xref: /linux/fs/ext4/balloc.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13 
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23 
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27 
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 		ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 	ext4_grpblk_t offset;
36 
37 	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 	if (offsetp)
40 		*offsetp = offset;
41 	if (blockgrpp)
42 		*blockgrpp = blocknr;
43 
44 }
45 
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47 			ext4_group_t block_group)
48 {
49 	ext4_group_t actual_group;
50 	ext4_get_group_no_and_offset(sb, block, &actual_group, NULL);
51 	if (actual_group == block_group)
52 		return 1;
53 	return 0;
54 }
55 
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57 				ext4_group_t block_group)
58 {
59 	ext4_fsblk_t tmp;
60 	struct ext4_sb_info *sbi = EXT4_SB(sb);
61 	/* block bitmap, inode bitmap, and inode table blocks */
62 	int used_blocks = sbi->s_itb_per_group + 2;
63 
64 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65 		struct ext4_group_desc *gdp;
66 		struct buffer_head *bh;
67 
68 		gdp = ext4_get_group_desc(sb, block_group, &bh);
69 		if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70 					block_group))
71 			used_blocks--;
72 
73 		if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74 					block_group))
75 			used_blocks--;
76 
77 		tmp = ext4_inode_table(sb, gdp);
78 		for (; tmp < ext4_inode_table(sb, gdp) +
79 				sbi->s_itb_per_group; tmp++) {
80 			if (!ext4_block_in_group(sb, tmp, block_group))
81 				used_blocks -= 1;
82 		}
83 	}
84 	return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87  * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89 		 ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91 	int bit, bit_max;
92 	unsigned free_blocks, group_blocks;
93 	struct ext4_sb_info *sbi = EXT4_SB(sb);
94 
95 	if (bh) {
96 		J_ASSERT_BH(bh, buffer_locked(bh));
97 
98 		/* If checksum is bad mark all blocks used to prevent allocation
99 		 * essentially implementing a per-group read-only flag. */
100 		if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101 			ext4_error(sb, __func__,
102 				  "Checksum bad for group %lu\n", block_group);
103 			gdp->bg_free_blocks_count = 0;
104 			gdp->bg_free_inodes_count = 0;
105 			gdp->bg_itable_unused = 0;
106 			memset(bh->b_data, 0xff, sb->s_blocksize);
107 			return 0;
108 		}
109 		memset(bh->b_data, 0, sb->s_blocksize);
110 	}
111 
112 	/* Check for superblock and gdt backups in this group */
113 	bit_max = ext4_bg_has_super(sb, block_group);
114 
115 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116 	    block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117 			  sbi->s_desc_per_block) {
118 		if (bit_max) {
119 			bit_max += ext4_bg_num_gdb(sb, block_group);
120 			bit_max +=
121 				le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122 		}
123 	} else { /* For META_BG_BLOCK_GROUPS */
124 		bit_max += ext4_bg_num_gdb(sb, block_group);
125 	}
126 
127 	if (block_group == sbi->s_groups_count - 1) {
128 		/*
129 		 * Even though mke2fs always initialize first and last group
130 		 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
131 		 * to make sure we calculate the right free blocks
132 		 */
133 		group_blocks = ext4_blocks_count(sbi->s_es) -
134 			le32_to_cpu(sbi->s_es->s_first_data_block) -
135 			(EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
136 	} else {
137 		group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
138 	}
139 
140 	free_blocks = group_blocks - bit_max;
141 
142 	if (bh) {
143 		ext4_fsblk_t start, tmp;
144 		int flex_bg = 0;
145 
146 		for (bit = 0; bit < bit_max; bit++)
147 			ext4_set_bit(bit, bh->b_data);
148 
149 		start = ext4_group_first_block_no(sb, block_group);
150 
151 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
152 					      EXT4_FEATURE_INCOMPAT_FLEX_BG))
153 			flex_bg = 1;
154 
155 		/* Set bits for block and inode bitmaps, and inode table */
156 		tmp = ext4_block_bitmap(sb, gdp);
157 		if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
158 			ext4_set_bit(tmp - start, bh->b_data);
159 
160 		tmp = ext4_inode_bitmap(sb, gdp);
161 		if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
162 			ext4_set_bit(tmp - start, bh->b_data);
163 
164 		tmp = ext4_inode_table(sb, gdp);
165 		for (; tmp < ext4_inode_table(sb, gdp) +
166 				sbi->s_itb_per_group; tmp++) {
167 			if (!flex_bg ||
168 				ext4_block_in_group(sb, tmp, block_group))
169 				ext4_set_bit(tmp - start, bh->b_data);
170 		}
171 		/*
172 		 * Also if the number of blocks within the group is
173 		 * less than the blocksize * 8 ( which is the size
174 		 * of bitmap ), set rest of the block bitmap to 1
175 		 */
176 		mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
177 	}
178 	return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
179 }
180 
181 
182 /*
183  * The free blocks are managed by bitmaps.  A file system contains several
184  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
185  * block for inodes, N blocks for the inode table and data blocks.
186  *
187  * The file system contains group descriptors which are located after the
188  * super block.  Each descriptor contains the number of the bitmap block and
189  * the free blocks count in the block.  The descriptors are loaded in memory
190  * when a file system is mounted (see ext4_fill_super).
191  */
192 
193 
194 #define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
195 
196 /**
197  * ext4_get_group_desc() -- load group descriptor from disk
198  * @sb:			super block
199  * @block_group:	given block group
200  * @bh:			pointer to the buffer head to store the block
201  *			group descriptor
202  */
203 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
204 					     ext4_group_t block_group,
205 					     struct buffer_head ** bh)
206 {
207 	unsigned long group_desc;
208 	unsigned long offset;
209 	struct ext4_group_desc * desc;
210 	struct ext4_sb_info *sbi = EXT4_SB(sb);
211 
212 	if (block_group >= sbi->s_groups_count) {
213 		ext4_error (sb, "ext4_get_group_desc",
214 			    "block_group >= groups_count - "
215 			    "block_group = %lu, groups_count = %lu",
216 			    block_group, sbi->s_groups_count);
217 
218 		return NULL;
219 	}
220 	smp_rmb();
221 
222 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
223 	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
224 	if (!sbi->s_group_desc[group_desc]) {
225 		ext4_error (sb, "ext4_get_group_desc",
226 			    "Group descriptor not loaded - "
227 			    "block_group = %lu, group_desc = %lu, desc = %lu",
228 			     block_group, group_desc, offset);
229 		return NULL;
230 	}
231 
232 	desc = (struct ext4_group_desc *)(
233 		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
234 		offset * EXT4_DESC_SIZE(sb));
235 	if (bh)
236 		*bh = sbi->s_group_desc[group_desc];
237 	return desc;
238 }
239 
240 static int ext4_valid_block_bitmap(struct super_block *sb,
241 					struct ext4_group_desc *desc,
242 					unsigned int block_group,
243 					struct buffer_head *bh)
244 {
245 	ext4_grpblk_t offset;
246 	ext4_grpblk_t next_zero_bit;
247 	ext4_fsblk_t bitmap_blk;
248 	ext4_fsblk_t group_first_block;
249 
250 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
251 		/* with FLEX_BG, the inode/block bitmaps and itable
252 		 * blocks may not be in the group at all
253 		 * so the bitmap validation will be skipped for those groups
254 		 * or it has to also read the block group where the bitmaps
255 		 * are located to verify they are set.
256 		 */
257 		return 1;
258 	}
259 	group_first_block = ext4_group_first_block_no(sb, block_group);
260 
261 	/* check whether block bitmap block number is set */
262 	bitmap_blk = ext4_block_bitmap(sb, desc);
263 	offset = bitmap_blk - group_first_block;
264 	if (!ext4_test_bit(offset, bh->b_data))
265 		/* bad block bitmap */
266 		goto err_out;
267 
268 	/* check whether the inode bitmap block number is set */
269 	bitmap_blk = ext4_inode_bitmap(sb, desc);
270 	offset = bitmap_blk - group_first_block;
271 	if (!ext4_test_bit(offset, bh->b_data))
272 		/* bad block bitmap */
273 		goto err_out;
274 
275 	/* check whether the inode table block number is set */
276 	bitmap_blk = ext4_inode_table(sb, desc);
277 	offset = bitmap_blk - group_first_block;
278 	next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
279 				offset + EXT4_SB(sb)->s_itb_per_group,
280 				offset);
281 	if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
282 		/* good bitmap for inode tables */
283 		return 1;
284 
285 err_out:
286 	ext4_error(sb, __func__,
287 			"Invalid block bitmap - "
288 			"block_group = %d, block = %llu",
289 			block_group, bitmap_blk);
290 	return 0;
291 }
292 /**
293  * ext4_read_block_bitmap()
294  * @sb:			super block
295  * @block_group:	given block group
296  *
297  * Read the bitmap for a given block_group,and validate the
298  * bits for block/inode/inode tables are set in the bitmaps
299  *
300  * Return buffer_head on success or NULL in case of failure.
301  */
302 struct buffer_head *
303 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
304 {
305 	struct ext4_group_desc * desc;
306 	struct buffer_head * bh = NULL;
307 	ext4_fsblk_t bitmap_blk;
308 
309 	desc = ext4_get_group_desc(sb, block_group, NULL);
310 	if (!desc)
311 		return NULL;
312 	bitmap_blk = ext4_block_bitmap(sb, desc);
313 	bh = sb_getblk(sb, bitmap_blk);
314 	if (unlikely(!bh)) {
315 		ext4_error(sb, __func__,
316 			    "Cannot read block bitmap - "
317 			    "block_group = %d, block_bitmap = %llu",
318 			    (int)block_group, (unsigned long long)bitmap_blk);
319 		return NULL;
320 	}
321 	if (bh_uptodate_or_lock(bh))
322 		return bh;
323 
324 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
325 		ext4_init_block_bitmap(sb, bh, block_group, desc);
326 		set_buffer_uptodate(bh);
327 		unlock_buffer(bh);
328 		return bh;
329 	}
330 	if (bh_submit_read(bh) < 0) {
331 		put_bh(bh);
332 		ext4_error(sb, __func__,
333 			    "Cannot read block bitmap - "
334 			    "block_group = %d, block_bitmap = %llu",
335 			    (int)block_group, (unsigned long long)bitmap_blk);
336 		return NULL;
337 	}
338 	ext4_valid_block_bitmap(sb, desc, block_group, bh);
339 	/*
340 	 * file system mounted not to panic on error,
341 	 * continue with corrupt bitmap
342 	 */
343 	return bh;
344 }
345 /*
346  * The reservation window structure operations
347  * --------------------------------------------
348  * Operations include:
349  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
350  *
351  * We use a red-black tree to represent per-filesystem reservation
352  * windows.
353  *
354  */
355 
356 /**
357  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
358  * @rb_root:		root of per-filesystem reservation rb tree
359  * @verbose:		verbose mode
360  * @fn:			function which wishes to dump the reservation map
361  *
362  * If verbose is turned on, it will print the whole block reservation
363  * windows(start, end).	Otherwise, it will only print out the "bad" windows,
364  * those windows that overlap with their immediate neighbors.
365  */
366 #if 1
367 static void __rsv_window_dump(struct rb_root *root, int verbose,
368 			      const char *fn)
369 {
370 	struct rb_node *n;
371 	struct ext4_reserve_window_node *rsv, *prev;
372 	int bad;
373 
374 restart:
375 	n = rb_first(root);
376 	bad = 0;
377 	prev = NULL;
378 
379 	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
380 	while (n) {
381 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
382 		if (verbose)
383 			printk("reservation window 0x%p "
384 			       "start:  %llu, end:  %llu\n",
385 			       rsv, rsv->rsv_start, rsv->rsv_end);
386 		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
387 			printk("Bad reservation %p (start >= end)\n",
388 			       rsv);
389 			bad = 1;
390 		}
391 		if (prev && prev->rsv_end >= rsv->rsv_start) {
392 			printk("Bad reservation %p (prev->end >= start)\n",
393 			       rsv);
394 			bad = 1;
395 		}
396 		if (bad) {
397 			if (!verbose) {
398 				printk("Restarting reservation walk in verbose mode\n");
399 				verbose = 1;
400 				goto restart;
401 			}
402 		}
403 		n = rb_next(n);
404 		prev = rsv;
405 	}
406 	printk("Window map complete.\n");
407 	BUG_ON(bad);
408 }
409 #define rsv_window_dump(root, verbose) \
410 	__rsv_window_dump((root), (verbose), __func__)
411 #else
412 #define rsv_window_dump(root, verbose) do {} while (0)
413 #endif
414 
415 /**
416  * goal_in_my_reservation()
417  * @rsv:		inode's reservation window
418  * @grp_goal:		given goal block relative to the allocation block group
419  * @group:		the current allocation block group
420  * @sb:			filesystem super block
421  *
422  * Test if the given goal block (group relative) is within the file's
423  * own block reservation window range.
424  *
425  * If the reservation window is outside the goal allocation group, return 0;
426  * grp_goal (given goal block) could be -1, which means no specific
427  * goal block. In this case, always return 1.
428  * If the goal block is within the reservation window, return 1;
429  * otherwise, return 0;
430  */
431 static int
432 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
433 			ext4_group_t group, struct super_block *sb)
434 {
435 	ext4_fsblk_t group_first_block, group_last_block;
436 
437 	group_first_block = ext4_group_first_block_no(sb, group);
438 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
439 
440 	if ((rsv->_rsv_start > group_last_block) ||
441 	    (rsv->_rsv_end < group_first_block))
442 		return 0;
443 	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
444 		|| (grp_goal + group_first_block > rsv->_rsv_end)))
445 		return 0;
446 	return 1;
447 }
448 
449 /**
450  * search_reserve_window()
451  * @rb_root:		root of reservation tree
452  * @goal:		target allocation block
453  *
454  * Find the reserved window which includes the goal, or the previous one
455  * if the goal is not in any window.
456  * Returns NULL if there are no windows or if all windows start after the goal.
457  */
458 static struct ext4_reserve_window_node *
459 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
460 {
461 	struct rb_node *n = root->rb_node;
462 	struct ext4_reserve_window_node *rsv;
463 
464 	if (!n)
465 		return NULL;
466 
467 	do {
468 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
469 
470 		if (goal < rsv->rsv_start)
471 			n = n->rb_left;
472 		else if (goal > rsv->rsv_end)
473 			n = n->rb_right;
474 		else
475 			return rsv;
476 	} while (n);
477 	/*
478 	 * We've fallen off the end of the tree: the goal wasn't inside
479 	 * any particular node.  OK, the previous node must be to one
480 	 * side of the interval containing the goal.  If it's the RHS,
481 	 * we need to back up one.
482 	 */
483 	if (rsv->rsv_start > goal) {
484 		n = rb_prev(&rsv->rsv_node);
485 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
486 	}
487 	return rsv;
488 }
489 
490 /**
491  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
492  * @sb:			super block
493  * @rsv:		reservation window to add
494  *
495  * Must be called with rsv_lock hold.
496  */
497 void ext4_rsv_window_add(struct super_block *sb,
498 		    struct ext4_reserve_window_node *rsv)
499 {
500 	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
501 	struct rb_node *node = &rsv->rsv_node;
502 	ext4_fsblk_t start = rsv->rsv_start;
503 
504 	struct rb_node ** p = &root->rb_node;
505 	struct rb_node * parent = NULL;
506 	struct ext4_reserve_window_node *this;
507 
508 	while (*p)
509 	{
510 		parent = *p;
511 		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
512 
513 		if (start < this->rsv_start)
514 			p = &(*p)->rb_left;
515 		else if (start > this->rsv_end)
516 			p = &(*p)->rb_right;
517 		else {
518 			rsv_window_dump(root, 1);
519 			BUG();
520 		}
521 	}
522 
523 	rb_link_node(node, parent, p);
524 	rb_insert_color(node, root);
525 }
526 
527 /**
528  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
529  * @sb:			super block
530  * @rsv:		reservation window to remove
531  *
532  * Mark the block reservation window as not allocated, and unlink it
533  * from the filesystem reservation window rb tree. Must be called with
534  * rsv_lock hold.
535  */
536 static void rsv_window_remove(struct super_block *sb,
537 			      struct ext4_reserve_window_node *rsv)
538 {
539 	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
540 	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
541 	rsv->rsv_alloc_hit = 0;
542 	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
543 }
544 
545 /*
546  * rsv_is_empty() -- Check if the reservation window is allocated.
547  * @rsv:		given reservation window to check
548  *
549  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
550  */
551 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
552 {
553 	/* a valid reservation end block could not be 0 */
554 	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
555 }
556 
557 /**
558  * ext4_init_block_alloc_info()
559  * @inode:		file inode structure
560  *
561  * Allocate and initialize the	reservation window structure, and
562  * link the window to the ext4 inode structure at last
563  *
564  * The reservation window structure is only dynamically allocated
565  * and linked to ext4 inode the first time the open file
566  * needs a new block. So, before every ext4_new_block(s) call, for
567  * regular files, we should check whether the reservation window
568  * structure exists or not. In the latter case, this function is called.
569  * Fail to do so will result in block reservation being turned off for that
570  * open file.
571  *
572  * This function is called from ext4_get_blocks_handle(), also called
573  * when setting the reservation window size through ioctl before the file
574  * is open for write (needs block allocation).
575  *
576  * Needs down_write(i_data_sem) protection prior to call this function.
577  */
578 void ext4_init_block_alloc_info(struct inode *inode)
579 {
580 	struct ext4_inode_info *ei = EXT4_I(inode);
581 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
582 	struct super_block *sb = inode->i_sb;
583 
584 	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
585 	if (block_i) {
586 		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
587 
588 		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
589 		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
590 
591 		/*
592 		 * if filesystem is mounted with NORESERVATION, the goal
593 		 * reservation window size is set to zero to indicate
594 		 * block reservation is off
595 		 */
596 		if (!test_opt(sb, RESERVATION))
597 			rsv->rsv_goal_size = 0;
598 		else
599 			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
600 		rsv->rsv_alloc_hit = 0;
601 		block_i->last_alloc_logical_block = 0;
602 		block_i->last_alloc_physical_block = 0;
603 	}
604 	ei->i_block_alloc_info = block_i;
605 }
606 
607 /**
608  * ext4_discard_reservation()
609  * @inode:		inode
610  *
611  * Discard(free) block reservation window on last file close, or truncate
612  * or at last iput().
613  *
614  * It is being called in three cases:
615  *	ext4_release_file(): last writer close the file
616  *	ext4_clear_inode(): last iput(), when nobody link to this file.
617  *	ext4_truncate(): when the block indirect map is about to change.
618  *
619  */
620 void ext4_discard_reservation(struct inode *inode)
621 {
622 	struct ext4_inode_info *ei = EXT4_I(inode);
623 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
624 	struct ext4_reserve_window_node *rsv;
625 	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
626 
627 	ext4_mb_discard_inode_preallocations(inode);
628 
629 	if (!block_i)
630 		return;
631 
632 	rsv = &block_i->rsv_window_node;
633 	if (!rsv_is_empty(&rsv->rsv_window)) {
634 		spin_lock(rsv_lock);
635 		if (!rsv_is_empty(&rsv->rsv_window))
636 			rsv_window_remove(inode->i_sb, rsv);
637 		spin_unlock(rsv_lock);
638 	}
639 }
640 
641 /**
642  * ext4_free_blocks_sb() -- Free given blocks and update quota
643  * @handle:			handle to this transaction
644  * @sb:				super block
645  * @block:			start physcial block to free
646  * @count:			number of blocks to free
647  * @pdquot_freed_blocks:	pointer to quota
648  */
649 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
650 			 ext4_fsblk_t block, unsigned long count,
651 			 unsigned long *pdquot_freed_blocks)
652 {
653 	struct buffer_head *bitmap_bh = NULL;
654 	struct buffer_head *gd_bh;
655 	ext4_group_t block_group;
656 	ext4_grpblk_t bit;
657 	unsigned long i;
658 	unsigned long overflow;
659 	struct ext4_group_desc * desc;
660 	struct ext4_super_block * es;
661 	struct ext4_sb_info *sbi;
662 	int err = 0, ret;
663 	ext4_grpblk_t group_freed;
664 
665 	*pdquot_freed_blocks = 0;
666 	sbi = EXT4_SB(sb);
667 	es = sbi->s_es;
668 	if (block < le32_to_cpu(es->s_first_data_block) ||
669 	    block + count < block ||
670 	    block + count > ext4_blocks_count(es)) {
671 		ext4_error (sb, "ext4_free_blocks",
672 			    "Freeing blocks not in datazone - "
673 			    "block = %llu, count = %lu", block, count);
674 		goto error_return;
675 	}
676 
677 	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
678 
679 do_more:
680 	overflow = 0;
681 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
682 	/*
683 	 * Check to see if we are freeing blocks across a group
684 	 * boundary.
685 	 */
686 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
687 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
688 		count -= overflow;
689 	}
690 	brelse(bitmap_bh);
691 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
692 	if (!bitmap_bh)
693 		goto error_return;
694 	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
695 	if (!desc)
696 		goto error_return;
697 
698 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
699 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
700 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
701 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
702 		     sbi->s_itb_per_group)) {
703 		ext4_error (sb, "ext4_free_blocks",
704 			    "Freeing blocks in system zones - "
705 			    "Block = %llu, count = %lu",
706 			    block, count);
707 		goto error_return;
708 	}
709 
710 	/*
711 	 * We are about to start releasing blocks in the bitmap,
712 	 * so we need undo access.
713 	 */
714 	/* @@@ check errors */
715 	BUFFER_TRACE(bitmap_bh, "getting undo access");
716 	err = ext4_journal_get_undo_access(handle, bitmap_bh);
717 	if (err)
718 		goto error_return;
719 
720 	/*
721 	 * We are about to modify some metadata.  Call the journal APIs
722 	 * to unshare ->b_data if a currently-committing transaction is
723 	 * using it
724 	 */
725 	BUFFER_TRACE(gd_bh, "get_write_access");
726 	err = ext4_journal_get_write_access(handle, gd_bh);
727 	if (err)
728 		goto error_return;
729 
730 	jbd_lock_bh_state(bitmap_bh);
731 
732 	for (i = 0, group_freed = 0; i < count; i++) {
733 		/*
734 		 * An HJ special.  This is expensive...
735 		 */
736 #ifdef CONFIG_JBD2_DEBUG
737 		jbd_unlock_bh_state(bitmap_bh);
738 		{
739 			struct buffer_head *debug_bh;
740 			debug_bh = sb_find_get_block(sb, block + i);
741 			if (debug_bh) {
742 				BUFFER_TRACE(debug_bh, "Deleted!");
743 				if (!bh2jh(bitmap_bh)->b_committed_data)
744 					BUFFER_TRACE(debug_bh,
745 						"No commited data in bitmap");
746 				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
747 				__brelse(debug_bh);
748 			}
749 		}
750 		jbd_lock_bh_state(bitmap_bh);
751 #endif
752 		if (need_resched()) {
753 			jbd_unlock_bh_state(bitmap_bh);
754 			cond_resched();
755 			jbd_lock_bh_state(bitmap_bh);
756 		}
757 		/* @@@ This prevents newly-allocated data from being
758 		 * freed and then reallocated within the same
759 		 * transaction.
760 		 *
761 		 * Ideally we would want to allow that to happen, but to
762 		 * do so requires making jbd2_journal_forget() capable of
763 		 * revoking the queued write of a data block, which
764 		 * implies blocking on the journal lock.  *forget()
765 		 * cannot block due to truncate races.
766 		 *
767 		 * Eventually we can fix this by making jbd2_journal_forget()
768 		 * return a status indicating whether or not it was able
769 		 * to revoke the buffer.  On successful revoke, it is
770 		 * safe not to set the allocation bit in the committed
771 		 * bitmap, because we know that there is no outstanding
772 		 * activity on the buffer any more and so it is safe to
773 		 * reallocate it.
774 		 */
775 		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
776 		J_ASSERT_BH(bitmap_bh,
777 				bh2jh(bitmap_bh)->b_committed_data != NULL);
778 		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
779 				bh2jh(bitmap_bh)->b_committed_data);
780 
781 		/*
782 		 * We clear the bit in the bitmap after setting the committed
783 		 * data bit, because this is the reverse order to that which
784 		 * the allocator uses.
785 		 */
786 		BUFFER_TRACE(bitmap_bh, "clear bit");
787 		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
788 						bit + i, bitmap_bh->b_data)) {
789 			jbd_unlock_bh_state(bitmap_bh);
790 			ext4_error(sb, __func__,
791 				   "bit already cleared for block %llu",
792 				   (ext4_fsblk_t)(block + i));
793 			jbd_lock_bh_state(bitmap_bh);
794 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
795 		} else {
796 			group_freed++;
797 		}
798 	}
799 	jbd_unlock_bh_state(bitmap_bh);
800 
801 	spin_lock(sb_bgl_lock(sbi, block_group));
802 	le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
803 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
804 	spin_unlock(sb_bgl_lock(sbi, block_group));
805 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
806 
807 	if (sbi->s_log_groups_per_flex) {
808 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
809 		spin_lock(sb_bgl_lock(sbi, flex_group));
810 		sbi->s_flex_groups[flex_group].free_blocks += count;
811 		spin_unlock(sb_bgl_lock(sbi, flex_group));
812 	}
813 
814 	/* We dirtied the bitmap block */
815 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
816 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
817 
818 	/* And the group descriptor block */
819 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
820 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
821 	if (!err) err = ret;
822 	*pdquot_freed_blocks += group_freed;
823 
824 	if (overflow && !err) {
825 		block += count;
826 		count = overflow;
827 		goto do_more;
828 	}
829 	sb->s_dirt = 1;
830 error_return:
831 	brelse(bitmap_bh);
832 	ext4_std_error(sb, err);
833 	return;
834 }
835 
836 /**
837  * ext4_free_blocks() -- Free given blocks and update quota
838  * @handle:		handle for this transaction
839  * @inode:		inode
840  * @block:		start physical block to free
841  * @count:		number of blocks to count
842  * @metadata: 		Are these metadata blocks
843  */
844 void ext4_free_blocks(handle_t *handle, struct inode *inode,
845 			ext4_fsblk_t block, unsigned long count,
846 			int metadata)
847 {
848 	struct super_block * sb;
849 	unsigned long dquot_freed_blocks;
850 
851 	/* this isn't the right place to decide whether block is metadata
852 	 * inode.c/extents.c knows better, but for safety ... */
853 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
854 			ext4_should_journal_data(inode))
855 		metadata = 1;
856 
857 	sb = inode->i_sb;
858 
859 	if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
860 		ext4_free_blocks_sb(handle, sb, block, count,
861 						&dquot_freed_blocks);
862 	else
863 		ext4_mb_free_blocks(handle, inode, block, count,
864 						metadata, &dquot_freed_blocks);
865 	if (dquot_freed_blocks)
866 		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
867 	return;
868 }
869 
870 /**
871  * ext4_test_allocatable()
872  * @nr:			given allocation block group
873  * @bh:			bufferhead contains the bitmap of the given block group
874  *
875  * For ext4 allocations, we must not reuse any blocks which are
876  * allocated in the bitmap buffer's "last committed data" copy.  This
877  * prevents deletes from freeing up the page for reuse until we have
878  * committed the delete transaction.
879  *
880  * If we didn't do this, then deleting something and reallocating it as
881  * data would allow the old block to be overwritten before the
882  * transaction committed (because we force data to disk before commit).
883  * This would lead to corruption if we crashed between overwriting the
884  * data and committing the delete.
885  *
886  * @@@ We may want to make this allocation behaviour conditional on
887  * data-writes at some point, and disable it for metadata allocations or
888  * sync-data inodes.
889  */
890 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
891 {
892 	int ret;
893 	struct journal_head *jh = bh2jh(bh);
894 
895 	if (ext4_test_bit(nr, bh->b_data))
896 		return 0;
897 
898 	jbd_lock_bh_state(bh);
899 	if (!jh->b_committed_data)
900 		ret = 1;
901 	else
902 		ret = !ext4_test_bit(nr, jh->b_committed_data);
903 	jbd_unlock_bh_state(bh);
904 	return ret;
905 }
906 
907 /**
908  * bitmap_search_next_usable_block()
909  * @start:		the starting block (group relative) of the search
910  * @bh:			bufferhead contains the block group bitmap
911  * @maxblocks:		the ending block (group relative) of the reservation
912  *
913  * The bitmap search --- search forward alternately through the actual
914  * bitmap on disk and the last-committed copy in journal, until we find a
915  * bit free in both bitmaps.
916  */
917 static ext4_grpblk_t
918 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
919 					ext4_grpblk_t maxblocks)
920 {
921 	ext4_grpblk_t next;
922 	struct journal_head *jh = bh2jh(bh);
923 
924 	while (start < maxblocks) {
925 		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
926 		if (next >= maxblocks)
927 			return -1;
928 		if (ext4_test_allocatable(next, bh))
929 			return next;
930 		jbd_lock_bh_state(bh);
931 		if (jh->b_committed_data)
932 			start = ext4_find_next_zero_bit(jh->b_committed_data,
933 							maxblocks, next);
934 		jbd_unlock_bh_state(bh);
935 	}
936 	return -1;
937 }
938 
939 /**
940  * find_next_usable_block()
941  * @start:		the starting block (group relative) to find next
942  *			allocatable block in bitmap.
943  * @bh:			bufferhead contains the block group bitmap
944  * @maxblocks:		the ending block (group relative) for the search
945  *
946  * Find an allocatable block in a bitmap.  We honor both the bitmap and
947  * its last-committed copy (if that exists), and perform the "most
948  * appropriate allocation" algorithm of looking for a free block near
949  * the initial goal; then for a free byte somewhere in the bitmap; then
950  * for any free bit in the bitmap.
951  */
952 static ext4_grpblk_t
953 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
954 			ext4_grpblk_t maxblocks)
955 {
956 	ext4_grpblk_t here, next;
957 	char *p, *r;
958 
959 	if (start > 0) {
960 		/*
961 		 * The goal was occupied; search forward for a free
962 		 * block within the next XX blocks.
963 		 *
964 		 * end_goal is more or less random, but it has to be
965 		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
966 		 * next 64-bit boundary is simple..
967 		 */
968 		ext4_grpblk_t end_goal = (start + 63) & ~63;
969 		if (end_goal > maxblocks)
970 			end_goal = maxblocks;
971 		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
972 		if (here < end_goal && ext4_test_allocatable(here, bh))
973 			return here;
974 		ext4_debug("Bit not found near goal\n");
975 	}
976 
977 	here = start;
978 	if (here < 0)
979 		here = 0;
980 
981 	p = ((char *)bh->b_data) + (here >> 3);
982 	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
983 	next = (r - ((char *)bh->b_data)) << 3;
984 
985 	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
986 		return next;
987 
988 	/*
989 	 * The bitmap search --- search forward alternately through the actual
990 	 * bitmap and the last-committed copy until we find a bit free in
991 	 * both
992 	 */
993 	here = bitmap_search_next_usable_block(here, bh, maxblocks);
994 	return here;
995 }
996 
997 /**
998  * claim_block()
999  * @block:		the free block (group relative) to allocate
1000  * @bh:			the bufferhead containts the block group bitmap
1001  *
1002  * We think we can allocate this block in this bitmap.  Try to set the bit.
1003  * If that succeeds then check that nobody has allocated and then freed the
1004  * block since we saw that is was not marked in b_committed_data.  If it _was_
1005  * allocated and freed then clear the bit in the bitmap again and return
1006  * zero (failure).
1007  */
1008 static inline int
1009 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1010 {
1011 	struct journal_head *jh = bh2jh(bh);
1012 	int ret;
1013 
1014 	if (ext4_set_bit_atomic(lock, block, bh->b_data))
1015 		return 0;
1016 	jbd_lock_bh_state(bh);
1017 	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1018 		ext4_clear_bit_atomic(lock, block, bh->b_data);
1019 		ret = 0;
1020 	} else {
1021 		ret = 1;
1022 	}
1023 	jbd_unlock_bh_state(bh);
1024 	return ret;
1025 }
1026 
1027 /**
1028  * ext4_try_to_allocate()
1029  * @sb:			superblock
1030  * @handle:		handle to this transaction
1031  * @group:		given allocation block group
1032  * @bitmap_bh:		bufferhead holds the block bitmap
1033  * @grp_goal:		given target block within the group
1034  * @count:		target number of blocks to allocate
1035  * @my_rsv:		reservation window
1036  *
1037  * Attempt to allocate blocks within a give range. Set the range of allocation
1038  * first, then find the first free bit(s) from the bitmap (within the range),
1039  * and at last, allocate the blocks by claiming the found free bit as allocated.
1040  *
1041  * To set the range of this allocation:
1042  *	if there is a reservation window, only try to allocate block(s) from the
1043  *	file's own reservation window;
1044  *	Otherwise, the allocation range starts from the give goal block, ends at
1045  *	the block group's last block.
1046  *
1047  * If we failed to allocate the desired block then we may end up crossing to a
1048  * new bitmap.  In that case we must release write access to the old one via
1049  * ext4_journal_release_buffer(), else we'll run out of credits.
1050  */
1051 static ext4_grpblk_t
1052 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1053 			ext4_group_t group, struct buffer_head *bitmap_bh,
1054 			ext4_grpblk_t grp_goal, unsigned long *count,
1055 			struct ext4_reserve_window *my_rsv)
1056 {
1057 	ext4_fsblk_t group_first_block;
1058 	ext4_grpblk_t start, end;
1059 	unsigned long num = 0;
1060 
1061 	/* we do allocation within the reservation window if we have a window */
1062 	if (my_rsv) {
1063 		group_first_block = ext4_group_first_block_no(sb, group);
1064 		if (my_rsv->_rsv_start >= group_first_block)
1065 			start = my_rsv->_rsv_start - group_first_block;
1066 		else
1067 			/* reservation window cross group boundary */
1068 			start = 0;
1069 		end = my_rsv->_rsv_end - group_first_block + 1;
1070 		if (end > EXT4_BLOCKS_PER_GROUP(sb))
1071 			/* reservation window crosses group boundary */
1072 			end = EXT4_BLOCKS_PER_GROUP(sb);
1073 		if ((start <= grp_goal) && (grp_goal < end))
1074 			start = grp_goal;
1075 		else
1076 			grp_goal = -1;
1077 	} else {
1078 		if (grp_goal > 0)
1079 			start = grp_goal;
1080 		else
1081 			start = 0;
1082 		end = EXT4_BLOCKS_PER_GROUP(sb);
1083 	}
1084 
1085 	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1086 
1087 repeat:
1088 	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1089 		grp_goal = find_next_usable_block(start, bitmap_bh, end);
1090 		if (grp_goal < 0)
1091 			goto fail_access;
1092 		if (!my_rsv) {
1093 			int i;
1094 
1095 			for (i = 0; i < 7 && grp_goal > start &&
1096 					ext4_test_allocatable(grp_goal - 1,
1097 								bitmap_bh);
1098 					i++, grp_goal--)
1099 				;
1100 		}
1101 	}
1102 	start = grp_goal;
1103 
1104 	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1105 		grp_goal, bitmap_bh)) {
1106 		/*
1107 		 * The block was allocated by another thread, or it was
1108 		 * allocated and then freed by another thread
1109 		 */
1110 		start++;
1111 		grp_goal++;
1112 		if (start >= end)
1113 			goto fail_access;
1114 		goto repeat;
1115 	}
1116 	num++;
1117 	grp_goal++;
1118 	while (num < *count && grp_goal < end
1119 		&& ext4_test_allocatable(grp_goal, bitmap_bh)
1120 		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1121 				grp_goal, bitmap_bh)) {
1122 		num++;
1123 		grp_goal++;
1124 	}
1125 	*count = num;
1126 	return grp_goal - num;
1127 fail_access:
1128 	*count = num;
1129 	return -1;
1130 }
1131 
1132 /**
1133  *	find_next_reservable_window():
1134  *		find a reservable space within the given range.
1135  *		It does not allocate the reservation window for now:
1136  *		alloc_new_reservation() will do the work later.
1137  *
1138  *	@search_head: the head of the searching list;
1139  *		This is not necessarily the list head of the whole filesystem
1140  *
1141  *		We have both head and start_block to assist the search
1142  *		for the reservable space. The list starts from head,
1143  *		but we will shift to the place where start_block is,
1144  *		then start from there, when looking for a reservable space.
1145  *
1146  *	@size: the target new reservation window size
1147  *
1148  *	@group_first_block: the first block we consider to start
1149  *			the real search from
1150  *
1151  *	@last_block:
1152  *		the maximum block number that our goal reservable space
1153  *		could start from. This is normally the last block in this
1154  *		group. The search will end when we found the start of next
1155  *		possible reservable space is out of this boundary.
1156  *		This could handle the cross boundary reservation window
1157  *		request.
1158  *
1159  *	basically we search from the given range, rather than the whole
1160  *	reservation double linked list, (start_block, last_block)
1161  *	to find a free region that is of my size and has not
1162  *	been reserved.
1163  *
1164  */
1165 static int find_next_reservable_window(
1166 				struct ext4_reserve_window_node *search_head,
1167 				struct ext4_reserve_window_node *my_rsv,
1168 				struct super_block * sb,
1169 				ext4_fsblk_t start_block,
1170 				ext4_fsblk_t last_block)
1171 {
1172 	struct rb_node *next;
1173 	struct ext4_reserve_window_node *rsv, *prev;
1174 	ext4_fsblk_t cur;
1175 	int size = my_rsv->rsv_goal_size;
1176 
1177 	/* TODO: make the start of the reservation window byte-aligned */
1178 	/* cur = *start_block & ~7;*/
1179 	cur = start_block;
1180 	rsv = search_head;
1181 	if (!rsv)
1182 		return -1;
1183 
1184 	while (1) {
1185 		if (cur <= rsv->rsv_end)
1186 			cur = rsv->rsv_end + 1;
1187 
1188 		/* TODO?
1189 		 * in the case we could not find a reservable space
1190 		 * that is what is expected, during the re-search, we could
1191 		 * remember what's the largest reservable space we could have
1192 		 * and return that one.
1193 		 *
1194 		 * For now it will fail if we could not find the reservable
1195 		 * space with expected-size (or more)...
1196 		 */
1197 		if (cur > last_block)
1198 			return -1;		/* fail */
1199 
1200 		prev = rsv;
1201 		next = rb_next(&rsv->rsv_node);
1202 		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1203 
1204 		/*
1205 		 * Reached the last reservation, we can just append to the
1206 		 * previous one.
1207 		 */
1208 		if (!next)
1209 			break;
1210 
1211 		if (cur + size <= rsv->rsv_start) {
1212 			/*
1213 			 * Found a reserveable space big enough.  We could
1214 			 * have a reservation across the group boundary here
1215 			 */
1216 			break;
1217 		}
1218 	}
1219 	/*
1220 	 * we come here either :
1221 	 * when we reach the end of the whole list,
1222 	 * and there is empty reservable space after last entry in the list.
1223 	 * append it to the end of the list.
1224 	 *
1225 	 * or we found one reservable space in the middle of the list,
1226 	 * return the reservation window that we could append to.
1227 	 * succeed.
1228 	 */
1229 
1230 	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1231 		rsv_window_remove(sb, my_rsv);
1232 
1233 	/*
1234 	 * Let's book the whole avaliable window for now.  We will check the
1235 	 * disk bitmap later and then, if there are free blocks then we adjust
1236 	 * the window size if it's larger than requested.
1237 	 * Otherwise, we will remove this node from the tree next time
1238 	 * call find_next_reservable_window.
1239 	 */
1240 	my_rsv->rsv_start = cur;
1241 	my_rsv->rsv_end = cur + size - 1;
1242 	my_rsv->rsv_alloc_hit = 0;
1243 
1244 	if (prev != my_rsv)
1245 		ext4_rsv_window_add(sb, my_rsv);
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  *	alloc_new_reservation()--allocate a new reservation window
1252  *
1253  *		To make a new reservation, we search part of the filesystem
1254  *		reservation list (the list that inside the group). We try to
1255  *		allocate a new reservation window near the allocation goal,
1256  *		or the beginning of the group, if there is no goal.
1257  *
1258  *		We first find a reservable space after the goal, then from
1259  *		there, we check the bitmap for the first free block after
1260  *		it. If there is no free block until the end of group, then the
1261  *		whole group is full, we failed. Otherwise, check if the free
1262  *		block is inside the expected reservable space, if so, we
1263  *		succeed.
1264  *		If the first free block is outside the reservable space, then
1265  *		start from the first free block, we search for next available
1266  *		space, and go on.
1267  *
1268  *	on succeed, a new reservation will be found and inserted into the list
1269  *	It contains at least one free block, and it does not overlap with other
1270  *	reservation windows.
1271  *
1272  *	failed: we failed to find a reservation window in this group
1273  *
1274  *	@rsv: the reservation
1275  *
1276  *	@grp_goal: The goal (group-relative).  It is where the search for a
1277  *		free reservable space should start from.
1278  *		if we have a grp_goal(grp_goal >0 ), then start from there,
1279  *		no grp_goal(grp_goal = -1), we start from the first block
1280  *		of the group.
1281  *
1282  *	@sb: the super block
1283  *	@group: the group we are trying to allocate in
1284  *	@bitmap_bh: the block group block bitmap
1285  *
1286  */
1287 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1288 		ext4_grpblk_t grp_goal, struct super_block *sb,
1289 		ext4_group_t group, struct buffer_head *bitmap_bh)
1290 {
1291 	struct ext4_reserve_window_node *search_head;
1292 	ext4_fsblk_t group_first_block, group_end_block, start_block;
1293 	ext4_grpblk_t first_free_block;
1294 	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1295 	unsigned long size;
1296 	int ret;
1297 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1298 
1299 	group_first_block = ext4_group_first_block_no(sb, group);
1300 	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1301 
1302 	if (grp_goal < 0)
1303 		start_block = group_first_block;
1304 	else
1305 		start_block = grp_goal + group_first_block;
1306 
1307 	size = my_rsv->rsv_goal_size;
1308 
1309 	if (!rsv_is_empty(&my_rsv->rsv_window)) {
1310 		/*
1311 		 * if the old reservation is cross group boundary
1312 		 * and if the goal is inside the old reservation window,
1313 		 * we will come here when we just failed to allocate from
1314 		 * the first part of the window. We still have another part
1315 		 * that belongs to the next group. In this case, there is no
1316 		 * point to discard our window and try to allocate a new one
1317 		 * in this group(which will fail). we should
1318 		 * keep the reservation window, just simply move on.
1319 		 *
1320 		 * Maybe we could shift the start block of the reservation
1321 		 * window to the first block of next group.
1322 		 */
1323 
1324 		if ((my_rsv->rsv_start <= group_end_block) &&
1325 				(my_rsv->rsv_end > group_end_block) &&
1326 				(start_block >= my_rsv->rsv_start))
1327 			return -1;
1328 
1329 		if ((my_rsv->rsv_alloc_hit >
1330 		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1331 			/*
1332 			 * if the previously allocation hit ratio is
1333 			 * greater than 1/2, then we double the size of
1334 			 * the reservation window the next time,
1335 			 * otherwise we keep the same size window
1336 			 */
1337 			size = size * 2;
1338 			if (size > EXT4_MAX_RESERVE_BLOCKS)
1339 				size = EXT4_MAX_RESERVE_BLOCKS;
1340 			my_rsv->rsv_goal_size= size;
1341 		}
1342 	}
1343 
1344 	spin_lock(rsv_lock);
1345 	/*
1346 	 * shift the search start to the window near the goal block
1347 	 */
1348 	search_head = search_reserve_window(fs_rsv_root, start_block);
1349 
1350 	/*
1351 	 * find_next_reservable_window() simply finds a reservable window
1352 	 * inside the given range(start_block, group_end_block).
1353 	 *
1354 	 * To make sure the reservation window has a free bit inside it, we
1355 	 * need to check the bitmap after we found a reservable window.
1356 	 */
1357 retry:
1358 	ret = find_next_reservable_window(search_head, my_rsv, sb,
1359 						start_block, group_end_block);
1360 
1361 	if (ret == -1) {
1362 		if (!rsv_is_empty(&my_rsv->rsv_window))
1363 			rsv_window_remove(sb, my_rsv);
1364 		spin_unlock(rsv_lock);
1365 		return -1;
1366 	}
1367 
1368 	/*
1369 	 * On success, find_next_reservable_window() returns the
1370 	 * reservation window where there is a reservable space after it.
1371 	 * Before we reserve this reservable space, we need
1372 	 * to make sure there is at least a free block inside this region.
1373 	 *
1374 	 * searching the first free bit on the block bitmap and copy of
1375 	 * last committed bitmap alternatively, until we found a allocatable
1376 	 * block. Search start from the start block of the reservable space
1377 	 * we just found.
1378 	 */
1379 	spin_unlock(rsv_lock);
1380 	first_free_block = bitmap_search_next_usable_block(
1381 			my_rsv->rsv_start - group_first_block,
1382 			bitmap_bh, group_end_block - group_first_block + 1);
1383 
1384 	if (first_free_block < 0) {
1385 		/*
1386 		 * no free block left on the bitmap, no point
1387 		 * to reserve the space. return failed.
1388 		 */
1389 		spin_lock(rsv_lock);
1390 		if (!rsv_is_empty(&my_rsv->rsv_window))
1391 			rsv_window_remove(sb, my_rsv);
1392 		spin_unlock(rsv_lock);
1393 		return -1;		/* failed */
1394 	}
1395 
1396 	start_block = first_free_block + group_first_block;
1397 	/*
1398 	 * check if the first free block is within the
1399 	 * free space we just reserved
1400 	 */
1401 	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1402 		return 0;		/* success */
1403 	/*
1404 	 * if the first free bit we found is out of the reservable space
1405 	 * continue search for next reservable space,
1406 	 * start from where the free block is,
1407 	 * we also shift the list head to where we stopped last time
1408 	 */
1409 	search_head = my_rsv;
1410 	spin_lock(rsv_lock);
1411 	goto retry;
1412 }
1413 
1414 /**
1415  * try_to_extend_reservation()
1416  * @my_rsv:		given reservation window
1417  * @sb:			super block
1418  * @size:		the delta to extend
1419  *
1420  * Attempt to expand the reservation window large enough to have
1421  * required number of free blocks
1422  *
1423  * Since ext4_try_to_allocate() will always allocate blocks within
1424  * the reservation window range, if the window size is too small,
1425  * multiple blocks allocation has to stop at the end of the reservation
1426  * window. To make this more efficient, given the total number of
1427  * blocks needed and the current size of the window, we try to
1428  * expand the reservation window size if necessary on a best-effort
1429  * basis before ext4_new_blocks() tries to allocate blocks,
1430  */
1431 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1432 			struct super_block *sb, int size)
1433 {
1434 	struct ext4_reserve_window_node *next_rsv;
1435 	struct rb_node *next;
1436 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1437 
1438 	if (!spin_trylock(rsv_lock))
1439 		return;
1440 
1441 	next = rb_next(&my_rsv->rsv_node);
1442 
1443 	if (!next)
1444 		my_rsv->rsv_end += size;
1445 	else {
1446 		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1447 
1448 		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1449 			my_rsv->rsv_end += size;
1450 		else
1451 			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1452 	}
1453 	spin_unlock(rsv_lock);
1454 }
1455 
1456 /**
1457  * ext4_try_to_allocate_with_rsv()
1458  * @sb:			superblock
1459  * @handle:		handle to this transaction
1460  * @group:		given allocation block group
1461  * @bitmap_bh:		bufferhead holds the block bitmap
1462  * @grp_goal:		given target block within the group
1463  * @count:		target number of blocks to allocate
1464  * @my_rsv:		reservation window
1465  * @errp:		pointer to store the error code
1466  *
1467  * This is the main function used to allocate a new block and its reservation
1468  * window.
1469  *
1470  * Each time when a new block allocation is need, first try to allocate from
1471  * its own reservation.  If it does not have a reservation window, instead of
1472  * looking for a free bit on bitmap first, then look up the reservation list to
1473  * see if it is inside somebody else's reservation window, we try to allocate a
1474  * reservation window for it starting from the goal first. Then do the block
1475  * allocation within the reservation window.
1476  *
1477  * This will avoid keeping on searching the reservation list again and
1478  * again when somebody is looking for a free block (without
1479  * reservation), and there are lots of free blocks, but they are all
1480  * being reserved.
1481  *
1482  * We use a red-black tree for the per-filesystem reservation list.
1483  *
1484  */
1485 static ext4_grpblk_t
1486 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1487 			ext4_group_t group, struct buffer_head *bitmap_bh,
1488 			ext4_grpblk_t grp_goal,
1489 			struct ext4_reserve_window_node * my_rsv,
1490 			unsigned long *count, int *errp)
1491 {
1492 	ext4_fsblk_t group_first_block, group_last_block;
1493 	ext4_grpblk_t ret = 0;
1494 	int fatal;
1495 	unsigned long num = *count;
1496 
1497 	*errp = 0;
1498 
1499 	/*
1500 	 * Make sure we use undo access for the bitmap, because it is critical
1501 	 * that we do the frozen_data COW on bitmap buffers in all cases even
1502 	 * if the buffer is in BJ_Forget state in the committing transaction.
1503 	 */
1504 	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1505 	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1506 	if (fatal) {
1507 		*errp = fatal;
1508 		return -1;
1509 	}
1510 
1511 	/*
1512 	 * we don't deal with reservation when
1513 	 * filesystem is mounted without reservation
1514 	 * or the file is not a regular file
1515 	 * or last attempt to allocate a block with reservation turned on failed
1516 	 */
1517 	if (my_rsv == NULL ) {
1518 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1519 						grp_goal, count, NULL);
1520 		goto out;
1521 	}
1522 	/*
1523 	 * grp_goal is a group relative block number (if there is a goal)
1524 	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1525 	 * first block is a filesystem wide block number
1526 	 * first block is the block number of the first block in this group
1527 	 */
1528 	group_first_block = ext4_group_first_block_no(sb, group);
1529 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1530 
1531 	/*
1532 	 * Basically we will allocate a new block from inode's reservation
1533 	 * window.
1534 	 *
1535 	 * We need to allocate a new reservation window, if:
1536 	 * a) inode does not have a reservation window; or
1537 	 * b) last attempt to allocate a block from existing reservation
1538 	 *    failed; or
1539 	 * c) we come here with a goal and with a reservation window
1540 	 *
1541 	 * We do not need to allocate a new reservation window if we come here
1542 	 * at the beginning with a goal and the goal is inside the window, or
1543 	 * we don't have a goal but already have a reservation window.
1544 	 * then we could go to allocate from the reservation window directly.
1545 	 */
1546 	while (1) {
1547 		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1548 			!goal_in_my_reservation(&my_rsv->rsv_window,
1549 						grp_goal, group, sb)) {
1550 			if (my_rsv->rsv_goal_size < *count)
1551 				my_rsv->rsv_goal_size = *count;
1552 			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1553 							group, bitmap_bh);
1554 			if (ret < 0)
1555 				break;			/* failed */
1556 
1557 			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1558 							grp_goal, group, sb))
1559 				grp_goal = -1;
1560 		} else if (grp_goal >= 0) {
1561 			int curr = my_rsv->rsv_end -
1562 					(grp_goal + group_first_block) + 1;
1563 
1564 			if (curr < *count)
1565 				try_to_extend_reservation(my_rsv, sb,
1566 							*count - curr);
1567 		}
1568 
1569 		if ((my_rsv->rsv_start > group_last_block) ||
1570 				(my_rsv->rsv_end < group_first_block)) {
1571 			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1572 			BUG();
1573 		}
1574 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1575 					   grp_goal, &num, &my_rsv->rsv_window);
1576 		if (ret >= 0) {
1577 			my_rsv->rsv_alloc_hit += num;
1578 			*count = num;
1579 			break;				/* succeed */
1580 		}
1581 		num = *count;
1582 	}
1583 out:
1584 	if (ret >= 0) {
1585 		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1586 					"bitmap block");
1587 		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1588 		if (fatal) {
1589 			*errp = fatal;
1590 			return -1;
1591 		}
1592 		return ret;
1593 	}
1594 
1595 	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1596 	ext4_journal_release_buffer(handle, bitmap_bh);
1597 	return ret;
1598 }
1599 
1600 /**
1601  * ext4_has_free_blocks()
1602  * @sbi:	in-core super block structure.
1603  * @nblocks:	number of neeed blocks
1604  *
1605  * Check if filesystem has free blocks available for allocation.
1606  * Return the number of blocks avaible for allocation for this request
1607  * On success, return nblocks
1608  */
1609 ext4_fsblk_t ext4_has_free_blocks(struct ext4_sb_info *sbi,
1610 						ext4_fsblk_t nblocks)
1611 {
1612 	ext4_fsblk_t free_blocks;
1613 	ext4_fsblk_t root_blocks = 0;
1614 
1615 	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1616 
1617 	if (!capable(CAP_SYS_RESOURCE) &&
1618 		sbi->s_resuid != current->fsuid &&
1619 		(sbi->s_resgid == 0 || !in_group_p(sbi->s_resgid)))
1620 		root_blocks = ext4_r_blocks_count(sbi->s_es);
1621 #ifdef CONFIG_SMP
1622 	if (free_blocks - root_blocks < FBC_BATCH)
1623 		free_blocks =
1624 			percpu_counter_sum_and_set(&sbi->s_freeblocks_counter);
1625 #endif
1626 	if (free_blocks - root_blocks < nblocks)
1627 		return free_blocks - root_blocks;
1628 	return nblocks;
1629  }
1630 
1631 
1632 /**
1633  * ext4_should_retry_alloc()
1634  * @sb:			super block
1635  * @retries		number of attemps has been made
1636  *
1637  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1638  * it is profitable to retry the operation, this function will wait
1639  * for the current or commiting transaction to complete, and then
1640  * return TRUE.
1641  *
1642  * if the total number of retries exceed three times, return FALSE.
1643  */
1644 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1645 {
1646 	if (!ext4_has_free_blocks(EXT4_SB(sb), 1) || (*retries)++ > 3)
1647 		return 0;
1648 
1649 	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1650 
1651 	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1652 }
1653 
1654 /**
1655  * ext4_old_new_blocks() -- core block bitmap based block allocation function
1656  *
1657  * @handle:		handle to this transaction
1658  * @inode:		file inode
1659  * @goal:		given target block(filesystem wide)
1660  * @count:		target number of blocks to allocate
1661  * @errp:		error code
1662  *
1663  * ext4_old_new_blocks uses a goal block to assist allocation and look up
1664  * the block bitmap directly to do block allocation.  It tries to
1665  * allocate block(s) from the block group contains the goal block first. If
1666  * that fails, it will try to allocate block(s) from other block groups
1667  * without any specific goal block.
1668  *
1669  * This function is called when -o nomballoc mount option is enabled
1670  *
1671  */
1672 ext4_fsblk_t ext4_old_new_blocks(handle_t *handle, struct inode *inode,
1673 			ext4_fsblk_t goal, unsigned long *count, int *errp)
1674 {
1675 	struct buffer_head *bitmap_bh = NULL;
1676 	struct buffer_head *gdp_bh;
1677 	ext4_group_t group_no;
1678 	ext4_group_t goal_group;
1679 	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1680 	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1681 	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1682 	ext4_group_t bgi;			/* blockgroup iteration index */
1683 	int fatal = 0, err;
1684 	int performed_allocation = 0;
1685 	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1686 	struct super_block *sb;
1687 	struct ext4_group_desc *gdp;
1688 	struct ext4_super_block *es;
1689 	struct ext4_sb_info *sbi;
1690 	struct ext4_reserve_window_node *my_rsv = NULL;
1691 	struct ext4_block_alloc_info *block_i;
1692 	unsigned short windowsz = 0;
1693 	ext4_group_t ngroups;
1694 	unsigned long num = *count;
1695 
1696 	sb = inode->i_sb;
1697 	if (!sb) {
1698 		*errp = -ENODEV;
1699 		printk("ext4_new_block: nonexistent device");
1700 		return 0;
1701 	}
1702 
1703 	sbi = EXT4_SB(sb);
1704 	if (!EXT4_I(inode)->i_delalloc_reserved_flag) {
1705 		/*
1706 		 * With delalloc we already reserved the blocks
1707 		 */
1708 		*count = ext4_has_free_blocks(sbi, *count);
1709 	}
1710 	if (*count == 0) {
1711 		*errp = -ENOSPC;
1712 		return 0;	/*return with ENOSPC error */
1713 	}
1714 	num = *count;
1715 
1716 	/*
1717 	 * Check quota for allocation of this block.
1718 	 */
1719 	if (DQUOT_ALLOC_BLOCK(inode, num)) {
1720 		*errp = -EDQUOT;
1721 		return 0;
1722 	}
1723 
1724 	sbi = EXT4_SB(sb);
1725 	es = EXT4_SB(sb)->s_es;
1726 	ext4_debug("goal=%llu.\n", goal);
1727 	/*
1728 	 * Allocate a block from reservation only when
1729 	 * filesystem is mounted with reservation(default,-o reservation), and
1730 	 * it's a regular file, and
1731 	 * the desired window size is greater than 0 (One could use ioctl
1732 	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1733 	 * reservation on that particular file)
1734 	 */
1735 	block_i = EXT4_I(inode)->i_block_alloc_info;
1736 	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1737 		my_rsv = &block_i->rsv_window_node;
1738 
1739 	/*
1740 	 * First, test whether the goal block is free.
1741 	 */
1742 	if (goal < le32_to_cpu(es->s_first_data_block) ||
1743 	    goal >= ext4_blocks_count(es))
1744 		goal = le32_to_cpu(es->s_first_data_block);
1745 	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1746 	goal_group = group_no;
1747 retry_alloc:
1748 	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1749 	if (!gdp)
1750 		goto io_error;
1751 
1752 	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1753 	/*
1754 	 * if there is not enough free blocks to make a new resevation
1755 	 * turn off reservation for this allocation
1756 	 */
1757 	if (my_rsv && (free_blocks < windowsz)
1758 		&& (rsv_is_empty(&my_rsv->rsv_window)))
1759 		my_rsv = NULL;
1760 
1761 	if (free_blocks > 0) {
1762 		bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1763 		if (!bitmap_bh)
1764 			goto io_error;
1765 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1766 					group_no, bitmap_bh, grp_target_blk,
1767 					my_rsv,	&num, &fatal);
1768 		if (fatal)
1769 			goto out;
1770 		if (grp_alloc_blk >= 0)
1771 			goto allocated;
1772 	}
1773 
1774 	ngroups = EXT4_SB(sb)->s_groups_count;
1775 	smp_rmb();
1776 
1777 	/*
1778 	 * Now search the rest of the groups.  We assume that
1779 	 * group_no and gdp correctly point to the last group visited.
1780 	 */
1781 	for (bgi = 0; bgi < ngroups; bgi++) {
1782 		group_no++;
1783 		if (group_no >= ngroups)
1784 			group_no = 0;
1785 		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1786 		if (!gdp)
1787 			goto io_error;
1788 		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1789 		/*
1790 		 * skip this group if the number of
1791 		 * free blocks is less than half of the reservation
1792 		 * window size.
1793 		 */
1794 		if (free_blocks <= (windowsz/2))
1795 			continue;
1796 
1797 		brelse(bitmap_bh);
1798 		bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1799 		if (!bitmap_bh)
1800 			goto io_error;
1801 		/*
1802 		 * try to allocate block(s) from this group, without a goal(-1).
1803 		 */
1804 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1805 					group_no, bitmap_bh, -1, my_rsv,
1806 					&num, &fatal);
1807 		if (fatal)
1808 			goto out;
1809 		if (grp_alloc_blk >= 0)
1810 			goto allocated;
1811 	}
1812 	/*
1813 	 * We may end up a bogus ealier ENOSPC error due to
1814 	 * filesystem is "full" of reservations, but
1815 	 * there maybe indeed free blocks avaliable on disk
1816 	 * In this case, we just forget about the reservations
1817 	 * just do block allocation as without reservations.
1818 	 */
1819 	if (my_rsv) {
1820 		my_rsv = NULL;
1821 		windowsz = 0;
1822 		group_no = goal_group;
1823 		goto retry_alloc;
1824 	}
1825 	/* No space left on the device */
1826 	*errp = -ENOSPC;
1827 	goto out;
1828 
1829 allocated:
1830 
1831 	ext4_debug("using block group %lu(%d)\n",
1832 			group_no, gdp->bg_free_blocks_count);
1833 
1834 	BUFFER_TRACE(gdp_bh, "get_write_access");
1835 	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1836 	if (fatal)
1837 		goto out;
1838 
1839 	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1840 
1841 	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1842 	    in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1843 	    in_range(ret_block, ext4_inode_table(sb, gdp),
1844 		     EXT4_SB(sb)->s_itb_per_group) ||
1845 	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1846 		     EXT4_SB(sb)->s_itb_per_group)) {
1847 		ext4_error(sb, "ext4_new_block",
1848 			    "Allocating block in system zone - "
1849 			    "blocks from %llu, length %lu",
1850 			     ret_block, num);
1851 		/*
1852 		 * claim_block marked the blocks we allocated
1853 		 * as in use. So we may want to selectively
1854 		 * mark some of the blocks as free
1855 		 */
1856 		goto retry_alloc;
1857 	}
1858 
1859 	performed_allocation = 1;
1860 
1861 #ifdef CONFIG_JBD2_DEBUG
1862 	{
1863 		struct buffer_head *debug_bh;
1864 
1865 		/* Record bitmap buffer state in the newly allocated block */
1866 		debug_bh = sb_find_get_block(sb, ret_block);
1867 		if (debug_bh) {
1868 			BUFFER_TRACE(debug_bh, "state when allocated");
1869 			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1870 			brelse(debug_bh);
1871 		}
1872 	}
1873 	jbd_lock_bh_state(bitmap_bh);
1874 	spin_lock(sb_bgl_lock(sbi, group_no));
1875 	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1876 		int i;
1877 
1878 		for (i = 0; i < num; i++) {
1879 			if (ext4_test_bit(grp_alloc_blk+i,
1880 					bh2jh(bitmap_bh)->b_committed_data)) {
1881 				printk("%s: block was unexpectedly set in "
1882 					"b_committed_data\n", __func__);
1883 			}
1884 		}
1885 	}
1886 	ext4_debug("found bit %d\n", grp_alloc_blk);
1887 	spin_unlock(sb_bgl_lock(sbi, group_no));
1888 	jbd_unlock_bh_state(bitmap_bh);
1889 #endif
1890 
1891 	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1892 		ext4_error(sb, "ext4_new_block",
1893 			    "block(%llu) >= blocks count(%llu) - "
1894 			    "block_group = %lu, es == %p ", ret_block,
1895 			ext4_blocks_count(es), group_no, es);
1896 		goto out;
1897 	}
1898 
1899 	/*
1900 	 * It is up to the caller to add the new buffer to a journal
1901 	 * list of some description.  We don't know in advance whether
1902 	 * the caller wants to use it as metadata or data.
1903 	 */
1904 	spin_lock(sb_bgl_lock(sbi, group_no));
1905 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1906 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1907 	le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1908 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1909 	spin_unlock(sb_bgl_lock(sbi, group_no));
1910 	if (!EXT4_I(inode)->i_delalloc_reserved_flag)
1911 		percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1912 
1913 	if (sbi->s_log_groups_per_flex) {
1914 		ext4_group_t flex_group = ext4_flex_group(sbi, group_no);
1915 		spin_lock(sb_bgl_lock(sbi, flex_group));
1916 		sbi->s_flex_groups[flex_group].free_blocks -= num;
1917 		spin_unlock(sb_bgl_lock(sbi, flex_group));
1918 	}
1919 
1920 	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1921 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1922 	if (!fatal)
1923 		fatal = err;
1924 
1925 	sb->s_dirt = 1;
1926 	if (fatal)
1927 		goto out;
1928 
1929 	*errp = 0;
1930 	brelse(bitmap_bh);
1931 	DQUOT_FREE_BLOCK(inode, *count-num);
1932 	*count = num;
1933 	return ret_block;
1934 
1935 io_error:
1936 	*errp = -EIO;
1937 out:
1938 	if (fatal) {
1939 		*errp = fatal;
1940 		ext4_std_error(sb, fatal);
1941 	}
1942 	/*
1943 	 * Undo the block allocation
1944 	 */
1945 	if (!performed_allocation)
1946 		DQUOT_FREE_BLOCK(inode, *count);
1947 	brelse(bitmap_bh);
1948 	return 0;
1949 }
1950 
1951 #define EXT4_META_BLOCK 0x1
1952 
1953 static ext4_fsblk_t do_blk_alloc(handle_t *handle, struct inode *inode,
1954 				ext4_lblk_t iblock, ext4_fsblk_t goal,
1955 				unsigned long *count, int *errp, int flags)
1956 {
1957 	struct ext4_allocation_request ar;
1958 	ext4_fsblk_t ret;
1959 
1960 	if (!test_opt(inode->i_sb, MBALLOC)) {
1961 		return ext4_old_new_blocks(handle, inode, goal, count, errp);
1962 	}
1963 
1964 	memset(&ar, 0, sizeof(ar));
1965 	/* Fill with neighbour allocated blocks */
1966 
1967 	ar.inode = inode;
1968 	ar.goal = goal;
1969 	ar.len = *count;
1970 	ar.logical = iblock;
1971 
1972 	if (S_ISREG(inode->i_mode) && !(flags & EXT4_META_BLOCK))
1973 		/* enable in-core preallocation for data block allocation */
1974 		ar.flags = EXT4_MB_HINT_DATA;
1975 	else
1976 		/* disable in-core preallocation for non-regular files */
1977 		ar.flags = 0;
1978 
1979 	ret = ext4_mb_new_blocks(handle, &ar, errp);
1980 	*count = ar.len;
1981 	return ret;
1982 }
1983 
1984 /*
1985  * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks
1986  *
1987  * @handle:             handle to this transaction
1988  * @inode:              file inode
1989  * @goal:               given target block(filesystem wide)
1990  * @count:		total number of blocks need
1991  * @errp:               error code
1992  *
1993  * Return 1st allocated block numberon success, *count stores total account
1994  * error stores in errp pointer
1995  */
1996 ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode,
1997 		ext4_fsblk_t goal, unsigned long *count, int *errp)
1998 {
1999 	ext4_fsblk_t ret;
2000 	ret = do_blk_alloc(handle, inode, 0, goal,
2001 				count, errp, EXT4_META_BLOCK);
2002 	/*
2003 	 * Account for the allocated meta blocks
2004 	 */
2005 	if (!(*errp)) {
2006 		spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2007 		EXT4_I(inode)->i_allocated_meta_blocks += *count;
2008 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2009 	}
2010 	return ret;
2011 }
2012 
2013 /*
2014  * ext4_new_meta_block() -- allocate block for meta data (indexing) blocks
2015  *
2016  * @handle:             handle to this transaction
2017  * @inode:              file inode
2018  * @goal:               given target block(filesystem wide)
2019  * @errp:               error code
2020  *
2021  * Return allocated block number on success
2022  */
2023 ext4_fsblk_t ext4_new_meta_block(handle_t *handle, struct inode *inode,
2024 		ext4_fsblk_t goal, int *errp)
2025 {
2026 	unsigned long count = 1;
2027 	return ext4_new_meta_blocks(handle, inode, goal, &count, errp);
2028 }
2029 
2030 /*
2031  * ext4_new_blocks() -- allocate data blocks
2032  *
2033  * @handle:             handle to this transaction
2034  * @inode:              file inode
2035  * @goal:               given target block(filesystem wide)
2036  * @count:		total number of blocks need
2037  * @errp:               error code
2038  *
2039  * Return 1st allocated block numberon success, *count stores total account
2040  * error stores in errp pointer
2041  */
2042 
2043 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
2044 				ext4_lblk_t iblock, ext4_fsblk_t goal,
2045 				unsigned long *count, int *errp)
2046 {
2047 	return do_blk_alloc(handle, inode, iblock, goal, count, errp, 0);
2048 }
2049 
2050 /**
2051  * ext4_count_free_blocks() -- count filesystem free blocks
2052  * @sb:		superblock
2053  *
2054  * Adds up the number of free blocks from each block group.
2055  */
2056 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
2057 {
2058 	ext4_fsblk_t desc_count;
2059 	struct ext4_group_desc *gdp;
2060 	ext4_group_t i;
2061 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2062 #ifdef EXT4FS_DEBUG
2063 	struct ext4_super_block *es;
2064 	ext4_fsblk_t bitmap_count;
2065 	unsigned long x;
2066 	struct buffer_head *bitmap_bh = NULL;
2067 
2068 	es = EXT4_SB(sb)->s_es;
2069 	desc_count = 0;
2070 	bitmap_count = 0;
2071 	gdp = NULL;
2072 
2073 	smp_rmb();
2074 	for (i = 0; i < ngroups; i++) {
2075 		gdp = ext4_get_group_desc(sb, i, NULL);
2076 		if (!gdp)
2077 			continue;
2078 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2079 		brelse(bitmap_bh);
2080 		bitmap_bh = ext4_read_block_bitmap(sb, i);
2081 		if (bitmap_bh == NULL)
2082 			continue;
2083 
2084 		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
2085 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
2086 			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
2087 		bitmap_count += x;
2088 	}
2089 	brelse(bitmap_bh);
2090 	printk("ext4_count_free_blocks: stored = %llu"
2091 		", computed = %llu, %llu\n",
2092 		ext4_free_blocks_count(es),
2093 		desc_count, bitmap_count);
2094 	return bitmap_count;
2095 #else
2096 	desc_count = 0;
2097 	smp_rmb();
2098 	for (i = 0; i < ngroups; i++) {
2099 		gdp = ext4_get_group_desc(sb, i, NULL);
2100 		if (!gdp)
2101 			continue;
2102 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2103 	}
2104 
2105 	return desc_count;
2106 #endif
2107 }
2108 
2109 static inline int test_root(ext4_group_t a, int b)
2110 {
2111 	int num = b;
2112 
2113 	while (a > num)
2114 		num *= b;
2115 	return num == a;
2116 }
2117 
2118 static int ext4_group_sparse(ext4_group_t group)
2119 {
2120 	if (group <= 1)
2121 		return 1;
2122 	if (!(group & 1))
2123 		return 0;
2124 	return (test_root(group, 7) || test_root(group, 5) ||
2125 		test_root(group, 3));
2126 }
2127 
2128 /**
2129  *	ext4_bg_has_super - number of blocks used by the superblock in group
2130  *	@sb: superblock for filesystem
2131  *	@group: group number to check
2132  *
2133  *	Return the number of blocks used by the superblock (primary or backup)
2134  *	in this group.  Currently this will be only 0 or 1.
2135  */
2136 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2137 {
2138 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2139 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2140 			!ext4_group_sparse(group))
2141 		return 0;
2142 	return 1;
2143 }
2144 
2145 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2146 					ext4_group_t group)
2147 {
2148 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2149 	ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2150 	ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2151 
2152 	if (group == first || group == first + 1 || group == last)
2153 		return 1;
2154 	return 0;
2155 }
2156 
2157 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2158 					ext4_group_t group)
2159 {
2160 	return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2161 }
2162 
2163 /**
2164  *	ext4_bg_num_gdb - number of blocks used by the group table in group
2165  *	@sb: superblock for filesystem
2166  *	@group: group number to check
2167  *
2168  *	Return the number of blocks used by the group descriptor table
2169  *	(primary or backup) in this group.  In the future there may be a
2170  *	different number of descriptor blocks in each group.
2171  */
2172 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2173 {
2174 	unsigned long first_meta_bg =
2175 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2176 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2177 
2178 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2179 			metagroup < first_meta_bg)
2180 		return ext4_bg_num_gdb_nometa(sb,group);
2181 
2182 	return ext4_bg_num_gdb_meta(sb,group);
2183 
2184 }
2185