xref: /linux/fs/ext4/crypto.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * linux/fs/ext4/crypto.c
3  *
4  * Copyright (C) 2015, Google, Inc.
5  *
6  * This contains encryption functions for ext4
7  *
8  * Written by Michael Halcrow, 2014.
9  *
10  * Filename encryption additions
11  *	Uday Savagaonkar, 2014
12  * Encryption policy handling additions
13  *	Ildar Muslukhov, 2014
14  *
15  * This has not yet undergone a rigorous security audit.
16  *
17  * The usage of AES-XTS should conform to recommendations in NIST
18  * Special Publication 800-38E and IEEE P1619/D16.
19  */
20 
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <keys/user-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/crypto.h>
26 #include <linux/ecryptfs.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/key.h>
30 #include <linux/list.h>
31 #include <linux/mempool.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/random.h>
35 #include <linux/scatterlist.h>
36 #include <linux/spinlock_types.h>
37 
38 #include "ext4_extents.h"
39 #include "xattr.h"
40 
41 /* Encryption added and removed here! (L: */
42 
43 static unsigned int num_prealloc_crypto_pages = 32;
44 static unsigned int num_prealloc_crypto_ctxs = 128;
45 
46 module_param(num_prealloc_crypto_pages, uint, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 		 "Number of crypto pages to preallocate");
49 module_param(num_prealloc_crypto_ctxs, uint, 0444);
50 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 		 "Number of crypto contexts to preallocate");
52 
53 static mempool_t *ext4_bounce_page_pool;
54 
55 static LIST_HEAD(ext4_free_crypto_ctxs);
56 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57 
58 static struct kmem_cache *ext4_crypto_ctx_cachep;
59 struct kmem_cache *ext4_crypt_info_cachep;
60 
61 /**
62  * ext4_release_crypto_ctx() - Releases an encryption context
63  * @ctx: The encryption context to release.
64  *
65  * If the encryption context was allocated from the pre-allocated pool, returns
66  * it to that pool. Else, frees it.
67  *
68  * If there's a bounce page in the context, this frees that.
69  */
70 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
71 {
72 	unsigned long flags;
73 
74 	if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
75 		mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
76 	ctx->w.bounce_page = NULL;
77 	ctx->w.control_page = NULL;
78 	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 		kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
80 	} else {
81 		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
82 		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
83 		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
84 	}
85 }
86 
87 /**
88  * ext4_get_crypto_ctx() - Gets an encryption context
89  * @inode:       The inode for which we are doing the crypto
90  *
91  * Allocates and initializes an encryption context.
92  *
93  * Return: An allocated and initialized encryption context on success; error
94  * value or NULL otherwise.
95  */
96 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
97 {
98 	struct ext4_crypto_ctx *ctx = NULL;
99 	int res = 0;
100 	unsigned long flags;
101 	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
102 
103 	if (ci == NULL)
104 		return ERR_PTR(-ENOKEY);
105 
106 	/*
107 	 * We first try getting the ctx from a free list because in
108 	 * the common case the ctx will have an allocated and
109 	 * initialized crypto tfm, so it's probably a worthwhile
110 	 * optimization. For the bounce page, we first try getting it
111 	 * from the kernel allocator because that's just about as fast
112 	 * as getting it from a list and because a cache of free pages
113 	 * should generally be a "last resort" option for a filesystem
114 	 * to be able to do its job.
115 	 */
116 	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
117 	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
118 				       struct ext4_crypto_ctx, free_list);
119 	if (ctx)
120 		list_del(&ctx->free_list);
121 	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
122 	if (!ctx) {
123 		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
124 		if (!ctx) {
125 			res = -ENOMEM;
126 			goto out;
127 		}
128 		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
129 	} else {
130 		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
131 	}
132 	ctx->flags &= ~EXT4_WRITE_PATH_FL;
133 
134 out:
135 	if (res) {
136 		if (!IS_ERR_OR_NULL(ctx))
137 			ext4_release_crypto_ctx(ctx);
138 		ctx = ERR_PTR(res);
139 	}
140 	return ctx;
141 }
142 
143 struct workqueue_struct *ext4_read_workqueue;
144 static DEFINE_MUTEX(crypto_init);
145 
146 /**
147  * ext4_exit_crypto() - Shutdown the ext4 encryption system
148  */
149 void ext4_exit_crypto(void)
150 {
151 	struct ext4_crypto_ctx *pos, *n;
152 
153 	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
154 		kmem_cache_free(ext4_crypto_ctx_cachep, pos);
155 	INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
156 	if (ext4_bounce_page_pool)
157 		mempool_destroy(ext4_bounce_page_pool);
158 	ext4_bounce_page_pool = NULL;
159 	if (ext4_read_workqueue)
160 		destroy_workqueue(ext4_read_workqueue);
161 	ext4_read_workqueue = NULL;
162 	if (ext4_crypto_ctx_cachep)
163 		kmem_cache_destroy(ext4_crypto_ctx_cachep);
164 	ext4_crypto_ctx_cachep = NULL;
165 	if (ext4_crypt_info_cachep)
166 		kmem_cache_destroy(ext4_crypt_info_cachep);
167 	ext4_crypt_info_cachep = NULL;
168 }
169 
170 /**
171  * ext4_init_crypto() - Set up for ext4 encryption.
172  *
173  * We only call this when we start accessing encrypted files, since it
174  * results in memory getting allocated that wouldn't otherwise be used.
175  *
176  * Return: Zero on success, non-zero otherwise.
177  */
178 int ext4_init_crypto(void)
179 {
180 	int i, res = -ENOMEM;
181 
182 	mutex_lock(&crypto_init);
183 	if (ext4_read_workqueue)
184 		goto already_initialized;
185 	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
186 	if (!ext4_read_workqueue)
187 		goto fail;
188 
189 	ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
190 					    SLAB_RECLAIM_ACCOUNT);
191 	if (!ext4_crypto_ctx_cachep)
192 		goto fail;
193 
194 	ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
195 					    SLAB_RECLAIM_ACCOUNT);
196 	if (!ext4_crypt_info_cachep)
197 		goto fail;
198 
199 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
200 		struct ext4_crypto_ctx *ctx;
201 
202 		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
203 		if (!ctx) {
204 			res = -ENOMEM;
205 			goto fail;
206 		}
207 		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
208 	}
209 
210 	ext4_bounce_page_pool =
211 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
212 	if (!ext4_bounce_page_pool) {
213 		res = -ENOMEM;
214 		goto fail;
215 	}
216 already_initialized:
217 	mutex_unlock(&crypto_init);
218 	return 0;
219 fail:
220 	ext4_exit_crypto();
221 	mutex_unlock(&crypto_init);
222 	return res;
223 }
224 
225 void ext4_restore_control_page(struct page *data_page)
226 {
227 	struct ext4_crypto_ctx *ctx =
228 		(struct ext4_crypto_ctx *)page_private(data_page);
229 
230 	set_page_private(data_page, (unsigned long)NULL);
231 	ClearPagePrivate(data_page);
232 	unlock_page(data_page);
233 	ext4_release_crypto_ctx(ctx);
234 }
235 
236 /**
237  * ext4_crypt_complete() - The completion callback for page encryption
238  * @req: The asynchronous encryption request context
239  * @res: The result of the encryption operation
240  */
241 static void ext4_crypt_complete(struct crypto_async_request *req, int res)
242 {
243 	struct ext4_completion_result *ecr = req->data;
244 
245 	if (res == -EINPROGRESS)
246 		return;
247 	ecr->res = res;
248 	complete(&ecr->completion);
249 }
250 
251 typedef enum {
252 	EXT4_DECRYPT = 0,
253 	EXT4_ENCRYPT,
254 } ext4_direction_t;
255 
256 static int ext4_page_crypto(struct inode *inode,
257 			    ext4_direction_t rw,
258 			    pgoff_t index,
259 			    struct page *src_page,
260 			    struct page *dest_page)
261 
262 {
263 	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
264 	struct ablkcipher_request *req = NULL;
265 	DECLARE_EXT4_COMPLETION_RESULT(ecr);
266 	struct scatterlist dst, src;
267 	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
268 	struct crypto_ablkcipher *tfm = ci->ci_ctfm;
269 	int res = 0;
270 
271 	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
272 	if (!req) {
273 		printk_ratelimited(KERN_ERR
274 				   "%s: crypto_request_alloc() failed\n",
275 				   __func__);
276 		return -ENOMEM;
277 	}
278 	ablkcipher_request_set_callback(
279 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
280 		ext4_crypt_complete, &ecr);
281 
282 	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
283 	memcpy(xts_tweak, &index, sizeof(index));
284 	memset(&xts_tweak[sizeof(index)], 0,
285 	       EXT4_XTS_TWEAK_SIZE - sizeof(index));
286 
287 	sg_init_table(&dst, 1);
288 	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
289 	sg_init_table(&src, 1);
290 	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
291 	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
292 				     xts_tweak);
293 	if (rw == EXT4_DECRYPT)
294 		res = crypto_ablkcipher_decrypt(req);
295 	else
296 		res = crypto_ablkcipher_encrypt(req);
297 	if (res == -EINPROGRESS || res == -EBUSY) {
298 		wait_for_completion(&ecr.completion);
299 		res = ecr.res;
300 	}
301 	ablkcipher_request_free(req);
302 	if (res) {
303 		printk_ratelimited(
304 			KERN_ERR
305 			"%s: crypto_ablkcipher_encrypt() returned %d\n",
306 			__func__, res);
307 		return res;
308 	}
309 	return 0;
310 }
311 
312 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
313 {
314 	ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT);
315 	if (ctx->w.bounce_page == NULL)
316 		return ERR_PTR(-ENOMEM);
317 	ctx->flags |= EXT4_WRITE_PATH_FL;
318 	return ctx->w.bounce_page;
319 }
320 
321 /**
322  * ext4_encrypt() - Encrypts a page
323  * @inode:          The inode for which the encryption should take place
324  * @plaintext_page: The page to encrypt. Must be locked.
325  *
326  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
327  * encryption context.
328  *
329  * Called on the page write path.  The caller must call
330  * ext4_restore_control_page() on the returned ciphertext page to
331  * release the bounce buffer and the encryption context.
332  *
333  * Return: An allocated page with the encrypted content on success. Else, an
334  * error value or NULL.
335  */
336 struct page *ext4_encrypt(struct inode *inode,
337 			  struct page *plaintext_page)
338 {
339 	struct ext4_crypto_ctx *ctx;
340 	struct page *ciphertext_page = NULL;
341 	int err;
342 
343 	BUG_ON(!PageLocked(plaintext_page));
344 
345 	ctx = ext4_get_crypto_ctx(inode);
346 	if (IS_ERR(ctx))
347 		return (struct page *) ctx;
348 
349 	/* The encryption operation will require a bounce page. */
350 	ciphertext_page = alloc_bounce_page(ctx);
351 	if (IS_ERR(ciphertext_page))
352 		goto errout;
353 	ctx->w.control_page = plaintext_page;
354 	err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
355 			       plaintext_page, ciphertext_page);
356 	if (err) {
357 		ciphertext_page = ERR_PTR(err);
358 	errout:
359 		ext4_release_crypto_ctx(ctx);
360 		return ciphertext_page;
361 	}
362 	SetPagePrivate(ciphertext_page);
363 	set_page_private(ciphertext_page, (unsigned long)ctx);
364 	lock_page(ciphertext_page);
365 	return ciphertext_page;
366 }
367 
368 /**
369  * ext4_decrypt() - Decrypts a page in-place
370  * @ctx:  The encryption context.
371  * @page: The page to decrypt. Must be locked.
372  *
373  * Decrypts page in-place using the ctx encryption context.
374  *
375  * Called from the read completion callback.
376  *
377  * Return: Zero on success, non-zero otherwise.
378  */
379 int ext4_decrypt(struct page *page)
380 {
381 	BUG_ON(!PageLocked(page));
382 
383 	return ext4_page_crypto(page->mapping->host,
384 				EXT4_DECRYPT, page->index, page, page);
385 }
386 
387 int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
388 {
389 	struct ext4_crypto_ctx	*ctx;
390 	struct page		*ciphertext_page = NULL;
391 	struct bio		*bio;
392 	ext4_lblk_t		lblk = ex->ee_block;
393 	ext4_fsblk_t		pblk = ext4_ext_pblock(ex);
394 	unsigned int		len = ext4_ext_get_actual_len(ex);
395 	int			ret, err = 0;
396 
397 #if 0
398 	ext4_msg(inode->i_sb, KERN_CRIT,
399 		 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
400 		 (unsigned long) inode->i_ino, lblk, len);
401 #endif
402 
403 	BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
404 
405 	ctx = ext4_get_crypto_ctx(inode);
406 	if (IS_ERR(ctx))
407 		return PTR_ERR(ctx);
408 
409 	ciphertext_page = alloc_bounce_page(ctx);
410 	if (IS_ERR(ciphertext_page)) {
411 		err = PTR_ERR(ciphertext_page);
412 		goto errout;
413 	}
414 
415 	while (len--) {
416 		err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
417 				       ZERO_PAGE(0), ciphertext_page);
418 		if (err)
419 			goto errout;
420 
421 		bio = bio_alloc(GFP_KERNEL, 1);
422 		if (!bio) {
423 			err = -ENOMEM;
424 			goto errout;
425 		}
426 		bio->bi_bdev = inode->i_sb->s_bdev;
427 		bio->bi_iter.bi_sector =
428 			pblk << (inode->i_sb->s_blocksize_bits - 9);
429 		ret = bio_add_page(bio, ciphertext_page,
430 				   inode->i_sb->s_blocksize, 0);
431 		if (ret != inode->i_sb->s_blocksize) {
432 			/* should never happen! */
433 			ext4_msg(inode->i_sb, KERN_ERR,
434 				 "bio_add_page failed: %d", ret);
435 			WARN_ON(1);
436 			bio_put(bio);
437 			err = -EIO;
438 			goto errout;
439 		}
440 		err = submit_bio_wait(WRITE, bio);
441 		if ((err == 0) && bio->bi_error)
442 			err = -EIO;
443 		bio_put(bio);
444 		if (err)
445 			goto errout;
446 		lblk++; pblk++;
447 	}
448 	err = 0;
449 errout:
450 	ext4_release_crypto_ctx(ctx);
451 	return err;
452 }
453 
454 bool ext4_valid_contents_enc_mode(uint32_t mode)
455 {
456 	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
457 }
458 
459 /**
460  * ext4_validate_encryption_key_size() - Validate the encryption key size
461  * @mode: The key mode.
462  * @size: The key size to validate.
463  *
464  * Return: The validated key size for @mode. Zero if invalid.
465  */
466 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
467 {
468 	if (size == ext4_encryption_key_size(mode))
469 		return size;
470 	return 0;
471 }
472