xref: /linux/fs/ext4/extents.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 
45 #include <trace/events/ext4.h>
46 
47 /*
48  * used by extent splitting.
49  */
50 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
51 					due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
54 
55 static __le32 ext4_extent_block_csum(struct inode *inode,
56 				     struct ext4_extent_header *eh)
57 {
58 	struct ext4_inode_info *ei = EXT4_I(inode);
59 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
60 	__u32 csum;
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
63 			   EXT4_EXTENT_TAIL_OFFSET(eh));
64 	return cpu_to_le32(csum);
65 }
66 
67 static int ext4_extent_block_csum_verify(struct inode *inode,
68 					 struct ext4_extent_header *eh)
69 {
70 	struct ext4_extent_tail *et;
71 
72 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
73 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
74 		return 1;
75 
76 	et = find_ext4_extent_tail(eh);
77 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
78 		return 0;
79 	return 1;
80 }
81 
82 static void ext4_extent_block_csum_set(struct inode *inode,
83 				       struct ext4_extent_header *eh)
84 {
85 	struct ext4_extent_tail *et;
86 
87 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 		return;
90 
91 	et = find_ext4_extent_tail(eh);
92 	et->et_checksum = ext4_extent_block_csum(inode, eh);
93 }
94 
95 static int ext4_split_extent(handle_t *handle,
96 				struct inode *inode,
97 				struct ext4_ext_path *path,
98 				struct ext4_map_blocks *map,
99 				int split_flag,
100 				int flags);
101 
102 static int ext4_split_extent_at(handle_t *handle,
103 			     struct inode *inode,
104 			     struct ext4_ext_path *path,
105 			     ext4_lblk_t split,
106 			     int split_flag,
107 			     int flags);
108 
109 static int ext4_ext_truncate_extend_restart(handle_t *handle,
110 					    struct inode *inode,
111 					    int needed)
112 {
113 	int err;
114 
115 	if (!ext4_handle_valid(handle))
116 		return 0;
117 	if (handle->h_buffer_credits > needed)
118 		return 0;
119 	err = ext4_journal_extend(handle, needed);
120 	if (err <= 0)
121 		return err;
122 	err = ext4_truncate_restart_trans(handle, inode, needed);
123 	if (err == 0)
124 		err = -EAGAIN;
125 
126 	return err;
127 }
128 
129 /*
130  * could return:
131  *  - EROFS
132  *  - ENOMEM
133  */
134 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
135 				struct ext4_ext_path *path)
136 {
137 	if (path->p_bh) {
138 		/* path points to block */
139 		return ext4_journal_get_write_access(handle, path->p_bh);
140 	}
141 	/* path points to leaf/index in inode body */
142 	/* we use in-core data, no need to protect them */
143 	return 0;
144 }
145 
146 /*
147  * could return:
148  *  - EROFS
149  *  - ENOMEM
150  *  - EIO
151  */
152 #define ext4_ext_dirty(handle, inode, path) \
153 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where, unsigned int line,
155 			    handle_t *handle, struct inode *inode,
156 			    struct ext4_ext_path *path)
157 {
158 	int err;
159 	if (path->p_bh) {
160 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
161 		/* path points to block */
162 		err = __ext4_handle_dirty_metadata(where, line, handle,
163 						   inode, path->p_bh);
164 	} else {
165 		/* path points to leaf/index in inode body */
166 		err = ext4_mark_inode_dirty(handle, inode);
167 	}
168 	return err;
169 }
170 
171 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
172 			      struct ext4_ext_path *path,
173 			      ext4_lblk_t block)
174 {
175 	if (path) {
176 		int depth = path->p_depth;
177 		struct ext4_extent *ex;
178 
179 		/*
180 		 * Try to predict block placement assuming that we are
181 		 * filling in a file which will eventually be
182 		 * non-sparse --- i.e., in the case of libbfd writing
183 		 * an ELF object sections out-of-order but in a way
184 		 * the eventually results in a contiguous object or
185 		 * executable file, or some database extending a table
186 		 * space file.  However, this is actually somewhat
187 		 * non-ideal if we are writing a sparse file such as
188 		 * qemu or KVM writing a raw image file that is going
189 		 * to stay fairly sparse, since it will end up
190 		 * fragmenting the file system's free space.  Maybe we
191 		 * should have some hueristics or some way to allow
192 		 * userspace to pass a hint to file system,
193 		 * especially if the latter case turns out to be
194 		 * common.
195 		 */
196 		ex = path[depth].p_ext;
197 		if (ex) {
198 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
199 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
200 
201 			if (block > ext_block)
202 				return ext_pblk + (block - ext_block);
203 			else
204 				return ext_pblk - (ext_block - block);
205 		}
206 
207 		/* it looks like index is empty;
208 		 * try to find starting block from index itself */
209 		if (path[depth].p_bh)
210 			return path[depth].p_bh->b_blocknr;
211 	}
212 
213 	/* OK. use inode's group */
214 	return ext4_inode_to_goal_block(inode);
215 }
216 
217 /*
218  * Allocation for a meta data block
219  */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 			struct ext4_ext_path *path,
223 			struct ext4_extent *ex, int *err, unsigned int flags)
224 {
225 	ext4_fsblk_t goal, newblock;
226 
227 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
229 					NULL, err);
230 	return newblock;
231 }
232 
233 static inline int ext4_ext_space_block(struct inode *inode, int check)
234 {
235 	int size;
236 
237 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
238 			/ sizeof(struct ext4_extent);
239 #ifdef AGGRESSIVE_TEST
240 	if (!check && size > 6)
241 		size = 6;
242 #endif
243 	return size;
244 }
245 
246 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
247 {
248 	int size;
249 
250 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
251 			/ sizeof(struct ext4_extent_idx);
252 #ifdef AGGRESSIVE_TEST
253 	if (!check && size > 5)
254 		size = 5;
255 #endif
256 	return size;
257 }
258 
259 static inline int ext4_ext_space_root(struct inode *inode, int check)
260 {
261 	int size;
262 
263 	size = sizeof(EXT4_I(inode)->i_data);
264 	size -= sizeof(struct ext4_extent_header);
265 	size /= sizeof(struct ext4_extent);
266 #ifdef AGGRESSIVE_TEST
267 	if (!check && size > 3)
268 		size = 3;
269 #endif
270 	return size;
271 }
272 
273 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
274 {
275 	int size;
276 
277 	size = sizeof(EXT4_I(inode)->i_data);
278 	size -= sizeof(struct ext4_extent_header);
279 	size /= sizeof(struct ext4_extent_idx);
280 #ifdef AGGRESSIVE_TEST
281 	if (!check && size > 4)
282 		size = 4;
283 #endif
284 	return size;
285 }
286 
287 /*
288  * Calculate the number of metadata blocks needed
289  * to allocate @blocks
290  * Worse case is one block per extent
291  */
292 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
293 {
294 	struct ext4_inode_info *ei = EXT4_I(inode);
295 	int idxs;
296 
297 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
298 		/ sizeof(struct ext4_extent_idx));
299 
300 	/*
301 	 * If the new delayed allocation block is contiguous with the
302 	 * previous da block, it can share index blocks with the
303 	 * previous block, so we only need to allocate a new index
304 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
305 	 * an additional index block, and at ldxs**3 blocks, yet
306 	 * another index blocks.
307 	 */
308 	if (ei->i_da_metadata_calc_len &&
309 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
310 		int num = 0;
311 
312 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
313 			num++;
314 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
315 			num++;
316 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
317 			num++;
318 			ei->i_da_metadata_calc_len = 0;
319 		} else
320 			ei->i_da_metadata_calc_len++;
321 		ei->i_da_metadata_calc_last_lblock++;
322 		return num;
323 	}
324 
325 	/*
326 	 * In the worst case we need a new set of index blocks at
327 	 * every level of the inode's extent tree.
328 	 */
329 	ei->i_da_metadata_calc_len = 1;
330 	ei->i_da_metadata_calc_last_lblock = lblock;
331 	return ext_depth(inode) + 1;
332 }
333 
334 static int
335 ext4_ext_max_entries(struct inode *inode, int depth)
336 {
337 	int max;
338 
339 	if (depth == ext_depth(inode)) {
340 		if (depth == 0)
341 			max = ext4_ext_space_root(inode, 1);
342 		else
343 			max = ext4_ext_space_root_idx(inode, 1);
344 	} else {
345 		if (depth == 0)
346 			max = ext4_ext_space_block(inode, 1);
347 		else
348 			max = ext4_ext_space_block_idx(inode, 1);
349 	}
350 
351 	return max;
352 }
353 
354 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
355 {
356 	ext4_fsblk_t block = ext4_ext_pblock(ext);
357 	int len = ext4_ext_get_actual_len(ext);
358 
359 	if (len == 0)
360 		return 0;
361 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
362 }
363 
364 static int ext4_valid_extent_idx(struct inode *inode,
365 				struct ext4_extent_idx *ext_idx)
366 {
367 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
368 
369 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
370 }
371 
372 static int ext4_valid_extent_entries(struct inode *inode,
373 				struct ext4_extent_header *eh,
374 				int depth)
375 {
376 	unsigned short entries;
377 	if (eh->eh_entries == 0)
378 		return 1;
379 
380 	entries = le16_to_cpu(eh->eh_entries);
381 
382 	if (depth == 0) {
383 		/* leaf entries */
384 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
385 		while (entries) {
386 			if (!ext4_valid_extent(inode, ext))
387 				return 0;
388 			ext++;
389 			entries--;
390 		}
391 	} else {
392 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
393 		while (entries) {
394 			if (!ext4_valid_extent_idx(inode, ext_idx))
395 				return 0;
396 			ext_idx++;
397 			entries--;
398 		}
399 	}
400 	return 1;
401 }
402 
403 static int __ext4_ext_check(const char *function, unsigned int line,
404 			    struct inode *inode, struct ext4_extent_header *eh,
405 			    int depth)
406 {
407 	const char *error_msg;
408 	int max = 0;
409 
410 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
411 		error_msg = "invalid magic";
412 		goto corrupted;
413 	}
414 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
415 		error_msg = "unexpected eh_depth";
416 		goto corrupted;
417 	}
418 	if (unlikely(eh->eh_max == 0)) {
419 		error_msg = "invalid eh_max";
420 		goto corrupted;
421 	}
422 	max = ext4_ext_max_entries(inode, depth);
423 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
424 		error_msg = "too large eh_max";
425 		goto corrupted;
426 	}
427 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
428 		error_msg = "invalid eh_entries";
429 		goto corrupted;
430 	}
431 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
432 		error_msg = "invalid extent entries";
433 		goto corrupted;
434 	}
435 	/* Verify checksum on non-root extent tree nodes */
436 	if (ext_depth(inode) != depth &&
437 	    !ext4_extent_block_csum_verify(inode, eh)) {
438 		error_msg = "extent tree corrupted";
439 		goto corrupted;
440 	}
441 	return 0;
442 
443 corrupted:
444 	ext4_error_inode(inode, function, line, 0,
445 			"bad header/extent: %s - magic %x, "
446 			"entries %u, max %u(%u), depth %u(%u)",
447 			error_msg, le16_to_cpu(eh->eh_magic),
448 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
449 			max, le16_to_cpu(eh->eh_depth), depth);
450 
451 	return -EIO;
452 }
453 
454 #define ext4_ext_check(inode, eh, depth)	\
455 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
456 
457 int ext4_ext_check_inode(struct inode *inode)
458 {
459 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
460 }
461 
462 static int __ext4_ext_check_block(const char *function, unsigned int line,
463 				  struct inode *inode,
464 				  struct ext4_extent_header *eh,
465 				  int depth,
466 				  struct buffer_head *bh)
467 {
468 	int ret;
469 
470 	if (buffer_verified(bh))
471 		return 0;
472 	ret = ext4_ext_check(inode, eh, depth);
473 	if (ret)
474 		return ret;
475 	set_buffer_verified(bh);
476 	return ret;
477 }
478 
479 #define ext4_ext_check_block(inode, eh, depth, bh)	\
480 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
481 
482 #ifdef EXT_DEBUG
483 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
484 {
485 	int k, l = path->p_depth;
486 
487 	ext_debug("path:");
488 	for (k = 0; k <= l; k++, path++) {
489 		if (path->p_idx) {
490 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
491 			    ext4_idx_pblock(path->p_idx));
492 		} else if (path->p_ext) {
493 			ext_debug("  %d:[%d]%d:%llu ",
494 				  le32_to_cpu(path->p_ext->ee_block),
495 				  ext4_ext_is_uninitialized(path->p_ext),
496 				  ext4_ext_get_actual_len(path->p_ext),
497 				  ext4_ext_pblock(path->p_ext));
498 		} else
499 			ext_debug("  []");
500 	}
501 	ext_debug("\n");
502 }
503 
504 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
505 {
506 	int depth = ext_depth(inode);
507 	struct ext4_extent_header *eh;
508 	struct ext4_extent *ex;
509 	int i;
510 
511 	if (!path)
512 		return;
513 
514 	eh = path[depth].p_hdr;
515 	ex = EXT_FIRST_EXTENT(eh);
516 
517 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
518 
519 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
520 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
521 			  ext4_ext_is_uninitialized(ex),
522 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
523 	}
524 	ext_debug("\n");
525 }
526 
527 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
528 			ext4_fsblk_t newblock, int level)
529 {
530 	int depth = ext_depth(inode);
531 	struct ext4_extent *ex;
532 
533 	if (depth != level) {
534 		struct ext4_extent_idx *idx;
535 		idx = path[level].p_idx;
536 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
537 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
538 					le32_to_cpu(idx->ei_block),
539 					ext4_idx_pblock(idx),
540 					newblock);
541 			idx++;
542 		}
543 
544 		return;
545 	}
546 
547 	ex = path[depth].p_ext;
548 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
549 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550 				le32_to_cpu(ex->ee_block),
551 				ext4_ext_pblock(ex),
552 				ext4_ext_is_uninitialized(ex),
553 				ext4_ext_get_actual_len(ex),
554 				newblock);
555 		ex++;
556 	}
557 }
558 
559 #else
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
563 #endif
564 
565 void ext4_ext_drop_refs(struct ext4_ext_path *path)
566 {
567 	int depth = path->p_depth;
568 	int i;
569 
570 	for (i = 0; i <= depth; i++, path++)
571 		if (path->p_bh) {
572 			brelse(path->p_bh);
573 			path->p_bh = NULL;
574 		}
575 }
576 
577 /*
578  * ext4_ext_binsearch_idx:
579  * binary search for the closest index of the given block
580  * the header must be checked before calling this
581  */
582 static void
583 ext4_ext_binsearch_idx(struct inode *inode,
584 			struct ext4_ext_path *path, ext4_lblk_t block)
585 {
586 	struct ext4_extent_header *eh = path->p_hdr;
587 	struct ext4_extent_idx *r, *l, *m;
588 
589 
590 	ext_debug("binsearch for %u(idx):  ", block);
591 
592 	l = EXT_FIRST_INDEX(eh) + 1;
593 	r = EXT_LAST_INDEX(eh);
594 	while (l <= r) {
595 		m = l + (r - l) / 2;
596 		if (block < le32_to_cpu(m->ei_block))
597 			r = m - 1;
598 		else
599 			l = m + 1;
600 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
601 				m, le32_to_cpu(m->ei_block),
602 				r, le32_to_cpu(r->ei_block));
603 	}
604 
605 	path->p_idx = l - 1;
606 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
607 		  ext4_idx_pblock(path->p_idx));
608 
609 #ifdef CHECK_BINSEARCH
610 	{
611 		struct ext4_extent_idx *chix, *ix;
612 		int k;
613 
614 		chix = ix = EXT_FIRST_INDEX(eh);
615 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
616 		  if (k != 0 &&
617 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
618 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
619 				       "first=0x%p\n", k,
620 				       ix, EXT_FIRST_INDEX(eh));
621 				printk(KERN_DEBUG "%u <= %u\n",
622 				       le32_to_cpu(ix->ei_block),
623 				       le32_to_cpu(ix[-1].ei_block));
624 			}
625 			BUG_ON(k && le32_to_cpu(ix->ei_block)
626 					   <= le32_to_cpu(ix[-1].ei_block));
627 			if (block < le32_to_cpu(ix->ei_block))
628 				break;
629 			chix = ix;
630 		}
631 		BUG_ON(chix != path->p_idx);
632 	}
633 #endif
634 
635 }
636 
637 /*
638  * ext4_ext_binsearch:
639  * binary search for closest extent of the given block
640  * the header must be checked before calling this
641  */
642 static void
643 ext4_ext_binsearch(struct inode *inode,
644 		struct ext4_ext_path *path, ext4_lblk_t block)
645 {
646 	struct ext4_extent_header *eh = path->p_hdr;
647 	struct ext4_extent *r, *l, *m;
648 
649 	if (eh->eh_entries == 0) {
650 		/*
651 		 * this leaf is empty:
652 		 * we get such a leaf in split/add case
653 		 */
654 		return;
655 	}
656 
657 	ext_debug("binsearch for %u:  ", block);
658 
659 	l = EXT_FIRST_EXTENT(eh) + 1;
660 	r = EXT_LAST_EXTENT(eh);
661 
662 	while (l <= r) {
663 		m = l + (r - l) / 2;
664 		if (block < le32_to_cpu(m->ee_block))
665 			r = m - 1;
666 		else
667 			l = m + 1;
668 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
669 				m, le32_to_cpu(m->ee_block),
670 				r, le32_to_cpu(r->ee_block));
671 	}
672 
673 	path->p_ext = l - 1;
674 	ext_debug("  -> %d:%llu:[%d]%d ",
675 			le32_to_cpu(path->p_ext->ee_block),
676 			ext4_ext_pblock(path->p_ext),
677 			ext4_ext_is_uninitialized(path->p_ext),
678 			ext4_ext_get_actual_len(path->p_ext));
679 
680 #ifdef CHECK_BINSEARCH
681 	{
682 		struct ext4_extent *chex, *ex;
683 		int k;
684 
685 		chex = ex = EXT_FIRST_EXTENT(eh);
686 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
687 			BUG_ON(k && le32_to_cpu(ex->ee_block)
688 					  <= le32_to_cpu(ex[-1].ee_block));
689 			if (block < le32_to_cpu(ex->ee_block))
690 				break;
691 			chex = ex;
692 		}
693 		BUG_ON(chex != path->p_ext);
694 	}
695 #endif
696 
697 }
698 
699 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
700 {
701 	struct ext4_extent_header *eh;
702 
703 	eh = ext_inode_hdr(inode);
704 	eh->eh_depth = 0;
705 	eh->eh_entries = 0;
706 	eh->eh_magic = EXT4_EXT_MAGIC;
707 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
708 	ext4_mark_inode_dirty(handle, inode);
709 	ext4_ext_invalidate_cache(inode);
710 	return 0;
711 }
712 
713 struct ext4_ext_path *
714 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
715 					struct ext4_ext_path *path)
716 {
717 	struct ext4_extent_header *eh;
718 	struct buffer_head *bh;
719 	short int depth, i, ppos = 0, alloc = 0;
720 
721 	eh = ext_inode_hdr(inode);
722 	depth = ext_depth(inode);
723 
724 	/* account possible depth increase */
725 	if (!path) {
726 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
727 				GFP_NOFS);
728 		if (!path)
729 			return ERR_PTR(-ENOMEM);
730 		alloc = 1;
731 	}
732 	path[0].p_hdr = eh;
733 	path[0].p_bh = NULL;
734 
735 	i = depth;
736 	/* walk through the tree */
737 	while (i) {
738 		ext_debug("depth %d: num %d, max %d\n",
739 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
740 
741 		ext4_ext_binsearch_idx(inode, path + ppos, block);
742 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
743 		path[ppos].p_depth = i;
744 		path[ppos].p_ext = NULL;
745 
746 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
747 		if (unlikely(!bh))
748 			goto err;
749 		if (!bh_uptodate_or_lock(bh)) {
750 			trace_ext4_ext_load_extent(inode, block,
751 						path[ppos].p_block);
752 			if (bh_submit_read(bh) < 0) {
753 				put_bh(bh);
754 				goto err;
755 			}
756 		}
757 		eh = ext_block_hdr(bh);
758 		ppos++;
759 		if (unlikely(ppos > depth)) {
760 			put_bh(bh);
761 			EXT4_ERROR_INODE(inode,
762 					 "ppos %d > depth %d", ppos, depth);
763 			goto err;
764 		}
765 		path[ppos].p_bh = bh;
766 		path[ppos].p_hdr = eh;
767 		i--;
768 
769 		if (ext4_ext_check_block(inode, eh, i, bh))
770 			goto err;
771 	}
772 
773 	path[ppos].p_depth = i;
774 	path[ppos].p_ext = NULL;
775 	path[ppos].p_idx = NULL;
776 
777 	/* find extent */
778 	ext4_ext_binsearch(inode, path + ppos, block);
779 	/* if not an empty leaf */
780 	if (path[ppos].p_ext)
781 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
782 
783 	ext4_ext_show_path(inode, path);
784 
785 	return path;
786 
787 err:
788 	ext4_ext_drop_refs(path);
789 	if (alloc)
790 		kfree(path);
791 	return ERR_PTR(-EIO);
792 }
793 
794 /*
795  * ext4_ext_insert_index:
796  * insert new index [@logical;@ptr] into the block at @curp;
797  * check where to insert: before @curp or after @curp
798  */
799 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
800 				 struct ext4_ext_path *curp,
801 				 int logical, ext4_fsblk_t ptr)
802 {
803 	struct ext4_extent_idx *ix;
804 	int len, err;
805 
806 	err = ext4_ext_get_access(handle, inode, curp);
807 	if (err)
808 		return err;
809 
810 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
811 		EXT4_ERROR_INODE(inode,
812 				 "logical %d == ei_block %d!",
813 				 logical, le32_to_cpu(curp->p_idx->ei_block));
814 		return -EIO;
815 	}
816 
817 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
818 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
819 		EXT4_ERROR_INODE(inode,
820 				 "eh_entries %d >= eh_max %d!",
821 				 le16_to_cpu(curp->p_hdr->eh_entries),
822 				 le16_to_cpu(curp->p_hdr->eh_max));
823 		return -EIO;
824 	}
825 
826 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
827 		/* insert after */
828 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
829 		ix = curp->p_idx + 1;
830 	} else {
831 		/* insert before */
832 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
833 		ix = curp->p_idx;
834 	}
835 
836 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
837 	BUG_ON(len < 0);
838 	if (len > 0) {
839 		ext_debug("insert new index %d: "
840 				"move %d indices from 0x%p to 0x%p\n",
841 				logical, len, ix, ix + 1);
842 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
843 	}
844 
845 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
846 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
847 		return -EIO;
848 	}
849 
850 	ix->ei_block = cpu_to_le32(logical);
851 	ext4_idx_store_pblock(ix, ptr);
852 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
853 
854 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
855 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
856 		return -EIO;
857 	}
858 
859 	err = ext4_ext_dirty(handle, inode, curp);
860 	ext4_std_error(inode->i_sb, err);
861 
862 	return err;
863 }
864 
865 /*
866  * ext4_ext_split:
867  * inserts new subtree into the path, using free index entry
868  * at depth @at:
869  * - allocates all needed blocks (new leaf and all intermediate index blocks)
870  * - makes decision where to split
871  * - moves remaining extents and index entries (right to the split point)
872  *   into the newly allocated blocks
873  * - initializes subtree
874  */
875 static int ext4_ext_split(handle_t *handle, struct inode *inode,
876 			  unsigned int flags,
877 			  struct ext4_ext_path *path,
878 			  struct ext4_extent *newext, int at)
879 {
880 	struct buffer_head *bh = NULL;
881 	int depth = ext_depth(inode);
882 	struct ext4_extent_header *neh;
883 	struct ext4_extent_idx *fidx;
884 	int i = at, k, m, a;
885 	ext4_fsblk_t newblock, oldblock;
886 	__le32 border;
887 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
888 	int err = 0;
889 
890 	/* make decision: where to split? */
891 	/* FIXME: now decision is simplest: at current extent */
892 
893 	/* if current leaf will be split, then we should use
894 	 * border from split point */
895 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
896 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
897 		return -EIO;
898 	}
899 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
900 		border = path[depth].p_ext[1].ee_block;
901 		ext_debug("leaf will be split."
902 				" next leaf starts at %d\n",
903 				  le32_to_cpu(border));
904 	} else {
905 		border = newext->ee_block;
906 		ext_debug("leaf will be added."
907 				" next leaf starts at %d\n",
908 				le32_to_cpu(border));
909 	}
910 
911 	/*
912 	 * If error occurs, then we break processing
913 	 * and mark filesystem read-only. index won't
914 	 * be inserted and tree will be in consistent
915 	 * state. Next mount will repair buffers too.
916 	 */
917 
918 	/*
919 	 * Get array to track all allocated blocks.
920 	 * We need this to handle errors and free blocks
921 	 * upon them.
922 	 */
923 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
924 	if (!ablocks)
925 		return -ENOMEM;
926 
927 	/* allocate all needed blocks */
928 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
929 	for (a = 0; a < depth - at; a++) {
930 		newblock = ext4_ext_new_meta_block(handle, inode, path,
931 						   newext, &err, flags);
932 		if (newblock == 0)
933 			goto cleanup;
934 		ablocks[a] = newblock;
935 	}
936 
937 	/* initialize new leaf */
938 	newblock = ablocks[--a];
939 	if (unlikely(newblock == 0)) {
940 		EXT4_ERROR_INODE(inode, "newblock == 0!");
941 		err = -EIO;
942 		goto cleanup;
943 	}
944 	bh = sb_getblk(inode->i_sb, newblock);
945 	if (!bh) {
946 		err = -EIO;
947 		goto cleanup;
948 	}
949 	lock_buffer(bh);
950 
951 	err = ext4_journal_get_create_access(handle, bh);
952 	if (err)
953 		goto cleanup;
954 
955 	neh = ext_block_hdr(bh);
956 	neh->eh_entries = 0;
957 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
958 	neh->eh_magic = EXT4_EXT_MAGIC;
959 	neh->eh_depth = 0;
960 
961 	/* move remainder of path[depth] to the new leaf */
962 	if (unlikely(path[depth].p_hdr->eh_entries !=
963 		     path[depth].p_hdr->eh_max)) {
964 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
965 				 path[depth].p_hdr->eh_entries,
966 				 path[depth].p_hdr->eh_max);
967 		err = -EIO;
968 		goto cleanup;
969 	}
970 	/* start copy from next extent */
971 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
972 	ext4_ext_show_move(inode, path, newblock, depth);
973 	if (m) {
974 		struct ext4_extent *ex;
975 		ex = EXT_FIRST_EXTENT(neh);
976 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
977 		le16_add_cpu(&neh->eh_entries, m);
978 	}
979 
980 	ext4_extent_block_csum_set(inode, neh);
981 	set_buffer_uptodate(bh);
982 	unlock_buffer(bh);
983 
984 	err = ext4_handle_dirty_metadata(handle, inode, bh);
985 	if (err)
986 		goto cleanup;
987 	brelse(bh);
988 	bh = NULL;
989 
990 	/* correct old leaf */
991 	if (m) {
992 		err = ext4_ext_get_access(handle, inode, path + depth);
993 		if (err)
994 			goto cleanup;
995 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
996 		err = ext4_ext_dirty(handle, inode, path + depth);
997 		if (err)
998 			goto cleanup;
999 
1000 	}
1001 
1002 	/* create intermediate indexes */
1003 	k = depth - at - 1;
1004 	if (unlikely(k < 0)) {
1005 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1006 		err = -EIO;
1007 		goto cleanup;
1008 	}
1009 	if (k)
1010 		ext_debug("create %d intermediate indices\n", k);
1011 	/* insert new index into current index block */
1012 	/* current depth stored in i var */
1013 	i = depth - 1;
1014 	while (k--) {
1015 		oldblock = newblock;
1016 		newblock = ablocks[--a];
1017 		bh = sb_getblk(inode->i_sb, newblock);
1018 		if (!bh) {
1019 			err = -EIO;
1020 			goto cleanup;
1021 		}
1022 		lock_buffer(bh);
1023 
1024 		err = ext4_journal_get_create_access(handle, bh);
1025 		if (err)
1026 			goto cleanup;
1027 
1028 		neh = ext_block_hdr(bh);
1029 		neh->eh_entries = cpu_to_le16(1);
1030 		neh->eh_magic = EXT4_EXT_MAGIC;
1031 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1032 		neh->eh_depth = cpu_to_le16(depth - i);
1033 		fidx = EXT_FIRST_INDEX(neh);
1034 		fidx->ei_block = border;
1035 		ext4_idx_store_pblock(fidx, oldblock);
1036 
1037 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038 				i, newblock, le32_to_cpu(border), oldblock);
1039 
1040 		/* move remainder of path[i] to the new index block */
1041 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1042 					EXT_LAST_INDEX(path[i].p_hdr))) {
1043 			EXT4_ERROR_INODE(inode,
1044 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045 					 le32_to_cpu(path[i].p_ext->ee_block));
1046 			err = -EIO;
1047 			goto cleanup;
1048 		}
1049 		/* start copy indexes */
1050 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1051 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1052 				EXT_MAX_INDEX(path[i].p_hdr));
1053 		ext4_ext_show_move(inode, path, newblock, i);
1054 		if (m) {
1055 			memmove(++fidx, path[i].p_idx,
1056 				sizeof(struct ext4_extent_idx) * m);
1057 			le16_add_cpu(&neh->eh_entries, m);
1058 		}
1059 		ext4_extent_block_csum_set(inode, neh);
1060 		set_buffer_uptodate(bh);
1061 		unlock_buffer(bh);
1062 
1063 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1064 		if (err)
1065 			goto cleanup;
1066 		brelse(bh);
1067 		bh = NULL;
1068 
1069 		/* correct old index */
1070 		if (m) {
1071 			err = ext4_ext_get_access(handle, inode, path + i);
1072 			if (err)
1073 				goto cleanup;
1074 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1075 			err = ext4_ext_dirty(handle, inode, path + i);
1076 			if (err)
1077 				goto cleanup;
1078 		}
1079 
1080 		i--;
1081 	}
1082 
1083 	/* insert new index */
1084 	err = ext4_ext_insert_index(handle, inode, path + at,
1085 				    le32_to_cpu(border), newblock);
1086 
1087 cleanup:
1088 	if (bh) {
1089 		if (buffer_locked(bh))
1090 			unlock_buffer(bh);
1091 		brelse(bh);
1092 	}
1093 
1094 	if (err) {
1095 		/* free all allocated blocks in error case */
1096 		for (i = 0; i < depth; i++) {
1097 			if (!ablocks[i])
1098 				continue;
1099 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1100 					 EXT4_FREE_BLOCKS_METADATA);
1101 		}
1102 	}
1103 	kfree(ablocks);
1104 
1105 	return err;
1106 }
1107 
1108 /*
1109  * ext4_ext_grow_indepth:
1110  * implements tree growing procedure:
1111  * - allocates new block
1112  * - moves top-level data (index block or leaf) into the new block
1113  * - initializes new top-level, creating index that points to the
1114  *   just created block
1115  */
1116 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1117 				 unsigned int flags,
1118 				 struct ext4_extent *newext)
1119 {
1120 	struct ext4_extent_header *neh;
1121 	struct buffer_head *bh;
1122 	ext4_fsblk_t newblock;
1123 	int err = 0;
1124 
1125 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1126 		newext, &err, flags);
1127 	if (newblock == 0)
1128 		return err;
1129 
1130 	bh = sb_getblk(inode->i_sb, newblock);
1131 	if (!bh) {
1132 		err = -EIO;
1133 		ext4_std_error(inode->i_sb, err);
1134 		return err;
1135 	}
1136 	lock_buffer(bh);
1137 
1138 	err = ext4_journal_get_create_access(handle, bh);
1139 	if (err) {
1140 		unlock_buffer(bh);
1141 		goto out;
1142 	}
1143 
1144 	/* move top-level index/leaf into new block */
1145 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1146 		sizeof(EXT4_I(inode)->i_data));
1147 
1148 	/* set size of new block */
1149 	neh = ext_block_hdr(bh);
1150 	/* old root could have indexes or leaves
1151 	 * so calculate e_max right way */
1152 	if (ext_depth(inode))
1153 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154 	else
1155 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1156 	neh->eh_magic = EXT4_EXT_MAGIC;
1157 	ext4_extent_block_csum_set(inode, neh);
1158 	set_buffer_uptodate(bh);
1159 	unlock_buffer(bh);
1160 
1161 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1162 	if (err)
1163 		goto out;
1164 
1165 	/* Update top-level index: num,max,pointer */
1166 	neh = ext_inode_hdr(inode);
1167 	neh->eh_entries = cpu_to_le16(1);
1168 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1169 	if (neh->eh_depth == 0) {
1170 		/* Root extent block becomes index block */
1171 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1172 		EXT_FIRST_INDEX(neh)->ei_block =
1173 			EXT_FIRST_EXTENT(neh)->ee_block;
1174 	}
1175 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1177 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1178 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1179 
1180 	neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1181 	ext4_mark_inode_dirty(handle, inode);
1182 out:
1183 	brelse(bh);
1184 
1185 	return err;
1186 }
1187 
1188 /*
1189  * ext4_ext_create_new_leaf:
1190  * finds empty index and adds new leaf.
1191  * if no free index is found, then it requests in-depth growing.
1192  */
1193 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1194 				    unsigned int flags,
1195 				    struct ext4_ext_path *path,
1196 				    struct ext4_extent *newext)
1197 {
1198 	struct ext4_ext_path *curp;
1199 	int depth, i, err = 0;
1200 
1201 repeat:
1202 	i = depth = ext_depth(inode);
1203 
1204 	/* walk up to the tree and look for free index entry */
1205 	curp = path + depth;
1206 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1207 		i--;
1208 		curp--;
1209 	}
1210 
1211 	/* we use already allocated block for index block,
1212 	 * so subsequent data blocks should be contiguous */
1213 	if (EXT_HAS_FREE_INDEX(curp)) {
1214 		/* if we found index with free entry, then use that
1215 		 * entry: create all needed subtree and add new leaf */
1216 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1217 		if (err)
1218 			goto out;
1219 
1220 		/* refill path */
1221 		ext4_ext_drop_refs(path);
1222 		path = ext4_ext_find_extent(inode,
1223 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1224 				    path);
1225 		if (IS_ERR(path))
1226 			err = PTR_ERR(path);
1227 	} else {
1228 		/* tree is full, time to grow in depth */
1229 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1230 		if (err)
1231 			goto out;
1232 
1233 		/* refill path */
1234 		ext4_ext_drop_refs(path);
1235 		path = ext4_ext_find_extent(inode,
1236 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1237 				    path);
1238 		if (IS_ERR(path)) {
1239 			err = PTR_ERR(path);
1240 			goto out;
1241 		}
1242 
1243 		/*
1244 		 * only first (depth 0 -> 1) produces free space;
1245 		 * in all other cases we have to split the grown tree
1246 		 */
1247 		depth = ext_depth(inode);
1248 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1249 			/* now we need to split */
1250 			goto repeat;
1251 		}
1252 	}
1253 
1254 out:
1255 	return err;
1256 }
1257 
1258 /*
1259  * search the closest allocated block to the left for *logical
1260  * and returns it at @logical + it's physical address at @phys
1261  * if *logical is the smallest allocated block, the function
1262  * returns 0 at @phys
1263  * return value contains 0 (success) or error code
1264  */
1265 static int ext4_ext_search_left(struct inode *inode,
1266 				struct ext4_ext_path *path,
1267 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268 {
1269 	struct ext4_extent_idx *ix;
1270 	struct ext4_extent *ex;
1271 	int depth, ee_len;
1272 
1273 	if (unlikely(path == NULL)) {
1274 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1275 		return -EIO;
1276 	}
1277 	depth = path->p_depth;
1278 	*phys = 0;
1279 
1280 	if (depth == 0 && path->p_ext == NULL)
1281 		return 0;
1282 
1283 	/* usually extent in the path covers blocks smaller
1284 	 * then *logical, but it can be that extent is the
1285 	 * first one in the file */
1286 
1287 	ex = path[depth].p_ext;
1288 	ee_len = ext4_ext_get_actual_len(ex);
1289 	if (*logical < le32_to_cpu(ex->ee_block)) {
1290 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1291 			EXT4_ERROR_INODE(inode,
1292 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293 					 *logical, le32_to_cpu(ex->ee_block));
1294 			return -EIO;
1295 		}
1296 		while (--depth >= 0) {
1297 			ix = path[depth].p_idx;
1298 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1299 				EXT4_ERROR_INODE(inode,
1300 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1302 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1303 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1304 				  depth);
1305 				return -EIO;
1306 			}
1307 		}
1308 		return 0;
1309 	}
1310 
1311 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1312 		EXT4_ERROR_INODE(inode,
1313 				 "logical %d < ee_block %d + ee_len %d!",
1314 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1315 		return -EIO;
1316 	}
1317 
1318 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1319 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1320 	return 0;
1321 }
1322 
1323 /*
1324  * search the closest allocated block to the right for *logical
1325  * and returns it at @logical + it's physical address at @phys
1326  * if *logical is the largest allocated block, the function
1327  * returns 0 at @phys
1328  * return value contains 0 (success) or error code
1329  */
1330 static int ext4_ext_search_right(struct inode *inode,
1331 				 struct ext4_ext_path *path,
1332 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1333 				 struct ext4_extent **ret_ex)
1334 {
1335 	struct buffer_head *bh = NULL;
1336 	struct ext4_extent_header *eh;
1337 	struct ext4_extent_idx *ix;
1338 	struct ext4_extent *ex;
1339 	ext4_fsblk_t block;
1340 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1341 	int ee_len;
1342 
1343 	if (unlikely(path == NULL)) {
1344 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1345 		return -EIO;
1346 	}
1347 	depth = path->p_depth;
1348 	*phys = 0;
1349 
1350 	if (depth == 0 && path->p_ext == NULL)
1351 		return 0;
1352 
1353 	/* usually extent in the path covers blocks smaller
1354 	 * then *logical, but it can be that extent is the
1355 	 * first one in the file */
1356 
1357 	ex = path[depth].p_ext;
1358 	ee_len = ext4_ext_get_actual_len(ex);
1359 	if (*logical < le32_to_cpu(ex->ee_block)) {
1360 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1361 			EXT4_ERROR_INODE(inode,
1362 					 "first_extent(path[%d].p_hdr) != ex",
1363 					 depth);
1364 			return -EIO;
1365 		}
1366 		while (--depth >= 0) {
1367 			ix = path[depth].p_idx;
1368 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1369 				EXT4_ERROR_INODE(inode,
1370 						 "ix != EXT_FIRST_INDEX *logical %d!",
1371 						 *logical);
1372 				return -EIO;
1373 			}
1374 		}
1375 		goto found_extent;
1376 	}
1377 
1378 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1379 		EXT4_ERROR_INODE(inode,
1380 				 "logical %d < ee_block %d + ee_len %d!",
1381 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1382 		return -EIO;
1383 	}
1384 
1385 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1386 		/* next allocated block in this leaf */
1387 		ex++;
1388 		goto found_extent;
1389 	}
1390 
1391 	/* go up and search for index to the right */
1392 	while (--depth >= 0) {
1393 		ix = path[depth].p_idx;
1394 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1395 			goto got_index;
1396 	}
1397 
1398 	/* we've gone up to the root and found no index to the right */
1399 	return 0;
1400 
1401 got_index:
1402 	/* we've found index to the right, let's
1403 	 * follow it and find the closest allocated
1404 	 * block to the right */
1405 	ix++;
1406 	block = ext4_idx_pblock(ix);
1407 	while (++depth < path->p_depth) {
1408 		bh = sb_bread(inode->i_sb, block);
1409 		if (bh == NULL)
1410 			return -EIO;
1411 		eh = ext_block_hdr(bh);
1412 		/* subtract from p_depth to get proper eh_depth */
1413 		if (ext4_ext_check_block(inode, eh,
1414 					 path->p_depth - depth, bh)) {
1415 			put_bh(bh);
1416 			return -EIO;
1417 		}
1418 		ix = EXT_FIRST_INDEX(eh);
1419 		block = ext4_idx_pblock(ix);
1420 		put_bh(bh);
1421 	}
1422 
1423 	bh = sb_bread(inode->i_sb, block);
1424 	if (bh == NULL)
1425 		return -EIO;
1426 	eh = ext_block_hdr(bh);
1427 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1428 		put_bh(bh);
1429 		return -EIO;
1430 	}
1431 	ex = EXT_FIRST_EXTENT(eh);
1432 found_extent:
1433 	*logical = le32_to_cpu(ex->ee_block);
1434 	*phys = ext4_ext_pblock(ex);
1435 	*ret_ex = ex;
1436 	if (bh)
1437 		put_bh(bh);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * ext4_ext_next_allocated_block:
1443  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444  * NOTE: it considers block number from index entry as
1445  * allocated block. Thus, index entries have to be consistent
1446  * with leaves.
1447  */
1448 static ext4_lblk_t
1449 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1450 {
1451 	int depth;
1452 
1453 	BUG_ON(path == NULL);
1454 	depth = path->p_depth;
1455 
1456 	if (depth == 0 && path->p_ext == NULL)
1457 		return EXT_MAX_BLOCKS;
1458 
1459 	while (depth >= 0) {
1460 		if (depth == path->p_depth) {
1461 			/* leaf */
1462 			if (path[depth].p_ext &&
1463 				path[depth].p_ext !=
1464 					EXT_LAST_EXTENT(path[depth].p_hdr))
1465 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466 		} else {
1467 			/* index */
1468 			if (path[depth].p_idx !=
1469 					EXT_LAST_INDEX(path[depth].p_hdr))
1470 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1471 		}
1472 		depth--;
1473 	}
1474 
1475 	return EXT_MAX_BLOCKS;
1476 }
1477 
1478 /*
1479  * ext4_ext_next_leaf_block:
1480  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1481  */
1482 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1483 {
1484 	int depth;
1485 
1486 	BUG_ON(path == NULL);
1487 	depth = path->p_depth;
1488 
1489 	/* zero-tree has no leaf blocks at all */
1490 	if (depth == 0)
1491 		return EXT_MAX_BLOCKS;
1492 
1493 	/* go to index block */
1494 	depth--;
1495 
1496 	while (depth >= 0) {
1497 		if (path[depth].p_idx !=
1498 				EXT_LAST_INDEX(path[depth].p_hdr))
1499 			return (ext4_lblk_t)
1500 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1501 		depth--;
1502 	}
1503 
1504 	return EXT_MAX_BLOCKS;
1505 }
1506 
1507 /*
1508  * ext4_ext_correct_indexes:
1509  * if leaf gets modified and modified extent is first in the leaf,
1510  * then we have to correct all indexes above.
1511  * TODO: do we need to correct tree in all cases?
1512  */
1513 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514 				struct ext4_ext_path *path)
1515 {
1516 	struct ext4_extent_header *eh;
1517 	int depth = ext_depth(inode);
1518 	struct ext4_extent *ex;
1519 	__le32 border;
1520 	int k, err = 0;
1521 
1522 	eh = path[depth].p_hdr;
1523 	ex = path[depth].p_ext;
1524 
1525 	if (unlikely(ex == NULL || eh == NULL)) {
1526 		EXT4_ERROR_INODE(inode,
1527 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1528 		return -EIO;
1529 	}
1530 
1531 	if (depth == 0) {
1532 		/* there is no tree at all */
1533 		return 0;
1534 	}
1535 
1536 	if (ex != EXT_FIRST_EXTENT(eh)) {
1537 		/* we correct tree if first leaf got modified only */
1538 		return 0;
1539 	}
1540 
1541 	/*
1542 	 * TODO: we need correction if border is smaller than current one
1543 	 */
1544 	k = depth - 1;
1545 	border = path[depth].p_ext->ee_block;
1546 	err = ext4_ext_get_access(handle, inode, path + k);
1547 	if (err)
1548 		return err;
1549 	path[k].p_idx->ei_block = border;
1550 	err = ext4_ext_dirty(handle, inode, path + k);
1551 	if (err)
1552 		return err;
1553 
1554 	while (k--) {
1555 		/* change all left-side indexes */
1556 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557 			break;
1558 		err = ext4_ext_get_access(handle, inode, path + k);
1559 		if (err)
1560 			break;
1561 		path[k].p_idx->ei_block = border;
1562 		err = ext4_ext_dirty(handle, inode, path + k);
1563 		if (err)
1564 			break;
1565 	}
1566 
1567 	return err;
1568 }
1569 
1570 int
1571 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572 				struct ext4_extent *ex2)
1573 {
1574 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1575 
1576 	/*
1577 	 * Make sure that either both extents are uninitialized, or
1578 	 * both are _not_.
1579 	 */
1580 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1581 		return 0;
1582 
1583 	if (ext4_ext_is_uninitialized(ex1))
1584 		max_len = EXT_UNINIT_MAX_LEN;
1585 	else
1586 		max_len = EXT_INIT_MAX_LEN;
1587 
1588 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1589 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1590 
1591 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1592 			le32_to_cpu(ex2->ee_block))
1593 		return 0;
1594 
1595 	/*
1596 	 * To allow future support for preallocated extents to be added
1597 	 * as an RO_COMPAT feature, refuse to merge to extents if
1598 	 * this can result in the top bit of ee_len being set.
1599 	 */
1600 	if (ext1_ee_len + ext2_ee_len > max_len)
1601 		return 0;
1602 #ifdef AGGRESSIVE_TEST
1603 	if (ext1_ee_len >= 4)
1604 		return 0;
1605 #endif
1606 
1607 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1608 		return 1;
1609 	return 0;
1610 }
1611 
1612 /*
1613  * This function tries to merge the "ex" extent to the next extent in the tree.
1614  * It always tries to merge towards right. If you want to merge towards
1615  * left, pass "ex - 1" as argument instead of "ex".
1616  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617  * 1 if they got merged.
1618  */
1619 static int ext4_ext_try_to_merge_right(struct inode *inode,
1620 				 struct ext4_ext_path *path,
1621 				 struct ext4_extent *ex)
1622 {
1623 	struct ext4_extent_header *eh;
1624 	unsigned int depth, len;
1625 	int merge_done = 0;
1626 	int uninitialized = 0;
1627 
1628 	depth = ext_depth(inode);
1629 	BUG_ON(path[depth].p_hdr == NULL);
1630 	eh = path[depth].p_hdr;
1631 
1632 	while (ex < EXT_LAST_EXTENT(eh)) {
1633 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1634 			break;
1635 		/* merge with next extent! */
1636 		if (ext4_ext_is_uninitialized(ex))
1637 			uninitialized = 1;
1638 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639 				+ ext4_ext_get_actual_len(ex + 1));
1640 		if (uninitialized)
1641 			ext4_ext_mark_uninitialized(ex);
1642 
1643 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1644 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1645 				* sizeof(struct ext4_extent);
1646 			memmove(ex + 1, ex + 2, len);
1647 		}
1648 		le16_add_cpu(&eh->eh_entries, -1);
1649 		merge_done = 1;
1650 		WARN_ON(eh->eh_entries == 0);
1651 		if (!eh->eh_entries)
1652 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1653 	}
1654 
1655 	return merge_done;
1656 }
1657 
1658 /*
1659  * This function tries to merge the @ex extent to neighbours in the tree.
1660  * return 1 if merge left else 0.
1661  */
1662 static int ext4_ext_try_to_merge(struct inode *inode,
1663 				  struct ext4_ext_path *path,
1664 				  struct ext4_extent *ex) {
1665 	struct ext4_extent_header *eh;
1666 	unsigned int depth;
1667 	int merge_done = 0;
1668 	int ret = 0;
1669 
1670 	depth = ext_depth(inode);
1671 	BUG_ON(path[depth].p_hdr == NULL);
1672 	eh = path[depth].p_hdr;
1673 
1674 	if (ex > EXT_FIRST_EXTENT(eh))
1675 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1676 
1677 	if (!merge_done)
1678 		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1679 
1680 	return ret;
1681 }
1682 
1683 /*
1684  * check if a portion of the "newext" extent overlaps with an
1685  * existing extent.
1686  *
1687  * If there is an overlap discovered, it updates the length of the newext
1688  * such that there will be no overlap, and then returns 1.
1689  * If there is no overlap found, it returns 0.
1690  */
1691 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1692 					   struct inode *inode,
1693 					   struct ext4_extent *newext,
1694 					   struct ext4_ext_path *path)
1695 {
1696 	ext4_lblk_t b1, b2;
1697 	unsigned int depth, len1;
1698 	unsigned int ret = 0;
1699 
1700 	b1 = le32_to_cpu(newext->ee_block);
1701 	len1 = ext4_ext_get_actual_len(newext);
1702 	depth = ext_depth(inode);
1703 	if (!path[depth].p_ext)
1704 		goto out;
1705 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1706 	b2 &= ~(sbi->s_cluster_ratio - 1);
1707 
1708 	/*
1709 	 * get the next allocated block if the extent in the path
1710 	 * is before the requested block(s)
1711 	 */
1712 	if (b2 < b1) {
1713 		b2 = ext4_ext_next_allocated_block(path);
1714 		if (b2 == EXT_MAX_BLOCKS)
1715 			goto out;
1716 		b2 &= ~(sbi->s_cluster_ratio - 1);
1717 	}
1718 
1719 	/* check for wrap through zero on extent logical start block*/
1720 	if (b1 + len1 < b1) {
1721 		len1 = EXT_MAX_BLOCKS - b1;
1722 		newext->ee_len = cpu_to_le16(len1);
1723 		ret = 1;
1724 	}
1725 
1726 	/* check for overlap */
1727 	if (b1 + len1 > b2) {
1728 		newext->ee_len = cpu_to_le16(b2 - b1);
1729 		ret = 1;
1730 	}
1731 out:
1732 	return ret;
1733 }
1734 
1735 /*
1736  * ext4_ext_insert_extent:
1737  * tries to merge requsted extent into the existing extent or
1738  * inserts requested extent as new one into the tree,
1739  * creating new leaf in the no-space case.
1740  */
1741 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1742 				struct ext4_ext_path *path,
1743 				struct ext4_extent *newext, int flag)
1744 {
1745 	struct ext4_extent_header *eh;
1746 	struct ext4_extent *ex, *fex;
1747 	struct ext4_extent *nearex; /* nearest extent */
1748 	struct ext4_ext_path *npath = NULL;
1749 	int depth, len, err;
1750 	ext4_lblk_t next;
1751 	unsigned uninitialized = 0;
1752 	int flags = 0;
1753 
1754 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1755 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1756 		return -EIO;
1757 	}
1758 	depth = ext_depth(inode);
1759 	ex = path[depth].p_ext;
1760 	if (unlikely(path[depth].p_hdr == NULL)) {
1761 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1762 		return -EIO;
1763 	}
1764 
1765 	/* try to insert block into found extent and return */
1766 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1767 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1768 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1769 			  ext4_ext_is_uninitialized(newext),
1770 			  ext4_ext_get_actual_len(newext),
1771 			  le32_to_cpu(ex->ee_block),
1772 			  ext4_ext_is_uninitialized(ex),
1773 			  ext4_ext_get_actual_len(ex),
1774 			  ext4_ext_pblock(ex));
1775 		err = ext4_ext_get_access(handle, inode, path + depth);
1776 		if (err)
1777 			return err;
1778 
1779 		/*
1780 		 * ext4_can_extents_be_merged should have checked that either
1781 		 * both extents are uninitialized, or both aren't. Thus we
1782 		 * need to check only one of them here.
1783 		 */
1784 		if (ext4_ext_is_uninitialized(ex))
1785 			uninitialized = 1;
1786 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1787 					+ ext4_ext_get_actual_len(newext));
1788 		if (uninitialized)
1789 			ext4_ext_mark_uninitialized(ex);
1790 		eh = path[depth].p_hdr;
1791 		nearex = ex;
1792 		goto merge;
1793 	}
1794 
1795 	depth = ext_depth(inode);
1796 	eh = path[depth].p_hdr;
1797 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1798 		goto has_space;
1799 
1800 	/* probably next leaf has space for us? */
1801 	fex = EXT_LAST_EXTENT(eh);
1802 	next = EXT_MAX_BLOCKS;
1803 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1804 		next = ext4_ext_next_leaf_block(path);
1805 	if (next != EXT_MAX_BLOCKS) {
1806 		ext_debug("next leaf block - %u\n", next);
1807 		BUG_ON(npath != NULL);
1808 		npath = ext4_ext_find_extent(inode, next, NULL);
1809 		if (IS_ERR(npath))
1810 			return PTR_ERR(npath);
1811 		BUG_ON(npath->p_depth != path->p_depth);
1812 		eh = npath[depth].p_hdr;
1813 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1814 			ext_debug("next leaf isn't full(%d)\n",
1815 				  le16_to_cpu(eh->eh_entries));
1816 			path = npath;
1817 			goto has_space;
1818 		}
1819 		ext_debug("next leaf has no free space(%d,%d)\n",
1820 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1821 	}
1822 
1823 	/*
1824 	 * There is no free space in the found leaf.
1825 	 * We're gonna add a new leaf in the tree.
1826 	 */
1827 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1828 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1829 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1830 	if (err)
1831 		goto cleanup;
1832 	depth = ext_depth(inode);
1833 	eh = path[depth].p_hdr;
1834 
1835 has_space:
1836 	nearex = path[depth].p_ext;
1837 
1838 	err = ext4_ext_get_access(handle, inode, path + depth);
1839 	if (err)
1840 		goto cleanup;
1841 
1842 	if (!nearex) {
1843 		/* there is no extent in this leaf, create first one */
1844 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1845 				le32_to_cpu(newext->ee_block),
1846 				ext4_ext_pblock(newext),
1847 				ext4_ext_is_uninitialized(newext),
1848 				ext4_ext_get_actual_len(newext));
1849 		nearex = EXT_FIRST_EXTENT(eh);
1850 	} else {
1851 		if (le32_to_cpu(newext->ee_block)
1852 			   > le32_to_cpu(nearex->ee_block)) {
1853 			/* Insert after */
1854 			ext_debug("insert %u:%llu:[%d]%d before: "
1855 					"nearest %p\n",
1856 					le32_to_cpu(newext->ee_block),
1857 					ext4_ext_pblock(newext),
1858 					ext4_ext_is_uninitialized(newext),
1859 					ext4_ext_get_actual_len(newext),
1860 					nearex);
1861 			nearex++;
1862 		} else {
1863 			/* Insert before */
1864 			BUG_ON(newext->ee_block == nearex->ee_block);
1865 			ext_debug("insert %u:%llu:[%d]%d after: "
1866 					"nearest %p\n",
1867 					le32_to_cpu(newext->ee_block),
1868 					ext4_ext_pblock(newext),
1869 					ext4_ext_is_uninitialized(newext),
1870 					ext4_ext_get_actual_len(newext),
1871 					nearex);
1872 		}
1873 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1874 		if (len > 0) {
1875 			ext_debug("insert %u:%llu:[%d]%d: "
1876 					"move %d extents from 0x%p to 0x%p\n",
1877 					le32_to_cpu(newext->ee_block),
1878 					ext4_ext_pblock(newext),
1879 					ext4_ext_is_uninitialized(newext),
1880 					ext4_ext_get_actual_len(newext),
1881 					len, nearex, nearex + 1);
1882 			memmove(nearex + 1, nearex,
1883 				len * sizeof(struct ext4_extent));
1884 		}
1885 	}
1886 
1887 	le16_add_cpu(&eh->eh_entries, 1);
1888 	path[depth].p_ext = nearex;
1889 	nearex->ee_block = newext->ee_block;
1890 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1891 	nearex->ee_len = newext->ee_len;
1892 
1893 merge:
1894 	/* try to merge extents */
1895 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1896 		ext4_ext_try_to_merge(inode, path, nearex);
1897 
1898 
1899 	/* time to correct all indexes above */
1900 	err = ext4_ext_correct_indexes(handle, inode, path);
1901 	if (err)
1902 		goto cleanup;
1903 
1904 	err = ext4_ext_dirty(handle, inode, path + depth);
1905 
1906 cleanup:
1907 	if (npath) {
1908 		ext4_ext_drop_refs(npath);
1909 		kfree(npath);
1910 	}
1911 	ext4_ext_invalidate_cache(inode);
1912 	return err;
1913 }
1914 
1915 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1916 			       ext4_lblk_t num, ext_prepare_callback func,
1917 			       void *cbdata)
1918 {
1919 	struct ext4_ext_path *path = NULL;
1920 	struct ext4_ext_cache cbex;
1921 	struct ext4_extent *ex;
1922 	ext4_lblk_t next, start = 0, end = 0;
1923 	ext4_lblk_t last = block + num;
1924 	int depth, exists, err = 0;
1925 
1926 	BUG_ON(func == NULL);
1927 	BUG_ON(inode == NULL);
1928 
1929 	while (block < last && block != EXT_MAX_BLOCKS) {
1930 		num = last - block;
1931 		/* find extent for this block */
1932 		down_read(&EXT4_I(inode)->i_data_sem);
1933 		path = ext4_ext_find_extent(inode, block, path);
1934 		up_read(&EXT4_I(inode)->i_data_sem);
1935 		if (IS_ERR(path)) {
1936 			err = PTR_ERR(path);
1937 			path = NULL;
1938 			break;
1939 		}
1940 
1941 		depth = ext_depth(inode);
1942 		if (unlikely(path[depth].p_hdr == NULL)) {
1943 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1944 			err = -EIO;
1945 			break;
1946 		}
1947 		ex = path[depth].p_ext;
1948 		next = ext4_ext_next_allocated_block(path);
1949 
1950 		exists = 0;
1951 		if (!ex) {
1952 			/* there is no extent yet, so try to allocate
1953 			 * all requested space */
1954 			start = block;
1955 			end = block + num;
1956 		} else if (le32_to_cpu(ex->ee_block) > block) {
1957 			/* need to allocate space before found extent */
1958 			start = block;
1959 			end = le32_to_cpu(ex->ee_block);
1960 			if (block + num < end)
1961 				end = block + num;
1962 		} else if (block >= le32_to_cpu(ex->ee_block)
1963 					+ ext4_ext_get_actual_len(ex)) {
1964 			/* need to allocate space after found extent */
1965 			start = block;
1966 			end = block + num;
1967 			if (end >= next)
1968 				end = next;
1969 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1970 			/*
1971 			 * some part of requested space is covered
1972 			 * by found extent
1973 			 */
1974 			start = block;
1975 			end = le32_to_cpu(ex->ee_block)
1976 				+ ext4_ext_get_actual_len(ex);
1977 			if (block + num < end)
1978 				end = block + num;
1979 			exists = 1;
1980 		} else {
1981 			BUG();
1982 		}
1983 		BUG_ON(end <= start);
1984 
1985 		if (!exists) {
1986 			cbex.ec_block = start;
1987 			cbex.ec_len = end - start;
1988 			cbex.ec_start = 0;
1989 		} else {
1990 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1991 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1992 			cbex.ec_start = ext4_ext_pblock(ex);
1993 		}
1994 
1995 		if (unlikely(cbex.ec_len == 0)) {
1996 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1997 			err = -EIO;
1998 			break;
1999 		}
2000 		err = func(inode, next, &cbex, ex, cbdata);
2001 		ext4_ext_drop_refs(path);
2002 
2003 		if (err < 0)
2004 			break;
2005 
2006 		if (err == EXT_REPEAT)
2007 			continue;
2008 		else if (err == EXT_BREAK) {
2009 			err = 0;
2010 			break;
2011 		}
2012 
2013 		if (ext_depth(inode) != depth) {
2014 			/* depth was changed. we have to realloc path */
2015 			kfree(path);
2016 			path = NULL;
2017 		}
2018 
2019 		block = cbex.ec_block + cbex.ec_len;
2020 	}
2021 
2022 	if (path) {
2023 		ext4_ext_drop_refs(path);
2024 		kfree(path);
2025 	}
2026 
2027 	return err;
2028 }
2029 
2030 static void
2031 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2032 			__u32 len, ext4_fsblk_t start)
2033 {
2034 	struct ext4_ext_cache *cex;
2035 	BUG_ON(len == 0);
2036 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2037 	trace_ext4_ext_put_in_cache(inode, block, len, start);
2038 	cex = &EXT4_I(inode)->i_cached_extent;
2039 	cex->ec_block = block;
2040 	cex->ec_len = len;
2041 	cex->ec_start = start;
2042 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2043 }
2044 
2045 /*
2046  * ext4_ext_put_gap_in_cache:
2047  * calculate boundaries of the gap that the requested block fits into
2048  * and cache this gap
2049  */
2050 static void
2051 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2052 				ext4_lblk_t block)
2053 {
2054 	int depth = ext_depth(inode);
2055 	unsigned long len;
2056 	ext4_lblk_t lblock;
2057 	struct ext4_extent *ex;
2058 
2059 	ex = path[depth].p_ext;
2060 	if (ex == NULL) {
2061 		/* there is no extent yet, so gap is [0;-] */
2062 		lblock = 0;
2063 		len = EXT_MAX_BLOCKS;
2064 		ext_debug("cache gap(whole file):");
2065 	} else if (block < le32_to_cpu(ex->ee_block)) {
2066 		lblock = block;
2067 		len = le32_to_cpu(ex->ee_block) - block;
2068 		ext_debug("cache gap(before): %u [%u:%u]",
2069 				block,
2070 				le32_to_cpu(ex->ee_block),
2071 				 ext4_ext_get_actual_len(ex));
2072 	} else if (block >= le32_to_cpu(ex->ee_block)
2073 			+ ext4_ext_get_actual_len(ex)) {
2074 		ext4_lblk_t next;
2075 		lblock = le32_to_cpu(ex->ee_block)
2076 			+ ext4_ext_get_actual_len(ex);
2077 
2078 		next = ext4_ext_next_allocated_block(path);
2079 		ext_debug("cache gap(after): [%u:%u] %u",
2080 				le32_to_cpu(ex->ee_block),
2081 				ext4_ext_get_actual_len(ex),
2082 				block);
2083 		BUG_ON(next == lblock);
2084 		len = next - lblock;
2085 	} else {
2086 		lblock = len = 0;
2087 		BUG();
2088 	}
2089 
2090 	ext_debug(" -> %u:%lu\n", lblock, len);
2091 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2092 }
2093 
2094 /*
2095  * ext4_ext_check_cache()
2096  * Checks to see if the given block is in the cache.
2097  * If it is, the cached extent is stored in the given
2098  * cache extent pointer.  If the cached extent is a hole,
2099  * this routine should be used instead of
2100  * ext4_ext_in_cache if the calling function needs to
2101  * know the size of the hole.
2102  *
2103  * @inode: The files inode
2104  * @block: The block to look for in the cache
2105  * @ex:    Pointer where the cached extent will be stored
2106  *         if it contains block
2107  *
2108  * Return 0 if cache is invalid; 1 if the cache is valid
2109  */
2110 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2111 	struct ext4_ext_cache *ex){
2112 	struct ext4_ext_cache *cex;
2113 	struct ext4_sb_info *sbi;
2114 	int ret = 0;
2115 
2116 	/*
2117 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2118 	 */
2119 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2120 	cex = &EXT4_I(inode)->i_cached_extent;
2121 	sbi = EXT4_SB(inode->i_sb);
2122 
2123 	/* has cache valid data? */
2124 	if (cex->ec_len == 0)
2125 		goto errout;
2126 
2127 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2128 		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2129 		ext_debug("%u cached by %u:%u:%llu\n",
2130 				block,
2131 				cex->ec_block, cex->ec_len, cex->ec_start);
2132 		ret = 1;
2133 	}
2134 errout:
2135 	trace_ext4_ext_in_cache(inode, block, ret);
2136 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2137 	return ret;
2138 }
2139 
2140 /*
2141  * ext4_ext_in_cache()
2142  * Checks to see if the given block is in the cache.
2143  * If it is, the cached extent is stored in the given
2144  * extent pointer.
2145  *
2146  * @inode: The files inode
2147  * @block: The block to look for in the cache
2148  * @ex:    Pointer where the cached extent will be stored
2149  *         if it contains block
2150  *
2151  * Return 0 if cache is invalid; 1 if the cache is valid
2152  */
2153 static int
2154 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2155 			struct ext4_extent *ex)
2156 {
2157 	struct ext4_ext_cache cex;
2158 	int ret = 0;
2159 
2160 	if (ext4_ext_check_cache(inode, block, &cex)) {
2161 		ex->ee_block = cpu_to_le32(cex.ec_block);
2162 		ext4_ext_store_pblock(ex, cex.ec_start);
2163 		ex->ee_len = cpu_to_le16(cex.ec_len);
2164 		ret = 1;
2165 	}
2166 
2167 	return ret;
2168 }
2169 
2170 
2171 /*
2172  * ext4_ext_rm_idx:
2173  * removes index from the index block.
2174  */
2175 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2176 			struct ext4_ext_path *path)
2177 {
2178 	int err;
2179 	ext4_fsblk_t leaf;
2180 
2181 	/* free index block */
2182 	path--;
2183 	leaf = ext4_idx_pblock(path->p_idx);
2184 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2185 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2186 		return -EIO;
2187 	}
2188 	err = ext4_ext_get_access(handle, inode, path);
2189 	if (err)
2190 		return err;
2191 
2192 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2193 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2194 		len *= sizeof(struct ext4_extent_idx);
2195 		memmove(path->p_idx, path->p_idx + 1, len);
2196 	}
2197 
2198 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2199 	err = ext4_ext_dirty(handle, inode, path);
2200 	if (err)
2201 		return err;
2202 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2203 	trace_ext4_ext_rm_idx(inode, leaf);
2204 
2205 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2206 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2207 	return err;
2208 }
2209 
2210 /*
2211  * ext4_ext_calc_credits_for_single_extent:
2212  * This routine returns max. credits that needed to insert an extent
2213  * to the extent tree.
2214  * When pass the actual path, the caller should calculate credits
2215  * under i_data_sem.
2216  */
2217 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2218 						struct ext4_ext_path *path)
2219 {
2220 	if (path) {
2221 		int depth = ext_depth(inode);
2222 		int ret = 0;
2223 
2224 		/* probably there is space in leaf? */
2225 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2226 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2227 
2228 			/*
2229 			 *  There are some space in the leaf tree, no
2230 			 *  need to account for leaf block credit
2231 			 *
2232 			 *  bitmaps and block group descriptor blocks
2233 			 *  and other metadata blocks still need to be
2234 			 *  accounted.
2235 			 */
2236 			/* 1 bitmap, 1 block group descriptor */
2237 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2238 			return ret;
2239 		}
2240 	}
2241 
2242 	return ext4_chunk_trans_blocks(inode, nrblocks);
2243 }
2244 
2245 /*
2246  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2247  *
2248  * if nrblocks are fit in a single extent (chunk flag is 1), then
2249  * in the worse case, each tree level index/leaf need to be changed
2250  * if the tree split due to insert a new extent, then the old tree
2251  * index/leaf need to be updated too
2252  *
2253  * If the nrblocks are discontiguous, they could cause
2254  * the whole tree split more than once, but this is really rare.
2255  */
2256 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2257 {
2258 	int index;
2259 	int depth = ext_depth(inode);
2260 
2261 	if (chunk)
2262 		index = depth * 2;
2263 	else
2264 		index = depth * 3;
2265 
2266 	return index;
2267 }
2268 
2269 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2270 			      struct ext4_extent *ex,
2271 			      ext4_fsblk_t *partial_cluster,
2272 			      ext4_lblk_t from, ext4_lblk_t to)
2273 {
2274 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2275 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2276 	ext4_fsblk_t pblk;
2277 	int flags = EXT4_FREE_BLOCKS_FORGET;
2278 
2279 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2280 		flags |= EXT4_FREE_BLOCKS_METADATA;
2281 	/*
2282 	 * For bigalloc file systems, we never free a partial cluster
2283 	 * at the beginning of the extent.  Instead, we make a note
2284 	 * that we tried freeing the cluster, and check to see if we
2285 	 * need to free it on a subsequent call to ext4_remove_blocks,
2286 	 * or at the end of the ext4_truncate() operation.
2287 	 */
2288 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2289 
2290 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2291 	/*
2292 	 * If we have a partial cluster, and it's different from the
2293 	 * cluster of the last block, we need to explicitly free the
2294 	 * partial cluster here.
2295 	 */
2296 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2297 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2298 		ext4_free_blocks(handle, inode, NULL,
2299 				 EXT4_C2B(sbi, *partial_cluster),
2300 				 sbi->s_cluster_ratio, flags);
2301 		*partial_cluster = 0;
2302 	}
2303 
2304 #ifdef EXTENTS_STATS
2305 	{
2306 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2307 		spin_lock(&sbi->s_ext_stats_lock);
2308 		sbi->s_ext_blocks += ee_len;
2309 		sbi->s_ext_extents++;
2310 		if (ee_len < sbi->s_ext_min)
2311 			sbi->s_ext_min = ee_len;
2312 		if (ee_len > sbi->s_ext_max)
2313 			sbi->s_ext_max = ee_len;
2314 		if (ext_depth(inode) > sbi->s_depth_max)
2315 			sbi->s_depth_max = ext_depth(inode);
2316 		spin_unlock(&sbi->s_ext_stats_lock);
2317 	}
2318 #endif
2319 	if (from >= le32_to_cpu(ex->ee_block)
2320 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2321 		/* tail removal */
2322 		ext4_lblk_t num;
2323 
2324 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2325 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2326 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2327 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2328 		/*
2329 		 * If the block range to be freed didn't start at the
2330 		 * beginning of a cluster, and we removed the entire
2331 		 * extent, save the partial cluster here, since we
2332 		 * might need to delete if we determine that the
2333 		 * truncate operation has removed all of the blocks in
2334 		 * the cluster.
2335 		 */
2336 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2337 		    (ee_len == num))
2338 			*partial_cluster = EXT4_B2C(sbi, pblk);
2339 		else
2340 			*partial_cluster = 0;
2341 	} else if (from == le32_to_cpu(ex->ee_block)
2342 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2343 		/* head removal */
2344 		ext4_lblk_t num;
2345 		ext4_fsblk_t start;
2346 
2347 		num = to - from;
2348 		start = ext4_ext_pblock(ex);
2349 
2350 		ext_debug("free first %u blocks starting %llu\n", num, start);
2351 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2352 
2353 	} else {
2354 		printk(KERN_INFO "strange request: removal(2) "
2355 				"%u-%u from %u:%u\n",
2356 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2357 	}
2358 	return 0;
2359 }
2360 
2361 
2362 /*
2363  * ext4_ext_rm_leaf() Removes the extents associated with the
2364  * blocks appearing between "start" and "end", and splits the extents
2365  * if "start" and "end" appear in the same extent
2366  *
2367  * @handle: The journal handle
2368  * @inode:  The files inode
2369  * @path:   The path to the leaf
2370  * @start:  The first block to remove
2371  * @end:   The last block to remove
2372  */
2373 static int
2374 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2375 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2376 		 ext4_lblk_t start, ext4_lblk_t end)
2377 {
2378 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2379 	int err = 0, correct_index = 0;
2380 	int depth = ext_depth(inode), credits;
2381 	struct ext4_extent_header *eh;
2382 	ext4_lblk_t a, b;
2383 	unsigned num;
2384 	ext4_lblk_t ex_ee_block;
2385 	unsigned short ex_ee_len;
2386 	unsigned uninitialized = 0;
2387 	struct ext4_extent *ex;
2388 
2389 	/* the header must be checked already in ext4_ext_remove_space() */
2390 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2391 	if (!path[depth].p_hdr)
2392 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2393 	eh = path[depth].p_hdr;
2394 	if (unlikely(path[depth].p_hdr == NULL)) {
2395 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2396 		return -EIO;
2397 	}
2398 	/* find where to start removing */
2399 	ex = EXT_LAST_EXTENT(eh);
2400 
2401 	ex_ee_block = le32_to_cpu(ex->ee_block);
2402 	ex_ee_len = ext4_ext_get_actual_len(ex);
2403 
2404 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2405 
2406 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2407 			ex_ee_block + ex_ee_len > start) {
2408 
2409 		if (ext4_ext_is_uninitialized(ex))
2410 			uninitialized = 1;
2411 		else
2412 			uninitialized = 0;
2413 
2414 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2415 			 uninitialized, ex_ee_len);
2416 		path[depth].p_ext = ex;
2417 
2418 		a = ex_ee_block > start ? ex_ee_block : start;
2419 		b = ex_ee_block+ex_ee_len - 1 < end ?
2420 			ex_ee_block+ex_ee_len - 1 : end;
2421 
2422 		ext_debug("  border %u:%u\n", a, b);
2423 
2424 		/* If this extent is beyond the end of the hole, skip it */
2425 		if (end < ex_ee_block) {
2426 			ex--;
2427 			ex_ee_block = le32_to_cpu(ex->ee_block);
2428 			ex_ee_len = ext4_ext_get_actual_len(ex);
2429 			continue;
2430 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2431 			EXT4_ERROR_INODE(inode,
2432 					 "can not handle truncate %u:%u "
2433 					 "on extent %u:%u",
2434 					 start, end, ex_ee_block,
2435 					 ex_ee_block + ex_ee_len - 1);
2436 			err = -EIO;
2437 			goto out;
2438 		} else if (a != ex_ee_block) {
2439 			/* remove tail of the extent */
2440 			num = a - ex_ee_block;
2441 		} else {
2442 			/* remove whole extent: excellent! */
2443 			num = 0;
2444 		}
2445 		/*
2446 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2447 		 * descriptor) for each block group; assume two block
2448 		 * groups plus ex_ee_len/blocks_per_block_group for
2449 		 * the worst case
2450 		 */
2451 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2452 		if (ex == EXT_FIRST_EXTENT(eh)) {
2453 			correct_index = 1;
2454 			credits += (ext_depth(inode)) + 1;
2455 		}
2456 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2457 
2458 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2459 		if (err)
2460 			goto out;
2461 
2462 		err = ext4_ext_get_access(handle, inode, path + depth);
2463 		if (err)
2464 			goto out;
2465 
2466 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2467 					 a, b);
2468 		if (err)
2469 			goto out;
2470 
2471 		if (num == 0)
2472 			/* this extent is removed; mark slot entirely unused */
2473 			ext4_ext_store_pblock(ex, 0);
2474 
2475 		ex->ee_len = cpu_to_le16(num);
2476 		/*
2477 		 * Do not mark uninitialized if all the blocks in the
2478 		 * extent have been removed.
2479 		 */
2480 		if (uninitialized && num)
2481 			ext4_ext_mark_uninitialized(ex);
2482 		/*
2483 		 * If the extent was completely released,
2484 		 * we need to remove it from the leaf
2485 		 */
2486 		if (num == 0) {
2487 			if (end != EXT_MAX_BLOCKS - 1) {
2488 				/*
2489 				 * For hole punching, we need to scoot all the
2490 				 * extents up when an extent is removed so that
2491 				 * we dont have blank extents in the middle
2492 				 */
2493 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2494 					sizeof(struct ext4_extent));
2495 
2496 				/* Now get rid of the one at the end */
2497 				memset(EXT_LAST_EXTENT(eh), 0,
2498 					sizeof(struct ext4_extent));
2499 			}
2500 			le16_add_cpu(&eh->eh_entries, -1);
2501 		} else
2502 			*partial_cluster = 0;
2503 
2504 		err = ext4_ext_dirty(handle, inode, path + depth);
2505 		if (err)
2506 			goto out;
2507 
2508 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2509 				ext4_ext_pblock(ex));
2510 		ex--;
2511 		ex_ee_block = le32_to_cpu(ex->ee_block);
2512 		ex_ee_len = ext4_ext_get_actual_len(ex);
2513 	}
2514 
2515 	if (correct_index && eh->eh_entries)
2516 		err = ext4_ext_correct_indexes(handle, inode, path);
2517 
2518 	/*
2519 	 * If there is still a entry in the leaf node, check to see if
2520 	 * it references the partial cluster.  This is the only place
2521 	 * where it could; if it doesn't, we can free the cluster.
2522 	 */
2523 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2524 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2525 	     *partial_cluster)) {
2526 		int flags = EXT4_FREE_BLOCKS_FORGET;
2527 
2528 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2529 			flags |= EXT4_FREE_BLOCKS_METADATA;
2530 
2531 		ext4_free_blocks(handle, inode, NULL,
2532 				 EXT4_C2B(sbi, *partial_cluster),
2533 				 sbi->s_cluster_ratio, flags);
2534 		*partial_cluster = 0;
2535 	}
2536 
2537 	/* if this leaf is free, then we should
2538 	 * remove it from index block above */
2539 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2540 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2541 
2542 out:
2543 	return err;
2544 }
2545 
2546 /*
2547  * ext4_ext_more_to_rm:
2548  * returns 1 if current index has to be freed (even partial)
2549  */
2550 static int
2551 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2552 {
2553 	BUG_ON(path->p_idx == NULL);
2554 
2555 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2556 		return 0;
2557 
2558 	/*
2559 	 * if truncate on deeper level happened, it wasn't partial,
2560 	 * so we have to consider current index for truncation
2561 	 */
2562 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2563 		return 0;
2564 	return 1;
2565 }
2566 
2567 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2568 				 ext4_lblk_t end)
2569 {
2570 	struct super_block *sb = inode->i_sb;
2571 	int depth = ext_depth(inode);
2572 	struct ext4_ext_path *path = NULL;
2573 	ext4_fsblk_t partial_cluster = 0;
2574 	handle_t *handle;
2575 	int i = 0, err;
2576 
2577 	ext_debug("truncate since %u to %u\n", start, end);
2578 
2579 	/* probably first extent we're gonna free will be last in block */
2580 	handle = ext4_journal_start(inode, depth + 1);
2581 	if (IS_ERR(handle))
2582 		return PTR_ERR(handle);
2583 
2584 again:
2585 	ext4_ext_invalidate_cache(inode);
2586 
2587 	trace_ext4_ext_remove_space(inode, start, depth);
2588 
2589 	/*
2590 	 * Check if we are removing extents inside the extent tree. If that
2591 	 * is the case, we are going to punch a hole inside the extent tree
2592 	 * so we have to check whether we need to split the extent covering
2593 	 * the last block to remove so we can easily remove the part of it
2594 	 * in ext4_ext_rm_leaf().
2595 	 */
2596 	if (end < EXT_MAX_BLOCKS - 1) {
2597 		struct ext4_extent *ex;
2598 		ext4_lblk_t ee_block;
2599 
2600 		/* find extent for this block */
2601 		path = ext4_ext_find_extent(inode, end, NULL);
2602 		if (IS_ERR(path)) {
2603 			ext4_journal_stop(handle);
2604 			return PTR_ERR(path);
2605 		}
2606 		depth = ext_depth(inode);
2607 		ex = path[depth].p_ext;
2608 		if (!ex) {
2609 			ext4_ext_drop_refs(path);
2610 			kfree(path);
2611 			path = NULL;
2612 			goto cont;
2613 		}
2614 
2615 		ee_block = le32_to_cpu(ex->ee_block);
2616 
2617 		/*
2618 		 * See if the last block is inside the extent, if so split
2619 		 * the extent at 'end' block so we can easily remove the
2620 		 * tail of the first part of the split extent in
2621 		 * ext4_ext_rm_leaf().
2622 		 */
2623 		if (end >= ee_block &&
2624 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2625 			int split_flag = 0;
2626 
2627 			if (ext4_ext_is_uninitialized(ex))
2628 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2629 					     EXT4_EXT_MARK_UNINIT2;
2630 
2631 			/*
2632 			 * Split the extent in two so that 'end' is the last
2633 			 * block in the first new extent
2634 			 */
2635 			err = ext4_split_extent_at(handle, inode, path,
2636 						end + 1, split_flag,
2637 						EXT4_GET_BLOCKS_PRE_IO |
2638 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2639 
2640 			if (err < 0)
2641 				goto out;
2642 		}
2643 	}
2644 cont:
2645 
2646 	/*
2647 	 * We start scanning from right side, freeing all the blocks
2648 	 * after i_size and walking into the tree depth-wise.
2649 	 */
2650 	depth = ext_depth(inode);
2651 	if (path) {
2652 		int k = i = depth;
2653 		while (--k > 0)
2654 			path[k].p_block =
2655 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2656 	} else {
2657 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2658 			       GFP_NOFS);
2659 		if (path == NULL) {
2660 			ext4_journal_stop(handle);
2661 			return -ENOMEM;
2662 		}
2663 		path[0].p_depth = depth;
2664 		path[0].p_hdr = ext_inode_hdr(inode);
2665 
2666 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2667 			err = -EIO;
2668 			goto out;
2669 		}
2670 	}
2671 	err = 0;
2672 
2673 	while (i >= 0 && err == 0) {
2674 		if (i == depth) {
2675 			/* this is leaf block */
2676 			err = ext4_ext_rm_leaf(handle, inode, path,
2677 					       &partial_cluster, start,
2678 					       end);
2679 			/* root level has p_bh == NULL, brelse() eats this */
2680 			brelse(path[i].p_bh);
2681 			path[i].p_bh = NULL;
2682 			i--;
2683 			continue;
2684 		}
2685 
2686 		/* this is index block */
2687 		if (!path[i].p_hdr) {
2688 			ext_debug("initialize header\n");
2689 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2690 		}
2691 
2692 		if (!path[i].p_idx) {
2693 			/* this level hasn't been touched yet */
2694 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2695 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2696 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2697 				  path[i].p_hdr,
2698 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2699 		} else {
2700 			/* we were already here, see at next index */
2701 			path[i].p_idx--;
2702 		}
2703 
2704 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2705 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2706 				path[i].p_idx);
2707 		if (ext4_ext_more_to_rm(path + i)) {
2708 			struct buffer_head *bh;
2709 			/* go to the next level */
2710 			ext_debug("move to level %d (block %llu)\n",
2711 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2712 			memset(path + i + 1, 0, sizeof(*path));
2713 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2714 			if (!bh) {
2715 				/* should we reset i_size? */
2716 				err = -EIO;
2717 				break;
2718 			}
2719 			if (WARN_ON(i + 1 > depth)) {
2720 				err = -EIO;
2721 				break;
2722 			}
2723 			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2724 							depth - i - 1, bh)) {
2725 				err = -EIO;
2726 				break;
2727 			}
2728 			path[i + 1].p_bh = bh;
2729 
2730 			/* save actual number of indexes since this
2731 			 * number is changed at the next iteration */
2732 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2733 			i++;
2734 		} else {
2735 			/* we finished processing this index, go up */
2736 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2737 				/* index is empty, remove it;
2738 				 * handle must be already prepared by the
2739 				 * truncatei_leaf() */
2740 				err = ext4_ext_rm_idx(handle, inode, path + i);
2741 			}
2742 			/* root level has p_bh == NULL, brelse() eats this */
2743 			brelse(path[i].p_bh);
2744 			path[i].p_bh = NULL;
2745 			i--;
2746 			ext_debug("return to level %d\n", i);
2747 		}
2748 	}
2749 
2750 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2751 			path->p_hdr->eh_entries);
2752 
2753 	/* If we still have something in the partial cluster and we have removed
2754 	 * even the first extent, then we should free the blocks in the partial
2755 	 * cluster as well. */
2756 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2757 		int flags = EXT4_FREE_BLOCKS_FORGET;
2758 
2759 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2760 			flags |= EXT4_FREE_BLOCKS_METADATA;
2761 
2762 		ext4_free_blocks(handle, inode, NULL,
2763 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2764 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2765 		partial_cluster = 0;
2766 	}
2767 
2768 	/* TODO: flexible tree reduction should be here */
2769 	if (path->p_hdr->eh_entries == 0) {
2770 		/*
2771 		 * truncate to zero freed all the tree,
2772 		 * so we need to correct eh_depth
2773 		 */
2774 		err = ext4_ext_get_access(handle, inode, path);
2775 		if (err == 0) {
2776 			ext_inode_hdr(inode)->eh_depth = 0;
2777 			ext_inode_hdr(inode)->eh_max =
2778 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2779 			err = ext4_ext_dirty(handle, inode, path);
2780 		}
2781 	}
2782 out:
2783 	ext4_ext_drop_refs(path);
2784 	kfree(path);
2785 	if (err == -EAGAIN) {
2786 		path = NULL;
2787 		goto again;
2788 	}
2789 	ext4_journal_stop(handle);
2790 
2791 	return err;
2792 }
2793 
2794 /*
2795  * called at mount time
2796  */
2797 void ext4_ext_init(struct super_block *sb)
2798 {
2799 	/*
2800 	 * possible initialization would be here
2801 	 */
2802 
2803 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2804 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2805 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2806 #ifdef AGGRESSIVE_TEST
2807 		       ", aggressive tests"
2808 #endif
2809 #ifdef CHECK_BINSEARCH
2810 		       ", check binsearch"
2811 #endif
2812 #ifdef EXTENTS_STATS
2813 		       ", stats"
2814 #endif
2815 		       "\n");
2816 #endif
2817 #ifdef EXTENTS_STATS
2818 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2819 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2820 		EXT4_SB(sb)->s_ext_max = 0;
2821 #endif
2822 	}
2823 }
2824 
2825 /*
2826  * called at umount time
2827  */
2828 void ext4_ext_release(struct super_block *sb)
2829 {
2830 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2831 		return;
2832 
2833 #ifdef EXTENTS_STATS
2834 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2835 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2836 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2837 			sbi->s_ext_blocks, sbi->s_ext_extents,
2838 			sbi->s_ext_blocks / sbi->s_ext_extents);
2839 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2840 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2841 	}
2842 #endif
2843 }
2844 
2845 /* FIXME!! we need to try to merge to left or right after zero-out  */
2846 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2847 {
2848 	ext4_fsblk_t ee_pblock;
2849 	unsigned int ee_len;
2850 	int ret;
2851 
2852 	ee_len    = ext4_ext_get_actual_len(ex);
2853 	ee_pblock = ext4_ext_pblock(ex);
2854 
2855 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2856 	if (ret > 0)
2857 		ret = 0;
2858 
2859 	return ret;
2860 }
2861 
2862 /*
2863  * ext4_split_extent_at() splits an extent at given block.
2864  *
2865  * @handle: the journal handle
2866  * @inode: the file inode
2867  * @path: the path to the extent
2868  * @split: the logical block where the extent is splitted.
2869  * @split_flags: indicates if the extent could be zeroout if split fails, and
2870  *		 the states(init or uninit) of new extents.
2871  * @flags: flags used to insert new extent to extent tree.
2872  *
2873  *
2874  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2875  * of which are deterimined by split_flag.
2876  *
2877  * There are two cases:
2878  *  a> the extent are splitted into two extent.
2879  *  b> split is not needed, and just mark the extent.
2880  *
2881  * return 0 on success.
2882  */
2883 static int ext4_split_extent_at(handle_t *handle,
2884 			     struct inode *inode,
2885 			     struct ext4_ext_path *path,
2886 			     ext4_lblk_t split,
2887 			     int split_flag,
2888 			     int flags)
2889 {
2890 	ext4_fsblk_t newblock;
2891 	ext4_lblk_t ee_block;
2892 	struct ext4_extent *ex, newex, orig_ex;
2893 	struct ext4_extent *ex2 = NULL;
2894 	unsigned int ee_len, depth;
2895 	int err = 0;
2896 
2897 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2898 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2899 
2900 	ext4_ext_show_leaf(inode, path);
2901 
2902 	depth = ext_depth(inode);
2903 	ex = path[depth].p_ext;
2904 	ee_block = le32_to_cpu(ex->ee_block);
2905 	ee_len = ext4_ext_get_actual_len(ex);
2906 	newblock = split - ee_block + ext4_ext_pblock(ex);
2907 
2908 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2909 
2910 	err = ext4_ext_get_access(handle, inode, path + depth);
2911 	if (err)
2912 		goto out;
2913 
2914 	if (split == ee_block) {
2915 		/*
2916 		 * case b: block @split is the block that the extent begins with
2917 		 * then we just change the state of the extent, and splitting
2918 		 * is not needed.
2919 		 */
2920 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2921 			ext4_ext_mark_uninitialized(ex);
2922 		else
2923 			ext4_ext_mark_initialized(ex);
2924 
2925 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2926 			ext4_ext_try_to_merge(inode, path, ex);
2927 
2928 		err = ext4_ext_dirty(handle, inode, path + depth);
2929 		goto out;
2930 	}
2931 
2932 	/* case a */
2933 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2934 	ex->ee_len = cpu_to_le16(split - ee_block);
2935 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2936 		ext4_ext_mark_uninitialized(ex);
2937 
2938 	/*
2939 	 * path may lead to new leaf, not to original leaf any more
2940 	 * after ext4_ext_insert_extent() returns,
2941 	 */
2942 	err = ext4_ext_dirty(handle, inode, path + depth);
2943 	if (err)
2944 		goto fix_extent_len;
2945 
2946 	ex2 = &newex;
2947 	ex2->ee_block = cpu_to_le32(split);
2948 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2949 	ext4_ext_store_pblock(ex2, newblock);
2950 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2951 		ext4_ext_mark_uninitialized(ex2);
2952 
2953 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2954 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2955 		err = ext4_ext_zeroout(inode, &orig_ex);
2956 		if (err)
2957 			goto fix_extent_len;
2958 		/* update the extent length and mark as initialized */
2959 		ex->ee_len = cpu_to_le16(ee_len);
2960 		ext4_ext_try_to_merge(inode, path, ex);
2961 		err = ext4_ext_dirty(handle, inode, path + depth);
2962 		goto out;
2963 	} else if (err)
2964 		goto fix_extent_len;
2965 
2966 out:
2967 	ext4_ext_show_leaf(inode, path);
2968 	return err;
2969 
2970 fix_extent_len:
2971 	ex->ee_len = orig_ex.ee_len;
2972 	ext4_ext_dirty(handle, inode, path + depth);
2973 	return err;
2974 }
2975 
2976 /*
2977  * ext4_split_extents() splits an extent and mark extent which is covered
2978  * by @map as split_flags indicates
2979  *
2980  * It may result in splitting the extent into multiple extents (upto three)
2981  * There are three possibilities:
2982  *   a> There is no split required
2983  *   b> Splits in two extents: Split is happening at either end of the extent
2984  *   c> Splits in three extents: Somone is splitting in middle of the extent
2985  *
2986  */
2987 static int ext4_split_extent(handle_t *handle,
2988 			      struct inode *inode,
2989 			      struct ext4_ext_path *path,
2990 			      struct ext4_map_blocks *map,
2991 			      int split_flag,
2992 			      int flags)
2993 {
2994 	ext4_lblk_t ee_block;
2995 	struct ext4_extent *ex;
2996 	unsigned int ee_len, depth;
2997 	int err = 0;
2998 	int uninitialized;
2999 	int split_flag1, flags1;
3000 
3001 	depth = ext_depth(inode);
3002 	ex = path[depth].p_ext;
3003 	ee_block = le32_to_cpu(ex->ee_block);
3004 	ee_len = ext4_ext_get_actual_len(ex);
3005 	uninitialized = ext4_ext_is_uninitialized(ex);
3006 
3007 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3008 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3009 			      EXT4_EXT_MAY_ZEROOUT : 0;
3010 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3011 		if (uninitialized)
3012 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3013 				       EXT4_EXT_MARK_UNINIT2;
3014 		err = ext4_split_extent_at(handle, inode, path,
3015 				map->m_lblk + map->m_len, split_flag1, flags1);
3016 		if (err)
3017 			goto out;
3018 	}
3019 
3020 	ext4_ext_drop_refs(path);
3021 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3022 	if (IS_ERR(path))
3023 		return PTR_ERR(path);
3024 
3025 	if (map->m_lblk >= ee_block) {
3026 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3027 			      EXT4_EXT_MAY_ZEROOUT : 0;
3028 		if (uninitialized)
3029 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3030 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3031 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3032 		err = ext4_split_extent_at(handle, inode, path,
3033 				map->m_lblk, split_flag1, flags);
3034 		if (err)
3035 			goto out;
3036 	}
3037 
3038 	ext4_ext_show_leaf(inode, path);
3039 out:
3040 	return err ? err : map->m_len;
3041 }
3042 
3043 #define EXT4_EXT_ZERO_LEN 7
3044 /*
3045  * This function is called by ext4_ext_map_blocks() if someone tries to write
3046  * to an uninitialized extent. It may result in splitting the uninitialized
3047  * extent into multiple extents (up to three - one initialized and two
3048  * uninitialized).
3049  * There are three possibilities:
3050  *   a> There is no split required: Entire extent should be initialized
3051  *   b> Splits in two extents: Write is happening at either end of the extent
3052  *   c> Splits in three extents: Somone is writing in middle of the extent
3053  *
3054  * Pre-conditions:
3055  *  - The extent pointed to by 'path' is uninitialized.
3056  *  - The extent pointed to by 'path' contains a superset
3057  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3058  *
3059  * Post-conditions on success:
3060  *  - the returned value is the number of blocks beyond map->l_lblk
3061  *    that are allocated and initialized.
3062  *    It is guaranteed to be >= map->m_len.
3063  */
3064 static int ext4_ext_convert_to_initialized(handle_t *handle,
3065 					   struct inode *inode,
3066 					   struct ext4_map_blocks *map,
3067 					   struct ext4_ext_path *path)
3068 {
3069 	struct ext4_extent_header *eh;
3070 	struct ext4_map_blocks split_map;
3071 	struct ext4_extent zero_ex;
3072 	struct ext4_extent *ex;
3073 	ext4_lblk_t ee_block, eof_block;
3074 	unsigned int ee_len, depth;
3075 	int allocated;
3076 	int err = 0;
3077 	int split_flag = 0;
3078 
3079 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3080 		"block %llu, max_blocks %u\n", inode->i_ino,
3081 		(unsigned long long)map->m_lblk, map->m_len);
3082 
3083 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3084 		inode->i_sb->s_blocksize_bits;
3085 	if (eof_block < map->m_lblk + map->m_len)
3086 		eof_block = map->m_lblk + map->m_len;
3087 
3088 	depth = ext_depth(inode);
3089 	eh = path[depth].p_hdr;
3090 	ex = path[depth].p_ext;
3091 	ee_block = le32_to_cpu(ex->ee_block);
3092 	ee_len = ext4_ext_get_actual_len(ex);
3093 	allocated = ee_len - (map->m_lblk - ee_block);
3094 
3095 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3096 
3097 	/* Pre-conditions */
3098 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3099 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3100 
3101 	/*
3102 	 * Attempt to transfer newly initialized blocks from the currently
3103 	 * uninitialized extent to its left neighbor. This is much cheaper
3104 	 * than an insertion followed by a merge as those involve costly
3105 	 * memmove() calls. This is the common case in steady state for
3106 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3107 	 * writes.
3108 	 *
3109 	 * Limitations of the current logic:
3110 	 *  - L1: we only deal with writes at the start of the extent.
3111 	 *    The approach could be extended to writes at the end
3112 	 *    of the extent but this scenario was deemed less common.
3113 	 *  - L2: we do not deal with writes covering the whole extent.
3114 	 *    This would require removing the extent if the transfer
3115 	 *    is possible.
3116 	 *  - L3: we only attempt to merge with an extent stored in the
3117 	 *    same extent tree node.
3118 	 */
3119 	if ((map->m_lblk == ee_block) &&	/*L1*/
3120 		(map->m_len < ee_len) &&	/*L2*/
3121 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3122 		struct ext4_extent *prev_ex;
3123 		ext4_lblk_t prev_lblk;
3124 		ext4_fsblk_t prev_pblk, ee_pblk;
3125 		unsigned int prev_len, write_len;
3126 
3127 		prev_ex = ex - 1;
3128 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3129 		prev_len = ext4_ext_get_actual_len(prev_ex);
3130 		prev_pblk = ext4_ext_pblock(prev_ex);
3131 		ee_pblk = ext4_ext_pblock(ex);
3132 		write_len = map->m_len;
3133 
3134 		/*
3135 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3136 		 * upon those conditions:
3137 		 * - C1: prev_ex is initialized,
3138 		 * - C2: prev_ex is logically abutting ex,
3139 		 * - C3: prev_ex is physically abutting ex,
3140 		 * - C4: prev_ex can receive the additional blocks without
3141 		 *   overflowing the (initialized) length limit.
3142 		 */
3143 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3144 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3145 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3146 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3147 			err = ext4_ext_get_access(handle, inode, path + depth);
3148 			if (err)
3149 				goto out;
3150 
3151 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3152 				map, ex, prev_ex);
3153 
3154 			/* Shift the start of ex by 'write_len' blocks */
3155 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3156 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3157 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3158 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3159 
3160 			/* Extend prev_ex by 'write_len' blocks */
3161 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3162 
3163 			/* Mark the block containing both extents as dirty */
3164 			ext4_ext_dirty(handle, inode, path + depth);
3165 
3166 			/* Update path to point to the right extent */
3167 			path[depth].p_ext = prev_ex;
3168 
3169 			/* Result: number of initialized blocks past m_lblk */
3170 			allocated = write_len;
3171 			goto out;
3172 		}
3173 	}
3174 
3175 	WARN_ON(map->m_lblk < ee_block);
3176 	/*
3177 	 * It is safe to convert extent to initialized via explicit
3178 	 * zeroout only if extent is fully insde i_size or new_size.
3179 	 */
3180 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3181 
3182 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3183 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3184 	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3185 		err = ext4_ext_zeroout(inode, ex);
3186 		if (err)
3187 			goto out;
3188 
3189 		err = ext4_ext_get_access(handle, inode, path + depth);
3190 		if (err)
3191 			goto out;
3192 		ext4_ext_mark_initialized(ex);
3193 		ext4_ext_try_to_merge(inode, path, ex);
3194 		err = ext4_ext_dirty(handle, inode, path + depth);
3195 		goto out;
3196 	}
3197 
3198 	/*
3199 	 * four cases:
3200 	 * 1. split the extent into three extents.
3201 	 * 2. split the extent into two extents, zeroout the first half.
3202 	 * 3. split the extent into two extents, zeroout the second half.
3203 	 * 4. split the extent into two extents with out zeroout.
3204 	 */
3205 	split_map.m_lblk = map->m_lblk;
3206 	split_map.m_len = map->m_len;
3207 
3208 	if (allocated > map->m_len) {
3209 		if (allocated <= EXT4_EXT_ZERO_LEN &&
3210 		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3211 			/* case 3 */
3212 			zero_ex.ee_block =
3213 					 cpu_to_le32(map->m_lblk);
3214 			zero_ex.ee_len = cpu_to_le16(allocated);
3215 			ext4_ext_store_pblock(&zero_ex,
3216 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3217 			err = ext4_ext_zeroout(inode, &zero_ex);
3218 			if (err)
3219 				goto out;
3220 			split_map.m_lblk = map->m_lblk;
3221 			split_map.m_len = allocated;
3222 		} else if ((map->m_lblk - ee_block + map->m_len <
3223 			   EXT4_EXT_ZERO_LEN) &&
3224 			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3225 			/* case 2 */
3226 			if (map->m_lblk != ee_block) {
3227 				zero_ex.ee_block = ex->ee_block;
3228 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3229 							ee_block);
3230 				ext4_ext_store_pblock(&zero_ex,
3231 						      ext4_ext_pblock(ex));
3232 				err = ext4_ext_zeroout(inode, &zero_ex);
3233 				if (err)
3234 					goto out;
3235 			}
3236 
3237 			split_map.m_lblk = ee_block;
3238 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3239 			allocated = map->m_len;
3240 		}
3241 	}
3242 
3243 	allocated = ext4_split_extent(handle, inode, path,
3244 				       &split_map, split_flag, 0);
3245 	if (allocated < 0)
3246 		err = allocated;
3247 
3248 out:
3249 	return err ? err : allocated;
3250 }
3251 
3252 /*
3253  * This function is called by ext4_ext_map_blocks() from
3254  * ext4_get_blocks_dio_write() when DIO to write
3255  * to an uninitialized extent.
3256  *
3257  * Writing to an uninitialized extent may result in splitting the uninitialized
3258  * extent into multiple /initialized uninitialized extents (up to three)
3259  * There are three possibilities:
3260  *   a> There is no split required: Entire extent should be uninitialized
3261  *   b> Splits in two extents: Write is happening at either end of the extent
3262  *   c> Splits in three extents: Somone is writing in middle of the extent
3263  *
3264  * One of more index blocks maybe needed if the extent tree grow after
3265  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3266  * complete, we need to split the uninitialized extent before DIO submit
3267  * the IO. The uninitialized extent called at this time will be split
3268  * into three uninitialized extent(at most). After IO complete, the part
3269  * being filled will be convert to initialized by the end_io callback function
3270  * via ext4_convert_unwritten_extents().
3271  *
3272  * Returns the size of uninitialized extent to be written on success.
3273  */
3274 static int ext4_split_unwritten_extents(handle_t *handle,
3275 					struct inode *inode,
3276 					struct ext4_map_blocks *map,
3277 					struct ext4_ext_path *path,
3278 					int flags)
3279 {
3280 	ext4_lblk_t eof_block;
3281 	ext4_lblk_t ee_block;
3282 	struct ext4_extent *ex;
3283 	unsigned int ee_len;
3284 	int split_flag = 0, depth;
3285 
3286 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3287 		"block %llu, max_blocks %u\n", inode->i_ino,
3288 		(unsigned long long)map->m_lblk, map->m_len);
3289 
3290 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3291 		inode->i_sb->s_blocksize_bits;
3292 	if (eof_block < map->m_lblk + map->m_len)
3293 		eof_block = map->m_lblk + map->m_len;
3294 	/*
3295 	 * It is safe to convert extent to initialized via explicit
3296 	 * zeroout only if extent is fully insde i_size or new_size.
3297 	 */
3298 	depth = ext_depth(inode);
3299 	ex = path[depth].p_ext;
3300 	ee_block = le32_to_cpu(ex->ee_block);
3301 	ee_len = ext4_ext_get_actual_len(ex);
3302 
3303 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3304 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3305 
3306 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3307 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3308 }
3309 
3310 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3311 					      struct inode *inode,
3312 					      struct ext4_ext_path *path)
3313 {
3314 	struct ext4_extent *ex;
3315 	int depth;
3316 	int err = 0;
3317 
3318 	depth = ext_depth(inode);
3319 	ex = path[depth].p_ext;
3320 
3321 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3322 		"block %llu, max_blocks %u\n", inode->i_ino,
3323 		(unsigned long long)le32_to_cpu(ex->ee_block),
3324 		ext4_ext_get_actual_len(ex));
3325 
3326 	err = ext4_ext_get_access(handle, inode, path + depth);
3327 	if (err)
3328 		goto out;
3329 	/* first mark the extent as initialized */
3330 	ext4_ext_mark_initialized(ex);
3331 
3332 	/* note: ext4_ext_correct_indexes() isn't needed here because
3333 	 * borders are not changed
3334 	 */
3335 	ext4_ext_try_to_merge(inode, path, ex);
3336 
3337 	/* Mark modified extent as dirty */
3338 	err = ext4_ext_dirty(handle, inode, path + depth);
3339 out:
3340 	ext4_ext_show_leaf(inode, path);
3341 	return err;
3342 }
3343 
3344 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3345 			sector_t block, int count)
3346 {
3347 	int i;
3348 	for (i = 0; i < count; i++)
3349                 unmap_underlying_metadata(bdev, block + i);
3350 }
3351 
3352 /*
3353  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3354  */
3355 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3356 			      ext4_lblk_t lblk,
3357 			      struct ext4_ext_path *path,
3358 			      unsigned int len)
3359 {
3360 	int i, depth;
3361 	struct ext4_extent_header *eh;
3362 	struct ext4_extent *last_ex;
3363 
3364 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3365 		return 0;
3366 
3367 	depth = ext_depth(inode);
3368 	eh = path[depth].p_hdr;
3369 
3370 	/*
3371 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3372 	 * do not care for this case anymore. Simply remove the flag
3373 	 * if there are no extents.
3374 	 */
3375 	if (unlikely(!eh->eh_entries))
3376 		goto out;
3377 	last_ex = EXT_LAST_EXTENT(eh);
3378 	/*
3379 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3380 	 * last block in the last extent in the file.  We test this by
3381 	 * first checking to see if the caller to
3382 	 * ext4_ext_get_blocks() was interested in the last block (or
3383 	 * a block beyond the last block) in the current extent.  If
3384 	 * this turns out to be false, we can bail out from this
3385 	 * function immediately.
3386 	 */
3387 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3388 	    ext4_ext_get_actual_len(last_ex))
3389 		return 0;
3390 	/*
3391 	 * If the caller does appear to be planning to write at or
3392 	 * beyond the end of the current extent, we then test to see
3393 	 * if the current extent is the last extent in the file, by
3394 	 * checking to make sure it was reached via the rightmost node
3395 	 * at each level of the tree.
3396 	 */
3397 	for (i = depth-1; i >= 0; i--)
3398 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3399 			return 0;
3400 out:
3401 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3402 	return ext4_mark_inode_dirty(handle, inode);
3403 }
3404 
3405 /**
3406  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3407  *
3408  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3409  * whether there are any buffers marked for delayed allocation. It returns '1'
3410  * on the first delalloc'ed buffer head found. If no buffer head in the given
3411  * range is marked for delalloc, it returns 0.
3412  * lblk_start should always be <= lblk_end.
3413  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3414  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3415  * block sooner). This is useful when blocks are truncated sequentially from
3416  * lblk_start towards lblk_end.
3417  */
3418 static int ext4_find_delalloc_range(struct inode *inode,
3419 				    ext4_lblk_t lblk_start,
3420 				    ext4_lblk_t lblk_end,
3421 				    int search_hint_reverse)
3422 {
3423 	struct address_space *mapping = inode->i_mapping;
3424 	struct buffer_head *head, *bh = NULL;
3425 	struct page *page;
3426 	ext4_lblk_t i, pg_lblk;
3427 	pgoff_t index;
3428 
3429 	if (!test_opt(inode->i_sb, DELALLOC))
3430 		return 0;
3431 
3432 	/* reverse search wont work if fs block size is less than page size */
3433 	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3434 		search_hint_reverse = 0;
3435 
3436 	if (search_hint_reverse)
3437 		i = lblk_end;
3438 	else
3439 		i = lblk_start;
3440 
3441 	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3442 
3443 	while ((i >= lblk_start) && (i <= lblk_end)) {
3444 		page = find_get_page(mapping, index);
3445 		if (!page)
3446 			goto nextpage;
3447 
3448 		if (!page_has_buffers(page))
3449 			goto nextpage;
3450 
3451 		head = page_buffers(page);
3452 		if (!head)
3453 			goto nextpage;
3454 
3455 		bh = head;
3456 		pg_lblk = index << (PAGE_CACHE_SHIFT -
3457 						inode->i_blkbits);
3458 		do {
3459 			if (unlikely(pg_lblk < lblk_start)) {
3460 				/*
3461 				 * This is possible when fs block size is less
3462 				 * than page size and our cluster starts/ends in
3463 				 * middle of the page. So we need to skip the
3464 				 * initial few blocks till we reach the 'lblk'
3465 				 */
3466 				pg_lblk++;
3467 				continue;
3468 			}
3469 
3470 			/* Check if the buffer is delayed allocated and that it
3471 			 * is not yet mapped. (when da-buffers are mapped during
3472 			 * their writeout, their da_mapped bit is set.)
3473 			 */
3474 			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3475 				page_cache_release(page);
3476 				trace_ext4_find_delalloc_range(inode,
3477 						lblk_start, lblk_end,
3478 						search_hint_reverse,
3479 						1, i);
3480 				return 1;
3481 			}
3482 			if (search_hint_reverse)
3483 				i--;
3484 			else
3485 				i++;
3486 		} while ((i >= lblk_start) && (i <= lblk_end) &&
3487 				((bh = bh->b_this_page) != head));
3488 nextpage:
3489 		if (page)
3490 			page_cache_release(page);
3491 		/*
3492 		 * Move to next page. 'i' will be the first lblk in the next
3493 		 * page.
3494 		 */
3495 		if (search_hint_reverse)
3496 			index--;
3497 		else
3498 			index++;
3499 		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3500 	}
3501 
3502 	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3503 					search_hint_reverse, 0, 0);
3504 	return 0;
3505 }
3506 
3507 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3508 			       int search_hint_reverse)
3509 {
3510 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3511 	ext4_lblk_t lblk_start, lblk_end;
3512 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3513 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3514 
3515 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3516 					search_hint_reverse);
3517 }
3518 
3519 /**
3520  * Determines how many complete clusters (out of those specified by the 'map')
3521  * are under delalloc and were reserved quota for.
3522  * This function is called when we are writing out the blocks that were
3523  * originally written with their allocation delayed, but then the space was
3524  * allocated using fallocate() before the delayed allocation could be resolved.
3525  * The cases to look for are:
3526  * ('=' indicated delayed allocated blocks
3527  *  '-' indicates non-delayed allocated blocks)
3528  * (a) partial clusters towards beginning and/or end outside of allocated range
3529  *     are not delalloc'ed.
3530  *	Ex:
3531  *	|----c---=|====c====|====c====|===-c----|
3532  *	         |++++++ allocated ++++++|
3533  *	==> 4 complete clusters in above example
3534  *
3535  * (b) partial cluster (outside of allocated range) towards either end is
3536  *     marked for delayed allocation. In this case, we will exclude that
3537  *     cluster.
3538  *	Ex:
3539  *	|----====c========|========c========|
3540  *	     |++++++ allocated ++++++|
3541  *	==> 1 complete clusters in above example
3542  *
3543  *	Ex:
3544  *	|================c================|
3545  *            |++++++ allocated ++++++|
3546  *	==> 0 complete clusters in above example
3547  *
3548  * The ext4_da_update_reserve_space will be called only if we
3549  * determine here that there were some "entire" clusters that span
3550  * this 'allocated' range.
3551  * In the non-bigalloc case, this function will just end up returning num_blks
3552  * without ever calling ext4_find_delalloc_range.
3553  */
3554 static unsigned int
3555 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3556 			   unsigned int num_blks)
3557 {
3558 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3559 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3560 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3561 	unsigned int allocated_clusters = 0;
3562 
3563 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3564 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3565 
3566 	/* max possible clusters for this allocation */
3567 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3568 
3569 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3570 
3571 	/* Check towards left side */
3572 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3573 	if (c_offset) {
3574 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3575 		lblk_to = lblk_from + c_offset - 1;
3576 
3577 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3578 			allocated_clusters--;
3579 	}
3580 
3581 	/* Now check towards right. */
3582 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3583 	if (allocated_clusters && c_offset) {
3584 		lblk_from = lblk_start + num_blks;
3585 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3586 
3587 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3588 			allocated_clusters--;
3589 	}
3590 
3591 	return allocated_clusters;
3592 }
3593 
3594 static int
3595 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3596 			struct ext4_map_blocks *map,
3597 			struct ext4_ext_path *path, int flags,
3598 			unsigned int allocated, ext4_fsblk_t newblock)
3599 {
3600 	int ret = 0;
3601 	int err = 0;
3602 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3603 
3604 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3605 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3606 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3607 		  flags, allocated);
3608 	ext4_ext_show_leaf(inode, path);
3609 
3610 	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3611 						    newblock);
3612 
3613 	/* get_block() before submit the IO, split the extent */
3614 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3615 		ret = ext4_split_unwritten_extents(handle, inode, map,
3616 						   path, flags);
3617 		/*
3618 		 * Flag the inode(non aio case) or end_io struct (aio case)
3619 		 * that this IO needs to conversion to written when IO is
3620 		 * completed
3621 		 */
3622 		if (io)
3623 			ext4_set_io_unwritten_flag(inode, io);
3624 		else
3625 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3626 		if (ext4_should_dioread_nolock(inode))
3627 			map->m_flags |= EXT4_MAP_UNINIT;
3628 		goto out;
3629 	}
3630 	/* IO end_io complete, convert the filled extent to written */
3631 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3632 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3633 							path);
3634 		if (ret >= 0) {
3635 			ext4_update_inode_fsync_trans(handle, inode, 1);
3636 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3637 						 path, map->m_len);
3638 		} else
3639 			err = ret;
3640 		goto out2;
3641 	}
3642 	/* buffered IO case */
3643 	/*
3644 	 * repeat fallocate creation request
3645 	 * we already have an unwritten extent
3646 	 */
3647 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3648 		goto map_out;
3649 
3650 	/* buffered READ or buffered write_begin() lookup */
3651 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3652 		/*
3653 		 * We have blocks reserved already.  We
3654 		 * return allocated blocks so that delalloc
3655 		 * won't do block reservation for us.  But
3656 		 * the buffer head will be unmapped so that
3657 		 * a read from the block returns 0s.
3658 		 */
3659 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3660 		goto out1;
3661 	}
3662 
3663 	/* buffered write, writepage time, convert*/
3664 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3665 	if (ret >= 0)
3666 		ext4_update_inode_fsync_trans(handle, inode, 1);
3667 out:
3668 	if (ret <= 0) {
3669 		err = ret;
3670 		goto out2;
3671 	} else
3672 		allocated = ret;
3673 	map->m_flags |= EXT4_MAP_NEW;
3674 	/*
3675 	 * if we allocated more blocks than requested
3676 	 * we need to make sure we unmap the extra block
3677 	 * allocated. The actual needed block will get
3678 	 * unmapped later when we find the buffer_head marked
3679 	 * new.
3680 	 */
3681 	if (allocated > map->m_len) {
3682 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3683 					newblock + map->m_len,
3684 					allocated - map->m_len);
3685 		allocated = map->m_len;
3686 	}
3687 
3688 	/*
3689 	 * If we have done fallocate with the offset that is already
3690 	 * delayed allocated, we would have block reservation
3691 	 * and quota reservation done in the delayed write path.
3692 	 * But fallocate would have already updated quota and block
3693 	 * count for this offset. So cancel these reservation
3694 	 */
3695 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3696 		unsigned int reserved_clusters;
3697 		reserved_clusters = get_reserved_cluster_alloc(inode,
3698 				map->m_lblk, map->m_len);
3699 		if (reserved_clusters)
3700 			ext4_da_update_reserve_space(inode,
3701 						     reserved_clusters,
3702 						     0);
3703 	}
3704 
3705 map_out:
3706 	map->m_flags |= EXT4_MAP_MAPPED;
3707 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3708 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3709 					 map->m_len);
3710 		if (err < 0)
3711 			goto out2;
3712 	}
3713 out1:
3714 	if (allocated > map->m_len)
3715 		allocated = map->m_len;
3716 	ext4_ext_show_leaf(inode, path);
3717 	map->m_pblk = newblock;
3718 	map->m_len = allocated;
3719 out2:
3720 	if (path) {
3721 		ext4_ext_drop_refs(path);
3722 		kfree(path);
3723 	}
3724 	return err ? err : allocated;
3725 }
3726 
3727 /*
3728  * get_implied_cluster_alloc - check to see if the requested
3729  * allocation (in the map structure) overlaps with a cluster already
3730  * allocated in an extent.
3731  *	@sb	The filesystem superblock structure
3732  *	@map	The requested lblk->pblk mapping
3733  *	@ex	The extent structure which might contain an implied
3734  *			cluster allocation
3735  *
3736  * This function is called by ext4_ext_map_blocks() after we failed to
3737  * find blocks that were already in the inode's extent tree.  Hence,
3738  * we know that the beginning of the requested region cannot overlap
3739  * the extent from the inode's extent tree.  There are three cases we
3740  * want to catch.  The first is this case:
3741  *
3742  *		 |--- cluster # N--|
3743  *    |--- extent ---|	|---- requested region ---|
3744  *			|==========|
3745  *
3746  * The second case that we need to test for is this one:
3747  *
3748  *   |--------- cluster # N ----------------|
3749  *	   |--- requested region --|   |------- extent ----|
3750  *	   |=======================|
3751  *
3752  * The third case is when the requested region lies between two extents
3753  * within the same cluster:
3754  *          |------------- cluster # N-------------|
3755  * |----- ex -----|                  |---- ex_right ----|
3756  *                  |------ requested region ------|
3757  *                  |================|
3758  *
3759  * In each of the above cases, we need to set the map->m_pblk and
3760  * map->m_len so it corresponds to the return the extent labelled as
3761  * "|====|" from cluster #N, since it is already in use for data in
3762  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3763  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3764  * as a new "allocated" block region.  Otherwise, we will return 0 and
3765  * ext4_ext_map_blocks() will then allocate one or more new clusters
3766  * by calling ext4_mb_new_blocks().
3767  */
3768 static int get_implied_cluster_alloc(struct super_block *sb,
3769 				     struct ext4_map_blocks *map,
3770 				     struct ext4_extent *ex,
3771 				     struct ext4_ext_path *path)
3772 {
3773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3774 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3775 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3776 	ext4_lblk_t rr_cluster_start;
3777 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3778 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3779 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3780 
3781 	/* The extent passed in that we are trying to match */
3782 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3783 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3784 
3785 	/* The requested region passed into ext4_map_blocks() */
3786 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3787 
3788 	if ((rr_cluster_start == ex_cluster_end) ||
3789 	    (rr_cluster_start == ex_cluster_start)) {
3790 		if (rr_cluster_start == ex_cluster_end)
3791 			ee_start += ee_len - 1;
3792 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3793 			c_offset;
3794 		map->m_len = min(map->m_len,
3795 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3796 		/*
3797 		 * Check for and handle this case:
3798 		 *
3799 		 *   |--------- cluster # N-------------|
3800 		 *		       |------- extent ----|
3801 		 *	   |--- requested region ---|
3802 		 *	   |===========|
3803 		 */
3804 
3805 		if (map->m_lblk < ee_block)
3806 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3807 
3808 		/*
3809 		 * Check for the case where there is already another allocated
3810 		 * block to the right of 'ex' but before the end of the cluster.
3811 		 *
3812 		 *          |------------- cluster # N-------------|
3813 		 * |----- ex -----|                  |---- ex_right ----|
3814 		 *                  |------ requested region ------|
3815 		 *                  |================|
3816 		 */
3817 		if (map->m_lblk > ee_block) {
3818 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3819 			map->m_len = min(map->m_len, next - map->m_lblk);
3820 		}
3821 
3822 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3823 		return 1;
3824 	}
3825 
3826 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3827 	return 0;
3828 }
3829 
3830 
3831 /*
3832  * Block allocation/map/preallocation routine for extents based files
3833  *
3834  *
3835  * Need to be called with
3836  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3837  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3838  *
3839  * return > 0, number of of blocks already mapped/allocated
3840  *          if create == 0 and these are pre-allocated blocks
3841  *          	buffer head is unmapped
3842  *          otherwise blocks are mapped
3843  *
3844  * return = 0, if plain look up failed (blocks have not been allocated)
3845  *          buffer head is unmapped
3846  *
3847  * return < 0, error case.
3848  */
3849 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3850 			struct ext4_map_blocks *map, int flags)
3851 {
3852 	struct ext4_ext_path *path = NULL;
3853 	struct ext4_extent newex, *ex, *ex2;
3854 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3855 	ext4_fsblk_t newblock = 0;
3856 	int free_on_err = 0, err = 0, depth, ret;
3857 	unsigned int allocated = 0, offset = 0;
3858 	unsigned int allocated_clusters = 0;
3859 	struct ext4_allocation_request ar;
3860 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3861 	ext4_lblk_t cluster_offset;
3862 
3863 	ext_debug("blocks %u/%u requested for inode %lu\n",
3864 		  map->m_lblk, map->m_len, inode->i_ino);
3865 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3866 
3867 	/* check in cache */
3868 	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3869 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3870 			if ((sbi->s_cluster_ratio > 1) &&
3871 			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3872 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3873 
3874 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3875 				/*
3876 				 * block isn't allocated yet and
3877 				 * user doesn't want to allocate it
3878 				 */
3879 				goto out2;
3880 			}
3881 			/* we should allocate requested block */
3882 		} else {
3883 			/* block is already allocated */
3884 			if (sbi->s_cluster_ratio > 1)
3885 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3886 			newblock = map->m_lblk
3887 				   - le32_to_cpu(newex.ee_block)
3888 				   + ext4_ext_pblock(&newex);
3889 			/* number of remaining blocks in the extent */
3890 			allocated = ext4_ext_get_actual_len(&newex) -
3891 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3892 			goto out;
3893 		}
3894 	}
3895 
3896 	/* find extent for this block */
3897 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3898 	if (IS_ERR(path)) {
3899 		err = PTR_ERR(path);
3900 		path = NULL;
3901 		goto out2;
3902 	}
3903 
3904 	depth = ext_depth(inode);
3905 
3906 	/*
3907 	 * consistent leaf must not be empty;
3908 	 * this situation is possible, though, _during_ tree modification;
3909 	 * this is why assert can't be put in ext4_ext_find_extent()
3910 	 */
3911 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3912 		EXT4_ERROR_INODE(inode, "bad extent address "
3913 				 "lblock: %lu, depth: %d pblock %lld",
3914 				 (unsigned long) map->m_lblk, depth,
3915 				 path[depth].p_block);
3916 		err = -EIO;
3917 		goto out2;
3918 	}
3919 
3920 	ex = path[depth].p_ext;
3921 	if (ex) {
3922 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3923 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3924 		unsigned short ee_len;
3925 
3926 		/*
3927 		 * Uninitialized extents are treated as holes, except that
3928 		 * we split out initialized portions during a write.
3929 		 */
3930 		ee_len = ext4_ext_get_actual_len(ex);
3931 
3932 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3933 
3934 		/* if found extent covers block, simply return it */
3935 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3936 			newblock = map->m_lblk - ee_block + ee_start;
3937 			/* number of remaining blocks in the extent */
3938 			allocated = ee_len - (map->m_lblk - ee_block);
3939 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3940 				  ee_block, ee_len, newblock);
3941 
3942 			/*
3943 			 * Do not put uninitialized extent
3944 			 * in the cache
3945 			 */
3946 			if (!ext4_ext_is_uninitialized(ex)) {
3947 				ext4_ext_put_in_cache(inode, ee_block,
3948 					ee_len, ee_start);
3949 				goto out;
3950 			}
3951 			ret = ext4_ext_handle_uninitialized_extents(
3952 				handle, inode, map, path, flags,
3953 				allocated, newblock);
3954 			return ret;
3955 		}
3956 	}
3957 
3958 	if ((sbi->s_cluster_ratio > 1) &&
3959 	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3960 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3961 
3962 	/*
3963 	 * requested block isn't allocated yet;
3964 	 * we couldn't try to create block if create flag is zero
3965 	 */
3966 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3967 		/*
3968 		 * put just found gap into cache to speed up
3969 		 * subsequent requests
3970 		 */
3971 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3972 		goto out2;
3973 	}
3974 
3975 	/*
3976 	 * Okay, we need to do block allocation.
3977 	 */
3978 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3979 	newex.ee_block = cpu_to_le32(map->m_lblk);
3980 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3981 
3982 	/*
3983 	 * If we are doing bigalloc, check to see if the extent returned
3984 	 * by ext4_ext_find_extent() implies a cluster we can use.
3985 	 */
3986 	if (cluster_offset && ex &&
3987 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3988 		ar.len = allocated = map->m_len;
3989 		newblock = map->m_pblk;
3990 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3991 		goto got_allocated_blocks;
3992 	}
3993 
3994 	/* find neighbour allocated blocks */
3995 	ar.lleft = map->m_lblk;
3996 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3997 	if (err)
3998 		goto out2;
3999 	ar.lright = map->m_lblk;
4000 	ex2 = NULL;
4001 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4002 	if (err)
4003 		goto out2;
4004 
4005 	/* Check if the extent after searching to the right implies a
4006 	 * cluster we can use. */
4007 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4008 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4009 		ar.len = allocated = map->m_len;
4010 		newblock = map->m_pblk;
4011 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4012 		goto got_allocated_blocks;
4013 	}
4014 
4015 	/*
4016 	 * See if request is beyond maximum number of blocks we can have in
4017 	 * a single extent. For an initialized extent this limit is
4018 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4019 	 * EXT_UNINIT_MAX_LEN.
4020 	 */
4021 	if (map->m_len > EXT_INIT_MAX_LEN &&
4022 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4023 		map->m_len = EXT_INIT_MAX_LEN;
4024 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4025 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4026 		map->m_len = EXT_UNINIT_MAX_LEN;
4027 
4028 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4029 	newex.ee_len = cpu_to_le16(map->m_len);
4030 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4031 	if (err)
4032 		allocated = ext4_ext_get_actual_len(&newex);
4033 	else
4034 		allocated = map->m_len;
4035 
4036 	/* allocate new block */
4037 	ar.inode = inode;
4038 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4039 	ar.logical = map->m_lblk;
4040 	/*
4041 	 * We calculate the offset from the beginning of the cluster
4042 	 * for the logical block number, since when we allocate a
4043 	 * physical cluster, the physical block should start at the
4044 	 * same offset from the beginning of the cluster.  This is
4045 	 * needed so that future calls to get_implied_cluster_alloc()
4046 	 * work correctly.
4047 	 */
4048 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4049 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4050 	ar.goal -= offset;
4051 	ar.logical -= offset;
4052 	if (S_ISREG(inode->i_mode))
4053 		ar.flags = EXT4_MB_HINT_DATA;
4054 	else
4055 		/* disable in-core preallocation for non-regular files */
4056 		ar.flags = 0;
4057 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4058 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4059 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4060 	if (!newblock)
4061 		goto out2;
4062 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4063 		  ar.goal, newblock, allocated);
4064 	free_on_err = 1;
4065 	allocated_clusters = ar.len;
4066 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4067 	if (ar.len > allocated)
4068 		ar.len = allocated;
4069 
4070 got_allocated_blocks:
4071 	/* try to insert new extent into found leaf and return */
4072 	ext4_ext_store_pblock(&newex, newblock + offset);
4073 	newex.ee_len = cpu_to_le16(ar.len);
4074 	/* Mark uninitialized */
4075 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4076 		ext4_ext_mark_uninitialized(&newex);
4077 		/*
4078 		 * io_end structure was created for every IO write to an
4079 		 * uninitialized extent. To avoid unnecessary conversion,
4080 		 * here we flag the IO that really needs the conversion.
4081 		 * For non asycn direct IO case, flag the inode state
4082 		 * that we need to perform conversion when IO is done.
4083 		 */
4084 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4085 			if (io)
4086 				ext4_set_io_unwritten_flag(inode, io);
4087 			else
4088 				ext4_set_inode_state(inode,
4089 						     EXT4_STATE_DIO_UNWRITTEN);
4090 		}
4091 		if (ext4_should_dioread_nolock(inode))
4092 			map->m_flags |= EXT4_MAP_UNINIT;
4093 	}
4094 
4095 	err = 0;
4096 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4097 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4098 					 path, ar.len);
4099 	if (!err)
4100 		err = ext4_ext_insert_extent(handle, inode, path,
4101 					     &newex, flags);
4102 	if (err && free_on_err) {
4103 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4104 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4105 		/* free data blocks we just allocated */
4106 		/* not a good idea to call discard here directly,
4107 		 * but otherwise we'd need to call it every free() */
4108 		ext4_discard_preallocations(inode);
4109 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4110 				 ext4_ext_get_actual_len(&newex), fb_flags);
4111 		goto out2;
4112 	}
4113 
4114 	/* previous routine could use block we allocated */
4115 	newblock = ext4_ext_pblock(&newex);
4116 	allocated = ext4_ext_get_actual_len(&newex);
4117 	if (allocated > map->m_len)
4118 		allocated = map->m_len;
4119 	map->m_flags |= EXT4_MAP_NEW;
4120 
4121 	/*
4122 	 * Update reserved blocks/metadata blocks after successful
4123 	 * block allocation which had been deferred till now.
4124 	 */
4125 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4126 		unsigned int reserved_clusters;
4127 		/*
4128 		 * Check how many clusters we had reserved this allocated range
4129 		 */
4130 		reserved_clusters = get_reserved_cluster_alloc(inode,
4131 						map->m_lblk, allocated);
4132 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4133 			if (reserved_clusters) {
4134 				/*
4135 				 * We have clusters reserved for this range.
4136 				 * But since we are not doing actual allocation
4137 				 * and are simply using blocks from previously
4138 				 * allocated cluster, we should release the
4139 				 * reservation and not claim quota.
4140 				 */
4141 				ext4_da_update_reserve_space(inode,
4142 						reserved_clusters, 0);
4143 			}
4144 		} else {
4145 			BUG_ON(allocated_clusters < reserved_clusters);
4146 			/* We will claim quota for all newly allocated blocks.*/
4147 			ext4_da_update_reserve_space(inode, allocated_clusters,
4148 							1);
4149 			if (reserved_clusters < allocated_clusters) {
4150 				struct ext4_inode_info *ei = EXT4_I(inode);
4151 				int reservation = allocated_clusters -
4152 						  reserved_clusters;
4153 				/*
4154 				 * It seems we claimed few clusters outside of
4155 				 * the range of this allocation. We should give
4156 				 * it back to the reservation pool. This can
4157 				 * happen in the following case:
4158 				 *
4159 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4160 				 *   cluster has 4 blocks. Thus, the clusters
4161 				 *   are [0-3],[4-7],[8-11]...
4162 				 * * First comes delayed allocation write for
4163 				 *   logical blocks 10 & 11. Since there were no
4164 				 *   previous delayed allocated blocks in the
4165 				 *   range [8-11], we would reserve 1 cluster
4166 				 *   for this write.
4167 				 * * Next comes write for logical blocks 3 to 8.
4168 				 *   In this case, we will reserve 2 clusters
4169 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4170 				 *   that range has a delayed allocated blocks.
4171 				 *   Thus total reserved clusters now becomes 3.
4172 				 * * Now, during the delayed allocation writeout
4173 				 *   time, we will first write blocks [3-8] and
4174 				 *   allocate 3 clusters for writing these
4175 				 *   blocks. Also, we would claim all these
4176 				 *   three clusters above.
4177 				 * * Now when we come here to writeout the
4178 				 *   blocks [10-11], we would expect to claim
4179 				 *   the reservation of 1 cluster we had made
4180 				 *   (and we would claim it since there are no
4181 				 *   more delayed allocated blocks in the range
4182 				 *   [8-11]. But our reserved cluster count had
4183 				 *   already gone to 0.
4184 				 *
4185 				 *   Thus, at the step 4 above when we determine
4186 				 *   that there are still some unwritten delayed
4187 				 *   allocated blocks outside of our current
4188 				 *   block range, we should increment the
4189 				 *   reserved clusters count so that when the
4190 				 *   remaining blocks finally gets written, we
4191 				 *   could claim them.
4192 				 */
4193 				dquot_reserve_block(inode,
4194 						EXT4_C2B(sbi, reservation));
4195 				spin_lock(&ei->i_block_reservation_lock);
4196 				ei->i_reserved_data_blocks += reservation;
4197 				spin_unlock(&ei->i_block_reservation_lock);
4198 			}
4199 		}
4200 	}
4201 
4202 	/*
4203 	 * Cache the extent and update transaction to commit on fdatasync only
4204 	 * when it is _not_ an uninitialized extent.
4205 	 */
4206 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4207 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4208 		ext4_update_inode_fsync_trans(handle, inode, 1);
4209 	} else
4210 		ext4_update_inode_fsync_trans(handle, inode, 0);
4211 out:
4212 	if (allocated > map->m_len)
4213 		allocated = map->m_len;
4214 	ext4_ext_show_leaf(inode, path);
4215 	map->m_flags |= EXT4_MAP_MAPPED;
4216 	map->m_pblk = newblock;
4217 	map->m_len = allocated;
4218 out2:
4219 	if (path) {
4220 		ext4_ext_drop_refs(path);
4221 		kfree(path);
4222 	}
4223 
4224 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4225 		newblock, map->m_len, err ? err : allocated);
4226 
4227 	return err ? err : allocated;
4228 }
4229 
4230 void ext4_ext_truncate(struct inode *inode)
4231 {
4232 	struct address_space *mapping = inode->i_mapping;
4233 	struct super_block *sb = inode->i_sb;
4234 	ext4_lblk_t last_block;
4235 	handle_t *handle;
4236 	loff_t page_len;
4237 	int err = 0;
4238 
4239 	/*
4240 	 * finish any pending end_io work so we won't run the risk of
4241 	 * converting any truncated blocks to initialized later
4242 	 */
4243 	ext4_flush_completed_IO(inode);
4244 
4245 	/*
4246 	 * probably first extent we're gonna free will be last in block
4247 	 */
4248 	err = ext4_writepage_trans_blocks(inode);
4249 	handle = ext4_journal_start(inode, err);
4250 	if (IS_ERR(handle))
4251 		return;
4252 
4253 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4254 		page_len = PAGE_CACHE_SIZE -
4255 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4256 
4257 		err = ext4_discard_partial_page_buffers(handle,
4258 			mapping, inode->i_size, page_len, 0);
4259 
4260 		if (err)
4261 			goto out_stop;
4262 	}
4263 
4264 	if (ext4_orphan_add(handle, inode))
4265 		goto out_stop;
4266 
4267 	down_write(&EXT4_I(inode)->i_data_sem);
4268 	ext4_ext_invalidate_cache(inode);
4269 
4270 	ext4_discard_preallocations(inode);
4271 
4272 	/*
4273 	 * TODO: optimization is possible here.
4274 	 * Probably we need not scan at all,
4275 	 * because page truncation is enough.
4276 	 */
4277 
4278 	/* we have to know where to truncate from in crash case */
4279 	EXT4_I(inode)->i_disksize = inode->i_size;
4280 	ext4_mark_inode_dirty(handle, inode);
4281 
4282 	last_block = (inode->i_size + sb->s_blocksize - 1)
4283 			>> EXT4_BLOCK_SIZE_BITS(sb);
4284 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4285 
4286 	/* In a multi-transaction truncate, we only make the final
4287 	 * transaction synchronous.
4288 	 */
4289 	if (IS_SYNC(inode))
4290 		ext4_handle_sync(handle);
4291 
4292 	up_write(&EXT4_I(inode)->i_data_sem);
4293 
4294 out_stop:
4295 	/*
4296 	 * If this was a simple ftruncate() and the file will remain alive,
4297 	 * then we need to clear up the orphan record which we created above.
4298 	 * However, if this was a real unlink then we were called by
4299 	 * ext4_delete_inode(), and we allow that function to clean up the
4300 	 * orphan info for us.
4301 	 */
4302 	if (inode->i_nlink)
4303 		ext4_orphan_del(handle, inode);
4304 
4305 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4306 	ext4_mark_inode_dirty(handle, inode);
4307 	ext4_journal_stop(handle);
4308 }
4309 
4310 static void ext4_falloc_update_inode(struct inode *inode,
4311 				int mode, loff_t new_size, int update_ctime)
4312 {
4313 	struct timespec now;
4314 
4315 	if (update_ctime) {
4316 		now = current_fs_time(inode->i_sb);
4317 		if (!timespec_equal(&inode->i_ctime, &now))
4318 			inode->i_ctime = now;
4319 	}
4320 	/*
4321 	 * Update only when preallocation was requested beyond
4322 	 * the file size.
4323 	 */
4324 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4325 		if (new_size > i_size_read(inode))
4326 			i_size_write(inode, new_size);
4327 		if (new_size > EXT4_I(inode)->i_disksize)
4328 			ext4_update_i_disksize(inode, new_size);
4329 	} else {
4330 		/*
4331 		 * Mark that we allocate beyond EOF so the subsequent truncate
4332 		 * can proceed even if the new size is the same as i_size.
4333 		 */
4334 		if (new_size > i_size_read(inode))
4335 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4336 	}
4337 
4338 }
4339 
4340 /*
4341  * preallocate space for a file. This implements ext4's fallocate file
4342  * operation, which gets called from sys_fallocate system call.
4343  * For block-mapped files, posix_fallocate should fall back to the method
4344  * of writing zeroes to the required new blocks (the same behavior which is
4345  * expected for file systems which do not support fallocate() system call).
4346  */
4347 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4348 {
4349 	struct inode *inode = file->f_path.dentry->d_inode;
4350 	handle_t *handle;
4351 	loff_t new_size;
4352 	unsigned int max_blocks;
4353 	int ret = 0;
4354 	int ret2 = 0;
4355 	int retries = 0;
4356 	int flags;
4357 	struct ext4_map_blocks map;
4358 	unsigned int credits, blkbits = inode->i_blkbits;
4359 
4360 	/*
4361 	 * currently supporting (pre)allocate mode for extent-based
4362 	 * files _only_
4363 	 */
4364 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4365 		return -EOPNOTSUPP;
4366 
4367 	/* Return error if mode is not supported */
4368 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4369 		return -EOPNOTSUPP;
4370 
4371 	if (mode & FALLOC_FL_PUNCH_HOLE)
4372 		return ext4_punch_hole(file, offset, len);
4373 
4374 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4375 	map.m_lblk = offset >> blkbits;
4376 	/*
4377 	 * We can't just convert len to max_blocks because
4378 	 * If blocksize = 4096 offset = 3072 and len = 2048
4379 	 */
4380 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4381 		- map.m_lblk;
4382 	/*
4383 	 * credits to insert 1 extent into extent tree
4384 	 */
4385 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4386 	mutex_lock(&inode->i_mutex);
4387 	ret = inode_newsize_ok(inode, (len + offset));
4388 	if (ret) {
4389 		mutex_unlock(&inode->i_mutex);
4390 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4391 		return ret;
4392 	}
4393 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4394 	if (mode & FALLOC_FL_KEEP_SIZE)
4395 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4396 	/*
4397 	 * Don't normalize the request if it can fit in one extent so
4398 	 * that it doesn't get unnecessarily split into multiple
4399 	 * extents.
4400 	 */
4401 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4402 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4403 retry:
4404 	while (ret >= 0 && ret < max_blocks) {
4405 		map.m_lblk = map.m_lblk + ret;
4406 		map.m_len = max_blocks = max_blocks - ret;
4407 		handle = ext4_journal_start(inode, credits);
4408 		if (IS_ERR(handle)) {
4409 			ret = PTR_ERR(handle);
4410 			break;
4411 		}
4412 		ret = ext4_map_blocks(handle, inode, &map, flags);
4413 		if (ret <= 0) {
4414 #ifdef EXT4FS_DEBUG
4415 			WARN_ON(ret <= 0);
4416 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4417 				    "returned error inode#%lu, block=%u, "
4418 				    "max_blocks=%u", __func__,
4419 				    inode->i_ino, map.m_lblk, max_blocks);
4420 #endif
4421 			ext4_mark_inode_dirty(handle, inode);
4422 			ret2 = ext4_journal_stop(handle);
4423 			break;
4424 		}
4425 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4426 						blkbits) >> blkbits))
4427 			new_size = offset + len;
4428 		else
4429 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4430 
4431 		ext4_falloc_update_inode(inode, mode, new_size,
4432 					 (map.m_flags & EXT4_MAP_NEW));
4433 		ext4_mark_inode_dirty(handle, inode);
4434 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4435 			ext4_handle_sync(handle);
4436 		ret2 = ext4_journal_stop(handle);
4437 		if (ret2)
4438 			break;
4439 	}
4440 	if (ret == -ENOSPC &&
4441 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4442 		ret = 0;
4443 		goto retry;
4444 	}
4445 	mutex_unlock(&inode->i_mutex);
4446 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4447 				ret > 0 ? ret2 : ret);
4448 	return ret > 0 ? ret2 : ret;
4449 }
4450 
4451 /*
4452  * This function convert a range of blocks to written extents
4453  * The caller of this function will pass the start offset and the size.
4454  * all unwritten extents within this range will be converted to
4455  * written extents.
4456  *
4457  * This function is called from the direct IO end io call back
4458  * function, to convert the fallocated extents after IO is completed.
4459  * Returns 0 on success.
4460  */
4461 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4462 				    ssize_t len)
4463 {
4464 	handle_t *handle;
4465 	unsigned int max_blocks;
4466 	int ret = 0;
4467 	int ret2 = 0;
4468 	struct ext4_map_blocks map;
4469 	unsigned int credits, blkbits = inode->i_blkbits;
4470 
4471 	map.m_lblk = offset >> blkbits;
4472 	/*
4473 	 * We can't just convert len to max_blocks because
4474 	 * If blocksize = 4096 offset = 3072 and len = 2048
4475 	 */
4476 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4477 		      map.m_lblk);
4478 	/*
4479 	 * credits to insert 1 extent into extent tree
4480 	 */
4481 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4482 	while (ret >= 0 && ret < max_blocks) {
4483 		map.m_lblk += ret;
4484 		map.m_len = (max_blocks -= ret);
4485 		handle = ext4_journal_start(inode, credits);
4486 		if (IS_ERR(handle)) {
4487 			ret = PTR_ERR(handle);
4488 			break;
4489 		}
4490 		ret = ext4_map_blocks(handle, inode, &map,
4491 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4492 		if (ret <= 0) {
4493 			WARN_ON(ret <= 0);
4494 			ext4_msg(inode->i_sb, KERN_ERR,
4495 				 "%s:%d: inode #%lu: block %u: len %u: "
4496 				 "ext4_ext_map_blocks returned %d",
4497 				 __func__, __LINE__, inode->i_ino, map.m_lblk,
4498 				 map.m_len, ret);
4499 		}
4500 		ext4_mark_inode_dirty(handle, inode);
4501 		ret2 = ext4_journal_stop(handle);
4502 		if (ret <= 0 || ret2 )
4503 			break;
4504 	}
4505 	return ret > 0 ? ret2 : ret;
4506 }
4507 
4508 /*
4509  * Callback function called for each extent to gather FIEMAP information.
4510  */
4511 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4512 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4513 		       void *data)
4514 {
4515 	__u64	logical;
4516 	__u64	physical;
4517 	__u64	length;
4518 	__u32	flags = 0;
4519 	int		ret = 0;
4520 	struct fiemap_extent_info *fieinfo = data;
4521 	unsigned char blksize_bits;
4522 
4523 	blksize_bits = inode->i_sb->s_blocksize_bits;
4524 	logical = (__u64)newex->ec_block << blksize_bits;
4525 
4526 	if (newex->ec_start == 0) {
4527 		/*
4528 		 * No extent in extent-tree contains block @newex->ec_start,
4529 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4530 		 *
4531 		 * Holes or delayed-extents are processed as follows.
4532 		 * 1. lookup dirty pages with specified range in pagecache.
4533 		 *    If no page is got, then there is no delayed-extent and
4534 		 *    return with EXT_CONTINUE.
4535 		 * 2. find the 1st mapped buffer,
4536 		 * 3. check if the mapped buffer is both in the request range
4537 		 *    and a delayed buffer. If not, there is no delayed-extent,
4538 		 *    then return.
4539 		 * 4. a delayed-extent is found, the extent will be collected.
4540 		 */
4541 		ext4_lblk_t	end = 0;
4542 		pgoff_t		last_offset;
4543 		pgoff_t		offset;
4544 		pgoff_t		index;
4545 		pgoff_t		start_index = 0;
4546 		struct page	**pages = NULL;
4547 		struct buffer_head *bh = NULL;
4548 		struct buffer_head *head = NULL;
4549 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4550 
4551 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4552 		if (pages == NULL)
4553 			return -ENOMEM;
4554 
4555 		offset = logical >> PAGE_SHIFT;
4556 repeat:
4557 		last_offset = offset;
4558 		head = NULL;
4559 		ret = find_get_pages_tag(inode->i_mapping, &offset,
4560 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4561 
4562 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4563 			/* First time, try to find a mapped buffer. */
4564 			if (ret == 0) {
4565 out:
4566 				for (index = 0; index < ret; index++)
4567 					page_cache_release(pages[index]);
4568 				/* just a hole. */
4569 				kfree(pages);
4570 				return EXT_CONTINUE;
4571 			}
4572 			index = 0;
4573 
4574 next_page:
4575 			/* Try to find the 1st mapped buffer. */
4576 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4577 				  blksize_bits;
4578 			if (!page_has_buffers(pages[index]))
4579 				goto out;
4580 			head = page_buffers(pages[index]);
4581 			if (!head)
4582 				goto out;
4583 
4584 			index++;
4585 			bh = head;
4586 			do {
4587 				if (end >= newex->ec_block +
4588 					newex->ec_len)
4589 					/* The buffer is out of
4590 					 * the request range.
4591 					 */
4592 					goto out;
4593 
4594 				if (buffer_mapped(bh) &&
4595 				    end >= newex->ec_block) {
4596 					start_index = index - 1;
4597 					/* get the 1st mapped buffer. */
4598 					goto found_mapped_buffer;
4599 				}
4600 
4601 				bh = bh->b_this_page;
4602 				end++;
4603 			} while (bh != head);
4604 
4605 			/* No mapped buffer in the range found in this page,
4606 			 * We need to look up next page.
4607 			 */
4608 			if (index >= ret) {
4609 				/* There is no page left, but we need to limit
4610 				 * newex->ec_len.
4611 				 */
4612 				newex->ec_len = end - newex->ec_block;
4613 				goto out;
4614 			}
4615 			goto next_page;
4616 		} else {
4617 			/*Find contiguous delayed buffers. */
4618 			if (ret > 0 && pages[0]->index == last_offset)
4619 				head = page_buffers(pages[0]);
4620 			bh = head;
4621 			index = 1;
4622 			start_index = 0;
4623 		}
4624 
4625 found_mapped_buffer:
4626 		if (bh != NULL && buffer_delay(bh)) {
4627 			/* 1st or contiguous delayed buffer found. */
4628 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4629 				/*
4630 				 * 1st delayed buffer found, record
4631 				 * the start of extent.
4632 				 */
4633 				flags |= FIEMAP_EXTENT_DELALLOC;
4634 				newex->ec_block = end;
4635 				logical = (__u64)end << blksize_bits;
4636 			}
4637 			/* Find contiguous delayed buffers. */
4638 			do {
4639 				if (!buffer_delay(bh))
4640 					goto found_delayed_extent;
4641 				bh = bh->b_this_page;
4642 				end++;
4643 			} while (bh != head);
4644 
4645 			for (; index < ret; index++) {
4646 				if (!page_has_buffers(pages[index])) {
4647 					bh = NULL;
4648 					break;
4649 				}
4650 				head = page_buffers(pages[index]);
4651 				if (!head) {
4652 					bh = NULL;
4653 					break;
4654 				}
4655 
4656 				if (pages[index]->index !=
4657 				    pages[start_index]->index + index
4658 				    - start_index) {
4659 					/* Blocks are not contiguous. */
4660 					bh = NULL;
4661 					break;
4662 				}
4663 				bh = head;
4664 				do {
4665 					if (!buffer_delay(bh))
4666 						/* Delayed-extent ends. */
4667 						goto found_delayed_extent;
4668 					bh = bh->b_this_page;
4669 					end++;
4670 				} while (bh != head);
4671 			}
4672 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4673 			/* a hole found. */
4674 			goto out;
4675 
4676 found_delayed_extent:
4677 		newex->ec_len = min(end - newex->ec_block,
4678 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4679 		if (ret == nr_pages && bh != NULL &&
4680 			newex->ec_len < EXT_INIT_MAX_LEN &&
4681 			buffer_delay(bh)) {
4682 			/* Have not collected an extent and continue. */
4683 			for (index = 0; index < ret; index++)
4684 				page_cache_release(pages[index]);
4685 			goto repeat;
4686 		}
4687 
4688 		for (index = 0; index < ret; index++)
4689 			page_cache_release(pages[index]);
4690 		kfree(pages);
4691 	}
4692 
4693 	physical = (__u64)newex->ec_start << blksize_bits;
4694 	length =   (__u64)newex->ec_len << blksize_bits;
4695 
4696 	if (ex && ext4_ext_is_uninitialized(ex))
4697 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4698 
4699 	if (next == EXT_MAX_BLOCKS)
4700 		flags |= FIEMAP_EXTENT_LAST;
4701 
4702 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4703 					length, flags);
4704 	if (ret < 0)
4705 		return ret;
4706 	if (ret == 1)
4707 		return EXT_BREAK;
4708 	return EXT_CONTINUE;
4709 }
4710 /* fiemap flags we can handle specified here */
4711 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4712 
4713 static int ext4_xattr_fiemap(struct inode *inode,
4714 				struct fiemap_extent_info *fieinfo)
4715 {
4716 	__u64 physical = 0;
4717 	__u64 length;
4718 	__u32 flags = FIEMAP_EXTENT_LAST;
4719 	int blockbits = inode->i_sb->s_blocksize_bits;
4720 	int error = 0;
4721 
4722 	/* in-inode? */
4723 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4724 		struct ext4_iloc iloc;
4725 		int offset;	/* offset of xattr in inode */
4726 
4727 		error = ext4_get_inode_loc(inode, &iloc);
4728 		if (error)
4729 			return error;
4730 		physical = iloc.bh->b_blocknr << blockbits;
4731 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4732 				EXT4_I(inode)->i_extra_isize;
4733 		physical += offset;
4734 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4735 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4736 		brelse(iloc.bh);
4737 	} else { /* external block */
4738 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4739 		length = inode->i_sb->s_blocksize;
4740 	}
4741 
4742 	if (physical)
4743 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4744 						length, flags);
4745 	return (error < 0 ? error : 0);
4746 }
4747 
4748 /*
4749  * ext4_ext_punch_hole
4750  *
4751  * Punches a hole of "length" bytes in a file starting
4752  * at byte "offset"
4753  *
4754  * @inode:  The inode of the file to punch a hole in
4755  * @offset: The starting byte offset of the hole
4756  * @length: The length of the hole
4757  *
4758  * Returns the number of blocks removed or negative on err
4759  */
4760 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4761 {
4762 	struct inode *inode = file->f_path.dentry->d_inode;
4763 	struct super_block *sb = inode->i_sb;
4764 	ext4_lblk_t first_block, stop_block;
4765 	struct address_space *mapping = inode->i_mapping;
4766 	handle_t *handle;
4767 	loff_t first_page, last_page, page_len;
4768 	loff_t first_page_offset, last_page_offset;
4769 	int credits, err = 0;
4770 
4771 	/* No need to punch hole beyond i_size */
4772 	if (offset >= inode->i_size)
4773 		return 0;
4774 
4775 	/*
4776 	 * If the hole extends beyond i_size, set the hole
4777 	 * to end after the page that contains i_size
4778 	 */
4779 	if (offset + length > inode->i_size) {
4780 		length = inode->i_size +
4781 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4782 		   offset;
4783 	}
4784 
4785 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4786 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4787 
4788 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4789 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4790 
4791 	/*
4792 	 * Write out all dirty pages to avoid race conditions
4793 	 * Then release them.
4794 	 */
4795 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4796 		err = filemap_write_and_wait_range(mapping,
4797 			offset, offset + length - 1);
4798 
4799 		if (err)
4800 			return err;
4801 	}
4802 
4803 	/* Now release the pages */
4804 	if (last_page_offset > first_page_offset) {
4805 		truncate_pagecache_range(inode, first_page_offset,
4806 					 last_page_offset - 1);
4807 	}
4808 
4809 	/* finish any pending end_io work */
4810 	ext4_flush_completed_IO(inode);
4811 
4812 	credits = ext4_writepage_trans_blocks(inode);
4813 	handle = ext4_journal_start(inode, credits);
4814 	if (IS_ERR(handle))
4815 		return PTR_ERR(handle);
4816 
4817 	err = ext4_orphan_add(handle, inode);
4818 	if (err)
4819 		goto out;
4820 
4821 	/*
4822 	 * Now we need to zero out the non-page-aligned data in the
4823 	 * pages at the start and tail of the hole, and unmap the buffer
4824 	 * heads for the block aligned regions of the page that were
4825 	 * completely zeroed.
4826 	 */
4827 	if (first_page > last_page) {
4828 		/*
4829 		 * If the file space being truncated is contained within a page
4830 		 * just zero out and unmap the middle of that page
4831 		 */
4832 		err = ext4_discard_partial_page_buffers(handle,
4833 			mapping, offset, length, 0);
4834 
4835 		if (err)
4836 			goto out;
4837 	} else {
4838 		/*
4839 		 * zero out and unmap the partial page that contains
4840 		 * the start of the hole
4841 		 */
4842 		page_len  = first_page_offset - offset;
4843 		if (page_len > 0) {
4844 			err = ext4_discard_partial_page_buffers(handle, mapping,
4845 						   offset, page_len, 0);
4846 			if (err)
4847 				goto out;
4848 		}
4849 
4850 		/*
4851 		 * zero out and unmap the partial page that contains
4852 		 * the end of the hole
4853 		 */
4854 		page_len = offset + length - last_page_offset;
4855 		if (page_len > 0) {
4856 			err = ext4_discard_partial_page_buffers(handle, mapping,
4857 					last_page_offset, page_len, 0);
4858 			if (err)
4859 				goto out;
4860 		}
4861 	}
4862 
4863 	/*
4864 	 * If i_size is contained in the last page, we need to
4865 	 * unmap and zero the partial page after i_size
4866 	 */
4867 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4868 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4869 
4870 		page_len = PAGE_CACHE_SIZE -
4871 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4872 
4873 		if (page_len > 0) {
4874 			err = ext4_discard_partial_page_buffers(handle,
4875 			  mapping, inode->i_size, page_len, 0);
4876 
4877 			if (err)
4878 				goto out;
4879 		}
4880 	}
4881 
4882 	first_block = (offset + sb->s_blocksize - 1) >>
4883 		EXT4_BLOCK_SIZE_BITS(sb);
4884 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4885 
4886 	/* If there are no blocks to remove, return now */
4887 	if (first_block >= stop_block)
4888 		goto out;
4889 
4890 	down_write(&EXT4_I(inode)->i_data_sem);
4891 	ext4_ext_invalidate_cache(inode);
4892 	ext4_discard_preallocations(inode);
4893 
4894 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4895 
4896 	ext4_ext_invalidate_cache(inode);
4897 	ext4_discard_preallocations(inode);
4898 
4899 	if (IS_SYNC(inode))
4900 		ext4_handle_sync(handle);
4901 
4902 	up_write(&EXT4_I(inode)->i_data_sem);
4903 
4904 out:
4905 	ext4_orphan_del(handle, inode);
4906 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4907 	ext4_mark_inode_dirty(handle, inode);
4908 	ext4_journal_stop(handle);
4909 	return err;
4910 }
4911 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4912 		__u64 start, __u64 len)
4913 {
4914 	ext4_lblk_t start_blk;
4915 	int error = 0;
4916 
4917 	/* fallback to generic here if not in extents fmt */
4918 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4919 		return generic_block_fiemap(inode, fieinfo, start, len,
4920 			ext4_get_block);
4921 
4922 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4923 		return -EBADR;
4924 
4925 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4926 		error = ext4_xattr_fiemap(inode, fieinfo);
4927 	} else {
4928 		ext4_lblk_t len_blks;
4929 		__u64 last_blk;
4930 
4931 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4932 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4933 		if (last_blk >= EXT_MAX_BLOCKS)
4934 			last_blk = EXT_MAX_BLOCKS-1;
4935 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4936 
4937 		/*
4938 		 * Walk the extent tree gathering extent information.
4939 		 * ext4_ext_fiemap_cb will push extents back to user.
4940 		 */
4941 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4942 					  ext4_ext_fiemap_cb, fieinfo);
4943 	}
4944 
4945 	return error;
4946 }
4947