xref: /linux/fs/ext4/dir.c (revision c0e79fd89749b0cda1c72049e2772dd2eeada86f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/dir.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/dir.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 directory handling functions
17  *
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *
21  * Hash Tree Directory indexing (c) 2001  Daniel Phillips
22  *
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/buffer_head.h>
27 #include <linux/slab.h>
28 #include <linux/iversion.h>
29 #include <linux/unicode.h>
30 #include "ext4.h"
31 #include "xattr.h"
32 
33 static int ext4_dx_readdir(struct file *, struct dir_context *);
34 
35 /**
36  * is_dx_dir() - check if a directory is using htree indexing
37  * @inode: directory inode
38  *
39  * Check if the given dir-inode refers to an htree-indexed directory
40  * (or a directory which could potentially get converted to use htree
41  * indexing).
42  *
43  * Return 1 if it is a dx dir, 0 if not
44  */
45 static int is_dx_dir(struct inode *inode)
46 {
47 	struct super_block *sb = inode->i_sb;
48 
49 	if (ext4_has_feature_dir_index(inode->i_sb) &&
50 	    ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
51 	     ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
52 	     ext4_has_inline_data(inode)))
53 		return 1;
54 
55 	return 0;
56 }
57 
58 /*
59  * Return 0 if the directory entry is OK, and 1 if there is a problem
60  *
61  * Note: this is the opposite of what ext2 and ext3 historically returned...
62  *
63  * bh passed here can be an inode block or a dir data block, depending
64  * on the inode inline data flag.
65  */
66 int __ext4_check_dir_entry(const char *function, unsigned int line,
67 			   struct inode *dir, struct file *filp,
68 			   struct ext4_dir_entry_2 *de,
69 			   struct buffer_head *bh, char *buf, int size,
70 			   unsigned int offset)
71 {
72 	const char *error_msg = NULL;
73 	const int rlen = ext4_rec_len_from_disk(de->rec_len,
74 						dir->i_sb->s_blocksize);
75 	const int next_offset = ((char *) de - buf) + rlen;
76 
77 	if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
78 		error_msg = "rec_len is smaller than minimal";
79 	else if (unlikely(rlen % 4 != 0))
80 		error_msg = "rec_len % 4 != 0";
81 	else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
82 		error_msg = "rec_len is too small for name_len";
83 	else if (unlikely(next_offset > size))
84 		error_msg = "directory entry overrun";
85 	else if (unlikely(next_offset > size - EXT4_DIR_REC_LEN(1) &&
86 			  next_offset != size))
87 		error_msg = "directory entry too close to block end";
88 	else if (unlikely(le32_to_cpu(de->inode) >
89 			le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
90 		error_msg = "inode out of bounds";
91 	else
92 		return 0;
93 
94 	if (filp)
95 		ext4_error_file(filp, function, line, bh->b_blocknr,
96 				"bad entry in directory: %s - offset=%u, "
97 				"inode=%u, rec_len=%d, name_len=%d, size=%d",
98 				error_msg, offset, le32_to_cpu(de->inode),
99 				rlen, de->name_len, size);
100 	else
101 		ext4_error_inode(dir, function, line, bh->b_blocknr,
102 				"bad entry in directory: %s - offset=%u, "
103 				"inode=%u, rec_len=%d, name_len=%d, size=%d",
104 				 error_msg, offset, le32_to_cpu(de->inode),
105 				 rlen, de->name_len, size);
106 
107 	return 1;
108 }
109 
110 static int ext4_readdir(struct file *file, struct dir_context *ctx)
111 {
112 	unsigned int offset;
113 	int i;
114 	struct ext4_dir_entry_2 *de;
115 	int err;
116 	struct inode *inode = file_inode(file);
117 	struct super_block *sb = inode->i_sb;
118 	struct buffer_head *bh = NULL;
119 	struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
120 
121 	if (IS_ENCRYPTED(inode)) {
122 		err = fscrypt_get_encryption_info(inode);
123 		if (err && err != -ENOKEY)
124 			return err;
125 	}
126 
127 	if (is_dx_dir(inode)) {
128 		err = ext4_dx_readdir(file, ctx);
129 		if (err != ERR_BAD_DX_DIR) {
130 			return err;
131 		}
132 		/*
133 		 * We don't set the inode dirty flag since it's not
134 		 * critical that it get flushed back to the disk.
135 		 */
136 		ext4_clear_inode_flag(file_inode(file),
137 				      EXT4_INODE_INDEX);
138 	}
139 
140 	if (ext4_has_inline_data(inode)) {
141 		int has_inline_data = 1;
142 		err = ext4_read_inline_dir(file, ctx,
143 					   &has_inline_data);
144 		if (has_inline_data)
145 			return err;
146 	}
147 
148 	if (IS_ENCRYPTED(inode)) {
149 		err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
150 		if (err < 0)
151 			return err;
152 	}
153 
154 	while (ctx->pos < inode->i_size) {
155 		struct ext4_map_blocks map;
156 
157 		if (fatal_signal_pending(current)) {
158 			err = -ERESTARTSYS;
159 			goto errout;
160 		}
161 		cond_resched();
162 		offset = ctx->pos & (sb->s_blocksize - 1);
163 		map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
164 		map.m_len = 1;
165 		err = ext4_map_blocks(NULL, inode, &map, 0);
166 		if (err == 0) {
167 			/* m_len should never be zero but let's avoid
168 			 * an infinite loop if it somehow is */
169 			if (map.m_len == 0)
170 				map.m_len = 1;
171 			ctx->pos += map.m_len * sb->s_blocksize;
172 			continue;
173 		}
174 		if (err > 0) {
175 			pgoff_t index = map.m_pblk >>
176 					(PAGE_SHIFT - inode->i_blkbits);
177 			if (!ra_has_index(&file->f_ra, index))
178 				page_cache_sync_readahead(
179 					sb->s_bdev->bd_inode->i_mapping,
180 					&file->f_ra, file,
181 					index, 1);
182 			file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
183 			bh = ext4_bread(NULL, inode, map.m_lblk, 0);
184 			if (IS_ERR(bh)) {
185 				err = PTR_ERR(bh);
186 				bh = NULL;
187 				goto errout;
188 			}
189 		}
190 
191 		if (!bh) {
192 			/* corrupt size?  Maybe no more blocks to read */
193 			if (ctx->pos > inode->i_blocks << 9)
194 				break;
195 			ctx->pos += sb->s_blocksize - offset;
196 			continue;
197 		}
198 
199 		/* Check the checksum */
200 		if (!buffer_verified(bh) &&
201 		    !ext4_dirblock_csum_verify(inode, bh)) {
202 			EXT4_ERROR_FILE(file, 0, "directory fails checksum "
203 					"at offset %llu",
204 					(unsigned long long)ctx->pos);
205 			ctx->pos += sb->s_blocksize - offset;
206 			brelse(bh);
207 			bh = NULL;
208 			continue;
209 		}
210 		set_buffer_verified(bh);
211 
212 		/* If the dir block has changed since the last call to
213 		 * readdir(2), then we might be pointing to an invalid
214 		 * dirent right now.  Scan from the start of the block
215 		 * to make sure. */
216 		if (!inode_eq_iversion(inode, file->f_version)) {
217 			for (i = 0; i < sb->s_blocksize && i < offset; ) {
218 				de = (struct ext4_dir_entry_2 *)
219 					(bh->b_data + i);
220 				/* It's too expensive to do a full
221 				 * dirent test each time round this
222 				 * loop, but we do have to test at
223 				 * least that it is non-zero.  A
224 				 * failure will be detected in the
225 				 * dirent test below. */
226 				if (ext4_rec_len_from_disk(de->rec_len,
227 					sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
228 					break;
229 				i += ext4_rec_len_from_disk(de->rec_len,
230 							    sb->s_blocksize);
231 			}
232 			offset = i;
233 			ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
234 				| offset;
235 			file->f_version = inode_query_iversion(inode);
236 		}
237 
238 		while (ctx->pos < inode->i_size
239 		       && offset < sb->s_blocksize) {
240 			de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
241 			if (ext4_check_dir_entry(inode, file, de, bh,
242 						 bh->b_data, bh->b_size,
243 						 offset)) {
244 				/*
245 				 * On error, skip to the next block
246 				 */
247 				ctx->pos = (ctx->pos |
248 						(sb->s_blocksize - 1)) + 1;
249 				break;
250 			}
251 			offset += ext4_rec_len_from_disk(de->rec_len,
252 					sb->s_blocksize);
253 			if (le32_to_cpu(de->inode)) {
254 				if (!IS_ENCRYPTED(inode)) {
255 					if (!dir_emit(ctx, de->name,
256 					    de->name_len,
257 					    le32_to_cpu(de->inode),
258 					    get_dtype(sb, de->file_type)))
259 						goto done;
260 				} else {
261 					int save_len = fstr.len;
262 					struct fscrypt_str de_name =
263 							FSTR_INIT(de->name,
264 								de->name_len);
265 
266 					/* Directory is encrypted */
267 					err = fscrypt_fname_disk_to_usr(inode,
268 						0, 0, &de_name, &fstr);
269 					de_name = fstr;
270 					fstr.len = save_len;
271 					if (err)
272 						goto errout;
273 					if (!dir_emit(ctx,
274 					    de_name.name, de_name.len,
275 					    le32_to_cpu(de->inode),
276 					    get_dtype(sb, de->file_type)))
277 						goto done;
278 				}
279 			}
280 			ctx->pos += ext4_rec_len_from_disk(de->rec_len,
281 						sb->s_blocksize);
282 		}
283 		if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
284 			goto done;
285 		brelse(bh);
286 		bh = NULL;
287 		offset = 0;
288 	}
289 done:
290 	err = 0;
291 errout:
292 	fscrypt_fname_free_buffer(&fstr);
293 	brelse(bh);
294 	return err;
295 }
296 
297 static inline int is_32bit_api(void)
298 {
299 #ifdef CONFIG_COMPAT
300 	return in_compat_syscall();
301 #else
302 	return (BITS_PER_LONG == 32);
303 #endif
304 }
305 
306 /*
307  * These functions convert from the major/minor hash to an f_pos
308  * value for dx directories
309  *
310  * Upper layer (for example NFS) should specify FMODE_32BITHASH or
311  * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
312  * directly on both 32-bit and 64-bit nodes, under such case, neither
313  * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
314  */
315 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
316 {
317 	if ((filp->f_mode & FMODE_32BITHASH) ||
318 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
319 		return major >> 1;
320 	else
321 		return ((__u64)(major >> 1) << 32) | (__u64)minor;
322 }
323 
324 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
325 {
326 	if ((filp->f_mode & FMODE_32BITHASH) ||
327 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
328 		return (pos << 1) & 0xffffffff;
329 	else
330 		return ((pos >> 32) << 1) & 0xffffffff;
331 }
332 
333 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
334 {
335 	if ((filp->f_mode & FMODE_32BITHASH) ||
336 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
337 		return 0;
338 	else
339 		return pos & 0xffffffff;
340 }
341 
342 /*
343  * Return 32- or 64-bit end-of-file for dx directories
344  */
345 static inline loff_t ext4_get_htree_eof(struct file *filp)
346 {
347 	if ((filp->f_mode & FMODE_32BITHASH) ||
348 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
349 		return EXT4_HTREE_EOF_32BIT;
350 	else
351 		return EXT4_HTREE_EOF_64BIT;
352 }
353 
354 
355 /*
356  * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
357  * directories, where the "offset" is in terms of the filename hash
358  * value instead of the byte offset.
359  *
360  * Because we may return a 64-bit hash that is well beyond offset limits,
361  * we need to pass the max hash as the maximum allowable offset in
362  * the htree directory case.
363  *
364  * For non-htree, ext4_llseek already chooses the proper max offset.
365  */
366 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
367 {
368 	struct inode *inode = file->f_mapping->host;
369 	int dx_dir = is_dx_dir(inode);
370 	loff_t ret, htree_max = ext4_get_htree_eof(file);
371 
372 	if (likely(dx_dir))
373 		ret = generic_file_llseek_size(file, offset, whence,
374 						    htree_max, htree_max);
375 	else
376 		ret = ext4_llseek(file, offset, whence);
377 	file->f_version = inode_peek_iversion(inode) - 1;
378 	return ret;
379 }
380 
381 /*
382  * This structure holds the nodes of the red-black tree used to store
383  * the directory entry in hash order.
384  */
385 struct fname {
386 	__u32		hash;
387 	__u32		minor_hash;
388 	struct rb_node	rb_hash;
389 	struct fname	*next;
390 	__u32		inode;
391 	__u8		name_len;
392 	__u8		file_type;
393 	char		name[0];
394 };
395 
396 /*
397  * This functoin implements a non-recursive way of freeing all of the
398  * nodes in the red-black tree.
399  */
400 static void free_rb_tree_fname(struct rb_root *root)
401 {
402 	struct fname *fname, *next;
403 
404 	rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
405 		while (fname) {
406 			struct fname *old = fname;
407 			fname = fname->next;
408 			kfree(old);
409 		}
410 
411 	*root = RB_ROOT;
412 }
413 
414 
415 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
416 							   loff_t pos)
417 {
418 	struct dir_private_info *p;
419 
420 	p = kzalloc(sizeof(*p), GFP_KERNEL);
421 	if (!p)
422 		return NULL;
423 	p->curr_hash = pos2maj_hash(filp, pos);
424 	p->curr_minor_hash = pos2min_hash(filp, pos);
425 	return p;
426 }
427 
428 void ext4_htree_free_dir_info(struct dir_private_info *p)
429 {
430 	free_rb_tree_fname(&p->root);
431 	kfree(p);
432 }
433 
434 /*
435  * Given a directory entry, enter it into the fname rb tree.
436  *
437  * When filename encryption is enabled, the dirent will hold the
438  * encrypted filename, while the htree will hold decrypted filename.
439  * The decrypted filename is passed in via ent_name.  parameter.
440  */
441 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
442 			     __u32 minor_hash,
443 			    struct ext4_dir_entry_2 *dirent,
444 			    struct fscrypt_str *ent_name)
445 {
446 	struct rb_node **p, *parent = NULL;
447 	struct fname *fname, *new_fn;
448 	struct dir_private_info *info;
449 	int len;
450 
451 	info = dir_file->private_data;
452 	p = &info->root.rb_node;
453 
454 	/* Create and allocate the fname structure */
455 	len = sizeof(struct fname) + ent_name->len + 1;
456 	new_fn = kzalloc(len, GFP_KERNEL);
457 	if (!new_fn)
458 		return -ENOMEM;
459 	new_fn->hash = hash;
460 	new_fn->minor_hash = minor_hash;
461 	new_fn->inode = le32_to_cpu(dirent->inode);
462 	new_fn->name_len = ent_name->len;
463 	new_fn->file_type = dirent->file_type;
464 	memcpy(new_fn->name, ent_name->name, ent_name->len);
465 	new_fn->name[ent_name->len] = 0;
466 
467 	while (*p) {
468 		parent = *p;
469 		fname = rb_entry(parent, struct fname, rb_hash);
470 
471 		/*
472 		 * If the hash and minor hash match up, then we put
473 		 * them on a linked list.  This rarely happens...
474 		 */
475 		if ((new_fn->hash == fname->hash) &&
476 		    (new_fn->minor_hash == fname->minor_hash)) {
477 			new_fn->next = fname->next;
478 			fname->next = new_fn;
479 			return 0;
480 		}
481 
482 		if (new_fn->hash < fname->hash)
483 			p = &(*p)->rb_left;
484 		else if (new_fn->hash > fname->hash)
485 			p = &(*p)->rb_right;
486 		else if (new_fn->minor_hash < fname->minor_hash)
487 			p = &(*p)->rb_left;
488 		else /* if (new_fn->minor_hash > fname->minor_hash) */
489 			p = &(*p)->rb_right;
490 	}
491 
492 	rb_link_node(&new_fn->rb_hash, parent, p);
493 	rb_insert_color(&new_fn->rb_hash, &info->root);
494 	return 0;
495 }
496 
497 
498 
499 /*
500  * This is a helper function for ext4_dx_readdir.  It calls filldir
501  * for all entres on the fname linked list.  (Normally there is only
502  * one entry on the linked list, unless there are 62 bit hash collisions.)
503  */
504 static int call_filldir(struct file *file, struct dir_context *ctx,
505 			struct fname *fname)
506 {
507 	struct dir_private_info *info = file->private_data;
508 	struct inode *inode = file_inode(file);
509 	struct super_block *sb = inode->i_sb;
510 
511 	if (!fname) {
512 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
513 			 "called with null fname?!?", __func__, __LINE__,
514 			 inode->i_ino, current->comm);
515 		return 0;
516 	}
517 	ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
518 	while (fname) {
519 		if (!dir_emit(ctx, fname->name,
520 				fname->name_len,
521 				fname->inode,
522 				get_dtype(sb, fname->file_type))) {
523 			info->extra_fname = fname;
524 			return 1;
525 		}
526 		fname = fname->next;
527 	}
528 	return 0;
529 }
530 
531 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
532 {
533 	struct dir_private_info *info = file->private_data;
534 	struct inode *inode = file_inode(file);
535 	struct fname *fname;
536 	int	ret;
537 
538 	if (!info) {
539 		info = ext4_htree_create_dir_info(file, ctx->pos);
540 		if (!info)
541 			return -ENOMEM;
542 		file->private_data = info;
543 	}
544 
545 	if (ctx->pos == ext4_get_htree_eof(file))
546 		return 0;	/* EOF */
547 
548 	/* Some one has messed with f_pos; reset the world */
549 	if (info->last_pos != ctx->pos) {
550 		free_rb_tree_fname(&info->root);
551 		info->curr_node = NULL;
552 		info->extra_fname = NULL;
553 		info->curr_hash = pos2maj_hash(file, ctx->pos);
554 		info->curr_minor_hash = pos2min_hash(file, ctx->pos);
555 	}
556 
557 	/*
558 	 * If there are any leftover names on the hash collision
559 	 * chain, return them first.
560 	 */
561 	if (info->extra_fname) {
562 		if (call_filldir(file, ctx, info->extra_fname))
563 			goto finished;
564 		info->extra_fname = NULL;
565 		goto next_node;
566 	} else if (!info->curr_node)
567 		info->curr_node = rb_first(&info->root);
568 
569 	while (1) {
570 		/*
571 		 * Fill the rbtree if we have no more entries,
572 		 * or the inode has changed since we last read in the
573 		 * cached entries.
574 		 */
575 		if ((!info->curr_node) ||
576 		    !inode_eq_iversion(inode, file->f_version)) {
577 			info->curr_node = NULL;
578 			free_rb_tree_fname(&info->root);
579 			file->f_version = inode_query_iversion(inode);
580 			ret = ext4_htree_fill_tree(file, info->curr_hash,
581 						   info->curr_minor_hash,
582 						   &info->next_hash);
583 			if (ret < 0)
584 				return ret;
585 			if (ret == 0) {
586 				ctx->pos = ext4_get_htree_eof(file);
587 				break;
588 			}
589 			info->curr_node = rb_first(&info->root);
590 		}
591 
592 		fname = rb_entry(info->curr_node, struct fname, rb_hash);
593 		info->curr_hash = fname->hash;
594 		info->curr_minor_hash = fname->minor_hash;
595 		if (call_filldir(file, ctx, fname))
596 			break;
597 	next_node:
598 		info->curr_node = rb_next(info->curr_node);
599 		if (info->curr_node) {
600 			fname = rb_entry(info->curr_node, struct fname,
601 					 rb_hash);
602 			info->curr_hash = fname->hash;
603 			info->curr_minor_hash = fname->minor_hash;
604 		} else {
605 			if (info->next_hash == ~0) {
606 				ctx->pos = ext4_get_htree_eof(file);
607 				break;
608 			}
609 			info->curr_hash = info->next_hash;
610 			info->curr_minor_hash = 0;
611 		}
612 	}
613 finished:
614 	info->last_pos = ctx->pos;
615 	return 0;
616 }
617 
618 static int ext4_dir_open(struct inode * inode, struct file * filp)
619 {
620 	if (IS_ENCRYPTED(inode))
621 		return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
622 	return 0;
623 }
624 
625 static int ext4_release_dir(struct inode *inode, struct file *filp)
626 {
627 	if (filp->private_data)
628 		ext4_htree_free_dir_info(filp->private_data);
629 
630 	return 0;
631 }
632 
633 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
634 		      int buf_size)
635 {
636 	struct ext4_dir_entry_2 *de;
637 	int rlen;
638 	unsigned int offset = 0;
639 	char *top;
640 
641 	de = (struct ext4_dir_entry_2 *)buf;
642 	top = buf + buf_size;
643 	while ((char *) de < top) {
644 		if (ext4_check_dir_entry(dir, NULL, de, bh,
645 					 buf, buf_size, offset))
646 			return -EFSCORRUPTED;
647 		rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
648 		de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
649 		offset += rlen;
650 	}
651 	if ((char *) de > top)
652 		return -EFSCORRUPTED;
653 
654 	return 0;
655 }
656 
657 const struct file_operations ext4_dir_operations = {
658 	.llseek		= ext4_dir_llseek,
659 	.read		= generic_read_dir,
660 	.iterate_shared	= ext4_readdir,
661 	.unlocked_ioctl = ext4_ioctl,
662 #ifdef CONFIG_COMPAT
663 	.compat_ioctl	= ext4_compat_ioctl,
664 #endif
665 	.fsync		= ext4_sync_file,
666 	.open		= ext4_dir_open,
667 	.release	= ext4_release_dir,
668 };
669 
670 #ifdef CONFIG_UNICODE
671 static int ext4_d_compare(const struct dentry *dentry, unsigned int len,
672 			  const char *str, const struct qstr *name)
673 {
674 	struct qstr qstr = {.name = str, .len = len };
675 	struct inode *inode = dentry->d_parent->d_inode;
676 
677 	if (!IS_CASEFOLDED(inode) || !EXT4_SB(inode->i_sb)->s_encoding) {
678 		if (len != name->len)
679 			return -1;
680 		return memcmp(str, name->name, len);
681 	}
682 
683 	return ext4_ci_compare(inode, name, &qstr, false);
684 }
685 
686 static int ext4_d_hash(const struct dentry *dentry, struct qstr *str)
687 {
688 	const struct ext4_sb_info *sbi = EXT4_SB(dentry->d_sb);
689 	const struct unicode_map *um = sbi->s_encoding;
690 	unsigned char *norm;
691 	int len, ret = 0;
692 
693 	if (!IS_CASEFOLDED(dentry->d_inode) || !um)
694 		return 0;
695 
696 	norm = kmalloc(PATH_MAX, GFP_ATOMIC);
697 	if (!norm)
698 		return -ENOMEM;
699 
700 	len = utf8_casefold(um, str, norm, PATH_MAX);
701 	if (len < 0) {
702 		if (ext4_has_strict_mode(sbi))
703 			ret = -EINVAL;
704 		goto out;
705 	}
706 	str->hash = full_name_hash(dentry, norm, len);
707 out:
708 	kfree(norm);
709 	return ret;
710 }
711 
712 const struct dentry_operations ext4_dentry_ops = {
713 	.d_hash = ext4_d_hash,
714 	.d_compare = ext4_d_compare,
715 };
716 #endif
717