1 /* 2 * linux/fs/ext2/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@dcs.ed.ac.uk), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/smp_lock.h> 26 #include <linux/time.h> 27 #include <linux/highuid.h> 28 #include <linux/pagemap.h> 29 #include <linux/quotaops.h> 30 #include <linux/module.h> 31 #include <linux/writeback.h> 32 #include <linux/buffer_head.h> 33 #include <linux/mpage.h> 34 #include "ext2.h" 35 #include "acl.h" 36 #include "xip.h" 37 38 MODULE_AUTHOR("Remy Card and others"); 39 MODULE_DESCRIPTION("Second Extended Filesystem"); 40 MODULE_LICENSE("GPL"); 41 42 static int ext2_update_inode(struct inode * inode, int do_sync); 43 44 /* 45 * Test whether an inode is a fast symlink. 46 */ 47 static inline int ext2_inode_is_fast_symlink(struct inode *inode) 48 { 49 int ea_blocks = EXT2_I(inode)->i_file_acl ? 50 (inode->i_sb->s_blocksize >> 9) : 0; 51 52 return (S_ISLNK(inode->i_mode) && 53 inode->i_blocks - ea_blocks == 0); 54 } 55 56 /* 57 * Called at each iput(). 58 * 59 * The inode may be "bad" if ext2_read_inode() saw an error from 60 * ext2_get_inode(), so we need to check that to avoid freeing random disk 61 * blocks. 62 */ 63 void ext2_put_inode(struct inode *inode) 64 { 65 if (!is_bad_inode(inode)) 66 ext2_discard_prealloc(inode); 67 } 68 69 /* 70 * Called at the last iput() if i_nlink is zero. 71 */ 72 void ext2_delete_inode (struct inode * inode) 73 { 74 if (is_bad_inode(inode)) 75 goto no_delete; 76 EXT2_I(inode)->i_dtime = get_seconds(); 77 mark_inode_dirty(inode); 78 ext2_update_inode(inode, inode_needs_sync(inode)); 79 80 inode->i_size = 0; 81 if (inode->i_blocks) 82 ext2_truncate (inode); 83 ext2_free_inode (inode); 84 85 return; 86 no_delete: 87 clear_inode(inode); /* We must guarantee clearing of inode... */ 88 } 89 90 void ext2_discard_prealloc (struct inode * inode) 91 { 92 #ifdef EXT2_PREALLOCATE 93 struct ext2_inode_info *ei = EXT2_I(inode); 94 write_lock(&ei->i_meta_lock); 95 if (ei->i_prealloc_count) { 96 unsigned short total = ei->i_prealloc_count; 97 unsigned long block = ei->i_prealloc_block; 98 ei->i_prealloc_count = 0; 99 ei->i_prealloc_block = 0; 100 write_unlock(&ei->i_meta_lock); 101 ext2_free_blocks (inode, block, total); 102 return; 103 } else 104 write_unlock(&ei->i_meta_lock); 105 #endif 106 } 107 108 static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err) 109 { 110 #ifdef EXT2FS_DEBUG 111 static unsigned long alloc_hits, alloc_attempts; 112 #endif 113 unsigned long result; 114 115 116 #ifdef EXT2_PREALLOCATE 117 struct ext2_inode_info *ei = EXT2_I(inode); 118 write_lock(&ei->i_meta_lock); 119 if (ei->i_prealloc_count && 120 (goal == ei->i_prealloc_block || goal + 1 == ei->i_prealloc_block)) 121 { 122 result = ei->i_prealloc_block++; 123 ei->i_prealloc_count--; 124 write_unlock(&ei->i_meta_lock); 125 ext2_debug ("preallocation hit (%lu/%lu).\n", 126 ++alloc_hits, ++alloc_attempts); 127 } else { 128 write_unlock(&ei->i_meta_lock); 129 ext2_discard_prealloc (inode); 130 ext2_debug ("preallocation miss (%lu/%lu).\n", 131 alloc_hits, ++alloc_attempts); 132 if (S_ISREG(inode->i_mode)) 133 result = ext2_new_block (inode, goal, 134 &ei->i_prealloc_count, 135 &ei->i_prealloc_block, err); 136 else 137 result = ext2_new_block(inode, goal, NULL, NULL, err); 138 } 139 #else 140 result = ext2_new_block (inode, goal, 0, 0, err); 141 #endif 142 return result; 143 } 144 145 typedef struct { 146 __le32 *p; 147 __le32 key; 148 struct buffer_head *bh; 149 } Indirect; 150 151 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 152 { 153 p->key = *(p->p = v); 154 p->bh = bh; 155 } 156 157 static inline int verify_chain(Indirect *from, Indirect *to) 158 { 159 while (from <= to && from->key == *from->p) 160 from++; 161 return (from > to); 162 } 163 164 /** 165 * ext2_block_to_path - parse the block number into array of offsets 166 * @inode: inode in question (we are only interested in its superblock) 167 * @i_block: block number to be parsed 168 * @offsets: array to store the offsets in 169 * @boundary: set this non-zero if the referred-to block is likely to be 170 * followed (on disk) by an indirect block. 171 * To store the locations of file's data ext2 uses a data structure common 172 * for UNIX filesystems - tree of pointers anchored in the inode, with 173 * data blocks at leaves and indirect blocks in intermediate nodes. 174 * This function translates the block number into path in that tree - 175 * return value is the path length and @offsets[n] is the offset of 176 * pointer to (n+1)th node in the nth one. If @block is out of range 177 * (negative or too large) warning is printed and zero returned. 178 * 179 * Note: function doesn't find node addresses, so no IO is needed. All 180 * we need to know is the capacity of indirect blocks (taken from the 181 * inode->i_sb). 182 */ 183 184 /* 185 * Portability note: the last comparison (check that we fit into triple 186 * indirect block) is spelled differently, because otherwise on an 187 * architecture with 32-bit longs and 8Kb pages we might get into trouble 188 * if our filesystem had 8Kb blocks. We might use long long, but that would 189 * kill us on x86. Oh, well, at least the sign propagation does not matter - 190 * i_block would have to be negative in the very beginning, so we would not 191 * get there at all. 192 */ 193 194 static int ext2_block_to_path(struct inode *inode, 195 long i_block, int offsets[4], int *boundary) 196 { 197 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); 198 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); 199 const long direct_blocks = EXT2_NDIR_BLOCKS, 200 indirect_blocks = ptrs, 201 double_blocks = (1 << (ptrs_bits * 2)); 202 int n = 0; 203 int final = 0; 204 205 if (i_block < 0) { 206 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0"); 207 } else if (i_block < direct_blocks) { 208 offsets[n++] = i_block; 209 final = direct_blocks; 210 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 211 offsets[n++] = EXT2_IND_BLOCK; 212 offsets[n++] = i_block; 213 final = ptrs; 214 } else if ((i_block -= indirect_blocks) < double_blocks) { 215 offsets[n++] = EXT2_DIND_BLOCK; 216 offsets[n++] = i_block >> ptrs_bits; 217 offsets[n++] = i_block & (ptrs - 1); 218 final = ptrs; 219 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 220 offsets[n++] = EXT2_TIND_BLOCK; 221 offsets[n++] = i_block >> (ptrs_bits * 2); 222 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 223 offsets[n++] = i_block & (ptrs - 1); 224 final = ptrs; 225 } else { 226 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big"); 227 } 228 if (boundary) 229 *boundary = (i_block & (ptrs - 1)) == (final - 1); 230 return n; 231 } 232 233 /** 234 * ext2_get_branch - read the chain of indirect blocks leading to data 235 * @inode: inode in question 236 * @depth: depth of the chain (1 - direct pointer, etc.) 237 * @offsets: offsets of pointers in inode/indirect blocks 238 * @chain: place to store the result 239 * @err: here we store the error value 240 * 241 * Function fills the array of triples <key, p, bh> and returns %NULL 242 * if everything went OK or the pointer to the last filled triple 243 * (incomplete one) otherwise. Upon the return chain[i].key contains 244 * the number of (i+1)-th block in the chain (as it is stored in memory, 245 * i.e. little-endian 32-bit), chain[i].p contains the address of that 246 * number (it points into struct inode for i==0 and into the bh->b_data 247 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 248 * block for i>0 and NULL for i==0. In other words, it holds the block 249 * numbers of the chain, addresses they were taken from (and where we can 250 * verify that chain did not change) and buffer_heads hosting these 251 * numbers. 252 * 253 * Function stops when it stumbles upon zero pointer (absent block) 254 * (pointer to last triple returned, *@err == 0) 255 * or when it gets an IO error reading an indirect block 256 * (ditto, *@err == -EIO) 257 * or when it notices that chain had been changed while it was reading 258 * (ditto, *@err == -EAGAIN) 259 * or when it reads all @depth-1 indirect blocks successfully and finds 260 * the whole chain, all way to the data (returns %NULL, *err == 0). 261 */ 262 static Indirect *ext2_get_branch(struct inode *inode, 263 int depth, 264 int *offsets, 265 Indirect chain[4], 266 int *err) 267 { 268 struct super_block *sb = inode->i_sb; 269 Indirect *p = chain; 270 struct buffer_head *bh; 271 272 *err = 0; 273 /* i_data is not going away, no lock needed */ 274 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); 275 if (!p->key) 276 goto no_block; 277 while (--depth) { 278 bh = sb_bread(sb, le32_to_cpu(p->key)); 279 if (!bh) 280 goto failure; 281 read_lock(&EXT2_I(inode)->i_meta_lock); 282 if (!verify_chain(chain, p)) 283 goto changed; 284 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 285 read_unlock(&EXT2_I(inode)->i_meta_lock); 286 if (!p->key) 287 goto no_block; 288 } 289 return NULL; 290 291 changed: 292 read_unlock(&EXT2_I(inode)->i_meta_lock); 293 brelse(bh); 294 *err = -EAGAIN; 295 goto no_block; 296 failure: 297 *err = -EIO; 298 no_block: 299 return p; 300 } 301 302 /** 303 * ext2_find_near - find a place for allocation with sufficient locality 304 * @inode: owner 305 * @ind: descriptor of indirect block. 306 * 307 * This function returns the prefered place for block allocation. 308 * It is used when heuristic for sequential allocation fails. 309 * Rules are: 310 * + if there is a block to the left of our position - allocate near it. 311 * + if pointer will live in indirect block - allocate near that block. 312 * + if pointer will live in inode - allocate in the same cylinder group. 313 * 314 * In the latter case we colour the starting block by the callers PID to 315 * prevent it from clashing with concurrent allocations for a different inode 316 * in the same block group. The PID is used here so that functionally related 317 * files will be close-by on-disk. 318 * 319 * Caller must make sure that @ind is valid and will stay that way. 320 */ 321 322 static unsigned long ext2_find_near(struct inode *inode, Indirect *ind) 323 { 324 struct ext2_inode_info *ei = EXT2_I(inode); 325 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 326 __le32 *p; 327 unsigned long bg_start; 328 unsigned long colour; 329 330 /* Try to find previous block */ 331 for (p = ind->p - 1; p >= start; p--) 332 if (*p) 333 return le32_to_cpu(*p); 334 335 /* No such thing, so let's try location of indirect block */ 336 if (ind->bh) 337 return ind->bh->b_blocknr; 338 339 /* 340 * It is going to be refered from inode itself? OK, just put it into 341 * the same cylinder group then. 342 */ 343 bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) + 344 le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block); 345 colour = (current->pid % 16) * 346 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); 347 return bg_start + colour; 348 } 349 350 /** 351 * ext2_find_goal - find a prefered place for allocation. 352 * @inode: owner 353 * @block: block we want 354 * @chain: chain of indirect blocks 355 * @partial: pointer to the last triple within a chain 356 * @goal: place to store the result. 357 * 358 * Normally this function find the prefered place for block allocation, 359 * stores it in *@goal and returns zero. If the branch had been changed 360 * under us we return -EAGAIN. 361 */ 362 363 static inline int ext2_find_goal(struct inode *inode, 364 long block, 365 Indirect chain[4], 366 Indirect *partial, 367 unsigned long *goal) 368 { 369 struct ext2_inode_info *ei = EXT2_I(inode); 370 write_lock(&ei->i_meta_lock); 371 if ((block == ei->i_next_alloc_block + 1) && ei->i_next_alloc_goal) { 372 ei->i_next_alloc_block++; 373 ei->i_next_alloc_goal++; 374 } 375 if (verify_chain(chain, partial)) { 376 /* 377 * try the heuristic for sequential allocation, 378 * failing that at least try to get decent locality. 379 */ 380 if (block == ei->i_next_alloc_block) 381 *goal = ei->i_next_alloc_goal; 382 if (!*goal) 383 *goal = ext2_find_near(inode, partial); 384 write_unlock(&ei->i_meta_lock); 385 return 0; 386 } 387 write_unlock(&ei->i_meta_lock); 388 return -EAGAIN; 389 } 390 391 /** 392 * ext2_alloc_branch - allocate and set up a chain of blocks. 393 * @inode: owner 394 * @num: depth of the chain (number of blocks to allocate) 395 * @offsets: offsets (in the blocks) to store the pointers to next. 396 * @branch: place to store the chain in. 397 * 398 * This function allocates @num blocks, zeroes out all but the last one, 399 * links them into chain and (if we are synchronous) writes them to disk. 400 * In other words, it prepares a branch that can be spliced onto the 401 * inode. It stores the information about that chain in the branch[], in 402 * the same format as ext2_get_branch() would do. We are calling it after 403 * we had read the existing part of chain and partial points to the last 404 * triple of that (one with zero ->key). Upon the exit we have the same 405 * picture as after the successful ext2_get_block(), excpet that in one 406 * place chain is disconnected - *branch->p is still zero (we did not 407 * set the last link), but branch->key contains the number that should 408 * be placed into *branch->p to fill that gap. 409 * 410 * If allocation fails we free all blocks we've allocated (and forget 411 * their buffer_heads) and return the error value the from failed 412 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain 413 * as described above and return 0. 414 */ 415 416 static int ext2_alloc_branch(struct inode *inode, 417 int num, 418 unsigned long goal, 419 int *offsets, 420 Indirect *branch) 421 { 422 int blocksize = inode->i_sb->s_blocksize; 423 int n = 0; 424 int err; 425 int i; 426 int parent = ext2_alloc_block(inode, goal, &err); 427 428 branch[0].key = cpu_to_le32(parent); 429 if (parent) for (n = 1; n < num; n++) { 430 struct buffer_head *bh; 431 /* Allocate the next block */ 432 int nr = ext2_alloc_block(inode, parent, &err); 433 if (!nr) 434 break; 435 branch[n].key = cpu_to_le32(nr); 436 /* 437 * Get buffer_head for parent block, zero it out and set 438 * the pointer to new one, then send parent to disk. 439 */ 440 bh = sb_getblk(inode->i_sb, parent); 441 lock_buffer(bh); 442 memset(bh->b_data, 0, blocksize); 443 branch[n].bh = bh; 444 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 445 *branch[n].p = branch[n].key; 446 set_buffer_uptodate(bh); 447 unlock_buffer(bh); 448 mark_buffer_dirty_inode(bh, inode); 449 /* We used to sync bh here if IS_SYNC(inode). 450 * But we now rely upon generic_osync_inode() 451 * and b_inode_buffers. But not for directories. 452 */ 453 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 454 sync_dirty_buffer(bh); 455 parent = nr; 456 } 457 if (n == num) 458 return 0; 459 460 /* Allocation failed, free what we already allocated */ 461 for (i = 1; i < n; i++) 462 bforget(branch[i].bh); 463 for (i = 0; i < n; i++) 464 ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1); 465 return err; 466 } 467 468 /** 469 * ext2_splice_branch - splice the allocated branch onto inode. 470 * @inode: owner 471 * @block: (logical) number of block we are adding 472 * @chain: chain of indirect blocks (with a missing link - see 473 * ext2_alloc_branch) 474 * @where: location of missing link 475 * @num: number of blocks we are adding 476 * 477 * This function verifies that chain (up to the missing link) had not 478 * changed, fills the missing link and does all housekeeping needed in 479 * inode (->i_blocks, etc.). In case of success we end up with the full 480 * chain to new block and return 0. Otherwise (== chain had been changed) 481 * we free the new blocks (forgetting their buffer_heads, indeed) and 482 * return -EAGAIN. 483 */ 484 485 static inline int ext2_splice_branch(struct inode *inode, 486 long block, 487 Indirect chain[4], 488 Indirect *where, 489 int num) 490 { 491 struct ext2_inode_info *ei = EXT2_I(inode); 492 int i; 493 494 /* Verify that place we are splicing to is still there and vacant */ 495 496 write_lock(&ei->i_meta_lock); 497 if (!verify_chain(chain, where-1) || *where->p) 498 goto changed; 499 500 /* That's it */ 501 502 *where->p = where->key; 503 ei->i_next_alloc_block = block; 504 ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key); 505 506 write_unlock(&ei->i_meta_lock); 507 508 /* We are done with atomic stuff, now do the rest of housekeeping */ 509 510 inode->i_ctime = CURRENT_TIME_SEC; 511 512 /* had we spliced it onto indirect block? */ 513 if (where->bh) 514 mark_buffer_dirty_inode(where->bh, inode); 515 516 mark_inode_dirty(inode); 517 return 0; 518 519 changed: 520 write_unlock(&ei->i_meta_lock); 521 for (i = 1; i < num; i++) 522 bforget(where[i].bh); 523 for (i = 0; i < num; i++) 524 ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1); 525 return -EAGAIN; 526 } 527 528 /* 529 * Allocation strategy is simple: if we have to allocate something, we will 530 * have to go the whole way to leaf. So let's do it before attaching anything 531 * to tree, set linkage between the newborn blocks, write them if sync is 532 * required, recheck the path, free and repeat if check fails, otherwise 533 * set the last missing link (that will protect us from any truncate-generated 534 * removals - all blocks on the path are immune now) and possibly force the 535 * write on the parent block. 536 * That has a nice additional property: no special recovery from the failed 537 * allocations is needed - we simply release blocks and do not touch anything 538 * reachable from inode. 539 */ 540 541 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) 542 { 543 int err = -EIO; 544 int offsets[4]; 545 Indirect chain[4]; 546 Indirect *partial; 547 unsigned long goal; 548 int left; 549 int boundary = 0; 550 int depth = ext2_block_to_path(inode, iblock, offsets, &boundary); 551 552 if (depth == 0) 553 goto out; 554 555 reread: 556 partial = ext2_get_branch(inode, depth, offsets, chain, &err); 557 558 /* Simplest case - block found, no allocation needed */ 559 if (!partial) { 560 got_it: 561 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 562 if (boundary) 563 set_buffer_boundary(bh_result); 564 /* Clean up and exit */ 565 partial = chain+depth-1; /* the whole chain */ 566 goto cleanup; 567 } 568 569 /* Next simple case - plain lookup or failed read of indirect block */ 570 if (!create || err == -EIO) { 571 cleanup: 572 while (partial > chain) { 573 brelse(partial->bh); 574 partial--; 575 } 576 out: 577 return err; 578 } 579 580 /* 581 * Indirect block might be removed by truncate while we were 582 * reading it. Handling of that case (forget what we've got and 583 * reread) is taken out of the main path. 584 */ 585 if (err == -EAGAIN) 586 goto changed; 587 588 goal = 0; 589 if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0) 590 goto changed; 591 592 left = (chain + depth) - partial; 593 err = ext2_alloc_branch(inode, left, goal, 594 offsets+(partial-chain), partial); 595 if (err) 596 goto cleanup; 597 598 if (ext2_use_xip(inode->i_sb)) { 599 /* 600 * we need to clear the block 601 */ 602 err = ext2_clear_xip_target (inode, 603 le32_to_cpu(chain[depth-1].key)); 604 if (err) 605 goto cleanup; 606 } 607 608 if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0) 609 goto changed; 610 611 set_buffer_new(bh_result); 612 goto got_it; 613 614 changed: 615 while (partial > chain) { 616 brelse(partial->bh); 617 partial--; 618 } 619 goto reread; 620 } 621 622 static int ext2_writepage(struct page *page, struct writeback_control *wbc) 623 { 624 return block_write_full_page(page, ext2_get_block, wbc); 625 } 626 627 static int ext2_readpage(struct file *file, struct page *page) 628 { 629 return mpage_readpage(page, ext2_get_block); 630 } 631 632 static int 633 ext2_readpages(struct file *file, struct address_space *mapping, 634 struct list_head *pages, unsigned nr_pages) 635 { 636 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block); 637 } 638 639 static int 640 ext2_prepare_write(struct file *file, struct page *page, 641 unsigned from, unsigned to) 642 { 643 return block_prepare_write(page,from,to,ext2_get_block); 644 } 645 646 static int 647 ext2_nobh_prepare_write(struct file *file, struct page *page, 648 unsigned from, unsigned to) 649 { 650 return nobh_prepare_write(page,from,to,ext2_get_block); 651 } 652 653 static int ext2_nobh_writepage(struct page *page, 654 struct writeback_control *wbc) 655 { 656 return nobh_writepage(page, ext2_get_block, wbc); 657 } 658 659 static sector_t ext2_bmap(struct address_space *mapping, sector_t block) 660 { 661 return generic_block_bmap(mapping,block,ext2_get_block); 662 } 663 664 static int 665 ext2_get_blocks(struct inode *inode, sector_t iblock, unsigned long max_blocks, 666 struct buffer_head *bh_result, int create) 667 { 668 int ret; 669 670 ret = ext2_get_block(inode, iblock, bh_result, create); 671 if (ret == 0) 672 bh_result->b_size = (1 << inode->i_blkbits); 673 return ret; 674 } 675 676 static ssize_t 677 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 678 loff_t offset, unsigned long nr_segs) 679 { 680 struct file *file = iocb->ki_filp; 681 struct inode *inode = file->f_mapping->host; 682 683 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 684 offset, nr_segs, ext2_get_blocks, NULL); 685 } 686 687 static int 688 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc) 689 { 690 return mpage_writepages(mapping, wbc, ext2_get_block); 691 } 692 693 struct address_space_operations ext2_aops = { 694 .readpage = ext2_readpage, 695 .readpages = ext2_readpages, 696 .writepage = ext2_writepage, 697 .sync_page = block_sync_page, 698 .prepare_write = ext2_prepare_write, 699 .commit_write = generic_commit_write, 700 .bmap = ext2_bmap, 701 .direct_IO = ext2_direct_IO, 702 .writepages = ext2_writepages, 703 }; 704 705 struct address_space_operations ext2_aops_xip = { 706 .bmap = ext2_bmap, 707 .get_xip_page = ext2_get_xip_page, 708 }; 709 710 struct address_space_operations ext2_nobh_aops = { 711 .readpage = ext2_readpage, 712 .readpages = ext2_readpages, 713 .writepage = ext2_nobh_writepage, 714 .sync_page = block_sync_page, 715 .prepare_write = ext2_nobh_prepare_write, 716 .commit_write = nobh_commit_write, 717 .bmap = ext2_bmap, 718 .direct_IO = ext2_direct_IO, 719 .writepages = ext2_writepages, 720 }; 721 722 /* 723 * Probably it should be a library function... search for first non-zero word 724 * or memcmp with zero_page, whatever is better for particular architecture. 725 * Linus? 726 */ 727 static inline int all_zeroes(__le32 *p, __le32 *q) 728 { 729 while (p < q) 730 if (*p++) 731 return 0; 732 return 1; 733 } 734 735 /** 736 * ext2_find_shared - find the indirect blocks for partial truncation. 737 * @inode: inode in question 738 * @depth: depth of the affected branch 739 * @offsets: offsets of pointers in that branch (see ext2_block_to_path) 740 * @chain: place to store the pointers to partial indirect blocks 741 * @top: place to the (detached) top of branch 742 * 743 * This is a helper function used by ext2_truncate(). 744 * 745 * When we do truncate() we may have to clean the ends of several indirect 746 * blocks but leave the blocks themselves alive. Block is partially 747 * truncated if some data below the new i_size is refered from it (and 748 * it is on the path to the first completely truncated data block, indeed). 749 * We have to free the top of that path along with everything to the right 750 * of the path. Since no allocation past the truncation point is possible 751 * until ext2_truncate() finishes, we may safely do the latter, but top 752 * of branch may require special attention - pageout below the truncation 753 * point might try to populate it. 754 * 755 * We atomically detach the top of branch from the tree, store the block 756 * number of its root in *@top, pointers to buffer_heads of partially 757 * truncated blocks - in @chain[].bh and pointers to their last elements 758 * that should not be removed - in @chain[].p. Return value is the pointer 759 * to last filled element of @chain. 760 * 761 * The work left to caller to do the actual freeing of subtrees: 762 * a) free the subtree starting from *@top 763 * b) free the subtrees whose roots are stored in 764 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 765 * c) free the subtrees growing from the inode past the @chain[0].p 766 * (no partially truncated stuff there). 767 */ 768 769 static Indirect *ext2_find_shared(struct inode *inode, 770 int depth, 771 int offsets[4], 772 Indirect chain[4], 773 __le32 *top) 774 { 775 Indirect *partial, *p; 776 int k, err; 777 778 *top = 0; 779 for (k = depth; k > 1 && !offsets[k-1]; k--) 780 ; 781 partial = ext2_get_branch(inode, k, offsets, chain, &err); 782 if (!partial) 783 partial = chain + k-1; 784 /* 785 * If the branch acquired continuation since we've looked at it - 786 * fine, it should all survive and (new) top doesn't belong to us. 787 */ 788 write_lock(&EXT2_I(inode)->i_meta_lock); 789 if (!partial->key && *partial->p) { 790 write_unlock(&EXT2_I(inode)->i_meta_lock); 791 goto no_top; 792 } 793 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 794 ; 795 /* 796 * OK, we've found the last block that must survive. The rest of our 797 * branch should be detached before unlocking. However, if that rest 798 * of branch is all ours and does not grow immediately from the inode 799 * it's easier to cheat and just decrement partial->p. 800 */ 801 if (p == chain + k - 1 && p > chain) { 802 p->p--; 803 } else { 804 *top = *p->p; 805 *p->p = 0; 806 } 807 write_unlock(&EXT2_I(inode)->i_meta_lock); 808 809 while(partial > p) 810 { 811 brelse(partial->bh); 812 partial--; 813 } 814 no_top: 815 return partial; 816 } 817 818 /** 819 * ext2_free_data - free a list of data blocks 820 * @inode: inode we are dealing with 821 * @p: array of block numbers 822 * @q: points immediately past the end of array 823 * 824 * We are freeing all blocks refered from that array (numbers are 825 * stored as little-endian 32-bit) and updating @inode->i_blocks 826 * appropriately. 827 */ 828 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q) 829 { 830 unsigned long block_to_free = 0, count = 0; 831 unsigned long nr; 832 833 for ( ; p < q ; p++) { 834 nr = le32_to_cpu(*p); 835 if (nr) { 836 *p = 0; 837 /* accumulate blocks to free if they're contiguous */ 838 if (count == 0) 839 goto free_this; 840 else if (block_to_free == nr - count) 841 count++; 842 else { 843 mark_inode_dirty(inode); 844 ext2_free_blocks (inode, block_to_free, count); 845 free_this: 846 block_to_free = nr; 847 count = 1; 848 } 849 } 850 } 851 if (count > 0) { 852 mark_inode_dirty(inode); 853 ext2_free_blocks (inode, block_to_free, count); 854 } 855 } 856 857 /** 858 * ext2_free_branches - free an array of branches 859 * @inode: inode we are dealing with 860 * @p: array of block numbers 861 * @q: pointer immediately past the end of array 862 * @depth: depth of the branches to free 863 * 864 * We are freeing all blocks refered from these branches (numbers are 865 * stored as little-endian 32-bit) and updating @inode->i_blocks 866 * appropriately. 867 */ 868 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth) 869 { 870 struct buffer_head * bh; 871 unsigned long nr; 872 873 if (depth--) { 874 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 875 for ( ; p < q ; p++) { 876 nr = le32_to_cpu(*p); 877 if (!nr) 878 continue; 879 *p = 0; 880 bh = sb_bread(inode->i_sb, nr); 881 /* 882 * A read failure? Report error and clear slot 883 * (should be rare). 884 */ 885 if (!bh) { 886 ext2_error(inode->i_sb, "ext2_free_branches", 887 "Read failure, inode=%ld, block=%ld", 888 inode->i_ino, nr); 889 continue; 890 } 891 ext2_free_branches(inode, 892 (__le32*)bh->b_data, 893 (__le32*)bh->b_data + addr_per_block, 894 depth); 895 bforget(bh); 896 ext2_free_blocks(inode, nr, 1); 897 mark_inode_dirty(inode); 898 } 899 } else 900 ext2_free_data(inode, p, q); 901 } 902 903 void ext2_truncate (struct inode * inode) 904 { 905 __le32 *i_data = EXT2_I(inode)->i_data; 906 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 907 int offsets[4]; 908 Indirect chain[4]; 909 Indirect *partial; 910 __le32 nr = 0; 911 int n; 912 long iblock; 913 unsigned blocksize; 914 915 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 916 S_ISLNK(inode->i_mode))) 917 return; 918 if (ext2_inode_is_fast_symlink(inode)) 919 return; 920 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 921 return; 922 923 ext2_discard_prealloc(inode); 924 925 blocksize = inode->i_sb->s_blocksize; 926 iblock = (inode->i_size + blocksize-1) 927 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); 928 929 if (mapping_is_xip(inode->i_mapping)) 930 xip_truncate_page(inode->i_mapping, inode->i_size); 931 else if (test_opt(inode->i_sb, NOBH)) 932 nobh_truncate_page(inode->i_mapping, inode->i_size); 933 else 934 block_truncate_page(inode->i_mapping, 935 inode->i_size, ext2_get_block); 936 937 n = ext2_block_to_path(inode, iblock, offsets, NULL); 938 if (n == 0) 939 return; 940 941 if (n == 1) { 942 ext2_free_data(inode, i_data+offsets[0], 943 i_data + EXT2_NDIR_BLOCKS); 944 goto do_indirects; 945 } 946 947 partial = ext2_find_shared(inode, n, offsets, chain, &nr); 948 /* Kill the top of shared branch (already detached) */ 949 if (nr) { 950 if (partial == chain) 951 mark_inode_dirty(inode); 952 else 953 mark_buffer_dirty_inode(partial->bh, inode); 954 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); 955 } 956 /* Clear the ends of indirect blocks on the shared branch */ 957 while (partial > chain) { 958 ext2_free_branches(inode, 959 partial->p + 1, 960 (__le32*)partial->bh->b_data+addr_per_block, 961 (chain+n-1) - partial); 962 mark_buffer_dirty_inode(partial->bh, inode); 963 brelse (partial->bh); 964 partial--; 965 } 966 do_indirects: 967 /* Kill the remaining (whole) subtrees */ 968 switch (offsets[0]) { 969 default: 970 nr = i_data[EXT2_IND_BLOCK]; 971 if (nr) { 972 i_data[EXT2_IND_BLOCK] = 0; 973 mark_inode_dirty(inode); 974 ext2_free_branches(inode, &nr, &nr+1, 1); 975 } 976 case EXT2_IND_BLOCK: 977 nr = i_data[EXT2_DIND_BLOCK]; 978 if (nr) { 979 i_data[EXT2_DIND_BLOCK] = 0; 980 mark_inode_dirty(inode); 981 ext2_free_branches(inode, &nr, &nr+1, 2); 982 } 983 case EXT2_DIND_BLOCK: 984 nr = i_data[EXT2_TIND_BLOCK]; 985 if (nr) { 986 i_data[EXT2_TIND_BLOCK] = 0; 987 mark_inode_dirty(inode); 988 ext2_free_branches(inode, &nr, &nr+1, 3); 989 } 990 case EXT2_TIND_BLOCK: 991 ; 992 } 993 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 994 if (inode_needs_sync(inode)) { 995 sync_mapping_buffers(inode->i_mapping); 996 ext2_sync_inode (inode); 997 } else { 998 mark_inode_dirty(inode); 999 } 1000 } 1001 1002 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino, 1003 struct buffer_head **p) 1004 { 1005 struct buffer_head * bh; 1006 unsigned long block_group; 1007 unsigned long block; 1008 unsigned long offset; 1009 struct ext2_group_desc * gdp; 1010 1011 *p = NULL; 1012 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) || 1013 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count)) 1014 goto Einval; 1015 1016 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); 1017 gdp = ext2_get_group_desc(sb, block_group, &bh); 1018 if (!gdp) 1019 goto Egdp; 1020 /* 1021 * Figure out the offset within the block group inode table 1022 */ 1023 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb); 1024 block = le32_to_cpu(gdp->bg_inode_table) + 1025 (offset >> EXT2_BLOCK_SIZE_BITS(sb)); 1026 if (!(bh = sb_bread(sb, block))) 1027 goto Eio; 1028 1029 *p = bh; 1030 offset &= (EXT2_BLOCK_SIZE(sb) - 1); 1031 return (struct ext2_inode *) (bh->b_data + offset); 1032 1033 Einval: 1034 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu", 1035 (unsigned long) ino); 1036 return ERR_PTR(-EINVAL); 1037 Eio: 1038 ext2_error(sb, "ext2_get_inode", 1039 "unable to read inode block - inode=%lu, block=%lu", 1040 (unsigned long) ino, block); 1041 Egdp: 1042 return ERR_PTR(-EIO); 1043 } 1044 1045 void ext2_set_inode_flags(struct inode *inode) 1046 { 1047 unsigned int flags = EXT2_I(inode)->i_flags; 1048 1049 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 1050 if (flags & EXT2_SYNC_FL) 1051 inode->i_flags |= S_SYNC; 1052 if (flags & EXT2_APPEND_FL) 1053 inode->i_flags |= S_APPEND; 1054 if (flags & EXT2_IMMUTABLE_FL) 1055 inode->i_flags |= S_IMMUTABLE; 1056 if (flags & EXT2_NOATIME_FL) 1057 inode->i_flags |= S_NOATIME; 1058 if (flags & EXT2_DIRSYNC_FL) 1059 inode->i_flags |= S_DIRSYNC; 1060 } 1061 1062 void ext2_read_inode (struct inode * inode) 1063 { 1064 struct ext2_inode_info *ei = EXT2_I(inode); 1065 ino_t ino = inode->i_ino; 1066 struct buffer_head * bh; 1067 struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); 1068 int n; 1069 1070 #ifdef CONFIG_EXT2_FS_POSIX_ACL 1071 ei->i_acl = EXT2_ACL_NOT_CACHED; 1072 ei->i_default_acl = EXT2_ACL_NOT_CACHED; 1073 #endif 1074 if (IS_ERR(raw_inode)) 1075 goto bad_inode; 1076 1077 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 1078 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 1079 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 1080 if (!(test_opt (inode->i_sb, NO_UID32))) { 1081 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 1082 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 1083 } 1084 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 1085 inode->i_size = le32_to_cpu(raw_inode->i_size); 1086 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime); 1087 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime); 1088 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime); 1089 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0; 1090 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 1091 /* We now have enough fields to check if the inode was active or not. 1092 * This is needed because nfsd might try to access dead inodes 1093 * the test is that same one that e2fsck uses 1094 * NeilBrown 1999oct15 1095 */ 1096 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) { 1097 /* this inode is deleted */ 1098 brelse (bh); 1099 goto bad_inode; 1100 } 1101 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */ 1102 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 1103 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 1104 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 1105 ei->i_frag_no = raw_inode->i_frag; 1106 ei->i_frag_size = raw_inode->i_fsize; 1107 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 1108 ei->i_dir_acl = 0; 1109 if (S_ISREG(inode->i_mode)) 1110 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 1111 else 1112 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 1113 ei->i_dtime = 0; 1114 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 1115 ei->i_state = 0; 1116 ei->i_next_alloc_block = 0; 1117 ei->i_next_alloc_goal = 0; 1118 ei->i_prealloc_count = 0; 1119 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); 1120 ei->i_dir_start_lookup = 0; 1121 1122 /* 1123 * NOTE! The in-memory inode i_data array is in little-endian order 1124 * even on big-endian machines: we do NOT byteswap the block numbers! 1125 */ 1126 for (n = 0; n < EXT2_N_BLOCKS; n++) 1127 ei->i_data[n] = raw_inode->i_block[n]; 1128 1129 if (S_ISREG(inode->i_mode)) { 1130 inode->i_op = &ext2_file_inode_operations; 1131 if (ext2_use_xip(inode->i_sb)) { 1132 inode->i_mapping->a_ops = &ext2_aops_xip; 1133 inode->i_fop = &ext2_xip_file_operations; 1134 } else if (test_opt(inode->i_sb, NOBH)) { 1135 inode->i_mapping->a_ops = &ext2_nobh_aops; 1136 inode->i_fop = &ext2_file_operations; 1137 } else { 1138 inode->i_mapping->a_ops = &ext2_aops; 1139 inode->i_fop = &ext2_file_operations; 1140 } 1141 } else if (S_ISDIR(inode->i_mode)) { 1142 inode->i_op = &ext2_dir_inode_operations; 1143 inode->i_fop = &ext2_dir_operations; 1144 if (test_opt(inode->i_sb, NOBH)) 1145 inode->i_mapping->a_ops = &ext2_nobh_aops; 1146 else 1147 inode->i_mapping->a_ops = &ext2_aops; 1148 } else if (S_ISLNK(inode->i_mode)) { 1149 if (ext2_inode_is_fast_symlink(inode)) 1150 inode->i_op = &ext2_fast_symlink_inode_operations; 1151 else { 1152 inode->i_op = &ext2_symlink_inode_operations; 1153 if (test_opt(inode->i_sb, NOBH)) 1154 inode->i_mapping->a_ops = &ext2_nobh_aops; 1155 else 1156 inode->i_mapping->a_ops = &ext2_aops; 1157 } 1158 } else { 1159 inode->i_op = &ext2_special_inode_operations; 1160 if (raw_inode->i_block[0]) 1161 init_special_inode(inode, inode->i_mode, 1162 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 1163 else 1164 init_special_inode(inode, inode->i_mode, 1165 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 1166 } 1167 brelse (bh); 1168 ext2_set_inode_flags(inode); 1169 return; 1170 1171 bad_inode: 1172 make_bad_inode(inode); 1173 return; 1174 } 1175 1176 static int ext2_update_inode(struct inode * inode, int do_sync) 1177 { 1178 struct ext2_inode_info *ei = EXT2_I(inode); 1179 struct super_block *sb = inode->i_sb; 1180 ino_t ino = inode->i_ino; 1181 uid_t uid = inode->i_uid; 1182 gid_t gid = inode->i_gid; 1183 struct buffer_head * bh; 1184 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh); 1185 int n; 1186 int err = 0; 1187 1188 if (IS_ERR(raw_inode)) 1189 return -EIO; 1190 1191 /* For fields not not tracking in the in-memory inode, 1192 * initialise them to zero for new inodes. */ 1193 if (ei->i_state & EXT2_STATE_NEW) 1194 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size); 1195 1196 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 1197 if (!(test_opt(sb, NO_UID32))) { 1198 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); 1199 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); 1200 /* 1201 * Fix up interoperability with old kernels. Otherwise, old inodes get 1202 * re-used with the upper 16 bits of the uid/gid intact 1203 */ 1204 if (!ei->i_dtime) { 1205 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid)); 1206 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid)); 1207 } else { 1208 raw_inode->i_uid_high = 0; 1209 raw_inode->i_gid_high = 0; 1210 } 1211 } else { 1212 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid)); 1213 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid)); 1214 raw_inode->i_uid_high = 0; 1215 raw_inode->i_gid_high = 0; 1216 } 1217 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 1218 raw_inode->i_size = cpu_to_le32(inode->i_size); 1219 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 1220 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 1221 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 1222 1223 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 1224 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 1225 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 1226 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 1227 raw_inode->i_frag = ei->i_frag_no; 1228 raw_inode->i_fsize = ei->i_frag_size; 1229 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 1230 if (!S_ISREG(inode->i_mode)) 1231 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 1232 else { 1233 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); 1234 if (inode->i_size > 0x7fffffffULL) { 1235 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, 1236 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || 1237 EXT2_SB(sb)->s_es->s_rev_level == 1238 cpu_to_le32(EXT2_GOOD_OLD_REV)) { 1239 /* If this is the first large file 1240 * created, add a flag to the superblock. 1241 */ 1242 lock_kernel(); 1243 ext2_update_dynamic_rev(sb); 1244 EXT2_SET_RO_COMPAT_FEATURE(sb, 1245 EXT2_FEATURE_RO_COMPAT_LARGE_FILE); 1246 unlock_kernel(); 1247 ext2_write_super(sb); 1248 } 1249 } 1250 } 1251 1252 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 1253 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1254 if (old_valid_dev(inode->i_rdev)) { 1255 raw_inode->i_block[0] = 1256 cpu_to_le32(old_encode_dev(inode->i_rdev)); 1257 raw_inode->i_block[1] = 0; 1258 } else { 1259 raw_inode->i_block[0] = 0; 1260 raw_inode->i_block[1] = 1261 cpu_to_le32(new_encode_dev(inode->i_rdev)); 1262 raw_inode->i_block[2] = 0; 1263 } 1264 } else for (n = 0; n < EXT2_N_BLOCKS; n++) 1265 raw_inode->i_block[n] = ei->i_data[n]; 1266 mark_buffer_dirty(bh); 1267 if (do_sync) { 1268 sync_dirty_buffer(bh); 1269 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1270 printk ("IO error syncing ext2 inode [%s:%08lx]\n", 1271 sb->s_id, (unsigned long) ino); 1272 err = -EIO; 1273 } 1274 } 1275 ei->i_state &= ~EXT2_STATE_NEW; 1276 brelse (bh); 1277 return err; 1278 } 1279 1280 int ext2_write_inode(struct inode *inode, int wait) 1281 { 1282 return ext2_update_inode(inode, wait); 1283 } 1284 1285 int ext2_sync_inode(struct inode *inode) 1286 { 1287 struct writeback_control wbc = { 1288 .sync_mode = WB_SYNC_ALL, 1289 .nr_to_write = 0, /* sys_fsync did this */ 1290 }; 1291 return sync_inode(inode, &wbc); 1292 } 1293 1294 int ext2_setattr(struct dentry *dentry, struct iattr *iattr) 1295 { 1296 struct inode *inode = dentry->d_inode; 1297 int error; 1298 1299 error = inode_change_ok(inode, iattr); 1300 if (error) 1301 return error; 1302 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) || 1303 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) { 1304 error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0; 1305 if (error) 1306 return error; 1307 } 1308 error = inode_setattr(inode, iattr); 1309 if (!error && (iattr->ia_valid & ATTR_MODE)) 1310 error = ext2_acl_chmod(inode); 1311 return error; 1312 } 1313