1 /* 2 * linux/fs/ext4/crypto.c 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * 6 * This contains encryption functions for ext4 7 * 8 * Written by Michael Halcrow, 2014. 9 * 10 * Filename encryption additions 11 * Uday Savagaonkar, 2014 12 * Encryption policy handling additions 13 * Ildar Muslukhov, 2014 14 * 15 * This has not yet undergone a rigorous security audit. 16 * 17 * The usage of AES-XTS should conform to recommendations in NIST 18 * Special Publication 800-38E and IEEE P1619/D16. 19 */ 20 21 #include <crypto/hash.h> 22 #include <crypto/sha.h> 23 #include <keys/user-type.h> 24 #include <keys/encrypted-type.h> 25 #include <linux/crypto.h> 26 #include <linux/ecryptfs.h> 27 #include <linux/gfp.h> 28 #include <linux/kernel.h> 29 #include <linux/key.h> 30 #include <linux/list.h> 31 #include <linux/mempool.h> 32 #include <linux/module.h> 33 #include <linux/mutex.h> 34 #include <linux/random.h> 35 #include <linux/scatterlist.h> 36 #include <linux/spinlock_types.h> 37 38 #include "ext4_extents.h" 39 #include "xattr.h" 40 41 /* Encryption added and removed here! (L: */ 42 43 static unsigned int num_prealloc_crypto_pages = 32; 44 static unsigned int num_prealloc_crypto_ctxs = 128; 45 46 module_param(num_prealloc_crypto_pages, uint, 0444); 47 MODULE_PARM_DESC(num_prealloc_crypto_pages, 48 "Number of crypto pages to preallocate"); 49 module_param(num_prealloc_crypto_ctxs, uint, 0444); 50 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 51 "Number of crypto contexts to preallocate"); 52 53 static mempool_t *ext4_bounce_page_pool; 54 55 static LIST_HEAD(ext4_free_crypto_ctxs); 56 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); 57 58 /** 59 * ext4_release_crypto_ctx() - Releases an encryption context 60 * @ctx: The encryption context to release. 61 * 62 * If the encryption context was allocated from the pre-allocated pool, returns 63 * it to that pool. Else, frees it. 64 * 65 * If there's a bounce page in the context, this frees that. 66 */ 67 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) 68 { 69 unsigned long flags; 70 71 if (ctx->bounce_page) { 72 if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) 73 __free_page(ctx->bounce_page); 74 else 75 mempool_free(ctx->bounce_page, ext4_bounce_page_pool); 76 ctx->bounce_page = NULL; 77 } 78 ctx->control_page = NULL; 79 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { 80 if (ctx->tfm) 81 crypto_free_tfm(ctx->tfm); 82 kfree(ctx); 83 } else { 84 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 85 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 86 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 87 } 88 } 89 90 /** 91 * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context 92 * @mask: The allocation mask. 93 * 94 * Return: An allocated and initialized encryption context on success. An error 95 * value or NULL otherwise. 96 */ 97 static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask) 98 { 99 struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx), 100 mask); 101 102 if (!ctx) 103 return ERR_PTR(-ENOMEM); 104 return ctx; 105 } 106 107 /** 108 * ext4_get_crypto_ctx() - Gets an encryption context 109 * @inode: The inode for which we are doing the crypto 110 * 111 * Allocates and initializes an encryption context. 112 * 113 * Return: An allocated and initialized encryption context on success; error 114 * value or NULL otherwise. 115 */ 116 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) 117 { 118 struct ext4_crypto_ctx *ctx = NULL; 119 int res = 0; 120 unsigned long flags; 121 struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key; 122 123 if (!ext4_read_workqueue) 124 ext4_init_crypto(); 125 126 /* 127 * We first try getting the ctx from a free list because in 128 * the common case the ctx will have an allocated and 129 * initialized crypto tfm, so it's probably a worthwhile 130 * optimization. For the bounce page, we first try getting it 131 * from the kernel allocator because that's just about as fast 132 * as getting it from a list and because a cache of free pages 133 * should generally be a "last resort" option for a filesystem 134 * to be able to do its job. 135 */ 136 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 137 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, 138 struct ext4_crypto_ctx, free_list); 139 if (ctx) 140 list_del(&ctx->free_list); 141 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 142 if (!ctx) { 143 ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS); 144 if (IS_ERR(ctx)) { 145 res = PTR_ERR(ctx); 146 goto out; 147 } 148 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 149 } else { 150 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 151 } 152 153 /* Allocate a new Crypto API context if we don't already have 154 * one or if it isn't the right mode. */ 155 BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID); 156 if (ctx->tfm && (ctx->mode != key->mode)) { 157 crypto_free_tfm(ctx->tfm); 158 ctx->tfm = NULL; 159 ctx->mode = EXT4_ENCRYPTION_MODE_INVALID; 160 } 161 if (!ctx->tfm) { 162 switch (key->mode) { 163 case EXT4_ENCRYPTION_MODE_AES_256_XTS: 164 ctx->tfm = crypto_ablkcipher_tfm( 165 crypto_alloc_ablkcipher("xts(aes)", 0, 0)); 166 break; 167 case EXT4_ENCRYPTION_MODE_AES_256_GCM: 168 /* TODO(mhalcrow): AEAD w/ gcm(aes); 169 * crypto_aead_setauthsize() */ 170 ctx->tfm = ERR_PTR(-ENOTSUPP); 171 break; 172 default: 173 BUG(); 174 } 175 if (IS_ERR_OR_NULL(ctx->tfm)) { 176 res = PTR_ERR(ctx->tfm); 177 ctx->tfm = NULL; 178 goto out; 179 } 180 ctx->mode = key->mode; 181 } 182 BUG_ON(key->size != ext4_encryption_key_size(key->mode)); 183 184 /* There shouldn't be a bounce page attached to the crypto 185 * context at this point. */ 186 BUG_ON(ctx->bounce_page); 187 188 out: 189 if (res) { 190 if (!IS_ERR_OR_NULL(ctx)) 191 ext4_release_crypto_ctx(ctx); 192 ctx = ERR_PTR(res); 193 } 194 return ctx; 195 } 196 197 struct workqueue_struct *ext4_read_workqueue; 198 static DEFINE_MUTEX(crypto_init); 199 200 /** 201 * ext4_exit_crypto() - Shutdown the ext4 encryption system 202 */ 203 void ext4_exit_crypto(void) 204 { 205 struct ext4_crypto_ctx *pos, *n; 206 207 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) { 208 if (pos->bounce_page) { 209 if (pos->flags & 210 EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) { 211 __free_page(pos->bounce_page); 212 } else { 213 mempool_free(pos->bounce_page, 214 ext4_bounce_page_pool); 215 } 216 } 217 if (pos->tfm) 218 crypto_free_tfm(pos->tfm); 219 kfree(pos); 220 } 221 INIT_LIST_HEAD(&ext4_free_crypto_ctxs); 222 if (ext4_bounce_page_pool) 223 mempool_destroy(ext4_bounce_page_pool); 224 ext4_bounce_page_pool = NULL; 225 if (ext4_read_workqueue) 226 destroy_workqueue(ext4_read_workqueue); 227 ext4_read_workqueue = NULL; 228 } 229 230 /** 231 * ext4_init_crypto() - Set up for ext4 encryption. 232 * 233 * We only call this when we start accessing encrypted files, since it 234 * results in memory getting allocated that wouldn't otherwise be used. 235 * 236 * Return: Zero on success, non-zero otherwise. 237 */ 238 int ext4_init_crypto(void) 239 { 240 int i, res; 241 242 mutex_lock(&crypto_init); 243 if (ext4_read_workqueue) 244 goto already_initialized; 245 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); 246 if (!ext4_read_workqueue) { 247 res = -ENOMEM; 248 goto fail; 249 } 250 251 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 252 struct ext4_crypto_ctx *ctx; 253 254 ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL); 255 if (IS_ERR(ctx)) { 256 res = PTR_ERR(ctx); 257 goto fail; 258 } 259 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 260 } 261 262 ext4_bounce_page_pool = 263 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 264 if (!ext4_bounce_page_pool) { 265 res = -ENOMEM; 266 goto fail; 267 } 268 already_initialized: 269 mutex_unlock(&crypto_init); 270 return 0; 271 fail: 272 ext4_exit_crypto(); 273 mutex_unlock(&crypto_init); 274 return res; 275 } 276 277 void ext4_restore_control_page(struct page *data_page) 278 { 279 struct ext4_crypto_ctx *ctx = 280 (struct ext4_crypto_ctx *)page_private(data_page); 281 282 set_page_private(data_page, (unsigned long)NULL); 283 ClearPagePrivate(data_page); 284 unlock_page(data_page); 285 ext4_release_crypto_ctx(ctx); 286 } 287 288 /** 289 * ext4_crypt_complete() - The completion callback for page encryption 290 * @req: The asynchronous encryption request context 291 * @res: The result of the encryption operation 292 */ 293 static void ext4_crypt_complete(struct crypto_async_request *req, int res) 294 { 295 struct ext4_completion_result *ecr = req->data; 296 297 if (res == -EINPROGRESS) 298 return; 299 ecr->res = res; 300 complete(&ecr->completion); 301 } 302 303 typedef enum { 304 EXT4_DECRYPT = 0, 305 EXT4_ENCRYPT, 306 } ext4_direction_t; 307 308 static int ext4_page_crypto(struct ext4_crypto_ctx *ctx, 309 struct inode *inode, 310 ext4_direction_t rw, 311 pgoff_t index, 312 struct page *src_page, 313 struct page *dest_page) 314 315 { 316 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; 317 struct ablkcipher_request *req = NULL; 318 DECLARE_EXT4_COMPLETION_RESULT(ecr); 319 struct scatterlist dst, src; 320 struct ext4_inode_info *ei = EXT4_I(inode); 321 struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm); 322 int res = 0; 323 324 BUG_ON(!ctx->tfm); 325 BUG_ON(ctx->mode != ei->i_encryption_key.mode); 326 327 if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) { 328 printk_ratelimited(KERN_ERR 329 "%s: unsupported crypto algorithm: %d\n", 330 __func__, ctx->mode); 331 return -ENOTSUPP; 332 } 333 334 crypto_ablkcipher_clear_flags(atfm, ~0); 335 crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 336 337 res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw, 338 ei->i_encryption_key.size); 339 if (res) { 340 printk_ratelimited(KERN_ERR 341 "%s: crypto_ablkcipher_setkey() failed\n", 342 __func__); 343 return res; 344 } 345 req = ablkcipher_request_alloc(atfm, GFP_NOFS); 346 if (!req) { 347 printk_ratelimited(KERN_ERR 348 "%s: crypto_request_alloc() failed\n", 349 __func__); 350 return -ENOMEM; 351 } 352 ablkcipher_request_set_callback( 353 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 354 ext4_crypt_complete, &ecr); 355 356 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); 357 memcpy(xts_tweak, &index, sizeof(index)); 358 memset(&xts_tweak[sizeof(index)], 0, 359 EXT4_XTS_TWEAK_SIZE - sizeof(index)); 360 361 sg_init_table(&dst, 1); 362 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); 363 sg_init_table(&src, 1); 364 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); 365 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, 366 xts_tweak); 367 if (rw == EXT4_DECRYPT) 368 res = crypto_ablkcipher_decrypt(req); 369 else 370 res = crypto_ablkcipher_encrypt(req); 371 if (res == -EINPROGRESS || res == -EBUSY) { 372 BUG_ON(req->base.data != &ecr); 373 wait_for_completion(&ecr.completion); 374 res = ecr.res; 375 } 376 ablkcipher_request_free(req); 377 if (res) { 378 printk_ratelimited( 379 KERN_ERR 380 "%s: crypto_ablkcipher_encrypt() returned %d\n", 381 __func__, res); 382 return res; 383 } 384 return 0; 385 } 386 387 /** 388 * ext4_encrypt() - Encrypts a page 389 * @inode: The inode for which the encryption should take place 390 * @plaintext_page: The page to encrypt. Must be locked. 391 * 392 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx 393 * encryption context. 394 * 395 * Called on the page write path. The caller must call 396 * ext4_restore_control_page() on the returned ciphertext page to 397 * release the bounce buffer and the encryption context. 398 * 399 * Return: An allocated page with the encrypted content on success. Else, an 400 * error value or NULL. 401 */ 402 struct page *ext4_encrypt(struct inode *inode, 403 struct page *plaintext_page) 404 { 405 struct ext4_crypto_ctx *ctx; 406 struct page *ciphertext_page = NULL; 407 int err; 408 409 BUG_ON(!PageLocked(plaintext_page)); 410 411 ctx = ext4_get_crypto_ctx(inode); 412 if (IS_ERR(ctx)) 413 return (struct page *) ctx; 414 415 /* The encryption operation will require a bounce page. */ 416 ciphertext_page = alloc_page(GFP_NOFS); 417 if (!ciphertext_page) { 418 /* This is a potential bottleneck, but at least we'll have 419 * forward progress. */ 420 ciphertext_page = mempool_alloc(ext4_bounce_page_pool, 421 GFP_NOFS); 422 if (WARN_ON_ONCE(!ciphertext_page)) { 423 ciphertext_page = mempool_alloc(ext4_bounce_page_pool, 424 GFP_NOFS | __GFP_WAIT); 425 } 426 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; 427 } else { 428 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; 429 } 430 ctx->bounce_page = ciphertext_page; 431 ctx->control_page = plaintext_page; 432 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index, 433 plaintext_page, ciphertext_page); 434 if (err) { 435 ext4_release_crypto_ctx(ctx); 436 return ERR_PTR(err); 437 } 438 SetPagePrivate(ciphertext_page); 439 set_page_private(ciphertext_page, (unsigned long)ctx); 440 lock_page(ciphertext_page); 441 return ciphertext_page; 442 } 443 444 /** 445 * ext4_decrypt() - Decrypts a page in-place 446 * @ctx: The encryption context. 447 * @page: The page to decrypt. Must be locked. 448 * 449 * Decrypts page in-place using the ctx encryption context. 450 * 451 * Called from the read completion callback. 452 * 453 * Return: Zero on success, non-zero otherwise. 454 */ 455 int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page) 456 { 457 BUG_ON(!PageLocked(page)); 458 459 return ext4_page_crypto(ctx, page->mapping->host, 460 EXT4_DECRYPT, page->index, page, page); 461 } 462 463 /* 464 * Convenience function which takes care of allocating and 465 * deallocating the encryption context 466 */ 467 int ext4_decrypt_one(struct inode *inode, struct page *page) 468 { 469 int ret; 470 471 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode); 472 473 if (!ctx) 474 return -ENOMEM; 475 ret = ext4_decrypt(ctx, page); 476 ext4_release_crypto_ctx(ctx); 477 return ret; 478 } 479 480 int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex) 481 { 482 struct ext4_crypto_ctx *ctx; 483 struct page *ciphertext_page = NULL; 484 struct bio *bio; 485 ext4_lblk_t lblk = ex->ee_block; 486 ext4_fsblk_t pblk = ext4_ext_pblock(ex); 487 unsigned int len = ext4_ext_get_actual_len(ex); 488 int err = 0; 489 490 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); 491 492 ctx = ext4_get_crypto_ctx(inode); 493 if (IS_ERR(ctx)) 494 return PTR_ERR(ctx); 495 496 ciphertext_page = alloc_page(GFP_NOFS); 497 if (!ciphertext_page) { 498 /* This is a potential bottleneck, but at least we'll have 499 * forward progress. */ 500 ciphertext_page = mempool_alloc(ext4_bounce_page_pool, 501 GFP_NOFS); 502 if (WARN_ON_ONCE(!ciphertext_page)) { 503 ciphertext_page = mempool_alloc(ext4_bounce_page_pool, 504 GFP_NOFS | __GFP_WAIT); 505 } 506 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; 507 } else { 508 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; 509 } 510 ctx->bounce_page = ciphertext_page; 511 512 while (len--) { 513 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk, 514 ZERO_PAGE(0), ciphertext_page); 515 if (err) 516 goto errout; 517 518 bio = bio_alloc(GFP_KERNEL, 1); 519 if (!bio) { 520 err = -ENOMEM; 521 goto errout; 522 } 523 bio->bi_bdev = inode->i_sb->s_bdev; 524 bio->bi_iter.bi_sector = pblk; 525 err = bio_add_page(bio, ciphertext_page, 526 inode->i_sb->s_blocksize, 0); 527 if (err) { 528 bio_put(bio); 529 goto errout; 530 } 531 err = submit_bio_wait(WRITE, bio); 532 if (err) 533 goto errout; 534 } 535 err = 0; 536 errout: 537 ext4_release_crypto_ctx(ctx); 538 return err; 539 } 540 541 bool ext4_valid_contents_enc_mode(uint32_t mode) 542 { 543 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); 544 } 545 546 /** 547 * ext4_validate_encryption_key_size() - Validate the encryption key size 548 * @mode: The key mode. 549 * @size: The key size to validate. 550 * 551 * Return: The validated key size for @mode. Zero if invalid. 552 */ 553 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) 554 { 555 if (size == ext4_encryption_key_size(mode)) 556 return size; 557 return 0; 558 } 559