xref: /linux/fs/ext4/balloc.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13 
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 
23 #include "group.h"
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27 
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 		unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 	ext4_grpblk_t offset;
36 
37 	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 	if (offsetp)
40 		*offsetp = offset;
41 	if (blockgrpp)
42 		*blockgrpp = blocknr;
43 
44 }
45 
46 /* Initializes an uninitialized block bitmap if given, and returns the
47  * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49 				int block_group, struct ext4_group_desc *gdp)
50 {
51 	unsigned long start;
52 	int bit, bit_max;
53 	unsigned free_blocks, group_blocks;
54 	struct ext4_sb_info *sbi = EXT4_SB(sb);
55 
56 	if (bh) {
57 		J_ASSERT_BH(bh, buffer_locked(bh));
58 
59 		/* If checksum is bad mark all blocks used to prevent allocation
60 		 * essentially implementing a per-group read-only flag. */
61 		if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
62 			ext4_error(sb, __FUNCTION__,
63 				   "Checksum bad for group %u\n", block_group);
64 			gdp->bg_free_blocks_count = 0;
65 			gdp->bg_free_inodes_count = 0;
66 			gdp->bg_itable_unused = 0;
67 			memset(bh->b_data, 0xff, sb->s_blocksize);
68 			return 0;
69 		}
70 		memset(bh->b_data, 0, sb->s_blocksize);
71 	}
72 
73 	/* Check for superblock and gdt backups in this group */
74 	bit_max = ext4_bg_has_super(sb, block_group);
75 
76 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
77 	    block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
78 			  sbi->s_desc_per_block) {
79 		if (bit_max) {
80 			bit_max += ext4_bg_num_gdb(sb, block_group);
81 			bit_max +=
82 				le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
83 		}
84 	} else { /* For META_BG_BLOCK_GROUPS */
85 		int group_rel = (block_group -
86 				 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
87 				EXT4_DESC_PER_BLOCK(sb);
88 		if (group_rel == 0 || group_rel == 1 ||
89 		    (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
90 			bit_max += 1;
91 	}
92 
93 	if (block_group == sbi->s_groups_count - 1) {
94 		/*
95 		 * Even though mke2fs always initialize first and last group
96 		 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97 		 * to make sure we calculate the right free blocks
98 		 */
99 		group_blocks = ext4_blocks_count(sbi->s_es) -
100 			le32_to_cpu(sbi->s_es->s_first_data_block) -
101 			(EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
102 	} else {
103 		group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
104 	}
105 
106 	free_blocks = group_blocks - bit_max;
107 
108 	if (bh) {
109 		for (bit = 0; bit < bit_max; bit++)
110 			ext4_set_bit(bit, bh->b_data);
111 
112 		start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
113 			le32_to_cpu(sbi->s_es->s_first_data_block);
114 
115 		/* Set bits for block and inode bitmaps, and inode table */
116 		ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117 		ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118 		for (bit = (ext4_inode_table(sb, gdp) - start),
119 		     bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120 			ext4_set_bit(bit, bh->b_data);
121 
122 		/*
123 		 * Also if the number of blocks within the group is
124 		 * less than the blocksize * 8 ( which is the size
125 		 * of bitmap ), set rest of the block bitmap to 1
126 		 */
127 		mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
128 	}
129 
130 	return free_blocks - sbi->s_itb_per_group - 2;
131 }
132 
133 
134 /*
135  * The free blocks are managed by bitmaps.  A file system contains several
136  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
137  * block for inodes, N blocks for the inode table and data blocks.
138  *
139  * The file system contains group descriptors which are located after the
140  * super block.  Each descriptor contains the number of the bitmap block and
141  * the free blocks count in the block.  The descriptors are loaded in memory
142  * when a file system is mounted (see ext4_fill_super).
143  */
144 
145 
146 #define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
147 
148 /**
149  * ext4_get_group_desc() -- load group descriptor from disk
150  * @sb:			super block
151  * @block_group:	given block group
152  * @bh:			pointer to the buffer head to store the block
153  *			group descriptor
154  */
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156 					     unsigned int block_group,
157 					     struct buffer_head ** bh)
158 {
159 	unsigned long group_desc;
160 	unsigned long offset;
161 	struct ext4_group_desc * desc;
162 	struct ext4_sb_info *sbi = EXT4_SB(sb);
163 
164 	if (block_group >= sbi->s_groups_count) {
165 		ext4_error (sb, "ext4_get_group_desc",
166 			    "block_group >= groups_count - "
167 			    "block_group = %d, groups_count = %lu",
168 			    block_group, sbi->s_groups_count);
169 
170 		return NULL;
171 	}
172 	smp_rmb();
173 
174 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175 	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176 	if (!sbi->s_group_desc[group_desc]) {
177 		ext4_error (sb, "ext4_get_group_desc",
178 			    "Group descriptor not loaded - "
179 			    "block_group = %d, group_desc = %lu, desc = %lu",
180 			     block_group, group_desc, offset);
181 		return NULL;
182 	}
183 
184 	desc = (struct ext4_group_desc *)(
185 		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
186 		offset * EXT4_DESC_SIZE(sb));
187 	if (bh)
188 		*bh = sbi->s_group_desc[group_desc];
189 	return desc;
190 }
191 
192 /**
193  * read_block_bitmap()
194  * @sb:			super block
195  * @block_group:	given block group
196  *
197  * Read the bitmap for a given block_group, reading into the specified
198  * slot in the superblock's bitmap cache.
199  *
200  * Return buffer_head on success or NULL in case of failure.
201  */
202 struct buffer_head *
203 read_block_bitmap(struct super_block *sb, unsigned int block_group)
204 {
205 	struct ext4_group_desc * desc;
206 	struct buffer_head * bh = NULL;
207 	ext4_fsblk_t bitmap_blk;
208 
209 	desc = ext4_get_group_desc(sb, block_group, NULL);
210 	if (!desc)
211 		return NULL;
212 	bitmap_blk = ext4_block_bitmap(sb, desc);
213 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
214 		bh = sb_getblk(sb, bitmap_blk);
215 		if (!buffer_uptodate(bh)) {
216 			lock_buffer(bh);
217 			if (!buffer_uptodate(bh)) {
218 				ext4_init_block_bitmap(sb, bh, block_group,
219 						       desc);
220 				set_buffer_uptodate(bh);
221 			}
222 			unlock_buffer(bh);
223 		}
224 	} else {
225 		bh = sb_bread(sb, bitmap_blk);
226 	}
227 	if (!bh)
228 		ext4_error (sb, __FUNCTION__,
229 			    "Cannot read block bitmap - "
230 			    "block_group = %d, block_bitmap = %llu",
231 			    block_group, bitmap_blk);
232 	return bh;
233 }
234 /*
235  * The reservation window structure operations
236  * --------------------------------------------
237  * Operations include:
238  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
239  *
240  * We use a red-black tree to represent per-filesystem reservation
241  * windows.
242  *
243  */
244 
245 /**
246  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
247  * @rb_root:		root of per-filesystem reservation rb tree
248  * @verbose:		verbose mode
249  * @fn:			function which wishes to dump the reservation map
250  *
251  * If verbose is turned on, it will print the whole block reservation
252  * windows(start, end).	Otherwise, it will only print out the "bad" windows,
253  * those windows that overlap with their immediate neighbors.
254  */
255 #if 1
256 static void __rsv_window_dump(struct rb_root *root, int verbose,
257 			      const char *fn)
258 {
259 	struct rb_node *n;
260 	struct ext4_reserve_window_node *rsv, *prev;
261 	int bad;
262 
263 restart:
264 	n = rb_first(root);
265 	bad = 0;
266 	prev = NULL;
267 
268 	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
269 	while (n) {
270 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
271 		if (verbose)
272 			printk("reservation window 0x%p "
273 			       "start:  %llu, end:  %llu\n",
274 			       rsv, rsv->rsv_start, rsv->rsv_end);
275 		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
276 			printk("Bad reservation %p (start >= end)\n",
277 			       rsv);
278 			bad = 1;
279 		}
280 		if (prev && prev->rsv_end >= rsv->rsv_start) {
281 			printk("Bad reservation %p (prev->end >= start)\n",
282 			       rsv);
283 			bad = 1;
284 		}
285 		if (bad) {
286 			if (!verbose) {
287 				printk("Restarting reservation walk in verbose mode\n");
288 				verbose = 1;
289 				goto restart;
290 			}
291 		}
292 		n = rb_next(n);
293 		prev = rsv;
294 	}
295 	printk("Window map complete.\n");
296 	if (bad)
297 		BUG();
298 }
299 #define rsv_window_dump(root, verbose) \
300 	__rsv_window_dump((root), (verbose), __FUNCTION__)
301 #else
302 #define rsv_window_dump(root, verbose) do {} while (0)
303 #endif
304 
305 /**
306  * goal_in_my_reservation()
307  * @rsv:		inode's reservation window
308  * @grp_goal:		given goal block relative to the allocation block group
309  * @group:		the current allocation block group
310  * @sb:			filesystem super block
311  *
312  * Test if the given goal block (group relative) is within the file's
313  * own block reservation window range.
314  *
315  * If the reservation window is outside the goal allocation group, return 0;
316  * grp_goal (given goal block) could be -1, which means no specific
317  * goal block. In this case, always return 1.
318  * If the goal block is within the reservation window, return 1;
319  * otherwise, return 0;
320  */
321 static int
322 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
323 			unsigned int group, struct super_block * sb)
324 {
325 	ext4_fsblk_t group_first_block, group_last_block;
326 
327 	group_first_block = ext4_group_first_block_no(sb, group);
328 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
329 
330 	if ((rsv->_rsv_start > group_last_block) ||
331 	    (rsv->_rsv_end < group_first_block))
332 		return 0;
333 	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
334 		|| (grp_goal + group_first_block > rsv->_rsv_end)))
335 		return 0;
336 	return 1;
337 }
338 
339 /**
340  * search_reserve_window()
341  * @rb_root:		root of reservation tree
342  * @goal:		target allocation block
343  *
344  * Find the reserved window which includes the goal, or the previous one
345  * if the goal is not in any window.
346  * Returns NULL if there are no windows or if all windows start after the goal.
347  */
348 static struct ext4_reserve_window_node *
349 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
350 {
351 	struct rb_node *n = root->rb_node;
352 	struct ext4_reserve_window_node *rsv;
353 
354 	if (!n)
355 		return NULL;
356 
357 	do {
358 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
359 
360 		if (goal < rsv->rsv_start)
361 			n = n->rb_left;
362 		else if (goal > rsv->rsv_end)
363 			n = n->rb_right;
364 		else
365 			return rsv;
366 	} while (n);
367 	/*
368 	 * We've fallen off the end of the tree: the goal wasn't inside
369 	 * any particular node.  OK, the previous node must be to one
370 	 * side of the interval containing the goal.  If it's the RHS,
371 	 * we need to back up one.
372 	 */
373 	if (rsv->rsv_start > goal) {
374 		n = rb_prev(&rsv->rsv_node);
375 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
376 	}
377 	return rsv;
378 }
379 
380 /**
381  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
382  * @sb:			super block
383  * @rsv:		reservation window to add
384  *
385  * Must be called with rsv_lock hold.
386  */
387 void ext4_rsv_window_add(struct super_block *sb,
388 		    struct ext4_reserve_window_node *rsv)
389 {
390 	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
391 	struct rb_node *node = &rsv->rsv_node;
392 	ext4_fsblk_t start = rsv->rsv_start;
393 
394 	struct rb_node ** p = &root->rb_node;
395 	struct rb_node * parent = NULL;
396 	struct ext4_reserve_window_node *this;
397 
398 	while (*p)
399 	{
400 		parent = *p;
401 		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
402 
403 		if (start < this->rsv_start)
404 			p = &(*p)->rb_left;
405 		else if (start > this->rsv_end)
406 			p = &(*p)->rb_right;
407 		else {
408 			rsv_window_dump(root, 1);
409 			BUG();
410 		}
411 	}
412 
413 	rb_link_node(node, parent, p);
414 	rb_insert_color(node, root);
415 }
416 
417 /**
418  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
419  * @sb:			super block
420  * @rsv:		reservation window to remove
421  *
422  * Mark the block reservation window as not allocated, and unlink it
423  * from the filesystem reservation window rb tree. Must be called with
424  * rsv_lock hold.
425  */
426 static void rsv_window_remove(struct super_block *sb,
427 			      struct ext4_reserve_window_node *rsv)
428 {
429 	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
430 	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
431 	rsv->rsv_alloc_hit = 0;
432 	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
433 }
434 
435 /*
436  * rsv_is_empty() -- Check if the reservation window is allocated.
437  * @rsv:		given reservation window to check
438  *
439  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
440  */
441 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
442 {
443 	/* a valid reservation end block could not be 0 */
444 	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
445 }
446 
447 /**
448  * ext4_init_block_alloc_info()
449  * @inode:		file inode structure
450  *
451  * Allocate and initialize the	reservation window structure, and
452  * link the window to the ext4 inode structure at last
453  *
454  * The reservation window structure is only dynamically allocated
455  * and linked to ext4 inode the first time the open file
456  * needs a new block. So, before every ext4_new_block(s) call, for
457  * regular files, we should check whether the reservation window
458  * structure exists or not. In the latter case, this function is called.
459  * Fail to do so will result in block reservation being turned off for that
460  * open file.
461  *
462  * This function is called from ext4_get_blocks_handle(), also called
463  * when setting the reservation window size through ioctl before the file
464  * is open for write (needs block allocation).
465  *
466  * Needs truncate_mutex protection prior to call this function.
467  */
468 void ext4_init_block_alloc_info(struct inode *inode)
469 {
470 	struct ext4_inode_info *ei = EXT4_I(inode);
471 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
472 	struct super_block *sb = inode->i_sb;
473 
474 	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
475 	if (block_i) {
476 		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
477 
478 		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
479 		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
480 
481 		/*
482 		 * if filesystem is mounted with NORESERVATION, the goal
483 		 * reservation window size is set to zero to indicate
484 		 * block reservation is off
485 		 */
486 		if (!test_opt(sb, RESERVATION))
487 			rsv->rsv_goal_size = 0;
488 		else
489 			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
490 		rsv->rsv_alloc_hit = 0;
491 		block_i->last_alloc_logical_block = 0;
492 		block_i->last_alloc_physical_block = 0;
493 	}
494 	ei->i_block_alloc_info = block_i;
495 }
496 
497 /**
498  * ext4_discard_reservation()
499  * @inode:		inode
500  *
501  * Discard(free) block reservation window on last file close, or truncate
502  * or at last iput().
503  *
504  * It is being called in three cases:
505  *	ext4_release_file(): last writer close the file
506  *	ext4_clear_inode(): last iput(), when nobody link to this file.
507  *	ext4_truncate(): when the block indirect map is about to change.
508  *
509  */
510 void ext4_discard_reservation(struct inode *inode)
511 {
512 	struct ext4_inode_info *ei = EXT4_I(inode);
513 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
514 	struct ext4_reserve_window_node *rsv;
515 	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
516 
517 	if (!block_i)
518 		return;
519 
520 	rsv = &block_i->rsv_window_node;
521 	if (!rsv_is_empty(&rsv->rsv_window)) {
522 		spin_lock(rsv_lock);
523 		if (!rsv_is_empty(&rsv->rsv_window))
524 			rsv_window_remove(inode->i_sb, rsv);
525 		spin_unlock(rsv_lock);
526 	}
527 }
528 
529 /**
530  * ext4_free_blocks_sb() -- Free given blocks and update quota
531  * @handle:			handle to this transaction
532  * @sb:				super block
533  * @block:			start physcial block to free
534  * @count:			number of blocks to free
535  * @pdquot_freed_blocks:	pointer to quota
536  */
537 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
538 			 ext4_fsblk_t block, unsigned long count,
539 			 unsigned long *pdquot_freed_blocks)
540 {
541 	struct buffer_head *bitmap_bh = NULL;
542 	struct buffer_head *gd_bh;
543 	unsigned long block_group;
544 	ext4_grpblk_t bit;
545 	unsigned long i;
546 	unsigned long overflow;
547 	struct ext4_group_desc * desc;
548 	struct ext4_super_block * es;
549 	struct ext4_sb_info *sbi;
550 	int err = 0, ret;
551 	ext4_grpblk_t group_freed;
552 
553 	*pdquot_freed_blocks = 0;
554 	sbi = EXT4_SB(sb);
555 	es = sbi->s_es;
556 	if (block < le32_to_cpu(es->s_first_data_block) ||
557 	    block + count < block ||
558 	    block + count > ext4_blocks_count(es)) {
559 		ext4_error (sb, "ext4_free_blocks",
560 			    "Freeing blocks not in datazone - "
561 			    "block = %llu, count = %lu", block, count);
562 		goto error_return;
563 	}
564 
565 	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
566 
567 do_more:
568 	overflow = 0;
569 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
570 	/*
571 	 * Check to see if we are freeing blocks across a group
572 	 * boundary.
573 	 */
574 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
575 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
576 		count -= overflow;
577 	}
578 	brelse(bitmap_bh);
579 	bitmap_bh = read_block_bitmap(sb, block_group);
580 	if (!bitmap_bh)
581 		goto error_return;
582 	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
583 	if (!desc)
584 		goto error_return;
585 
586 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
587 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
588 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
589 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
590 		     sbi->s_itb_per_group))
591 		ext4_error (sb, "ext4_free_blocks",
592 			    "Freeing blocks in system zones - "
593 			    "Block = %llu, count = %lu",
594 			    block, count);
595 
596 	/*
597 	 * We are about to start releasing blocks in the bitmap,
598 	 * so we need undo access.
599 	 */
600 	/* @@@ check errors */
601 	BUFFER_TRACE(bitmap_bh, "getting undo access");
602 	err = ext4_journal_get_undo_access(handle, bitmap_bh);
603 	if (err)
604 		goto error_return;
605 
606 	/*
607 	 * We are about to modify some metadata.  Call the journal APIs
608 	 * to unshare ->b_data if a currently-committing transaction is
609 	 * using it
610 	 */
611 	BUFFER_TRACE(gd_bh, "get_write_access");
612 	err = ext4_journal_get_write_access(handle, gd_bh);
613 	if (err)
614 		goto error_return;
615 
616 	jbd_lock_bh_state(bitmap_bh);
617 
618 	for (i = 0, group_freed = 0; i < count; i++) {
619 		/*
620 		 * An HJ special.  This is expensive...
621 		 */
622 #ifdef CONFIG_JBD2_DEBUG
623 		jbd_unlock_bh_state(bitmap_bh);
624 		{
625 			struct buffer_head *debug_bh;
626 			debug_bh = sb_find_get_block(sb, block + i);
627 			if (debug_bh) {
628 				BUFFER_TRACE(debug_bh, "Deleted!");
629 				if (!bh2jh(bitmap_bh)->b_committed_data)
630 					BUFFER_TRACE(debug_bh,
631 						"No commited data in bitmap");
632 				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
633 				__brelse(debug_bh);
634 			}
635 		}
636 		jbd_lock_bh_state(bitmap_bh);
637 #endif
638 		if (need_resched()) {
639 			jbd_unlock_bh_state(bitmap_bh);
640 			cond_resched();
641 			jbd_lock_bh_state(bitmap_bh);
642 		}
643 		/* @@@ This prevents newly-allocated data from being
644 		 * freed and then reallocated within the same
645 		 * transaction.
646 		 *
647 		 * Ideally we would want to allow that to happen, but to
648 		 * do so requires making jbd2_journal_forget() capable of
649 		 * revoking the queued write of a data block, which
650 		 * implies blocking on the journal lock.  *forget()
651 		 * cannot block due to truncate races.
652 		 *
653 		 * Eventually we can fix this by making jbd2_journal_forget()
654 		 * return a status indicating whether or not it was able
655 		 * to revoke the buffer.  On successful revoke, it is
656 		 * safe not to set the allocation bit in the committed
657 		 * bitmap, because we know that there is no outstanding
658 		 * activity on the buffer any more and so it is safe to
659 		 * reallocate it.
660 		 */
661 		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
662 		J_ASSERT_BH(bitmap_bh,
663 				bh2jh(bitmap_bh)->b_committed_data != NULL);
664 		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
665 				bh2jh(bitmap_bh)->b_committed_data);
666 
667 		/*
668 		 * We clear the bit in the bitmap after setting the committed
669 		 * data bit, because this is the reverse order to that which
670 		 * the allocator uses.
671 		 */
672 		BUFFER_TRACE(bitmap_bh, "clear bit");
673 		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
674 						bit + i, bitmap_bh->b_data)) {
675 			jbd_unlock_bh_state(bitmap_bh);
676 			ext4_error(sb, __FUNCTION__,
677 				   "bit already cleared for block %llu",
678 				   (ext4_fsblk_t)(block + i));
679 			jbd_lock_bh_state(bitmap_bh);
680 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
681 		} else {
682 			group_freed++;
683 		}
684 	}
685 	jbd_unlock_bh_state(bitmap_bh);
686 
687 	spin_lock(sb_bgl_lock(sbi, block_group));
688 	desc->bg_free_blocks_count =
689 		cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
690 			group_freed);
691 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
692 	spin_unlock(sb_bgl_lock(sbi, block_group));
693 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
694 
695 	/* We dirtied the bitmap block */
696 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
697 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
698 
699 	/* And the group descriptor block */
700 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
701 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
702 	if (!err) err = ret;
703 	*pdquot_freed_blocks += group_freed;
704 
705 	if (overflow && !err) {
706 		block += count;
707 		count = overflow;
708 		goto do_more;
709 	}
710 	sb->s_dirt = 1;
711 error_return:
712 	brelse(bitmap_bh);
713 	ext4_std_error(sb, err);
714 	return;
715 }
716 
717 /**
718  * ext4_free_blocks() -- Free given blocks and update quota
719  * @handle:		handle for this transaction
720  * @inode:		inode
721  * @block:		start physical block to free
722  * @count:		number of blocks to count
723  */
724 void ext4_free_blocks(handle_t *handle, struct inode *inode,
725 			ext4_fsblk_t block, unsigned long count)
726 {
727 	struct super_block * sb;
728 	unsigned long dquot_freed_blocks;
729 
730 	sb = inode->i_sb;
731 	if (!sb) {
732 		printk ("ext4_free_blocks: nonexistent device");
733 		return;
734 	}
735 	ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
736 	if (dquot_freed_blocks)
737 		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
738 	return;
739 }
740 
741 /**
742  * ext4_test_allocatable()
743  * @nr:			given allocation block group
744  * @bh:			bufferhead contains the bitmap of the given block group
745  *
746  * For ext4 allocations, we must not reuse any blocks which are
747  * allocated in the bitmap buffer's "last committed data" copy.  This
748  * prevents deletes from freeing up the page for reuse until we have
749  * committed the delete transaction.
750  *
751  * If we didn't do this, then deleting something and reallocating it as
752  * data would allow the old block to be overwritten before the
753  * transaction committed (because we force data to disk before commit).
754  * This would lead to corruption if we crashed between overwriting the
755  * data and committing the delete.
756  *
757  * @@@ We may want to make this allocation behaviour conditional on
758  * data-writes at some point, and disable it for metadata allocations or
759  * sync-data inodes.
760  */
761 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
762 {
763 	int ret;
764 	struct journal_head *jh = bh2jh(bh);
765 
766 	if (ext4_test_bit(nr, bh->b_data))
767 		return 0;
768 
769 	jbd_lock_bh_state(bh);
770 	if (!jh->b_committed_data)
771 		ret = 1;
772 	else
773 		ret = !ext4_test_bit(nr, jh->b_committed_data);
774 	jbd_unlock_bh_state(bh);
775 	return ret;
776 }
777 
778 /**
779  * bitmap_search_next_usable_block()
780  * @start:		the starting block (group relative) of the search
781  * @bh:			bufferhead contains the block group bitmap
782  * @maxblocks:		the ending block (group relative) of the reservation
783  *
784  * The bitmap search --- search forward alternately through the actual
785  * bitmap on disk and the last-committed copy in journal, until we find a
786  * bit free in both bitmaps.
787  */
788 static ext4_grpblk_t
789 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
790 					ext4_grpblk_t maxblocks)
791 {
792 	ext4_grpblk_t next;
793 	struct journal_head *jh = bh2jh(bh);
794 
795 	while (start < maxblocks) {
796 		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
797 		if (next >= maxblocks)
798 			return -1;
799 		if (ext4_test_allocatable(next, bh))
800 			return next;
801 		jbd_lock_bh_state(bh);
802 		if (jh->b_committed_data)
803 			start = ext4_find_next_zero_bit(jh->b_committed_data,
804 							maxblocks, next);
805 		jbd_unlock_bh_state(bh);
806 	}
807 	return -1;
808 }
809 
810 /**
811  * find_next_usable_block()
812  * @start:		the starting block (group relative) to find next
813  *			allocatable block in bitmap.
814  * @bh:			bufferhead contains the block group bitmap
815  * @maxblocks:		the ending block (group relative) for the search
816  *
817  * Find an allocatable block in a bitmap.  We honor both the bitmap and
818  * its last-committed copy (if that exists), and perform the "most
819  * appropriate allocation" algorithm of looking for a free block near
820  * the initial goal; then for a free byte somewhere in the bitmap; then
821  * for any free bit in the bitmap.
822  */
823 static ext4_grpblk_t
824 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
825 			ext4_grpblk_t maxblocks)
826 {
827 	ext4_grpblk_t here, next;
828 	char *p, *r;
829 
830 	if (start > 0) {
831 		/*
832 		 * The goal was occupied; search forward for a free
833 		 * block within the next XX blocks.
834 		 *
835 		 * end_goal is more or less random, but it has to be
836 		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
837 		 * next 64-bit boundary is simple..
838 		 */
839 		ext4_grpblk_t end_goal = (start + 63) & ~63;
840 		if (end_goal > maxblocks)
841 			end_goal = maxblocks;
842 		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
843 		if (here < end_goal && ext4_test_allocatable(here, bh))
844 			return here;
845 		ext4_debug("Bit not found near goal\n");
846 	}
847 
848 	here = start;
849 	if (here < 0)
850 		here = 0;
851 
852 	p = ((char *)bh->b_data) + (here >> 3);
853 	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
854 	next = (r - ((char *)bh->b_data)) << 3;
855 
856 	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
857 		return next;
858 
859 	/*
860 	 * The bitmap search --- search forward alternately through the actual
861 	 * bitmap and the last-committed copy until we find a bit free in
862 	 * both
863 	 */
864 	here = bitmap_search_next_usable_block(here, bh, maxblocks);
865 	return here;
866 }
867 
868 /**
869  * claim_block()
870  * @block:		the free block (group relative) to allocate
871  * @bh:			the bufferhead containts the block group bitmap
872  *
873  * We think we can allocate this block in this bitmap.  Try to set the bit.
874  * If that succeeds then check that nobody has allocated and then freed the
875  * block since we saw that is was not marked in b_committed_data.  If it _was_
876  * allocated and freed then clear the bit in the bitmap again and return
877  * zero (failure).
878  */
879 static inline int
880 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
881 {
882 	struct journal_head *jh = bh2jh(bh);
883 	int ret;
884 
885 	if (ext4_set_bit_atomic(lock, block, bh->b_data))
886 		return 0;
887 	jbd_lock_bh_state(bh);
888 	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
889 		ext4_clear_bit_atomic(lock, block, bh->b_data);
890 		ret = 0;
891 	} else {
892 		ret = 1;
893 	}
894 	jbd_unlock_bh_state(bh);
895 	return ret;
896 }
897 
898 /**
899  * ext4_try_to_allocate()
900  * @sb:			superblock
901  * @handle:		handle to this transaction
902  * @group:		given allocation block group
903  * @bitmap_bh:		bufferhead holds the block bitmap
904  * @grp_goal:		given target block within the group
905  * @count:		target number of blocks to allocate
906  * @my_rsv:		reservation window
907  *
908  * Attempt to allocate blocks within a give range. Set the range of allocation
909  * first, then find the first free bit(s) from the bitmap (within the range),
910  * and at last, allocate the blocks by claiming the found free bit as allocated.
911  *
912  * To set the range of this allocation:
913  *	if there is a reservation window, only try to allocate block(s) from the
914  *	file's own reservation window;
915  *	Otherwise, the allocation range starts from the give goal block, ends at
916  *	the block group's last block.
917  *
918  * If we failed to allocate the desired block then we may end up crossing to a
919  * new bitmap.  In that case we must release write access to the old one via
920  * ext4_journal_release_buffer(), else we'll run out of credits.
921  */
922 static ext4_grpblk_t
923 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
924 			struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
925 			unsigned long *count, struct ext4_reserve_window *my_rsv)
926 {
927 	ext4_fsblk_t group_first_block;
928 	ext4_grpblk_t start, end;
929 	unsigned long num = 0;
930 
931 	/* we do allocation within the reservation window if we have a window */
932 	if (my_rsv) {
933 		group_first_block = ext4_group_first_block_no(sb, group);
934 		if (my_rsv->_rsv_start >= group_first_block)
935 			start = my_rsv->_rsv_start - group_first_block;
936 		else
937 			/* reservation window cross group boundary */
938 			start = 0;
939 		end = my_rsv->_rsv_end - group_first_block + 1;
940 		if (end > EXT4_BLOCKS_PER_GROUP(sb))
941 			/* reservation window crosses group boundary */
942 			end = EXT4_BLOCKS_PER_GROUP(sb);
943 		if ((start <= grp_goal) && (grp_goal < end))
944 			start = grp_goal;
945 		else
946 			grp_goal = -1;
947 	} else {
948 		if (grp_goal > 0)
949 			start = grp_goal;
950 		else
951 			start = 0;
952 		end = EXT4_BLOCKS_PER_GROUP(sb);
953 	}
954 
955 	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
956 
957 repeat:
958 	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
959 		grp_goal = find_next_usable_block(start, bitmap_bh, end);
960 		if (grp_goal < 0)
961 			goto fail_access;
962 		if (!my_rsv) {
963 			int i;
964 
965 			for (i = 0; i < 7 && grp_goal > start &&
966 					ext4_test_allocatable(grp_goal - 1,
967 								bitmap_bh);
968 					i++, grp_goal--)
969 				;
970 		}
971 	}
972 	start = grp_goal;
973 
974 	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
975 		grp_goal, bitmap_bh)) {
976 		/*
977 		 * The block was allocated by another thread, or it was
978 		 * allocated and then freed by another thread
979 		 */
980 		start++;
981 		grp_goal++;
982 		if (start >= end)
983 			goto fail_access;
984 		goto repeat;
985 	}
986 	num++;
987 	grp_goal++;
988 	while (num < *count && grp_goal < end
989 		&& ext4_test_allocatable(grp_goal, bitmap_bh)
990 		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
991 				grp_goal, bitmap_bh)) {
992 		num++;
993 		grp_goal++;
994 	}
995 	*count = num;
996 	return grp_goal - num;
997 fail_access:
998 	*count = num;
999 	return -1;
1000 }
1001 
1002 /**
1003  *	find_next_reservable_window():
1004  *		find a reservable space within the given range.
1005  *		It does not allocate the reservation window for now:
1006  *		alloc_new_reservation() will do the work later.
1007  *
1008  *	@search_head: the head of the searching list;
1009  *		This is not necessarily the list head of the whole filesystem
1010  *
1011  *		We have both head and start_block to assist the search
1012  *		for the reservable space. The list starts from head,
1013  *		but we will shift to the place where start_block is,
1014  *		then start from there, when looking for a reservable space.
1015  *
1016  *	@size: the target new reservation window size
1017  *
1018  *	@group_first_block: the first block we consider to start
1019  *			the real search from
1020  *
1021  *	@last_block:
1022  *		the maximum block number that our goal reservable space
1023  *		could start from. This is normally the last block in this
1024  *		group. The search will end when we found the start of next
1025  *		possible reservable space is out of this boundary.
1026  *		This could handle the cross boundary reservation window
1027  *		request.
1028  *
1029  *	basically we search from the given range, rather than the whole
1030  *	reservation double linked list, (start_block, last_block)
1031  *	to find a free region that is of my size and has not
1032  *	been reserved.
1033  *
1034  */
1035 static int find_next_reservable_window(
1036 				struct ext4_reserve_window_node *search_head,
1037 				struct ext4_reserve_window_node *my_rsv,
1038 				struct super_block * sb,
1039 				ext4_fsblk_t start_block,
1040 				ext4_fsblk_t last_block)
1041 {
1042 	struct rb_node *next;
1043 	struct ext4_reserve_window_node *rsv, *prev;
1044 	ext4_fsblk_t cur;
1045 	int size = my_rsv->rsv_goal_size;
1046 
1047 	/* TODO: make the start of the reservation window byte-aligned */
1048 	/* cur = *start_block & ~7;*/
1049 	cur = start_block;
1050 	rsv = search_head;
1051 	if (!rsv)
1052 		return -1;
1053 
1054 	while (1) {
1055 		if (cur <= rsv->rsv_end)
1056 			cur = rsv->rsv_end + 1;
1057 
1058 		/* TODO?
1059 		 * in the case we could not find a reservable space
1060 		 * that is what is expected, during the re-search, we could
1061 		 * remember what's the largest reservable space we could have
1062 		 * and return that one.
1063 		 *
1064 		 * For now it will fail if we could not find the reservable
1065 		 * space with expected-size (or more)...
1066 		 */
1067 		if (cur > last_block)
1068 			return -1;		/* fail */
1069 
1070 		prev = rsv;
1071 		next = rb_next(&rsv->rsv_node);
1072 		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1073 
1074 		/*
1075 		 * Reached the last reservation, we can just append to the
1076 		 * previous one.
1077 		 */
1078 		if (!next)
1079 			break;
1080 
1081 		if (cur + size <= rsv->rsv_start) {
1082 			/*
1083 			 * Found a reserveable space big enough.  We could
1084 			 * have a reservation across the group boundary here
1085 			 */
1086 			break;
1087 		}
1088 	}
1089 	/*
1090 	 * we come here either :
1091 	 * when we reach the end of the whole list,
1092 	 * and there is empty reservable space after last entry in the list.
1093 	 * append it to the end of the list.
1094 	 *
1095 	 * or we found one reservable space in the middle of the list,
1096 	 * return the reservation window that we could append to.
1097 	 * succeed.
1098 	 */
1099 
1100 	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1101 		rsv_window_remove(sb, my_rsv);
1102 
1103 	/*
1104 	 * Let's book the whole avaliable window for now.  We will check the
1105 	 * disk bitmap later and then, if there are free blocks then we adjust
1106 	 * the window size if it's larger than requested.
1107 	 * Otherwise, we will remove this node from the tree next time
1108 	 * call find_next_reservable_window.
1109 	 */
1110 	my_rsv->rsv_start = cur;
1111 	my_rsv->rsv_end = cur + size - 1;
1112 	my_rsv->rsv_alloc_hit = 0;
1113 
1114 	if (prev != my_rsv)
1115 		ext4_rsv_window_add(sb, my_rsv);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  *	alloc_new_reservation()--allocate a new reservation window
1122  *
1123  *		To make a new reservation, we search part of the filesystem
1124  *		reservation list (the list that inside the group). We try to
1125  *		allocate a new reservation window near the allocation goal,
1126  *		or the beginning of the group, if there is no goal.
1127  *
1128  *		We first find a reservable space after the goal, then from
1129  *		there, we check the bitmap for the first free block after
1130  *		it. If there is no free block until the end of group, then the
1131  *		whole group is full, we failed. Otherwise, check if the free
1132  *		block is inside the expected reservable space, if so, we
1133  *		succeed.
1134  *		If the first free block is outside the reservable space, then
1135  *		start from the first free block, we search for next available
1136  *		space, and go on.
1137  *
1138  *	on succeed, a new reservation will be found and inserted into the list
1139  *	It contains at least one free block, and it does not overlap with other
1140  *	reservation windows.
1141  *
1142  *	failed: we failed to find a reservation window in this group
1143  *
1144  *	@rsv: the reservation
1145  *
1146  *	@grp_goal: The goal (group-relative).  It is where the search for a
1147  *		free reservable space should start from.
1148  *		if we have a grp_goal(grp_goal >0 ), then start from there,
1149  *		no grp_goal(grp_goal = -1), we start from the first block
1150  *		of the group.
1151  *
1152  *	@sb: the super block
1153  *	@group: the group we are trying to allocate in
1154  *	@bitmap_bh: the block group block bitmap
1155  *
1156  */
1157 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1158 		ext4_grpblk_t grp_goal, struct super_block *sb,
1159 		unsigned int group, struct buffer_head *bitmap_bh)
1160 {
1161 	struct ext4_reserve_window_node *search_head;
1162 	ext4_fsblk_t group_first_block, group_end_block, start_block;
1163 	ext4_grpblk_t first_free_block;
1164 	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1165 	unsigned long size;
1166 	int ret;
1167 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1168 
1169 	group_first_block = ext4_group_first_block_no(sb, group);
1170 	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1171 
1172 	if (grp_goal < 0)
1173 		start_block = group_first_block;
1174 	else
1175 		start_block = grp_goal + group_first_block;
1176 
1177 	size = my_rsv->rsv_goal_size;
1178 
1179 	if (!rsv_is_empty(&my_rsv->rsv_window)) {
1180 		/*
1181 		 * if the old reservation is cross group boundary
1182 		 * and if the goal is inside the old reservation window,
1183 		 * we will come here when we just failed to allocate from
1184 		 * the first part of the window. We still have another part
1185 		 * that belongs to the next group. In this case, there is no
1186 		 * point to discard our window and try to allocate a new one
1187 		 * in this group(which will fail). we should
1188 		 * keep the reservation window, just simply move on.
1189 		 *
1190 		 * Maybe we could shift the start block of the reservation
1191 		 * window to the first block of next group.
1192 		 */
1193 
1194 		if ((my_rsv->rsv_start <= group_end_block) &&
1195 				(my_rsv->rsv_end > group_end_block) &&
1196 				(start_block >= my_rsv->rsv_start))
1197 			return -1;
1198 
1199 		if ((my_rsv->rsv_alloc_hit >
1200 		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1201 			/*
1202 			 * if the previously allocation hit ratio is
1203 			 * greater than 1/2, then we double the size of
1204 			 * the reservation window the next time,
1205 			 * otherwise we keep the same size window
1206 			 */
1207 			size = size * 2;
1208 			if (size > EXT4_MAX_RESERVE_BLOCKS)
1209 				size = EXT4_MAX_RESERVE_BLOCKS;
1210 			my_rsv->rsv_goal_size= size;
1211 		}
1212 	}
1213 
1214 	spin_lock(rsv_lock);
1215 	/*
1216 	 * shift the search start to the window near the goal block
1217 	 */
1218 	search_head = search_reserve_window(fs_rsv_root, start_block);
1219 
1220 	/*
1221 	 * find_next_reservable_window() simply finds a reservable window
1222 	 * inside the given range(start_block, group_end_block).
1223 	 *
1224 	 * To make sure the reservation window has a free bit inside it, we
1225 	 * need to check the bitmap after we found a reservable window.
1226 	 */
1227 retry:
1228 	ret = find_next_reservable_window(search_head, my_rsv, sb,
1229 						start_block, group_end_block);
1230 
1231 	if (ret == -1) {
1232 		if (!rsv_is_empty(&my_rsv->rsv_window))
1233 			rsv_window_remove(sb, my_rsv);
1234 		spin_unlock(rsv_lock);
1235 		return -1;
1236 	}
1237 
1238 	/*
1239 	 * On success, find_next_reservable_window() returns the
1240 	 * reservation window where there is a reservable space after it.
1241 	 * Before we reserve this reservable space, we need
1242 	 * to make sure there is at least a free block inside this region.
1243 	 *
1244 	 * searching the first free bit on the block bitmap and copy of
1245 	 * last committed bitmap alternatively, until we found a allocatable
1246 	 * block. Search start from the start block of the reservable space
1247 	 * we just found.
1248 	 */
1249 	spin_unlock(rsv_lock);
1250 	first_free_block = bitmap_search_next_usable_block(
1251 			my_rsv->rsv_start - group_first_block,
1252 			bitmap_bh, group_end_block - group_first_block + 1);
1253 
1254 	if (first_free_block < 0) {
1255 		/*
1256 		 * no free block left on the bitmap, no point
1257 		 * to reserve the space. return failed.
1258 		 */
1259 		spin_lock(rsv_lock);
1260 		if (!rsv_is_empty(&my_rsv->rsv_window))
1261 			rsv_window_remove(sb, my_rsv);
1262 		spin_unlock(rsv_lock);
1263 		return -1;		/* failed */
1264 	}
1265 
1266 	start_block = first_free_block + group_first_block;
1267 	/*
1268 	 * check if the first free block is within the
1269 	 * free space we just reserved
1270 	 */
1271 	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1272 		return 0;		/* success */
1273 	/*
1274 	 * if the first free bit we found is out of the reservable space
1275 	 * continue search for next reservable space,
1276 	 * start from where the free block is,
1277 	 * we also shift the list head to where we stopped last time
1278 	 */
1279 	search_head = my_rsv;
1280 	spin_lock(rsv_lock);
1281 	goto retry;
1282 }
1283 
1284 /**
1285  * try_to_extend_reservation()
1286  * @my_rsv:		given reservation window
1287  * @sb:			super block
1288  * @size:		the delta to extend
1289  *
1290  * Attempt to expand the reservation window large enough to have
1291  * required number of free blocks
1292  *
1293  * Since ext4_try_to_allocate() will always allocate blocks within
1294  * the reservation window range, if the window size is too small,
1295  * multiple blocks allocation has to stop at the end of the reservation
1296  * window. To make this more efficient, given the total number of
1297  * blocks needed and the current size of the window, we try to
1298  * expand the reservation window size if necessary on a best-effort
1299  * basis before ext4_new_blocks() tries to allocate blocks,
1300  */
1301 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1302 			struct super_block *sb, int size)
1303 {
1304 	struct ext4_reserve_window_node *next_rsv;
1305 	struct rb_node *next;
1306 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1307 
1308 	if (!spin_trylock(rsv_lock))
1309 		return;
1310 
1311 	next = rb_next(&my_rsv->rsv_node);
1312 
1313 	if (!next)
1314 		my_rsv->rsv_end += size;
1315 	else {
1316 		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1317 
1318 		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1319 			my_rsv->rsv_end += size;
1320 		else
1321 			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1322 	}
1323 	spin_unlock(rsv_lock);
1324 }
1325 
1326 /**
1327  * ext4_try_to_allocate_with_rsv()
1328  * @sb:			superblock
1329  * @handle:		handle to this transaction
1330  * @group:		given allocation block group
1331  * @bitmap_bh:		bufferhead holds the block bitmap
1332  * @grp_goal:		given target block within the group
1333  * @count:		target number of blocks to allocate
1334  * @my_rsv:		reservation window
1335  * @errp:		pointer to store the error code
1336  *
1337  * This is the main function used to allocate a new block and its reservation
1338  * window.
1339  *
1340  * Each time when a new block allocation is need, first try to allocate from
1341  * its own reservation.  If it does not have a reservation window, instead of
1342  * looking for a free bit on bitmap first, then look up the reservation list to
1343  * see if it is inside somebody else's reservation window, we try to allocate a
1344  * reservation window for it starting from the goal first. Then do the block
1345  * allocation within the reservation window.
1346  *
1347  * This will avoid keeping on searching the reservation list again and
1348  * again when somebody is looking for a free block (without
1349  * reservation), and there are lots of free blocks, but they are all
1350  * being reserved.
1351  *
1352  * We use a red-black tree for the per-filesystem reservation list.
1353  *
1354  */
1355 static ext4_grpblk_t
1356 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1357 			unsigned int group, struct buffer_head *bitmap_bh,
1358 			ext4_grpblk_t grp_goal,
1359 			struct ext4_reserve_window_node * my_rsv,
1360 			unsigned long *count, int *errp)
1361 {
1362 	ext4_fsblk_t group_first_block, group_last_block;
1363 	ext4_grpblk_t ret = 0;
1364 	int fatal;
1365 	unsigned long num = *count;
1366 
1367 	*errp = 0;
1368 
1369 	/*
1370 	 * Make sure we use undo access for the bitmap, because it is critical
1371 	 * that we do the frozen_data COW on bitmap buffers in all cases even
1372 	 * if the buffer is in BJ_Forget state in the committing transaction.
1373 	 */
1374 	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1375 	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1376 	if (fatal) {
1377 		*errp = fatal;
1378 		return -1;
1379 	}
1380 
1381 	/*
1382 	 * we don't deal with reservation when
1383 	 * filesystem is mounted without reservation
1384 	 * or the file is not a regular file
1385 	 * or last attempt to allocate a block with reservation turned on failed
1386 	 */
1387 	if (my_rsv == NULL ) {
1388 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1389 						grp_goal, count, NULL);
1390 		goto out;
1391 	}
1392 	/*
1393 	 * grp_goal is a group relative block number (if there is a goal)
1394 	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1395 	 * first block is a filesystem wide block number
1396 	 * first block is the block number of the first block in this group
1397 	 */
1398 	group_first_block = ext4_group_first_block_no(sb, group);
1399 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1400 
1401 	/*
1402 	 * Basically we will allocate a new block from inode's reservation
1403 	 * window.
1404 	 *
1405 	 * We need to allocate a new reservation window, if:
1406 	 * a) inode does not have a reservation window; or
1407 	 * b) last attempt to allocate a block from existing reservation
1408 	 *    failed; or
1409 	 * c) we come here with a goal and with a reservation window
1410 	 *
1411 	 * We do not need to allocate a new reservation window if we come here
1412 	 * at the beginning with a goal and the goal is inside the window, or
1413 	 * we don't have a goal but already have a reservation window.
1414 	 * then we could go to allocate from the reservation window directly.
1415 	 */
1416 	while (1) {
1417 		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1418 			!goal_in_my_reservation(&my_rsv->rsv_window,
1419 						grp_goal, group, sb)) {
1420 			if (my_rsv->rsv_goal_size < *count)
1421 				my_rsv->rsv_goal_size = *count;
1422 			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1423 							group, bitmap_bh);
1424 			if (ret < 0)
1425 				break;			/* failed */
1426 
1427 			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1428 							grp_goal, group, sb))
1429 				grp_goal = -1;
1430 		} else if (grp_goal >= 0) {
1431 			int curr = my_rsv->rsv_end -
1432 					(grp_goal + group_first_block) + 1;
1433 
1434 			if (curr < *count)
1435 				try_to_extend_reservation(my_rsv, sb,
1436 							*count - curr);
1437 		}
1438 
1439 		if ((my_rsv->rsv_start > group_last_block) ||
1440 				(my_rsv->rsv_end < group_first_block)) {
1441 			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1442 			BUG();
1443 		}
1444 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1445 					   grp_goal, &num, &my_rsv->rsv_window);
1446 		if (ret >= 0) {
1447 			my_rsv->rsv_alloc_hit += num;
1448 			*count = num;
1449 			break;				/* succeed */
1450 		}
1451 		num = *count;
1452 	}
1453 out:
1454 	if (ret >= 0) {
1455 		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1456 					"bitmap block");
1457 		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1458 		if (fatal) {
1459 			*errp = fatal;
1460 			return -1;
1461 		}
1462 		return ret;
1463 	}
1464 
1465 	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1466 	ext4_journal_release_buffer(handle, bitmap_bh);
1467 	return ret;
1468 }
1469 
1470 /**
1471  * ext4_has_free_blocks()
1472  * @sbi:		in-core super block structure.
1473  *
1474  * Check if filesystem has at least 1 free block available for allocation.
1475  */
1476 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1477 {
1478 	ext4_fsblk_t free_blocks, root_blocks;
1479 
1480 	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1481 	root_blocks = ext4_r_blocks_count(sbi->s_es);
1482 	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1483 		sbi->s_resuid != current->fsuid &&
1484 		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1485 		return 0;
1486 	}
1487 	return 1;
1488 }
1489 
1490 /**
1491  * ext4_should_retry_alloc()
1492  * @sb:			super block
1493  * @retries		number of attemps has been made
1494  *
1495  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1496  * it is profitable to retry the operation, this function will wait
1497  * for the current or commiting transaction to complete, and then
1498  * return TRUE.
1499  *
1500  * if the total number of retries exceed three times, return FALSE.
1501  */
1502 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1503 {
1504 	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1505 		return 0;
1506 
1507 	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1508 
1509 	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1510 }
1511 
1512 /**
1513  * ext4_new_blocks() -- core block(s) allocation function
1514  * @handle:		handle to this transaction
1515  * @inode:		file inode
1516  * @goal:		given target block(filesystem wide)
1517  * @count:		target number of blocks to allocate
1518  * @errp:		error code
1519  *
1520  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1521  * allocate block(s) from the block group contains the goal block first. If that
1522  * fails, it will try to allocate block(s) from other block groups without
1523  * any specific goal block.
1524  *
1525  */
1526 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1527 			ext4_fsblk_t goal, unsigned long *count, int *errp)
1528 {
1529 	struct buffer_head *bitmap_bh = NULL;
1530 	struct buffer_head *gdp_bh;
1531 	unsigned long group_no;
1532 	int goal_group;
1533 	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1534 	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1535 	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1536 	int bgi;			/* blockgroup iteration index */
1537 	int fatal = 0, err;
1538 	int performed_allocation = 0;
1539 	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1540 	struct super_block *sb;
1541 	struct ext4_group_desc *gdp;
1542 	struct ext4_super_block *es;
1543 	struct ext4_sb_info *sbi;
1544 	struct ext4_reserve_window_node *my_rsv = NULL;
1545 	struct ext4_block_alloc_info *block_i;
1546 	unsigned short windowsz = 0;
1547 #ifdef EXT4FS_DEBUG
1548 	static int goal_hits, goal_attempts;
1549 #endif
1550 	unsigned long ngroups;
1551 	unsigned long num = *count;
1552 
1553 	*errp = -ENOSPC;
1554 	sb = inode->i_sb;
1555 	if (!sb) {
1556 		printk("ext4_new_block: nonexistent device");
1557 		return 0;
1558 	}
1559 
1560 	/*
1561 	 * Check quota for allocation of this block.
1562 	 */
1563 	if (DQUOT_ALLOC_BLOCK(inode, num)) {
1564 		*errp = -EDQUOT;
1565 		return 0;
1566 	}
1567 
1568 	sbi = EXT4_SB(sb);
1569 	es = EXT4_SB(sb)->s_es;
1570 	ext4_debug("goal=%lu.\n", goal);
1571 	/*
1572 	 * Allocate a block from reservation only when
1573 	 * filesystem is mounted with reservation(default,-o reservation), and
1574 	 * it's a regular file, and
1575 	 * the desired window size is greater than 0 (One could use ioctl
1576 	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1577 	 * reservation on that particular file)
1578 	 */
1579 	block_i = EXT4_I(inode)->i_block_alloc_info;
1580 	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1581 		my_rsv = &block_i->rsv_window_node;
1582 
1583 	if (!ext4_has_free_blocks(sbi)) {
1584 		*errp = -ENOSPC;
1585 		goto out;
1586 	}
1587 
1588 	/*
1589 	 * First, test whether the goal block is free.
1590 	 */
1591 	if (goal < le32_to_cpu(es->s_first_data_block) ||
1592 	    goal >= ext4_blocks_count(es))
1593 		goal = le32_to_cpu(es->s_first_data_block);
1594 	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1595 	goal_group = group_no;
1596 retry_alloc:
1597 	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1598 	if (!gdp)
1599 		goto io_error;
1600 
1601 	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1602 	/*
1603 	 * if there is not enough free blocks to make a new resevation
1604 	 * turn off reservation for this allocation
1605 	 */
1606 	if (my_rsv && (free_blocks < windowsz)
1607 		&& (rsv_is_empty(&my_rsv->rsv_window)))
1608 		my_rsv = NULL;
1609 
1610 	if (free_blocks > 0) {
1611 		bitmap_bh = read_block_bitmap(sb, group_no);
1612 		if (!bitmap_bh)
1613 			goto io_error;
1614 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1615 					group_no, bitmap_bh, grp_target_blk,
1616 					my_rsv,	&num, &fatal);
1617 		if (fatal)
1618 			goto out;
1619 		if (grp_alloc_blk >= 0)
1620 			goto allocated;
1621 	}
1622 
1623 	ngroups = EXT4_SB(sb)->s_groups_count;
1624 	smp_rmb();
1625 
1626 	/*
1627 	 * Now search the rest of the groups.  We assume that
1628 	 * i and gdp correctly point to the last group visited.
1629 	 */
1630 	for (bgi = 0; bgi < ngroups; bgi++) {
1631 		group_no++;
1632 		if (group_no >= ngroups)
1633 			group_no = 0;
1634 		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1635 		if (!gdp)
1636 			goto io_error;
1637 		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1638 		/*
1639 		 * skip this group if the number of
1640 		 * free blocks is less than half of the reservation
1641 		 * window size.
1642 		 */
1643 		if (free_blocks <= (windowsz/2))
1644 			continue;
1645 
1646 		brelse(bitmap_bh);
1647 		bitmap_bh = read_block_bitmap(sb, group_no);
1648 		if (!bitmap_bh)
1649 			goto io_error;
1650 		/*
1651 		 * try to allocate block(s) from this group, without a goal(-1).
1652 		 */
1653 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1654 					group_no, bitmap_bh, -1, my_rsv,
1655 					&num, &fatal);
1656 		if (fatal)
1657 			goto out;
1658 		if (grp_alloc_blk >= 0)
1659 			goto allocated;
1660 	}
1661 	/*
1662 	 * We may end up a bogus ealier ENOSPC error due to
1663 	 * filesystem is "full" of reservations, but
1664 	 * there maybe indeed free blocks avaliable on disk
1665 	 * In this case, we just forget about the reservations
1666 	 * just do block allocation as without reservations.
1667 	 */
1668 	if (my_rsv) {
1669 		my_rsv = NULL;
1670 		windowsz = 0;
1671 		group_no = goal_group;
1672 		goto retry_alloc;
1673 	}
1674 	/* No space left on the device */
1675 	*errp = -ENOSPC;
1676 	goto out;
1677 
1678 allocated:
1679 
1680 	ext4_debug("using block group %d(%d)\n",
1681 			group_no, gdp->bg_free_blocks_count);
1682 
1683 	BUFFER_TRACE(gdp_bh, "get_write_access");
1684 	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1685 	if (fatal)
1686 		goto out;
1687 
1688 	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1689 
1690 	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1691 	    in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1692 	    in_range(ret_block, ext4_inode_table(sb, gdp),
1693 		     EXT4_SB(sb)->s_itb_per_group) ||
1694 	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1695 		     EXT4_SB(sb)->s_itb_per_group))
1696 		ext4_error(sb, "ext4_new_block",
1697 			    "Allocating block in system zone - "
1698 			    "blocks from %llu, length %lu",
1699 			     ret_block, num);
1700 
1701 	performed_allocation = 1;
1702 
1703 #ifdef CONFIG_JBD2_DEBUG
1704 	{
1705 		struct buffer_head *debug_bh;
1706 
1707 		/* Record bitmap buffer state in the newly allocated block */
1708 		debug_bh = sb_find_get_block(sb, ret_block);
1709 		if (debug_bh) {
1710 			BUFFER_TRACE(debug_bh, "state when allocated");
1711 			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1712 			brelse(debug_bh);
1713 		}
1714 	}
1715 	jbd_lock_bh_state(bitmap_bh);
1716 	spin_lock(sb_bgl_lock(sbi, group_no));
1717 	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1718 		int i;
1719 
1720 		for (i = 0; i < num; i++) {
1721 			if (ext4_test_bit(grp_alloc_blk+i,
1722 					bh2jh(bitmap_bh)->b_committed_data)) {
1723 				printk("%s: block was unexpectedly set in "
1724 					"b_committed_data\n", __FUNCTION__);
1725 			}
1726 		}
1727 	}
1728 	ext4_debug("found bit %d\n", grp_alloc_blk);
1729 	spin_unlock(sb_bgl_lock(sbi, group_no));
1730 	jbd_unlock_bh_state(bitmap_bh);
1731 #endif
1732 
1733 	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1734 		ext4_error(sb, "ext4_new_block",
1735 			    "block(%llu) >= blocks count(%llu) - "
1736 			    "block_group = %lu, es == %p ", ret_block,
1737 			ext4_blocks_count(es), group_no, es);
1738 		goto out;
1739 	}
1740 
1741 	/*
1742 	 * It is up to the caller to add the new buffer to a journal
1743 	 * list of some description.  We don't know in advance whether
1744 	 * the caller wants to use it as metadata or data.
1745 	 */
1746 	ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1747 			ret_block, goal_hits, goal_attempts);
1748 
1749 	spin_lock(sb_bgl_lock(sbi, group_no));
1750 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1751 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1752 	gdp->bg_free_blocks_count =
1753 			cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1754 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1755 	spin_unlock(sb_bgl_lock(sbi, group_no));
1756 	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1757 
1758 	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1759 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1760 	if (!fatal)
1761 		fatal = err;
1762 
1763 	sb->s_dirt = 1;
1764 	if (fatal)
1765 		goto out;
1766 
1767 	*errp = 0;
1768 	brelse(bitmap_bh);
1769 	DQUOT_FREE_BLOCK(inode, *count-num);
1770 	*count = num;
1771 	return ret_block;
1772 
1773 io_error:
1774 	*errp = -EIO;
1775 out:
1776 	if (fatal) {
1777 		*errp = fatal;
1778 		ext4_std_error(sb, fatal);
1779 	}
1780 	/*
1781 	 * Undo the block allocation
1782 	 */
1783 	if (!performed_allocation)
1784 		DQUOT_FREE_BLOCK(inode, *count);
1785 	brelse(bitmap_bh);
1786 	return 0;
1787 }
1788 
1789 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1790 			ext4_fsblk_t goal, int *errp)
1791 {
1792 	unsigned long count = 1;
1793 
1794 	return ext4_new_blocks(handle, inode, goal, &count, errp);
1795 }
1796 
1797 /**
1798  * ext4_count_free_blocks() -- count filesystem free blocks
1799  * @sb:		superblock
1800  *
1801  * Adds up the number of free blocks from each block group.
1802  */
1803 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1804 {
1805 	ext4_fsblk_t desc_count;
1806 	struct ext4_group_desc *gdp;
1807 	int i;
1808 	unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1809 #ifdef EXT4FS_DEBUG
1810 	struct ext4_super_block *es;
1811 	ext4_fsblk_t bitmap_count;
1812 	unsigned long x;
1813 	struct buffer_head *bitmap_bh = NULL;
1814 
1815 	es = EXT4_SB(sb)->s_es;
1816 	desc_count = 0;
1817 	bitmap_count = 0;
1818 	gdp = NULL;
1819 
1820 	smp_rmb();
1821 	for (i = 0; i < ngroups; i++) {
1822 		gdp = ext4_get_group_desc(sb, i, NULL);
1823 		if (!gdp)
1824 			continue;
1825 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1826 		brelse(bitmap_bh);
1827 		bitmap_bh = read_block_bitmap(sb, i);
1828 		if (bitmap_bh == NULL)
1829 			continue;
1830 
1831 		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1832 		printk("group %d: stored = %d, counted = %lu\n",
1833 			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1834 		bitmap_count += x;
1835 	}
1836 	brelse(bitmap_bh);
1837 	printk("ext4_count_free_blocks: stored = %llu"
1838 		", computed = %llu, %llu\n",
1839 	       EXT4_FREE_BLOCKS_COUNT(es),
1840 		desc_count, bitmap_count);
1841 	return bitmap_count;
1842 #else
1843 	desc_count = 0;
1844 	smp_rmb();
1845 	for (i = 0; i < ngroups; i++) {
1846 		gdp = ext4_get_group_desc(sb, i, NULL);
1847 		if (!gdp)
1848 			continue;
1849 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1850 	}
1851 
1852 	return desc_count;
1853 #endif
1854 }
1855 
1856 static inline int test_root(int a, int b)
1857 {
1858 	int num = b;
1859 
1860 	while (a > num)
1861 		num *= b;
1862 	return num == a;
1863 }
1864 
1865 static int ext4_group_sparse(int group)
1866 {
1867 	if (group <= 1)
1868 		return 1;
1869 	if (!(group & 1))
1870 		return 0;
1871 	return (test_root(group, 7) || test_root(group, 5) ||
1872 		test_root(group, 3));
1873 }
1874 
1875 /**
1876  *	ext4_bg_has_super - number of blocks used by the superblock in group
1877  *	@sb: superblock for filesystem
1878  *	@group: group number to check
1879  *
1880  *	Return the number of blocks used by the superblock (primary or backup)
1881  *	in this group.  Currently this will be only 0 or 1.
1882  */
1883 int ext4_bg_has_super(struct super_block *sb, int group)
1884 {
1885 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1886 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1887 			!ext4_group_sparse(group))
1888 		return 0;
1889 	return 1;
1890 }
1891 
1892 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1893 {
1894 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1895 	unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1896 	unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1897 
1898 	if (group == first || group == first + 1 || group == last)
1899 		return 1;
1900 	return 0;
1901 }
1902 
1903 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1904 {
1905 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1906 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1907 			!ext4_group_sparse(group))
1908 		return 0;
1909 	return EXT4_SB(sb)->s_gdb_count;
1910 }
1911 
1912 /**
1913  *	ext4_bg_num_gdb - number of blocks used by the group table in group
1914  *	@sb: superblock for filesystem
1915  *	@group: group number to check
1916  *
1917  *	Return the number of blocks used by the group descriptor table
1918  *	(primary or backup) in this group.  In the future there may be a
1919  *	different number of descriptor blocks in each group.
1920  */
1921 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1922 {
1923 	unsigned long first_meta_bg =
1924 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1925 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1926 
1927 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1928 			metagroup < first_meta_bg)
1929 		return ext4_bg_num_gdb_nometa(sb,group);
1930 
1931 	return ext4_bg_num_gdb_meta(sb,group);
1932 
1933 }
1934