xref: /linux/fs/ext4/extents.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 		return 1;
80 
81 	et = find_ext4_extent_tail(eh);
82 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 		return 0;
84 	return 1;
85 }
86 
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 				       struct ext4_extent_header *eh)
89 {
90 	struct ext4_extent_tail *et;
91 
92 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 		return;
95 
96 	et = find_ext4_extent_tail(eh);
97 	et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99 
100 static int ext4_split_extent(handle_t *handle,
101 				struct inode *inode,
102 				struct ext4_ext_path *path,
103 				struct ext4_map_blocks *map,
104 				int split_flag,
105 				int flags);
106 
107 static int ext4_split_extent_at(handle_t *handle,
108 			     struct inode *inode,
109 			     struct ext4_ext_path *path,
110 			     ext4_lblk_t split,
111 			     int split_flag,
112 			     int flags);
113 
114 static int ext4_find_delayed_extent(struct inode *inode,
115 				    struct extent_status *newes);
116 
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 					    struct inode *inode,
119 					    int needed)
120 {
121 	int err;
122 
123 	if (!ext4_handle_valid(handle))
124 		return 0;
125 	if (handle->h_buffer_credits > needed)
126 		return 0;
127 	err = ext4_journal_extend(handle, needed);
128 	if (err <= 0)
129 		return err;
130 	err = ext4_truncate_restart_trans(handle, inode, needed);
131 	if (err == 0)
132 		err = -EAGAIN;
133 
134 	return err;
135 }
136 
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	if (path->p_bh) {
146 		/* path points to block */
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 		     struct inode *inode, struct ext4_ext_path *path)
162 {
163 	int err;
164 	if (path->p_bh) {
165 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 		/* path points to block */
167 		err = __ext4_handle_dirty_metadata(where, line, handle,
168 						   inode, path->p_bh);
169 	} else {
170 		/* path points to leaf/index in inode body */
171 		err = ext4_mark_inode_dirty(handle, inode);
172 	}
173 	return err;
174 }
175 
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 			      struct ext4_ext_path *path,
178 			      ext4_lblk_t block)
179 {
180 	if (path) {
181 		int depth = path->p_depth;
182 		struct ext4_extent *ex;
183 
184 		/*
185 		 * Try to predict block placement assuming that we are
186 		 * filling in a file which will eventually be
187 		 * non-sparse --- i.e., in the case of libbfd writing
188 		 * an ELF object sections out-of-order but in a way
189 		 * the eventually results in a contiguous object or
190 		 * executable file, or some database extending a table
191 		 * space file.  However, this is actually somewhat
192 		 * non-ideal if we are writing a sparse file such as
193 		 * qemu or KVM writing a raw image file that is going
194 		 * to stay fairly sparse, since it will end up
195 		 * fragmenting the file system's free space.  Maybe we
196 		 * should have some hueristics or some way to allow
197 		 * userspace to pass a hint to file system,
198 		 * especially if the latter case turns out to be
199 		 * common.
200 		 */
201 		ex = path[depth].p_ext;
202 		if (ex) {
203 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205 
206 			if (block > ext_block)
207 				return ext_pblk + (block - ext_block);
208 			else
209 				return ext_pblk - (ext_block - block);
210 		}
211 
212 		/* it looks like index is empty;
213 		 * try to find starting block from index itself */
214 		if (path[depth].p_bh)
215 			return path[depth].p_bh->b_blocknr;
216 	}
217 
218 	/* OK. use inode's group */
219 	return ext4_inode_to_goal_block(inode);
220 }
221 
222 /*
223  * Allocation for a meta data block
224  */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 			struct ext4_ext_path *path,
228 			struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 	ext4_fsblk_t goal, newblock;
231 
232 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 					NULL, err);
235 	return newblock;
236 }
237 
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 	int size;
241 
242 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 			/ sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 	if (!check && size > 6)
246 		size = 6;
247 #endif
248 	return size;
249 }
250 
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 	int size;
254 
255 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 			/ sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 	if (!check && size > 5)
259 		size = 5;
260 #endif
261 	return size;
262 }
263 
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 	int size;
267 
268 	size = sizeof(EXT4_I(inode)->i_data);
269 	size -= sizeof(struct ext4_extent_header);
270 	size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 	if (!check && size > 3)
273 		size = 3;
274 #endif
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 	if (!check && size > 4)
287 		size = 4;
288 #endif
289 	return size;
290 }
291 
292 /*
293  * Calculate the number of metadata blocks needed
294  * to allocate @blocks
295  * Worse case is one block per extent
296  */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 	struct ext4_inode_info *ei = EXT4_I(inode);
300 	int idxs;
301 
302 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 		/ sizeof(struct ext4_extent_idx));
304 
305 	/*
306 	 * If the new delayed allocation block is contiguous with the
307 	 * previous da block, it can share index blocks with the
308 	 * previous block, so we only need to allocate a new index
309 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310 	 * an additional index block, and at ldxs**3 blocks, yet
311 	 * another index blocks.
312 	 */
313 	if (ei->i_da_metadata_calc_len &&
314 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 		int num = 0;
316 
317 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 			num++;
319 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 			num++;
321 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 			num++;
323 			ei->i_da_metadata_calc_len = 0;
324 		} else
325 			ei->i_da_metadata_calc_len++;
326 		ei->i_da_metadata_calc_last_lblock++;
327 		return num;
328 	}
329 
330 	/*
331 	 * In the worst case we need a new set of index blocks at
332 	 * every level of the inode's extent tree.
333 	 */
334 	ei->i_da_metadata_calc_len = 1;
335 	ei->i_da_metadata_calc_last_lblock = lblock;
336 	return ext_depth(inode) + 1;
337 }
338 
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 	int max;
343 
344 	if (depth == ext_depth(inode)) {
345 		if (depth == 0)
346 			max = ext4_ext_space_root(inode, 1);
347 		else
348 			max = ext4_ext_space_root_idx(inode, 1);
349 	} else {
350 		if (depth == 0)
351 			max = ext4_ext_space_block(inode, 1);
352 		else
353 			max = ext4_ext_space_block_idx(inode, 1);
354 	}
355 
356 	return max;
357 }
358 
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 	ext4_fsblk_t block = ext4_ext_pblock(ext);
362 	int len = ext4_ext_get_actual_len(ext);
363 
364 	if (len == 0)
365 		return 0;
366 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 }
368 
369 static int ext4_valid_extent_idx(struct inode *inode,
370 				struct ext4_extent_idx *ext_idx)
371 {
372 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373 
374 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 }
376 
377 static int ext4_valid_extent_entries(struct inode *inode,
378 				struct ext4_extent_header *eh,
379 				int depth)
380 {
381 	unsigned short entries;
382 	if (eh->eh_entries == 0)
383 		return 1;
384 
385 	entries = le16_to_cpu(eh->eh_entries);
386 
387 	if (depth == 0) {
388 		/* leaf entries */
389 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 		while (entries) {
391 			if (!ext4_valid_extent(inode, ext))
392 				return 0;
393 			ext++;
394 			entries--;
395 		}
396 	} else {
397 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 		while (entries) {
399 			if (!ext4_valid_extent_idx(inode, ext_idx))
400 				return 0;
401 			ext_idx++;
402 			entries--;
403 		}
404 	}
405 	return 1;
406 }
407 
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 			    struct inode *inode, struct ext4_extent_header *eh,
410 			    int depth)
411 {
412 	const char *error_msg;
413 	int max = 0;
414 
415 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 		error_msg = "invalid magic";
417 		goto corrupted;
418 	}
419 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 		error_msg = "unexpected eh_depth";
421 		goto corrupted;
422 	}
423 	if (unlikely(eh->eh_max == 0)) {
424 		error_msg = "invalid eh_max";
425 		goto corrupted;
426 	}
427 	max = ext4_ext_max_entries(inode, depth);
428 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 		error_msg = "too large eh_max";
430 		goto corrupted;
431 	}
432 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 		error_msg = "invalid eh_entries";
434 		goto corrupted;
435 	}
436 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 		error_msg = "invalid extent entries";
438 		goto corrupted;
439 	}
440 	/* Verify checksum on non-root extent tree nodes */
441 	if (ext_depth(inode) != depth &&
442 	    !ext4_extent_block_csum_verify(inode, eh)) {
443 		error_msg = "extent tree corrupted";
444 		goto corrupted;
445 	}
446 	return 0;
447 
448 corrupted:
449 	ext4_error_inode(inode, function, line, 0,
450 			"bad header/extent: %s - magic %x, "
451 			"entries %u, max %u(%u), depth %u(%u)",
452 			error_msg, le16_to_cpu(eh->eh_magic),
453 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
454 			max, le16_to_cpu(eh->eh_depth), depth);
455 
456 	return -EIO;
457 }
458 
459 #define ext4_ext_check(inode, eh, depth)	\
460 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
461 
462 int ext4_ext_check_inode(struct inode *inode)
463 {
464 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
465 }
466 
467 static int __ext4_ext_check_block(const char *function, unsigned int line,
468 				  struct inode *inode,
469 				  struct ext4_extent_header *eh,
470 				  int depth,
471 				  struct buffer_head *bh)
472 {
473 	int ret;
474 
475 	if (buffer_verified(bh))
476 		return 0;
477 	ret = ext4_ext_check(inode, eh, depth);
478 	if (ret)
479 		return ret;
480 	set_buffer_verified(bh);
481 	return ret;
482 }
483 
484 #define ext4_ext_check_block(inode, eh, depth, bh)	\
485 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
486 
487 #ifdef EXT_DEBUG
488 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
489 {
490 	int k, l = path->p_depth;
491 
492 	ext_debug("path:");
493 	for (k = 0; k <= l; k++, path++) {
494 		if (path->p_idx) {
495 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
496 			    ext4_idx_pblock(path->p_idx));
497 		} else if (path->p_ext) {
498 			ext_debug("  %d:[%d]%d:%llu ",
499 				  le32_to_cpu(path->p_ext->ee_block),
500 				  ext4_ext_is_uninitialized(path->p_ext),
501 				  ext4_ext_get_actual_len(path->p_ext),
502 				  ext4_ext_pblock(path->p_ext));
503 		} else
504 			ext_debug("  []");
505 	}
506 	ext_debug("\n");
507 }
508 
509 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
510 {
511 	int depth = ext_depth(inode);
512 	struct ext4_extent_header *eh;
513 	struct ext4_extent *ex;
514 	int i;
515 
516 	if (!path)
517 		return;
518 
519 	eh = path[depth].p_hdr;
520 	ex = EXT_FIRST_EXTENT(eh);
521 
522 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
523 
524 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
525 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
526 			  ext4_ext_is_uninitialized(ex),
527 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
528 	}
529 	ext_debug("\n");
530 }
531 
532 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
533 			ext4_fsblk_t newblock, int level)
534 {
535 	int depth = ext_depth(inode);
536 	struct ext4_extent *ex;
537 
538 	if (depth != level) {
539 		struct ext4_extent_idx *idx;
540 		idx = path[level].p_idx;
541 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
542 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
543 					le32_to_cpu(idx->ei_block),
544 					ext4_idx_pblock(idx),
545 					newblock);
546 			idx++;
547 		}
548 
549 		return;
550 	}
551 
552 	ex = path[depth].p_ext;
553 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
554 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
555 				le32_to_cpu(ex->ee_block),
556 				ext4_ext_pblock(ex),
557 				ext4_ext_is_uninitialized(ex),
558 				ext4_ext_get_actual_len(ex),
559 				newblock);
560 		ex++;
561 	}
562 }
563 
564 #else
565 #define ext4_ext_show_path(inode, path)
566 #define ext4_ext_show_leaf(inode, path)
567 #define ext4_ext_show_move(inode, path, newblock, level)
568 #endif
569 
570 void ext4_ext_drop_refs(struct ext4_ext_path *path)
571 {
572 	int depth = path->p_depth;
573 	int i;
574 
575 	for (i = 0; i <= depth; i++, path++)
576 		if (path->p_bh) {
577 			brelse(path->p_bh);
578 			path->p_bh = NULL;
579 		}
580 }
581 
582 /*
583  * ext4_ext_binsearch_idx:
584  * binary search for the closest index of the given block
585  * the header must be checked before calling this
586  */
587 static void
588 ext4_ext_binsearch_idx(struct inode *inode,
589 			struct ext4_ext_path *path, ext4_lblk_t block)
590 {
591 	struct ext4_extent_header *eh = path->p_hdr;
592 	struct ext4_extent_idx *r, *l, *m;
593 
594 
595 	ext_debug("binsearch for %u(idx):  ", block);
596 
597 	l = EXT_FIRST_INDEX(eh) + 1;
598 	r = EXT_LAST_INDEX(eh);
599 	while (l <= r) {
600 		m = l + (r - l) / 2;
601 		if (block < le32_to_cpu(m->ei_block))
602 			r = m - 1;
603 		else
604 			l = m + 1;
605 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
606 				m, le32_to_cpu(m->ei_block),
607 				r, le32_to_cpu(r->ei_block));
608 	}
609 
610 	path->p_idx = l - 1;
611 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
612 		  ext4_idx_pblock(path->p_idx));
613 
614 #ifdef CHECK_BINSEARCH
615 	{
616 		struct ext4_extent_idx *chix, *ix;
617 		int k;
618 
619 		chix = ix = EXT_FIRST_INDEX(eh);
620 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
621 		  if (k != 0 &&
622 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
623 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
624 				       "first=0x%p\n", k,
625 				       ix, EXT_FIRST_INDEX(eh));
626 				printk(KERN_DEBUG "%u <= %u\n",
627 				       le32_to_cpu(ix->ei_block),
628 				       le32_to_cpu(ix[-1].ei_block));
629 			}
630 			BUG_ON(k && le32_to_cpu(ix->ei_block)
631 					   <= le32_to_cpu(ix[-1].ei_block));
632 			if (block < le32_to_cpu(ix->ei_block))
633 				break;
634 			chix = ix;
635 		}
636 		BUG_ON(chix != path->p_idx);
637 	}
638 #endif
639 
640 }
641 
642 /*
643  * ext4_ext_binsearch:
644  * binary search for closest extent of the given block
645  * the header must be checked before calling this
646  */
647 static void
648 ext4_ext_binsearch(struct inode *inode,
649 		struct ext4_ext_path *path, ext4_lblk_t block)
650 {
651 	struct ext4_extent_header *eh = path->p_hdr;
652 	struct ext4_extent *r, *l, *m;
653 
654 	if (eh->eh_entries == 0) {
655 		/*
656 		 * this leaf is empty:
657 		 * we get such a leaf in split/add case
658 		 */
659 		return;
660 	}
661 
662 	ext_debug("binsearch for %u:  ", block);
663 
664 	l = EXT_FIRST_EXTENT(eh) + 1;
665 	r = EXT_LAST_EXTENT(eh);
666 
667 	while (l <= r) {
668 		m = l + (r - l) / 2;
669 		if (block < le32_to_cpu(m->ee_block))
670 			r = m - 1;
671 		else
672 			l = m + 1;
673 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
674 				m, le32_to_cpu(m->ee_block),
675 				r, le32_to_cpu(r->ee_block));
676 	}
677 
678 	path->p_ext = l - 1;
679 	ext_debug("  -> %d:%llu:[%d]%d ",
680 			le32_to_cpu(path->p_ext->ee_block),
681 			ext4_ext_pblock(path->p_ext),
682 			ext4_ext_is_uninitialized(path->p_ext),
683 			ext4_ext_get_actual_len(path->p_ext));
684 
685 #ifdef CHECK_BINSEARCH
686 	{
687 		struct ext4_extent *chex, *ex;
688 		int k;
689 
690 		chex = ex = EXT_FIRST_EXTENT(eh);
691 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
692 			BUG_ON(k && le32_to_cpu(ex->ee_block)
693 					  <= le32_to_cpu(ex[-1].ee_block));
694 			if (block < le32_to_cpu(ex->ee_block))
695 				break;
696 			chex = ex;
697 		}
698 		BUG_ON(chex != path->p_ext);
699 	}
700 #endif
701 
702 }
703 
704 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
705 {
706 	struct ext4_extent_header *eh;
707 
708 	eh = ext_inode_hdr(inode);
709 	eh->eh_depth = 0;
710 	eh->eh_entries = 0;
711 	eh->eh_magic = EXT4_EXT_MAGIC;
712 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
713 	ext4_mark_inode_dirty(handle, inode);
714 	return 0;
715 }
716 
717 struct ext4_ext_path *
718 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
719 					struct ext4_ext_path *path)
720 {
721 	struct ext4_extent_header *eh;
722 	struct buffer_head *bh;
723 	short int depth, i, ppos = 0, alloc = 0;
724 	int ret;
725 
726 	eh = ext_inode_hdr(inode);
727 	depth = ext_depth(inode);
728 
729 	/* account possible depth increase */
730 	if (!path) {
731 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
732 				GFP_NOFS);
733 		if (!path)
734 			return ERR_PTR(-ENOMEM);
735 		alloc = 1;
736 	}
737 	path[0].p_hdr = eh;
738 	path[0].p_bh = NULL;
739 
740 	i = depth;
741 	/* walk through the tree */
742 	while (i) {
743 		ext_debug("depth %d: num %d, max %d\n",
744 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
745 
746 		ext4_ext_binsearch_idx(inode, path + ppos, block);
747 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
748 		path[ppos].p_depth = i;
749 		path[ppos].p_ext = NULL;
750 
751 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
752 		if (unlikely(!bh)) {
753 			ret = -ENOMEM;
754 			goto err;
755 		}
756 		if (!bh_uptodate_or_lock(bh)) {
757 			trace_ext4_ext_load_extent(inode, block,
758 						path[ppos].p_block);
759 			ret = bh_submit_read(bh);
760 			if (ret < 0) {
761 				put_bh(bh);
762 				goto err;
763 			}
764 		}
765 		eh = ext_block_hdr(bh);
766 		ppos++;
767 		if (unlikely(ppos > depth)) {
768 			put_bh(bh);
769 			EXT4_ERROR_INODE(inode,
770 					 "ppos %d > depth %d", ppos, depth);
771 			ret = -EIO;
772 			goto err;
773 		}
774 		path[ppos].p_bh = bh;
775 		path[ppos].p_hdr = eh;
776 		i--;
777 
778 		ret = ext4_ext_check_block(inode, eh, i, bh);
779 		if (ret < 0)
780 			goto err;
781 	}
782 
783 	path[ppos].p_depth = i;
784 	path[ppos].p_ext = NULL;
785 	path[ppos].p_idx = NULL;
786 
787 	/* find extent */
788 	ext4_ext_binsearch(inode, path + ppos, block);
789 	/* if not an empty leaf */
790 	if (path[ppos].p_ext)
791 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
792 
793 	ext4_ext_show_path(inode, path);
794 
795 	return path;
796 
797 err:
798 	ext4_ext_drop_refs(path);
799 	if (alloc)
800 		kfree(path);
801 	return ERR_PTR(ret);
802 }
803 
804 /*
805  * ext4_ext_insert_index:
806  * insert new index [@logical;@ptr] into the block at @curp;
807  * check where to insert: before @curp or after @curp
808  */
809 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
810 				 struct ext4_ext_path *curp,
811 				 int logical, ext4_fsblk_t ptr)
812 {
813 	struct ext4_extent_idx *ix;
814 	int len, err;
815 
816 	err = ext4_ext_get_access(handle, inode, curp);
817 	if (err)
818 		return err;
819 
820 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
821 		EXT4_ERROR_INODE(inode,
822 				 "logical %d == ei_block %d!",
823 				 logical, le32_to_cpu(curp->p_idx->ei_block));
824 		return -EIO;
825 	}
826 
827 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
828 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
829 		EXT4_ERROR_INODE(inode,
830 				 "eh_entries %d >= eh_max %d!",
831 				 le16_to_cpu(curp->p_hdr->eh_entries),
832 				 le16_to_cpu(curp->p_hdr->eh_max));
833 		return -EIO;
834 	}
835 
836 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
837 		/* insert after */
838 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
839 		ix = curp->p_idx + 1;
840 	} else {
841 		/* insert before */
842 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
843 		ix = curp->p_idx;
844 	}
845 
846 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
847 	BUG_ON(len < 0);
848 	if (len > 0) {
849 		ext_debug("insert new index %d: "
850 				"move %d indices from 0x%p to 0x%p\n",
851 				logical, len, ix, ix + 1);
852 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
853 	}
854 
855 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
856 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
857 		return -EIO;
858 	}
859 
860 	ix->ei_block = cpu_to_le32(logical);
861 	ext4_idx_store_pblock(ix, ptr);
862 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
863 
864 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
865 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
866 		return -EIO;
867 	}
868 
869 	err = ext4_ext_dirty(handle, inode, curp);
870 	ext4_std_error(inode->i_sb, err);
871 
872 	return err;
873 }
874 
875 /*
876  * ext4_ext_split:
877  * inserts new subtree into the path, using free index entry
878  * at depth @at:
879  * - allocates all needed blocks (new leaf and all intermediate index blocks)
880  * - makes decision where to split
881  * - moves remaining extents and index entries (right to the split point)
882  *   into the newly allocated blocks
883  * - initializes subtree
884  */
885 static int ext4_ext_split(handle_t *handle, struct inode *inode,
886 			  unsigned int flags,
887 			  struct ext4_ext_path *path,
888 			  struct ext4_extent *newext, int at)
889 {
890 	struct buffer_head *bh = NULL;
891 	int depth = ext_depth(inode);
892 	struct ext4_extent_header *neh;
893 	struct ext4_extent_idx *fidx;
894 	int i = at, k, m, a;
895 	ext4_fsblk_t newblock, oldblock;
896 	__le32 border;
897 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
898 	int err = 0;
899 
900 	/* make decision: where to split? */
901 	/* FIXME: now decision is simplest: at current extent */
902 
903 	/* if current leaf will be split, then we should use
904 	 * border from split point */
905 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
906 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
907 		return -EIO;
908 	}
909 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
910 		border = path[depth].p_ext[1].ee_block;
911 		ext_debug("leaf will be split."
912 				" next leaf starts at %d\n",
913 				  le32_to_cpu(border));
914 	} else {
915 		border = newext->ee_block;
916 		ext_debug("leaf will be added."
917 				" next leaf starts at %d\n",
918 				le32_to_cpu(border));
919 	}
920 
921 	/*
922 	 * If error occurs, then we break processing
923 	 * and mark filesystem read-only. index won't
924 	 * be inserted and tree will be in consistent
925 	 * state. Next mount will repair buffers too.
926 	 */
927 
928 	/*
929 	 * Get array to track all allocated blocks.
930 	 * We need this to handle errors and free blocks
931 	 * upon them.
932 	 */
933 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
934 	if (!ablocks)
935 		return -ENOMEM;
936 
937 	/* allocate all needed blocks */
938 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
939 	for (a = 0; a < depth - at; a++) {
940 		newblock = ext4_ext_new_meta_block(handle, inode, path,
941 						   newext, &err, flags);
942 		if (newblock == 0)
943 			goto cleanup;
944 		ablocks[a] = newblock;
945 	}
946 
947 	/* initialize new leaf */
948 	newblock = ablocks[--a];
949 	if (unlikely(newblock == 0)) {
950 		EXT4_ERROR_INODE(inode, "newblock == 0!");
951 		err = -EIO;
952 		goto cleanup;
953 	}
954 	bh = sb_getblk(inode->i_sb, newblock);
955 	if (unlikely(!bh)) {
956 		err = -ENOMEM;
957 		goto cleanup;
958 	}
959 	lock_buffer(bh);
960 
961 	err = ext4_journal_get_create_access(handle, bh);
962 	if (err)
963 		goto cleanup;
964 
965 	neh = ext_block_hdr(bh);
966 	neh->eh_entries = 0;
967 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
968 	neh->eh_magic = EXT4_EXT_MAGIC;
969 	neh->eh_depth = 0;
970 
971 	/* move remainder of path[depth] to the new leaf */
972 	if (unlikely(path[depth].p_hdr->eh_entries !=
973 		     path[depth].p_hdr->eh_max)) {
974 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
975 				 path[depth].p_hdr->eh_entries,
976 				 path[depth].p_hdr->eh_max);
977 		err = -EIO;
978 		goto cleanup;
979 	}
980 	/* start copy from next extent */
981 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
982 	ext4_ext_show_move(inode, path, newblock, depth);
983 	if (m) {
984 		struct ext4_extent *ex;
985 		ex = EXT_FIRST_EXTENT(neh);
986 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
987 		le16_add_cpu(&neh->eh_entries, m);
988 	}
989 
990 	ext4_extent_block_csum_set(inode, neh);
991 	set_buffer_uptodate(bh);
992 	unlock_buffer(bh);
993 
994 	err = ext4_handle_dirty_metadata(handle, inode, bh);
995 	if (err)
996 		goto cleanup;
997 	brelse(bh);
998 	bh = NULL;
999 
1000 	/* correct old leaf */
1001 	if (m) {
1002 		err = ext4_ext_get_access(handle, inode, path + depth);
1003 		if (err)
1004 			goto cleanup;
1005 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1006 		err = ext4_ext_dirty(handle, inode, path + depth);
1007 		if (err)
1008 			goto cleanup;
1009 
1010 	}
1011 
1012 	/* create intermediate indexes */
1013 	k = depth - at - 1;
1014 	if (unlikely(k < 0)) {
1015 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1016 		err = -EIO;
1017 		goto cleanup;
1018 	}
1019 	if (k)
1020 		ext_debug("create %d intermediate indices\n", k);
1021 	/* insert new index into current index block */
1022 	/* current depth stored in i var */
1023 	i = depth - 1;
1024 	while (k--) {
1025 		oldblock = newblock;
1026 		newblock = ablocks[--a];
1027 		bh = sb_getblk(inode->i_sb, newblock);
1028 		if (unlikely(!bh)) {
1029 			err = -ENOMEM;
1030 			goto cleanup;
1031 		}
1032 		lock_buffer(bh);
1033 
1034 		err = ext4_journal_get_create_access(handle, bh);
1035 		if (err)
1036 			goto cleanup;
1037 
1038 		neh = ext_block_hdr(bh);
1039 		neh->eh_entries = cpu_to_le16(1);
1040 		neh->eh_magic = EXT4_EXT_MAGIC;
1041 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1042 		neh->eh_depth = cpu_to_le16(depth - i);
1043 		fidx = EXT_FIRST_INDEX(neh);
1044 		fidx->ei_block = border;
1045 		ext4_idx_store_pblock(fidx, oldblock);
1046 
1047 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1048 				i, newblock, le32_to_cpu(border), oldblock);
1049 
1050 		/* move remainder of path[i] to the new index block */
1051 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1052 					EXT_LAST_INDEX(path[i].p_hdr))) {
1053 			EXT4_ERROR_INODE(inode,
1054 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1055 					 le32_to_cpu(path[i].p_ext->ee_block));
1056 			err = -EIO;
1057 			goto cleanup;
1058 		}
1059 		/* start copy indexes */
1060 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1061 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1062 				EXT_MAX_INDEX(path[i].p_hdr));
1063 		ext4_ext_show_move(inode, path, newblock, i);
1064 		if (m) {
1065 			memmove(++fidx, path[i].p_idx,
1066 				sizeof(struct ext4_extent_idx) * m);
1067 			le16_add_cpu(&neh->eh_entries, m);
1068 		}
1069 		ext4_extent_block_csum_set(inode, neh);
1070 		set_buffer_uptodate(bh);
1071 		unlock_buffer(bh);
1072 
1073 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1074 		if (err)
1075 			goto cleanup;
1076 		brelse(bh);
1077 		bh = NULL;
1078 
1079 		/* correct old index */
1080 		if (m) {
1081 			err = ext4_ext_get_access(handle, inode, path + i);
1082 			if (err)
1083 				goto cleanup;
1084 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1085 			err = ext4_ext_dirty(handle, inode, path + i);
1086 			if (err)
1087 				goto cleanup;
1088 		}
1089 
1090 		i--;
1091 	}
1092 
1093 	/* insert new index */
1094 	err = ext4_ext_insert_index(handle, inode, path + at,
1095 				    le32_to_cpu(border), newblock);
1096 
1097 cleanup:
1098 	if (bh) {
1099 		if (buffer_locked(bh))
1100 			unlock_buffer(bh);
1101 		brelse(bh);
1102 	}
1103 
1104 	if (err) {
1105 		/* free all allocated blocks in error case */
1106 		for (i = 0; i < depth; i++) {
1107 			if (!ablocks[i])
1108 				continue;
1109 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1110 					 EXT4_FREE_BLOCKS_METADATA);
1111 		}
1112 	}
1113 	kfree(ablocks);
1114 
1115 	return err;
1116 }
1117 
1118 /*
1119  * ext4_ext_grow_indepth:
1120  * implements tree growing procedure:
1121  * - allocates new block
1122  * - moves top-level data (index block or leaf) into the new block
1123  * - initializes new top-level, creating index that points to the
1124  *   just created block
1125  */
1126 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1127 				 unsigned int flags,
1128 				 struct ext4_extent *newext)
1129 {
1130 	struct ext4_extent_header *neh;
1131 	struct buffer_head *bh;
1132 	ext4_fsblk_t newblock;
1133 	int err = 0;
1134 
1135 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1136 		newext, &err, flags);
1137 	if (newblock == 0)
1138 		return err;
1139 
1140 	bh = sb_getblk(inode->i_sb, newblock);
1141 	if (unlikely(!bh))
1142 		return -ENOMEM;
1143 	lock_buffer(bh);
1144 
1145 	err = ext4_journal_get_create_access(handle, bh);
1146 	if (err) {
1147 		unlock_buffer(bh);
1148 		goto out;
1149 	}
1150 
1151 	/* move top-level index/leaf into new block */
1152 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1153 		sizeof(EXT4_I(inode)->i_data));
1154 
1155 	/* set size of new block */
1156 	neh = ext_block_hdr(bh);
1157 	/* old root could have indexes or leaves
1158 	 * so calculate e_max right way */
1159 	if (ext_depth(inode))
1160 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1161 	else
1162 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1163 	neh->eh_magic = EXT4_EXT_MAGIC;
1164 	ext4_extent_block_csum_set(inode, neh);
1165 	set_buffer_uptodate(bh);
1166 	unlock_buffer(bh);
1167 
1168 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1169 	if (err)
1170 		goto out;
1171 
1172 	/* Update top-level index: num,max,pointer */
1173 	neh = ext_inode_hdr(inode);
1174 	neh->eh_entries = cpu_to_le16(1);
1175 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1176 	if (neh->eh_depth == 0) {
1177 		/* Root extent block becomes index block */
1178 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1179 		EXT_FIRST_INDEX(neh)->ei_block =
1180 			EXT_FIRST_EXTENT(neh)->ee_block;
1181 	}
1182 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1183 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1184 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1185 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1186 
1187 	le16_add_cpu(&neh->eh_depth, 1);
1188 	ext4_mark_inode_dirty(handle, inode);
1189 out:
1190 	brelse(bh);
1191 
1192 	return err;
1193 }
1194 
1195 /*
1196  * ext4_ext_create_new_leaf:
1197  * finds empty index and adds new leaf.
1198  * if no free index is found, then it requests in-depth growing.
1199  */
1200 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1201 				    unsigned int flags,
1202 				    struct ext4_ext_path *path,
1203 				    struct ext4_extent *newext)
1204 {
1205 	struct ext4_ext_path *curp;
1206 	int depth, i, err = 0;
1207 
1208 repeat:
1209 	i = depth = ext_depth(inode);
1210 
1211 	/* walk up to the tree and look for free index entry */
1212 	curp = path + depth;
1213 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1214 		i--;
1215 		curp--;
1216 	}
1217 
1218 	/* we use already allocated block for index block,
1219 	 * so subsequent data blocks should be contiguous */
1220 	if (EXT_HAS_FREE_INDEX(curp)) {
1221 		/* if we found index with free entry, then use that
1222 		 * entry: create all needed subtree and add new leaf */
1223 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1224 		if (err)
1225 			goto out;
1226 
1227 		/* refill path */
1228 		ext4_ext_drop_refs(path);
1229 		path = ext4_ext_find_extent(inode,
1230 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1231 				    path);
1232 		if (IS_ERR(path))
1233 			err = PTR_ERR(path);
1234 	} else {
1235 		/* tree is full, time to grow in depth */
1236 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1237 		if (err)
1238 			goto out;
1239 
1240 		/* refill path */
1241 		ext4_ext_drop_refs(path);
1242 		path = ext4_ext_find_extent(inode,
1243 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1244 				    path);
1245 		if (IS_ERR(path)) {
1246 			err = PTR_ERR(path);
1247 			goto out;
1248 		}
1249 
1250 		/*
1251 		 * only first (depth 0 -> 1) produces free space;
1252 		 * in all other cases we have to split the grown tree
1253 		 */
1254 		depth = ext_depth(inode);
1255 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1256 			/* now we need to split */
1257 			goto repeat;
1258 		}
1259 	}
1260 
1261 out:
1262 	return err;
1263 }
1264 
1265 /*
1266  * search the closest allocated block to the left for *logical
1267  * and returns it at @logical + it's physical address at @phys
1268  * if *logical is the smallest allocated block, the function
1269  * returns 0 at @phys
1270  * return value contains 0 (success) or error code
1271  */
1272 static int ext4_ext_search_left(struct inode *inode,
1273 				struct ext4_ext_path *path,
1274 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1275 {
1276 	struct ext4_extent_idx *ix;
1277 	struct ext4_extent *ex;
1278 	int depth, ee_len;
1279 
1280 	if (unlikely(path == NULL)) {
1281 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1282 		return -EIO;
1283 	}
1284 	depth = path->p_depth;
1285 	*phys = 0;
1286 
1287 	if (depth == 0 && path->p_ext == NULL)
1288 		return 0;
1289 
1290 	/* usually extent in the path covers blocks smaller
1291 	 * then *logical, but it can be that extent is the
1292 	 * first one in the file */
1293 
1294 	ex = path[depth].p_ext;
1295 	ee_len = ext4_ext_get_actual_len(ex);
1296 	if (*logical < le32_to_cpu(ex->ee_block)) {
1297 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1298 			EXT4_ERROR_INODE(inode,
1299 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1300 					 *logical, le32_to_cpu(ex->ee_block));
1301 			return -EIO;
1302 		}
1303 		while (--depth >= 0) {
1304 			ix = path[depth].p_idx;
1305 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1306 				EXT4_ERROR_INODE(inode,
1307 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1308 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1309 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1310 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1311 				  depth);
1312 				return -EIO;
1313 			}
1314 		}
1315 		return 0;
1316 	}
1317 
1318 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1319 		EXT4_ERROR_INODE(inode,
1320 				 "logical %d < ee_block %d + ee_len %d!",
1321 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1322 		return -EIO;
1323 	}
1324 
1325 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1326 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1327 	return 0;
1328 }
1329 
1330 /*
1331  * search the closest allocated block to the right for *logical
1332  * and returns it at @logical + it's physical address at @phys
1333  * if *logical is the largest allocated block, the function
1334  * returns 0 at @phys
1335  * return value contains 0 (success) or error code
1336  */
1337 static int ext4_ext_search_right(struct inode *inode,
1338 				 struct ext4_ext_path *path,
1339 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1340 				 struct ext4_extent **ret_ex)
1341 {
1342 	struct buffer_head *bh = NULL;
1343 	struct ext4_extent_header *eh;
1344 	struct ext4_extent_idx *ix;
1345 	struct ext4_extent *ex;
1346 	ext4_fsblk_t block;
1347 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1348 	int ee_len;
1349 
1350 	if (unlikely(path == NULL)) {
1351 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1352 		return -EIO;
1353 	}
1354 	depth = path->p_depth;
1355 	*phys = 0;
1356 
1357 	if (depth == 0 && path->p_ext == NULL)
1358 		return 0;
1359 
1360 	/* usually extent in the path covers blocks smaller
1361 	 * then *logical, but it can be that extent is the
1362 	 * first one in the file */
1363 
1364 	ex = path[depth].p_ext;
1365 	ee_len = ext4_ext_get_actual_len(ex);
1366 	if (*logical < le32_to_cpu(ex->ee_block)) {
1367 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1368 			EXT4_ERROR_INODE(inode,
1369 					 "first_extent(path[%d].p_hdr) != ex",
1370 					 depth);
1371 			return -EIO;
1372 		}
1373 		while (--depth >= 0) {
1374 			ix = path[depth].p_idx;
1375 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1376 				EXT4_ERROR_INODE(inode,
1377 						 "ix != EXT_FIRST_INDEX *logical %d!",
1378 						 *logical);
1379 				return -EIO;
1380 			}
1381 		}
1382 		goto found_extent;
1383 	}
1384 
1385 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1386 		EXT4_ERROR_INODE(inode,
1387 				 "logical %d < ee_block %d + ee_len %d!",
1388 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1389 		return -EIO;
1390 	}
1391 
1392 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1393 		/* next allocated block in this leaf */
1394 		ex++;
1395 		goto found_extent;
1396 	}
1397 
1398 	/* go up and search for index to the right */
1399 	while (--depth >= 0) {
1400 		ix = path[depth].p_idx;
1401 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1402 			goto got_index;
1403 	}
1404 
1405 	/* we've gone up to the root and found no index to the right */
1406 	return 0;
1407 
1408 got_index:
1409 	/* we've found index to the right, let's
1410 	 * follow it and find the closest allocated
1411 	 * block to the right */
1412 	ix++;
1413 	block = ext4_idx_pblock(ix);
1414 	while (++depth < path->p_depth) {
1415 		bh = sb_bread(inode->i_sb, block);
1416 		if (bh == NULL)
1417 			return -EIO;
1418 		eh = ext_block_hdr(bh);
1419 		/* subtract from p_depth to get proper eh_depth */
1420 		if (ext4_ext_check_block(inode, eh,
1421 					 path->p_depth - depth, bh)) {
1422 			put_bh(bh);
1423 			return -EIO;
1424 		}
1425 		ix = EXT_FIRST_INDEX(eh);
1426 		block = ext4_idx_pblock(ix);
1427 		put_bh(bh);
1428 	}
1429 
1430 	bh = sb_bread(inode->i_sb, block);
1431 	if (bh == NULL)
1432 		return -EIO;
1433 	eh = ext_block_hdr(bh);
1434 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1435 		put_bh(bh);
1436 		return -EIO;
1437 	}
1438 	ex = EXT_FIRST_EXTENT(eh);
1439 found_extent:
1440 	*logical = le32_to_cpu(ex->ee_block);
1441 	*phys = ext4_ext_pblock(ex);
1442 	*ret_ex = ex;
1443 	if (bh)
1444 		put_bh(bh);
1445 	return 0;
1446 }
1447 
1448 /*
1449  * ext4_ext_next_allocated_block:
1450  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1451  * NOTE: it considers block number from index entry as
1452  * allocated block. Thus, index entries have to be consistent
1453  * with leaves.
1454  */
1455 static ext4_lblk_t
1456 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1457 {
1458 	int depth;
1459 
1460 	BUG_ON(path == NULL);
1461 	depth = path->p_depth;
1462 
1463 	if (depth == 0 && path->p_ext == NULL)
1464 		return EXT_MAX_BLOCKS;
1465 
1466 	while (depth >= 0) {
1467 		if (depth == path->p_depth) {
1468 			/* leaf */
1469 			if (path[depth].p_ext &&
1470 				path[depth].p_ext !=
1471 					EXT_LAST_EXTENT(path[depth].p_hdr))
1472 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1473 		} else {
1474 			/* index */
1475 			if (path[depth].p_idx !=
1476 					EXT_LAST_INDEX(path[depth].p_hdr))
1477 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1478 		}
1479 		depth--;
1480 	}
1481 
1482 	return EXT_MAX_BLOCKS;
1483 }
1484 
1485 /*
1486  * ext4_ext_next_leaf_block:
1487  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1488  */
1489 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1490 {
1491 	int depth;
1492 
1493 	BUG_ON(path == NULL);
1494 	depth = path->p_depth;
1495 
1496 	/* zero-tree has no leaf blocks at all */
1497 	if (depth == 0)
1498 		return EXT_MAX_BLOCKS;
1499 
1500 	/* go to index block */
1501 	depth--;
1502 
1503 	while (depth >= 0) {
1504 		if (path[depth].p_idx !=
1505 				EXT_LAST_INDEX(path[depth].p_hdr))
1506 			return (ext4_lblk_t)
1507 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1508 		depth--;
1509 	}
1510 
1511 	return EXT_MAX_BLOCKS;
1512 }
1513 
1514 /*
1515  * ext4_ext_correct_indexes:
1516  * if leaf gets modified and modified extent is first in the leaf,
1517  * then we have to correct all indexes above.
1518  * TODO: do we need to correct tree in all cases?
1519  */
1520 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1521 				struct ext4_ext_path *path)
1522 {
1523 	struct ext4_extent_header *eh;
1524 	int depth = ext_depth(inode);
1525 	struct ext4_extent *ex;
1526 	__le32 border;
1527 	int k, err = 0;
1528 
1529 	eh = path[depth].p_hdr;
1530 	ex = path[depth].p_ext;
1531 
1532 	if (unlikely(ex == NULL || eh == NULL)) {
1533 		EXT4_ERROR_INODE(inode,
1534 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1535 		return -EIO;
1536 	}
1537 
1538 	if (depth == 0) {
1539 		/* there is no tree at all */
1540 		return 0;
1541 	}
1542 
1543 	if (ex != EXT_FIRST_EXTENT(eh)) {
1544 		/* we correct tree if first leaf got modified only */
1545 		return 0;
1546 	}
1547 
1548 	/*
1549 	 * TODO: we need correction if border is smaller than current one
1550 	 */
1551 	k = depth - 1;
1552 	border = path[depth].p_ext->ee_block;
1553 	err = ext4_ext_get_access(handle, inode, path + k);
1554 	if (err)
1555 		return err;
1556 	path[k].p_idx->ei_block = border;
1557 	err = ext4_ext_dirty(handle, inode, path + k);
1558 	if (err)
1559 		return err;
1560 
1561 	while (k--) {
1562 		/* change all left-side indexes */
1563 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1564 			break;
1565 		err = ext4_ext_get_access(handle, inode, path + k);
1566 		if (err)
1567 			break;
1568 		path[k].p_idx->ei_block = border;
1569 		err = ext4_ext_dirty(handle, inode, path + k);
1570 		if (err)
1571 			break;
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 int
1578 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1579 				struct ext4_extent *ex2)
1580 {
1581 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1582 
1583 	/*
1584 	 * Make sure that both extents are initialized. We don't merge
1585 	 * uninitialized extents so that we can be sure that end_io code has
1586 	 * the extent that was written properly split out and conversion to
1587 	 * initialized is trivial.
1588 	 */
1589 	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1590 		return 0;
1591 
1592 	if (ext4_ext_is_uninitialized(ex1))
1593 		max_len = EXT_UNINIT_MAX_LEN;
1594 	else
1595 		max_len = EXT_INIT_MAX_LEN;
1596 
1597 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1598 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1599 
1600 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1601 			le32_to_cpu(ex2->ee_block))
1602 		return 0;
1603 
1604 	/*
1605 	 * To allow future support for preallocated extents to be added
1606 	 * as an RO_COMPAT feature, refuse to merge to extents if
1607 	 * this can result in the top bit of ee_len being set.
1608 	 */
1609 	if (ext1_ee_len + ext2_ee_len > max_len)
1610 		return 0;
1611 #ifdef AGGRESSIVE_TEST
1612 	if (ext1_ee_len >= 4)
1613 		return 0;
1614 #endif
1615 
1616 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1617 		return 1;
1618 	return 0;
1619 }
1620 
1621 /*
1622  * This function tries to merge the "ex" extent to the next extent in the tree.
1623  * It always tries to merge towards right. If you want to merge towards
1624  * left, pass "ex - 1" as argument instead of "ex".
1625  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1626  * 1 if they got merged.
1627  */
1628 static int ext4_ext_try_to_merge_right(struct inode *inode,
1629 				 struct ext4_ext_path *path,
1630 				 struct ext4_extent *ex)
1631 {
1632 	struct ext4_extent_header *eh;
1633 	unsigned int depth, len;
1634 	int merge_done = 0;
1635 	int uninitialized = 0;
1636 
1637 	depth = ext_depth(inode);
1638 	BUG_ON(path[depth].p_hdr == NULL);
1639 	eh = path[depth].p_hdr;
1640 
1641 	while (ex < EXT_LAST_EXTENT(eh)) {
1642 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1643 			break;
1644 		/* merge with next extent! */
1645 		if (ext4_ext_is_uninitialized(ex))
1646 			uninitialized = 1;
1647 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1648 				+ ext4_ext_get_actual_len(ex + 1));
1649 		if (uninitialized)
1650 			ext4_ext_mark_uninitialized(ex);
1651 
1652 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1653 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1654 				* sizeof(struct ext4_extent);
1655 			memmove(ex + 1, ex + 2, len);
1656 		}
1657 		le16_add_cpu(&eh->eh_entries, -1);
1658 		merge_done = 1;
1659 		WARN_ON(eh->eh_entries == 0);
1660 		if (!eh->eh_entries)
1661 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1662 	}
1663 
1664 	return merge_done;
1665 }
1666 
1667 /*
1668  * This function does a very simple check to see if we can collapse
1669  * an extent tree with a single extent tree leaf block into the inode.
1670  */
1671 static void ext4_ext_try_to_merge_up(handle_t *handle,
1672 				     struct inode *inode,
1673 				     struct ext4_ext_path *path)
1674 {
1675 	size_t s;
1676 	unsigned max_root = ext4_ext_space_root(inode, 0);
1677 	ext4_fsblk_t blk;
1678 
1679 	if ((path[0].p_depth != 1) ||
1680 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1681 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1682 		return;
1683 
1684 	/*
1685 	 * We need to modify the block allocation bitmap and the block
1686 	 * group descriptor to release the extent tree block.  If we
1687 	 * can't get the journal credits, give up.
1688 	 */
1689 	if (ext4_journal_extend(handle, 2))
1690 		return;
1691 
1692 	/*
1693 	 * Copy the extent data up to the inode
1694 	 */
1695 	blk = ext4_idx_pblock(path[0].p_idx);
1696 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1697 		sizeof(struct ext4_extent_idx);
1698 	s += sizeof(struct ext4_extent_header);
1699 
1700 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1701 	path[0].p_depth = 0;
1702 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1703 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1704 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1705 
1706 	brelse(path[1].p_bh);
1707 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1708 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1709 }
1710 
1711 /*
1712  * This function tries to merge the @ex extent to neighbours in the tree.
1713  * return 1 if merge left else 0.
1714  */
1715 static void ext4_ext_try_to_merge(handle_t *handle,
1716 				  struct inode *inode,
1717 				  struct ext4_ext_path *path,
1718 				  struct ext4_extent *ex) {
1719 	struct ext4_extent_header *eh;
1720 	unsigned int depth;
1721 	int merge_done = 0;
1722 
1723 	depth = ext_depth(inode);
1724 	BUG_ON(path[depth].p_hdr == NULL);
1725 	eh = path[depth].p_hdr;
1726 
1727 	if (ex > EXT_FIRST_EXTENT(eh))
1728 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1729 
1730 	if (!merge_done)
1731 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1732 
1733 	ext4_ext_try_to_merge_up(handle, inode, path);
1734 }
1735 
1736 /*
1737  * check if a portion of the "newext" extent overlaps with an
1738  * existing extent.
1739  *
1740  * If there is an overlap discovered, it updates the length of the newext
1741  * such that there will be no overlap, and then returns 1.
1742  * If there is no overlap found, it returns 0.
1743  */
1744 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1745 					   struct inode *inode,
1746 					   struct ext4_extent *newext,
1747 					   struct ext4_ext_path *path)
1748 {
1749 	ext4_lblk_t b1, b2;
1750 	unsigned int depth, len1;
1751 	unsigned int ret = 0;
1752 
1753 	b1 = le32_to_cpu(newext->ee_block);
1754 	len1 = ext4_ext_get_actual_len(newext);
1755 	depth = ext_depth(inode);
1756 	if (!path[depth].p_ext)
1757 		goto out;
1758 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1759 	b2 &= ~(sbi->s_cluster_ratio - 1);
1760 
1761 	/*
1762 	 * get the next allocated block if the extent in the path
1763 	 * is before the requested block(s)
1764 	 */
1765 	if (b2 < b1) {
1766 		b2 = ext4_ext_next_allocated_block(path);
1767 		if (b2 == EXT_MAX_BLOCKS)
1768 			goto out;
1769 		b2 &= ~(sbi->s_cluster_ratio - 1);
1770 	}
1771 
1772 	/* check for wrap through zero on extent logical start block*/
1773 	if (b1 + len1 < b1) {
1774 		len1 = EXT_MAX_BLOCKS - b1;
1775 		newext->ee_len = cpu_to_le16(len1);
1776 		ret = 1;
1777 	}
1778 
1779 	/* check for overlap */
1780 	if (b1 + len1 > b2) {
1781 		newext->ee_len = cpu_to_le16(b2 - b1);
1782 		ret = 1;
1783 	}
1784 out:
1785 	return ret;
1786 }
1787 
1788 /*
1789  * ext4_ext_insert_extent:
1790  * tries to merge requsted extent into the existing extent or
1791  * inserts requested extent as new one into the tree,
1792  * creating new leaf in the no-space case.
1793  */
1794 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1795 				struct ext4_ext_path *path,
1796 				struct ext4_extent *newext, int flag)
1797 {
1798 	struct ext4_extent_header *eh;
1799 	struct ext4_extent *ex, *fex;
1800 	struct ext4_extent *nearex; /* nearest extent */
1801 	struct ext4_ext_path *npath = NULL;
1802 	int depth, len, err;
1803 	ext4_lblk_t next;
1804 	unsigned uninitialized = 0;
1805 	int flags = 0;
1806 
1807 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1808 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1809 		return -EIO;
1810 	}
1811 	depth = ext_depth(inode);
1812 	ex = path[depth].p_ext;
1813 	eh = path[depth].p_hdr;
1814 	if (unlikely(path[depth].p_hdr == NULL)) {
1815 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1816 		return -EIO;
1817 	}
1818 
1819 	/* try to insert block into found extent and return */
1820 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) {
1821 
1822 		/*
1823 		 * Try to see whether we should rather test the extent on
1824 		 * right from ex, or from the left of ex. This is because
1825 		 * ext4_ext_find_extent() can return either extent on the
1826 		 * left, or on the right from the searched position. This
1827 		 * will make merging more effective.
1828 		 */
1829 		if (ex < EXT_LAST_EXTENT(eh) &&
1830 		    (le32_to_cpu(ex->ee_block) +
1831 		    ext4_ext_get_actual_len(ex) <
1832 		    le32_to_cpu(newext->ee_block))) {
1833 			ex += 1;
1834 			goto prepend;
1835 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1836 			   (le32_to_cpu(newext->ee_block) +
1837 			   ext4_ext_get_actual_len(newext) <
1838 			   le32_to_cpu(ex->ee_block)))
1839 			ex -= 1;
1840 
1841 		/* Try to append newex to the ex */
1842 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1843 			ext_debug("append [%d]%d block to %u:[%d]%d"
1844 				  "(from %llu)\n",
1845 				  ext4_ext_is_uninitialized(newext),
1846 				  ext4_ext_get_actual_len(newext),
1847 				  le32_to_cpu(ex->ee_block),
1848 				  ext4_ext_is_uninitialized(ex),
1849 				  ext4_ext_get_actual_len(ex),
1850 				  ext4_ext_pblock(ex));
1851 			err = ext4_ext_get_access(handle, inode,
1852 						  path + depth);
1853 			if (err)
1854 				return err;
1855 
1856 			/*
1857 			 * ext4_can_extents_be_merged should have checked
1858 			 * that either both extents are uninitialized, or
1859 			 * both aren't. Thus we need to check only one of
1860 			 * them here.
1861 			 */
1862 			if (ext4_ext_is_uninitialized(ex))
1863 				uninitialized = 1;
1864 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1865 					+ ext4_ext_get_actual_len(newext));
1866 			if (uninitialized)
1867 				ext4_ext_mark_uninitialized(ex);
1868 			eh = path[depth].p_hdr;
1869 			nearex = ex;
1870 			goto merge;
1871 		}
1872 
1873 prepend:
1874 		/* Try to prepend newex to the ex */
1875 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1876 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1877 				  "(from %llu)\n",
1878 				  le32_to_cpu(newext->ee_block),
1879 				  ext4_ext_is_uninitialized(newext),
1880 				  ext4_ext_get_actual_len(newext),
1881 				  le32_to_cpu(ex->ee_block),
1882 				  ext4_ext_is_uninitialized(ex),
1883 				  ext4_ext_get_actual_len(ex),
1884 				  ext4_ext_pblock(ex));
1885 			err = ext4_ext_get_access(handle, inode,
1886 						  path + depth);
1887 			if (err)
1888 				return err;
1889 
1890 			/*
1891 			 * ext4_can_extents_be_merged should have checked
1892 			 * that either both extents are uninitialized, or
1893 			 * both aren't. Thus we need to check only one of
1894 			 * them here.
1895 			 */
1896 			if (ext4_ext_is_uninitialized(ex))
1897 				uninitialized = 1;
1898 			ex->ee_block = newext->ee_block;
1899 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1900 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1901 					+ ext4_ext_get_actual_len(newext));
1902 			if (uninitialized)
1903 				ext4_ext_mark_uninitialized(ex);
1904 			eh = path[depth].p_hdr;
1905 			nearex = ex;
1906 			goto merge;
1907 		}
1908 	}
1909 
1910 	depth = ext_depth(inode);
1911 	eh = path[depth].p_hdr;
1912 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1913 		goto has_space;
1914 
1915 	/* probably next leaf has space for us? */
1916 	fex = EXT_LAST_EXTENT(eh);
1917 	next = EXT_MAX_BLOCKS;
1918 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1919 		next = ext4_ext_next_leaf_block(path);
1920 	if (next != EXT_MAX_BLOCKS) {
1921 		ext_debug("next leaf block - %u\n", next);
1922 		BUG_ON(npath != NULL);
1923 		npath = ext4_ext_find_extent(inode, next, NULL);
1924 		if (IS_ERR(npath))
1925 			return PTR_ERR(npath);
1926 		BUG_ON(npath->p_depth != path->p_depth);
1927 		eh = npath[depth].p_hdr;
1928 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1929 			ext_debug("next leaf isn't full(%d)\n",
1930 				  le16_to_cpu(eh->eh_entries));
1931 			path = npath;
1932 			goto has_space;
1933 		}
1934 		ext_debug("next leaf has no free space(%d,%d)\n",
1935 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1936 	}
1937 
1938 	/*
1939 	 * There is no free space in the found leaf.
1940 	 * We're gonna add a new leaf in the tree.
1941 	 */
1942 	if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1943 		flags = EXT4_MB_USE_RESERVED;
1944 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1945 	if (err)
1946 		goto cleanup;
1947 	depth = ext_depth(inode);
1948 	eh = path[depth].p_hdr;
1949 
1950 has_space:
1951 	nearex = path[depth].p_ext;
1952 
1953 	err = ext4_ext_get_access(handle, inode, path + depth);
1954 	if (err)
1955 		goto cleanup;
1956 
1957 	if (!nearex) {
1958 		/* there is no extent in this leaf, create first one */
1959 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1960 				le32_to_cpu(newext->ee_block),
1961 				ext4_ext_pblock(newext),
1962 				ext4_ext_is_uninitialized(newext),
1963 				ext4_ext_get_actual_len(newext));
1964 		nearex = EXT_FIRST_EXTENT(eh);
1965 	} else {
1966 		if (le32_to_cpu(newext->ee_block)
1967 			   > le32_to_cpu(nearex->ee_block)) {
1968 			/* Insert after */
1969 			ext_debug("insert %u:%llu:[%d]%d before: "
1970 					"nearest %p\n",
1971 					le32_to_cpu(newext->ee_block),
1972 					ext4_ext_pblock(newext),
1973 					ext4_ext_is_uninitialized(newext),
1974 					ext4_ext_get_actual_len(newext),
1975 					nearex);
1976 			nearex++;
1977 		} else {
1978 			/* Insert before */
1979 			BUG_ON(newext->ee_block == nearex->ee_block);
1980 			ext_debug("insert %u:%llu:[%d]%d after: "
1981 					"nearest %p\n",
1982 					le32_to_cpu(newext->ee_block),
1983 					ext4_ext_pblock(newext),
1984 					ext4_ext_is_uninitialized(newext),
1985 					ext4_ext_get_actual_len(newext),
1986 					nearex);
1987 		}
1988 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1989 		if (len > 0) {
1990 			ext_debug("insert %u:%llu:[%d]%d: "
1991 					"move %d extents from 0x%p to 0x%p\n",
1992 					le32_to_cpu(newext->ee_block),
1993 					ext4_ext_pblock(newext),
1994 					ext4_ext_is_uninitialized(newext),
1995 					ext4_ext_get_actual_len(newext),
1996 					len, nearex, nearex + 1);
1997 			memmove(nearex + 1, nearex,
1998 				len * sizeof(struct ext4_extent));
1999 		}
2000 	}
2001 
2002 	le16_add_cpu(&eh->eh_entries, 1);
2003 	path[depth].p_ext = nearex;
2004 	nearex->ee_block = newext->ee_block;
2005 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2006 	nearex->ee_len = newext->ee_len;
2007 
2008 merge:
2009 	/* try to merge extents */
2010 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
2011 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2012 
2013 
2014 	/* time to correct all indexes above */
2015 	err = ext4_ext_correct_indexes(handle, inode, path);
2016 	if (err)
2017 		goto cleanup;
2018 
2019 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2020 
2021 cleanup:
2022 	if (npath) {
2023 		ext4_ext_drop_refs(npath);
2024 		kfree(npath);
2025 	}
2026 	return err;
2027 }
2028 
2029 static int ext4_fill_fiemap_extents(struct inode *inode,
2030 				    ext4_lblk_t block, ext4_lblk_t num,
2031 				    struct fiemap_extent_info *fieinfo)
2032 {
2033 	struct ext4_ext_path *path = NULL;
2034 	struct ext4_extent *ex;
2035 	struct extent_status es;
2036 	ext4_lblk_t next, next_del, start = 0, end = 0;
2037 	ext4_lblk_t last = block + num;
2038 	int exists, depth = 0, err = 0;
2039 	unsigned int flags = 0;
2040 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2041 
2042 	while (block < last && block != EXT_MAX_BLOCKS) {
2043 		num = last - block;
2044 		/* find extent for this block */
2045 		down_read(&EXT4_I(inode)->i_data_sem);
2046 
2047 		if (path && ext_depth(inode) != depth) {
2048 			/* depth was changed. we have to realloc path */
2049 			kfree(path);
2050 			path = NULL;
2051 		}
2052 
2053 		path = ext4_ext_find_extent(inode, block, path);
2054 		if (IS_ERR(path)) {
2055 			up_read(&EXT4_I(inode)->i_data_sem);
2056 			err = PTR_ERR(path);
2057 			path = NULL;
2058 			break;
2059 		}
2060 
2061 		depth = ext_depth(inode);
2062 		if (unlikely(path[depth].p_hdr == NULL)) {
2063 			up_read(&EXT4_I(inode)->i_data_sem);
2064 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2065 			err = -EIO;
2066 			break;
2067 		}
2068 		ex = path[depth].p_ext;
2069 		next = ext4_ext_next_allocated_block(path);
2070 		ext4_ext_drop_refs(path);
2071 
2072 		flags = 0;
2073 		exists = 0;
2074 		if (!ex) {
2075 			/* there is no extent yet, so try to allocate
2076 			 * all requested space */
2077 			start = block;
2078 			end = block + num;
2079 		} else if (le32_to_cpu(ex->ee_block) > block) {
2080 			/* need to allocate space before found extent */
2081 			start = block;
2082 			end = le32_to_cpu(ex->ee_block);
2083 			if (block + num < end)
2084 				end = block + num;
2085 		} else if (block >= le32_to_cpu(ex->ee_block)
2086 					+ ext4_ext_get_actual_len(ex)) {
2087 			/* need to allocate space after found extent */
2088 			start = block;
2089 			end = block + num;
2090 			if (end >= next)
2091 				end = next;
2092 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2093 			/*
2094 			 * some part of requested space is covered
2095 			 * by found extent
2096 			 */
2097 			start = block;
2098 			end = le32_to_cpu(ex->ee_block)
2099 				+ ext4_ext_get_actual_len(ex);
2100 			if (block + num < end)
2101 				end = block + num;
2102 			exists = 1;
2103 		} else {
2104 			BUG();
2105 		}
2106 		BUG_ON(end <= start);
2107 
2108 		if (!exists) {
2109 			es.es_lblk = start;
2110 			es.es_len = end - start;
2111 			es.es_pblk = 0;
2112 		} else {
2113 			es.es_lblk = le32_to_cpu(ex->ee_block);
2114 			es.es_len = ext4_ext_get_actual_len(ex);
2115 			es.es_pblk = ext4_ext_pblock(ex);
2116 			if (ext4_ext_is_uninitialized(ex))
2117 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2118 		}
2119 
2120 		/*
2121 		 * Find delayed extent and update es accordingly. We call
2122 		 * it even in !exists case to find out whether es is the
2123 		 * last existing extent or not.
2124 		 */
2125 		next_del = ext4_find_delayed_extent(inode, &es);
2126 		if (!exists && next_del) {
2127 			exists = 1;
2128 			flags |= (FIEMAP_EXTENT_DELALLOC |
2129 				  FIEMAP_EXTENT_UNKNOWN);
2130 		}
2131 		up_read(&EXT4_I(inode)->i_data_sem);
2132 
2133 		if (unlikely(es.es_len == 0)) {
2134 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2135 			err = -EIO;
2136 			break;
2137 		}
2138 
2139 		/*
2140 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2141 		 * we need to check next == EXT_MAX_BLOCKS because it is
2142 		 * possible that an extent is with unwritten and delayed
2143 		 * status due to when an extent is delayed allocated and
2144 		 * is allocated by fallocate status tree will track both of
2145 		 * them in a extent.
2146 		 *
2147 		 * So we could return a unwritten and delayed extent, and
2148 		 * its block is equal to 'next'.
2149 		 */
2150 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2151 			flags |= FIEMAP_EXTENT_LAST;
2152 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2153 				     next != EXT_MAX_BLOCKS)) {
2154 				EXT4_ERROR_INODE(inode,
2155 						 "next extent == %u, next "
2156 						 "delalloc extent = %u",
2157 						 next, next_del);
2158 				err = -EIO;
2159 				break;
2160 			}
2161 		}
2162 
2163 		if (exists) {
2164 			err = fiemap_fill_next_extent(fieinfo,
2165 				(__u64)es.es_lblk << blksize_bits,
2166 				(__u64)es.es_pblk << blksize_bits,
2167 				(__u64)es.es_len << blksize_bits,
2168 				flags);
2169 			if (err < 0)
2170 				break;
2171 			if (err == 1) {
2172 				err = 0;
2173 				break;
2174 			}
2175 		}
2176 
2177 		block = es.es_lblk + es.es_len;
2178 	}
2179 
2180 	if (path) {
2181 		ext4_ext_drop_refs(path);
2182 		kfree(path);
2183 	}
2184 
2185 	return err;
2186 }
2187 
2188 /*
2189  * ext4_ext_put_gap_in_cache:
2190  * calculate boundaries of the gap that the requested block fits into
2191  * and cache this gap
2192  */
2193 static void
2194 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2195 				ext4_lblk_t block)
2196 {
2197 	int depth = ext_depth(inode);
2198 	unsigned long len;
2199 	ext4_lblk_t lblock;
2200 	struct ext4_extent *ex;
2201 
2202 	ex = path[depth].p_ext;
2203 	if (ex == NULL) {
2204 		/*
2205 		 * there is no extent yet, so gap is [0;-] and we
2206 		 * don't cache it
2207 		 */
2208 		ext_debug("cache gap(whole file):");
2209 	} else if (block < le32_to_cpu(ex->ee_block)) {
2210 		lblock = block;
2211 		len = le32_to_cpu(ex->ee_block) - block;
2212 		ext_debug("cache gap(before): %u [%u:%u]",
2213 				block,
2214 				le32_to_cpu(ex->ee_block),
2215 				 ext4_ext_get_actual_len(ex));
2216 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2217 			ext4_es_insert_extent(inode, lblock, len, ~0,
2218 					      EXTENT_STATUS_HOLE);
2219 	} else if (block >= le32_to_cpu(ex->ee_block)
2220 			+ ext4_ext_get_actual_len(ex)) {
2221 		ext4_lblk_t next;
2222 		lblock = le32_to_cpu(ex->ee_block)
2223 			+ ext4_ext_get_actual_len(ex);
2224 
2225 		next = ext4_ext_next_allocated_block(path);
2226 		ext_debug("cache gap(after): [%u:%u] %u",
2227 				le32_to_cpu(ex->ee_block),
2228 				ext4_ext_get_actual_len(ex),
2229 				block);
2230 		BUG_ON(next == lblock);
2231 		len = next - lblock;
2232 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2233 			ext4_es_insert_extent(inode, lblock, len, ~0,
2234 					      EXTENT_STATUS_HOLE);
2235 	} else {
2236 		lblock = len = 0;
2237 		BUG();
2238 	}
2239 
2240 	ext_debug(" -> %u:%lu\n", lblock, len);
2241 }
2242 
2243 /*
2244  * ext4_ext_rm_idx:
2245  * removes index from the index block.
2246  */
2247 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2248 			struct ext4_ext_path *path, int depth)
2249 {
2250 	int err;
2251 	ext4_fsblk_t leaf;
2252 
2253 	/* free index block */
2254 	depth--;
2255 	path = path + depth;
2256 	leaf = ext4_idx_pblock(path->p_idx);
2257 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2258 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2259 		return -EIO;
2260 	}
2261 	err = ext4_ext_get_access(handle, inode, path);
2262 	if (err)
2263 		return err;
2264 
2265 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2266 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2267 		len *= sizeof(struct ext4_extent_idx);
2268 		memmove(path->p_idx, path->p_idx + 1, len);
2269 	}
2270 
2271 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2272 	err = ext4_ext_dirty(handle, inode, path);
2273 	if (err)
2274 		return err;
2275 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2276 	trace_ext4_ext_rm_idx(inode, leaf);
2277 
2278 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2279 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2280 
2281 	while (--depth >= 0) {
2282 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2283 			break;
2284 		path--;
2285 		err = ext4_ext_get_access(handle, inode, path);
2286 		if (err)
2287 			break;
2288 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2289 		err = ext4_ext_dirty(handle, inode, path);
2290 		if (err)
2291 			break;
2292 	}
2293 	return err;
2294 }
2295 
2296 /*
2297  * ext4_ext_calc_credits_for_single_extent:
2298  * This routine returns max. credits that needed to insert an extent
2299  * to the extent tree.
2300  * When pass the actual path, the caller should calculate credits
2301  * under i_data_sem.
2302  */
2303 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2304 						struct ext4_ext_path *path)
2305 {
2306 	if (path) {
2307 		int depth = ext_depth(inode);
2308 		int ret = 0;
2309 
2310 		/* probably there is space in leaf? */
2311 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2312 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2313 
2314 			/*
2315 			 *  There are some space in the leaf tree, no
2316 			 *  need to account for leaf block credit
2317 			 *
2318 			 *  bitmaps and block group descriptor blocks
2319 			 *  and other metadata blocks still need to be
2320 			 *  accounted.
2321 			 */
2322 			/* 1 bitmap, 1 block group descriptor */
2323 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2324 			return ret;
2325 		}
2326 	}
2327 
2328 	return ext4_chunk_trans_blocks(inode, nrblocks);
2329 }
2330 
2331 /*
2332  * How many index/leaf blocks need to change/allocate to add @extents extents?
2333  *
2334  * If we add a single extent, then in the worse case, each tree level
2335  * index/leaf need to be changed in case of the tree split.
2336  *
2337  * If more extents are inserted, they could cause the whole tree split more
2338  * than once, but this is really rare.
2339  */
2340 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2341 {
2342 	int index;
2343 	int depth;
2344 
2345 	/* If we are converting the inline data, only one is needed here. */
2346 	if (ext4_has_inline_data(inode))
2347 		return 1;
2348 
2349 	depth = ext_depth(inode);
2350 
2351 	if (extents <= 1)
2352 		index = depth * 2;
2353 	else
2354 		index = depth * 3;
2355 
2356 	return index;
2357 }
2358 
2359 static inline int get_default_free_blocks_flags(struct inode *inode)
2360 {
2361 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2362 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2363 	else if (ext4_should_journal_data(inode))
2364 		return EXT4_FREE_BLOCKS_FORGET;
2365 	return 0;
2366 }
2367 
2368 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2369 			      struct ext4_extent *ex,
2370 			      long long *partial_cluster,
2371 			      ext4_lblk_t from, ext4_lblk_t to)
2372 {
2373 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2374 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2375 	ext4_fsblk_t pblk;
2376 	int flags = get_default_free_blocks_flags(inode);
2377 
2378 	/*
2379 	 * For bigalloc file systems, we never free a partial cluster
2380 	 * at the beginning of the extent.  Instead, we make a note
2381 	 * that we tried freeing the cluster, and check to see if we
2382 	 * need to free it on a subsequent call to ext4_remove_blocks,
2383 	 * or at the end of the ext4_truncate() operation.
2384 	 */
2385 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2386 
2387 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2388 	/*
2389 	 * If we have a partial cluster, and it's different from the
2390 	 * cluster of the last block, we need to explicitly free the
2391 	 * partial cluster here.
2392 	 */
2393 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2394 	if ((*partial_cluster > 0) &&
2395 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2396 		ext4_free_blocks(handle, inode, NULL,
2397 				 EXT4_C2B(sbi, *partial_cluster),
2398 				 sbi->s_cluster_ratio, flags);
2399 		*partial_cluster = 0;
2400 	}
2401 
2402 #ifdef EXTENTS_STATS
2403 	{
2404 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2405 		spin_lock(&sbi->s_ext_stats_lock);
2406 		sbi->s_ext_blocks += ee_len;
2407 		sbi->s_ext_extents++;
2408 		if (ee_len < sbi->s_ext_min)
2409 			sbi->s_ext_min = ee_len;
2410 		if (ee_len > sbi->s_ext_max)
2411 			sbi->s_ext_max = ee_len;
2412 		if (ext_depth(inode) > sbi->s_depth_max)
2413 			sbi->s_depth_max = ext_depth(inode);
2414 		spin_unlock(&sbi->s_ext_stats_lock);
2415 	}
2416 #endif
2417 	if (from >= le32_to_cpu(ex->ee_block)
2418 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2419 		/* tail removal */
2420 		ext4_lblk_t num;
2421 		unsigned int unaligned;
2422 
2423 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2424 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2425 		/*
2426 		 * Usually we want to free partial cluster at the end of the
2427 		 * extent, except for the situation when the cluster is still
2428 		 * used by any other extent (partial_cluster is negative).
2429 		 */
2430 		if (*partial_cluster < 0 &&
2431 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2432 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2433 
2434 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2435 			  num, pblk, *partial_cluster);
2436 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2437 		/*
2438 		 * If the block range to be freed didn't start at the
2439 		 * beginning of a cluster, and we removed the entire
2440 		 * extent and the cluster is not used by any other extent,
2441 		 * save the partial cluster here, since we might need to
2442 		 * delete if we determine that the truncate operation has
2443 		 * removed all of the blocks in the cluster.
2444 		 *
2445 		 * On the other hand, if we did not manage to free the whole
2446 		 * extent, we have to mark the cluster as used (store negative
2447 		 * cluster number in partial_cluster).
2448 		 */
2449 		unaligned = pblk & (sbi->s_cluster_ratio - 1);
2450 		if (unaligned && (ee_len == num) &&
2451 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2452 			*partial_cluster = EXT4_B2C(sbi, pblk);
2453 		else if (unaligned)
2454 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2455 		else if (*partial_cluster > 0)
2456 			*partial_cluster = 0;
2457 	} else
2458 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2459 			   "%u-%u from %u:%u\n",
2460 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2461 	return 0;
2462 }
2463 
2464 
2465 /*
2466  * ext4_ext_rm_leaf() Removes the extents associated with the
2467  * blocks appearing between "start" and "end", and splits the extents
2468  * if "start" and "end" appear in the same extent
2469  *
2470  * @handle: The journal handle
2471  * @inode:  The files inode
2472  * @path:   The path to the leaf
2473  * @partial_cluster: The cluster which we'll have to free if all extents
2474  *                   has been released from it. It gets negative in case
2475  *                   that the cluster is still used.
2476  * @start:  The first block to remove
2477  * @end:   The last block to remove
2478  */
2479 static int
2480 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2481 		 struct ext4_ext_path *path,
2482 		 long long *partial_cluster,
2483 		 ext4_lblk_t start, ext4_lblk_t end)
2484 {
2485 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2486 	int err = 0, correct_index = 0;
2487 	int depth = ext_depth(inode), credits;
2488 	struct ext4_extent_header *eh;
2489 	ext4_lblk_t a, b;
2490 	unsigned num;
2491 	ext4_lblk_t ex_ee_block;
2492 	unsigned short ex_ee_len;
2493 	unsigned uninitialized = 0;
2494 	struct ext4_extent *ex;
2495 	ext4_fsblk_t pblk;
2496 
2497 	/* the header must be checked already in ext4_ext_remove_space() */
2498 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2499 	if (!path[depth].p_hdr)
2500 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2501 	eh = path[depth].p_hdr;
2502 	if (unlikely(path[depth].p_hdr == NULL)) {
2503 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2504 		return -EIO;
2505 	}
2506 	/* find where to start removing */
2507 	ex = path[depth].p_ext;
2508 	if (!ex)
2509 		ex = EXT_LAST_EXTENT(eh);
2510 
2511 	ex_ee_block = le32_to_cpu(ex->ee_block);
2512 	ex_ee_len = ext4_ext_get_actual_len(ex);
2513 
2514 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2515 
2516 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2517 			ex_ee_block + ex_ee_len > start) {
2518 
2519 		if (ext4_ext_is_uninitialized(ex))
2520 			uninitialized = 1;
2521 		else
2522 			uninitialized = 0;
2523 
2524 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2525 			 uninitialized, ex_ee_len);
2526 		path[depth].p_ext = ex;
2527 
2528 		a = ex_ee_block > start ? ex_ee_block : start;
2529 		b = ex_ee_block+ex_ee_len - 1 < end ?
2530 			ex_ee_block+ex_ee_len - 1 : end;
2531 
2532 		ext_debug("  border %u:%u\n", a, b);
2533 
2534 		/* If this extent is beyond the end of the hole, skip it */
2535 		if (end < ex_ee_block) {
2536 			/*
2537 			 * We're going to skip this extent and move to another,
2538 			 * so if this extent is not cluster aligned we have
2539 			 * to mark the current cluster as used to avoid
2540 			 * accidentally freeing it later on
2541 			 */
2542 			pblk = ext4_ext_pblock(ex);
2543 			if (pblk & (sbi->s_cluster_ratio - 1))
2544 				*partial_cluster =
2545 					-((long long)EXT4_B2C(sbi, pblk));
2546 			ex--;
2547 			ex_ee_block = le32_to_cpu(ex->ee_block);
2548 			ex_ee_len = ext4_ext_get_actual_len(ex);
2549 			continue;
2550 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2551 			EXT4_ERROR_INODE(inode,
2552 					 "can not handle truncate %u:%u "
2553 					 "on extent %u:%u",
2554 					 start, end, ex_ee_block,
2555 					 ex_ee_block + ex_ee_len - 1);
2556 			err = -EIO;
2557 			goto out;
2558 		} else if (a != ex_ee_block) {
2559 			/* remove tail of the extent */
2560 			num = a - ex_ee_block;
2561 		} else {
2562 			/* remove whole extent: excellent! */
2563 			num = 0;
2564 		}
2565 		/*
2566 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2567 		 * descriptor) for each block group; assume two block
2568 		 * groups plus ex_ee_len/blocks_per_block_group for
2569 		 * the worst case
2570 		 */
2571 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2572 		if (ex == EXT_FIRST_EXTENT(eh)) {
2573 			correct_index = 1;
2574 			credits += (ext_depth(inode)) + 1;
2575 		}
2576 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2577 
2578 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2579 		if (err)
2580 			goto out;
2581 
2582 		err = ext4_ext_get_access(handle, inode, path + depth);
2583 		if (err)
2584 			goto out;
2585 
2586 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2587 					 a, b);
2588 		if (err)
2589 			goto out;
2590 
2591 		if (num == 0)
2592 			/* this extent is removed; mark slot entirely unused */
2593 			ext4_ext_store_pblock(ex, 0);
2594 
2595 		ex->ee_len = cpu_to_le16(num);
2596 		/*
2597 		 * Do not mark uninitialized if all the blocks in the
2598 		 * extent have been removed.
2599 		 */
2600 		if (uninitialized && num)
2601 			ext4_ext_mark_uninitialized(ex);
2602 		/*
2603 		 * If the extent was completely released,
2604 		 * we need to remove it from the leaf
2605 		 */
2606 		if (num == 0) {
2607 			if (end != EXT_MAX_BLOCKS - 1) {
2608 				/*
2609 				 * For hole punching, we need to scoot all the
2610 				 * extents up when an extent is removed so that
2611 				 * we dont have blank extents in the middle
2612 				 */
2613 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2614 					sizeof(struct ext4_extent));
2615 
2616 				/* Now get rid of the one at the end */
2617 				memset(EXT_LAST_EXTENT(eh), 0,
2618 					sizeof(struct ext4_extent));
2619 			}
2620 			le16_add_cpu(&eh->eh_entries, -1);
2621 		} else if (*partial_cluster > 0)
2622 			*partial_cluster = 0;
2623 
2624 		err = ext4_ext_dirty(handle, inode, path + depth);
2625 		if (err)
2626 			goto out;
2627 
2628 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2629 				ext4_ext_pblock(ex));
2630 		ex--;
2631 		ex_ee_block = le32_to_cpu(ex->ee_block);
2632 		ex_ee_len = ext4_ext_get_actual_len(ex);
2633 	}
2634 
2635 	if (correct_index && eh->eh_entries)
2636 		err = ext4_ext_correct_indexes(handle, inode, path);
2637 
2638 	/*
2639 	 * Free the partial cluster only if the current extent does not
2640 	 * reference it. Otherwise we might free used cluster.
2641 	 */
2642 	if (*partial_cluster > 0 &&
2643 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2644 	     *partial_cluster)) {
2645 		int flags = get_default_free_blocks_flags(inode);
2646 
2647 		ext4_free_blocks(handle, inode, NULL,
2648 				 EXT4_C2B(sbi, *partial_cluster),
2649 				 sbi->s_cluster_ratio, flags);
2650 		*partial_cluster = 0;
2651 	}
2652 
2653 	/* if this leaf is free, then we should
2654 	 * remove it from index block above */
2655 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2656 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2657 
2658 out:
2659 	return err;
2660 }
2661 
2662 /*
2663  * ext4_ext_more_to_rm:
2664  * returns 1 if current index has to be freed (even partial)
2665  */
2666 static int
2667 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2668 {
2669 	BUG_ON(path->p_idx == NULL);
2670 
2671 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2672 		return 0;
2673 
2674 	/*
2675 	 * if truncate on deeper level happened, it wasn't partial,
2676 	 * so we have to consider current index for truncation
2677 	 */
2678 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2679 		return 0;
2680 	return 1;
2681 }
2682 
2683 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2684 			  ext4_lblk_t end)
2685 {
2686 	struct super_block *sb = inode->i_sb;
2687 	int depth = ext_depth(inode);
2688 	struct ext4_ext_path *path = NULL;
2689 	long long partial_cluster = 0;
2690 	handle_t *handle;
2691 	int i = 0, err = 0;
2692 
2693 	ext_debug("truncate since %u to %u\n", start, end);
2694 
2695 	/* probably first extent we're gonna free will be last in block */
2696 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2697 	if (IS_ERR(handle))
2698 		return PTR_ERR(handle);
2699 
2700 again:
2701 	trace_ext4_ext_remove_space(inode, start, end, depth);
2702 
2703 	/*
2704 	 * Check if we are removing extents inside the extent tree. If that
2705 	 * is the case, we are going to punch a hole inside the extent tree
2706 	 * so we have to check whether we need to split the extent covering
2707 	 * the last block to remove so we can easily remove the part of it
2708 	 * in ext4_ext_rm_leaf().
2709 	 */
2710 	if (end < EXT_MAX_BLOCKS - 1) {
2711 		struct ext4_extent *ex;
2712 		ext4_lblk_t ee_block;
2713 
2714 		/* find extent for this block */
2715 		path = ext4_ext_find_extent(inode, end, NULL);
2716 		if (IS_ERR(path)) {
2717 			ext4_journal_stop(handle);
2718 			return PTR_ERR(path);
2719 		}
2720 		depth = ext_depth(inode);
2721 		/* Leaf not may not exist only if inode has no blocks at all */
2722 		ex = path[depth].p_ext;
2723 		if (!ex) {
2724 			if (depth) {
2725 				EXT4_ERROR_INODE(inode,
2726 						 "path[%d].p_hdr == NULL",
2727 						 depth);
2728 				err = -EIO;
2729 			}
2730 			goto out;
2731 		}
2732 
2733 		ee_block = le32_to_cpu(ex->ee_block);
2734 
2735 		/*
2736 		 * See if the last block is inside the extent, if so split
2737 		 * the extent at 'end' block so we can easily remove the
2738 		 * tail of the first part of the split extent in
2739 		 * ext4_ext_rm_leaf().
2740 		 */
2741 		if (end >= ee_block &&
2742 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2743 			int split_flag = 0;
2744 
2745 			if (ext4_ext_is_uninitialized(ex))
2746 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2747 					     EXT4_EXT_MARK_UNINIT2;
2748 
2749 			/*
2750 			 * Split the extent in two so that 'end' is the last
2751 			 * block in the first new extent. Also we should not
2752 			 * fail removing space due to ENOSPC so try to use
2753 			 * reserved block if that happens.
2754 			 */
2755 			err = ext4_split_extent_at(handle, inode, path,
2756 					end + 1, split_flag,
2757 					EXT4_GET_BLOCKS_PRE_IO |
2758 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2759 
2760 			if (err < 0)
2761 				goto out;
2762 		}
2763 	}
2764 	/*
2765 	 * We start scanning from right side, freeing all the blocks
2766 	 * after i_size and walking into the tree depth-wise.
2767 	 */
2768 	depth = ext_depth(inode);
2769 	if (path) {
2770 		int k = i = depth;
2771 		while (--k > 0)
2772 			path[k].p_block =
2773 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2774 	} else {
2775 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2776 			       GFP_NOFS);
2777 		if (path == NULL) {
2778 			ext4_journal_stop(handle);
2779 			return -ENOMEM;
2780 		}
2781 		path[0].p_depth = depth;
2782 		path[0].p_hdr = ext_inode_hdr(inode);
2783 		i = 0;
2784 
2785 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2786 			err = -EIO;
2787 			goto out;
2788 		}
2789 	}
2790 	err = 0;
2791 
2792 	while (i >= 0 && err == 0) {
2793 		if (i == depth) {
2794 			/* this is leaf block */
2795 			err = ext4_ext_rm_leaf(handle, inode, path,
2796 					       &partial_cluster, start,
2797 					       end);
2798 			/* root level has p_bh == NULL, brelse() eats this */
2799 			brelse(path[i].p_bh);
2800 			path[i].p_bh = NULL;
2801 			i--;
2802 			continue;
2803 		}
2804 
2805 		/* this is index block */
2806 		if (!path[i].p_hdr) {
2807 			ext_debug("initialize header\n");
2808 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2809 		}
2810 
2811 		if (!path[i].p_idx) {
2812 			/* this level hasn't been touched yet */
2813 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2814 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2815 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2816 				  path[i].p_hdr,
2817 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2818 		} else {
2819 			/* we were already here, see at next index */
2820 			path[i].p_idx--;
2821 		}
2822 
2823 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2824 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2825 				path[i].p_idx);
2826 		if (ext4_ext_more_to_rm(path + i)) {
2827 			struct buffer_head *bh;
2828 			/* go to the next level */
2829 			ext_debug("move to level %d (block %llu)\n",
2830 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2831 			memset(path + i + 1, 0, sizeof(*path));
2832 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2833 			if (!bh) {
2834 				/* should we reset i_size? */
2835 				err = -EIO;
2836 				break;
2837 			}
2838 			if (WARN_ON(i + 1 > depth)) {
2839 				err = -EIO;
2840 				break;
2841 			}
2842 			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2843 							depth - i - 1, bh)) {
2844 				err = -EIO;
2845 				break;
2846 			}
2847 			path[i + 1].p_bh = bh;
2848 
2849 			/* save actual number of indexes since this
2850 			 * number is changed at the next iteration */
2851 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2852 			i++;
2853 		} else {
2854 			/* we finished processing this index, go up */
2855 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2856 				/* index is empty, remove it;
2857 				 * handle must be already prepared by the
2858 				 * truncatei_leaf() */
2859 				err = ext4_ext_rm_idx(handle, inode, path, i);
2860 			}
2861 			/* root level has p_bh == NULL, brelse() eats this */
2862 			brelse(path[i].p_bh);
2863 			path[i].p_bh = NULL;
2864 			i--;
2865 			ext_debug("return to level %d\n", i);
2866 		}
2867 	}
2868 
2869 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2870 			partial_cluster, path->p_hdr->eh_entries);
2871 
2872 	/* If we still have something in the partial cluster and we have removed
2873 	 * even the first extent, then we should free the blocks in the partial
2874 	 * cluster as well. */
2875 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2876 		int flags = get_default_free_blocks_flags(inode);
2877 
2878 		ext4_free_blocks(handle, inode, NULL,
2879 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2880 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2881 		partial_cluster = 0;
2882 	}
2883 
2884 	/* TODO: flexible tree reduction should be here */
2885 	if (path->p_hdr->eh_entries == 0) {
2886 		/*
2887 		 * truncate to zero freed all the tree,
2888 		 * so we need to correct eh_depth
2889 		 */
2890 		err = ext4_ext_get_access(handle, inode, path);
2891 		if (err == 0) {
2892 			ext_inode_hdr(inode)->eh_depth = 0;
2893 			ext_inode_hdr(inode)->eh_max =
2894 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2895 			err = ext4_ext_dirty(handle, inode, path);
2896 		}
2897 	}
2898 out:
2899 	ext4_ext_drop_refs(path);
2900 	kfree(path);
2901 	if (err == -EAGAIN) {
2902 		path = NULL;
2903 		goto again;
2904 	}
2905 	ext4_journal_stop(handle);
2906 
2907 	return err;
2908 }
2909 
2910 /*
2911  * called at mount time
2912  */
2913 void ext4_ext_init(struct super_block *sb)
2914 {
2915 	/*
2916 	 * possible initialization would be here
2917 	 */
2918 
2919 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2920 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2921 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2922 #ifdef AGGRESSIVE_TEST
2923 		       ", aggressive tests"
2924 #endif
2925 #ifdef CHECK_BINSEARCH
2926 		       ", check binsearch"
2927 #endif
2928 #ifdef EXTENTS_STATS
2929 		       ", stats"
2930 #endif
2931 		       "\n");
2932 #endif
2933 #ifdef EXTENTS_STATS
2934 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2935 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2936 		EXT4_SB(sb)->s_ext_max = 0;
2937 #endif
2938 	}
2939 }
2940 
2941 /*
2942  * called at umount time
2943  */
2944 void ext4_ext_release(struct super_block *sb)
2945 {
2946 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2947 		return;
2948 
2949 #ifdef EXTENTS_STATS
2950 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2951 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2952 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2953 			sbi->s_ext_blocks, sbi->s_ext_extents,
2954 			sbi->s_ext_blocks / sbi->s_ext_extents);
2955 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2956 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2957 	}
2958 #endif
2959 }
2960 
2961 /* FIXME!! we need to try to merge to left or right after zero-out  */
2962 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2963 {
2964 	ext4_fsblk_t ee_pblock;
2965 	unsigned int ee_len;
2966 	int ret;
2967 
2968 	ee_len    = ext4_ext_get_actual_len(ex);
2969 	ee_pblock = ext4_ext_pblock(ex);
2970 
2971 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2972 	if (ret > 0)
2973 		ret = 0;
2974 
2975 	return ret;
2976 }
2977 
2978 /*
2979  * ext4_split_extent_at() splits an extent at given block.
2980  *
2981  * @handle: the journal handle
2982  * @inode: the file inode
2983  * @path: the path to the extent
2984  * @split: the logical block where the extent is splitted.
2985  * @split_flags: indicates if the extent could be zeroout if split fails, and
2986  *		 the states(init or uninit) of new extents.
2987  * @flags: flags used to insert new extent to extent tree.
2988  *
2989  *
2990  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2991  * of which are deterimined by split_flag.
2992  *
2993  * There are two cases:
2994  *  a> the extent are splitted into two extent.
2995  *  b> split is not needed, and just mark the extent.
2996  *
2997  * return 0 on success.
2998  */
2999 static int ext4_split_extent_at(handle_t *handle,
3000 			     struct inode *inode,
3001 			     struct ext4_ext_path *path,
3002 			     ext4_lblk_t split,
3003 			     int split_flag,
3004 			     int flags)
3005 {
3006 	ext4_fsblk_t newblock;
3007 	ext4_lblk_t ee_block;
3008 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3009 	struct ext4_extent *ex2 = NULL;
3010 	unsigned int ee_len, depth;
3011 	int err = 0;
3012 
3013 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3014 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3015 
3016 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3017 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3018 
3019 	ext4_ext_show_leaf(inode, path);
3020 
3021 	depth = ext_depth(inode);
3022 	ex = path[depth].p_ext;
3023 	ee_block = le32_to_cpu(ex->ee_block);
3024 	ee_len = ext4_ext_get_actual_len(ex);
3025 	newblock = split - ee_block + ext4_ext_pblock(ex);
3026 
3027 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3028 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3029 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3030 			     EXT4_EXT_MARK_UNINIT1 |
3031 			     EXT4_EXT_MARK_UNINIT2));
3032 
3033 	err = ext4_ext_get_access(handle, inode, path + depth);
3034 	if (err)
3035 		goto out;
3036 
3037 	if (split == ee_block) {
3038 		/*
3039 		 * case b: block @split is the block that the extent begins with
3040 		 * then we just change the state of the extent, and splitting
3041 		 * is not needed.
3042 		 */
3043 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3044 			ext4_ext_mark_uninitialized(ex);
3045 		else
3046 			ext4_ext_mark_initialized(ex);
3047 
3048 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3049 			ext4_ext_try_to_merge(handle, inode, path, ex);
3050 
3051 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3052 		goto out;
3053 	}
3054 
3055 	/* case a */
3056 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3057 	ex->ee_len = cpu_to_le16(split - ee_block);
3058 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3059 		ext4_ext_mark_uninitialized(ex);
3060 
3061 	/*
3062 	 * path may lead to new leaf, not to original leaf any more
3063 	 * after ext4_ext_insert_extent() returns,
3064 	 */
3065 	err = ext4_ext_dirty(handle, inode, path + depth);
3066 	if (err)
3067 		goto fix_extent_len;
3068 
3069 	ex2 = &newex;
3070 	ex2->ee_block = cpu_to_le32(split);
3071 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3072 	ext4_ext_store_pblock(ex2, newblock);
3073 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3074 		ext4_ext_mark_uninitialized(ex2);
3075 
3076 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3077 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3078 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3079 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3080 				err = ext4_ext_zeroout(inode, ex2);
3081 				zero_ex.ee_block = ex2->ee_block;
3082 				zero_ex.ee_len = cpu_to_le16(
3083 						ext4_ext_get_actual_len(ex2));
3084 				ext4_ext_store_pblock(&zero_ex,
3085 						      ext4_ext_pblock(ex2));
3086 			} else {
3087 				err = ext4_ext_zeroout(inode, ex);
3088 				zero_ex.ee_block = ex->ee_block;
3089 				zero_ex.ee_len = cpu_to_le16(
3090 						ext4_ext_get_actual_len(ex));
3091 				ext4_ext_store_pblock(&zero_ex,
3092 						      ext4_ext_pblock(ex));
3093 			}
3094 		} else {
3095 			err = ext4_ext_zeroout(inode, &orig_ex);
3096 			zero_ex.ee_block = orig_ex.ee_block;
3097 			zero_ex.ee_len = cpu_to_le16(
3098 						ext4_ext_get_actual_len(&orig_ex));
3099 			ext4_ext_store_pblock(&zero_ex,
3100 					      ext4_ext_pblock(&orig_ex));
3101 		}
3102 
3103 		if (err)
3104 			goto fix_extent_len;
3105 		/* update the extent length and mark as initialized */
3106 		ex->ee_len = cpu_to_le16(ee_len);
3107 		ext4_ext_try_to_merge(handle, inode, path, ex);
3108 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3109 		if (err)
3110 			goto fix_extent_len;
3111 
3112 		/* update extent status tree */
3113 		err = ext4_es_zeroout(inode, &zero_ex);
3114 
3115 		goto out;
3116 	} else if (err)
3117 		goto fix_extent_len;
3118 
3119 out:
3120 	ext4_ext_show_leaf(inode, path);
3121 	return err;
3122 
3123 fix_extent_len:
3124 	ex->ee_len = orig_ex.ee_len;
3125 	ext4_ext_dirty(handle, inode, path + depth);
3126 	return err;
3127 }
3128 
3129 /*
3130  * ext4_split_extents() splits an extent and mark extent which is covered
3131  * by @map as split_flags indicates
3132  *
3133  * It may result in splitting the extent into multiple extents (upto three)
3134  * There are three possibilities:
3135  *   a> There is no split required
3136  *   b> Splits in two extents: Split is happening at either end of the extent
3137  *   c> Splits in three extents: Somone is splitting in middle of the extent
3138  *
3139  */
3140 static int ext4_split_extent(handle_t *handle,
3141 			      struct inode *inode,
3142 			      struct ext4_ext_path *path,
3143 			      struct ext4_map_blocks *map,
3144 			      int split_flag,
3145 			      int flags)
3146 {
3147 	ext4_lblk_t ee_block;
3148 	struct ext4_extent *ex;
3149 	unsigned int ee_len, depth;
3150 	int err = 0;
3151 	int uninitialized;
3152 	int split_flag1, flags1;
3153 	int allocated = map->m_len;
3154 
3155 	depth = ext_depth(inode);
3156 	ex = path[depth].p_ext;
3157 	ee_block = le32_to_cpu(ex->ee_block);
3158 	ee_len = ext4_ext_get_actual_len(ex);
3159 	uninitialized = ext4_ext_is_uninitialized(ex);
3160 
3161 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3162 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3163 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3164 		if (uninitialized)
3165 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3166 				       EXT4_EXT_MARK_UNINIT2;
3167 		if (split_flag & EXT4_EXT_DATA_VALID2)
3168 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3169 		err = ext4_split_extent_at(handle, inode, path,
3170 				map->m_lblk + map->m_len, split_flag1, flags1);
3171 		if (err)
3172 			goto out;
3173 	} else {
3174 		allocated = ee_len - (map->m_lblk - ee_block);
3175 	}
3176 	/*
3177 	 * Update path is required because previous ext4_split_extent_at() may
3178 	 * result in split of original leaf or extent zeroout.
3179 	 */
3180 	ext4_ext_drop_refs(path);
3181 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3182 	if (IS_ERR(path))
3183 		return PTR_ERR(path);
3184 	depth = ext_depth(inode);
3185 	ex = path[depth].p_ext;
3186 	uninitialized = ext4_ext_is_uninitialized(ex);
3187 	split_flag1 = 0;
3188 
3189 	if (map->m_lblk >= ee_block) {
3190 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3191 		if (uninitialized) {
3192 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3193 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3194 						     EXT4_EXT_MARK_UNINIT2);
3195 		}
3196 		err = ext4_split_extent_at(handle, inode, path,
3197 				map->m_lblk, split_flag1, flags);
3198 		if (err)
3199 			goto out;
3200 	}
3201 
3202 	ext4_ext_show_leaf(inode, path);
3203 out:
3204 	return err ? err : allocated;
3205 }
3206 
3207 /*
3208  * This function is called by ext4_ext_map_blocks() if someone tries to write
3209  * to an uninitialized extent. It may result in splitting the uninitialized
3210  * extent into multiple extents (up to three - one initialized and two
3211  * uninitialized).
3212  * There are three possibilities:
3213  *   a> There is no split required: Entire extent should be initialized
3214  *   b> Splits in two extents: Write is happening at either end of the extent
3215  *   c> Splits in three extents: Somone is writing in middle of the extent
3216  *
3217  * Pre-conditions:
3218  *  - The extent pointed to by 'path' is uninitialized.
3219  *  - The extent pointed to by 'path' contains a superset
3220  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3221  *
3222  * Post-conditions on success:
3223  *  - the returned value is the number of blocks beyond map->l_lblk
3224  *    that are allocated and initialized.
3225  *    It is guaranteed to be >= map->m_len.
3226  */
3227 static int ext4_ext_convert_to_initialized(handle_t *handle,
3228 					   struct inode *inode,
3229 					   struct ext4_map_blocks *map,
3230 					   struct ext4_ext_path *path,
3231 					   int flags)
3232 {
3233 	struct ext4_sb_info *sbi;
3234 	struct ext4_extent_header *eh;
3235 	struct ext4_map_blocks split_map;
3236 	struct ext4_extent zero_ex;
3237 	struct ext4_extent *ex, *abut_ex;
3238 	ext4_lblk_t ee_block, eof_block;
3239 	unsigned int ee_len, depth, map_len = map->m_len;
3240 	int allocated = 0, max_zeroout = 0;
3241 	int err = 0;
3242 	int split_flag = 0;
3243 
3244 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3245 		"block %llu, max_blocks %u\n", inode->i_ino,
3246 		(unsigned long long)map->m_lblk, map_len);
3247 
3248 	sbi = EXT4_SB(inode->i_sb);
3249 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3250 		inode->i_sb->s_blocksize_bits;
3251 	if (eof_block < map->m_lblk + map_len)
3252 		eof_block = map->m_lblk + map_len;
3253 
3254 	depth = ext_depth(inode);
3255 	eh = path[depth].p_hdr;
3256 	ex = path[depth].p_ext;
3257 	ee_block = le32_to_cpu(ex->ee_block);
3258 	ee_len = ext4_ext_get_actual_len(ex);
3259 	zero_ex.ee_len = 0;
3260 
3261 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3262 
3263 	/* Pre-conditions */
3264 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3265 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3266 
3267 	/*
3268 	 * Attempt to transfer newly initialized blocks from the currently
3269 	 * uninitialized extent to its neighbor. This is much cheaper
3270 	 * than an insertion followed by a merge as those involve costly
3271 	 * memmove() calls. Transferring to the left is the common case in
3272 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3273 	 * followed by append writes.
3274 	 *
3275 	 * Limitations of the current logic:
3276 	 *  - L1: we do not deal with writes covering the whole extent.
3277 	 *    This would require removing the extent if the transfer
3278 	 *    is possible.
3279 	 *  - L2: we only attempt to merge with an extent stored in the
3280 	 *    same extent tree node.
3281 	 */
3282 	if ((map->m_lblk == ee_block) &&
3283 		/* See if we can merge left */
3284 		(map_len < ee_len) &&		/*L1*/
3285 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3286 		ext4_lblk_t prev_lblk;
3287 		ext4_fsblk_t prev_pblk, ee_pblk;
3288 		unsigned int prev_len;
3289 
3290 		abut_ex = ex - 1;
3291 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3292 		prev_len = ext4_ext_get_actual_len(abut_ex);
3293 		prev_pblk = ext4_ext_pblock(abut_ex);
3294 		ee_pblk = ext4_ext_pblock(ex);
3295 
3296 		/*
3297 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3298 		 * upon those conditions:
3299 		 * - C1: abut_ex is initialized,
3300 		 * - C2: abut_ex is logically abutting ex,
3301 		 * - C3: abut_ex is physically abutting ex,
3302 		 * - C4: abut_ex can receive the additional blocks without
3303 		 *   overflowing the (initialized) length limit.
3304 		 */
3305 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3306 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3307 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3308 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3309 			err = ext4_ext_get_access(handle, inode, path + depth);
3310 			if (err)
3311 				goto out;
3312 
3313 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3314 				map, ex, abut_ex);
3315 
3316 			/* Shift the start of ex by 'map_len' blocks */
3317 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3318 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3319 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3320 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3321 
3322 			/* Extend abut_ex by 'map_len' blocks */
3323 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3324 
3325 			/* Result: number of initialized blocks past m_lblk */
3326 			allocated = map_len;
3327 		}
3328 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3329 		   (map_len < ee_len) &&	/*L1*/
3330 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3331 		/* See if we can merge right */
3332 		ext4_lblk_t next_lblk;
3333 		ext4_fsblk_t next_pblk, ee_pblk;
3334 		unsigned int next_len;
3335 
3336 		abut_ex = ex + 1;
3337 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3338 		next_len = ext4_ext_get_actual_len(abut_ex);
3339 		next_pblk = ext4_ext_pblock(abut_ex);
3340 		ee_pblk = ext4_ext_pblock(ex);
3341 
3342 		/*
3343 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3344 		 * upon those conditions:
3345 		 * - C1: abut_ex is initialized,
3346 		 * - C2: abut_ex is logically abutting ex,
3347 		 * - C3: abut_ex is physically abutting ex,
3348 		 * - C4: abut_ex can receive the additional blocks without
3349 		 *   overflowing the (initialized) length limit.
3350 		 */
3351 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3352 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3353 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3354 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3355 			err = ext4_ext_get_access(handle, inode, path + depth);
3356 			if (err)
3357 				goto out;
3358 
3359 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3360 				map, ex, abut_ex);
3361 
3362 			/* Shift the start of abut_ex by 'map_len' blocks */
3363 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3364 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3365 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3366 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3367 
3368 			/* Extend abut_ex by 'map_len' blocks */
3369 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3370 
3371 			/* Result: number of initialized blocks past m_lblk */
3372 			allocated = map_len;
3373 		}
3374 	}
3375 	if (allocated) {
3376 		/* Mark the block containing both extents as dirty */
3377 		ext4_ext_dirty(handle, inode, path + depth);
3378 
3379 		/* Update path to point to the right extent */
3380 		path[depth].p_ext = abut_ex;
3381 		goto out;
3382 	} else
3383 		allocated = ee_len - (map->m_lblk - ee_block);
3384 
3385 	WARN_ON(map->m_lblk < ee_block);
3386 	/*
3387 	 * It is safe to convert extent to initialized via explicit
3388 	 * zeroout only if extent is fully insde i_size or new_size.
3389 	 */
3390 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3391 
3392 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3393 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3394 			(inode->i_sb->s_blocksize_bits - 10);
3395 
3396 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3397 	if (max_zeroout && (ee_len <= max_zeroout)) {
3398 		err = ext4_ext_zeroout(inode, ex);
3399 		if (err)
3400 			goto out;
3401 		zero_ex.ee_block = ex->ee_block;
3402 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3403 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3404 
3405 		err = ext4_ext_get_access(handle, inode, path + depth);
3406 		if (err)
3407 			goto out;
3408 		ext4_ext_mark_initialized(ex);
3409 		ext4_ext_try_to_merge(handle, inode, path, ex);
3410 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3411 		goto out;
3412 	}
3413 
3414 	/*
3415 	 * four cases:
3416 	 * 1. split the extent into three extents.
3417 	 * 2. split the extent into two extents, zeroout the first half.
3418 	 * 3. split the extent into two extents, zeroout the second half.
3419 	 * 4. split the extent into two extents with out zeroout.
3420 	 */
3421 	split_map.m_lblk = map->m_lblk;
3422 	split_map.m_len = map->m_len;
3423 
3424 	if (max_zeroout && (allocated > map->m_len)) {
3425 		if (allocated <= max_zeroout) {
3426 			/* case 3 */
3427 			zero_ex.ee_block =
3428 					 cpu_to_le32(map->m_lblk);
3429 			zero_ex.ee_len = cpu_to_le16(allocated);
3430 			ext4_ext_store_pblock(&zero_ex,
3431 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3432 			err = ext4_ext_zeroout(inode, &zero_ex);
3433 			if (err)
3434 				goto out;
3435 			split_map.m_lblk = map->m_lblk;
3436 			split_map.m_len = allocated;
3437 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3438 			/* case 2 */
3439 			if (map->m_lblk != ee_block) {
3440 				zero_ex.ee_block = ex->ee_block;
3441 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3442 							ee_block);
3443 				ext4_ext_store_pblock(&zero_ex,
3444 						      ext4_ext_pblock(ex));
3445 				err = ext4_ext_zeroout(inode, &zero_ex);
3446 				if (err)
3447 					goto out;
3448 			}
3449 
3450 			split_map.m_lblk = ee_block;
3451 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3452 			allocated = map->m_len;
3453 		}
3454 	}
3455 
3456 	allocated = ext4_split_extent(handle, inode, path,
3457 				      &split_map, split_flag, flags);
3458 	if (allocated < 0)
3459 		err = allocated;
3460 
3461 out:
3462 	/* If we have gotten a failure, don't zero out status tree */
3463 	if (!err)
3464 		err = ext4_es_zeroout(inode, &zero_ex);
3465 	return err ? err : allocated;
3466 }
3467 
3468 /*
3469  * This function is called by ext4_ext_map_blocks() from
3470  * ext4_get_blocks_dio_write() when DIO to write
3471  * to an uninitialized extent.
3472  *
3473  * Writing to an uninitialized extent may result in splitting the uninitialized
3474  * extent into multiple initialized/uninitialized extents (up to three)
3475  * There are three possibilities:
3476  *   a> There is no split required: Entire extent should be uninitialized
3477  *   b> Splits in two extents: Write is happening at either end of the extent
3478  *   c> Splits in three extents: Somone is writing in middle of the extent
3479  *
3480  * One of more index blocks maybe needed if the extent tree grow after
3481  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3482  * complete, we need to split the uninitialized extent before DIO submit
3483  * the IO. The uninitialized extent called at this time will be split
3484  * into three uninitialized extent(at most). After IO complete, the part
3485  * being filled will be convert to initialized by the end_io callback function
3486  * via ext4_convert_unwritten_extents().
3487  *
3488  * Returns the size of uninitialized extent to be written on success.
3489  */
3490 static int ext4_split_unwritten_extents(handle_t *handle,
3491 					struct inode *inode,
3492 					struct ext4_map_blocks *map,
3493 					struct ext4_ext_path *path,
3494 					int flags)
3495 {
3496 	ext4_lblk_t eof_block;
3497 	ext4_lblk_t ee_block;
3498 	struct ext4_extent *ex;
3499 	unsigned int ee_len;
3500 	int split_flag = 0, depth;
3501 
3502 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3503 		"block %llu, max_blocks %u\n", inode->i_ino,
3504 		(unsigned long long)map->m_lblk, map->m_len);
3505 
3506 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3507 		inode->i_sb->s_blocksize_bits;
3508 	if (eof_block < map->m_lblk + map->m_len)
3509 		eof_block = map->m_lblk + map->m_len;
3510 	/*
3511 	 * It is safe to convert extent to initialized via explicit
3512 	 * zeroout only if extent is fully insde i_size or new_size.
3513 	 */
3514 	depth = ext_depth(inode);
3515 	ex = path[depth].p_ext;
3516 	ee_block = le32_to_cpu(ex->ee_block);
3517 	ee_len = ext4_ext_get_actual_len(ex);
3518 
3519 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3520 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3521 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3522 		split_flag |= EXT4_EXT_DATA_VALID2;
3523 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3524 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3525 }
3526 
3527 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3528 						struct inode *inode,
3529 						struct ext4_map_blocks *map,
3530 						struct ext4_ext_path *path)
3531 {
3532 	struct ext4_extent *ex;
3533 	ext4_lblk_t ee_block;
3534 	unsigned int ee_len;
3535 	int depth;
3536 	int err = 0;
3537 
3538 	depth = ext_depth(inode);
3539 	ex = path[depth].p_ext;
3540 	ee_block = le32_to_cpu(ex->ee_block);
3541 	ee_len = ext4_ext_get_actual_len(ex);
3542 
3543 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3544 		"block %llu, max_blocks %u\n", inode->i_ino,
3545 		  (unsigned long long)ee_block, ee_len);
3546 
3547 	/* If extent is larger than requested it is a clear sign that we still
3548 	 * have some extent state machine issues left. So extent_split is still
3549 	 * required.
3550 	 * TODO: Once all related issues will be fixed this situation should be
3551 	 * illegal.
3552 	 */
3553 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3554 #ifdef EXT4_DEBUG
3555 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3556 			     " len %u; IO logical block %llu, len %u\n",
3557 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3558 			     (unsigned long long)map->m_lblk, map->m_len);
3559 #endif
3560 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3561 						   EXT4_GET_BLOCKS_CONVERT);
3562 		if (err < 0)
3563 			goto out;
3564 		ext4_ext_drop_refs(path);
3565 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3566 		if (IS_ERR(path)) {
3567 			err = PTR_ERR(path);
3568 			goto out;
3569 		}
3570 		depth = ext_depth(inode);
3571 		ex = path[depth].p_ext;
3572 	}
3573 
3574 	err = ext4_ext_get_access(handle, inode, path + depth);
3575 	if (err)
3576 		goto out;
3577 	/* first mark the extent as initialized */
3578 	ext4_ext_mark_initialized(ex);
3579 
3580 	/* note: ext4_ext_correct_indexes() isn't needed here because
3581 	 * borders are not changed
3582 	 */
3583 	ext4_ext_try_to_merge(handle, inode, path, ex);
3584 
3585 	/* Mark modified extent as dirty */
3586 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3587 out:
3588 	ext4_ext_show_leaf(inode, path);
3589 	return err;
3590 }
3591 
3592 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3593 			sector_t block, int count)
3594 {
3595 	int i;
3596 	for (i = 0; i < count; i++)
3597                 unmap_underlying_metadata(bdev, block + i);
3598 }
3599 
3600 /*
3601  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3602  */
3603 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3604 			      ext4_lblk_t lblk,
3605 			      struct ext4_ext_path *path,
3606 			      unsigned int len)
3607 {
3608 	int i, depth;
3609 	struct ext4_extent_header *eh;
3610 	struct ext4_extent *last_ex;
3611 
3612 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3613 		return 0;
3614 
3615 	depth = ext_depth(inode);
3616 	eh = path[depth].p_hdr;
3617 
3618 	/*
3619 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3620 	 * do not care for this case anymore. Simply remove the flag
3621 	 * if there are no extents.
3622 	 */
3623 	if (unlikely(!eh->eh_entries))
3624 		goto out;
3625 	last_ex = EXT_LAST_EXTENT(eh);
3626 	/*
3627 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3628 	 * last block in the last extent in the file.  We test this by
3629 	 * first checking to see if the caller to
3630 	 * ext4_ext_get_blocks() was interested in the last block (or
3631 	 * a block beyond the last block) in the current extent.  If
3632 	 * this turns out to be false, we can bail out from this
3633 	 * function immediately.
3634 	 */
3635 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3636 	    ext4_ext_get_actual_len(last_ex))
3637 		return 0;
3638 	/*
3639 	 * If the caller does appear to be planning to write at or
3640 	 * beyond the end of the current extent, we then test to see
3641 	 * if the current extent is the last extent in the file, by
3642 	 * checking to make sure it was reached via the rightmost node
3643 	 * at each level of the tree.
3644 	 */
3645 	for (i = depth-1; i >= 0; i--)
3646 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3647 			return 0;
3648 out:
3649 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3650 	return ext4_mark_inode_dirty(handle, inode);
3651 }
3652 
3653 /**
3654  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3655  *
3656  * Return 1 if there is a delalloc block in the range, otherwise 0.
3657  */
3658 int ext4_find_delalloc_range(struct inode *inode,
3659 			     ext4_lblk_t lblk_start,
3660 			     ext4_lblk_t lblk_end)
3661 {
3662 	struct extent_status es;
3663 
3664 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3665 	if (es.es_len == 0)
3666 		return 0; /* there is no delay extent in this tree */
3667 	else if (es.es_lblk <= lblk_start &&
3668 		 lblk_start < es.es_lblk + es.es_len)
3669 		return 1;
3670 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3671 		return 1;
3672 	else
3673 		return 0;
3674 }
3675 
3676 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3677 {
3678 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3679 	ext4_lblk_t lblk_start, lblk_end;
3680 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3681 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3682 
3683 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3684 }
3685 
3686 /**
3687  * Determines how many complete clusters (out of those specified by the 'map')
3688  * are under delalloc and were reserved quota for.
3689  * This function is called when we are writing out the blocks that were
3690  * originally written with their allocation delayed, but then the space was
3691  * allocated using fallocate() before the delayed allocation could be resolved.
3692  * The cases to look for are:
3693  * ('=' indicated delayed allocated blocks
3694  *  '-' indicates non-delayed allocated blocks)
3695  * (a) partial clusters towards beginning and/or end outside of allocated range
3696  *     are not delalloc'ed.
3697  *	Ex:
3698  *	|----c---=|====c====|====c====|===-c----|
3699  *	         |++++++ allocated ++++++|
3700  *	==> 4 complete clusters in above example
3701  *
3702  * (b) partial cluster (outside of allocated range) towards either end is
3703  *     marked for delayed allocation. In this case, we will exclude that
3704  *     cluster.
3705  *	Ex:
3706  *	|----====c========|========c========|
3707  *	     |++++++ allocated ++++++|
3708  *	==> 1 complete clusters in above example
3709  *
3710  *	Ex:
3711  *	|================c================|
3712  *            |++++++ allocated ++++++|
3713  *	==> 0 complete clusters in above example
3714  *
3715  * The ext4_da_update_reserve_space will be called only if we
3716  * determine here that there were some "entire" clusters that span
3717  * this 'allocated' range.
3718  * In the non-bigalloc case, this function will just end up returning num_blks
3719  * without ever calling ext4_find_delalloc_range.
3720  */
3721 static unsigned int
3722 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3723 			   unsigned int num_blks)
3724 {
3725 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3726 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3727 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3728 	unsigned int allocated_clusters = 0;
3729 
3730 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3731 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3732 
3733 	/* max possible clusters for this allocation */
3734 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3735 
3736 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3737 
3738 	/* Check towards left side */
3739 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3740 	if (c_offset) {
3741 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3742 		lblk_to = lblk_from + c_offset - 1;
3743 
3744 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3745 			allocated_clusters--;
3746 	}
3747 
3748 	/* Now check towards right. */
3749 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3750 	if (allocated_clusters && c_offset) {
3751 		lblk_from = lblk_start + num_blks;
3752 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3753 
3754 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3755 			allocated_clusters--;
3756 	}
3757 
3758 	return allocated_clusters;
3759 }
3760 
3761 static int
3762 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3763 			struct ext4_map_blocks *map,
3764 			struct ext4_ext_path *path, int flags,
3765 			unsigned int allocated, ext4_fsblk_t newblock)
3766 {
3767 	int ret = 0;
3768 	int err = 0;
3769 	ext4_io_end_t *io = ext4_inode_aio(inode);
3770 
3771 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3772 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3773 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3774 		  flags, allocated);
3775 	ext4_ext_show_leaf(inode, path);
3776 
3777 	/*
3778 	 * When writing into uninitialized space, we should not fail to
3779 	 * allocate metadata blocks for the new extent block if needed.
3780 	 */
3781 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3782 
3783 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3784 						    allocated, newblock);
3785 
3786 	/* get_block() before submit the IO, split the extent */
3787 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3788 		ret = ext4_split_unwritten_extents(handle, inode, map,
3789 						   path, flags);
3790 		if (ret <= 0)
3791 			goto out;
3792 		/*
3793 		 * Flag the inode(non aio case) or end_io struct (aio case)
3794 		 * that this IO needs to conversion to written when IO is
3795 		 * completed
3796 		 */
3797 		if (io)
3798 			ext4_set_io_unwritten_flag(inode, io);
3799 		else
3800 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3801 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3802 		if (ext4_should_dioread_nolock(inode))
3803 			map->m_flags |= EXT4_MAP_UNINIT;
3804 		goto out;
3805 	}
3806 	/* IO end_io complete, convert the filled extent to written */
3807 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3808 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3809 							path);
3810 		if (ret >= 0) {
3811 			ext4_update_inode_fsync_trans(handle, inode, 1);
3812 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3813 						 path, map->m_len);
3814 		} else
3815 			err = ret;
3816 		map->m_flags |= EXT4_MAP_MAPPED;
3817 		if (allocated > map->m_len)
3818 			allocated = map->m_len;
3819 		map->m_len = allocated;
3820 		goto out2;
3821 	}
3822 	/* buffered IO case */
3823 	/*
3824 	 * repeat fallocate creation request
3825 	 * we already have an unwritten extent
3826 	 */
3827 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3828 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3829 		goto map_out;
3830 	}
3831 
3832 	/* buffered READ or buffered write_begin() lookup */
3833 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3834 		/*
3835 		 * We have blocks reserved already.  We
3836 		 * return allocated blocks so that delalloc
3837 		 * won't do block reservation for us.  But
3838 		 * the buffer head will be unmapped so that
3839 		 * a read from the block returns 0s.
3840 		 */
3841 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3842 		goto out1;
3843 	}
3844 
3845 	/* buffered write, writepage time, convert*/
3846 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3847 	if (ret >= 0)
3848 		ext4_update_inode_fsync_trans(handle, inode, 1);
3849 out:
3850 	if (ret <= 0) {
3851 		err = ret;
3852 		goto out2;
3853 	} else
3854 		allocated = ret;
3855 	map->m_flags |= EXT4_MAP_NEW;
3856 	/*
3857 	 * if we allocated more blocks than requested
3858 	 * we need to make sure we unmap the extra block
3859 	 * allocated. The actual needed block will get
3860 	 * unmapped later when we find the buffer_head marked
3861 	 * new.
3862 	 */
3863 	if (allocated > map->m_len) {
3864 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3865 					newblock + map->m_len,
3866 					allocated - map->m_len);
3867 		allocated = map->m_len;
3868 	}
3869 	map->m_len = allocated;
3870 
3871 	/*
3872 	 * If we have done fallocate with the offset that is already
3873 	 * delayed allocated, we would have block reservation
3874 	 * and quota reservation done in the delayed write path.
3875 	 * But fallocate would have already updated quota and block
3876 	 * count for this offset. So cancel these reservation
3877 	 */
3878 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3879 		unsigned int reserved_clusters;
3880 		reserved_clusters = get_reserved_cluster_alloc(inode,
3881 				map->m_lblk, map->m_len);
3882 		if (reserved_clusters)
3883 			ext4_da_update_reserve_space(inode,
3884 						     reserved_clusters,
3885 						     0);
3886 	}
3887 
3888 map_out:
3889 	map->m_flags |= EXT4_MAP_MAPPED;
3890 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3891 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3892 					 map->m_len);
3893 		if (err < 0)
3894 			goto out2;
3895 	}
3896 out1:
3897 	if (allocated > map->m_len)
3898 		allocated = map->m_len;
3899 	ext4_ext_show_leaf(inode, path);
3900 	map->m_pblk = newblock;
3901 	map->m_len = allocated;
3902 out2:
3903 	if (path) {
3904 		ext4_ext_drop_refs(path);
3905 		kfree(path);
3906 	}
3907 	return err ? err : allocated;
3908 }
3909 
3910 /*
3911  * get_implied_cluster_alloc - check to see if the requested
3912  * allocation (in the map structure) overlaps with a cluster already
3913  * allocated in an extent.
3914  *	@sb	The filesystem superblock structure
3915  *	@map	The requested lblk->pblk mapping
3916  *	@ex	The extent structure which might contain an implied
3917  *			cluster allocation
3918  *
3919  * This function is called by ext4_ext_map_blocks() after we failed to
3920  * find blocks that were already in the inode's extent tree.  Hence,
3921  * we know that the beginning of the requested region cannot overlap
3922  * the extent from the inode's extent tree.  There are three cases we
3923  * want to catch.  The first is this case:
3924  *
3925  *		 |--- cluster # N--|
3926  *    |--- extent ---|	|---- requested region ---|
3927  *			|==========|
3928  *
3929  * The second case that we need to test for is this one:
3930  *
3931  *   |--------- cluster # N ----------------|
3932  *	   |--- requested region --|   |------- extent ----|
3933  *	   |=======================|
3934  *
3935  * The third case is when the requested region lies between two extents
3936  * within the same cluster:
3937  *          |------------- cluster # N-------------|
3938  * |----- ex -----|                  |---- ex_right ----|
3939  *                  |------ requested region ------|
3940  *                  |================|
3941  *
3942  * In each of the above cases, we need to set the map->m_pblk and
3943  * map->m_len so it corresponds to the return the extent labelled as
3944  * "|====|" from cluster #N, since it is already in use for data in
3945  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3946  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3947  * as a new "allocated" block region.  Otherwise, we will return 0 and
3948  * ext4_ext_map_blocks() will then allocate one or more new clusters
3949  * by calling ext4_mb_new_blocks().
3950  */
3951 static int get_implied_cluster_alloc(struct super_block *sb,
3952 				     struct ext4_map_blocks *map,
3953 				     struct ext4_extent *ex,
3954 				     struct ext4_ext_path *path)
3955 {
3956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3957 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3958 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3959 	ext4_lblk_t rr_cluster_start;
3960 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3961 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3962 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3963 
3964 	/* The extent passed in that we are trying to match */
3965 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3966 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3967 
3968 	/* The requested region passed into ext4_map_blocks() */
3969 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3970 
3971 	if ((rr_cluster_start == ex_cluster_end) ||
3972 	    (rr_cluster_start == ex_cluster_start)) {
3973 		if (rr_cluster_start == ex_cluster_end)
3974 			ee_start += ee_len - 1;
3975 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3976 			c_offset;
3977 		map->m_len = min(map->m_len,
3978 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3979 		/*
3980 		 * Check for and handle this case:
3981 		 *
3982 		 *   |--------- cluster # N-------------|
3983 		 *		       |------- extent ----|
3984 		 *	   |--- requested region ---|
3985 		 *	   |===========|
3986 		 */
3987 
3988 		if (map->m_lblk < ee_block)
3989 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3990 
3991 		/*
3992 		 * Check for the case where there is already another allocated
3993 		 * block to the right of 'ex' but before the end of the cluster.
3994 		 *
3995 		 *          |------------- cluster # N-------------|
3996 		 * |----- ex -----|                  |---- ex_right ----|
3997 		 *                  |------ requested region ------|
3998 		 *                  |================|
3999 		 */
4000 		if (map->m_lblk > ee_block) {
4001 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4002 			map->m_len = min(map->m_len, next - map->m_lblk);
4003 		}
4004 
4005 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4006 		return 1;
4007 	}
4008 
4009 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4010 	return 0;
4011 }
4012 
4013 
4014 /*
4015  * Block allocation/map/preallocation routine for extents based files
4016  *
4017  *
4018  * Need to be called with
4019  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4020  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4021  *
4022  * return > 0, number of of blocks already mapped/allocated
4023  *          if create == 0 and these are pre-allocated blocks
4024  *          	buffer head is unmapped
4025  *          otherwise blocks are mapped
4026  *
4027  * return = 0, if plain look up failed (blocks have not been allocated)
4028  *          buffer head is unmapped
4029  *
4030  * return < 0, error case.
4031  */
4032 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4033 			struct ext4_map_blocks *map, int flags)
4034 {
4035 	struct ext4_ext_path *path = NULL;
4036 	struct ext4_extent newex, *ex, *ex2;
4037 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4038 	ext4_fsblk_t newblock = 0;
4039 	int free_on_err = 0, err = 0, depth;
4040 	unsigned int allocated = 0, offset = 0;
4041 	unsigned int allocated_clusters = 0;
4042 	struct ext4_allocation_request ar;
4043 	ext4_io_end_t *io = ext4_inode_aio(inode);
4044 	ext4_lblk_t cluster_offset;
4045 	int set_unwritten = 0;
4046 
4047 	ext_debug("blocks %u/%u requested for inode %lu\n",
4048 		  map->m_lblk, map->m_len, inode->i_ino);
4049 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4050 
4051 	/* find extent for this block */
4052 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
4053 	if (IS_ERR(path)) {
4054 		err = PTR_ERR(path);
4055 		path = NULL;
4056 		goto out2;
4057 	}
4058 
4059 	depth = ext_depth(inode);
4060 
4061 	/*
4062 	 * consistent leaf must not be empty;
4063 	 * this situation is possible, though, _during_ tree modification;
4064 	 * this is why assert can't be put in ext4_ext_find_extent()
4065 	 */
4066 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4067 		EXT4_ERROR_INODE(inode, "bad extent address "
4068 				 "lblock: %lu, depth: %d pblock %lld",
4069 				 (unsigned long) map->m_lblk, depth,
4070 				 path[depth].p_block);
4071 		err = -EIO;
4072 		goto out2;
4073 	}
4074 
4075 	ex = path[depth].p_ext;
4076 	if (ex) {
4077 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4078 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4079 		unsigned short ee_len;
4080 
4081 		/*
4082 		 * Uninitialized extents are treated as holes, except that
4083 		 * we split out initialized portions during a write.
4084 		 */
4085 		ee_len = ext4_ext_get_actual_len(ex);
4086 
4087 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4088 
4089 		/* if found extent covers block, simply return it */
4090 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4091 			newblock = map->m_lblk - ee_block + ee_start;
4092 			/* number of remaining blocks in the extent */
4093 			allocated = ee_len - (map->m_lblk - ee_block);
4094 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4095 				  ee_block, ee_len, newblock);
4096 
4097 			if (!ext4_ext_is_uninitialized(ex))
4098 				goto out;
4099 
4100 			allocated = ext4_ext_handle_uninitialized_extents(
4101 				handle, inode, map, path, flags,
4102 				allocated, newblock);
4103 			goto out3;
4104 		}
4105 	}
4106 
4107 	if ((sbi->s_cluster_ratio > 1) &&
4108 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4109 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4110 
4111 	/*
4112 	 * requested block isn't allocated yet;
4113 	 * we couldn't try to create block if create flag is zero
4114 	 */
4115 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4116 		/*
4117 		 * put just found gap into cache to speed up
4118 		 * subsequent requests
4119 		 */
4120 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4121 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4122 		goto out2;
4123 	}
4124 
4125 	/*
4126 	 * Okay, we need to do block allocation.
4127 	 */
4128 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4129 	newex.ee_block = cpu_to_le32(map->m_lblk);
4130 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4131 
4132 	/*
4133 	 * If we are doing bigalloc, check to see if the extent returned
4134 	 * by ext4_ext_find_extent() implies a cluster we can use.
4135 	 */
4136 	if (cluster_offset && ex &&
4137 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4138 		ar.len = allocated = map->m_len;
4139 		newblock = map->m_pblk;
4140 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4141 		goto got_allocated_blocks;
4142 	}
4143 
4144 	/* find neighbour allocated blocks */
4145 	ar.lleft = map->m_lblk;
4146 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4147 	if (err)
4148 		goto out2;
4149 	ar.lright = map->m_lblk;
4150 	ex2 = NULL;
4151 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4152 	if (err)
4153 		goto out2;
4154 
4155 	/* Check if the extent after searching to the right implies a
4156 	 * cluster we can use. */
4157 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4158 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4159 		ar.len = allocated = map->m_len;
4160 		newblock = map->m_pblk;
4161 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4162 		goto got_allocated_blocks;
4163 	}
4164 
4165 	/*
4166 	 * See if request is beyond maximum number of blocks we can have in
4167 	 * a single extent. For an initialized extent this limit is
4168 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4169 	 * EXT_UNINIT_MAX_LEN.
4170 	 */
4171 	if (map->m_len > EXT_INIT_MAX_LEN &&
4172 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4173 		map->m_len = EXT_INIT_MAX_LEN;
4174 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4175 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4176 		map->m_len = EXT_UNINIT_MAX_LEN;
4177 
4178 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4179 	newex.ee_len = cpu_to_le16(map->m_len);
4180 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4181 	if (err)
4182 		allocated = ext4_ext_get_actual_len(&newex);
4183 	else
4184 		allocated = map->m_len;
4185 
4186 	/* allocate new block */
4187 	ar.inode = inode;
4188 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4189 	ar.logical = map->m_lblk;
4190 	/*
4191 	 * We calculate the offset from the beginning of the cluster
4192 	 * for the logical block number, since when we allocate a
4193 	 * physical cluster, the physical block should start at the
4194 	 * same offset from the beginning of the cluster.  This is
4195 	 * needed so that future calls to get_implied_cluster_alloc()
4196 	 * work correctly.
4197 	 */
4198 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4199 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4200 	ar.goal -= offset;
4201 	ar.logical -= offset;
4202 	if (S_ISREG(inode->i_mode))
4203 		ar.flags = EXT4_MB_HINT_DATA;
4204 	else
4205 		/* disable in-core preallocation for non-regular files */
4206 		ar.flags = 0;
4207 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4208 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4209 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4210 	if (!newblock)
4211 		goto out2;
4212 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4213 		  ar.goal, newblock, allocated);
4214 	free_on_err = 1;
4215 	allocated_clusters = ar.len;
4216 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4217 	if (ar.len > allocated)
4218 		ar.len = allocated;
4219 
4220 got_allocated_blocks:
4221 	/* try to insert new extent into found leaf and return */
4222 	ext4_ext_store_pblock(&newex, newblock + offset);
4223 	newex.ee_len = cpu_to_le16(ar.len);
4224 	/* Mark uninitialized */
4225 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4226 		ext4_ext_mark_uninitialized(&newex);
4227 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4228 		/*
4229 		 * io_end structure was created for every IO write to an
4230 		 * uninitialized extent. To avoid unnecessary conversion,
4231 		 * here we flag the IO that really needs the conversion.
4232 		 * For non asycn direct IO case, flag the inode state
4233 		 * that we need to perform conversion when IO is done.
4234 		 */
4235 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4236 			set_unwritten = 1;
4237 		if (ext4_should_dioread_nolock(inode))
4238 			map->m_flags |= EXT4_MAP_UNINIT;
4239 	}
4240 
4241 	err = 0;
4242 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4243 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4244 					 path, ar.len);
4245 	if (!err)
4246 		err = ext4_ext_insert_extent(handle, inode, path,
4247 					     &newex, flags);
4248 
4249 	if (!err && set_unwritten) {
4250 		if (io)
4251 			ext4_set_io_unwritten_flag(inode, io);
4252 		else
4253 			ext4_set_inode_state(inode,
4254 					     EXT4_STATE_DIO_UNWRITTEN);
4255 	}
4256 
4257 	if (err && free_on_err) {
4258 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4259 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4260 		/* free data blocks we just allocated */
4261 		/* not a good idea to call discard here directly,
4262 		 * but otherwise we'd need to call it every free() */
4263 		ext4_discard_preallocations(inode);
4264 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4265 				 ext4_ext_get_actual_len(&newex), fb_flags);
4266 		goto out2;
4267 	}
4268 
4269 	/* previous routine could use block we allocated */
4270 	newblock = ext4_ext_pblock(&newex);
4271 	allocated = ext4_ext_get_actual_len(&newex);
4272 	if (allocated > map->m_len)
4273 		allocated = map->m_len;
4274 	map->m_flags |= EXT4_MAP_NEW;
4275 
4276 	/*
4277 	 * Update reserved blocks/metadata blocks after successful
4278 	 * block allocation which had been deferred till now.
4279 	 */
4280 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4281 		unsigned int reserved_clusters;
4282 		/*
4283 		 * Check how many clusters we had reserved this allocated range
4284 		 */
4285 		reserved_clusters = get_reserved_cluster_alloc(inode,
4286 						map->m_lblk, allocated);
4287 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4288 			if (reserved_clusters) {
4289 				/*
4290 				 * We have clusters reserved for this range.
4291 				 * But since we are not doing actual allocation
4292 				 * and are simply using blocks from previously
4293 				 * allocated cluster, we should release the
4294 				 * reservation and not claim quota.
4295 				 */
4296 				ext4_da_update_reserve_space(inode,
4297 						reserved_clusters, 0);
4298 			}
4299 		} else {
4300 			BUG_ON(allocated_clusters < reserved_clusters);
4301 			if (reserved_clusters < allocated_clusters) {
4302 				struct ext4_inode_info *ei = EXT4_I(inode);
4303 				int reservation = allocated_clusters -
4304 						  reserved_clusters;
4305 				/*
4306 				 * It seems we claimed few clusters outside of
4307 				 * the range of this allocation. We should give
4308 				 * it back to the reservation pool. This can
4309 				 * happen in the following case:
4310 				 *
4311 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4312 				 *   cluster has 4 blocks. Thus, the clusters
4313 				 *   are [0-3],[4-7],[8-11]...
4314 				 * * First comes delayed allocation write for
4315 				 *   logical blocks 10 & 11. Since there were no
4316 				 *   previous delayed allocated blocks in the
4317 				 *   range [8-11], we would reserve 1 cluster
4318 				 *   for this write.
4319 				 * * Next comes write for logical blocks 3 to 8.
4320 				 *   In this case, we will reserve 2 clusters
4321 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4322 				 *   that range has a delayed allocated blocks.
4323 				 *   Thus total reserved clusters now becomes 3.
4324 				 * * Now, during the delayed allocation writeout
4325 				 *   time, we will first write blocks [3-8] and
4326 				 *   allocate 3 clusters for writing these
4327 				 *   blocks. Also, we would claim all these
4328 				 *   three clusters above.
4329 				 * * Now when we come here to writeout the
4330 				 *   blocks [10-11], we would expect to claim
4331 				 *   the reservation of 1 cluster we had made
4332 				 *   (and we would claim it since there are no
4333 				 *   more delayed allocated blocks in the range
4334 				 *   [8-11]. But our reserved cluster count had
4335 				 *   already gone to 0.
4336 				 *
4337 				 *   Thus, at the step 4 above when we determine
4338 				 *   that there are still some unwritten delayed
4339 				 *   allocated blocks outside of our current
4340 				 *   block range, we should increment the
4341 				 *   reserved clusters count so that when the
4342 				 *   remaining blocks finally gets written, we
4343 				 *   could claim them.
4344 				 */
4345 				dquot_reserve_block(inode,
4346 						EXT4_C2B(sbi, reservation));
4347 				spin_lock(&ei->i_block_reservation_lock);
4348 				ei->i_reserved_data_blocks += reservation;
4349 				spin_unlock(&ei->i_block_reservation_lock);
4350 			}
4351 			/*
4352 			 * We will claim quota for all newly allocated blocks.
4353 			 * We're updating the reserved space *after* the
4354 			 * correction above so we do not accidentally free
4355 			 * all the metadata reservation because we might
4356 			 * actually need it later on.
4357 			 */
4358 			ext4_da_update_reserve_space(inode, allocated_clusters,
4359 							1);
4360 		}
4361 	}
4362 
4363 	/*
4364 	 * Cache the extent and update transaction to commit on fdatasync only
4365 	 * when it is _not_ an uninitialized extent.
4366 	 */
4367 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4368 		ext4_update_inode_fsync_trans(handle, inode, 1);
4369 	else
4370 		ext4_update_inode_fsync_trans(handle, inode, 0);
4371 out:
4372 	if (allocated > map->m_len)
4373 		allocated = map->m_len;
4374 	ext4_ext_show_leaf(inode, path);
4375 	map->m_flags |= EXT4_MAP_MAPPED;
4376 	map->m_pblk = newblock;
4377 	map->m_len = allocated;
4378 out2:
4379 	if (path) {
4380 		ext4_ext_drop_refs(path);
4381 		kfree(path);
4382 	}
4383 
4384 out3:
4385 	trace_ext4_ext_map_blocks_exit(inode, flags, map, err ? err : allocated);
4386 
4387 	return err ? err : allocated;
4388 }
4389 
4390 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4391 {
4392 	struct super_block *sb = inode->i_sb;
4393 	ext4_lblk_t last_block;
4394 	int err = 0;
4395 
4396 	/*
4397 	 * TODO: optimization is possible here.
4398 	 * Probably we need not scan at all,
4399 	 * because page truncation is enough.
4400 	 */
4401 
4402 	/* we have to know where to truncate from in crash case */
4403 	EXT4_I(inode)->i_disksize = inode->i_size;
4404 	ext4_mark_inode_dirty(handle, inode);
4405 
4406 	last_block = (inode->i_size + sb->s_blocksize - 1)
4407 			>> EXT4_BLOCK_SIZE_BITS(sb);
4408 	err = ext4_es_remove_extent(inode, last_block,
4409 				    EXT_MAX_BLOCKS - last_block);
4410 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4411 }
4412 
4413 static void ext4_falloc_update_inode(struct inode *inode,
4414 				int mode, loff_t new_size, int update_ctime)
4415 {
4416 	struct timespec now;
4417 
4418 	if (update_ctime) {
4419 		now = current_fs_time(inode->i_sb);
4420 		if (!timespec_equal(&inode->i_ctime, &now))
4421 			inode->i_ctime = now;
4422 	}
4423 	/*
4424 	 * Update only when preallocation was requested beyond
4425 	 * the file size.
4426 	 */
4427 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4428 		if (new_size > i_size_read(inode))
4429 			i_size_write(inode, new_size);
4430 		if (new_size > EXT4_I(inode)->i_disksize)
4431 			ext4_update_i_disksize(inode, new_size);
4432 	} else {
4433 		/*
4434 		 * Mark that we allocate beyond EOF so the subsequent truncate
4435 		 * can proceed even if the new size is the same as i_size.
4436 		 */
4437 		if (new_size > i_size_read(inode))
4438 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4439 	}
4440 
4441 }
4442 
4443 /*
4444  * preallocate space for a file. This implements ext4's fallocate file
4445  * operation, which gets called from sys_fallocate system call.
4446  * For block-mapped files, posix_fallocate should fall back to the method
4447  * of writing zeroes to the required new blocks (the same behavior which is
4448  * expected for file systems which do not support fallocate() system call).
4449  */
4450 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4451 {
4452 	struct inode *inode = file_inode(file);
4453 	handle_t *handle;
4454 	loff_t new_size;
4455 	unsigned int max_blocks;
4456 	int ret = 0;
4457 	int ret2 = 0;
4458 	int retries = 0;
4459 	int flags;
4460 	struct ext4_map_blocks map;
4461 	unsigned int credits, blkbits = inode->i_blkbits;
4462 
4463 	/* Return error if mode is not supported */
4464 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4465 		return -EOPNOTSUPP;
4466 
4467 	if (mode & FALLOC_FL_PUNCH_HOLE)
4468 		return ext4_punch_hole(inode, offset, len);
4469 
4470 	ret = ext4_convert_inline_data(inode);
4471 	if (ret)
4472 		return ret;
4473 
4474 	/*
4475 	 * currently supporting (pre)allocate mode for extent-based
4476 	 * files _only_
4477 	 */
4478 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4479 		return -EOPNOTSUPP;
4480 
4481 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4482 	map.m_lblk = offset >> blkbits;
4483 	/*
4484 	 * We can't just convert len to max_blocks because
4485 	 * If blocksize = 4096 offset = 3072 and len = 2048
4486 	 */
4487 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4488 		- map.m_lblk;
4489 	/*
4490 	 * credits to insert 1 extent into extent tree
4491 	 */
4492 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4493 	mutex_lock(&inode->i_mutex);
4494 	ret = inode_newsize_ok(inode, (len + offset));
4495 	if (ret) {
4496 		mutex_unlock(&inode->i_mutex);
4497 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4498 		return ret;
4499 	}
4500 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4501 	if (mode & FALLOC_FL_KEEP_SIZE)
4502 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4503 	/*
4504 	 * Don't normalize the request if it can fit in one extent so
4505 	 * that it doesn't get unnecessarily split into multiple
4506 	 * extents.
4507 	 */
4508 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4509 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4510 
4511 retry:
4512 	while (ret >= 0 && ret < max_blocks) {
4513 		map.m_lblk = map.m_lblk + ret;
4514 		map.m_len = max_blocks = max_blocks - ret;
4515 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4516 					    credits);
4517 		if (IS_ERR(handle)) {
4518 			ret = PTR_ERR(handle);
4519 			break;
4520 		}
4521 		ret = ext4_map_blocks(handle, inode, &map, flags);
4522 		if (ret <= 0) {
4523 #ifdef EXT4FS_DEBUG
4524 			ext4_warning(inode->i_sb,
4525 				     "inode #%lu: block %u: len %u: "
4526 				     "ext4_ext_map_blocks returned %d",
4527 				     inode->i_ino, map.m_lblk,
4528 				     map.m_len, ret);
4529 #endif
4530 			ext4_mark_inode_dirty(handle, inode);
4531 			ret2 = ext4_journal_stop(handle);
4532 			break;
4533 		}
4534 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4535 						blkbits) >> blkbits))
4536 			new_size = offset + len;
4537 		else
4538 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4539 
4540 		ext4_falloc_update_inode(inode, mode, new_size,
4541 					 (map.m_flags & EXT4_MAP_NEW));
4542 		ext4_mark_inode_dirty(handle, inode);
4543 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4544 			ext4_handle_sync(handle);
4545 		ret2 = ext4_journal_stop(handle);
4546 		if (ret2)
4547 			break;
4548 	}
4549 	if (ret == -ENOSPC &&
4550 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4551 		ret = 0;
4552 		goto retry;
4553 	}
4554 	mutex_unlock(&inode->i_mutex);
4555 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4556 				ret > 0 ? ret2 : ret);
4557 	return ret > 0 ? ret2 : ret;
4558 }
4559 
4560 /*
4561  * This function convert a range of blocks to written extents
4562  * The caller of this function will pass the start offset and the size.
4563  * all unwritten extents within this range will be converted to
4564  * written extents.
4565  *
4566  * This function is called from the direct IO end io call back
4567  * function, to convert the fallocated extents after IO is completed.
4568  * Returns 0 on success.
4569  */
4570 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4571 				   loff_t offset, ssize_t len)
4572 {
4573 	unsigned int max_blocks;
4574 	int ret = 0;
4575 	int ret2 = 0;
4576 	struct ext4_map_blocks map;
4577 	unsigned int credits, blkbits = inode->i_blkbits;
4578 
4579 	map.m_lblk = offset >> blkbits;
4580 	/*
4581 	 * We can't just convert len to max_blocks because
4582 	 * If blocksize = 4096 offset = 3072 and len = 2048
4583 	 */
4584 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4585 		      map.m_lblk);
4586 	/*
4587 	 * This is somewhat ugly but the idea is clear: When transaction is
4588 	 * reserved, everything goes into it. Otherwise we rather start several
4589 	 * smaller transactions for conversion of each extent separately.
4590 	 */
4591 	if (handle) {
4592 		handle = ext4_journal_start_reserved(handle,
4593 						     EXT4_HT_EXT_CONVERT);
4594 		if (IS_ERR(handle))
4595 			return PTR_ERR(handle);
4596 		credits = 0;
4597 	} else {
4598 		/*
4599 		 * credits to insert 1 extent into extent tree
4600 		 */
4601 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4602 	}
4603 	while (ret >= 0 && ret < max_blocks) {
4604 		map.m_lblk += ret;
4605 		map.m_len = (max_blocks -= ret);
4606 		if (credits) {
4607 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4608 						    credits);
4609 			if (IS_ERR(handle)) {
4610 				ret = PTR_ERR(handle);
4611 				break;
4612 			}
4613 		}
4614 		ret = ext4_map_blocks(handle, inode, &map,
4615 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4616 		if (ret <= 0)
4617 			ext4_warning(inode->i_sb,
4618 				     "inode #%lu: block %u: len %u: "
4619 				     "ext4_ext_map_blocks returned %d",
4620 				     inode->i_ino, map.m_lblk,
4621 				     map.m_len, ret);
4622 		ext4_mark_inode_dirty(handle, inode);
4623 		if (credits)
4624 			ret2 = ext4_journal_stop(handle);
4625 		if (ret <= 0 || ret2)
4626 			break;
4627 	}
4628 	if (!credits)
4629 		ret2 = ext4_journal_stop(handle);
4630 	return ret > 0 ? ret2 : ret;
4631 }
4632 
4633 /*
4634  * If newes is not existing extent (newes->ec_pblk equals zero) find
4635  * delayed extent at start of newes and update newes accordingly and
4636  * return start of the next delayed extent.
4637  *
4638  * If newes is existing extent (newes->ec_pblk is not equal zero)
4639  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4640  * extent found. Leave newes unmodified.
4641  */
4642 static int ext4_find_delayed_extent(struct inode *inode,
4643 				    struct extent_status *newes)
4644 {
4645 	struct extent_status es;
4646 	ext4_lblk_t block, next_del;
4647 
4648 	if (newes->es_pblk == 0) {
4649 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4650 				newes->es_lblk + newes->es_len - 1, &es);
4651 
4652 		/*
4653 		 * No extent in extent-tree contains block @newes->es_pblk,
4654 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4655 		 */
4656 		if (es.es_len == 0)
4657 			/* A hole found. */
4658 			return 0;
4659 
4660 		if (es.es_lblk > newes->es_lblk) {
4661 			/* A hole found. */
4662 			newes->es_len = min(es.es_lblk - newes->es_lblk,
4663 					    newes->es_len);
4664 			return 0;
4665 		}
4666 
4667 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4668 	}
4669 
4670 	block = newes->es_lblk + newes->es_len;
4671 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4672 	if (es.es_len == 0)
4673 		next_del = EXT_MAX_BLOCKS;
4674 	else
4675 		next_del = es.es_lblk;
4676 
4677 	return next_del;
4678 }
4679 /* fiemap flags we can handle specified here */
4680 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4681 
4682 static int ext4_xattr_fiemap(struct inode *inode,
4683 				struct fiemap_extent_info *fieinfo)
4684 {
4685 	__u64 physical = 0;
4686 	__u64 length;
4687 	__u32 flags = FIEMAP_EXTENT_LAST;
4688 	int blockbits = inode->i_sb->s_blocksize_bits;
4689 	int error = 0;
4690 
4691 	/* in-inode? */
4692 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4693 		struct ext4_iloc iloc;
4694 		int offset;	/* offset of xattr in inode */
4695 
4696 		error = ext4_get_inode_loc(inode, &iloc);
4697 		if (error)
4698 			return error;
4699 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4700 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4701 				EXT4_I(inode)->i_extra_isize;
4702 		physical += offset;
4703 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4704 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4705 		brelse(iloc.bh);
4706 	} else { /* external block */
4707 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4708 		length = inode->i_sb->s_blocksize;
4709 	}
4710 
4711 	if (physical)
4712 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4713 						length, flags);
4714 	return (error < 0 ? error : 0);
4715 }
4716 
4717 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4718 		__u64 start, __u64 len)
4719 {
4720 	ext4_lblk_t start_blk;
4721 	int error = 0;
4722 
4723 	if (ext4_has_inline_data(inode)) {
4724 		int has_inline = 1;
4725 
4726 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4727 
4728 		if (has_inline)
4729 			return error;
4730 	}
4731 
4732 	/* fallback to generic here if not in extents fmt */
4733 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4734 		return generic_block_fiemap(inode, fieinfo, start, len,
4735 			ext4_get_block);
4736 
4737 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4738 		return -EBADR;
4739 
4740 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4741 		error = ext4_xattr_fiemap(inode, fieinfo);
4742 	} else {
4743 		ext4_lblk_t len_blks;
4744 		__u64 last_blk;
4745 
4746 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4747 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4748 		if (last_blk >= EXT_MAX_BLOCKS)
4749 			last_blk = EXT_MAX_BLOCKS-1;
4750 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4751 
4752 		/*
4753 		 * Walk the extent tree gathering extent information
4754 		 * and pushing extents back to the user.
4755 		 */
4756 		error = ext4_fill_fiemap_extents(inode, start_blk,
4757 						 len_blks, fieinfo);
4758 	}
4759 
4760 	return error;
4761 }
4762