1 /* 2 * linux/fs/ext4/balloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 10 * Big-endian to little-endian byte-swapping/bitmaps by 11 * David S. Miller (davem@caip.rutgers.edu), 1995 12 */ 13 14 #include <linux/time.h> 15 #include <linux/capability.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/ext4_fs.h> 19 #include <linux/ext4_jbd2.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 23 #include "group.h" 24 /* 25 * balloc.c contains the blocks allocation and deallocation routines 26 */ 27 28 /* 29 * Calculate the block group number and offset, given a block number 30 */ 31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr, 32 unsigned long *blockgrpp, ext4_grpblk_t *offsetp) 33 { 34 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 35 ext4_grpblk_t offset; 36 37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block); 38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb)); 39 if (offsetp) 40 *offsetp = offset; 41 if (blockgrpp) 42 *blockgrpp = blocknr; 43 44 } 45 46 /* Initializes an uninitialized block bitmap if given, and returns the 47 * number of blocks free in the group. */ 48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh, 49 int block_group, struct ext4_group_desc *gdp) 50 { 51 unsigned long start; 52 int bit, bit_max; 53 unsigned free_blocks, group_blocks; 54 struct ext4_sb_info *sbi = EXT4_SB(sb); 55 56 if (bh) { 57 J_ASSERT_BH(bh, buffer_locked(bh)); 58 59 /* If checksum is bad mark all blocks used to prevent allocation 60 * essentially implementing a per-group read-only flag. */ 61 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { 62 ext4_error(sb, __FUNCTION__, 63 "Checksum bad for group %u\n", block_group); 64 gdp->bg_free_blocks_count = 0; 65 gdp->bg_free_inodes_count = 0; 66 gdp->bg_itable_unused = 0; 67 memset(bh->b_data, 0xff, sb->s_blocksize); 68 return 0; 69 } 70 memset(bh->b_data, 0, sb->s_blocksize); 71 } 72 73 /* Check for superblock and gdt backups in this group */ 74 bit_max = ext4_bg_has_super(sb, block_group); 75 76 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 77 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) * 78 sbi->s_desc_per_block) { 79 if (bit_max) { 80 bit_max += ext4_bg_num_gdb(sb, block_group); 81 bit_max += 82 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks); 83 } 84 } else { /* For META_BG_BLOCK_GROUPS */ 85 int group_rel = (block_group - 86 le32_to_cpu(sbi->s_es->s_first_meta_bg)) % 87 EXT4_DESC_PER_BLOCK(sb); 88 if (group_rel == 0 || group_rel == 1 || 89 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1)) 90 bit_max += 1; 91 } 92 93 if (block_group == sbi->s_groups_count - 1) { 94 /* 95 * Even though mke2fs always initialize first and last group 96 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need 97 * to make sure we calculate the right free blocks 98 */ 99 group_blocks = ext4_blocks_count(sbi->s_es) - 100 le32_to_cpu(sbi->s_es->s_first_data_block) - 101 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1)); 102 } else { 103 group_blocks = EXT4_BLOCKS_PER_GROUP(sb); 104 } 105 106 free_blocks = group_blocks - bit_max; 107 108 if (bh) { 109 for (bit = 0; bit < bit_max; bit++) 110 ext4_set_bit(bit, bh->b_data); 111 112 start = block_group * EXT4_BLOCKS_PER_GROUP(sb) + 113 le32_to_cpu(sbi->s_es->s_first_data_block); 114 115 /* Set bits for block and inode bitmaps, and inode table */ 116 ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data); 117 ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data); 118 for (bit = (ext4_inode_table(sb, gdp) - start), 119 bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++) 120 ext4_set_bit(bit, bh->b_data); 121 122 /* 123 * Also if the number of blocks within the group is 124 * less than the blocksize * 8 ( which is the size 125 * of bitmap ), set rest of the block bitmap to 1 126 */ 127 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data); 128 } 129 130 return free_blocks - sbi->s_itb_per_group - 2; 131 } 132 133 134 /* 135 * The free blocks are managed by bitmaps. A file system contains several 136 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 137 * block for inodes, N blocks for the inode table and data blocks. 138 * 139 * The file system contains group descriptors which are located after the 140 * super block. Each descriptor contains the number of the bitmap block and 141 * the free blocks count in the block. The descriptors are loaded in memory 142 * when a file system is mounted (see ext4_fill_super). 143 */ 144 145 146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 147 148 /** 149 * ext4_get_group_desc() -- load group descriptor from disk 150 * @sb: super block 151 * @block_group: given block group 152 * @bh: pointer to the buffer head to store the block 153 * group descriptor 154 */ 155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb, 156 unsigned int block_group, 157 struct buffer_head ** bh) 158 { 159 unsigned long group_desc; 160 unsigned long offset; 161 struct ext4_group_desc * desc; 162 struct ext4_sb_info *sbi = EXT4_SB(sb); 163 164 if (block_group >= sbi->s_groups_count) { 165 ext4_error (sb, "ext4_get_group_desc", 166 "block_group >= groups_count - " 167 "block_group = %d, groups_count = %lu", 168 block_group, sbi->s_groups_count); 169 170 return NULL; 171 } 172 smp_rmb(); 173 174 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 175 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 176 if (!sbi->s_group_desc[group_desc]) { 177 ext4_error (sb, "ext4_get_group_desc", 178 "Group descriptor not loaded - " 179 "block_group = %d, group_desc = %lu, desc = %lu", 180 block_group, group_desc, offset); 181 return NULL; 182 } 183 184 desc = (struct ext4_group_desc *)( 185 (__u8 *)sbi->s_group_desc[group_desc]->b_data + 186 offset * EXT4_DESC_SIZE(sb)); 187 if (bh) 188 *bh = sbi->s_group_desc[group_desc]; 189 return desc; 190 } 191 192 /** 193 * read_block_bitmap() 194 * @sb: super block 195 * @block_group: given block group 196 * 197 * Read the bitmap for a given block_group, reading into the specified 198 * slot in the superblock's bitmap cache. 199 * 200 * Return buffer_head on success or NULL in case of failure. 201 */ 202 struct buffer_head * 203 read_block_bitmap(struct super_block *sb, unsigned int block_group) 204 { 205 struct ext4_group_desc * desc; 206 struct buffer_head * bh = NULL; 207 ext4_fsblk_t bitmap_blk; 208 209 desc = ext4_get_group_desc(sb, block_group, NULL); 210 if (!desc) 211 return NULL; 212 bitmap_blk = ext4_block_bitmap(sb, desc); 213 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 214 bh = sb_getblk(sb, bitmap_blk); 215 if (!buffer_uptodate(bh)) { 216 lock_buffer(bh); 217 if (!buffer_uptodate(bh)) { 218 ext4_init_block_bitmap(sb, bh, block_group, 219 desc); 220 set_buffer_uptodate(bh); 221 } 222 unlock_buffer(bh); 223 } 224 } else { 225 bh = sb_bread(sb, bitmap_blk); 226 } 227 if (!bh) 228 ext4_error (sb, __FUNCTION__, 229 "Cannot read block bitmap - " 230 "block_group = %d, block_bitmap = %llu", 231 block_group, bitmap_blk); 232 return bh; 233 } 234 /* 235 * The reservation window structure operations 236 * -------------------------------------------- 237 * Operations include: 238 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 239 * 240 * We use a red-black tree to represent per-filesystem reservation 241 * windows. 242 * 243 */ 244 245 /** 246 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 247 * @rb_root: root of per-filesystem reservation rb tree 248 * @verbose: verbose mode 249 * @fn: function which wishes to dump the reservation map 250 * 251 * If verbose is turned on, it will print the whole block reservation 252 * windows(start, end). Otherwise, it will only print out the "bad" windows, 253 * those windows that overlap with their immediate neighbors. 254 */ 255 #if 1 256 static void __rsv_window_dump(struct rb_root *root, int verbose, 257 const char *fn) 258 { 259 struct rb_node *n; 260 struct ext4_reserve_window_node *rsv, *prev; 261 int bad; 262 263 restart: 264 n = rb_first(root); 265 bad = 0; 266 prev = NULL; 267 268 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 269 while (n) { 270 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 271 if (verbose) 272 printk("reservation window 0x%p " 273 "start: %llu, end: %llu\n", 274 rsv, rsv->rsv_start, rsv->rsv_end); 275 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 276 printk("Bad reservation %p (start >= end)\n", 277 rsv); 278 bad = 1; 279 } 280 if (prev && prev->rsv_end >= rsv->rsv_start) { 281 printk("Bad reservation %p (prev->end >= start)\n", 282 rsv); 283 bad = 1; 284 } 285 if (bad) { 286 if (!verbose) { 287 printk("Restarting reservation walk in verbose mode\n"); 288 verbose = 1; 289 goto restart; 290 } 291 } 292 n = rb_next(n); 293 prev = rsv; 294 } 295 printk("Window map complete.\n"); 296 if (bad) 297 BUG(); 298 } 299 #define rsv_window_dump(root, verbose) \ 300 __rsv_window_dump((root), (verbose), __FUNCTION__) 301 #else 302 #define rsv_window_dump(root, verbose) do {} while (0) 303 #endif 304 305 /** 306 * goal_in_my_reservation() 307 * @rsv: inode's reservation window 308 * @grp_goal: given goal block relative to the allocation block group 309 * @group: the current allocation block group 310 * @sb: filesystem super block 311 * 312 * Test if the given goal block (group relative) is within the file's 313 * own block reservation window range. 314 * 315 * If the reservation window is outside the goal allocation group, return 0; 316 * grp_goal (given goal block) could be -1, which means no specific 317 * goal block. In this case, always return 1. 318 * If the goal block is within the reservation window, return 1; 319 * otherwise, return 0; 320 */ 321 static int 322 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal, 323 unsigned int group, struct super_block * sb) 324 { 325 ext4_fsblk_t group_first_block, group_last_block; 326 327 group_first_block = ext4_group_first_block_no(sb, group); 328 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 329 330 if ((rsv->_rsv_start > group_last_block) || 331 (rsv->_rsv_end < group_first_block)) 332 return 0; 333 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 334 || (grp_goal + group_first_block > rsv->_rsv_end))) 335 return 0; 336 return 1; 337 } 338 339 /** 340 * search_reserve_window() 341 * @rb_root: root of reservation tree 342 * @goal: target allocation block 343 * 344 * Find the reserved window which includes the goal, or the previous one 345 * if the goal is not in any window. 346 * Returns NULL if there are no windows or if all windows start after the goal. 347 */ 348 static struct ext4_reserve_window_node * 349 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal) 350 { 351 struct rb_node *n = root->rb_node; 352 struct ext4_reserve_window_node *rsv; 353 354 if (!n) 355 return NULL; 356 357 do { 358 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 359 360 if (goal < rsv->rsv_start) 361 n = n->rb_left; 362 else if (goal > rsv->rsv_end) 363 n = n->rb_right; 364 else 365 return rsv; 366 } while (n); 367 /* 368 * We've fallen off the end of the tree: the goal wasn't inside 369 * any particular node. OK, the previous node must be to one 370 * side of the interval containing the goal. If it's the RHS, 371 * we need to back up one. 372 */ 373 if (rsv->rsv_start > goal) { 374 n = rb_prev(&rsv->rsv_node); 375 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 376 } 377 return rsv; 378 } 379 380 /** 381 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree. 382 * @sb: super block 383 * @rsv: reservation window to add 384 * 385 * Must be called with rsv_lock hold. 386 */ 387 void ext4_rsv_window_add(struct super_block *sb, 388 struct ext4_reserve_window_node *rsv) 389 { 390 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root; 391 struct rb_node *node = &rsv->rsv_node; 392 ext4_fsblk_t start = rsv->rsv_start; 393 394 struct rb_node ** p = &root->rb_node; 395 struct rb_node * parent = NULL; 396 struct ext4_reserve_window_node *this; 397 398 while (*p) 399 { 400 parent = *p; 401 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node); 402 403 if (start < this->rsv_start) 404 p = &(*p)->rb_left; 405 else if (start > this->rsv_end) 406 p = &(*p)->rb_right; 407 else { 408 rsv_window_dump(root, 1); 409 BUG(); 410 } 411 } 412 413 rb_link_node(node, parent, p); 414 rb_insert_color(node, root); 415 } 416 417 /** 418 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree 419 * @sb: super block 420 * @rsv: reservation window to remove 421 * 422 * Mark the block reservation window as not allocated, and unlink it 423 * from the filesystem reservation window rb tree. Must be called with 424 * rsv_lock hold. 425 */ 426 static void rsv_window_remove(struct super_block *sb, 427 struct ext4_reserve_window_node *rsv) 428 { 429 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 430 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 431 rsv->rsv_alloc_hit = 0; 432 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root); 433 } 434 435 /* 436 * rsv_is_empty() -- Check if the reservation window is allocated. 437 * @rsv: given reservation window to check 438 * 439 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED. 440 */ 441 static inline int rsv_is_empty(struct ext4_reserve_window *rsv) 442 { 443 /* a valid reservation end block could not be 0 */ 444 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 445 } 446 447 /** 448 * ext4_init_block_alloc_info() 449 * @inode: file inode structure 450 * 451 * Allocate and initialize the reservation window structure, and 452 * link the window to the ext4 inode structure at last 453 * 454 * The reservation window structure is only dynamically allocated 455 * and linked to ext4 inode the first time the open file 456 * needs a new block. So, before every ext4_new_block(s) call, for 457 * regular files, we should check whether the reservation window 458 * structure exists or not. In the latter case, this function is called. 459 * Fail to do so will result in block reservation being turned off for that 460 * open file. 461 * 462 * This function is called from ext4_get_blocks_handle(), also called 463 * when setting the reservation window size through ioctl before the file 464 * is open for write (needs block allocation). 465 * 466 * Needs truncate_mutex protection prior to call this function. 467 */ 468 void ext4_init_block_alloc_info(struct inode *inode) 469 { 470 struct ext4_inode_info *ei = EXT4_I(inode); 471 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info; 472 struct super_block *sb = inode->i_sb; 473 474 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 475 if (block_i) { 476 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node; 477 478 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 479 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 480 481 /* 482 * if filesystem is mounted with NORESERVATION, the goal 483 * reservation window size is set to zero to indicate 484 * block reservation is off 485 */ 486 if (!test_opt(sb, RESERVATION)) 487 rsv->rsv_goal_size = 0; 488 else 489 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS; 490 rsv->rsv_alloc_hit = 0; 491 block_i->last_alloc_logical_block = 0; 492 block_i->last_alloc_physical_block = 0; 493 } 494 ei->i_block_alloc_info = block_i; 495 } 496 497 /** 498 * ext4_discard_reservation() 499 * @inode: inode 500 * 501 * Discard(free) block reservation window on last file close, or truncate 502 * or at last iput(). 503 * 504 * It is being called in three cases: 505 * ext4_release_file(): last writer close the file 506 * ext4_clear_inode(): last iput(), when nobody link to this file. 507 * ext4_truncate(): when the block indirect map is about to change. 508 * 509 */ 510 void ext4_discard_reservation(struct inode *inode) 511 { 512 struct ext4_inode_info *ei = EXT4_I(inode); 513 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info; 514 struct ext4_reserve_window_node *rsv; 515 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock; 516 517 if (!block_i) 518 return; 519 520 rsv = &block_i->rsv_window_node; 521 if (!rsv_is_empty(&rsv->rsv_window)) { 522 spin_lock(rsv_lock); 523 if (!rsv_is_empty(&rsv->rsv_window)) 524 rsv_window_remove(inode->i_sb, rsv); 525 spin_unlock(rsv_lock); 526 } 527 } 528 529 /** 530 * ext4_free_blocks_sb() -- Free given blocks and update quota 531 * @handle: handle to this transaction 532 * @sb: super block 533 * @block: start physcial block to free 534 * @count: number of blocks to free 535 * @pdquot_freed_blocks: pointer to quota 536 */ 537 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb, 538 ext4_fsblk_t block, unsigned long count, 539 unsigned long *pdquot_freed_blocks) 540 { 541 struct buffer_head *bitmap_bh = NULL; 542 struct buffer_head *gd_bh; 543 unsigned long block_group; 544 ext4_grpblk_t bit; 545 unsigned long i; 546 unsigned long overflow; 547 struct ext4_group_desc * desc; 548 struct ext4_super_block * es; 549 struct ext4_sb_info *sbi; 550 int err = 0, ret; 551 ext4_grpblk_t group_freed; 552 553 *pdquot_freed_blocks = 0; 554 sbi = EXT4_SB(sb); 555 es = sbi->s_es; 556 if (block < le32_to_cpu(es->s_first_data_block) || 557 block + count < block || 558 block + count > ext4_blocks_count(es)) { 559 ext4_error (sb, "ext4_free_blocks", 560 "Freeing blocks not in datazone - " 561 "block = %llu, count = %lu", block, count); 562 goto error_return; 563 } 564 565 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1); 566 567 do_more: 568 overflow = 0; 569 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 570 /* 571 * Check to see if we are freeing blocks across a group 572 * boundary. 573 */ 574 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 575 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 576 count -= overflow; 577 } 578 brelse(bitmap_bh); 579 bitmap_bh = read_block_bitmap(sb, block_group); 580 if (!bitmap_bh) 581 goto error_return; 582 desc = ext4_get_group_desc (sb, block_group, &gd_bh); 583 if (!desc) 584 goto error_return; 585 586 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 587 in_range(ext4_inode_bitmap(sb, desc), block, count) || 588 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 589 in_range(block + count - 1, ext4_inode_table(sb, desc), 590 sbi->s_itb_per_group)) 591 ext4_error (sb, "ext4_free_blocks", 592 "Freeing blocks in system zones - " 593 "Block = %llu, count = %lu", 594 block, count); 595 596 /* 597 * We are about to start releasing blocks in the bitmap, 598 * so we need undo access. 599 */ 600 /* @@@ check errors */ 601 BUFFER_TRACE(bitmap_bh, "getting undo access"); 602 err = ext4_journal_get_undo_access(handle, bitmap_bh); 603 if (err) 604 goto error_return; 605 606 /* 607 * We are about to modify some metadata. Call the journal APIs 608 * to unshare ->b_data if a currently-committing transaction is 609 * using it 610 */ 611 BUFFER_TRACE(gd_bh, "get_write_access"); 612 err = ext4_journal_get_write_access(handle, gd_bh); 613 if (err) 614 goto error_return; 615 616 jbd_lock_bh_state(bitmap_bh); 617 618 for (i = 0, group_freed = 0; i < count; i++) { 619 /* 620 * An HJ special. This is expensive... 621 */ 622 #ifdef CONFIG_JBD2_DEBUG 623 jbd_unlock_bh_state(bitmap_bh); 624 { 625 struct buffer_head *debug_bh; 626 debug_bh = sb_find_get_block(sb, block + i); 627 if (debug_bh) { 628 BUFFER_TRACE(debug_bh, "Deleted!"); 629 if (!bh2jh(bitmap_bh)->b_committed_data) 630 BUFFER_TRACE(debug_bh, 631 "No commited data in bitmap"); 632 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap"); 633 __brelse(debug_bh); 634 } 635 } 636 jbd_lock_bh_state(bitmap_bh); 637 #endif 638 if (need_resched()) { 639 jbd_unlock_bh_state(bitmap_bh); 640 cond_resched(); 641 jbd_lock_bh_state(bitmap_bh); 642 } 643 /* @@@ This prevents newly-allocated data from being 644 * freed and then reallocated within the same 645 * transaction. 646 * 647 * Ideally we would want to allow that to happen, but to 648 * do so requires making jbd2_journal_forget() capable of 649 * revoking the queued write of a data block, which 650 * implies blocking on the journal lock. *forget() 651 * cannot block due to truncate races. 652 * 653 * Eventually we can fix this by making jbd2_journal_forget() 654 * return a status indicating whether or not it was able 655 * to revoke the buffer. On successful revoke, it is 656 * safe not to set the allocation bit in the committed 657 * bitmap, because we know that there is no outstanding 658 * activity on the buffer any more and so it is safe to 659 * reallocate it. 660 */ 661 BUFFER_TRACE(bitmap_bh, "set in b_committed_data"); 662 J_ASSERT_BH(bitmap_bh, 663 bh2jh(bitmap_bh)->b_committed_data != NULL); 664 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i, 665 bh2jh(bitmap_bh)->b_committed_data); 666 667 /* 668 * We clear the bit in the bitmap after setting the committed 669 * data bit, because this is the reverse order to that which 670 * the allocator uses. 671 */ 672 BUFFER_TRACE(bitmap_bh, "clear bit"); 673 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 674 bit + i, bitmap_bh->b_data)) { 675 jbd_unlock_bh_state(bitmap_bh); 676 ext4_error(sb, __FUNCTION__, 677 "bit already cleared for block %llu", 678 (ext4_fsblk_t)(block + i)); 679 jbd_lock_bh_state(bitmap_bh); 680 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 681 } else { 682 group_freed++; 683 } 684 } 685 jbd_unlock_bh_state(bitmap_bh); 686 687 spin_lock(sb_bgl_lock(sbi, block_group)); 688 desc->bg_free_blocks_count = 689 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) + 690 group_freed); 691 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc); 692 spin_unlock(sb_bgl_lock(sbi, block_group)); 693 percpu_counter_add(&sbi->s_freeblocks_counter, count); 694 695 /* We dirtied the bitmap block */ 696 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 697 err = ext4_journal_dirty_metadata(handle, bitmap_bh); 698 699 /* And the group descriptor block */ 700 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 701 ret = ext4_journal_dirty_metadata(handle, gd_bh); 702 if (!err) err = ret; 703 *pdquot_freed_blocks += group_freed; 704 705 if (overflow && !err) { 706 block += count; 707 count = overflow; 708 goto do_more; 709 } 710 sb->s_dirt = 1; 711 error_return: 712 brelse(bitmap_bh); 713 ext4_std_error(sb, err); 714 return; 715 } 716 717 /** 718 * ext4_free_blocks() -- Free given blocks and update quota 719 * @handle: handle for this transaction 720 * @inode: inode 721 * @block: start physical block to free 722 * @count: number of blocks to count 723 */ 724 void ext4_free_blocks(handle_t *handle, struct inode *inode, 725 ext4_fsblk_t block, unsigned long count) 726 { 727 struct super_block * sb; 728 unsigned long dquot_freed_blocks; 729 730 sb = inode->i_sb; 731 if (!sb) { 732 printk ("ext4_free_blocks: nonexistent device"); 733 return; 734 } 735 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks); 736 if (dquot_freed_blocks) 737 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks); 738 return; 739 } 740 741 /** 742 * ext4_test_allocatable() 743 * @nr: given allocation block group 744 * @bh: bufferhead contains the bitmap of the given block group 745 * 746 * For ext4 allocations, we must not reuse any blocks which are 747 * allocated in the bitmap buffer's "last committed data" copy. This 748 * prevents deletes from freeing up the page for reuse until we have 749 * committed the delete transaction. 750 * 751 * If we didn't do this, then deleting something and reallocating it as 752 * data would allow the old block to be overwritten before the 753 * transaction committed (because we force data to disk before commit). 754 * This would lead to corruption if we crashed between overwriting the 755 * data and committing the delete. 756 * 757 * @@@ We may want to make this allocation behaviour conditional on 758 * data-writes at some point, and disable it for metadata allocations or 759 * sync-data inodes. 760 */ 761 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh) 762 { 763 int ret; 764 struct journal_head *jh = bh2jh(bh); 765 766 if (ext4_test_bit(nr, bh->b_data)) 767 return 0; 768 769 jbd_lock_bh_state(bh); 770 if (!jh->b_committed_data) 771 ret = 1; 772 else 773 ret = !ext4_test_bit(nr, jh->b_committed_data); 774 jbd_unlock_bh_state(bh); 775 return ret; 776 } 777 778 /** 779 * bitmap_search_next_usable_block() 780 * @start: the starting block (group relative) of the search 781 * @bh: bufferhead contains the block group bitmap 782 * @maxblocks: the ending block (group relative) of the reservation 783 * 784 * The bitmap search --- search forward alternately through the actual 785 * bitmap on disk and the last-committed copy in journal, until we find a 786 * bit free in both bitmaps. 787 */ 788 static ext4_grpblk_t 789 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh, 790 ext4_grpblk_t maxblocks) 791 { 792 ext4_grpblk_t next; 793 struct journal_head *jh = bh2jh(bh); 794 795 while (start < maxblocks) { 796 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start); 797 if (next >= maxblocks) 798 return -1; 799 if (ext4_test_allocatable(next, bh)) 800 return next; 801 jbd_lock_bh_state(bh); 802 if (jh->b_committed_data) 803 start = ext4_find_next_zero_bit(jh->b_committed_data, 804 maxblocks, next); 805 jbd_unlock_bh_state(bh); 806 } 807 return -1; 808 } 809 810 /** 811 * find_next_usable_block() 812 * @start: the starting block (group relative) to find next 813 * allocatable block in bitmap. 814 * @bh: bufferhead contains the block group bitmap 815 * @maxblocks: the ending block (group relative) for the search 816 * 817 * Find an allocatable block in a bitmap. We honor both the bitmap and 818 * its last-committed copy (if that exists), and perform the "most 819 * appropriate allocation" algorithm of looking for a free block near 820 * the initial goal; then for a free byte somewhere in the bitmap; then 821 * for any free bit in the bitmap. 822 */ 823 static ext4_grpblk_t 824 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh, 825 ext4_grpblk_t maxblocks) 826 { 827 ext4_grpblk_t here, next; 828 char *p, *r; 829 830 if (start > 0) { 831 /* 832 * The goal was occupied; search forward for a free 833 * block within the next XX blocks. 834 * 835 * end_goal is more or less random, but it has to be 836 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the 837 * next 64-bit boundary is simple.. 838 */ 839 ext4_grpblk_t end_goal = (start + 63) & ~63; 840 if (end_goal > maxblocks) 841 end_goal = maxblocks; 842 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start); 843 if (here < end_goal && ext4_test_allocatable(here, bh)) 844 return here; 845 ext4_debug("Bit not found near goal\n"); 846 } 847 848 here = start; 849 if (here < 0) 850 here = 0; 851 852 p = ((char *)bh->b_data) + (here >> 3); 853 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 854 next = (r - ((char *)bh->b_data)) << 3; 855 856 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh)) 857 return next; 858 859 /* 860 * The bitmap search --- search forward alternately through the actual 861 * bitmap and the last-committed copy until we find a bit free in 862 * both 863 */ 864 here = bitmap_search_next_usable_block(here, bh, maxblocks); 865 return here; 866 } 867 868 /** 869 * claim_block() 870 * @block: the free block (group relative) to allocate 871 * @bh: the bufferhead containts the block group bitmap 872 * 873 * We think we can allocate this block in this bitmap. Try to set the bit. 874 * If that succeeds then check that nobody has allocated and then freed the 875 * block since we saw that is was not marked in b_committed_data. If it _was_ 876 * allocated and freed then clear the bit in the bitmap again and return 877 * zero (failure). 878 */ 879 static inline int 880 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh) 881 { 882 struct journal_head *jh = bh2jh(bh); 883 int ret; 884 885 if (ext4_set_bit_atomic(lock, block, bh->b_data)) 886 return 0; 887 jbd_lock_bh_state(bh); 888 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) { 889 ext4_clear_bit_atomic(lock, block, bh->b_data); 890 ret = 0; 891 } else { 892 ret = 1; 893 } 894 jbd_unlock_bh_state(bh); 895 return ret; 896 } 897 898 /** 899 * ext4_try_to_allocate() 900 * @sb: superblock 901 * @handle: handle to this transaction 902 * @group: given allocation block group 903 * @bitmap_bh: bufferhead holds the block bitmap 904 * @grp_goal: given target block within the group 905 * @count: target number of blocks to allocate 906 * @my_rsv: reservation window 907 * 908 * Attempt to allocate blocks within a give range. Set the range of allocation 909 * first, then find the first free bit(s) from the bitmap (within the range), 910 * and at last, allocate the blocks by claiming the found free bit as allocated. 911 * 912 * To set the range of this allocation: 913 * if there is a reservation window, only try to allocate block(s) from the 914 * file's own reservation window; 915 * Otherwise, the allocation range starts from the give goal block, ends at 916 * the block group's last block. 917 * 918 * If we failed to allocate the desired block then we may end up crossing to a 919 * new bitmap. In that case we must release write access to the old one via 920 * ext4_journal_release_buffer(), else we'll run out of credits. 921 */ 922 static ext4_grpblk_t 923 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group, 924 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal, 925 unsigned long *count, struct ext4_reserve_window *my_rsv) 926 { 927 ext4_fsblk_t group_first_block; 928 ext4_grpblk_t start, end; 929 unsigned long num = 0; 930 931 /* we do allocation within the reservation window if we have a window */ 932 if (my_rsv) { 933 group_first_block = ext4_group_first_block_no(sb, group); 934 if (my_rsv->_rsv_start >= group_first_block) 935 start = my_rsv->_rsv_start - group_first_block; 936 else 937 /* reservation window cross group boundary */ 938 start = 0; 939 end = my_rsv->_rsv_end - group_first_block + 1; 940 if (end > EXT4_BLOCKS_PER_GROUP(sb)) 941 /* reservation window crosses group boundary */ 942 end = EXT4_BLOCKS_PER_GROUP(sb); 943 if ((start <= grp_goal) && (grp_goal < end)) 944 start = grp_goal; 945 else 946 grp_goal = -1; 947 } else { 948 if (grp_goal > 0) 949 start = grp_goal; 950 else 951 start = 0; 952 end = EXT4_BLOCKS_PER_GROUP(sb); 953 } 954 955 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb)); 956 957 repeat: 958 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) { 959 grp_goal = find_next_usable_block(start, bitmap_bh, end); 960 if (grp_goal < 0) 961 goto fail_access; 962 if (!my_rsv) { 963 int i; 964 965 for (i = 0; i < 7 && grp_goal > start && 966 ext4_test_allocatable(grp_goal - 1, 967 bitmap_bh); 968 i++, grp_goal--) 969 ; 970 } 971 } 972 start = grp_goal; 973 974 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group), 975 grp_goal, bitmap_bh)) { 976 /* 977 * The block was allocated by another thread, or it was 978 * allocated and then freed by another thread 979 */ 980 start++; 981 grp_goal++; 982 if (start >= end) 983 goto fail_access; 984 goto repeat; 985 } 986 num++; 987 grp_goal++; 988 while (num < *count && grp_goal < end 989 && ext4_test_allocatable(grp_goal, bitmap_bh) 990 && claim_block(sb_bgl_lock(EXT4_SB(sb), group), 991 grp_goal, bitmap_bh)) { 992 num++; 993 grp_goal++; 994 } 995 *count = num; 996 return grp_goal - num; 997 fail_access: 998 *count = num; 999 return -1; 1000 } 1001 1002 /** 1003 * find_next_reservable_window(): 1004 * find a reservable space within the given range. 1005 * It does not allocate the reservation window for now: 1006 * alloc_new_reservation() will do the work later. 1007 * 1008 * @search_head: the head of the searching list; 1009 * This is not necessarily the list head of the whole filesystem 1010 * 1011 * We have both head and start_block to assist the search 1012 * for the reservable space. The list starts from head, 1013 * but we will shift to the place where start_block is, 1014 * then start from there, when looking for a reservable space. 1015 * 1016 * @size: the target new reservation window size 1017 * 1018 * @group_first_block: the first block we consider to start 1019 * the real search from 1020 * 1021 * @last_block: 1022 * the maximum block number that our goal reservable space 1023 * could start from. This is normally the last block in this 1024 * group. The search will end when we found the start of next 1025 * possible reservable space is out of this boundary. 1026 * This could handle the cross boundary reservation window 1027 * request. 1028 * 1029 * basically we search from the given range, rather than the whole 1030 * reservation double linked list, (start_block, last_block) 1031 * to find a free region that is of my size and has not 1032 * been reserved. 1033 * 1034 */ 1035 static int find_next_reservable_window( 1036 struct ext4_reserve_window_node *search_head, 1037 struct ext4_reserve_window_node *my_rsv, 1038 struct super_block * sb, 1039 ext4_fsblk_t start_block, 1040 ext4_fsblk_t last_block) 1041 { 1042 struct rb_node *next; 1043 struct ext4_reserve_window_node *rsv, *prev; 1044 ext4_fsblk_t cur; 1045 int size = my_rsv->rsv_goal_size; 1046 1047 /* TODO: make the start of the reservation window byte-aligned */ 1048 /* cur = *start_block & ~7;*/ 1049 cur = start_block; 1050 rsv = search_head; 1051 if (!rsv) 1052 return -1; 1053 1054 while (1) { 1055 if (cur <= rsv->rsv_end) 1056 cur = rsv->rsv_end + 1; 1057 1058 /* TODO? 1059 * in the case we could not find a reservable space 1060 * that is what is expected, during the re-search, we could 1061 * remember what's the largest reservable space we could have 1062 * and return that one. 1063 * 1064 * For now it will fail if we could not find the reservable 1065 * space with expected-size (or more)... 1066 */ 1067 if (cur > last_block) 1068 return -1; /* fail */ 1069 1070 prev = rsv; 1071 next = rb_next(&rsv->rsv_node); 1072 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node); 1073 1074 /* 1075 * Reached the last reservation, we can just append to the 1076 * previous one. 1077 */ 1078 if (!next) 1079 break; 1080 1081 if (cur + size <= rsv->rsv_start) { 1082 /* 1083 * Found a reserveable space big enough. We could 1084 * have a reservation across the group boundary here 1085 */ 1086 break; 1087 } 1088 } 1089 /* 1090 * we come here either : 1091 * when we reach the end of the whole list, 1092 * and there is empty reservable space after last entry in the list. 1093 * append it to the end of the list. 1094 * 1095 * or we found one reservable space in the middle of the list, 1096 * return the reservation window that we could append to. 1097 * succeed. 1098 */ 1099 1100 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 1101 rsv_window_remove(sb, my_rsv); 1102 1103 /* 1104 * Let's book the whole avaliable window for now. We will check the 1105 * disk bitmap later and then, if there are free blocks then we adjust 1106 * the window size if it's larger than requested. 1107 * Otherwise, we will remove this node from the tree next time 1108 * call find_next_reservable_window. 1109 */ 1110 my_rsv->rsv_start = cur; 1111 my_rsv->rsv_end = cur + size - 1; 1112 my_rsv->rsv_alloc_hit = 0; 1113 1114 if (prev != my_rsv) 1115 ext4_rsv_window_add(sb, my_rsv); 1116 1117 return 0; 1118 } 1119 1120 /** 1121 * alloc_new_reservation()--allocate a new reservation window 1122 * 1123 * To make a new reservation, we search part of the filesystem 1124 * reservation list (the list that inside the group). We try to 1125 * allocate a new reservation window near the allocation goal, 1126 * or the beginning of the group, if there is no goal. 1127 * 1128 * We first find a reservable space after the goal, then from 1129 * there, we check the bitmap for the first free block after 1130 * it. If there is no free block until the end of group, then the 1131 * whole group is full, we failed. Otherwise, check if the free 1132 * block is inside the expected reservable space, if so, we 1133 * succeed. 1134 * If the first free block is outside the reservable space, then 1135 * start from the first free block, we search for next available 1136 * space, and go on. 1137 * 1138 * on succeed, a new reservation will be found and inserted into the list 1139 * It contains at least one free block, and it does not overlap with other 1140 * reservation windows. 1141 * 1142 * failed: we failed to find a reservation window in this group 1143 * 1144 * @rsv: the reservation 1145 * 1146 * @grp_goal: The goal (group-relative). It is where the search for a 1147 * free reservable space should start from. 1148 * if we have a grp_goal(grp_goal >0 ), then start from there, 1149 * no grp_goal(grp_goal = -1), we start from the first block 1150 * of the group. 1151 * 1152 * @sb: the super block 1153 * @group: the group we are trying to allocate in 1154 * @bitmap_bh: the block group block bitmap 1155 * 1156 */ 1157 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv, 1158 ext4_grpblk_t grp_goal, struct super_block *sb, 1159 unsigned int group, struct buffer_head *bitmap_bh) 1160 { 1161 struct ext4_reserve_window_node *search_head; 1162 ext4_fsblk_t group_first_block, group_end_block, start_block; 1163 ext4_grpblk_t first_free_block; 1164 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root; 1165 unsigned long size; 1166 int ret; 1167 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock; 1168 1169 group_first_block = ext4_group_first_block_no(sb, group); 1170 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1171 1172 if (grp_goal < 0) 1173 start_block = group_first_block; 1174 else 1175 start_block = grp_goal + group_first_block; 1176 1177 size = my_rsv->rsv_goal_size; 1178 1179 if (!rsv_is_empty(&my_rsv->rsv_window)) { 1180 /* 1181 * if the old reservation is cross group boundary 1182 * and if the goal is inside the old reservation window, 1183 * we will come here when we just failed to allocate from 1184 * the first part of the window. We still have another part 1185 * that belongs to the next group. In this case, there is no 1186 * point to discard our window and try to allocate a new one 1187 * in this group(which will fail). we should 1188 * keep the reservation window, just simply move on. 1189 * 1190 * Maybe we could shift the start block of the reservation 1191 * window to the first block of next group. 1192 */ 1193 1194 if ((my_rsv->rsv_start <= group_end_block) && 1195 (my_rsv->rsv_end > group_end_block) && 1196 (start_block >= my_rsv->rsv_start)) 1197 return -1; 1198 1199 if ((my_rsv->rsv_alloc_hit > 1200 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 1201 /* 1202 * if the previously allocation hit ratio is 1203 * greater than 1/2, then we double the size of 1204 * the reservation window the next time, 1205 * otherwise we keep the same size window 1206 */ 1207 size = size * 2; 1208 if (size > EXT4_MAX_RESERVE_BLOCKS) 1209 size = EXT4_MAX_RESERVE_BLOCKS; 1210 my_rsv->rsv_goal_size= size; 1211 } 1212 } 1213 1214 spin_lock(rsv_lock); 1215 /* 1216 * shift the search start to the window near the goal block 1217 */ 1218 search_head = search_reserve_window(fs_rsv_root, start_block); 1219 1220 /* 1221 * find_next_reservable_window() simply finds a reservable window 1222 * inside the given range(start_block, group_end_block). 1223 * 1224 * To make sure the reservation window has a free bit inside it, we 1225 * need to check the bitmap after we found a reservable window. 1226 */ 1227 retry: 1228 ret = find_next_reservable_window(search_head, my_rsv, sb, 1229 start_block, group_end_block); 1230 1231 if (ret == -1) { 1232 if (!rsv_is_empty(&my_rsv->rsv_window)) 1233 rsv_window_remove(sb, my_rsv); 1234 spin_unlock(rsv_lock); 1235 return -1; 1236 } 1237 1238 /* 1239 * On success, find_next_reservable_window() returns the 1240 * reservation window where there is a reservable space after it. 1241 * Before we reserve this reservable space, we need 1242 * to make sure there is at least a free block inside this region. 1243 * 1244 * searching the first free bit on the block bitmap and copy of 1245 * last committed bitmap alternatively, until we found a allocatable 1246 * block. Search start from the start block of the reservable space 1247 * we just found. 1248 */ 1249 spin_unlock(rsv_lock); 1250 first_free_block = bitmap_search_next_usable_block( 1251 my_rsv->rsv_start - group_first_block, 1252 bitmap_bh, group_end_block - group_first_block + 1); 1253 1254 if (first_free_block < 0) { 1255 /* 1256 * no free block left on the bitmap, no point 1257 * to reserve the space. return failed. 1258 */ 1259 spin_lock(rsv_lock); 1260 if (!rsv_is_empty(&my_rsv->rsv_window)) 1261 rsv_window_remove(sb, my_rsv); 1262 spin_unlock(rsv_lock); 1263 return -1; /* failed */ 1264 } 1265 1266 start_block = first_free_block + group_first_block; 1267 /* 1268 * check if the first free block is within the 1269 * free space we just reserved 1270 */ 1271 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 1272 return 0; /* success */ 1273 /* 1274 * if the first free bit we found is out of the reservable space 1275 * continue search for next reservable space, 1276 * start from where the free block is, 1277 * we also shift the list head to where we stopped last time 1278 */ 1279 search_head = my_rsv; 1280 spin_lock(rsv_lock); 1281 goto retry; 1282 } 1283 1284 /** 1285 * try_to_extend_reservation() 1286 * @my_rsv: given reservation window 1287 * @sb: super block 1288 * @size: the delta to extend 1289 * 1290 * Attempt to expand the reservation window large enough to have 1291 * required number of free blocks 1292 * 1293 * Since ext4_try_to_allocate() will always allocate blocks within 1294 * the reservation window range, if the window size is too small, 1295 * multiple blocks allocation has to stop at the end of the reservation 1296 * window. To make this more efficient, given the total number of 1297 * blocks needed and the current size of the window, we try to 1298 * expand the reservation window size if necessary on a best-effort 1299 * basis before ext4_new_blocks() tries to allocate blocks, 1300 */ 1301 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv, 1302 struct super_block *sb, int size) 1303 { 1304 struct ext4_reserve_window_node *next_rsv; 1305 struct rb_node *next; 1306 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock; 1307 1308 if (!spin_trylock(rsv_lock)) 1309 return; 1310 1311 next = rb_next(&my_rsv->rsv_node); 1312 1313 if (!next) 1314 my_rsv->rsv_end += size; 1315 else { 1316 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node); 1317 1318 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1319 my_rsv->rsv_end += size; 1320 else 1321 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1322 } 1323 spin_unlock(rsv_lock); 1324 } 1325 1326 /** 1327 * ext4_try_to_allocate_with_rsv() 1328 * @sb: superblock 1329 * @handle: handle to this transaction 1330 * @group: given allocation block group 1331 * @bitmap_bh: bufferhead holds the block bitmap 1332 * @grp_goal: given target block within the group 1333 * @count: target number of blocks to allocate 1334 * @my_rsv: reservation window 1335 * @errp: pointer to store the error code 1336 * 1337 * This is the main function used to allocate a new block and its reservation 1338 * window. 1339 * 1340 * Each time when a new block allocation is need, first try to allocate from 1341 * its own reservation. If it does not have a reservation window, instead of 1342 * looking for a free bit on bitmap first, then look up the reservation list to 1343 * see if it is inside somebody else's reservation window, we try to allocate a 1344 * reservation window for it starting from the goal first. Then do the block 1345 * allocation within the reservation window. 1346 * 1347 * This will avoid keeping on searching the reservation list again and 1348 * again when somebody is looking for a free block (without 1349 * reservation), and there are lots of free blocks, but they are all 1350 * being reserved. 1351 * 1352 * We use a red-black tree for the per-filesystem reservation list. 1353 * 1354 */ 1355 static ext4_grpblk_t 1356 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle, 1357 unsigned int group, struct buffer_head *bitmap_bh, 1358 ext4_grpblk_t grp_goal, 1359 struct ext4_reserve_window_node * my_rsv, 1360 unsigned long *count, int *errp) 1361 { 1362 ext4_fsblk_t group_first_block, group_last_block; 1363 ext4_grpblk_t ret = 0; 1364 int fatal; 1365 unsigned long num = *count; 1366 1367 *errp = 0; 1368 1369 /* 1370 * Make sure we use undo access for the bitmap, because it is critical 1371 * that we do the frozen_data COW on bitmap buffers in all cases even 1372 * if the buffer is in BJ_Forget state in the committing transaction. 1373 */ 1374 BUFFER_TRACE(bitmap_bh, "get undo access for new block"); 1375 fatal = ext4_journal_get_undo_access(handle, bitmap_bh); 1376 if (fatal) { 1377 *errp = fatal; 1378 return -1; 1379 } 1380 1381 /* 1382 * we don't deal with reservation when 1383 * filesystem is mounted without reservation 1384 * or the file is not a regular file 1385 * or last attempt to allocate a block with reservation turned on failed 1386 */ 1387 if (my_rsv == NULL ) { 1388 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh, 1389 grp_goal, count, NULL); 1390 goto out; 1391 } 1392 /* 1393 * grp_goal is a group relative block number (if there is a goal) 1394 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb) 1395 * first block is a filesystem wide block number 1396 * first block is the block number of the first block in this group 1397 */ 1398 group_first_block = ext4_group_first_block_no(sb, group); 1399 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1400 1401 /* 1402 * Basically we will allocate a new block from inode's reservation 1403 * window. 1404 * 1405 * We need to allocate a new reservation window, if: 1406 * a) inode does not have a reservation window; or 1407 * b) last attempt to allocate a block from existing reservation 1408 * failed; or 1409 * c) we come here with a goal and with a reservation window 1410 * 1411 * We do not need to allocate a new reservation window if we come here 1412 * at the beginning with a goal and the goal is inside the window, or 1413 * we don't have a goal but already have a reservation window. 1414 * then we could go to allocate from the reservation window directly. 1415 */ 1416 while (1) { 1417 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1418 !goal_in_my_reservation(&my_rsv->rsv_window, 1419 grp_goal, group, sb)) { 1420 if (my_rsv->rsv_goal_size < *count) 1421 my_rsv->rsv_goal_size = *count; 1422 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1423 group, bitmap_bh); 1424 if (ret < 0) 1425 break; /* failed */ 1426 1427 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1428 grp_goal, group, sb)) 1429 grp_goal = -1; 1430 } else if (grp_goal >= 0) { 1431 int curr = my_rsv->rsv_end - 1432 (grp_goal + group_first_block) + 1; 1433 1434 if (curr < *count) 1435 try_to_extend_reservation(my_rsv, sb, 1436 *count - curr); 1437 } 1438 1439 if ((my_rsv->rsv_start > group_last_block) || 1440 (my_rsv->rsv_end < group_first_block)) { 1441 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1); 1442 BUG(); 1443 } 1444 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh, 1445 grp_goal, &num, &my_rsv->rsv_window); 1446 if (ret >= 0) { 1447 my_rsv->rsv_alloc_hit += num; 1448 *count = num; 1449 break; /* succeed */ 1450 } 1451 num = *count; 1452 } 1453 out: 1454 if (ret >= 0) { 1455 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for " 1456 "bitmap block"); 1457 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh); 1458 if (fatal) { 1459 *errp = fatal; 1460 return -1; 1461 } 1462 return ret; 1463 } 1464 1465 BUFFER_TRACE(bitmap_bh, "journal_release_buffer"); 1466 ext4_journal_release_buffer(handle, bitmap_bh); 1467 return ret; 1468 } 1469 1470 /** 1471 * ext4_has_free_blocks() 1472 * @sbi: in-core super block structure. 1473 * 1474 * Check if filesystem has at least 1 free block available for allocation. 1475 */ 1476 static int ext4_has_free_blocks(struct ext4_sb_info *sbi) 1477 { 1478 ext4_fsblk_t free_blocks, root_blocks; 1479 1480 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1481 root_blocks = ext4_r_blocks_count(sbi->s_es); 1482 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1483 sbi->s_resuid != current->fsuid && 1484 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { 1485 return 0; 1486 } 1487 return 1; 1488 } 1489 1490 /** 1491 * ext4_should_retry_alloc() 1492 * @sb: super block 1493 * @retries number of attemps has been made 1494 * 1495 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if 1496 * it is profitable to retry the operation, this function will wait 1497 * for the current or commiting transaction to complete, and then 1498 * return TRUE. 1499 * 1500 * if the total number of retries exceed three times, return FALSE. 1501 */ 1502 int ext4_should_retry_alloc(struct super_block *sb, int *retries) 1503 { 1504 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3) 1505 return 0; 1506 1507 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id); 1508 1509 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal); 1510 } 1511 1512 /** 1513 * ext4_new_blocks() -- core block(s) allocation function 1514 * @handle: handle to this transaction 1515 * @inode: file inode 1516 * @goal: given target block(filesystem wide) 1517 * @count: target number of blocks to allocate 1518 * @errp: error code 1519 * 1520 * ext4_new_blocks uses a goal block to assist allocation. It tries to 1521 * allocate block(s) from the block group contains the goal block first. If that 1522 * fails, it will try to allocate block(s) from other block groups without 1523 * any specific goal block. 1524 * 1525 */ 1526 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode, 1527 ext4_fsblk_t goal, unsigned long *count, int *errp) 1528 { 1529 struct buffer_head *bitmap_bh = NULL; 1530 struct buffer_head *gdp_bh; 1531 unsigned long group_no; 1532 int goal_group; 1533 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1534 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1535 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1536 int bgi; /* blockgroup iteration index */ 1537 int fatal = 0, err; 1538 int performed_allocation = 0; 1539 ext4_grpblk_t free_blocks; /* number of free blocks in a group */ 1540 struct super_block *sb; 1541 struct ext4_group_desc *gdp; 1542 struct ext4_super_block *es; 1543 struct ext4_sb_info *sbi; 1544 struct ext4_reserve_window_node *my_rsv = NULL; 1545 struct ext4_block_alloc_info *block_i; 1546 unsigned short windowsz = 0; 1547 #ifdef EXT4FS_DEBUG 1548 static int goal_hits, goal_attempts; 1549 #endif 1550 unsigned long ngroups; 1551 unsigned long num = *count; 1552 1553 *errp = -ENOSPC; 1554 sb = inode->i_sb; 1555 if (!sb) { 1556 printk("ext4_new_block: nonexistent device"); 1557 return 0; 1558 } 1559 1560 /* 1561 * Check quota for allocation of this block. 1562 */ 1563 if (DQUOT_ALLOC_BLOCK(inode, num)) { 1564 *errp = -EDQUOT; 1565 return 0; 1566 } 1567 1568 sbi = EXT4_SB(sb); 1569 es = EXT4_SB(sb)->s_es; 1570 ext4_debug("goal=%lu.\n", goal); 1571 /* 1572 * Allocate a block from reservation only when 1573 * filesystem is mounted with reservation(default,-o reservation), and 1574 * it's a regular file, and 1575 * the desired window size is greater than 0 (One could use ioctl 1576 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off 1577 * reservation on that particular file) 1578 */ 1579 block_i = EXT4_I(inode)->i_block_alloc_info; 1580 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0)) 1581 my_rsv = &block_i->rsv_window_node; 1582 1583 if (!ext4_has_free_blocks(sbi)) { 1584 *errp = -ENOSPC; 1585 goto out; 1586 } 1587 1588 /* 1589 * First, test whether the goal block is free. 1590 */ 1591 if (goal < le32_to_cpu(es->s_first_data_block) || 1592 goal >= ext4_blocks_count(es)) 1593 goal = le32_to_cpu(es->s_first_data_block); 1594 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk); 1595 goal_group = group_no; 1596 retry_alloc: 1597 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh); 1598 if (!gdp) 1599 goto io_error; 1600 1601 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1602 /* 1603 * if there is not enough free blocks to make a new resevation 1604 * turn off reservation for this allocation 1605 */ 1606 if (my_rsv && (free_blocks < windowsz) 1607 && (rsv_is_empty(&my_rsv->rsv_window))) 1608 my_rsv = NULL; 1609 1610 if (free_blocks > 0) { 1611 bitmap_bh = read_block_bitmap(sb, group_no); 1612 if (!bitmap_bh) 1613 goto io_error; 1614 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle, 1615 group_no, bitmap_bh, grp_target_blk, 1616 my_rsv, &num, &fatal); 1617 if (fatal) 1618 goto out; 1619 if (grp_alloc_blk >= 0) 1620 goto allocated; 1621 } 1622 1623 ngroups = EXT4_SB(sb)->s_groups_count; 1624 smp_rmb(); 1625 1626 /* 1627 * Now search the rest of the groups. We assume that 1628 * i and gdp correctly point to the last group visited. 1629 */ 1630 for (bgi = 0; bgi < ngroups; bgi++) { 1631 group_no++; 1632 if (group_no >= ngroups) 1633 group_no = 0; 1634 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh); 1635 if (!gdp) 1636 goto io_error; 1637 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1638 /* 1639 * skip this group if the number of 1640 * free blocks is less than half of the reservation 1641 * window size. 1642 */ 1643 if (free_blocks <= (windowsz/2)) 1644 continue; 1645 1646 brelse(bitmap_bh); 1647 bitmap_bh = read_block_bitmap(sb, group_no); 1648 if (!bitmap_bh) 1649 goto io_error; 1650 /* 1651 * try to allocate block(s) from this group, without a goal(-1). 1652 */ 1653 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle, 1654 group_no, bitmap_bh, -1, my_rsv, 1655 &num, &fatal); 1656 if (fatal) 1657 goto out; 1658 if (grp_alloc_blk >= 0) 1659 goto allocated; 1660 } 1661 /* 1662 * We may end up a bogus ealier ENOSPC error due to 1663 * filesystem is "full" of reservations, but 1664 * there maybe indeed free blocks avaliable on disk 1665 * In this case, we just forget about the reservations 1666 * just do block allocation as without reservations. 1667 */ 1668 if (my_rsv) { 1669 my_rsv = NULL; 1670 windowsz = 0; 1671 group_no = goal_group; 1672 goto retry_alloc; 1673 } 1674 /* No space left on the device */ 1675 *errp = -ENOSPC; 1676 goto out; 1677 1678 allocated: 1679 1680 ext4_debug("using block group %d(%d)\n", 1681 group_no, gdp->bg_free_blocks_count); 1682 1683 BUFFER_TRACE(gdp_bh, "get_write_access"); 1684 fatal = ext4_journal_get_write_access(handle, gdp_bh); 1685 if (fatal) 1686 goto out; 1687 1688 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no); 1689 1690 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) || 1691 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) || 1692 in_range(ret_block, ext4_inode_table(sb, gdp), 1693 EXT4_SB(sb)->s_itb_per_group) || 1694 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp), 1695 EXT4_SB(sb)->s_itb_per_group)) 1696 ext4_error(sb, "ext4_new_block", 1697 "Allocating block in system zone - " 1698 "blocks from %llu, length %lu", 1699 ret_block, num); 1700 1701 performed_allocation = 1; 1702 1703 #ifdef CONFIG_JBD2_DEBUG 1704 { 1705 struct buffer_head *debug_bh; 1706 1707 /* Record bitmap buffer state in the newly allocated block */ 1708 debug_bh = sb_find_get_block(sb, ret_block); 1709 if (debug_bh) { 1710 BUFFER_TRACE(debug_bh, "state when allocated"); 1711 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state"); 1712 brelse(debug_bh); 1713 } 1714 } 1715 jbd_lock_bh_state(bitmap_bh); 1716 spin_lock(sb_bgl_lock(sbi, group_no)); 1717 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) { 1718 int i; 1719 1720 for (i = 0; i < num; i++) { 1721 if (ext4_test_bit(grp_alloc_blk+i, 1722 bh2jh(bitmap_bh)->b_committed_data)) { 1723 printk("%s: block was unexpectedly set in " 1724 "b_committed_data\n", __FUNCTION__); 1725 } 1726 } 1727 } 1728 ext4_debug("found bit %d\n", grp_alloc_blk); 1729 spin_unlock(sb_bgl_lock(sbi, group_no)); 1730 jbd_unlock_bh_state(bitmap_bh); 1731 #endif 1732 1733 if (ret_block + num - 1 >= ext4_blocks_count(es)) { 1734 ext4_error(sb, "ext4_new_block", 1735 "block(%llu) >= blocks count(%llu) - " 1736 "block_group = %lu, es == %p ", ret_block, 1737 ext4_blocks_count(es), group_no, es); 1738 goto out; 1739 } 1740 1741 /* 1742 * It is up to the caller to add the new buffer to a journal 1743 * list of some description. We don't know in advance whether 1744 * the caller wants to use it as metadata or data. 1745 */ 1746 ext4_debug("allocating block %lu. Goal hits %d of %d.\n", 1747 ret_block, goal_hits, goal_attempts); 1748 1749 spin_lock(sb_bgl_lock(sbi, group_no)); 1750 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) 1751 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1752 gdp->bg_free_blocks_count = 1753 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num); 1754 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp); 1755 spin_unlock(sb_bgl_lock(sbi, group_no)); 1756 percpu_counter_sub(&sbi->s_freeblocks_counter, num); 1757 1758 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor"); 1759 err = ext4_journal_dirty_metadata(handle, gdp_bh); 1760 if (!fatal) 1761 fatal = err; 1762 1763 sb->s_dirt = 1; 1764 if (fatal) 1765 goto out; 1766 1767 *errp = 0; 1768 brelse(bitmap_bh); 1769 DQUOT_FREE_BLOCK(inode, *count-num); 1770 *count = num; 1771 return ret_block; 1772 1773 io_error: 1774 *errp = -EIO; 1775 out: 1776 if (fatal) { 1777 *errp = fatal; 1778 ext4_std_error(sb, fatal); 1779 } 1780 /* 1781 * Undo the block allocation 1782 */ 1783 if (!performed_allocation) 1784 DQUOT_FREE_BLOCK(inode, *count); 1785 brelse(bitmap_bh); 1786 return 0; 1787 } 1788 1789 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode, 1790 ext4_fsblk_t goal, int *errp) 1791 { 1792 unsigned long count = 1; 1793 1794 return ext4_new_blocks(handle, inode, goal, &count, errp); 1795 } 1796 1797 /** 1798 * ext4_count_free_blocks() -- count filesystem free blocks 1799 * @sb: superblock 1800 * 1801 * Adds up the number of free blocks from each block group. 1802 */ 1803 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb) 1804 { 1805 ext4_fsblk_t desc_count; 1806 struct ext4_group_desc *gdp; 1807 int i; 1808 unsigned long ngroups = EXT4_SB(sb)->s_groups_count; 1809 #ifdef EXT4FS_DEBUG 1810 struct ext4_super_block *es; 1811 ext4_fsblk_t bitmap_count; 1812 unsigned long x; 1813 struct buffer_head *bitmap_bh = NULL; 1814 1815 es = EXT4_SB(sb)->s_es; 1816 desc_count = 0; 1817 bitmap_count = 0; 1818 gdp = NULL; 1819 1820 smp_rmb(); 1821 for (i = 0; i < ngroups; i++) { 1822 gdp = ext4_get_group_desc(sb, i, NULL); 1823 if (!gdp) 1824 continue; 1825 desc_count += le16_to_cpu(gdp->bg_free_blocks_count); 1826 brelse(bitmap_bh); 1827 bitmap_bh = read_block_bitmap(sb, i); 1828 if (bitmap_bh == NULL) 1829 continue; 1830 1831 x = ext4_count_free(bitmap_bh, sb->s_blocksize); 1832 printk("group %d: stored = %d, counted = %lu\n", 1833 i, le16_to_cpu(gdp->bg_free_blocks_count), x); 1834 bitmap_count += x; 1835 } 1836 brelse(bitmap_bh); 1837 printk("ext4_count_free_blocks: stored = %llu" 1838 ", computed = %llu, %llu\n", 1839 EXT4_FREE_BLOCKS_COUNT(es), 1840 desc_count, bitmap_count); 1841 return bitmap_count; 1842 #else 1843 desc_count = 0; 1844 smp_rmb(); 1845 for (i = 0; i < ngroups; i++) { 1846 gdp = ext4_get_group_desc(sb, i, NULL); 1847 if (!gdp) 1848 continue; 1849 desc_count += le16_to_cpu(gdp->bg_free_blocks_count); 1850 } 1851 1852 return desc_count; 1853 #endif 1854 } 1855 1856 static inline int test_root(int a, int b) 1857 { 1858 int num = b; 1859 1860 while (a > num) 1861 num *= b; 1862 return num == a; 1863 } 1864 1865 static int ext4_group_sparse(int group) 1866 { 1867 if (group <= 1) 1868 return 1; 1869 if (!(group & 1)) 1870 return 0; 1871 return (test_root(group, 7) || test_root(group, 5) || 1872 test_root(group, 3)); 1873 } 1874 1875 /** 1876 * ext4_bg_has_super - number of blocks used by the superblock in group 1877 * @sb: superblock for filesystem 1878 * @group: group number to check 1879 * 1880 * Return the number of blocks used by the superblock (primary or backup) 1881 * in this group. Currently this will be only 0 or 1. 1882 */ 1883 int ext4_bg_has_super(struct super_block *sb, int group) 1884 { 1885 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1886 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) && 1887 !ext4_group_sparse(group)) 1888 return 0; 1889 return 1; 1890 } 1891 1892 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group) 1893 { 1894 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); 1895 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb); 1896 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1; 1897 1898 if (group == first || group == first + 1 || group == last) 1899 return 1; 1900 return 0; 1901 } 1902 1903 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group) 1904 { 1905 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1906 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) && 1907 !ext4_group_sparse(group)) 1908 return 0; 1909 return EXT4_SB(sb)->s_gdb_count; 1910 } 1911 1912 /** 1913 * ext4_bg_num_gdb - number of blocks used by the group table in group 1914 * @sb: superblock for filesystem 1915 * @group: group number to check 1916 * 1917 * Return the number of blocks used by the group descriptor table 1918 * (primary or backup) in this group. In the future there may be a 1919 * different number of descriptor blocks in each group. 1920 */ 1921 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group) 1922 { 1923 unsigned long first_meta_bg = 1924 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg); 1925 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); 1926 1927 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) || 1928 metagroup < first_meta_bg) 1929 return ext4_bg_num_gdb_nometa(sb,group); 1930 1931 return ext4_bg_num_gdb_meta(sb,group); 1932 1933 } 1934