1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct extent_status *newes); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 161 struct inode *inode, struct ext4_ext_path *path) 162 { 163 int err; 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 /* 293 * Calculate the number of metadata blocks needed 294 * to allocate @blocks 295 * Worse case is one block per extent 296 */ 297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 298 { 299 struct ext4_inode_info *ei = EXT4_I(inode); 300 int idxs; 301 302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 303 / sizeof(struct ext4_extent_idx)); 304 305 /* 306 * If the new delayed allocation block is contiguous with the 307 * previous da block, it can share index blocks with the 308 * previous block, so we only need to allocate a new index 309 * block every idxs leaf blocks. At ldxs**2 blocks, we need 310 * an additional index block, and at ldxs**3 blocks, yet 311 * another index blocks. 312 */ 313 if (ei->i_da_metadata_calc_len && 314 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 315 int num = 0; 316 317 if ((ei->i_da_metadata_calc_len % idxs) == 0) 318 num++; 319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 320 num++; 321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 322 num++; 323 ei->i_da_metadata_calc_len = 0; 324 } else 325 ei->i_da_metadata_calc_len++; 326 ei->i_da_metadata_calc_last_lblock++; 327 return num; 328 } 329 330 /* 331 * In the worst case we need a new set of index blocks at 332 * every level of the inode's extent tree. 333 */ 334 ei->i_da_metadata_calc_len = 1; 335 ei->i_da_metadata_calc_last_lblock = lblock; 336 return ext_depth(inode) + 1; 337 } 338 339 static int 340 ext4_ext_max_entries(struct inode *inode, int depth) 341 { 342 int max; 343 344 if (depth == ext_depth(inode)) { 345 if (depth == 0) 346 max = ext4_ext_space_root(inode, 1); 347 else 348 max = ext4_ext_space_root_idx(inode, 1); 349 } else { 350 if (depth == 0) 351 max = ext4_ext_space_block(inode, 1); 352 else 353 max = ext4_ext_space_block_idx(inode, 1); 354 } 355 356 return max; 357 } 358 359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 360 { 361 ext4_fsblk_t block = ext4_ext_pblock(ext); 362 int len = ext4_ext_get_actual_len(ext); 363 364 if (len == 0) 365 return 0; 366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 367 } 368 369 static int ext4_valid_extent_idx(struct inode *inode, 370 struct ext4_extent_idx *ext_idx) 371 { 372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 373 374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 375 } 376 377 static int ext4_valid_extent_entries(struct inode *inode, 378 struct ext4_extent_header *eh, 379 int depth) 380 { 381 unsigned short entries; 382 if (eh->eh_entries == 0) 383 return 1; 384 385 entries = le16_to_cpu(eh->eh_entries); 386 387 if (depth == 0) { 388 /* leaf entries */ 389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 390 while (entries) { 391 if (!ext4_valid_extent(inode, ext)) 392 return 0; 393 ext++; 394 entries--; 395 } 396 } else { 397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 398 while (entries) { 399 if (!ext4_valid_extent_idx(inode, ext_idx)) 400 return 0; 401 ext_idx++; 402 entries--; 403 } 404 } 405 return 1; 406 } 407 408 static int __ext4_ext_check(const char *function, unsigned int line, 409 struct inode *inode, struct ext4_extent_header *eh, 410 int depth) 411 { 412 const char *error_msg; 413 int max = 0; 414 415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 416 error_msg = "invalid magic"; 417 goto corrupted; 418 } 419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 420 error_msg = "unexpected eh_depth"; 421 goto corrupted; 422 } 423 if (unlikely(eh->eh_max == 0)) { 424 error_msg = "invalid eh_max"; 425 goto corrupted; 426 } 427 max = ext4_ext_max_entries(inode, depth); 428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 429 error_msg = "too large eh_max"; 430 goto corrupted; 431 } 432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 433 error_msg = "invalid eh_entries"; 434 goto corrupted; 435 } 436 if (!ext4_valid_extent_entries(inode, eh, depth)) { 437 error_msg = "invalid extent entries"; 438 goto corrupted; 439 } 440 /* Verify checksum on non-root extent tree nodes */ 441 if (ext_depth(inode) != depth && 442 !ext4_extent_block_csum_verify(inode, eh)) { 443 error_msg = "extent tree corrupted"; 444 goto corrupted; 445 } 446 return 0; 447 448 corrupted: 449 ext4_error_inode(inode, function, line, 0, 450 "bad header/extent: %s - magic %x, " 451 "entries %u, max %u(%u), depth %u(%u)", 452 error_msg, le16_to_cpu(eh->eh_magic), 453 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 454 max, le16_to_cpu(eh->eh_depth), depth); 455 456 return -EIO; 457 } 458 459 #define ext4_ext_check(inode, eh, depth) \ 460 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 461 462 int ext4_ext_check_inode(struct inode *inode) 463 { 464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 465 } 466 467 static int __ext4_ext_check_block(const char *function, unsigned int line, 468 struct inode *inode, 469 struct ext4_extent_header *eh, 470 int depth, 471 struct buffer_head *bh) 472 { 473 int ret; 474 475 if (buffer_verified(bh)) 476 return 0; 477 ret = ext4_ext_check(inode, eh, depth); 478 if (ret) 479 return ret; 480 set_buffer_verified(bh); 481 return ret; 482 } 483 484 #define ext4_ext_check_block(inode, eh, depth, bh) \ 485 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 486 487 #ifdef EXT_DEBUG 488 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 489 { 490 int k, l = path->p_depth; 491 492 ext_debug("path:"); 493 for (k = 0; k <= l; k++, path++) { 494 if (path->p_idx) { 495 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 496 ext4_idx_pblock(path->p_idx)); 497 } else if (path->p_ext) { 498 ext_debug(" %d:[%d]%d:%llu ", 499 le32_to_cpu(path->p_ext->ee_block), 500 ext4_ext_is_uninitialized(path->p_ext), 501 ext4_ext_get_actual_len(path->p_ext), 502 ext4_ext_pblock(path->p_ext)); 503 } else 504 ext_debug(" []"); 505 } 506 ext_debug("\n"); 507 } 508 509 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 510 { 511 int depth = ext_depth(inode); 512 struct ext4_extent_header *eh; 513 struct ext4_extent *ex; 514 int i; 515 516 if (!path) 517 return; 518 519 eh = path[depth].p_hdr; 520 ex = EXT_FIRST_EXTENT(eh); 521 522 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 523 524 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 525 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 526 ext4_ext_is_uninitialized(ex), 527 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 528 } 529 ext_debug("\n"); 530 } 531 532 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 533 ext4_fsblk_t newblock, int level) 534 { 535 int depth = ext_depth(inode); 536 struct ext4_extent *ex; 537 538 if (depth != level) { 539 struct ext4_extent_idx *idx; 540 idx = path[level].p_idx; 541 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 542 ext_debug("%d: move %d:%llu in new index %llu\n", level, 543 le32_to_cpu(idx->ei_block), 544 ext4_idx_pblock(idx), 545 newblock); 546 idx++; 547 } 548 549 return; 550 } 551 552 ex = path[depth].p_ext; 553 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 554 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 555 le32_to_cpu(ex->ee_block), 556 ext4_ext_pblock(ex), 557 ext4_ext_is_uninitialized(ex), 558 ext4_ext_get_actual_len(ex), 559 newblock); 560 ex++; 561 } 562 } 563 564 #else 565 #define ext4_ext_show_path(inode, path) 566 #define ext4_ext_show_leaf(inode, path) 567 #define ext4_ext_show_move(inode, path, newblock, level) 568 #endif 569 570 void ext4_ext_drop_refs(struct ext4_ext_path *path) 571 { 572 int depth = path->p_depth; 573 int i; 574 575 for (i = 0; i <= depth; i++, path++) 576 if (path->p_bh) { 577 brelse(path->p_bh); 578 path->p_bh = NULL; 579 } 580 } 581 582 /* 583 * ext4_ext_binsearch_idx: 584 * binary search for the closest index of the given block 585 * the header must be checked before calling this 586 */ 587 static void 588 ext4_ext_binsearch_idx(struct inode *inode, 589 struct ext4_ext_path *path, ext4_lblk_t block) 590 { 591 struct ext4_extent_header *eh = path->p_hdr; 592 struct ext4_extent_idx *r, *l, *m; 593 594 595 ext_debug("binsearch for %u(idx): ", block); 596 597 l = EXT_FIRST_INDEX(eh) + 1; 598 r = EXT_LAST_INDEX(eh); 599 while (l <= r) { 600 m = l + (r - l) / 2; 601 if (block < le32_to_cpu(m->ei_block)) 602 r = m - 1; 603 else 604 l = m + 1; 605 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 606 m, le32_to_cpu(m->ei_block), 607 r, le32_to_cpu(r->ei_block)); 608 } 609 610 path->p_idx = l - 1; 611 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 612 ext4_idx_pblock(path->p_idx)); 613 614 #ifdef CHECK_BINSEARCH 615 { 616 struct ext4_extent_idx *chix, *ix; 617 int k; 618 619 chix = ix = EXT_FIRST_INDEX(eh); 620 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 621 if (k != 0 && 622 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 623 printk(KERN_DEBUG "k=%d, ix=0x%p, " 624 "first=0x%p\n", k, 625 ix, EXT_FIRST_INDEX(eh)); 626 printk(KERN_DEBUG "%u <= %u\n", 627 le32_to_cpu(ix->ei_block), 628 le32_to_cpu(ix[-1].ei_block)); 629 } 630 BUG_ON(k && le32_to_cpu(ix->ei_block) 631 <= le32_to_cpu(ix[-1].ei_block)); 632 if (block < le32_to_cpu(ix->ei_block)) 633 break; 634 chix = ix; 635 } 636 BUG_ON(chix != path->p_idx); 637 } 638 #endif 639 640 } 641 642 /* 643 * ext4_ext_binsearch: 644 * binary search for closest extent of the given block 645 * the header must be checked before calling this 646 */ 647 static void 648 ext4_ext_binsearch(struct inode *inode, 649 struct ext4_ext_path *path, ext4_lblk_t block) 650 { 651 struct ext4_extent_header *eh = path->p_hdr; 652 struct ext4_extent *r, *l, *m; 653 654 if (eh->eh_entries == 0) { 655 /* 656 * this leaf is empty: 657 * we get such a leaf in split/add case 658 */ 659 return; 660 } 661 662 ext_debug("binsearch for %u: ", block); 663 664 l = EXT_FIRST_EXTENT(eh) + 1; 665 r = EXT_LAST_EXTENT(eh); 666 667 while (l <= r) { 668 m = l + (r - l) / 2; 669 if (block < le32_to_cpu(m->ee_block)) 670 r = m - 1; 671 else 672 l = m + 1; 673 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 674 m, le32_to_cpu(m->ee_block), 675 r, le32_to_cpu(r->ee_block)); 676 } 677 678 path->p_ext = l - 1; 679 ext_debug(" -> %d:%llu:[%d]%d ", 680 le32_to_cpu(path->p_ext->ee_block), 681 ext4_ext_pblock(path->p_ext), 682 ext4_ext_is_uninitialized(path->p_ext), 683 ext4_ext_get_actual_len(path->p_ext)); 684 685 #ifdef CHECK_BINSEARCH 686 { 687 struct ext4_extent *chex, *ex; 688 int k; 689 690 chex = ex = EXT_FIRST_EXTENT(eh); 691 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 692 BUG_ON(k && le32_to_cpu(ex->ee_block) 693 <= le32_to_cpu(ex[-1].ee_block)); 694 if (block < le32_to_cpu(ex->ee_block)) 695 break; 696 chex = ex; 697 } 698 BUG_ON(chex != path->p_ext); 699 } 700 #endif 701 702 } 703 704 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 705 { 706 struct ext4_extent_header *eh; 707 708 eh = ext_inode_hdr(inode); 709 eh->eh_depth = 0; 710 eh->eh_entries = 0; 711 eh->eh_magic = EXT4_EXT_MAGIC; 712 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 713 ext4_mark_inode_dirty(handle, inode); 714 return 0; 715 } 716 717 struct ext4_ext_path * 718 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 719 struct ext4_ext_path *path) 720 { 721 struct ext4_extent_header *eh; 722 struct buffer_head *bh; 723 short int depth, i, ppos = 0, alloc = 0; 724 int ret; 725 726 eh = ext_inode_hdr(inode); 727 depth = ext_depth(inode); 728 729 /* account possible depth increase */ 730 if (!path) { 731 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 732 GFP_NOFS); 733 if (!path) 734 return ERR_PTR(-ENOMEM); 735 alloc = 1; 736 } 737 path[0].p_hdr = eh; 738 path[0].p_bh = NULL; 739 740 i = depth; 741 /* walk through the tree */ 742 while (i) { 743 ext_debug("depth %d: num %d, max %d\n", 744 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 745 746 ext4_ext_binsearch_idx(inode, path + ppos, block); 747 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 748 path[ppos].p_depth = i; 749 path[ppos].p_ext = NULL; 750 751 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 752 if (unlikely(!bh)) { 753 ret = -ENOMEM; 754 goto err; 755 } 756 if (!bh_uptodate_or_lock(bh)) { 757 trace_ext4_ext_load_extent(inode, block, 758 path[ppos].p_block); 759 ret = bh_submit_read(bh); 760 if (ret < 0) { 761 put_bh(bh); 762 goto err; 763 } 764 } 765 eh = ext_block_hdr(bh); 766 ppos++; 767 if (unlikely(ppos > depth)) { 768 put_bh(bh); 769 EXT4_ERROR_INODE(inode, 770 "ppos %d > depth %d", ppos, depth); 771 ret = -EIO; 772 goto err; 773 } 774 path[ppos].p_bh = bh; 775 path[ppos].p_hdr = eh; 776 i--; 777 778 ret = ext4_ext_check_block(inode, eh, i, bh); 779 if (ret < 0) 780 goto err; 781 } 782 783 path[ppos].p_depth = i; 784 path[ppos].p_ext = NULL; 785 path[ppos].p_idx = NULL; 786 787 /* find extent */ 788 ext4_ext_binsearch(inode, path + ppos, block); 789 /* if not an empty leaf */ 790 if (path[ppos].p_ext) 791 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 792 793 ext4_ext_show_path(inode, path); 794 795 return path; 796 797 err: 798 ext4_ext_drop_refs(path); 799 if (alloc) 800 kfree(path); 801 return ERR_PTR(ret); 802 } 803 804 /* 805 * ext4_ext_insert_index: 806 * insert new index [@logical;@ptr] into the block at @curp; 807 * check where to insert: before @curp or after @curp 808 */ 809 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 810 struct ext4_ext_path *curp, 811 int logical, ext4_fsblk_t ptr) 812 { 813 struct ext4_extent_idx *ix; 814 int len, err; 815 816 err = ext4_ext_get_access(handle, inode, curp); 817 if (err) 818 return err; 819 820 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 821 EXT4_ERROR_INODE(inode, 822 "logical %d == ei_block %d!", 823 logical, le32_to_cpu(curp->p_idx->ei_block)); 824 return -EIO; 825 } 826 827 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 828 >= le16_to_cpu(curp->p_hdr->eh_max))) { 829 EXT4_ERROR_INODE(inode, 830 "eh_entries %d >= eh_max %d!", 831 le16_to_cpu(curp->p_hdr->eh_entries), 832 le16_to_cpu(curp->p_hdr->eh_max)); 833 return -EIO; 834 } 835 836 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 837 /* insert after */ 838 ext_debug("insert new index %d after: %llu\n", logical, ptr); 839 ix = curp->p_idx + 1; 840 } else { 841 /* insert before */ 842 ext_debug("insert new index %d before: %llu\n", logical, ptr); 843 ix = curp->p_idx; 844 } 845 846 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 847 BUG_ON(len < 0); 848 if (len > 0) { 849 ext_debug("insert new index %d: " 850 "move %d indices from 0x%p to 0x%p\n", 851 logical, len, ix, ix + 1); 852 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 853 } 854 855 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 856 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 857 return -EIO; 858 } 859 860 ix->ei_block = cpu_to_le32(logical); 861 ext4_idx_store_pblock(ix, ptr); 862 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 863 864 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 865 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 866 return -EIO; 867 } 868 869 err = ext4_ext_dirty(handle, inode, curp); 870 ext4_std_error(inode->i_sb, err); 871 872 return err; 873 } 874 875 /* 876 * ext4_ext_split: 877 * inserts new subtree into the path, using free index entry 878 * at depth @at: 879 * - allocates all needed blocks (new leaf and all intermediate index blocks) 880 * - makes decision where to split 881 * - moves remaining extents and index entries (right to the split point) 882 * into the newly allocated blocks 883 * - initializes subtree 884 */ 885 static int ext4_ext_split(handle_t *handle, struct inode *inode, 886 unsigned int flags, 887 struct ext4_ext_path *path, 888 struct ext4_extent *newext, int at) 889 { 890 struct buffer_head *bh = NULL; 891 int depth = ext_depth(inode); 892 struct ext4_extent_header *neh; 893 struct ext4_extent_idx *fidx; 894 int i = at, k, m, a; 895 ext4_fsblk_t newblock, oldblock; 896 __le32 border; 897 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 898 int err = 0; 899 900 /* make decision: where to split? */ 901 /* FIXME: now decision is simplest: at current extent */ 902 903 /* if current leaf will be split, then we should use 904 * border from split point */ 905 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 906 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 907 return -EIO; 908 } 909 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 910 border = path[depth].p_ext[1].ee_block; 911 ext_debug("leaf will be split." 912 " next leaf starts at %d\n", 913 le32_to_cpu(border)); 914 } else { 915 border = newext->ee_block; 916 ext_debug("leaf will be added." 917 " next leaf starts at %d\n", 918 le32_to_cpu(border)); 919 } 920 921 /* 922 * If error occurs, then we break processing 923 * and mark filesystem read-only. index won't 924 * be inserted and tree will be in consistent 925 * state. Next mount will repair buffers too. 926 */ 927 928 /* 929 * Get array to track all allocated blocks. 930 * We need this to handle errors and free blocks 931 * upon them. 932 */ 933 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 934 if (!ablocks) 935 return -ENOMEM; 936 937 /* allocate all needed blocks */ 938 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 939 for (a = 0; a < depth - at; a++) { 940 newblock = ext4_ext_new_meta_block(handle, inode, path, 941 newext, &err, flags); 942 if (newblock == 0) 943 goto cleanup; 944 ablocks[a] = newblock; 945 } 946 947 /* initialize new leaf */ 948 newblock = ablocks[--a]; 949 if (unlikely(newblock == 0)) { 950 EXT4_ERROR_INODE(inode, "newblock == 0!"); 951 err = -EIO; 952 goto cleanup; 953 } 954 bh = sb_getblk(inode->i_sb, newblock); 955 if (unlikely(!bh)) { 956 err = -ENOMEM; 957 goto cleanup; 958 } 959 lock_buffer(bh); 960 961 err = ext4_journal_get_create_access(handle, bh); 962 if (err) 963 goto cleanup; 964 965 neh = ext_block_hdr(bh); 966 neh->eh_entries = 0; 967 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 968 neh->eh_magic = EXT4_EXT_MAGIC; 969 neh->eh_depth = 0; 970 971 /* move remainder of path[depth] to the new leaf */ 972 if (unlikely(path[depth].p_hdr->eh_entries != 973 path[depth].p_hdr->eh_max)) { 974 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 975 path[depth].p_hdr->eh_entries, 976 path[depth].p_hdr->eh_max); 977 err = -EIO; 978 goto cleanup; 979 } 980 /* start copy from next extent */ 981 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 982 ext4_ext_show_move(inode, path, newblock, depth); 983 if (m) { 984 struct ext4_extent *ex; 985 ex = EXT_FIRST_EXTENT(neh); 986 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 987 le16_add_cpu(&neh->eh_entries, m); 988 } 989 990 ext4_extent_block_csum_set(inode, neh); 991 set_buffer_uptodate(bh); 992 unlock_buffer(bh); 993 994 err = ext4_handle_dirty_metadata(handle, inode, bh); 995 if (err) 996 goto cleanup; 997 brelse(bh); 998 bh = NULL; 999 1000 /* correct old leaf */ 1001 if (m) { 1002 err = ext4_ext_get_access(handle, inode, path + depth); 1003 if (err) 1004 goto cleanup; 1005 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1006 err = ext4_ext_dirty(handle, inode, path + depth); 1007 if (err) 1008 goto cleanup; 1009 1010 } 1011 1012 /* create intermediate indexes */ 1013 k = depth - at - 1; 1014 if (unlikely(k < 0)) { 1015 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1016 err = -EIO; 1017 goto cleanup; 1018 } 1019 if (k) 1020 ext_debug("create %d intermediate indices\n", k); 1021 /* insert new index into current index block */ 1022 /* current depth stored in i var */ 1023 i = depth - 1; 1024 while (k--) { 1025 oldblock = newblock; 1026 newblock = ablocks[--a]; 1027 bh = sb_getblk(inode->i_sb, newblock); 1028 if (unlikely(!bh)) { 1029 err = -ENOMEM; 1030 goto cleanup; 1031 } 1032 lock_buffer(bh); 1033 1034 err = ext4_journal_get_create_access(handle, bh); 1035 if (err) 1036 goto cleanup; 1037 1038 neh = ext_block_hdr(bh); 1039 neh->eh_entries = cpu_to_le16(1); 1040 neh->eh_magic = EXT4_EXT_MAGIC; 1041 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1042 neh->eh_depth = cpu_to_le16(depth - i); 1043 fidx = EXT_FIRST_INDEX(neh); 1044 fidx->ei_block = border; 1045 ext4_idx_store_pblock(fidx, oldblock); 1046 1047 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1048 i, newblock, le32_to_cpu(border), oldblock); 1049 1050 /* move remainder of path[i] to the new index block */ 1051 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1052 EXT_LAST_INDEX(path[i].p_hdr))) { 1053 EXT4_ERROR_INODE(inode, 1054 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1055 le32_to_cpu(path[i].p_ext->ee_block)); 1056 err = -EIO; 1057 goto cleanup; 1058 } 1059 /* start copy indexes */ 1060 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1061 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1062 EXT_MAX_INDEX(path[i].p_hdr)); 1063 ext4_ext_show_move(inode, path, newblock, i); 1064 if (m) { 1065 memmove(++fidx, path[i].p_idx, 1066 sizeof(struct ext4_extent_idx) * m); 1067 le16_add_cpu(&neh->eh_entries, m); 1068 } 1069 ext4_extent_block_csum_set(inode, neh); 1070 set_buffer_uptodate(bh); 1071 unlock_buffer(bh); 1072 1073 err = ext4_handle_dirty_metadata(handle, inode, bh); 1074 if (err) 1075 goto cleanup; 1076 brelse(bh); 1077 bh = NULL; 1078 1079 /* correct old index */ 1080 if (m) { 1081 err = ext4_ext_get_access(handle, inode, path + i); 1082 if (err) 1083 goto cleanup; 1084 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1085 err = ext4_ext_dirty(handle, inode, path + i); 1086 if (err) 1087 goto cleanup; 1088 } 1089 1090 i--; 1091 } 1092 1093 /* insert new index */ 1094 err = ext4_ext_insert_index(handle, inode, path + at, 1095 le32_to_cpu(border), newblock); 1096 1097 cleanup: 1098 if (bh) { 1099 if (buffer_locked(bh)) 1100 unlock_buffer(bh); 1101 brelse(bh); 1102 } 1103 1104 if (err) { 1105 /* free all allocated blocks in error case */ 1106 for (i = 0; i < depth; i++) { 1107 if (!ablocks[i]) 1108 continue; 1109 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1110 EXT4_FREE_BLOCKS_METADATA); 1111 } 1112 } 1113 kfree(ablocks); 1114 1115 return err; 1116 } 1117 1118 /* 1119 * ext4_ext_grow_indepth: 1120 * implements tree growing procedure: 1121 * - allocates new block 1122 * - moves top-level data (index block or leaf) into the new block 1123 * - initializes new top-level, creating index that points to the 1124 * just created block 1125 */ 1126 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1127 unsigned int flags, 1128 struct ext4_extent *newext) 1129 { 1130 struct ext4_extent_header *neh; 1131 struct buffer_head *bh; 1132 ext4_fsblk_t newblock; 1133 int err = 0; 1134 1135 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1136 newext, &err, flags); 1137 if (newblock == 0) 1138 return err; 1139 1140 bh = sb_getblk(inode->i_sb, newblock); 1141 if (unlikely(!bh)) 1142 return -ENOMEM; 1143 lock_buffer(bh); 1144 1145 err = ext4_journal_get_create_access(handle, bh); 1146 if (err) { 1147 unlock_buffer(bh); 1148 goto out; 1149 } 1150 1151 /* move top-level index/leaf into new block */ 1152 memmove(bh->b_data, EXT4_I(inode)->i_data, 1153 sizeof(EXT4_I(inode)->i_data)); 1154 1155 /* set size of new block */ 1156 neh = ext_block_hdr(bh); 1157 /* old root could have indexes or leaves 1158 * so calculate e_max right way */ 1159 if (ext_depth(inode)) 1160 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1161 else 1162 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1163 neh->eh_magic = EXT4_EXT_MAGIC; 1164 ext4_extent_block_csum_set(inode, neh); 1165 set_buffer_uptodate(bh); 1166 unlock_buffer(bh); 1167 1168 err = ext4_handle_dirty_metadata(handle, inode, bh); 1169 if (err) 1170 goto out; 1171 1172 /* Update top-level index: num,max,pointer */ 1173 neh = ext_inode_hdr(inode); 1174 neh->eh_entries = cpu_to_le16(1); 1175 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1176 if (neh->eh_depth == 0) { 1177 /* Root extent block becomes index block */ 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1179 EXT_FIRST_INDEX(neh)->ei_block = 1180 EXT_FIRST_EXTENT(neh)->ee_block; 1181 } 1182 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1183 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1184 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1185 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1186 1187 le16_add_cpu(&neh->eh_depth, 1); 1188 ext4_mark_inode_dirty(handle, inode); 1189 out: 1190 brelse(bh); 1191 1192 return err; 1193 } 1194 1195 /* 1196 * ext4_ext_create_new_leaf: 1197 * finds empty index and adds new leaf. 1198 * if no free index is found, then it requests in-depth growing. 1199 */ 1200 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1201 unsigned int flags, 1202 struct ext4_ext_path *path, 1203 struct ext4_extent *newext) 1204 { 1205 struct ext4_ext_path *curp; 1206 int depth, i, err = 0; 1207 1208 repeat: 1209 i = depth = ext_depth(inode); 1210 1211 /* walk up to the tree and look for free index entry */ 1212 curp = path + depth; 1213 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1214 i--; 1215 curp--; 1216 } 1217 1218 /* we use already allocated block for index block, 1219 * so subsequent data blocks should be contiguous */ 1220 if (EXT_HAS_FREE_INDEX(curp)) { 1221 /* if we found index with free entry, then use that 1222 * entry: create all needed subtree and add new leaf */ 1223 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1224 if (err) 1225 goto out; 1226 1227 /* refill path */ 1228 ext4_ext_drop_refs(path); 1229 path = ext4_ext_find_extent(inode, 1230 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1231 path); 1232 if (IS_ERR(path)) 1233 err = PTR_ERR(path); 1234 } else { 1235 /* tree is full, time to grow in depth */ 1236 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1237 if (err) 1238 goto out; 1239 1240 /* refill path */ 1241 ext4_ext_drop_refs(path); 1242 path = ext4_ext_find_extent(inode, 1243 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1244 path); 1245 if (IS_ERR(path)) { 1246 err = PTR_ERR(path); 1247 goto out; 1248 } 1249 1250 /* 1251 * only first (depth 0 -> 1) produces free space; 1252 * in all other cases we have to split the grown tree 1253 */ 1254 depth = ext_depth(inode); 1255 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1256 /* now we need to split */ 1257 goto repeat; 1258 } 1259 } 1260 1261 out: 1262 return err; 1263 } 1264 1265 /* 1266 * search the closest allocated block to the left for *logical 1267 * and returns it at @logical + it's physical address at @phys 1268 * if *logical is the smallest allocated block, the function 1269 * returns 0 at @phys 1270 * return value contains 0 (success) or error code 1271 */ 1272 static int ext4_ext_search_left(struct inode *inode, 1273 struct ext4_ext_path *path, 1274 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1275 { 1276 struct ext4_extent_idx *ix; 1277 struct ext4_extent *ex; 1278 int depth, ee_len; 1279 1280 if (unlikely(path == NULL)) { 1281 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1282 return -EIO; 1283 } 1284 depth = path->p_depth; 1285 *phys = 0; 1286 1287 if (depth == 0 && path->p_ext == NULL) 1288 return 0; 1289 1290 /* usually extent in the path covers blocks smaller 1291 * then *logical, but it can be that extent is the 1292 * first one in the file */ 1293 1294 ex = path[depth].p_ext; 1295 ee_len = ext4_ext_get_actual_len(ex); 1296 if (*logical < le32_to_cpu(ex->ee_block)) { 1297 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1298 EXT4_ERROR_INODE(inode, 1299 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1300 *logical, le32_to_cpu(ex->ee_block)); 1301 return -EIO; 1302 } 1303 while (--depth >= 0) { 1304 ix = path[depth].p_idx; 1305 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1306 EXT4_ERROR_INODE(inode, 1307 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1308 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1309 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1310 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1311 depth); 1312 return -EIO; 1313 } 1314 } 1315 return 0; 1316 } 1317 1318 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1319 EXT4_ERROR_INODE(inode, 1320 "logical %d < ee_block %d + ee_len %d!", 1321 *logical, le32_to_cpu(ex->ee_block), ee_len); 1322 return -EIO; 1323 } 1324 1325 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1326 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1327 return 0; 1328 } 1329 1330 /* 1331 * search the closest allocated block to the right for *logical 1332 * and returns it at @logical + it's physical address at @phys 1333 * if *logical is the largest allocated block, the function 1334 * returns 0 at @phys 1335 * return value contains 0 (success) or error code 1336 */ 1337 static int ext4_ext_search_right(struct inode *inode, 1338 struct ext4_ext_path *path, 1339 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1340 struct ext4_extent **ret_ex) 1341 { 1342 struct buffer_head *bh = NULL; 1343 struct ext4_extent_header *eh; 1344 struct ext4_extent_idx *ix; 1345 struct ext4_extent *ex; 1346 ext4_fsblk_t block; 1347 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1348 int ee_len; 1349 1350 if (unlikely(path == NULL)) { 1351 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1352 return -EIO; 1353 } 1354 depth = path->p_depth; 1355 *phys = 0; 1356 1357 if (depth == 0 && path->p_ext == NULL) 1358 return 0; 1359 1360 /* usually extent in the path covers blocks smaller 1361 * then *logical, but it can be that extent is the 1362 * first one in the file */ 1363 1364 ex = path[depth].p_ext; 1365 ee_len = ext4_ext_get_actual_len(ex); 1366 if (*logical < le32_to_cpu(ex->ee_block)) { 1367 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1368 EXT4_ERROR_INODE(inode, 1369 "first_extent(path[%d].p_hdr) != ex", 1370 depth); 1371 return -EIO; 1372 } 1373 while (--depth >= 0) { 1374 ix = path[depth].p_idx; 1375 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1376 EXT4_ERROR_INODE(inode, 1377 "ix != EXT_FIRST_INDEX *logical %d!", 1378 *logical); 1379 return -EIO; 1380 } 1381 } 1382 goto found_extent; 1383 } 1384 1385 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1386 EXT4_ERROR_INODE(inode, 1387 "logical %d < ee_block %d + ee_len %d!", 1388 *logical, le32_to_cpu(ex->ee_block), ee_len); 1389 return -EIO; 1390 } 1391 1392 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1393 /* next allocated block in this leaf */ 1394 ex++; 1395 goto found_extent; 1396 } 1397 1398 /* go up and search for index to the right */ 1399 while (--depth >= 0) { 1400 ix = path[depth].p_idx; 1401 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1402 goto got_index; 1403 } 1404 1405 /* we've gone up to the root and found no index to the right */ 1406 return 0; 1407 1408 got_index: 1409 /* we've found index to the right, let's 1410 * follow it and find the closest allocated 1411 * block to the right */ 1412 ix++; 1413 block = ext4_idx_pblock(ix); 1414 while (++depth < path->p_depth) { 1415 bh = sb_bread(inode->i_sb, block); 1416 if (bh == NULL) 1417 return -EIO; 1418 eh = ext_block_hdr(bh); 1419 /* subtract from p_depth to get proper eh_depth */ 1420 if (ext4_ext_check_block(inode, eh, 1421 path->p_depth - depth, bh)) { 1422 put_bh(bh); 1423 return -EIO; 1424 } 1425 ix = EXT_FIRST_INDEX(eh); 1426 block = ext4_idx_pblock(ix); 1427 put_bh(bh); 1428 } 1429 1430 bh = sb_bread(inode->i_sb, block); 1431 if (bh == NULL) 1432 return -EIO; 1433 eh = ext_block_hdr(bh); 1434 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1435 put_bh(bh); 1436 return -EIO; 1437 } 1438 ex = EXT_FIRST_EXTENT(eh); 1439 found_extent: 1440 *logical = le32_to_cpu(ex->ee_block); 1441 *phys = ext4_ext_pblock(ex); 1442 *ret_ex = ex; 1443 if (bh) 1444 put_bh(bh); 1445 return 0; 1446 } 1447 1448 /* 1449 * ext4_ext_next_allocated_block: 1450 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1451 * NOTE: it considers block number from index entry as 1452 * allocated block. Thus, index entries have to be consistent 1453 * with leaves. 1454 */ 1455 static ext4_lblk_t 1456 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1457 { 1458 int depth; 1459 1460 BUG_ON(path == NULL); 1461 depth = path->p_depth; 1462 1463 if (depth == 0 && path->p_ext == NULL) 1464 return EXT_MAX_BLOCKS; 1465 1466 while (depth >= 0) { 1467 if (depth == path->p_depth) { 1468 /* leaf */ 1469 if (path[depth].p_ext && 1470 path[depth].p_ext != 1471 EXT_LAST_EXTENT(path[depth].p_hdr)) 1472 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1473 } else { 1474 /* index */ 1475 if (path[depth].p_idx != 1476 EXT_LAST_INDEX(path[depth].p_hdr)) 1477 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1478 } 1479 depth--; 1480 } 1481 1482 return EXT_MAX_BLOCKS; 1483 } 1484 1485 /* 1486 * ext4_ext_next_leaf_block: 1487 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1488 */ 1489 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1490 { 1491 int depth; 1492 1493 BUG_ON(path == NULL); 1494 depth = path->p_depth; 1495 1496 /* zero-tree has no leaf blocks at all */ 1497 if (depth == 0) 1498 return EXT_MAX_BLOCKS; 1499 1500 /* go to index block */ 1501 depth--; 1502 1503 while (depth >= 0) { 1504 if (path[depth].p_idx != 1505 EXT_LAST_INDEX(path[depth].p_hdr)) 1506 return (ext4_lblk_t) 1507 le32_to_cpu(path[depth].p_idx[1].ei_block); 1508 depth--; 1509 } 1510 1511 return EXT_MAX_BLOCKS; 1512 } 1513 1514 /* 1515 * ext4_ext_correct_indexes: 1516 * if leaf gets modified and modified extent is first in the leaf, 1517 * then we have to correct all indexes above. 1518 * TODO: do we need to correct tree in all cases? 1519 */ 1520 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1521 struct ext4_ext_path *path) 1522 { 1523 struct ext4_extent_header *eh; 1524 int depth = ext_depth(inode); 1525 struct ext4_extent *ex; 1526 __le32 border; 1527 int k, err = 0; 1528 1529 eh = path[depth].p_hdr; 1530 ex = path[depth].p_ext; 1531 1532 if (unlikely(ex == NULL || eh == NULL)) { 1533 EXT4_ERROR_INODE(inode, 1534 "ex %p == NULL or eh %p == NULL", ex, eh); 1535 return -EIO; 1536 } 1537 1538 if (depth == 0) { 1539 /* there is no tree at all */ 1540 return 0; 1541 } 1542 1543 if (ex != EXT_FIRST_EXTENT(eh)) { 1544 /* we correct tree if first leaf got modified only */ 1545 return 0; 1546 } 1547 1548 /* 1549 * TODO: we need correction if border is smaller than current one 1550 */ 1551 k = depth - 1; 1552 border = path[depth].p_ext->ee_block; 1553 err = ext4_ext_get_access(handle, inode, path + k); 1554 if (err) 1555 return err; 1556 path[k].p_idx->ei_block = border; 1557 err = ext4_ext_dirty(handle, inode, path + k); 1558 if (err) 1559 return err; 1560 1561 while (k--) { 1562 /* change all left-side indexes */ 1563 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1564 break; 1565 err = ext4_ext_get_access(handle, inode, path + k); 1566 if (err) 1567 break; 1568 path[k].p_idx->ei_block = border; 1569 err = ext4_ext_dirty(handle, inode, path + k); 1570 if (err) 1571 break; 1572 } 1573 1574 return err; 1575 } 1576 1577 int 1578 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1579 struct ext4_extent *ex2) 1580 { 1581 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1582 1583 /* 1584 * Make sure that both extents are initialized. We don't merge 1585 * uninitialized extents so that we can be sure that end_io code has 1586 * the extent that was written properly split out and conversion to 1587 * initialized is trivial. 1588 */ 1589 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2)) 1590 return 0; 1591 1592 if (ext4_ext_is_uninitialized(ex1)) 1593 max_len = EXT_UNINIT_MAX_LEN; 1594 else 1595 max_len = EXT_INIT_MAX_LEN; 1596 1597 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1598 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1599 1600 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1601 le32_to_cpu(ex2->ee_block)) 1602 return 0; 1603 1604 /* 1605 * To allow future support for preallocated extents to be added 1606 * as an RO_COMPAT feature, refuse to merge to extents if 1607 * this can result in the top bit of ee_len being set. 1608 */ 1609 if (ext1_ee_len + ext2_ee_len > max_len) 1610 return 0; 1611 #ifdef AGGRESSIVE_TEST 1612 if (ext1_ee_len >= 4) 1613 return 0; 1614 #endif 1615 1616 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1617 return 1; 1618 return 0; 1619 } 1620 1621 /* 1622 * This function tries to merge the "ex" extent to the next extent in the tree. 1623 * It always tries to merge towards right. If you want to merge towards 1624 * left, pass "ex - 1" as argument instead of "ex". 1625 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1626 * 1 if they got merged. 1627 */ 1628 static int ext4_ext_try_to_merge_right(struct inode *inode, 1629 struct ext4_ext_path *path, 1630 struct ext4_extent *ex) 1631 { 1632 struct ext4_extent_header *eh; 1633 unsigned int depth, len; 1634 int merge_done = 0; 1635 int uninitialized = 0; 1636 1637 depth = ext_depth(inode); 1638 BUG_ON(path[depth].p_hdr == NULL); 1639 eh = path[depth].p_hdr; 1640 1641 while (ex < EXT_LAST_EXTENT(eh)) { 1642 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1643 break; 1644 /* merge with next extent! */ 1645 if (ext4_ext_is_uninitialized(ex)) 1646 uninitialized = 1; 1647 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1648 + ext4_ext_get_actual_len(ex + 1)); 1649 if (uninitialized) 1650 ext4_ext_mark_uninitialized(ex); 1651 1652 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1653 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1654 * sizeof(struct ext4_extent); 1655 memmove(ex + 1, ex + 2, len); 1656 } 1657 le16_add_cpu(&eh->eh_entries, -1); 1658 merge_done = 1; 1659 WARN_ON(eh->eh_entries == 0); 1660 if (!eh->eh_entries) 1661 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1662 } 1663 1664 return merge_done; 1665 } 1666 1667 /* 1668 * This function does a very simple check to see if we can collapse 1669 * an extent tree with a single extent tree leaf block into the inode. 1670 */ 1671 static void ext4_ext_try_to_merge_up(handle_t *handle, 1672 struct inode *inode, 1673 struct ext4_ext_path *path) 1674 { 1675 size_t s; 1676 unsigned max_root = ext4_ext_space_root(inode, 0); 1677 ext4_fsblk_t blk; 1678 1679 if ((path[0].p_depth != 1) || 1680 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1681 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1682 return; 1683 1684 /* 1685 * We need to modify the block allocation bitmap and the block 1686 * group descriptor to release the extent tree block. If we 1687 * can't get the journal credits, give up. 1688 */ 1689 if (ext4_journal_extend(handle, 2)) 1690 return; 1691 1692 /* 1693 * Copy the extent data up to the inode 1694 */ 1695 blk = ext4_idx_pblock(path[0].p_idx); 1696 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1697 sizeof(struct ext4_extent_idx); 1698 s += sizeof(struct ext4_extent_header); 1699 1700 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1701 path[0].p_depth = 0; 1702 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1703 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1704 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1705 1706 brelse(path[1].p_bh); 1707 ext4_free_blocks(handle, inode, NULL, blk, 1, 1708 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1709 } 1710 1711 /* 1712 * This function tries to merge the @ex extent to neighbours in the tree. 1713 * return 1 if merge left else 0. 1714 */ 1715 static void ext4_ext_try_to_merge(handle_t *handle, 1716 struct inode *inode, 1717 struct ext4_ext_path *path, 1718 struct ext4_extent *ex) { 1719 struct ext4_extent_header *eh; 1720 unsigned int depth; 1721 int merge_done = 0; 1722 1723 depth = ext_depth(inode); 1724 BUG_ON(path[depth].p_hdr == NULL); 1725 eh = path[depth].p_hdr; 1726 1727 if (ex > EXT_FIRST_EXTENT(eh)) 1728 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1729 1730 if (!merge_done) 1731 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1732 1733 ext4_ext_try_to_merge_up(handle, inode, path); 1734 } 1735 1736 /* 1737 * check if a portion of the "newext" extent overlaps with an 1738 * existing extent. 1739 * 1740 * If there is an overlap discovered, it updates the length of the newext 1741 * such that there will be no overlap, and then returns 1. 1742 * If there is no overlap found, it returns 0. 1743 */ 1744 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1745 struct inode *inode, 1746 struct ext4_extent *newext, 1747 struct ext4_ext_path *path) 1748 { 1749 ext4_lblk_t b1, b2; 1750 unsigned int depth, len1; 1751 unsigned int ret = 0; 1752 1753 b1 = le32_to_cpu(newext->ee_block); 1754 len1 = ext4_ext_get_actual_len(newext); 1755 depth = ext_depth(inode); 1756 if (!path[depth].p_ext) 1757 goto out; 1758 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1759 b2 &= ~(sbi->s_cluster_ratio - 1); 1760 1761 /* 1762 * get the next allocated block if the extent in the path 1763 * is before the requested block(s) 1764 */ 1765 if (b2 < b1) { 1766 b2 = ext4_ext_next_allocated_block(path); 1767 if (b2 == EXT_MAX_BLOCKS) 1768 goto out; 1769 b2 &= ~(sbi->s_cluster_ratio - 1); 1770 } 1771 1772 /* check for wrap through zero on extent logical start block*/ 1773 if (b1 + len1 < b1) { 1774 len1 = EXT_MAX_BLOCKS - b1; 1775 newext->ee_len = cpu_to_le16(len1); 1776 ret = 1; 1777 } 1778 1779 /* check for overlap */ 1780 if (b1 + len1 > b2) { 1781 newext->ee_len = cpu_to_le16(b2 - b1); 1782 ret = 1; 1783 } 1784 out: 1785 return ret; 1786 } 1787 1788 /* 1789 * ext4_ext_insert_extent: 1790 * tries to merge requsted extent into the existing extent or 1791 * inserts requested extent as new one into the tree, 1792 * creating new leaf in the no-space case. 1793 */ 1794 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1795 struct ext4_ext_path *path, 1796 struct ext4_extent *newext, int flag) 1797 { 1798 struct ext4_extent_header *eh; 1799 struct ext4_extent *ex, *fex; 1800 struct ext4_extent *nearex; /* nearest extent */ 1801 struct ext4_ext_path *npath = NULL; 1802 int depth, len, err; 1803 ext4_lblk_t next; 1804 unsigned uninitialized = 0; 1805 int flags = 0; 1806 1807 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1808 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1809 return -EIO; 1810 } 1811 depth = ext_depth(inode); 1812 ex = path[depth].p_ext; 1813 eh = path[depth].p_hdr; 1814 if (unlikely(path[depth].p_hdr == NULL)) { 1815 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1816 return -EIO; 1817 } 1818 1819 /* try to insert block into found extent and return */ 1820 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) { 1821 1822 /* 1823 * Try to see whether we should rather test the extent on 1824 * right from ex, or from the left of ex. This is because 1825 * ext4_ext_find_extent() can return either extent on the 1826 * left, or on the right from the searched position. This 1827 * will make merging more effective. 1828 */ 1829 if (ex < EXT_LAST_EXTENT(eh) && 1830 (le32_to_cpu(ex->ee_block) + 1831 ext4_ext_get_actual_len(ex) < 1832 le32_to_cpu(newext->ee_block))) { 1833 ex += 1; 1834 goto prepend; 1835 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1836 (le32_to_cpu(newext->ee_block) + 1837 ext4_ext_get_actual_len(newext) < 1838 le32_to_cpu(ex->ee_block))) 1839 ex -= 1; 1840 1841 /* Try to append newex to the ex */ 1842 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1843 ext_debug("append [%d]%d block to %u:[%d]%d" 1844 "(from %llu)\n", 1845 ext4_ext_is_uninitialized(newext), 1846 ext4_ext_get_actual_len(newext), 1847 le32_to_cpu(ex->ee_block), 1848 ext4_ext_is_uninitialized(ex), 1849 ext4_ext_get_actual_len(ex), 1850 ext4_ext_pblock(ex)); 1851 err = ext4_ext_get_access(handle, inode, 1852 path + depth); 1853 if (err) 1854 return err; 1855 1856 /* 1857 * ext4_can_extents_be_merged should have checked 1858 * that either both extents are uninitialized, or 1859 * both aren't. Thus we need to check only one of 1860 * them here. 1861 */ 1862 if (ext4_ext_is_uninitialized(ex)) 1863 uninitialized = 1; 1864 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1865 + ext4_ext_get_actual_len(newext)); 1866 if (uninitialized) 1867 ext4_ext_mark_uninitialized(ex); 1868 eh = path[depth].p_hdr; 1869 nearex = ex; 1870 goto merge; 1871 } 1872 1873 prepend: 1874 /* Try to prepend newex to the ex */ 1875 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1876 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1877 "(from %llu)\n", 1878 le32_to_cpu(newext->ee_block), 1879 ext4_ext_is_uninitialized(newext), 1880 ext4_ext_get_actual_len(newext), 1881 le32_to_cpu(ex->ee_block), 1882 ext4_ext_is_uninitialized(ex), 1883 ext4_ext_get_actual_len(ex), 1884 ext4_ext_pblock(ex)); 1885 err = ext4_ext_get_access(handle, inode, 1886 path + depth); 1887 if (err) 1888 return err; 1889 1890 /* 1891 * ext4_can_extents_be_merged should have checked 1892 * that either both extents are uninitialized, or 1893 * both aren't. Thus we need to check only one of 1894 * them here. 1895 */ 1896 if (ext4_ext_is_uninitialized(ex)) 1897 uninitialized = 1; 1898 ex->ee_block = newext->ee_block; 1899 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 1900 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1901 + ext4_ext_get_actual_len(newext)); 1902 if (uninitialized) 1903 ext4_ext_mark_uninitialized(ex); 1904 eh = path[depth].p_hdr; 1905 nearex = ex; 1906 goto merge; 1907 } 1908 } 1909 1910 depth = ext_depth(inode); 1911 eh = path[depth].p_hdr; 1912 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1913 goto has_space; 1914 1915 /* probably next leaf has space for us? */ 1916 fex = EXT_LAST_EXTENT(eh); 1917 next = EXT_MAX_BLOCKS; 1918 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1919 next = ext4_ext_next_leaf_block(path); 1920 if (next != EXT_MAX_BLOCKS) { 1921 ext_debug("next leaf block - %u\n", next); 1922 BUG_ON(npath != NULL); 1923 npath = ext4_ext_find_extent(inode, next, NULL); 1924 if (IS_ERR(npath)) 1925 return PTR_ERR(npath); 1926 BUG_ON(npath->p_depth != path->p_depth); 1927 eh = npath[depth].p_hdr; 1928 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1929 ext_debug("next leaf isn't full(%d)\n", 1930 le16_to_cpu(eh->eh_entries)); 1931 path = npath; 1932 goto has_space; 1933 } 1934 ext_debug("next leaf has no free space(%d,%d)\n", 1935 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1936 } 1937 1938 /* 1939 * There is no free space in the found leaf. 1940 * We're gonna add a new leaf in the tree. 1941 */ 1942 if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL) 1943 flags = EXT4_MB_USE_RESERVED; 1944 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1945 if (err) 1946 goto cleanup; 1947 depth = ext_depth(inode); 1948 eh = path[depth].p_hdr; 1949 1950 has_space: 1951 nearex = path[depth].p_ext; 1952 1953 err = ext4_ext_get_access(handle, inode, path + depth); 1954 if (err) 1955 goto cleanup; 1956 1957 if (!nearex) { 1958 /* there is no extent in this leaf, create first one */ 1959 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1960 le32_to_cpu(newext->ee_block), 1961 ext4_ext_pblock(newext), 1962 ext4_ext_is_uninitialized(newext), 1963 ext4_ext_get_actual_len(newext)); 1964 nearex = EXT_FIRST_EXTENT(eh); 1965 } else { 1966 if (le32_to_cpu(newext->ee_block) 1967 > le32_to_cpu(nearex->ee_block)) { 1968 /* Insert after */ 1969 ext_debug("insert %u:%llu:[%d]%d before: " 1970 "nearest %p\n", 1971 le32_to_cpu(newext->ee_block), 1972 ext4_ext_pblock(newext), 1973 ext4_ext_is_uninitialized(newext), 1974 ext4_ext_get_actual_len(newext), 1975 nearex); 1976 nearex++; 1977 } else { 1978 /* Insert before */ 1979 BUG_ON(newext->ee_block == nearex->ee_block); 1980 ext_debug("insert %u:%llu:[%d]%d after: " 1981 "nearest %p\n", 1982 le32_to_cpu(newext->ee_block), 1983 ext4_ext_pblock(newext), 1984 ext4_ext_is_uninitialized(newext), 1985 ext4_ext_get_actual_len(newext), 1986 nearex); 1987 } 1988 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1989 if (len > 0) { 1990 ext_debug("insert %u:%llu:[%d]%d: " 1991 "move %d extents from 0x%p to 0x%p\n", 1992 le32_to_cpu(newext->ee_block), 1993 ext4_ext_pblock(newext), 1994 ext4_ext_is_uninitialized(newext), 1995 ext4_ext_get_actual_len(newext), 1996 len, nearex, nearex + 1); 1997 memmove(nearex + 1, nearex, 1998 len * sizeof(struct ext4_extent)); 1999 } 2000 } 2001 2002 le16_add_cpu(&eh->eh_entries, 1); 2003 path[depth].p_ext = nearex; 2004 nearex->ee_block = newext->ee_block; 2005 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2006 nearex->ee_len = newext->ee_len; 2007 2008 merge: 2009 /* try to merge extents */ 2010 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 2011 ext4_ext_try_to_merge(handle, inode, path, nearex); 2012 2013 2014 /* time to correct all indexes above */ 2015 err = ext4_ext_correct_indexes(handle, inode, path); 2016 if (err) 2017 goto cleanup; 2018 2019 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2020 2021 cleanup: 2022 if (npath) { 2023 ext4_ext_drop_refs(npath); 2024 kfree(npath); 2025 } 2026 return err; 2027 } 2028 2029 static int ext4_fill_fiemap_extents(struct inode *inode, 2030 ext4_lblk_t block, ext4_lblk_t num, 2031 struct fiemap_extent_info *fieinfo) 2032 { 2033 struct ext4_ext_path *path = NULL; 2034 struct ext4_extent *ex; 2035 struct extent_status es; 2036 ext4_lblk_t next, next_del, start = 0, end = 0; 2037 ext4_lblk_t last = block + num; 2038 int exists, depth = 0, err = 0; 2039 unsigned int flags = 0; 2040 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2041 2042 while (block < last && block != EXT_MAX_BLOCKS) { 2043 num = last - block; 2044 /* find extent for this block */ 2045 down_read(&EXT4_I(inode)->i_data_sem); 2046 2047 if (path && ext_depth(inode) != depth) { 2048 /* depth was changed. we have to realloc path */ 2049 kfree(path); 2050 path = NULL; 2051 } 2052 2053 path = ext4_ext_find_extent(inode, block, path); 2054 if (IS_ERR(path)) { 2055 up_read(&EXT4_I(inode)->i_data_sem); 2056 err = PTR_ERR(path); 2057 path = NULL; 2058 break; 2059 } 2060 2061 depth = ext_depth(inode); 2062 if (unlikely(path[depth].p_hdr == NULL)) { 2063 up_read(&EXT4_I(inode)->i_data_sem); 2064 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2065 err = -EIO; 2066 break; 2067 } 2068 ex = path[depth].p_ext; 2069 next = ext4_ext_next_allocated_block(path); 2070 ext4_ext_drop_refs(path); 2071 2072 flags = 0; 2073 exists = 0; 2074 if (!ex) { 2075 /* there is no extent yet, so try to allocate 2076 * all requested space */ 2077 start = block; 2078 end = block + num; 2079 } else if (le32_to_cpu(ex->ee_block) > block) { 2080 /* need to allocate space before found extent */ 2081 start = block; 2082 end = le32_to_cpu(ex->ee_block); 2083 if (block + num < end) 2084 end = block + num; 2085 } else if (block >= le32_to_cpu(ex->ee_block) 2086 + ext4_ext_get_actual_len(ex)) { 2087 /* need to allocate space after found extent */ 2088 start = block; 2089 end = block + num; 2090 if (end >= next) 2091 end = next; 2092 } else if (block >= le32_to_cpu(ex->ee_block)) { 2093 /* 2094 * some part of requested space is covered 2095 * by found extent 2096 */ 2097 start = block; 2098 end = le32_to_cpu(ex->ee_block) 2099 + ext4_ext_get_actual_len(ex); 2100 if (block + num < end) 2101 end = block + num; 2102 exists = 1; 2103 } else { 2104 BUG(); 2105 } 2106 BUG_ON(end <= start); 2107 2108 if (!exists) { 2109 es.es_lblk = start; 2110 es.es_len = end - start; 2111 es.es_pblk = 0; 2112 } else { 2113 es.es_lblk = le32_to_cpu(ex->ee_block); 2114 es.es_len = ext4_ext_get_actual_len(ex); 2115 es.es_pblk = ext4_ext_pblock(ex); 2116 if (ext4_ext_is_uninitialized(ex)) 2117 flags |= FIEMAP_EXTENT_UNWRITTEN; 2118 } 2119 2120 /* 2121 * Find delayed extent and update es accordingly. We call 2122 * it even in !exists case to find out whether es is the 2123 * last existing extent or not. 2124 */ 2125 next_del = ext4_find_delayed_extent(inode, &es); 2126 if (!exists && next_del) { 2127 exists = 1; 2128 flags |= (FIEMAP_EXTENT_DELALLOC | 2129 FIEMAP_EXTENT_UNKNOWN); 2130 } 2131 up_read(&EXT4_I(inode)->i_data_sem); 2132 2133 if (unlikely(es.es_len == 0)) { 2134 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2135 err = -EIO; 2136 break; 2137 } 2138 2139 /* 2140 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2141 * we need to check next == EXT_MAX_BLOCKS because it is 2142 * possible that an extent is with unwritten and delayed 2143 * status due to when an extent is delayed allocated and 2144 * is allocated by fallocate status tree will track both of 2145 * them in a extent. 2146 * 2147 * So we could return a unwritten and delayed extent, and 2148 * its block is equal to 'next'. 2149 */ 2150 if (next == next_del && next == EXT_MAX_BLOCKS) { 2151 flags |= FIEMAP_EXTENT_LAST; 2152 if (unlikely(next_del != EXT_MAX_BLOCKS || 2153 next != EXT_MAX_BLOCKS)) { 2154 EXT4_ERROR_INODE(inode, 2155 "next extent == %u, next " 2156 "delalloc extent = %u", 2157 next, next_del); 2158 err = -EIO; 2159 break; 2160 } 2161 } 2162 2163 if (exists) { 2164 err = fiemap_fill_next_extent(fieinfo, 2165 (__u64)es.es_lblk << blksize_bits, 2166 (__u64)es.es_pblk << blksize_bits, 2167 (__u64)es.es_len << blksize_bits, 2168 flags); 2169 if (err < 0) 2170 break; 2171 if (err == 1) { 2172 err = 0; 2173 break; 2174 } 2175 } 2176 2177 block = es.es_lblk + es.es_len; 2178 } 2179 2180 if (path) { 2181 ext4_ext_drop_refs(path); 2182 kfree(path); 2183 } 2184 2185 return err; 2186 } 2187 2188 /* 2189 * ext4_ext_put_gap_in_cache: 2190 * calculate boundaries of the gap that the requested block fits into 2191 * and cache this gap 2192 */ 2193 static void 2194 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2195 ext4_lblk_t block) 2196 { 2197 int depth = ext_depth(inode); 2198 unsigned long len; 2199 ext4_lblk_t lblock; 2200 struct ext4_extent *ex; 2201 2202 ex = path[depth].p_ext; 2203 if (ex == NULL) { 2204 /* 2205 * there is no extent yet, so gap is [0;-] and we 2206 * don't cache it 2207 */ 2208 ext_debug("cache gap(whole file):"); 2209 } else if (block < le32_to_cpu(ex->ee_block)) { 2210 lblock = block; 2211 len = le32_to_cpu(ex->ee_block) - block; 2212 ext_debug("cache gap(before): %u [%u:%u]", 2213 block, 2214 le32_to_cpu(ex->ee_block), 2215 ext4_ext_get_actual_len(ex)); 2216 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2217 ext4_es_insert_extent(inode, lblock, len, ~0, 2218 EXTENT_STATUS_HOLE); 2219 } else if (block >= le32_to_cpu(ex->ee_block) 2220 + ext4_ext_get_actual_len(ex)) { 2221 ext4_lblk_t next; 2222 lblock = le32_to_cpu(ex->ee_block) 2223 + ext4_ext_get_actual_len(ex); 2224 2225 next = ext4_ext_next_allocated_block(path); 2226 ext_debug("cache gap(after): [%u:%u] %u", 2227 le32_to_cpu(ex->ee_block), 2228 ext4_ext_get_actual_len(ex), 2229 block); 2230 BUG_ON(next == lblock); 2231 len = next - lblock; 2232 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2233 ext4_es_insert_extent(inode, lblock, len, ~0, 2234 EXTENT_STATUS_HOLE); 2235 } else { 2236 lblock = len = 0; 2237 BUG(); 2238 } 2239 2240 ext_debug(" -> %u:%lu\n", lblock, len); 2241 } 2242 2243 /* 2244 * ext4_ext_rm_idx: 2245 * removes index from the index block. 2246 */ 2247 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2248 struct ext4_ext_path *path, int depth) 2249 { 2250 int err; 2251 ext4_fsblk_t leaf; 2252 2253 /* free index block */ 2254 depth--; 2255 path = path + depth; 2256 leaf = ext4_idx_pblock(path->p_idx); 2257 if (unlikely(path->p_hdr->eh_entries == 0)) { 2258 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2259 return -EIO; 2260 } 2261 err = ext4_ext_get_access(handle, inode, path); 2262 if (err) 2263 return err; 2264 2265 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2266 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2267 len *= sizeof(struct ext4_extent_idx); 2268 memmove(path->p_idx, path->p_idx + 1, len); 2269 } 2270 2271 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2272 err = ext4_ext_dirty(handle, inode, path); 2273 if (err) 2274 return err; 2275 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2276 trace_ext4_ext_rm_idx(inode, leaf); 2277 2278 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2279 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2280 2281 while (--depth >= 0) { 2282 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2283 break; 2284 path--; 2285 err = ext4_ext_get_access(handle, inode, path); 2286 if (err) 2287 break; 2288 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2289 err = ext4_ext_dirty(handle, inode, path); 2290 if (err) 2291 break; 2292 } 2293 return err; 2294 } 2295 2296 /* 2297 * ext4_ext_calc_credits_for_single_extent: 2298 * This routine returns max. credits that needed to insert an extent 2299 * to the extent tree. 2300 * When pass the actual path, the caller should calculate credits 2301 * under i_data_sem. 2302 */ 2303 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2304 struct ext4_ext_path *path) 2305 { 2306 if (path) { 2307 int depth = ext_depth(inode); 2308 int ret = 0; 2309 2310 /* probably there is space in leaf? */ 2311 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2312 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2313 2314 /* 2315 * There are some space in the leaf tree, no 2316 * need to account for leaf block credit 2317 * 2318 * bitmaps and block group descriptor blocks 2319 * and other metadata blocks still need to be 2320 * accounted. 2321 */ 2322 /* 1 bitmap, 1 block group descriptor */ 2323 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2324 return ret; 2325 } 2326 } 2327 2328 return ext4_chunk_trans_blocks(inode, nrblocks); 2329 } 2330 2331 /* 2332 * How many index/leaf blocks need to change/allocate to add @extents extents? 2333 * 2334 * If we add a single extent, then in the worse case, each tree level 2335 * index/leaf need to be changed in case of the tree split. 2336 * 2337 * If more extents are inserted, they could cause the whole tree split more 2338 * than once, but this is really rare. 2339 */ 2340 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2341 { 2342 int index; 2343 int depth; 2344 2345 /* If we are converting the inline data, only one is needed here. */ 2346 if (ext4_has_inline_data(inode)) 2347 return 1; 2348 2349 depth = ext_depth(inode); 2350 2351 if (extents <= 1) 2352 index = depth * 2; 2353 else 2354 index = depth * 3; 2355 2356 return index; 2357 } 2358 2359 static inline int get_default_free_blocks_flags(struct inode *inode) 2360 { 2361 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2362 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2363 else if (ext4_should_journal_data(inode)) 2364 return EXT4_FREE_BLOCKS_FORGET; 2365 return 0; 2366 } 2367 2368 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2369 struct ext4_extent *ex, 2370 long long *partial_cluster, 2371 ext4_lblk_t from, ext4_lblk_t to) 2372 { 2373 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2374 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2375 ext4_fsblk_t pblk; 2376 int flags = get_default_free_blocks_flags(inode); 2377 2378 /* 2379 * For bigalloc file systems, we never free a partial cluster 2380 * at the beginning of the extent. Instead, we make a note 2381 * that we tried freeing the cluster, and check to see if we 2382 * need to free it on a subsequent call to ext4_remove_blocks, 2383 * or at the end of the ext4_truncate() operation. 2384 */ 2385 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2386 2387 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2388 /* 2389 * If we have a partial cluster, and it's different from the 2390 * cluster of the last block, we need to explicitly free the 2391 * partial cluster here. 2392 */ 2393 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2394 if ((*partial_cluster > 0) && 2395 (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2396 ext4_free_blocks(handle, inode, NULL, 2397 EXT4_C2B(sbi, *partial_cluster), 2398 sbi->s_cluster_ratio, flags); 2399 *partial_cluster = 0; 2400 } 2401 2402 #ifdef EXTENTS_STATS 2403 { 2404 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2405 spin_lock(&sbi->s_ext_stats_lock); 2406 sbi->s_ext_blocks += ee_len; 2407 sbi->s_ext_extents++; 2408 if (ee_len < sbi->s_ext_min) 2409 sbi->s_ext_min = ee_len; 2410 if (ee_len > sbi->s_ext_max) 2411 sbi->s_ext_max = ee_len; 2412 if (ext_depth(inode) > sbi->s_depth_max) 2413 sbi->s_depth_max = ext_depth(inode); 2414 spin_unlock(&sbi->s_ext_stats_lock); 2415 } 2416 #endif 2417 if (from >= le32_to_cpu(ex->ee_block) 2418 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2419 /* tail removal */ 2420 ext4_lblk_t num; 2421 unsigned int unaligned; 2422 2423 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2424 pblk = ext4_ext_pblock(ex) + ee_len - num; 2425 /* 2426 * Usually we want to free partial cluster at the end of the 2427 * extent, except for the situation when the cluster is still 2428 * used by any other extent (partial_cluster is negative). 2429 */ 2430 if (*partial_cluster < 0 && 2431 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1)) 2432 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2433 2434 ext_debug("free last %u blocks starting %llu partial %lld\n", 2435 num, pblk, *partial_cluster); 2436 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2437 /* 2438 * If the block range to be freed didn't start at the 2439 * beginning of a cluster, and we removed the entire 2440 * extent and the cluster is not used by any other extent, 2441 * save the partial cluster here, since we might need to 2442 * delete if we determine that the truncate operation has 2443 * removed all of the blocks in the cluster. 2444 * 2445 * On the other hand, if we did not manage to free the whole 2446 * extent, we have to mark the cluster as used (store negative 2447 * cluster number in partial_cluster). 2448 */ 2449 unaligned = pblk & (sbi->s_cluster_ratio - 1); 2450 if (unaligned && (ee_len == num) && 2451 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk)))) 2452 *partial_cluster = EXT4_B2C(sbi, pblk); 2453 else if (unaligned) 2454 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk)); 2455 else if (*partial_cluster > 0) 2456 *partial_cluster = 0; 2457 } else 2458 ext4_error(sbi->s_sb, "strange request: removal(2) " 2459 "%u-%u from %u:%u\n", 2460 from, to, le32_to_cpu(ex->ee_block), ee_len); 2461 return 0; 2462 } 2463 2464 2465 /* 2466 * ext4_ext_rm_leaf() Removes the extents associated with the 2467 * blocks appearing between "start" and "end", and splits the extents 2468 * if "start" and "end" appear in the same extent 2469 * 2470 * @handle: The journal handle 2471 * @inode: The files inode 2472 * @path: The path to the leaf 2473 * @partial_cluster: The cluster which we'll have to free if all extents 2474 * has been released from it. It gets negative in case 2475 * that the cluster is still used. 2476 * @start: The first block to remove 2477 * @end: The last block to remove 2478 */ 2479 static int 2480 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2481 struct ext4_ext_path *path, 2482 long long *partial_cluster, 2483 ext4_lblk_t start, ext4_lblk_t end) 2484 { 2485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2486 int err = 0, correct_index = 0; 2487 int depth = ext_depth(inode), credits; 2488 struct ext4_extent_header *eh; 2489 ext4_lblk_t a, b; 2490 unsigned num; 2491 ext4_lblk_t ex_ee_block; 2492 unsigned short ex_ee_len; 2493 unsigned uninitialized = 0; 2494 struct ext4_extent *ex; 2495 ext4_fsblk_t pblk; 2496 2497 /* the header must be checked already in ext4_ext_remove_space() */ 2498 ext_debug("truncate since %u in leaf to %u\n", start, end); 2499 if (!path[depth].p_hdr) 2500 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2501 eh = path[depth].p_hdr; 2502 if (unlikely(path[depth].p_hdr == NULL)) { 2503 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2504 return -EIO; 2505 } 2506 /* find where to start removing */ 2507 ex = path[depth].p_ext; 2508 if (!ex) 2509 ex = EXT_LAST_EXTENT(eh); 2510 2511 ex_ee_block = le32_to_cpu(ex->ee_block); 2512 ex_ee_len = ext4_ext_get_actual_len(ex); 2513 2514 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2515 2516 while (ex >= EXT_FIRST_EXTENT(eh) && 2517 ex_ee_block + ex_ee_len > start) { 2518 2519 if (ext4_ext_is_uninitialized(ex)) 2520 uninitialized = 1; 2521 else 2522 uninitialized = 0; 2523 2524 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2525 uninitialized, ex_ee_len); 2526 path[depth].p_ext = ex; 2527 2528 a = ex_ee_block > start ? ex_ee_block : start; 2529 b = ex_ee_block+ex_ee_len - 1 < end ? 2530 ex_ee_block+ex_ee_len - 1 : end; 2531 2532 ext_debug(" border %u:%u\n", a, b); 2533 2534 /* If this extent is beyond the end of the hole, skip it */ 2535 if (end < ex_ee_block) { 2536 /* 2537 * We're going to skip this extent and move to another, 2538 * so if this extent is not cluster aligned we have 2539 * to mark the current cluster as used to avoid 2540 * accidentally freeing it later on 2541 */ 2542 pblk = ext4_ext_pblock(ex); 2543 if (pblk & (sbi->s_cluster_ratio - 1)) 2544 *partial_cluster = 2545 -((long long)EXT4_B2C(sbi, pblk)); 2546 ex--; 2547 ex_ee_block = le32_to_cpu(ex->ee_block); 2548 ex_ee_len = ext4_ext_get_actual_len(ex); 2549 continue; 2550 } else if (b != ex_ee_block + ex_ee_len - 1) { 2551 EXT4_ERROR_INODE(inode, 2552 "can not handle truncate %u:%u " 2553 "on extent %u:%u", 2554 start, end, ex_ee_block, 2555 ex_ee_block + ex_ee_len - 1); 2556 err = -EIO; 2557 goto out; 2558 } else if (a != ex_ee_block) { 2559 /* remove tail of the extent */ 2560 num = a - ex_ee_block; 2561 } else { 2562 /* remove whole extent: excellent! */ 2563 num = 0; 2564 } 2565 /* 2566 * 3 for leaf, sb, and inode plus 2 (bmap and group 2567 * descriptor) for each block group; assume two block 2568 * groups plus ex_ee_len/blocks_per_block_group for 2569 * the worst case 2570 */ 2571 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2572 if (ex == EXT_FIRST_EXTENT(eh)) { 2573 correct_index = 1; 2574 credits += (ext_depth(inode)) + 1; 2575 } 2576 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2577 2578 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2579 if (err) 2580 goto out; 2581 2582 err = ext4_ext_get_access(handle, inode, path + depth); 2583 if (err) 2584 goto out; 2585 2586 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2587 a, b); 2588 if (err) 2589 goto out; 2590 2591 if (num == 0) 2592 /* this extent is removed; mark slot entirely unused */ 2593 ext4_ext_store_pblock(ex, 0); 2594 2595 ex->ee_len = cpu_to_le16(num); 2596 /* 2597 * Do not mark uninitialized if all the blocks in the 2598 * extent have been removed. 2599 */ 2600 if (uninitialized && num) 2601 ext4_ext_mark_uninitialized(ex); 2602 /* 2603 * If the extent was completely released, 2604 * we need to remove it from the leaf 2605 */ 2606 if (num == 0) { 2607 if (end != EXT_MAX_BLOCKS - 1) { 2608 /* 2609 * For hole punching, we need to scoot all the 2610 * extents up when an extent is removed so that 2611 * we dont have blank extents in the middle 2612 */ 2613 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2614 sizeof(struct ext4_extent)); 2615 2616 /* Now get rid of the one at the end */ 2617 memset(EXT_LAST_EXTENT(eh), 0, 2618 sizeof(struct ext4_extent)); 2619 } 2620 le16_add_cpu(&eh->eh_entries, -1); 2621 } else if (*partial_cluster > 0) 2622 *partial_cluster = 0; 2623 2624 err = ext4_ext_dirty(handle, inode, path + depth); 2625 if (err) 2626 goto out; 2627 2628 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2629 ext4_ext_pblock(ex)); 2630 ex--; 2631 ex_ee_block = le32_to_cpu(ex->ee_block); 2632 ex_ee_len = ext4_ext_get_actual_len(ex); 2633 } 2634 2635 if (correct_index && eh->eh_entries) 2636 err = ext4_ext_correct_indexes(handle, inode, path); 2637 2638 /* 2639 * Free the partial cluster only if the current extent does not 2640 * reference it. Otherwise we might free used cluster. 2641 */ 2642 if (*partial_cluster > 0 && 2643 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2644 *partial_cluster)) { 2645 int flags = get_default_free_blocks_flags(inode); 2646 2647 ext4_free_blocks(handle, inode, NULL, 2648 EXT4_C2B(sbi, *partial_cluster), 2649 sbi->s_cluster_ratio, flags); 2650 *partial_cluster = 0; 2651 } 2652 2653 /* if this leaf is free, then we should 2654 * remove it from index block above */ 2655 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2656 err = ext4_ext_rm_idx(handle, inode, path, depth); 2657 2658 out: 2659 return err; 2660 } 2661 2662 /* 2663 * ext4_ext_more_to_rm: 2664 * returns 1 if current index has to be freed (even partial) 2665 */ 2666 static int 2667 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2668 { 2669 BUG_ON(path->p_idx == NULL); 2670 2671 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2672 return 0; 2673 2674 /* 2675 * if truncate on deeper level happened, it wasn't partial, 2676 * so we have to consider current index for truncation 2677 */ 2678 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2679 return 0; 2680 return 1; 2681 } 2682 2683 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2684 ext4_lblk_t end) 2685 { 2686 struct super_block *sb = inode->i_sb; 2687 int depth = ext_depth(inode); 2688 struct ext4_ext_path *path = NULL; 2689 long long partial_cluster = 0; 2690 handle_t *handle; 2691 int i = 0, err = 0; 2692 2693 ext_debug("truncate since %u to %u\n", start, end); 2694 2695 /* probably first extent we're gonna free will be last in block */ 2696 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2697 if (IS_ERR(handle)) 2698 return PTR_ERR(handle); 2699 2700 again: 2701 trace_ext4_ext_remove_space(inode, start, end, depth); 2702 2703 /* 2704 * Check if we are removing extents inside the extent tree. If that 2705 * is the case, we are going to punch a hole inside the extent tree 2706 * so we have to check whether we need to split the extent covering 2707 * the last block to remove so we can easily remove the part of it 2708 * in ext4_ext_rm_leaf(). 2709 */ 2710 if (end < EXT_MAX_BLOCKS - 1) { 2711 struct ext4_extent *ex; 2712 ext4_lblk_t ee_block; 2713 2714 /* find extent for this block */ 2715 path = ext4_ext_find_extent(inode, end, NULL); 2716 if (IS_ERR(path)) { 2717 ext4_journal_stop(handle); 2718 return PTR_ERR(path); 2719 } 2720 depth = ext_depth(inode); 2721 /* Leaf not may not exist only if inode has no blocks at all */ 2722 ex = path[depth].p_ext; 2723 if (!ex) { 2724 if (depth) { 2725 EXT4_ERROR_INODE(inode, 2726 "path[%d].p_hdr == NULL", 2727 depth); 2728 err = -EIO; 2729 } 2730 goto out; 2731 } 2732 2733 ee_block = le32_to_cpu(ex->ee_block); 2734 2735 /* 2736 * See if the last block is inside the extent, if so split 2737 * the extent at 'end' block so we can easily remove the 2738 * tail of the first part of the split extent in 2739 * ext4_ext_rm_leaf(). 2740 */ 2741 if (end >= ee_block && 2742 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2743 int split_flag = 0; 2744 2745 if (ext4_ext_is_uninitialized(ex)) 2746 split_flag = EXT4_EXT_MARK_UNINIT1 | 2747 EXT4_EXT_MARK_UNINIT2; 2748 2749 /* 2750 * Split the extent in two so that 'end' is the last 2751 * block in the first new extent. Also we should not 2752 * fail removing space due to ENOSPC so try to use 2753 * reserved block if that happens. 2754 */ 2755 err = ext4_split_extent_at(handle, inode, path, 2756 end + 1, split_flag, 2757 EXT4_GET_BLOCKS_PRE_IO | 2758 EXT4_GET_BLOCKS_METADATA_NOFAIL); 2759 2760 if (err < 0) 2761 goto out; 2762 } 2763 } 2764 /* 2765 * We start scanning from right side, freeing all the blocks 2766 * after i_size and walking into the tree depth-wise. 2767 */ 2768 depth = ext_depth(inode); 2769 if (path) { 2770 int k = i = depth; 2771 while (--k > 0) 2772 path[k].p_block = 2773 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2774 } else { 2775 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2776 GFP_NOFS); 2777 if (path == NULL) { 2778 ext4_journal_stop(handle); 2779 return -ENOMEM; 2780 } 2781 path[0].p_depth = depth; 2782 path[0].p_hdr = ext_inode_hdr(inode); 2783 i = 0; 2784 2785 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2786 err = -EIO; 2787 goto out; 2788 } 2789 } 2790 err = 0; 2791 2792 while (i >= 0 && err == 0) { 2793 if (i == depth) { 2794 /* this is leaf block */ 2795 err = ext4_ext_rm_leaf(handle, inode, path, 2796 &partial_cluster, start, 2797 end); 2798 /* root level has p_bh == NULL, brelse() eats this */ 2799 brelse(path[i].p_bh); 2800 path[i].p_bh = NULL; 2801 i--; 2802 continue; 2803 } 2804 2805 /* this is index block */ 2806 if (!path[i].p_hdr) { 2807 ext_debug("initialize header\n"); 2808 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2809 } 2810 2811 if (!path[i].p_idx) { 2812 /* this level hasn't been touched yet */ 2813 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2814 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2815 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2816 path[i].p_hdr, 2817 le16_to_cpu(path[i].p_hdr->eh_entries)); 2818 } else { 2819 /* we were already here, see at next index */ 2820 path[i].p_idx--; 2821 } 2822 2823 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2824 i, EXT_FIRST_INDEX(path[i].p_hdr), 2825 path[i].p_idx); 2826 if (ext4_ext_more_to_rm(path + i)) { 2827 struct buffer_head *bh; 2828 /* go to the next level */ 2829 ext_debug("move to level %d (block %llu)\n", 2830 i + 1, ext4_idx_pblock(path[i].p_idx)); 2831 memset(path + i + 1, 0, sizeof(*path)); 2832 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2833 if (!bh) { 2834 /* should we reset i_size? */ 2835 err = -EIO; 2836 break; 2837 } 2838 if (WARN_ON(i + 1 > depth)) { 2839 err = -EIO; 2840 break; 2841 } 2842 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2843 depth - i - 1, bh)) { 2844 err = -EIO; 2845 break; 2846 } 2847 path[i + 1].p_bh = bh; 2848 2849 /* save actual number of indexes since this 2850 * number is changed at the next iteration */ 2851 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2852 i++; 2853 } else { 2854 /* we finished processing this index, go up */ 2855 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2856 /* index is empty, remove it; 2857 * handle must be already prepared by the 2858 * truncatei_leaf() */ 2859 err = ext4_ext_rm_idx(handle, inode, path, i); 2860 } 2861 /* root level has p_bh == NULL, brelse() eats this */ 2862 brelse(path[i].p_bh); 2863 path[i].p_bh = NULL; 2864 i--; 2865 ext_debug("return to level %d\n", i); 2866 } 2867 } 2868 2869 trace_ext4_ext_remove_space_done(inode, start, end, depth, 2870 partial_cluster, path->p_hdr->eh_entries); 2871 2872 /* If we still have something in the partial cluster and we have removed 2873 * even the first extent, then we should free the blocks in the partial 2874 * cluster as well. */ 2875 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) { 2876 int flags = get_default_free_blocks_flags(inode); 2877 2878 ext4_free_blocks(handle, inode, NULL, 2879 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2880 EXT4_SB(sb)->s_cluster_ratio, flags); 2881 partial_cluster = 0; 2882 } 2883 2884 /* TODO: flexible tree reduction should be here */ 2885 if (path->p_hdr->eh_entries == 0) { 2886 /* 2887 * truncate to zero freed all the tree, 2888 * so we need to correct eh_depth 2889 */ 2890 err = ext4_ext_get_access(handle, inode, path); 2891 if (err == 0) { 2892 ext_inode_hdr(inode)->eh_depth = 0; 2893 ext_inode_hdr(inode)->eh_max = 2894 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2895 err = ext4_ext_dirty(handle, inode, path); 2896 } 2897 } 2898 out: 2899 ext4_ext_drop_refs(path); 2900 kfree(path); 2901 if (err == -EAGAIN) { 2902 path = NULL; 2903 goto again; 2904 } 2905 ext4_journal_stop(handle); 2906 2907 return err; 2908 } 2909 2910 /* 2911 * called at mount time 2912 */ 2913 void ext4_ext_init(struct super_block *sb) 2914 { 2915 /* 2916 * possible initialization would be here 2917 */ 2918 2919 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2920 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2921 printk(KERN_INFO "EXT4-fs: file extents enabled" 2922 #ifdef AGGRESSIVE_TEST 2923 ", aggressive tests" 2924 #endif 2925 #ifdef CHECK_BINSEARCH 2926 ", check binsearch" 2927 #endif 2928 #ifdef EXTENTS_STATS 2929 ", stats" 2930 #endif 2931 "\n"); 2932 #endif 2933 #ifdef EXTENTS_STATS 2934 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2935 EXT4_SB(sb)->s_ext_min = 1 << 30; 2936 EXT4_SB(sb)->s_ext_max = 0; 2937 #endif 2938 } 2939 } 2940 2941 /* 2942 * called at umount time 2943 */ 2944 void ext4_ext_release(struct super_block *sb) 2945 { 2946 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2947 return; 2948 2949 #ifdef EXTENTS_STATS 2950 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2951 struct ext4_sb_info *sbi = EXT4_SB(sb); 2952 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2953 sbi->s_ext_blocks, sbi->s_ext_extents, 2954 sbi->s_ext_blocks / sbi->s_ext_extents); 2955 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2956 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2957 } 2958 #endif 2959 } 2960 2961 /* FIXME!! we need to try to merge to left or right after zero-out */ 2962 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2963 { 2964 ext4_fsblk_t ee_pblock; 2965 unsigned int ee_len; 2966 int ret; 2967 2968 ee_len = ext4_ext_get_actual_len(ex); 2969 ee_pblock = ext4_ext_pblock(ex); 2970 2971 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2972 if (ret > 0) 2973 ret = 0; 2974 2975 return ret; 2976 } 2977 2978 /* 2979 * ext4_split_extent_at() splits an extent at given block. 2980 * 2981 * @handle: the journal handle 2982 * @inode: the file inode 2983 * @path: the path to the extent 2984 * @split: the logical block where the extent is splitted. 2985 * @split_flags: indicates if the extent could be zeroout if split fails, and 2986 * the states(init or uninit) of new extents. 2987 * @flags: flags used to insert new extent to extent tree. 2988 * 2989 * 2990 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2991 * of which are deterimined by split_flag. 2992 * 2993 * There are two cases: 2994 * a> the extent are splitted into two extent. 2995 * b> split is not needed, and just mark the extent. 2996 * 2997 * return 0 on success. 2998 */ 2999 static int ext4_split_extent_at(handle_t *handle, 3000 struct inode *inode, 3001 struct ext4_ext_path *path, 3002 ext4_lblk_t split, 3003 int split_flag, 3004 int flags) 3005 { 3006 ext4_fsblk_t newblock; 3007 ext4_lblk_t ee_block; 3008 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3009 struct ext4_extent *ex2 = NULL; 3010 unsigned int ee_len, depth; 3011 int err = 0; 3012 3013 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3014 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3015 3016 ext_debug("ext4_split_extents_at: inode %lu, logical" 3017 "block %llu\n", inode->i_ino, (unsigned long long)split); 3018 3019 ext4_ext_show_leaf(inode, path); 3020 3021 depth = ext_depth(inode); 3022 ex = path[depth].p_ext; 3023 ee_block = le32_to_cpu(ex->ee_block); 3024 ee_len = ext4_ext_get_actual_len(ex); 3025 newblock = split - ee_block + ext4_ext_pblock(ex); 3026 3027 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3028 BUG_ON(!ext4_ext_is_uninitialized(ex) && 3029 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3030 EXT4_EXT_MARK_UNINIT1 | 3031 EXT4_EXT_MARK_UNINIT2)); 3032 3033 err = ext4_ext_get_access(handle, inode, path + depth); 3034 if (err) 3035 goto out; 3036 3037 if (split == ee_block) { 3038 /* 3039 * case b: block @split is the block that the extent begins with 3040 * then we just change the state of the extent, and splitting 3041 * is not needed. 3042 */ 3043 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3044 ext4_ext_mark_uninitialized(ex); 3045 else 3046 ext4_ext_mark_initialized(ex); 3047 3048 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3049 ext4_ext_try_to_merge(handle, inode, path, ex); 3050 3051 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3052 goto out; 3053 } 3054 3055 /* case a */ 3056 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3057 ex->ee_len = cpu_to_le16(split - ee_block); 3058 if (split_flag & EXT4_EXT_MARK_UNINIT1) 3059 ext4_ext_mark_uninitialized(ex); 3060 3061 /* 3062 * path may lead to new leaf, not to original leaf any more 3063 * after ext4_ext_insert_extent() returns, 3064 */ 3065 err = ext4_ext_dirty(handle, inode, path + depth); 3066 if (err) 3067 goto fix_extent_len; 3068 3069 ex2 = &newex; 3070 ex2->ee_block = cpu_to_le32(split); 3071 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3072 ext4_ext_store_pblock(ex2, newblock); 3073 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3074 ext4_ext_mark_uninitialized(ex2); 3075 3076 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3077 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3078 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3079 if (split_flag & EXT4_EXT_DATA_VALID1) { 3080 err = ext4_ext_zeroout(inode, ex2); 3081 zero_ex.ee_block = ex2->ee_block; 3082 zero_ex.ee_len = cpu_to_le16( 3083 ext4_ext_get_actual_len(ex2)); 3084 ext4_ext_store_pblock(&zero_ex, 3085 ext4_ext_pblock(ex2)); 3086 } else { 3087 err = ext4_ext_zeroout(inode, ex); 3088 zero_ex.ee_block = ex->ee_block; 3089 zero_ex.ee_len = cpu_to_le16( 3090 ext4_ext_get_actual_len(ex)); 3091 ext4_ext_store_pblock(&zero_ex, 3092 ext4_ext_pblock(ex)); 3093 } 3094 } else { 3095 err = ext4_ext_zeroout(inode, &orig_ex); 3096 zero_ex.ee_block = orig_ex.ee_block; 3097 zero_ex.ee_len = cpu_to_le16( 3098 ext4_ext_get_actual_len(&orig_ex)); 3099 ext4_ext_store_pblock(&zero_ex, 3100 ext4_ext_pblock(&orig_ex)); 3101 } 3102 3103 if (err) 3104 goto fix_extent_len; 3105 /* update the extent length and mark as initialized */ 3106 ex->ee_len = cpu_to_le16(ee_len); 3107 ext4_ext_try_to_merge(handle, inode, path, ex); 3108 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3109 if (err) 3110 goto fix_extent_len; 3111 3112 /* update extent status tree */ 3113 err = ext4_es_zeroout(inode, &zero_ex); 3114 3115 goto out; 3116 } else if (err) 3117 goto fix_extent_len; 3118 3119 out: 3120 ext4_ext_show_leaf(inode, path); 3121 return err; 3122 3123 fix_extent_len: 3124 ex->ee_len = orig_ex.ee_len; 3125 ext4_ext_dirty(handle, inode, path + depth); 3126 return err; 3127 } 3128 3129 /* 3130 * ext4_split_extents() splits an extent and mark extent which is covered 3131 * by @map as split_flags indicates 3132 * 3133 * It may result in splitting the extent into multiple extents (upto three) 3134 * There are three possibilities: 3135 * a> There is no split required 3136 * b> Splits in two extents: Split is happening at either end of the extent 3137 * c> Splits in three extents: Somone is splitting in middle of the extent 3138 * 3139 */ 3140 static int ext4_split_extent(handle_t *handle, 3141 struct inode *inode, 3142 struct ext4_ext_path *path, 3143 struct ext4_map_blocks *map, 3144 int split_flag, 3145 int flags) 3146 { 3147 ext4_lblk_t ee_block; 3148 struct ext4_extent *ex; 3149 unsigned int ee_len, depth; 3150 int err = 0; 3151 int uninitialized; 3152 int split_flag1, flags1; 3153 int allocated = map->m_len; 3154 3155 depth = ext_depth(inode); 3156 ex = path[depth].p_ext; 3157 ee_block = le32_to_cpu(ex->ee_block); 3158 ee_len = ext4_ext_get_actual_len(ex); 3159 uninitialized = ext4_ext_is_uninitialized(ex); 3160 3161 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3162 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3163 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3164 if (uninitialized) 3165 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3166 EXT4_EXT_MARK_UNINIT2; 3167 if (split_flag & EXT4_EXT_DATA_VALID2) 3168 split_flag1 |= EXT4_EXT_DATA_VALID1; 3169 err = ext4_split_extent_at(handle, inode, path, 3170 map->m_lblk + map->m_len, split_flag1, flags1); 3171 if (err) 3172 goto out; 3173 } else { 3174 allocated = ee_len - (map->m_lblk - ee_block); 3175 } 3176 /* 3177 * Update path is required because previous ext4_split_extent_at() may 3178 * result in split of original leaf or extent zeroout. 3179 */ 3180 ext4_ext_drop_refs(path); 3181 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3182 if (IS_ERR(path)) 3183 return PTR_ERR(path); 3184 depth = ext_depth(inode); 3185 ex = path[depth].p_ext; 3186 uninitialized = ext4_ext_is_uninitialized(ex); 3187 split_flag1 = 0; 3188 3189 if (map->m_lblk >= ee_block) { 3190 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3191 if (uninitialized) { 3192 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3193 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3194 EXT4_EXT_MARK_UNINIT2); 3195 } 3196 err = ext4_split_extent_at(handle, inode, path, 3197 map->m_lblk, split_flag1, flags); 3198 if (err) 3199 goto out; 3200 } 3201 3202 ext4_ext_show_leaf(inode, path); 3203 out: 3204 return err ? err : allocated; 3205 } 3206 3207 /* 3208 * This function is called by ext4_ext_map_blocks() if someone tries to write 3209 * to an uninitialized extent. It may result in splitting the uninitialized 3210 * extent into multiple extents (up to three - one initialized and two 3211 * uninitialized). 3212 * There are three possibilities: 3213 * a> There is no split required: Entire extent should be initialized 3214 * b> Splits in two extents: Write is happening at either end of the extent 3215 * c> Splits in three extents: Somone is writing in middle of the extent 3216 * 3217 * Pre-conditions: 3218 * - The extent pointed to by 'path' is uninitialized. 3219 * - The extent pointed to by 'path' contains a superset 3220 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3221 * 3222 * Post-conditions on success: 3223 * - the returned value is the number of blocks beyond map->l_lblk 3224 * that are allocated and initialized. 3225 * It is guaranteed to be >= map->m_len. 3226 */ 3227 static int ext4_ext_convert_to_initialized(handle_t *handle, 3228 struct inode *inode, 3229 struct ext4_map_blocks *map, 3230 struct ext4_ext_path *path, 3231 int flags) 3232 { 3233 struct ext4_sb_info *sbi; 3234 struct ext4_extent_header *eh; 3235 struct ext4_map_blocks split_map; 3236 struct ext4_extent zero_ex; 3237 struct ext4_extent *ex, *abut_ex; 3238 ext4_lblk_t ee_block, eof_block; 3239 unsigned int ee_len, depth, map_len = map->m_len; 3240 int allocated = 0, max_zeroout = 0; 3241 int err = 0; 3242 int split_flag = 0; 3243 3244 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3245 "block %llu, max_blocks %u\n", inode->i_ino, 3246 (unsigned long long)map->m_lblk, map_len); 3247 3248 sbi = EXT4_SB(inode->i_sb); 3249 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3250 inode->i_sb->s_blocksize_bits; 3251 if (eof_block < map->m_lblk + map_len) 3252 eof_block = map->m_lblk + map_len; 3253 3254 depth = ext_depth(inode); 3255 eh = path[depth].p_hdr; 3256 ex = path[depth].p_ext; 3257 ee_block = le32_to_cpu(ex->ee_block); 3258 ee_len = ext4_ext_get_actual_len(ex); 3259 zero_ex.ee_len = 0; 3260 3261 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3262 3263 /* Pre-conditions */ 3264 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3265 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3266 3267 /* 3268 * Attempt to transfer newly initialized blocks from the currently 3269 * uninitialized extent to its neighbor. This is much cheaper 3270 * than an insertion followed by a merge as those involve costly 3271 * memmove() calls. Transferring to the left is the common case in 3272 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3273 * followed by append writes. 3274 * 3275 * Limitations of the current logic: 3276 * - L1: we do not deal with writes covering the whole extent. 3277 * This would require removing the extent if the transfer 3278 * is possible. 3279 * - L2: we only attempt to merge with an extent stored in the 3280 * same extent tree node. 3281 */ 3282 if ((map->m_lblk == ee_block) && 3283 /* See if we can merge left */ 3284 (map_len < ee_len) && /*L1*/ 3285 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3286 ext4_lblk_t prev_lblk; 3287 ext4_fsblk_t prev_pblk, ee_pblk; 3288 unsigned int prev_len; 3289 3290 abut_ex = ex - 1; 3291 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3292 prev_len = ext4_ext_get_actual_len(abut_ex); 3293 prev_pblk = ext4_ext_pblock(abut_ex); 3294 ee_pblk = ext4_ext_pblock(ex); 3295 3296 /* 3297 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3298 * upon those conditions: 3299 * - C1: abut_ex is initialized, 3300 * - C2: abut_ex is logically abutting ex, 3301 * - C3: abut_ex is physically abutting ex, 3302 * - C4: abut_ex can receive the additional blocks without 3303 * overflowing the (initialized) length limit. 3304 */ 3305 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/ 3306 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3307 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3308 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3309 err = ext4_ext_get_access(handle, inode, path + depth); 3310 if (err) 3311 goto out; 3312 3313 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3314 map, ex, abut_ex); 3315 3316 /* Shift the start of ex by 'map_len' blocks */ 3317 ex->ee_block = cpu_to_le32(ee_block + map_len); 3318 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3319 ex->ee_len = cpu_to_le16(ee_len - map_len); 3320 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3321 3322 /* Extend abut_ex by 'map_len' blocks */ 3323 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3324 3325 /* Result: number of initialized blocks past m_lblk */ 3326 allocated = map_len; 3327 } 3328 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3329 (map_len < ee_len) && /*L1*/ 3330 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3331 /* See if we can merge right */ 3332 ext4_lblk_t next_lblk; 3333 ext4_fsblk_t next_pblk, ee_pblk; 3334 unsigned int next_len; 3335 3336 abut_ex = ex + 1; 3337 next_lblk = le32_to_cpu(abut_ex->ee_block); 3338 next_len = ext4_ext_get_actual_len(abut_ex); 3339 next_pblk = ext4_ext_pblock(abut_ex); 3340 ee_pblk = ext4_ext_pblock(ex); 3341 3342 /* 3343 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3344 * upon those conditions: 3345 * - C1: abut_ex is initialized, 3346 * - C2: abut_ex is logically abutting ex, 3347 * - C3: abut_ex is physically abutting ex, 3348 * - C4: abut_ex can receive the additional blocks without 3349 * overflowing the (initialized) length limit. 3350 */ 3351 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/ 3352 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3353 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3354 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3355 err = ext4_ext_get_access(handle, inode, path + depth); 3356 if (err) 3357 goto out; 3358 3359 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3360 map, ex, abut_ex); 3361 3362 /* Shift the start of abut_ex by 'map_len' blocks */ 3363 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3364 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3365 ex->ee_len = cpu_to_le16(ee_len - map_len); 3366 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3367 3368 /* Extend abut_ex by 'map_len' blocks */ 3369 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3370 3371 /* Result: number of initialized blocks past m_lblk */ 3372 allocated = map_len; 3373 } 3374 } 3375 if (allocated) { 3376 /* Mark the block containing both extents as dirty */ 3377 ext4_ext_dirty(handle, inode, path + depth); 3378 3379 /* Update path to point to the right extent */ 3380 path[depth].p_ext = abut_ex; 3381 goto out; 3382 } else 3383 allocated = ee_len - (map->m_lblk - ee_block); 3384 3385 WARN_ON(map->m_lblk < ee_block); 3386 /* 3387 * It is safe to convert extent to initialized via explicit 3388 * zeroout only if extent is fully insde i_size or new_size. 3389 */ 3390 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3391 3392 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3393 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3394 (inode->i_sb->s_blocksize_bits - 10); 3395 3396 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3397 if (max_zeroout && (ee_len <= max_zeroout)) { 3398 err = ext4_ext_zeroout(inode, ex); 3399 if (err) 3400 goto out; 3401 zero_ex.ee_block = ex->ee_block; 3402 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3403 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3404 3405 err = ext4_ext_get_access(handle, inode, path + depth); 3406 if (err) 3407 goto out; 3408 ext4_ext_mark_initialized(ex); 3409 ext4_ext_try_to_merge(handle, inode, path, ex); 3410 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3411 goto out; 3412 } 3413 3414 /* 3415 * four cases: 3416 * 1. split the extent into three extents. 3417 * 2. split the extent into two extents, zeroout the first half. 3418 * 3. split the extent into two extents, zeroout the second half. 3419 * 4. split the extent into two extents with out zeroout. 3420 */ 3421 split_map.m_lblk = map->m_lblk; 3422 split_map.m_len = map->m_len; 3423 3424 if (max_zeroout && (allocated > map->m_len)) { 3425 if (allocated <= max_zeroout) { 3426 /* case 3 */ 3427 zero_ex.ee_block = 3428 cpu_to_le32(map->m_lblk); 3429 zero_ex.ee_len = cpu_to_le16(allocated); 3430 ext4_ext_store_pblock(&zero_ex, 3431 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3432 err = ext4_ext_zeroout(inode, &zero_ex); 3433 if (err) 3434 goto out; 3435 split_map.m_lblk = map->m_lblk; 3436 split_map.m_len = allocated; 3437 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3438 /* case 2 */ 3439 if (map->m_lblk != ee_block) { 3440 zero_ex.ee_block = ex->ee_block; 3441 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3442 ee_block); 3443 ext4_ext_store_pblock(&zero_ex, 3444 ext4_ext_pblock(ex)); 3445 err = ext4_ext_zeroout(inode, &zero_ex); 3446 if (err) 3447 goto out; 3448 } 3449 3450 split_map.m_lblk = ee_block; 3451 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3452 allocated = map->m_len; 3453 } 3454 } 3455 3456 allocated = ext4_split_extent(handle, inode, path, 3457 &split_map, split_flag, flags); 3458 if (allocated < 0) 3459 err = allocated; 3460 3461 out: 3462 /* If we have gotten a failure, don't zero out status tree */ 3463 if (!err) 3464 err = ext4_es_zeroout(inode, &zero_ex); 3465 return err ? err : allocated; 3466 } 3467 3468 /* 3469 * This function is called by ext4_ext_map_blocks() from 3470 * ext4_get_blocks_dio_write() when DIO to write 3471 * to an uninitialized extent. 3472 * 3473 * Writing to an uninitialized extent may result in splitting the uninitialized 3474 * extent into multiple initialized/uninitialized extents (up to three) 3475 * There are three possibilities: 3476 * a> There is no split required: Entire extent should be uninitialized 3477 * b> Splits in two extents: Write is happening at either end of the extent 3478 * c> Splits in three extents: Somone is writing in middle of the extent 3479 * 3480 * One of more index blocks maybe needed if the extent tree grow after 3481 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3482 * complete, we need to split the uninitialized extent before DIO submit 3483 * the IO. The uninitialized extent called at this time will be split 3484 * into three uninitialized extent(at most). After IO complete, the part 3485 * being filled will be convert to initialized by the end_io callback function 3486 * via ext4_convert_unwritten_extents(). 3487 * 3488 * Returns the size of uninitialized extent to be written on success. 3489 */ 3490 static int ext4_split_unwritten_extents(handle_t *handle, 3491 struct inode *inode, 3492 struct ext4_map_blocks *map, 3493 struct ext4_ext_path *path, 3494 int flags) 3495 { 3496 ext4_lblk_t eof_block; 3497 ext4_lblk_t ee_block; 3498 struct ext4_extent *ex; 3499 unsigned int ee_len; 3500 int split_flag = 0, depth; 3501 3502 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3503 "block %llu, max_blocks %u\n", inode->i_ino, 3504 (unsigned long long)map->m_lblk, map->m_len); 3505 3506 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3507 inode->i_sb->s_blocksize_bits; 3508 if (eof_block < map->m_lblk + map->m_len) 3509 eof_block = map->m_lblk + map->m_len; 3510 /* 3511 * It is safe to convert extent to initialized via explicit 3512 * zeroout only if extent is fully insde i_size or new_size. 3513 */ 3514 depth = ext_depth(inode); 3515 ex = path[depth].p_ext; 3516 ee_block = le32_to_cpu(ex->ee_block); 3517 ee_len = ext4_ext_get_actual_len(ex); 3518 3519 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3520 split_flag |= EXT4_EXT_MARK_UNINIT2; 3521 if (flags & EXT4_GET_BLOCKS_CONVERT) 3522 split_flag |= EXT4_EXT_DATA_VALID2; 3523 flags |= EXT4_GET_BLOCKS_PRE_IO; 3524 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3525 } 3526 3527 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3528 struct inode *inode, 3529 struct ext4_map_blocks *map, 3530 struct ext4_ext_path *path) 3531 { 3532 struct ext4_extent *ex; 3533 ext4_lblk_t ee_block; 3534 unsigned int ee_len; 3535 int depth; 3536 int err = 0; 3537 3538 depth = ext_depth(inode); 3539 ex = path[depth].p_ext; 3540 ee_block = le32_to_cpu(ex->ee_block); 3541 ee_len = ext4_ext_get_actual_len(ex); 3542 3543 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3544 "block %llu, max_blocks %u\n", inode->i_ino, 3545 (unsigned long long)ee_block, ee_len); 3546 3547 /* If extent is larger than requested it is a clear sign that we still 3548 * have some extent state machine issues left. So extent_split is still 3549 * required. 3550 * TODO: Once all related issues will be fixed this situation should be 3551 * illegal. 3552 */ 3553 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3554 #ifdef EXT4_DEBUG 3555 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3556 " len %u; IO logical block %llu, len %u\n", 3557 inode->i_ino, (unsigned long long)ee_block, ee_len, 3558 (unsigned long long)map->m_lblk, map->m_len); 3559 #endif 3560 err = ext4_split_unwritten_extents(handle, inode, map, path, 3561 EXT4_GET_BLOCKS_CONVERT); 3562 if (err < 0) 3563 goto out; 3564 ext4_ext_drop_refs(path); 3565 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3566 if (IS_ERR(path)) { 3567 err = PTR_ERR(path); 3568 goto out; 3569 } 3570 depth = ext_depth(inode); 3571 ex = path[depth].p_ext; 3572 } 3573 3574 err = ext4_ext_get_access(handle, inode, path + depth); 3575 if (err) 3576 goto out; 3577 /* first mark the extent as initialized */ 3578 ext4_ext_mark_initialized(ex); 3579 3580 /* note: ext4_ext_correct_indexes() isn't needed here because 3581 * borders are not changed 3582 */ 3583 ext4_ext_try_to_merge(handle, inode, path, ex); 3584 3585 /* Mark modified extent as dirty */ 3586 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3587 out: 3588 ext4_ext_show_leaf(inode, path); 3589 return err; 3590 } 3591 3592 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3593 sector_t block, int count) 3594 { 3595 int i; 3596 for (i = 0; i < count; i++) 3597 unmap_underlying_metadata(bdev, block + i); 3598 } 3599 3600 /* 3601 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3602 */ 3603 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3604 ext4_lblk_t lblk, 3605 struct ext4_ext_path *path, 3606 unsigned int len) 3607 { 3608 int i, depth; 3609 struct ext4_extent_header *eh; 3610 struct ext4_extent *last_ex; 3611 3612 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3613 return 0; 3614 3615 depth = ext_depth(inode); 3616 eh = path[depth].p_hdr; 3617 3618 /* 3619 * We're going to remove EOFBLOCKS_FL entirely in future so we 3620 * do not care for this case anymore. Simply remove the flag 3621 * if there are no extents. 3622 */ 3623 if (unlikely(!eh->eh_entries)) 3624 goto out; 3625 last_ex = EXT_LAST_EXTENT(eh); 3626 /* 3627 * We should clear the EOFBLOCKS_FL flag if we are writing the 3628 * last block in the last extent in the file. We test this by 3629 * first checking to see if the caller to 3630 * ext4_ext_get_blocks() was interested in the last block (or 3631 * a block beyond the last block) in the current extent. If 3632 * this turns out to be false, we can bail out from this 3633 * function immediately. 3634 */ 3635 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3636 ext4_ext_get_actual_len(last_ex)) 3637 return 0; 3638 /* 3639 * If the caller does appear to be planning to write at or 3640 * beyond the end of the current extent, we then test to see 3641 * if the current extent is the last extent in the file, by 3642 * checking to make sure it was reached via the rightmost node 3643 * at each level of the tree. 3644 */ 3645 for (i = depth-1; i >= 0; i--) 3646 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3647 return 0; 3648 out: 3649 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3650 return ext4_mark_inode_dirty(handle, inode); 3651 } 3652 3653 /** 3654 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3655 * 3656 * Return 1 if there is a delalloc block in the range, otherwise 0. 3657 */ 3658 int ext4_find_delalloc_range(struct inode *inode, 3659 ext4_lblk_t lblk_start, 3660 ext4_lblk_t lblk_end) 3661 { 3662 struct extent_status es; 3663 3664 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3665 if (es.es_len == 0) 3666 return 0; /* there is no delay extent in this tree */ 3667 else if (es.es_lblk <= lblk_start && 3668 lblk_start < es.es_lblk + es.es_len) 3669 return 1; 3670 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3671 return 1; 3672 else 3673 return 0; 3674 } 3675 3676 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3677 { 3678 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3679 ext4_lblk_t lblk_start, lblk_end; 3680 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3681 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3682 3683 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3684 } 3685 3686 /** 3687 * Determines how many complete clusters (out of those specified by the 'map') 3688 * are under delalloc and were reserved quota for. 3689 * This function is called when we are writing out the blocks that were 3690 * originally written with their allocation delayed, but then the space was 3691 * allocated using fallocate() before the delayed allocation could be resolved. 3692 * The cases to look for are: 3693 * ('=' indicated delayed allocated blocks 3694 * '-' indicates non-delayed allocated blocks) 3695 * (a) partial clusters towards beginning and/or end outside of allocated range 3696 * are not delalloc'ed. 3697 * Ex: 3698 * |----c---=|====c====|====c====|===-c----| 3699 * |++++++ allocated ++++++| 3700 * ==> 4 complete clusters in above example 3701 * 3702 * (b) partial cluster (outside of allocated range) towards either end is 3703 * marked for delayed allocation. In this case, we will exclude that 3704 * cluster. 3705 * Ex: 3706 * |----====c========|========c========| 3707 * |++++++ allocated ++++++| 3708 * ==> 1 complete clusters in above example 3709 * 3710 * Ex: 3711 * |================c================| 3712 * |++++++ allocated ++++++| 3713 * ==> 0 complete clusters in above example 3714 * 3715 * The ext4_da_update_reserve_space will be called only if we 3716 * determine here that there were some "entire" clusters that span 3717 * this 'allocated' range. 3718 * In the non-bigalloc case, this function will just end up returning num_blks 3719 * without ever calling ext4_find_delalloc_range. 3720 */ 3721 static unsigned int 3722 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3723 unsigned int num_blks) 3724 { 3725 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3726 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3727 ext4_lblk_t lblk_from, lblk_to, c_offset; 3728 unsigned int allocated_clusters = 0; 3729 3730 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3731 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3732 3733 /* max possible clusters for this allocation */ 3734 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3735 3736 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3737 3738 /* Check towards left side */ 3739 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3740 if (c_offset) { 3741 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3742 lblk_to = lblk_from + c_offset - 1; 3743 3744 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3745 allocated_clusters--; 3746 } 3747 3748 /* Now check towards right. */ 3749 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3750 if (allocated_clusters && c_offset) { 3751 lblk_from = lblk_start + num_blks; 3752 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3753 3754 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3755 allocated_clusters--; 3756 } 3757 3758 return allocated_clusters; 3759 } 3760 3761 static int 3762 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3763 struct ext4_map_blocks *map, 3764 struct ext4_ext_path *path, int flags, 3765 unsigned int allocated, ext4_fsblk_t newblock) 3766 { 3767 int ret = 0; 3768 int err = 0; 3769 ext4_io_end_t *io = ext4_inode_aio(inode); 3770 3771 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3772 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3773 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3774 flags, allocated); 3775 ext4_ext_show_leaf(inode, path); 3776 3777 /* 3778 * When writing into uninitialized space, we should not fail to 3779 * allocate metadata blocks for the new extent block if needed. 3780 */ 3781 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3782 3783 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3784 allocated, newblock); 3785 3786 /* get_block() before submit the IO, split the extent */ 3787 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3788 ret = ext4_split_unwritten_extents(handle, inode, map, 3789 path, flags); 3790 if (ret <= 0) 3791 goto out; 3792 /* 3793 * Flag the inode(non aio case) or end_io struct (aio case) 3794 * that this IO needs to conversion to written when IO is 3795 * completed 3796 */ 3797 if (io) 3798 ext4_set_io_unwritten_flag(inode, io); 3799 else 3800 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3801 map->m_flags |= EXT4_MAP_UNWRITTEN; 3802 if (ext4_should_dioread_nolock(inode)) 3803 map->m_flags |= EXT4_MAP_UNINIT; 3804 goto out; 3805 } 3806 /* IO end_io complete, convert the filled extent to written */ 3807 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3808 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3809 path); 3810 if (ret >= 0) { 3811 ext4_update_inode_fsync_trans(handle, inode, 1); 3812 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3813 path, map->m_len); 3814 } else 3815 err = ret; 3816 map->m_flags |= EXT4_MAP_MAPPED; 3817 if (allocated > map->m_len) 3818 allocated = map->m_len; 3819 map->m_len = allocated; 3820 goto out2; 3821 } 3822 /* buffered IO case */ 3823 /* 3824 * repeat fallocate creation request 3825 * we already have an unwritten extent 3826 */ 3827 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) { 3828 map->m_flags |= EXT4_MAP_UNWRITTEN; 3829 goto map_out; 3830 } 3831 3832 /* buffered READ or buffered write_begin() lookup */ 3833 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3834 /* 3835 * We have blocks reserved already. We 3836 * return allocated blocks so that delalloc 3837 * won't do block reservation for us. But 3838 * the buffer head will be unmapped so that 3839 * a read from the block returns 0s. 3840 */ 3841 map->m_flags |= EXT4_MAP_UNWRITTEN; 3842 goto out1; 3843 } 3844 3845 /* buffered write, writepage time, convert*/ 3846 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags); 3847 if (ret >= 0) 3848 ext4_update_inode_fsync_trans(handle, inode, 1); 3849 out: 3850 if (ret <= 0) { 3851 err = ret; 3852 goto out2; 3853 } else 3854 allocated = ret; 3855 map->m_flags |= EXT4_MAP_NEW; 3856 /* 3857 * if we allocated more blocks than requested 3858 * we need to make sure we unmap the extra block 3859 * allocated. The actual needed block will get 3860 * unmapped later when we find the buffer_head marked 3861 * new. 3862 */ 3863 if (allocated > map->m_len) { 3864 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3865 newblock + map->m_len, 3866 allocated - map->m_len); 3867 allocated = map->m_len; 3868 } 3869 map->m_len = allocated; 3870 3871 /* 3872 * If we have done fallocate with the offset that is already 3873 * delayed allocated, we would have block reservation 3874 * and quota reservation done in the delayed write path. 3875 * But fallocate would have already updated quota and block 3876 * count for this offset. So cancel these reservation 3877 */ 3878 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3879 unsigned int reserved_clusters; 3880 reserved_clusters = get_reserved_cluster_alloc(inode, 3881 map->m_lblk, map->m_len); 3882 if (reserved_clusters) 3883 ext4_da_update_reserve_space(inode, 3884 reserved_clusters, 3885 0); 3886 } 3887 3888 map_out: 3889 map->m_flags |= EXT4_MAP_MAPPED; 3890 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3891 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3892 map->m_len); 3893 if (err < 0) 3894 goto out2; 3895 } 3896 out1: 3897 if (allocated > map->m_len) 3898 allocated = map->m_len; 3899 ext4_ext_show_leaf(inode, path); 3900 map->m_pblk = newblock; 3901 map->m_len = allocated; 3902 out2: 3903 if (path) { 3904 ext4_ext_drop_refs(path); 3905 kfree(path); 3906 } 3907 return err ? err : allocated; 3908 } 3909 3910 /* 3911 * get_implied_cluster_alloc - check to see if the requested 3912 * allocation (in the map structure) overlaps with a cluster already 3913 * allocated in an extent. 3914 * @sb The filesystem superblock structure 3915 * @map The requested lblk->pblk mapping 3916 * @ex The extent structure which might contain an implied 3917 * cluster allocation 3918 * 3919 * This function is called by ext4_ext_map_blocks() after we failed to 3920 * find blocks that were already in the inode's extent tree. Hence, 3921 * we know that the beginning of the requested region cannot overlap 3922 * the extent from the inode's extent tree. There are three cases we 3923 * want to catch. The first is this case: 3924 * 3925 * |--- cluster # N--| 3926 * |--- extent ---| |---- requested region ---| 3927 * |==========| 3928 * 3929 * The second case that we need to test for is this one: 3930 * 3931 * |--------- cluster # N ----------------| 3932 * |--- requested region --| |------- extent ----| 3933 * |=======================| 3934 * 3935 * The third case is when the requested region lies between two extents 3936 * within the same cluster: 3937 * |------------- cluster # N-------------| 3938 * |----- ex -----| |---- ex_right ----| 3939 * |------ requested region ------| 3940 * |================| 3941 * 3942 * In each of the above cases, we need to set the map->m_pblk and 3943 * map->m_len so it corresponds to the return the extent labelled as 3944 * "|====|" from cluster #N, since it is already in use for data in 3945 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3946 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3947 * as a new "allocated" block region. Otherwise, we will return 0 and 3948 * ext4_ext_map_blocks() will then allocate one or more new clusters 3949 * by calling ext4_mb_new_blocks(). 3950 */ 3951 static int get_implied_cluster_alloc(struct super_block *sb, 3952 struct ext4_map_blocks *map, 3953 struct ext4_extent *ex, 3954 struct ext4_ext_path *path) 3955 { 3956 struct ext4_sb_info *sbi = EXT4_SB(sb); 3957 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3958 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3959 ext4_lblk_t rr_cluster_start; 3960 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3961 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3962 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3963 3964 /* The extent passed in that we are trying to match */ 3965 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3966 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3967 3968 /* The requested region passed into ext4_map_blocks() */ 3969 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3970 3971 if ((rr_cluster_start == ex_cluster_end) || 3972 (rr_cluster_start == ex_cluster_start)) { 3973 if (rr_cluster_start == ex_cluster_end) 3974 ee_start += ee_len - 1; 3975 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3976 c_offset; 3977 map->m_len = min(map->m_len, 3978 (unsigned) sbi->s_cluster_ratio - c_offset); 3979 /* 3980 * Check for and handle this case: 3981 * 3982 * |--------- cluster # N-------------| 3983 * |------- extent ----| 3984 * |--- requested region ---| 3985 * |===========| 3986 */ 3987 3988 if (map->m_lblk < ee_block) 3989 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3990 3991 /* 3992 * Check for the case where there is already another allocated 3993 * block to the right of 'ex' but before the end of the cluster. 3994 * 3995 * |------------- cluster # N-------------| 3996 * |----- ex -----| |---- ex_right ----| 3997 * |------ requested region ------| 3998 * |================| 3999 */ 4000 if (map->m_lblk > ee_block) { 4001 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4002 map->m_len = min(map->m_len, next - map->m_lblk); 4003 } 4004 4005 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4006 return 1; 4007 } 4008 4009 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4010 return 0; 4011 } 4012 4013 4014 /* 4015 * Block allocation/map/preallocation routine for extents based files 4016 * 4017 * 4018 * Need to be called with 4019 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4020 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4021 * 4022 * return > 0, number of of blocks already mapped/allocated 4023 * if create == 0 and these are pre-allocated blocks 4024 * buffer head is unmapped 4025 * otherwise blocks are mapped 4026 * 4027 * return = 0, if plain look up failed (blocks have not been allocated) 4028 * buffer head is unmapped 4029 * 4030 * return < 0, error case. 4031 */ 4032 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4033 struct ext4_map_blocks *map, int flags) 4034 { 4035 struct ext4_ext_path *path = NULL; 4036 struct ext4_extent newex, *ex, *ex2; 4037 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4038 ext4_fsblk_t newblock = 0; 4039 int free_on_err = 0, err = 0, depth; 4040 unsigned int allocated = 0, offset = 0; 4041 unsigned int allocated_clusters = 0; 4042 struct ext4_allocation_request ar; 4043 ext4_io_end_t *io = ext4_inode_aio(inode); 4044 ext4_lblk_t cluster_offset; 4045 int set_unwritten = 0; 4046 4047 ext_debug("blocks %u/%u requested for inode %lu\n", 4048 map->m_lblk, map->m_len, inode->i_ino); 4049 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4050 4051 /* find extent for this block */ 4052 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 4053 if (IS_ERR(path)) { 4054 err = PTR_ERR(path); 4055 path = NULL; 4056 goto out2; 4057 } 4058 4059 depth = ext_depth(inode); 4060 4061 /* 4062 * consistent leaf must not be empty; 4063 * this situation is possible, though, _during_ tree modification; 4064 * this is why assert can't be put in ext4_ext_find_extent() 4065 */ 4066 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4067 EXT4_ERROR_INODE(inode, "bad extent address " 4068 "lblock: %lu, depth: %d pblock %lld", 4069 (unsigned long) map->m_lblk, depth, 4070 path[depth].p_block); 4071 err = -EIO; 4072 goto out2; 4073 } 4074 4075 ex = path[depth].p_ext; 4076 if (ex) { 4077 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4078 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4079 unsigned short ee_len; 4080 4081 /* 4082 * Uninitialized extents are treated as holes, except that 4083 * we split out initialized portions during a write. 4084 */ 4085 ee_len = ext4_ext_get_actual_len(ex); 4086 4087 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4088 4089 /* if found extent covers block, simply return it */ 4090 if (in_range(map->m_lblk, ee_block, ee_len)) { 4091 newblock = map->m_lblk - ee_block + ee_start; 4092 /* number of remaining blocks in the extent */ 4093 allocated = ee_len - (map->m_lblk - ee_block); 4094 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4095 ee_block, ee_len, newblock); 4096 4097 if (!ext4_ext_is_uninitialized(ex)) 4098 goto out; 4099 4100 allocated = ext4_ext_handle_uninitialized_extents( 4101 handle, inode, map, path, flags, 4102 allocated, newblock); 4103 goto out3; 4104 } 4105 } 4106 4107 if ((sbi->s_cluster_ratio > 1) && 4108 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4109 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4110 4111 /* 4112 * requested block isn't allocated yet; 4113 * we couldn't try to create block if create flag is zero 4114 */ 4115 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4116 /* 4117 * put just found gap into cache to speed up 4118 * subsequent requests 4119 */ 4120 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4121 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4122 goto out2; 4123 } 4124 4125 /* 4126 * Okay, we need to do block allocation. 4127 */ 4128 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4129 newex.ee_block = cpu_to_le32(map->m_lblk); 4130 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4131 4132 /* 4133 * If we are doing bigalloc, check to see if the extent returned 4134 * by ext4_ext_find_extent() implies a cluster we can use. 4135 */ 4136 if (cluster_offset && ex && 4137 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4138 ar.len = allocated = map->m_len; 4139 newblock = map->m_pblk; 4140 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4141 goto got_allocated_blocks; 4142 } 4143 4144 /* find neighbour allocated blocks */ 4145 ar.lleft = map->m_lblk; 4146 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4147 if (err) 4148 goto out2; 4149 ar.lright = map->m_lblk; 4150 ex2 = NULL; 4151 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4152 if (err) 4153 goto out2; 4154 4155 /* Check if the extent after searching to the right implies a 4156 * cluster we can use. */ 4157 if ((sbi->s_cluster_ratio > 1) && ex2 && 4158 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4159 ar.len = allocated = map->m_len; 4160 newblock = map->m_pblk; 4161 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4162 goto got_allocated_blocks; 4163 } 4164 4165 /* 4166 * See if request is beyond maximum number of blocks we can have in 4167 * a single extent. For an initialized extent this limit is 4168 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4169 * EXT_UNINIT_MAX_LEN. 4170 */ 4171 if (map->m_len > EXT_INIT_MAX_LEN && 4172 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4173 map->m_len = EXT_INIT_MAX_LEN; 4174 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4175 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4176 map->m_len = EXT_UNINIT_MAX_LEN; 4177 4178 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4179 newex.ee_len = cpu_to_le16(map->m_len); 4180 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4181 if (err) 4182 allocated = ext4_ext_get_actual_len(&newex); 4183 else 4184 allocated = map->m_len; 4185 4186 /* allocate new block */ 4187 ar.inode = inode; 4188 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4189 ar.logical = map->m_lblk; 4190 /* 4191 * We calculate the offset from the beginning of the cluster 4192 * for the logical block number, since when we allocate a 4193 * physical cluster, the physical block should start at the 4194 * same offset from the beginning of the cluster. This is 4195 * needed so that future calls to get_implied_cluster_alloc() 4196 * work correctly. 4197 */ 4198 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4199 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4200 ar.goal -= offset; 4201 ar.logical -= offset; 4202 if (S_ISREG(inode->i_mode)) 4203 ar.flags = EXT4_MB_HINT_DATA; 4204 else 4205 /* disable in-core preallocation for non-regular files */ 4206 ar.flags = 0; 4207 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4208 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4209 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4210 if (!newblock) 4211 goto out2; 4212 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4213 ar.goal, newblock, allocated); 4214 free_on_err = 1; 4215 allocated_clusters = ar.len; 4216 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4217 if (ar.len > allocated) 4218 ar.len = allocated; 4219 4220 got_allocated_blocks: 4221 /* try to insert new extent into found leaf and return */ 4222 ext4_ext_store_pblock(&newex, newblock + offset); 4223 newex.ee_len = cpu_to_le16(ar.len); 4224 /* Mark uninitialized */ 4225 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4226 ext4_ext_mark_uninitialized(&newex); 4227 map->m_flags |= EXT4_MAP_UNWRITTEN; 4228 /* 4229 * io_end structure was created for every IO write to an 4230 * uninitialized extent. To avoid unnecessary conversion, 4231 * here we flag the IO that really needs the conversion. 4232 * For non asycn direct IO case, flag the inode state 4233 * that we need to perform conversion when IO is done. 4234 */ 4235 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4236 set_unwritten = 1; 4237 if (ext4_should_dioread_nolock(inode)) 4238 map->m_flags |= EXT4_MAP_UNINIT; 4239 } 4240 4241 err = 0; 4242 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4243 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4244 path, ar.len); 4245 if (!err) 4246 err = ext4_ext_insert_extent(handle, inode, path, 4247 &newex, flags); 4248 4249 if (!err && set_unwritten) { 4250 if (io) 4251 ext4_set_io_unwritten_flag(inode, io); 4252 else 4253 ext4_set_inode_state(inode, 4254 EXT4_STATE_DIO_UNWRITTEN); 4255 } 4256 4257 if (err && free_on_err) { 4258 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4259 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4260 /* free data blocks we just allocated */ 4261 /* not a good idea to call discard here directly, 4262 * but otherwise we'd need to call it every free() */ 4263 ext4_discard_preallocations(inode); 4264 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4265 ext4_ext_get_actual_len(&newex), fb_flags); 4266 goto out2; 4267 } 4268 4269 /* previous routine could use block we allocated */ 4270 newblock = ext4_ext_pblock(&newex); 4271 allocated = ext4_ext_get_actual_len(&newex); 4272 if (allocated > map->m_len) 4273 allocated = map->m_len; 4274 map->m_flags |= EXT4_MAP_NEW; 4275 4276 /* 4277 * Update reserved blocks/metadata blocks after successful 4278 * block allocation which had been deferred till now. 4279 */ 4280 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4281 unsigned int reserved_clusters; 4282 /* 4283 * Check how many clusters we had reserved this allocated range 4284 */ 4285 reserved_clusters = get_reserved_cluster_alloc(inode, 4286 map->m_lblk, allocated); 4287 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4288 if (reserved_clusters) { 4289 /* 4290 * We have clusters reserved for this range. 4291 * But since we are not doing actual allocation 4292 * and are simply using blocks from previously 4293 * allocated cluster, we should release the 4294 * reservation and not claim quota. 4295 */ 4296 ext4_da_update_reserve_space(inode, 4297 reserved_clusters, 0); 4298 } 4299 } else { 4300 BUG_ON(allocated_clusters < reserved_clusters); 4301 if (reserved_clusters < allocated_clusters) { 4302 struct ext4_inode_info *ei = EXT4_I(inode); 4303 int reservation = allocated_clusters - 4304 reserved_clusters; 4305 /* 4306 * It seems we claimed few clusters outside of 4307 * the range of this allocation. We should give 4308 * it back to the reservation pool. This can 4309 * happen in the following case: 4310 * 4311 * * Suppose s_cluster_ratio is 4 (i.e., each 4312 * cluster has 4 blocks. Thus, the clusters 4313 * are [0-3],[4-7],[8-11]... 4314 * * First comes delayed allocation write for 4315 * logical blocks 10 & 11. Since there were no 4316 * previous delayed allocated blocks in the 4317 * range [8-11], we would reserve 1 cluster 4318 * for this write. 4319 * * Next comes write for logical blocks 3 to 8. 4320 * In this case, we will reserve 2 clusters 4321 * (for [0-3] and [4-7]; and not for [8-11] as 4322 * that range has a delayed allocated blocks. 4323 * Thus total reserved clusters now becomes 3. 4324 * * Now, during the delayed allocation writeout 4325 * time, we will first write blocks [3-8] and 4326 * allocate 3 clusters for writing these 4327 * blocks. Also, we would claim all these 4328 * three clusters above. 4329 * * Now when we come here to writeout the 4330 * blocks [10-11], we would expect to claim 4331 * the reservation of 1 cluster we had made 4332 * (and we would claim it since there are no 4333 * more delayed allocated blocks in the range 4334 * [8-11]. But our reserved cluster count had 4335 * already gone to 0. 4336 * 4337 * Thus, at the step 4 above when we determine 4338 * that there are still some unwritten delayed 4339 * allocated blocks outside of our current 4340 * block range, we should increment the 4341 * reserved clusters count so that when the 4342 * remaining blocks finally gets written, we 4343 * could claim them. 4344 */ 4345 dquot_reserve_block(inode, 4346 EXT4_C2B(sbi, reservation)); 4347 spin_lock(&ei->i_block_reservation_lock); 4348 ei->i_reserved_data_blocks += reservation; 4349 spin_unlock(&ei->i_block_reservation_lock); 4350 } 4351 /* 4352 * We will claim quota for all newly allocated blocks. 4353 * We're updating the reserved space *after* the 4354 * correction above so we do not accidentally free 4355 * all the metadata reservation because we might 4356 * actually need it later on. 4357 */ 4358 ext4_da_update_reserve_space(inode, allocated_clusters, 4359 1); 4360 } 4361 } 4362 4363 /* 4364 * Cache the extent and update transaction to commit on fdatasync only 4365 * when it is _not_ an uninitialized extent. 4366 */ 4367 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 4368 ext4_update_inode_fsync_trans(handle, inode, 1); 4369 else 4370 ext4_update_inode_fsync_trans(handle, inode, 0); 4371 out: 4372 if (allocated > map->m_len) 4373 allocated = map->m_len; 4374 ext4_ext_show_leaf(inode, path); 4375 map->m_flags |= EXT4_MAP_MAPPED; 4376 map->m_pblk = newblock; 4377 map->m_len = allocated; 4378 out2: 4379 if (path) { 4380 ext4_ext_drop_refs(path); 4381 kfree(path); 4382 } 4383 4384 out3: 4385 trace_ext4_ext_map_blocks_exit(inode, flags, map, err ? err : allocated); 4386 4387 return err ? err : allocated; 4388 } 4389 4390 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4391 { 4392 struct super_block *sb = inode->i_sb; 4393 ext4_lblk_t last_block; 4394 int err = 0; 4395 4396 /* 4397 * TODO: optimization is possible here. 4398 * Probably we need not scan at all, 4399 * because page truncation is enough. 4400 */ 4401 4402 /* we have to know where to truncate from in crash case */ 4403 EXT4_I(inode)->i_disksize = inode->i_size; 4404 ext4_mark_inode_dirty(handle, inode); 4405 4406 last_block = (inode->i_size + sb->s_blocksize - 1) 4407 >> EXT4_BLOCK_SIZE_BITS(sb); 4408 err = ext4_es_remove_extent(inode, last_block, 4409 EXT_MAX_BLOCKS - last_block); 4410 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4411 } 4412 4413 static void ext4_falloc_update_inode(struct inode *inode, 4414 int mode, loff_t new_size, int update_ctime) 4415 { 4416 struct timespec now; 4417 4418 if (update_ctime) { 4419 now = current_fs_time(inode->i_sb); 4420 if (!timespec_equal(&inode->i_ctime, &now)) 4421 inode->i_ctime = now; 4422 } 4423 /* 4424 * Update only when preallocation was requested beyond 4425 * the file size. 4426 */ 4427 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4428 if (new_size > i_size_read(inode)) 4429 i_size_write(inode, new_size); 4430 if (new_size > EXT4_I(inode)->i_disksize) 4431 ext4_update_i_disksize(inode, new_size); 4432 } else { 4433 /* 4434 * Mark that we allocate beyond EOF so the subsequent truncate 4435 * can proceed even if the new size is the same as i_size. 4436 */ 4437 if (new_size > i_size_read(inode)) 4438 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4439 } 4440 4441 } 4442 4443 /* 4444 * preallocate space for a file. This implements ext4's fallocate file 4445 * operation, which gets called from sys_fallocate system call. 4446 * For block-mapped files, posix_fallocate should fall back to the method 4447 * of writing zeroes to the required new blocks (the same behavior which is 4448 * expected for file systems which do not support fallocate() system call). 4449 */ 4450 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4451 { 4452 struct inode *inode = file_inode(file); 4453 handle_t *handle; 4454 loff_t new_size; 4455 unsigned int max_blocks; 4456 int ret = 0; 4457 int ret2 = 0; 4458 int retries = 0; 4459 int flags; 4460 struct ext4_map_blocks map; 4461 unsigned int credits, blkbits = inode->i_blkbits; 4462 4463 /* Return error if mode is not supported */ 4464 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4465 return -EOPNOTSUPP; 4466 4467 if (mode & FALLOC_FL_PUNCH_HOLE) 4468 return ext4_punch_hole(inode, offset, len); 4469 4470 ret = ext4_convert_inline_data(inode); 4471 if (ret) 4472 return ret; 4473 4474 /* 4475 * currently supporting (pre)allocate mode for extent-based 4476 * files _only_ 4477 */ 4478 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4479 return -EOPNOTSUPP; 4480 4481 trace_ext4_fallocate_enter(inode, offset, len, mode); 4482 map.m_lblk = offset >> blkbits; 4483 /* 4484 * We can't just convert len to max_blocks because 4485 * If blocksize = 4096 offset = 3072 and len = 2048 4486 */ 4487 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4488 - map.m_lblk; 4489 /* 4490 * credits to insert 1 extent into extent tree 4491 */ 4492 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4493 mutex_lock(&inode->i_mutex); 4494 ret = inode_newsize_ok(inode, (len + offset)); 4495 if (ret) { 4496 mutex_unlock(&inode->i_mutex); 4497 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4498 return ret; 4499 } 4500 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4501 if (mode & FALLOC_FL_KEEP_SIZE) 4502 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4503 /* 4504 * Don't normalize the request if it can fit in one extent so 4505 * that it doesn't get unnecessarily split into multiple 4506 * extents. 4507 */ 4508 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4509 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4510 4511 retry: 4512 while (ret >= 0 && ret < max_blocks) { 4513 map.m_lblk = map.m_lblk + ret; 4514 map.m_len = max_blocks = max_blocks - ret; 4515 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4516 credits); 4517 if (IS_ERR(handle)) { 4518 ret = PTR_ERR(handle); 4519 break; 4520 } 4521 ret = ext4_map_blocks(handle, inode, &map, flags); 4522 if (ret <= 0) { 4523 #ifdef EXT4FS_DEBUG 4524 ext4_warning(inode->i_sb, 4525 "inode #%lu: block %u: len %u: " 4526 "ext4_ext_map_blocks returned %d", 4527 inode->i_ino, map.m_lblk, 4528 map.m_len, ret); 4529 #endif 4530 ext4_mark_inode_dirty(handle, inode); 4531 ret2 = ext4_journal_stop(handle); 4532 break; 4533 } 4534 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4535 blkbits) >> blkbits)) 4536 new_size = offset + len; 4537 else 4538 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4539 4540 ext4_falloc_update_inode(inode, mode, new_size, 4541 (map.m_flags & EXT4_MAP_NEW)); 4542 ext4_mark_inode_dirty(handle, inode); 4543 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4544 ext4_handle_sync(handle); 4545 ret2 = ext4_journal_stop(handle); 4546 if (ret2) 4547 break; 4548 } 4549 if (ret == -ENOSPC && 4550 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4551 ret = 0; 4552 goto retry; 4553 } 4554 mutex_unlock(&inode->i_mutex); 4555 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4556 ret > 0 ? ret2 : ret); 4557 return ret > 0 ? ret2 : ret; 4558 } 4559 4560 /* 4561 * This function convert a range of blocks to written extents 4562 * The caller of this function will pass the start offset and the size. 4563 * all unwritten extents within this range will be converted to 4564 * written extents. 4565 * 4566 * This function is called from the direct IO end io call back 4567 * function, to convert the fallocated extents after IO is completed. 4568 * Returns 0 on success. 4569 */ 4570 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4571 loff_t offset, ssize_t len) 4572 { 4573 unsigned int max_blocks; 4574 int ret = 0; 4575 int ret2 = 0; 4576 struct ext4_map_blocks map; 4577 unsigned int credits, blkbits = inode->i_blkbits; 4578 4579 map.m_lblk = offset >> blkbits; 4580 /* 4581 * We can't just convert len to max_blocks because 4582 * If blocksize = 4096 offset = 3072 and len = 2048 4583 */ 4584 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4585 map.m_lblk); 4586 /* 4587 * This is somewhat ugly but the idea is clear: When transaction is 4588 * reserved, everything goes into it. Otherwise we rather start several 4589 * smaller transactions for conversion of each extent separately. 4590 */ 4591 if (handle) { 4592 handle = ext4_journal_start_reserved(handle, 4593 EXT4_HT_EXT_CONVERT); 4594 if (IS_ERR(handle)) 4595 return PTR_ERR(handle); 4596 credits = 0; 4597 } else { 4598 /* 4599 * credits to insert 1 extent into extent tree 4600 */ 4601 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4602 } 4603 while (ret >= 0 && ret < max_blocks) { 4604 map.m_lblk += ret; 4605 map.m_len = (max_blocks -= ret); 4606 if (credits) { 4607 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4608 credits); 4609 if (IS_ERR(handle)) { 4610 ret = PTR_ERR(handle); 4611 break; 4612 } 4613 } 4614 ret = ext4_map_blocks(handle, inode, &map, 4615 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4616 if (ret <= 0) 4617 ext4_warning(inode->i_sb, 4618 "inode #%lu: block %u: len %u: " 4619 "ext4_ext_map_blocks returned %d", 4620 inode->i_ino, map.m_lblk, 4621 map.m_len, ret); 4622 ext4_mark_inode_dirty(handle, inode); 4623 if (credits) 4624 ret2 = ext4_journal_stop(handle); 4625 if (ret <= 0 || ret2) 4626 break; 4627 } 4628 if (!credits) 4629 ret2 = ext4_journal_stop(handle); 4630 return ret > 0 ? ret2 : ret; 4631 } 4632 4633 /* 4634 * If newes is not existing extent (newes->ec_pblk equals zero) find 4635 * delayed extent at start of newes and update newes accordingly and 4636 * return start of the next delayed extent. 4637 * 4638 * If newes is existing extent (newes->ec_pblk is not equal zero) 4639 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4640 * extent found. Leave newes unmodified. 4641 */ 4642 static int ext4_find_delayed_extent(struct inode *inode, 4643 struct extent_status *newes) 4644 { 4645 struct extent_status es; 4646 ext4_lblk_t block, next_del; 4647 4648 if (newes->es_pblk == 0) { 4649 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 4650 newes->es_lblk + newes->es_len - 1, &es); 4651 4652 /* 4653 * No extent in extent-tree contains block @newes->es_pblk, 4654 * then the block may stay in 1)a hole or 2)delayed-extent. 4655 */ 4656 if (es.es_len == 0) 4657 /* A hole found. */ 4658 return 0; 4659 4660 if (es.es_lblk > newes->es_lblk) { 4661 /* A hole found. */ 4662 newes->es_len = min(es.es_lblk - newes->es_lblk, 4663 newes->es_len); 4664 return 0; 4665 } 4666 4667 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4668 } 4669 4670 block = newes->es_lblk + newes->es_len; 4671 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 4672 if (es.es_len == 0) 4673 next_del = EXT_MAX_BLOCKS; 4674 else 4675 next_del = es.es_lblk; 4676 4677 return next_del; 4678 } 4679 /* fiemap flags we can handle specified here */ 4680 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4681 4682 static int ext4_xattr_fiemap(struct inode *inode, 4683 struct fiemap_extent_info *fieinfo) 4684 { 4685 __u64 physical = 0; 4686 __u64 length; 4687 __u32 flags = FIEMAP_EXTENT_LAST; 4688 int blockbits = inode->i_sb->s_blocksize_bits; 4689 int error = 0; 4690 4691 /* in-inode? */ 4692 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4693 struct ext4_iloc iloc; 4694 int offset; /* offset of xattr in inode */ 4695 4696 error = ext4_get_inode_loc(inode, &iloc); 4697 if (error) 4698 return error; 4699 physical = (__u64)iloc.bh->b_blocknr << blockbits; 4700 offset = EXT4_GOOD_OLD_INODE_SIZE + 4701 EXT4_I(inode)->i_extra_isize; 4702 physical += offset; 4703 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4704 flags |= FIEMAP_EXTENT_DATA_INLINE; 4705 brelse(iloc.bh); 4706 } else { /* external block */ 4707 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 4708 length = inode->i_sb->s_blocksize; 4709 } 4710 4711 if (physical) 4712 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4713 length, flags); 4714 return (error < 0 ? error : 0); 4715 } 4716 4717 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4718 __u64 start, __u64 len) 4719 { 4720 ext4_lblk_t start_blk; 4721 int error = 0; 4722 4723 if (ext4_has_inline_data(inode)) { 4724 int has_inline = 1; 4725 4726 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4727 4728 if (has_inline) 4729 return error; 4730 } 4731 4732 /* fallback to generic here if not in extents fmt */ 4733 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4734 return generic_block_fiemap(inode, fieinfo, start, len, 4735 ext4_get_block); 4736 4737 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4738 return -EBADR; 4739 4740 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4741 error = ext4_xattr_fiemap(inode, fieinfo); 4742 } else { 4743 ext4_lblk_t len_blks; 4744 __u64 last_blk; 4745 4746 start_blk = start >> inode->i_sb->s_blocksize_bits; 4747 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4748 if (last_blk >= EXT_MAX_BLOCKS) 4749 last_blk = EXT_MAX_BLOCKS-1; 4750 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4751 4752 /* 4753 * Walk the extent tree gathering extent information 4754 * and pushing extents back to the user. 4755 */ 4756 error = ext4_fill_fiemap_extents(inode, start_blk, 4757 len_blks, fieinfo); 4758 } 4759 4760 return error; 4761 } 4762