTR_ERR(handle); 4932 break; 4933 } 4934 } 4935 ret = ext4_map_blocks(handle, inode, &map, 4936 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4937 if (ret <= 0) 4938 ext4_warning(inode->i_sb, 4939 "inode #%lu: block %u: len %u: " 4940 "ext4_ext_map_blocks returned %d", 4941 inode->i_ino, map.m_lblk, 4942 map.m_len, ret); 4943 ext4_mark_inode_dirty(handle, inode); 4944 if (credits) 4945 ret2 = ext4_journal_stop(handle); 4946 if (ret <= 0 || ret2) 4947 break; 4948 } 4949 if (!credits) 4950 ret2 = ext4_journal_stop(handle); 4951 return ret > 0 ? ret2 : ret; 4952 } 4953 4954 /* 4955 * If newes is not existing extent (newes->ec_pblk equals zero) find 4956 * delayed extent at start of newes and update newes accordingly and 4957 * return start of the next delayed extent. 4958 * 4959 * If newes is existing extent (newes->ec_pblk is not equal zero) 4960 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4961 * extent found. Leave newes unmodified. 4962 */ 4963 static int ext4_find_delayed_extent(struct inode *inode, 4964 struct extent_status *newes) 4965 { 4966 struct extent_status es; 4967 ext4_lblk_t block, next_del; 4968 4969 if (newes->es_pblk == 0) { 4970 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 4971 newes->es_lblk, 4972 newes->es_lblk + newes->es_len - 1, 4973 &es); 4974 4975 /* 4976 * No extent in extent-tree contains block @newes->es_pblk, 4977 * then the block may stay in 1)a hole or 2)delayed-extent. 4978 */ 4979 if (es.es_len == 0) 4980 /* A hole found. */ 4981 return 0; 4982 4983 if (es.es_lblk > newes->es_lblk) { 4984 /* A hole found. */ 4985 newes->es_len = min(es.es_lblk - newes->es_lblk, 4986 newes->es_len); 4987 return 0; 4988 } 4989 4990 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4991 } 4992 4993 block = newes->es_lblk + newes->es_len; 4994 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, block, 4995 EXT_MAX_BLOCKS, &es); 4996 if (es.es_len == 0) 4997 next_del = EXT_MAX_BLOCKS; 4998 else 4999 next_del = es.es_lblk; 5000 5001 return next_del; 5002 } 5003 /* fiemap flags we can handle specified here */ 5004 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5005 5006 static int ext4_xattr_fiemap(struct inode *inode, 5007 struct fiemap_extent_info *fieinfo) 5008 { 5009 __u64 physical = 0; 5010 __u64 length; 5011 __u32 flags = FIEMAP_EXTENT_LAST; 5012 int blockbits = inode->i_sb->s_blocksize_bits; 5013 int error = 0; 5014 5015 /* in-inode? */ 5016 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5017 struct ext4_iloc iloc; 5018 int offset; /* offset of xattr in inode */ 5019 5020 error = ext4_get_inode_loc(inode, &iloc); 5021 if (error) 5022 return error; 5023 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5024 offset = EXT4_GOOD_OLD_INODE_SIZE + 5025 EXT4_I(inode)->i_extra_isize; 5026 physical += offset; 5027 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5028 flags |= FIEMAP_EXTENT_DATA_INLINE; 5029 brelse(iloc.bh); 5030 } else { /* external block */ 5031 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5032 length = inode->i_sb->s_blocksize; 5033 } 5034 5035 if (physical) 5036 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5037 length, flags); 5038 return (error < 0 ? error : 0); 5039 } 5040 5041 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5042 __u64 start, __u64 len) 5043 { 5044 ext4_lblk_t start_blk; 5045 int error = 0; 5046 5047 if (ext4_has_inline_data(inode)) { 5048 int has_inline = 1; 5049 5050 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5051 start, len); 5052 5053 if (has_inline) 5054 return error; 5055 } 5056 5057 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5058 error = ext4_ext_precache(inode); 5059 if (error) 5060 return error; 5061 } 5062 5063 /* fallback to generic here if not in extents fmt */ 5064 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5065 return generic_block_fiemap(inode, fieinfo, start, len, 5066 ext4_get_block); 5067 5068 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5069 return -EBADR; 5070 5071 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5072 error = ext4_xattr_fiemap(inode, fieinfo); 5073 } else { 5074 ext4_lblk_t len_blks; 5075 __u64 last_blk; 5076 5077 start_blk = start >> inode->i_sb->s_blocksize_bits; 5078 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5079 if (last_blk >= EXT_MAX_BLOCKS) 5080 last_blk = EXT_MAX_BLOCKS-1; 5081 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5082 5083 /* 5084 * Walk the extent tree gathering extent information 5085 * and pushing extents back to the user. 5086 */ 5087 error = ext4_fill_fiemap_extents(inode, start_blk, 5088 len_blks, fieinfo); 5089 } 5090 return error; 5091 } 5092 5093 /* 5094 * ext4_access_path: 5095 * Function to access the path buffer for marking it dirty. 5096 * It also checks if there are sufficient credits left in the journal handle 5097 * to update path. 5098 */ 5099 static int 5100 ext4_access_path(handle_t *handle, struct inode *inode, 5101 struct ext4_ext_path *path) 5102 { 5103 int credits, err; 5104 5105 if (!ext4_handle_valid(handle)) 5106 return 0; 5107 5108 /* 5109 * Check if need to extend journal credits 5110 * 3 for leaf, sb, and inode plus 2 (bmap and group 5111 * descriptor) for each block group; assume two block 5112 * groups 5113 */ 5114 if (handle->h_buffer_credits < 7) { 5115 credits = ext4_writepage_trans_blocks(inode); 5116 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5117 /* EAGAIN is success */ 5118 if (err && err != -EAGAIN) 5119 return err; 5120 } 5121 5122 err = ext4_ext_get_access(handle, inode, path); 5123 return err; 5124 } 5125 5126 /* 5127 * ext4_ext_shift_path_extents: 5128 * Shift the extents of a path structure lying between path[depth].p_ext 5129 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5130 * if it is right shift or left shift operation. 5131 */ 5132 static int 5133 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5134 struct inode *inode, handle_t *handle, 5135 enum SHIFT_DIRECTION SHIFT) 5136 { 5137 int depth, err = 0; 5138 struct ext4_extent *ex_start, *ex_last; 5139 bool update = 0; 5140 depth = path->p_depth; 5141 5142 while (depth >= 0) { 5143 if (depth == path->p_depth) { 5144 ex_start = path[depth].p_ext; 5145 if (!ex_start) 5146 return -EFSCORRUPTED; 5147 5148 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5149 5150 err = ext4_access_path(handle, inode, path + depth); 5151 if (err) 5152 goto out; 5153 5154 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5155 update = 1; 5156 5157 while (ex_start <= ex_last) { 5158 if (SHIFT == SHIFT_LEFT) { 5159 le32_add_cpu(&ex_start->ee_block, 5160 -shift); 5161 /* Try to merge to the left. */ 5162 if ((ex_start > 5163 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5164 && 5165 ext4_ext_try_to_merge_right(inode, 5166 path, ex_start - 1)) 5167 ex_last--; 5168 else 5169 ex_start++; 5170 } else { 5171 le32_add_cpu(&ex_last->ee_block, shift); 5172 ext4_ext_try_to_merge_right(inode, path, 5173 ex_last); 5174 ex_last--; 5175 } 5176 } 5177 err = ext4_ext_dirty(handle, inode, path + depth); 5178 if (err) 5179 goto out; 5180 5181 if (--depth < 0 || !update) 5182 break; 5183 } 5184 5185 /* Update index too */ 5186 err = ext4_access_path(handle, inode, path + depth); 5187 if (err) 5188 goto out; 5189 5190 if (SHIFT == SHIFT_LEFT) 5191 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5192 else 5193 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5194 err = ext4_ext_dirty(handle, inode, path + depth); 5195 if (err) 5196 goto out; 5197 5198 /* we are done if current index is not a starting index */ 5199 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5200 break; 5201 5202 depth--; 5203 } 5204 5205 out: 5206 return err; 5207 } 5208 5209 /* 5210 * ext4_ext_shift_extents: 5211 * All the extents which lies in the range from @start to the last allocated 5212 * block for the @inode are shifted either towards left or right (depending 5213 * upon @SHIFT) by @shift blocks. 5214 * On success, 0 is returned, error otherwise. 5215 */ 5216 static int 5217 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5218 ext4_lblk_t start, ext4_lblk_t shift, 5219 enum SHIFT_DIRECTION SHIFT) 5220 { 5221 struct ext4_ext_path *path; 5222 int ret = 0, depth; 5223 struct ext4_extent *extent; 5224 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5225 5226 /* Let path point to the last extent */ 5227 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5228 EXT4_EX_NOCACHE); 5229 if (IS_ERR(path)) 5230 return PTR_ERR(path); 5231 5232 depth = path->p_depth; 5233 extent = path[depth].p_ext; 5234 if (!extent) 5235 goto out; 5236 5237 stop = le32_to_cpu(extent->ee_block); 5238 5239 /* 5240 * For left shifts, make sure the hole on the left is big enough to 5241 * accommodate the shift. For right shifts, make sure the last extent 5242 * won't be shifted beyond EXT_MAX_BLOCKS. 5243 */ 5244 if (SHIFT == SHIFT_LEFT) { 5245 path = ext4_find_extent(inode, start - 1, &path, 5246 EXT4_EX_NOCACHE); 5247 if (IS_ERR(path)) 5248 return PTR_ERR(path); 5249 depth = path->p_depth; 5250 extent = path[depth].p_ext; 5251 if (extent) { 5252 ex_start = le32_to_cpu(extent->ee_block); 5253 ex_end = le32_to_cpu(extent->ee_block) + 5254 ext4_ext_get_actual_len(extent); 5255 } else { 5256 ex_start = 0; 5257 ex_end = 0; 5258 } 5259 5260 if ((start == ex_start && shift > ex_start) || 5261 (shift > start - ex_end)) { 5262 ret = -EINVAL; 5263 goto out; 5264 } 5265 } else { 5266 if (shift > EXT_MAX_BLOCKS - 5267 (stop + ext4_ext_get_actual_len(extent))) { 5268 ret = -EINVAL; 5269 goto out; 5270 } 5271 } 5272 5273 /* 5274 * In case of left shift, iterator points to start and it is increased 5275 * till we reach stop. In case of right shift, iterator points to stop 5276 * and it is decreased till we reach start. 5277 */ 5278 if (SHIFT == SHIFT_LEFT) 5279 iterator = &start; 5280 else 5281 iterator = &stop; 5282 5283 /* 5284 * Its safe to start updating extents. Start and stop are unsigned, so 5285 * in case of right shift if extent with 0 block is reached, iterator 5286 * becomes NULL to indicate the end of the loop. 5287 */ 5288 while (iterator && start <= stop) { 5289 path = ext4_find_extent(inode, *iterator, &path, 5290 EXT4_EX_NOCACHE); 5291 if (IS_ERR(path)) 5292 return PTR_ERR(path); 5293 depth = path->p_depth; 5294 extent = path[depth].p_ext; 5295 if (!extent) { 5296 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5297 (unsigned long) *iterator); 5298 return -EFSCORRUPTED; 5299 } 5300 if (SHIFT == SHIFT_LEFT && *iterator > 5301 le32_to_cpu(extent->ee_block)) { 5302 /* Hole, move to the next extent */ 5303 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5304 path[depth].p_ext++; 5305 } else { 5306 *iterator = ext4_ext_next_allocated_block(path); 5307 continue; 5308 } 5309 } 5310 5311 if (SHIFT == SHIFT_LEFT) { 5312 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5313 *iterator = le32_to_cpu(extent->ee_block) + 5314 ext4_ext_get_actual_len(extent); 5315 } else { 5316 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5317 if (le32_to_cpu(extent->ee_block) > 0) 5318 *iterator = le32_to_cpu(extent->ee_block) - 1; 5319 else 5320 /* Beginning is reached, end of the loop */ 5321 iterator = NULL; 5322 /* Update path extent in case we need to stop */ 5323 while (le32_to_cpu(extent->ee_block) < start) 5324 extent++; 5325 path[depth].p_ext = extent; 5326 } 5327 ret = ext4_ext_shift_path_extents(path, shift, inode, 5328 handle, SHIFT); 5329 if (ret) 5330 break; 5331 } 5332 out: 5333 ext4_ext_drop_refs(path); 5334 kfree(path); 5335 return ret; 5336 } 5337 5338 /* 5339 * ext4_collapse_range: 5340 * This implements the fallocate's collapse range functionality for ext4 5341 * Returns: 0 and non-zero on error. 5342 */ 5343 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5344 { 5345 struct super_block *sb = inode->i_sb; 5346 ext4_lblk_t punch_start, punch_stop; 5347 handle_t *handle; 5348 unsigned int credits; 5349 loff_t new_size, ioffset; 5350 int ret; 5351 5352 /* 5353 * We need to test this early because xfstests assumes that a 5354 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5355 * system does not support collapse range. 5356 */ 5357 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5358 return -EOPNOTSUPP; 5359 5360 /* Collapse range works only on fs block size aligned offsets. */ 5361 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5362 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5363 return -EINVAL; 5364 5365 if (!S_ISREG(inode->i_mode)) 5366 return -EINVAL; 5367 5368 trace_ext4_collapse_range(inode, offset, len); 5369 5370 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5371 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5372 5373 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5374 if (ext4_should_journal_data(inode)) { 5375 ret = ext4_force_commit(inode->i_sb); 5376 if (ret) 5377 return ret; 5378 } 5379 5380 inode_lock(inode); 5381 /* 5382 * There is no need to overlap collapse range with EOF, in which case 5383 * it is effectively a truncate operation 5384 */ 5385 if (offset + len >= i_size_read(inode)) { 5386 ret = -EINVAL; 5387 goto out_mutex; 5388 } 5389 5390 /* Currently just for extent based files */ 5391 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5392 ret = -EOPNOTSUPP; 5393 goto out_mutex; 5394 } 5395 5396 /* Wait for existing dio to complete */ 5397 inode_dio_wait(inode); 5398 5399 /* 5400 * Prevent page faults from reinstantiating pages we have released from 5401 * page cache. 5402 */ 5403 down_write(&EXT4_I(inode)->i_mmap_sem); 5404 5405 ret = ext4_break_layouts(inode); 5406 if (ret) 5407 goto out_mmap; 5408 5409 /* 5410 * Need to round down offset to be aligned with page size boundary 5411 * for page size > block size. 5412 */ 5413 ioffset = round_down(offset, PAGE_SIZE); 5414 /* 5415 * Write tail of the last page before removed range since it will get 5416 * removed from the page cache below. 5417 */ 5418 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5419 if (ret) 5420 goto out_mmap; 5421 /* 5422 * Write data that will be shifted to preserve them when discarding 5423 * page cache below. We are also protected from pages becoming dirty 5424 * by i_mmap_sem. 5425 */ 5426 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5427 LLONG_MAX); 5428 if (ret) 5429 goto out_mmap; 5430 truncate_pagecache(inode, ioffset); 5431 5432 credits = ext4_writepage_trans_blocks(inode); 5433 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5434 if (IS_ERR(handle)) { 5435 ret = PTR_ERR(handle); 5436 goto out_mmap; 5437 } 5438 5439 down_write(&EXT4_I(inode)->i_data_sem); 5440 ext4_discard_preallocations(inode); 5441 5442 ret = ext4_es_remove_extent(inode, punch_start, 5443 EXT_MAX_BLOCKS - punch_start); 5444 if (ret) { 5445 up_write(&EXT4_I(inode)->i_data_sem); 5446 goto out_stop; 5447 } 5448 5449 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5450 if (ret) { 5451 up_write(&EXT4_I(inode)->i_data_sem); 5452 goto out_stop; 5453 } 5454 ext4_discard_preallocations(inode); 5455 5456 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5457 punch_stop - punch_start, SHIFT_LEFT); 5458 if (ret) { 5459 up_write(&EXT4_I(inode)->i_data_sem); 5460 goto out_stop; 5461 } 5462 5463 new_size = i_size_read(inode) - len; 5464 i_size_write(inode, new_size); 5465 EXT4_I(inode)->i_disksize = new_size; 5466 5467 up_write(&EXT4_I(inode)->i_data_sem); 5468 if (IS_SYNC(inode)) 5469 ext4_handle_sync(handle); 5470 inode->i_mtime = inode->i_ctime = current_time(inode); 5471 ext4_mark_inode_dirty(handle, inode); 5472 ext4_update_inode_fsync_trans(handle, inode, 1); 5473 5474 out_stop: 5475 ext4_journal_stop(handle); 5476 out_mmap: 5477 up_write(&EXT4_I(inode)->i_mmap_sem); 5478 out_mutex: 5479 inode_unlock(inode); 5480 return ret; 5481 } 5482 5483 /* 5484 * ext4_insert_range: 5485 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5486 * The data blocks starting from @offset to the EOF are shifted by @len 5487 * towards right to create a hole in the @inode. Inode size is increased 5488 * by len bytes. 5489 * Returns 0 on success, error otherwise. 5490 */ 5491 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5492 { 5493 struct super_block *sb = inode->i_sb; 5494 handle_t *handle; 5495 struct ext4_ext_path *path; 5496 struct ext4_extent *extent; 5497 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5498 unsigned int credits, ee_len; 5499 int ret = 0, depth, split_flag = 0; 5500 loff_t ioffset; 5501 5502 /* 5503 * We need to test this early because xfstests assumes that an 5504 * insert range of (0, 1) will return EOPNOTSUPP if the file 5505 * system does not support insert range. 5506 */ 5507 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5508 return -EOPNOTSUPP; 5509 5510 /* Insert range works only on fs block size aligned offsets. */ 5511 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5512 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5513 return -EINVAL; 5514 5515 if (!S_ISREG(inode->i_mode)) 5516 return -EOPNOTSUPP; 5517 5518 trace_ext4_insert_range(inode, offset, len); 5519 5520 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5521 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5522 5523 /* Call ext4_force_commit to flush all data in case of data=journal */ 5524 if (ext4_should_journal_data(inode)) { 5525 ret = ext4_force_commit(inode->i_sb); 5526 if (ret) 5527 return ret; 5528 } 5529 5530 inode_lock(inode); 5531 /* Currently just for extent based files */ 5532 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5533 ret = -EOPNOTSUPP; 5534 goto out_mutex; 5535 } 5536 5537 /* Check for wrap through zero */ 5538 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5539 ret = -EFBIG; 5540 goto out_mutex; 5541 } 5542 5543 /* Offset should be less than i_size */ 5544 if (offset >= i_size_read(inode)) { 5545 ret = -EINVAL; 5546 goto out_mutex; 5547 } 5548 5549 /* Wait for existing dio to complete */ 5550 inode_dio_wait(inode); 5551 5552 /* 5553 * Prevent page faults from reinstantiating pages we have released from 5554 * page cache. 5555 */ 5556 down_write(&EXT4_I(inode)->i_mmap_sem); 5557 5558 ret = ext4_break_layouts(inode); 5559 if (ret) 5560 goto out_mmap; 5561 5562 /* 5563 * Need to round down to align start offset to page size boundary 5564 * for page size > block size. 5565 */ 5566 ioffset = round_down(offset, PAGE_SIZE); 5567 /* Write out all dirty pages */ 5568 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5569 LLONG_MAX); 5570 if (ret) 5571 goto out_mmap; 5572 truncate_pagecache(inode, ioffset); 5573 5574 credits = ext4_writepage_trans_blocks(inode); 5575 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5576 if (IS_ERR(handle)) { 5577 ret = PTR_ERR(handle); 5578 goto out_mmap; 5579 } 5580 5581 /* Expand file to avoid data loss if there is error while shifting */ 5582 inode->i_size += len; 5583 EXT4_I(inode)->i_disksize += len; 5584 inode->i_mtime = inode->i_ctime = current_time(inode); 5585 ret = ext4_mark_inode_dirty(handle, inode); 5586 if (ret) 5587 goto out_stop; 5588 5589 down_write(&EXT4_I(inode)->i_data_sem); 5590 ext4_discard_preallocations(inode); 5591 5592 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5593 if (IS_ERR(path)) { 5594 up_write(&EXT4_I(inode)->i_data_sem); 5595 goto out_stop; 5596 } 5597 5598 depth = ext_depth(inode); 5599 extent = path[depth].p_ext; 5600 if (extent) { 5601 ee_start_lblk = le32_to_cpu(extent->ee_block); 5602 ee_len = ext4_ext_get_actual_len(extent); 5603 5604 /* 5605 * If offset_lblk is not the starting block of extent, split 5606 * the extent @offset_lblk 5607 */ 5608 if ((offset_lblk > ee_start_lblk) && 5609 (offset_lblk < (ee_start_lblk + ee_len))) { 5610 if (ext4_ext_is_unwritten(extent)) 5611 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5612 EXT4_EXT_MARK_UNWRIT2; 5613 ret = ext4_split_extent_at(handle, inode, &path, 5614 offset_lblk, split_flag, 5615 EXT4_EX_NOCACHE | 5616 EXT4_GET_BLOCKS_PRE_IO | 5617 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5618 } 5619 5620 ext4_ext_drop_refs(path); 5621 kfree(path); 5622 if (ret < 0) { 5623 up_write(&EXT4_I(inode)->i_data_sem); 5624 goto out_stop; 5625 } 5626 } else { 5627 ext4_ext_drop_refs(path); 5628 kfree(path); 5629 } 5630 5631 ret = ext4_es_remove_extent(inode, offset_lblk, 5632 EXT_MAX_BLOCKS - offset_lblk); 5633 if (ret) { 5634 up_write(&EXT4_I(inode)->i_data_sem); 5635 goto out_stop; 5636 } 5637 5638 /* 5639 * if offset_lblk lies in a hole which is at start of file, use 5640 * ee_start_lblk to shift extents 5641 */ 5642 ret = ext4_ext_shift_extents(inode, handle, 5643 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5644 len_lblk, SHIFT_RIGHT); 5645 5646 up_write(&EXT4_I(inode)->i_data_sem); 5647 if (IS_SYNC(inode)) 5648 ext4_handle_sync(handle); 5649 if (ret >= 0) 5650 ext4_update_inode_fsync_trans(handle, inode, 1); 5651 5652 out_stop: 5653 ext4_journal_stop(handle); 5654 out_mmap: 5655 up_write(&EXT4_I(inode)->i_mmap_sem); 5656 out_mutex: 5657 inode_unlock(inode); 5658 return ret; 5659 } 5660 5661 /** 5662 * ext4_swap_extents - Swap extents between two inodes 5663 * 5664 * @inode1: First inode 5665 * @inode2: Second inode 5666 * @lblk1: Start block for first inode 5667 * @lblk2: Start block for second inode 5668 * @count: Number of blocks to swap 5669 * @unwritten: Mark second inode's extents as unwritten after swap 5670 * @erp: Pointer to save error value 5671 * 5672 * This helper routine does exactly what is promise "swap extents". All other 5673 * stuff such as page-cache locking consistency, bh mapping consistency or 5674 * extent's data copying must be performed by caller. 5675 * Locking: 5676 * i_mutex is held for both inodes 5677 * i_data_sem is locked for write for both inodes 5678 * Assumptions: 5679 * All pages from requested range are locked for both inodes 5680 */ 5681 int 5682 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5683 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5684 ext4_lblk_t count, int unwritten, int *erp) 5685 { 5686 struct ext4_ext_path *path1 = NULL; 5687 struct ext4_ext_path *path2 = NULL; 5688 int replaced_count = 0; 5689 5690 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5691 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5692 BUG_ON(!inode_is_locked(inode1)); 5693 BUG_ON(!inode_is_locked(inode2)); 5694 5695 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5696 if (unlikely(*erp)) 5697 return 0; 5698 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5699 if (unlikely(*erp)) 5700 return 0; 5701 5702 while (count) { 5703 struct ext4_extent *ex1, *ex2, tmp_ex; 5704 ext4_lblk_t e1_blk, e2_blk; 5705 int e1_len, e2_len, len; 5706 int split = 0; 5707 5708 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5709 if (IS_ERR(path1)) { 5710 *erp = PTR_ERR(path1); 5711 path1 = NULL; 5712 finish: 5713 count = 0; 5714 goto repeat; 5715 } 5716 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5717 if (IS_ERR(path2)) { 5718 *erp = PTR_ERR(path2); 5719 path2 = NULL; 5720 goto finish; 5721 } 5722 ex1 = path1[path1->p_depth].p_ext; 5723 ex2 = path2[path2->p_depth].p_ext; 5724 /* Do we have somthing to swap ? */ 5725 if (unlikely(!ex2 || !ex1)) 5726 goto finish; 5727 5728 e1_blk = le32_to_cpu(ex1->ee_block); 5729 e2_blk = le32_to_cpu(ex2->ee_block); 5730 e1_len = ext4_ext_get_actual_len(ex1); 5731 e2_len = ext4_ext_get_actual_len(ex2); 5732 5733 /* Hole handling */ 5734 if (!in_range(lblk1, e1_blk, e1_len) || 5735 !in_range(lblk2, e2_blk, e2_len)) { 5736 ext4_lblk_t next1, next2; 5737 5738 /* if hole after extent, then go to next extent */ 5739 next1 = ext4_ext_next_allocated_block(path1); 5740 next2 = ext4_ext_next_allocated_block(path2); 5741 /* If hole before extent, then shift to that extent */ 5742 if (e1_blk > lblk1) 5743 next1 = e1_blk; 5744 if (e2_blk > lblk2) 5745 next2 = e2_blk; 5746 /* Do we have something to swap */ 5747 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5748 goto finish; 5749 /* Move to the rightest boundary */ 5750 len = next1 - lblk1; 5751 if (len < next2 - lblk2) 5752 len = next2 - lblk2; 5753 if (len > count) 5754 len = count; 5755 lblk1 += len; 5756 lblk2 += len; 5757 count -= len; 5758 goto repeat; 5759 } 5760 5761 /* Prepare left boundary */ 5762 if (e1_blk < lblk1) { 5763 split = 1; 5764 *erp = ext4_force_split_extent_at(handle, inode1, 5765 &path1, lblk1, 0); 5766 if (unlikely(*erp)) 5767 goto finish; 5768 } 5769 if (e2_blk < lblk2) { 5770 split = 1; 5771 *erp = ext4_force_split_extent_at(handle, inode2, 5772 &path2, lblk2, 0); 5773 if (unlikely(*erp)) 5774 goto finish; 5775 } 5776 /* ext4_split_extent_at() may result in leaf extent split, 5777 * path must to be revalidated. */ 5778 if (split) 5779 goto repeat; 5780 5781 /* Prepare right boundary */ 5782 len = count; 5783 if (len > e1_blk + e1_len - lblk1) 5784 len = e1_blk + e1_len - lblk1; 5785 if (len > e2_blk + e2_len - lblk2) 5786 len = e2_blk + e2_len - lblk2; 5787 5788 if (len != e1_len) { 5789 split = 1; 5790 *erp = ext4_force_split_extent_at(handle, inode1, 5791 &path1, lblk1 + len, 0); 5792 if (unlikely(*erp)) 5793 goto finish; 5794 } 5795 if (len != e2_len) { 5796 split = 1; 5797 *erp = ext4_force_split_extent_at(handle, inode2, 5798 &path2, lblk2 + len, 0); 5799 if (*erp) 5800 goto finish; 5801 } 5802 /* ext4_split_extent_at() may result in leaf extent split, 5803 * path must to be revalidated. */ 5804 if (split) 5805 goto repeat; 5806 5807 BUG_ON(e2_len != e1_len); 5808 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5809 if (unlikely(*erp)) 5810 goto finish; 5811 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5812 if (unlikely(*erp)) 5813 goto finish; 5814 5815 /* Both extents are fully inside boundaries. Swap it now */ 5816 tmp_ex = *ex1; 5817 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5818 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5819 ex1->ee_len = cpu_to_le16(e2_len); 5820 ex2->ee_len = cpu_to_le16(e1_len); 5821 if (unwritten) 5822 ext4_ext_mark_unwritten(ex2); 5823 if (ext4_ext_is_unwritten(&tmp_ex)) 5824 ext4_ext_mark_unwritten(ex1); 5825 5826 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5827 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5828 *erp = ext4_ext_dirty(handle, inode2, path2 + 5829 path2->p_depth); 5830 if (unlikely(*erp)) 5831 goto finish; 5832 *erp = ext4_ext_dirty(handle, inode1, path1 + 5833 path1->p_depth); 5834 /* 5835 * Looks scarry ah..? second inode already points to new blocks, 5836 * and it was successfully dirtied. But luckily error may happen 5837 * only due to journal error, so full transaction will be 5838 * aborted anyway. 5839 */ 5840 if (unlikely(*erp)) 5841 goto finish; 5842 lblk1 += len; 5843 lblk2 += len; 5844 replaced_count += len; 5845 count -= len; 5846 5847 repeat: 5848 ext4_ext_drop_refs(path1); 5849 kfree(path1); 5850 ext4_ext_drop_refs(path2); 5851 kfree(path2); 5852 path1 = path2 = NULL; 5853 } 5854 return replaced_count; 5855 } 5856 5857 /* 5858 * ext4_clu_mapped - determine whether any block in a logical cluster has 5859 * been mapped to a physical cluster 5860 * 5861 * @inode - file containing the logical cluster 5862 * @lclu - logical cluster of interest 5863 * 5864 * Returns 1 if any block in the logical cluster is mapped, signifying 5865 * that a physical cluster has been allocated for it. Otherwise, 5866 * returns 0. Can also return negative error codes. Derived from 5867 * ext4_ext_map_blocks(). 5868 */ 5869 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 5870 { 5871 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5872 struct ext4_ext_path *path; 5873 int depth, mapped = 0, err = 0; 5874 struct ext4_extent *extent; 5875 ext4_lblk_t first_lblk, first_lclu, last_lclu; 5876 5877 /* search for the extent closest to the first block in the cluster */ 5878 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 5879 if (IS_ERR(path)) { 5880 err = PTR_ERR(path); 5881 path = NULL; 5882 goto out; 5883 } 5884 5885 depth = ext_depth(inode); 5886 5887 /* 5888 * A consistent leaf must not be empty. This situation is possible, 5889 * though, _during_ tree modification, and it's why an assert can't 5890 * be put in ext4_find_extent(). 5891 */ 5892 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 5893 EXT4_ERROR_INODE(inode, 5894 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 5895 (unsigned long) EXT4_C2B(sbi, lclu), 5896 depth, path[depth].p_block); 5897 err = -EFSCORRUPTED; 5898 goto out; 5899 } 5900 5901 extent = path[depth].p_ext; 5902 5903 /* can't be mapped if the extent tree is empty */ 5904 if (extent == NULL) 5905 goto out; 5906 5907 first_lblk = le32_to_cpu(extent->ee_block); 5908 first_lclu = EXT4_B2C(sbi, first_lblk); 5909 5910 /* 5911 * Three possible outcomes at this point - found extent spanning 5912 * the target cluster, to the left of the target cluster, or to the 5913 * right of the target cluster. The first two cases are handled here. 5914 * The last case indicates the target cluster is not mapped. 5915 */ 5916 if (lclu >= first_lclu) { 5917 last_lclu = EXT4_B2C(sbi, first_lblk + 5918 ext4_ext_get_actual_len(extent) - 1); 5919 if (lclu <= last_lclu) { 5920 mapped = 1; 5921 } else { 5922 first_lblk = ext4_ext_next_allocated_block(path); 5923 first_lclu = EXT4_B2C(sbi, first_lblk); 5924 if (lclu == first_lclu) 5925 mapped = 1; 5926 } 5927 } 5928 5929 out: 5930 ext4_ext_drop_refs(path); 5931 kfree(path); 5932 5933 return err ? err : mapped; 5934 } 5935