1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/dir.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/dir.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 directory handling functions 17 * 18 * Big-endian to little-endian byte-swapping/bitmaps by 19 * David S. Miller (davem@caip.rutgers.edu), 1995 20 * 21 * Hash Tree Directory indexing (c) 2001 Daniel Phillips 22 * 23 */ 24 25 #include <linux/fs.h> 26 #include <linux/buffer_head.h> 27 #include <linux/slab.h> 28 #include <linux/iversion.h> 29 #include <linux/unicode.h> 30 #include "ext4.h" 31 #include "xattr.h" 32 33 static int ext4_dx_readdir(struct file *, struct dir_context *); 34 35 /** 36 * is_dx_dir() - check if a directory is using htree indexing 37 * @inode: directory inode 38 * 39 * Check if the given dir-inode refers to an htree-indexed directory 40 * (or a directory which could potentially get converted to use htree 41 * indexing). 42 * 43 * Return 1 if it is a dx dir, 0 if not 44 */ 45 static int is_dx_dir(struct inode *inode) 46 { 47 struct super_block *sb = inode->i_sb; 48 49 if (ext4_has_feature_dir_index(inode->i_sb) && 50 ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) || 51 ((inode->i_size >> sb->s_blocksize_bits) == 1) || 52 ext4_has_inline_data(inode))) 53 return 1; 54 55 return 0; 56 } 57 58 /* 59 * Return 0 if the directory entry is OK, and 1 if there is a problem 60 * 61 * Note: this is the opposite of what ext2 and ext3 historically returned... 62 * 63 * bh passed here can be an inode block or a dir data block, depending 64 * on the inode inline data flag. 65 */ 66 int __ext4_check_dir_entry(const char *function, unsigned int line, 67 struct inode *dir, struct file *filp, 68 struct ext4_dir_entry_2 *de, 69 struct buffer_head *bh, char *buf, int size, 70 unsigned int offset) 71 { 72 const char *error_msg = NULL; 73 const int rlen = ext4_rec_len_from_disk(de->rec_len, 74 dir->i_sb->s_blocksize); 75 const int next_offset = ((char *) de - buf) + rlen; 76 77 if (unlikely(rlen < EXT4_DIR_REC_LEN(1))) 78 error_msg = "rec_len is smaller than minimal"; 79 else if (unlikely(rlen % 4 != 0)) 80 error_msg = "rec_len % 4 != 0"; 81 else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len))) 82 error_msg = "rec_len is too small for name_len"; 83 else if (unlikely(next_offset > size)) 84 error_msg = "directory entry overrun"; 85 else if (unlikely(next_offset > size - EXT4_DIR_REC_LEN(1) && 86 next_offset != size)) 87 error_msg = "directory entry too close to block end"; 88 else if (unlikely(le32_to_cpu(de->inode) > 89 le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count))) 90 error_msg = "inode out of bounds"; 91 else 92 return 0; 93 94 if (filp) 95 ext4_error_file(filp, function, line, bh->b_blocknr, 96 "bad entry in directory: %s - offset=%u, " 97 "inode=%u, rec_len=%d, name_len=%d, size=%d", 98 error_msg, offset, le32_to_cpu(de->inode), 99 rlen, de->name_len, size); 100 else 101 ext4_error_inode(dir, function, line, bh->b_blocknr, 102 "bad entry in directory: %s - offset=%u, " 103 "inode=%u, rec_len=%d, name_len=%d, size=%d", 104 error_msg, offset, le32_to_cpu(de->inode), 105 rlen, de->name_len, size); 106 107 return 1; 108 } 109 110 static int ext4_readdir(struct file *file, struct dir_context *ctx) 111 { 112 unsigned int offset; 113 int i; 114 struct ext4_dir_entry_2 *de; 115 int err; 116 struct inode *inode = file_inode(file); 117 struct super_block *sb = inode->i_sb; 118 struct buffer_head *bh = NULL; 119 struct fscrypt_str fstr = FSTR_INIT(NULL, 0); 120 121 if (IS_ENCRYPTED(inode)) { 122 err = fscrypt_get_encryption_info(inode); 123 if (err) 124 return err; 125 } 126 127 if (is_dx_dir(inode)) { 128 err = ext4_dx_readdir(file, ctx); 129 if (err != ERR_BAD_DX_DIR) { 130 return err; 131 } 132 /* Can we just clear INDEX flag to ignore htree information? */ 133 if (!ext4_has_metadata_csum(sb)) { 134 /* 135 * We don't set the inode dirty flag since it's not 136 * critical that it gets flushed back to the disk. 137 */ 138 ext4_clear_inode_flag(inode, EXT4_INODE_INDEX); 139 } 140 } 141 142 if (ext4_has_inline_data(inode)) { 143 int has_inline_data = 1; 144 err = ext4_read_inline_dir(file, ctx, 145 &has_inline_data); 146 if (has_inline_data) 147 return err; 148 } 149 150 if (IS_ENCRYPTED(inode)) { 151 err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr); 152 if (err < 0) 153 return err; 154 } 155 156 while (ctx->pos < inode->i_size) { 157 struct ext4_map_blocks map; 158 159 if (fatal_signal_pending(current)) { 160 err = -ERESTARTSYS; 161 goto errout; 162 } 163 cond_resched(); 164 offset = ctx->pos & (sb->s_blocksize - 1); 165 map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb); 166 map.m_len = 1; 167 err = ext4_map_blocks(NULL, inode, &map, 0); 168 if (err == 0) { 169 /* m_len should never be zero but let's avoid 170 * an infinite loop if it somehow is */ 171 if (map.m_len == 0) 172 map.m_len = 1; 173 ctx->pos += map.m_len * sb->s_blocksize; 174 continue; 175 } 176 if (err > 0) { 177 pgoff_t index = map.m_pblk >> 178 (PAGE_SHIFT - inode->i_blkbits); 179 if (!ra_has_index(&file->f_ra, index)) 180 page_cache_sync_readahead( 181 sb->s_bdev->bd_inode->i_mapping, 182 &file->f_ra, file, 183 index, 1); 184 file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT; 185 bh = ext4_bread(NULL, inode, map.m_lblk, 0); 186 if (IS_ERR(bh)) { 187 err = PTR_ERR(bh); 188 bh = NULL; 189 goto errout; 190 } 191 } 192 193 if (!bh) { 194 /* corrupt size? Maybe no more blocks to read */ 195 if (ctx->pos > inode->i_blocks << 9) 196 break; 197 ctx->pos += sb->s_blocksize - offset; 198 continue; 199 } 200 201 /* Check the checksum */ 202 if (!buffer_verified(bh) && 203 !ext4_dirblock_csum_verify(inode, bh)) { 204 EXT4_ERROR_FILE(file, 0, "directory fails checksum " 205 "at offset %llu", 206 (unsigned long long)ctx->pos); 207 ctx->pos += sb->s_blocksize - offset; 208 brelse(bh); 209 bh = NULL; 210 continue; 211 } 212 set_buffer_verified(bh); 213 214 /* If the dir block has changed since the last call to 215 * readdir(2), then we might be pointing to an invalid 216 * dirent right now. Scan from the start of the block 217 * to make sure. */ 218 if (!inode_eq_iversion(inode, file->f_version)) { 219 for (i = 0; i < sb->s_blocksize && i < offset; ) { 220 de = (struct ext4_dir_entry_2 *) 221 (bh->b_data + i); 222 /* It's too expensive to do a full 223 * dirent test each time round this 224 * loop, but we do have to test at 225 * least that it is non-zero. A 226 * failure will be detected in the 227 * dirent test below. */ 228 if (ext4_rec_len_from_disk(de->rec_len, 229 sb->s_blocksize) < EXT4_DIR_REC_LEN(1)) 230 break; 231 i += ext4_rec_len_from_disk(de->rec_len, 232 sb->s_blocksize); 233 } 234 offset = i; 235 ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1)) 236 | offset; 237 file->f_version = inode_query_iversion(inode); 238 } 239 240 while (ctx->pos < inode->i_size 241 && offset < sb->s_blocksize) { 242 de = (struct ext4_dir_entry_2 *) (bh->b_data + offset); 243 if (ext4_check_dir_entry(inode, file, de, bh, 244 bh->b_data, bh->b_size, 245 offset)) { 246 /* 247 * On error, skip to the next block 248 */ 249 ctx->pos = (ctx->pos | 250 (sb->s_blocksize - 1)) + 1; 251 break; 252 } 253 offset += ext4_rec_len_from_disk(de->rec_len, 254 sb->s_blocksize); 255 if (le32_to_cpu(de->inode)) { 256 if (!IS_ENCRYPTED(inode)) { 257 if (!dir_emit(ctx, de->name, 258 de->name_len, 259 le32_to_cpu(de->inode), 260 get_dtype(sb, de->file_type))) 261 goto done; 262 } else { 263 int save_len = fstr.len; 264 struct fscrypt_str de_name = 265 FSTR_INIT(de->name, 266 de->name_len); 267 268 /* Directory is encrypted */ 269 err = fscrypt_fname_disk_to_usr(inode, 270 0, 0, &de_name, &fstr); 271 de_name = fstr; 272 fstr.len = save_len; 273 if (err) 274 goto errout; 275 if (!dir_emit(ctx, 276 de_name.name, de_name.len, 277 le32_to_cpu(de->inode), 278 get_dtype(sb, de->file_type))) 279 goto done; 280 } 281 } 282 ctx->pos += ext4_rec_len_from_disk(de->rec_len, 283 sb->s_blocksize); 284 } 285 if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode)) 286 goto done; 287 brelse(bh); 288 bh = NULL; 289 offset = 0; 290 } 291 done: 292 err = 0; 293 errout: 294 fscrypt_fname_free_buffer(&fstr); 295 brelse(bh); 296 return err; 297 } 298 299 static inline int is_32bit_api(void) 300 { 301 #ifdef CONFIG_COMPAT 302 return in_compat_syscall(); 303 #else 304 return (BITS_PER_LONG == 32); 305 #endif 306 } 307 308 /* 309 * These functions convert from the major/minor hash to an f_pos 310 * value for dx directories 311 * 312 * Upper layer (for example NFS) should specify FMODE_32BITHASH or 313 * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted 314 * directly on both 32-bit and 64-bit nodes, under such case, neither 315 * FMODE_32BITHASH nor FMODE_64BITHASH is specified. 316 */ 317 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor) 318 { 319 if ((filp->f_mode & FMODE_32BITHASH) || 320 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 321 return major >> 1; 322 else 323 return ((__u64)(major >> 1) << 32) | (__u64)minor; 324 } 325 326 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos) 327 { 328 if ((filp->f_mode & FMODE_32BITHASH) || 329 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 330 return (pos << 1) & 0xffffffff; 331 else 332 return ((pos >> 32) << 1) & 0xffffffff; 333 } 334 335 static inline __u32 pos2min_hash(struct file *filp, loff_t pos) 336 { 337 if ((filp->f_mode & FMODE_32BITHASH) || 338 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 339 return 0; 340 else 341 return pos & 0xffffffff; 342 } 343 344 /* 345 * Return 32- or 64-bit end-of-file for dx directories 346 */ 347 static inline loff_t ext4_get_htree_eof(struct file *filp) 348 { 349 if ((filp->f_mode & FMODE_32BITHASH) || 350 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 351 return EXT4_HTREE_EOF_32BIT; 352 else 353 return EXT4_HTREE_EOF_64BIT; 354 } 355 356 357 /* 358 * ext4_dir_llseek() calls generic_file_llseek_size to handle htree 359 * directories, where the "offset" is in terms of the filename hash 360 * value instead of the byte offset. 361 * 362 * Because we may return a 64-bit hash that is well beyond offset limits, 363 * we need to pass the max hash as the maximum allowable offset in 364 * the htree directory case. 365 * 366 * For non-htree, ext4_llseek already chooses the proper max offset. 367 */ 368 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence) 369 { 370 struct inode *inode = file->f_mapping->host; 371 int dx_dir = is_dx_dir(inode); 372 loff_t ret, htree_max = ext4_get_htree_eof(file); 373 374 if (likely(dx_dir)) 375 ret = generic_file_llseek_size(file, offset, whence, 376 htree_max, htree_max); 377 else 378 ret = ext4_llseek(file, offset, whence); 379 file->f_version = inode_peek_iversion(inode) - 1; 380 return ret; 381 } 382 383 /* 384 * This structure holds the nodes of the red-black tree used to store 385 * the directory entry in hash order. 386 */ 387 struct fname { 388 __u32 hash; 389 __u32 minor_hash; 390 struct rb_node rb_hash; 391 struct fname *next; 392 __u32 inode; 393 __u8 name_len; 394 __u8 file_type; 395 char name[]; 396 }; 397 398 /* 399 * This functoin implements a non-recursive way of freeing all of the 400 * nodes in the red-black tree. 401 */ 402 static void free_rb_tree_fname(struct rb_root *root) 403 { 404 struct fname *fname, *next; 405 406 rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash) 407 while (fname) { 408 struct fname *old = fname; 409 fname = fname->next; 410 kfree(old); 411 } 412 413 *root = RB_ROOT; 414 } 415 416 417 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp, 418 loff_t pos) 419 { 420 struct dir_private_info *p; 421 422 p = kzalloc(sizeof(*p), GFP_KERNEL); 423 if (!p) 424 return NULL; 425 p->curr_hash = pos2maj_hash(filp, pos); 426 p->curr_minor_hash = pos2min_hash(filp, pos); 427 return p; 428 } 429 430 void ext4_htree_free_dir_info(struct dir_private_info *p) 431 { 432 free_rb_tree_fname(&p->root); 433 kfree(p); 434 } 435 436 /* 437 * Given a directory entry, enter it into the fname rb tree. 438 * 439 * When filename encryption is enabled, the dirent will hold the 440 * encrypted filename, while the htree will hold decrypted filename. 441 * The decrypted filename is passed in via ent_name. parameter. 442 */ 443 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash, 444 __u32 minor_hash, 445 struct ext4_dir_entry_2 *dirent, 446 struct fscrypt_str *ent_name) 447 { 448 struct rb_node **p, *parent = NULL; 449 struct fname *fname, *new_fn; 450 struct dir_private_info *info; 451 int len; 452 453 info = dir_file->private_data; 454 p = &info->root.rb_node; 455 456 /* Create and allocate the fname structure */ 457 len = sizeof(struct fname) + ent_name->len + 1; 458 new_fn = kzalloc(len, GFP_KERNEL); 459 if (!new_fn) 460 return -ENOMEM; 461 new_fn->hash = hash; 462 new_fn->minor_hash = minor_hash; 463 new_fn->inode = le32_to_cpu(dirent->inode); 464 new_fn->name_len = ent_name->len; 465 new_fn->file_type = dirent->file_type; 466 memcpy(new_fn->name, ent_name->name, ent_name->len); 467 468 while (*p) { 469 parent = *p; 470 fname = rb_entry(parent, struct fname, rb_hash); 471 472 /* 473 * If the hash and minor hash match up, then we put 474 * them on a linked list. This rarely happens... 475 */ 476 if ((new_fn->hash == fname->hash) && 477 (new_fn->minor_hash == fname->minor_hash)) { 478 new_fn->next = fname->next; 479 fname->next = new_fn; 480 return 0; 481 } 482 483 if (new_fn->hash < fname->hash) 484 p = &(*p)->rb_left; 485 else if (new_fn->hash > fname->hash) 486 p = &(*p)->rb_right; 487 else if (new_fn->minor_hash < fname->minor_hash) 488 p = &(*p)->rb_left; 489 else /* if (new_fn->minor_hash > fname->minor_hash) */ 490 p = &(*p)->rb_right; 491 } 492 493 rb_link_node(&new_fn->rb_hash, parent, p); 494 rb_insert_color(&new_fn->rb_hash, &info->root); 495 return 0; 496 } 497 498 499 500 /* 501 * This is a helper function for ext4_dx_readdir. It calls filldir 502 * for all entres on the fname linked list. (Normally there is only 503 * one entry on the linked list, unless there are 62 bit hash collisions.) 504 */ 505 static int call_filldir(struct file *file, struct dir_context *ctx, 506 struct fname *fname) 507 { 508 struct dir_private_info *info = file->private_data; 509 struct inode *inode = file_inode(file); 510 struct super_block *sb = inode->i_sb; 511 512 if (!fname) { 513 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: " 514 "called with null fname?!?", __func__, __LINE__, 515 inode->i_ino, current->comm); 516 return 0; 517 } 518 ctx->pos = hash2pos(file, fname->hash, fname->minor_hash); 519 while (fname) { 520 if (!dir_emit(ctx, fname->name, 521 fname->name_len, 522 fname->inode, 523 get_dtype(sb, fname->file_type))) { 524 info->extra_fname = fname; 525 return 1; 526 } 527 fname = fname->next; 528 } 529 return 0; 530 } 531 532 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx) 533 { 534 struct dir_private_info *info = file->private_data; 535 struct inode *inode = file_inode(file); 536 struct fname *fname; 537 int ret; 538 539 if (!info) { 540 info = ext4_htree_create_dir_info(file, ctx->pos); 541 if (!info) 542 return -ENOMEM; 543 file->private_data = info; 544 } 545 546 if (ctx->pos == ext4_get_htree_eof(file)) 547 return 0; /* EOF */ 548 549 /* Some one has messed with f_pos; reset the world */ 550 if (info->last_pos != ctx->pos) { 551 free_rb_tree_fname(&info->root); 552 info->curr_node = NULL; 553 info->extra_fname = NULL; 554 info->curr_hash = pos2maj_hash(file, ctx->pos); 555 info->curr_minor_hash = pos2min_hash(file, ctx->pos); 556 } 557 558 /* 559 * If there are any leftover names on the hash collision 560 * chain, return them first. 561 */ 562 if (info->extra_fname) { 563 if (call_filldir(file, ctx, info->extra_fname)) 564 goto finished; 565 info->extra_fname = NULL; 566 goto next_node; 567 } else if (!info->curr_node) 568 info->curr_node = rb_first(&info->root); 569 570 while (1) { 571 /* 572 * Fill the rbtree if we have no more entries, 573 * or the inode has changed since we last read in the 574 * cached entries. 575 */ 576 if ((!info->curr_node) || 577 !inode_eq_iversion(inode, file->f_version)) { 578 info->curr_node = NULL; 579 free_rb_tree_fname(&info->root); 580 file->f_version = inode_query_iversion(inode); 581 ret = ext4_htree_fill_tree(file, info->curr_hash, 582 info->curr_minor_hash, 583 &info->next_hash); 584 if (ret < 0) 585 return ret; 586 if (ret == 0) { 587 ctx->pos = ext4_get_htree_eof(file); 588 break; 589 } 590 info->curr_node = rb_first(&info->root); 591 } 592 593 fname = rb_entry(info->curr_node, struct fname, rb_hash); 594 info->curr_hash = fname->hash; 595 info->curr_minor_hash = fname->minor_hash; 596 if (call_filldir(file, ctx, fname)) 597 break; 598 next_node: 599 info->curr_node = rb_next(info->curr_node); 600 if (info->curr_node) { 601 fname = rb_entry(info->curr_node, struct fname, 602 rb_hash); 603 info->curr_hash = fname->hash; 604 info->curr_minor_hash = fname->minor_hash; 605 } else { 606 if (info->next_hash == ~0) { 607 ctx->pos = ext4_get_htree_eof(file); 608 break; 609 } 610 info->curr_hash = info->next_hash; 611 info->curr_minor_hash = 0; 612 } 613 } 614 finished: 615 info->last_pos = ctx->pos; 616 return 0; 617 } 618 619 static int ext4_dir_open(struct inode * inode, struct file * filp) 620 { 621 if (IS_ENCRYPTED(inode)) 622 return fscrypt_get_encryption_info(inode) ? -EACCES : 0; 623 return 0; 624 } 625 626 static int ext4_release_dir(struct inode *inode, struct file *filp) 627 { 628 if (filp->private_data) 629 ext4_htree_free_dir_info(filp->private_data); 630 631 return 0; 632 } 633 634 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf, 635 int buf_size) 636 { 637 struct ext4_dir_entry_2 *de; 638 int rlen; 639 unsigned int offset = 0; 640 char *top; 641 642 de = (struct ext4_dir_entry_2 *)buf; 643 top = buf + buf_size; 644 while ((char *) de < top) { 645 if (ext4_check_dir_entry(dir, NULL, de, bh, 646 buf, buf_size, offset)) 647 return -EFSCORRUPTED; 648 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 649 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 650 offset += rlen; 651 } 652 if ((char *) de > top) 653 return -EFSCORRUPTED; 654 655 return 0; 656 } 657 658 const struct file_operations ext4_dir_operations = { 659 .llseek = ext4_dir_llseek, 660 .read = generic_read_dir, 661 .iterate_shared = ext4_readdir, 662 .unlocked_ioctl = ext4_ioctl, 663 #ifdef CONFIG_COMPAT 664 .compat_ioctl = ext4_compat_ioctl, 665 #endif 666 .fsync = ext4_sync_file, 667 .open = ext4_dir_open, 668 .release = ext4_release_dir, 669 }; 670 671 #ifdef CONFIG_UNICODE 672 static int ext4_d_compare(const struct dentry *dentry, unsigned int len, 673 const char *str, const struct qstr *name) 674 { 675 struct qstr qstr = {.name = str, .len = len }; 676 const struct dentry *parent = READ_ONCE(dentry->d_parent); 677 const struct inode *inode = READ_ONCE(parent->d_inode); 678 679 if (!inode || !IS_CASEFOLDED(inode) || 680 !EXT4_SB(inode->i_sb)->s_encoding) { 681 if (len != name->len) 682 return -1; 683 return memcmp(str, name->name, len); 684 } 685 686 return ext4_ci_compare(inode, name, &qstr, false); 687 } 688 689 static int ext4_d_hash(const struct dentry *dentry, struct qstr *str) 690 { 691 const struct ext4_sb_info *sbi = EXT4_SB(dentry->d_sb); 692 const struct unicode_map *um = sbi->s_encoding; 693 const struct inode *inode = READ_ONCE(dentry->d_inode); 694 unsigned char *norm; 695 int len, ret = 0; 696 697 if (!inode || !IS_CASEFOLDED(inode) || !um) 698 return 0; 699 700 norm = kmalloc(PATH_MAX, GFP_ATOMIC); 701 if (!norm) 702 return -ENOMEM; 703 704 len = utf8_casefold(um, str, norm, PATH_MAX); 705 if (len < 0) { 706 if (ext4_has_strict_mode(sbi)) 707 ret = -EINVAL; 708 goto out; 709 } 710 str->hash = full_name_hash(dentry, norm, len); 711 out: 712 kfree(norm); 713 return ret; 714 } 715 716 const struct dentry_operations ext4_dentry_ops = { 717 .d_hash = ext4_d_hash, 718 .d_compare = ext4_d_compare, 719 }; 720 #endif 721