xref: /linux/fs/ext2/inode.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
35 #include "ext2.h"
36 #include "acl.h"
37 #include "xip.h"
38 
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
42 
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44 
45 /*
46  * Test whether an inode is a fast symlink.
47  */
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 		(inode->i_sb->s_blocksize >> 9) : 0;
52 
53 	return (S_ISLNK(inode->i_mode) &&
54 		inode->i_blocks - ea_blocks == 0);
55 }
56 
57 /*
58  * Called at the last iput() if i_nlink is zero.
59  */
60 void ext2_delete_inode (struct inode * inode)
61 {
62 	if (!is_bad_inode(inode))
63 		dquot_initialize(inode);
64 	truncate_inode_pages(&inode->i_data, 0);
65 
66 	if (is_bad_inode(inode))
67 		goto no_delete;
68 	EXT2_I(inode)->i_dtime	= get_seconds();
69 	mark_inode_dirty(inode);
70 	__ext2_write_inode(inode, inode_needs_sync(inode));
71 
72 	inode->i_size = 0;
73 	if (inode->i_blocks)
74 		ext2_truncate (inode);
75 	ext2_free_inode (inode);
76 
77 	return;
78 no_delete:
79 	clear_inode(inode);	/* We must guarantee clearing of inode... */
80 }
81 
82 typedef struct {
83 	__le32	*p;
84 	__le32	key;
85 	struct buffer_head *bh;
86 } Indirect;
87 
88 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
89 {
90 	p->key = *(p->p = v);
91 	p->bh = bh;
92 }
93 
94 static inline int verify_chain(Indirect *from, Indirect *to)
95 {
96 	while (from <= to && from->key == *from->p)
97 		from++;
98 	return (from > to);
99 }
100 
101 /**
102  *	ext2_block_to_path - parse the block number into array of offsets
103  *	@inode: inode in question (we are only interested in its superblock)
104  *	@i_block: block number to be parsed
105  *	@offsets: array to store the offsets in
106  *      @boundary: set this non-zero if the referred-to block is likely to be
107  *             followed (on disk) by an indirect block.
108  *	To store the locations of file's data ext2 uses a data structure common
109  *	for UNIX filesystems - tree of pointers anchored in the inode, with
110  *	data blocks at leaves and indirect blocks in intermediate nodes.
111  *	This function translates the block number into path in that tree -
112  *	return value is the path length and @offsets[n] is the offset of
113  *	pointer to (n+1)th node in the nth one. If @block is out of range
114  *	(negative or too large) warning is printed and zero returned.
115  *
116  *	Note: function doesn't find node addresses, so no IO is needed. All
117  *	we need to know is the capacity of indirect blocks (taken from the
118  *	inode->i_sb).
119  */
120 
121 /*
122  * Portability note: the last comparison (check that we fit into triple
123  * indirect block) is spelled differently, because otherwise on an
124  * architecture with 32-bit longs and 8Kb pages we might get into trouble
125  * if our filesystem had 8Kb blocks. We might use long long, but that would
126  * kill us on x86. Oh, well, at least the sign propagation does not matter -
127  * i_block would have to be negative in the very beginning, so we would not
128  * get there at all.
129  */
130 
131 static int ext2_block_to_path(struct inode *inode,
132 			long i_block, int offsets[4], int *boundary)
133 {
134 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
135 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
136 	const long direct_blocks = EXT2_NDIR_BLOCKS,
137 		indirect_blocks = ptrs,
138 		double_blocks = (1 << (ptrs_bits * 2));
139 	int n = 0;
140 	int final = 0;
141 
142 	if (i_block < 0) {
143 		ext2_msg(inode->i_sb, KERN_WARNING,
144 			"warning: %s: block < 0", __func__);
145 	} else if (i_block < direct_blocks) {
146 		offsets[n++] = i_block;
147 		final = direct_blocks;
148 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
149 		offsets[n++] = EXT2_IND_BLOCK;
150 		offsets[n++] = i_block;
151 		final = ptrs;
152 	} else if ((i_block -= indirect_blocks) < double_blocks) {
153 		offsets[n++] = EXT2_DIND_BLOCK;
154 		offsets[n++] = i_block >> ptrs_bits;
155 		offsets[n++] = i_block & (ptrs - 1);
156 		final = ptrs;
157 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
158 		offsets[n++] = EXT2_TIND_BLOCK;
159 		offsets[n++] = i_block >> (ptrs_bits * 2);
160 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
161 		offsets[n++] = i_block & (ptrs - 1);
162 		final = ptrs;
163 	} else {
164 		ext2_msg(inode->i_sb, KERN_WARNING,
165 			"warning: %s: block is too big", __func__);
166 	}
167 	if (boundary)
168 		*boundary = final - 1 - (i_block & (ptrs - 1));
169 
170 	return n;
171 }
172 
173 /**
174  *	ext2_get_branch - read the chain of indirect blocks leading to data
175  *	@inode: inode in question
176  *	@depth: depth of the chain (1 - direct pointer, etc.)
177  *	@offsets: offsets of pointers in inode/indirect blocks
178  *	@chain: place to store the result
179  *	@err: here we store the error value
180  *
181  *	Function fills the array of triples <key, p, bh> and returns %NULL
182  *	if everything went OK or the pointer to the last filled triple
183  *	(incomplete one) otherwise. Upon the return chain[i].key contains
184  *	the number of (i+1)-th block in the chain (as it is stored in memory,
185  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
186  *	number (it points into struct inode for i==0 and into the bh->b_data
187  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
188  *	block for i>0 and NULL for i==0. In other words, it holds the block
189  *	numbers of the chain, addresses they were taken from (and where we can
190  *	verify that chain did not change) and buffer_heads hosting these
191  *	numbers.
192  *
193  *	Function stops when it stumbles upon zero pointer (absent block)
194  *		(pointer to last triple returned, *@err == 0)
195  *	or when it gets an IO error reading an indirect block
196  *		(ditto, *@err == -EIO)
197  *	or when it notices that chain had been changed while it was reading
198  *		(ditto, *@err == -EAGAIN)
199  *	or when it reads all @depth-1 indirect blocks successfully and finds
200  *	the whole chain, all way to the data (returns %NULL, *err == 0).
201  */
202 static Indirect *ext2_get_branch(struct inode *inode,
203 				 int depth,
204 				 int *offsets,
205 				 Indirect chain[4],
206 				 int *err)
207 {
208 	struct super_block *sb = inode->i_sb;
209 	Indirect *p = chain;
210 	struct buffer_head *bh;
211 
212 	*err = 0;
213 	/* i_data is not going away, no lock needed */
214 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
215 	if (!p->key)
216 		goto no_block;
217 	while (--depth) {
218 		bh = sb_bread(sb, le32_to_cpu(p->key));
219 		if (!bh)
220 			goto failure;
221 		read_lock(&EXT2_I(inode)->i_meta_lock);
222 		if (!verify_chain(chain, p))
223 			goto changed;
224 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
225 		read_unlock(&EXT2_I(inode)->i_meta_lock);
226 		if (!p->key)
227 			goto no_block;
228 	}
229 	return NULL;
230 
231 changed:
232 	read_unlock(&EXT2_I(inode)->i_meta_lock);
233 	brelse(bh);
234 	*err = -EAGAIN;
235 	goto no_block;
236 failure:
237 	*err = -EIO;
238 no_block:
239 	return p;
240 }
241 
242 /**
243  *	ext2_find_near - find a place for allocation with sufficient locality
244  *	@inode: owner
245  *	@ind: descriptor of indirect block.
246  *
247  *	This function returns the preferred place for block allocation.
248  *	It is used when heuristic for sequential allocation fails.
249  *	Rules are:
250  *	  + if there is a block to the left of our position - allocate near it.
251  *	  + if pointer will live in indirect block - allocate near that block.
252  *	  + if pointer will live in inode - allocate in the same cylinder group.
253  *
254  * In the latter case we colour the starting block by the callers PID to
255  * prevent it from clashing with concurrent allocations for a different inode
256  * in the same block group.   The PID is used here so that functionally related
257  * files will be close-by on-disk.
258  *
259  *	Caller must make sure that @ind is valid and will stay that way.
260  */
261 
262 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
263 {
264 	struct ext2_inode_info *ei = EXT2_I(inode);
265 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
266 	__le32 *p;
267 	ext2_fsblk_t bg_start;
268 	ext2_fsblk_t colour;
269 
270 	/* Try to find previous block */
271 	for (p = ind->p - 1; p >= start; p--)
272 		if (*p)
273 			return le32_to_cpu(*p);
274 
275 	/* No such thing, so let's try location of indirect block */
276 	if (ind->bh)
277 		return ind->bh->b_blocknr;
278 
279 	/*
280 	 * It is going to be refered from inode itself? OK, just put it into
281 	 * the same cylinder group then.
282 	 */
283 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
284 	colour = (current->pid % 16) *
285 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
286 	return bg_start + colour;
287 }
288 
289 /**
290  *	ext2_find_goal - find a preferred place for allocation.
291  *	@inode: owner
292  *	@block:  block we want
293  *	@partial: pointer to the last triple within a chain
294  *
295  *	Returns preferred place for a block (the goal).
296  */
297 
298 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
299 					  Indirect *partial)
300 {
301 	struct ext2_block_alloc_info *block_i;
302 
303 	block_i = EXT2_I(inode)->i_block_alloc_info;
304 
305 	/*
306 	 * try the heuristic for sequential allocation,
307 	 * failing that at least try to get decent locality.
308 	 */
309 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
310 		&& (block_i->last_alloc_physical_block != 0)) {
311 		return block_i->last_alloc_physical_block + 1;
312 	}
313 
314 	return ext2_find_near(inode, partial);
315 }
316 
317 /**
318  *	ext2_blks_to_allocate: Look up the block map and count the number
319  *	of direct blocks need to be allocated for the given branch.
320  *
321  * 	@branch: chain of indirect blocks
322  *	@k: number of blocks need for indirect blocks
323  *	@blks: number of data blocks to be mapped.
324  *	@blocks_to_boundary:  the offset in the indirect block
325  *
326  *	return the total number of blocks to be allocate, including the
327  *	direct and indirect blocks.
328  */
329 static int
330 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
331 		int blocks_to_boundary)
332 {
333 	unsigned long count = 0;
334 
335 	/*
336 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
337 	 * then it's clear blocks on that path have not allocated
338 	 */
339 	if (k > 0) {
340 		/* right now don't hanel cross boundary allocation */
341 		if (blks < blocks_to_boundary + 1)
342 			count += blks;
343 		else
344 			count += blocks_to_boundary + 1;
345 		return count;
346 	}
347 
348 	count++;
349 	while (count < blks && count <= blocks_to_boundary
350 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
351 		count++;
352 	}
353 	return count;
354 }
355 
356 /**
357  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
358  *	@indirect_blks: the number of blocks need to allocate for indirect
359  *			blocks
360  *
361  *	@new_blocks: on return it will store the new block numbers for
362  *	the indirect blocks(if needed) and the first direct block,
363  *	@blks:	on return it will store the total number of allocated
364  *		direct blocks
365  */
366 static int ext2_alloc_blocks(struct inode *inode,
367 			ext2_fsblk_t goal, int indirect_blks, int blks,
368 			ext2_fsblk_t new_blocks[4], int *err)
369 {
370 	int target, i;
371 	unsigned long count = 0;
372 	int index = 0;
373 	ext2_fsblk_t current_block = 0;
374 	int ret = 0;
375 
376 	/*
377 	 * Here we try to allocate the requested multiple blocks at once,
378 	 * on a best-effort basis.
379 	 * To build a branch, we should allocate blocks for
380 	 * the indirect blocks(if not allocated yet), and at least
381 	 * the first direct block of this branch.  That's the
382 	 * minimum number of blocks need to allocate(required)
383 	 */
384 	target = blks + indirect_blks;
385 
386 	while (1) {
387 		count = target;
388 		/* allocating blocks for indirect blocks and direct blocks */
389 		current_block = ext2_new_blocks(inode,goal,&count,err);
390 		if (*err)
391 			goto failed_out;
392 
393 		target -= count;
394 		/* allocate blocks for indirect blocks */
395 		while (index < indirect_blks && count) {
396 			new_blocks[index++] = current_block++;
397 			count--;
398 		}
399 
400 		if (count > 0)
401 			break;
402 	}
403 
404 	/* save the new block number for the first direct block */
405 	new_blocks[index] = current_block;
406 
407 	/* total number of blocks allocated for direct blocks */
408 	ret = count;
409 	*err = 0;
410 	return ret;
411 failed_out:
412 	for (i = 0; i <index; i++)
413 		ext2_free_blocks(inode, new_blocks[i], 1);
414 	return ret;
415 }
416 
417 /**
418  *	ext2_alloc_branch - allocate and set up a chain of blocks.
419  *	@inode: owner
420  *	@num: depth of the chain (number of blocks to allocate)
421  *	@offsets: offsets (in the blocks) to store the pointers to next.
422  *	@branch: place to store the chain in.
423  *
424  *	This function allocates @num blocks, zeroes out all but the last one,
425  *	links them into chain and (if we are synchronous) writes them to disk.
426  *	In other words, it prepares a branch that can be spliced onto the
427  *	inode. It stores the information about that chain in the branch[], in
428  *	the same format as ext2_get_branch() would do. We are calling it after
429  *	we had read the existing part of chain and partial points to the last
430  *	triple of that (one with zero ->key). Upon the exit we have the same
431  *	picture as after the successful ext2_get_block(), excpet that in one
432  *	place chain is disconnected - *branch->p is still zero (we did not
433  *	set the last link), but branch->key contains the number that should
434  *	be placed into *branch->p to fill that gap.
435  *
436  *	If allocation fails we free all blocks we've allocated (and forget
437  *	their buffer_heads) and return the error value the from failed
438  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
439  *	as described above and return 0.
440  */
441 
442 static int ext2_alloc_branch(struct inode *inode,
443 			int indirect_blks, int *blks, ext2_fsblk_t goal,
444 			int *offsets, Indirect *branch)
445 {
446 	int blocksize = inode->i_sb->s_blocksize;
447 	int i, n = 0;
448 	int err = 0;
449 	struct buffer_head *bh;
450 	int num;
451 	ext2_fsblk_t new_blocks[4];
452 	ext2_fsblk_t current_block;
453 
454 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
455 				*blks, new_blocks, &err);
456 	if (err)
457 		return err;
458 
459 	branch[0].key = cpu_to_le32(new_blocks[0]);
460 	/*
461 	 * metadata blocks and data blocks are allocated.
462 	 */
463 	for (n = 1; n <= indirect_blks;  n++) {
464 		/*
465 		 * Get buffer_head for parent block, zero it out
466 		 * and set the pointer to new one, then send
467 		 * parent to disk.
468 		 */
469 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
470 		branch[n].bh = bh;
471 		lock_buffer(bh);
472 		memset(bh->b_data, 0, blocksize);
473 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
474 		branch[n].key = cpu_to_le32(new_blocks[n]);
475 		*branch[n].p = branch[n].key;
476 		if ( n == indirect_blks) {
477 			current_block = new_blocks[n];
478 			/*
479 			 * End of chain, update the last new metablock of
480 			 * the chain to point to the new allocated
481 			 * data blocks numbers
482 			 */
483 			for (i=1; i < num; i++)
484 				*(branch[n].p + i) = cpu_to_le32(++current_block);
485 		}
486 		set_buffer_uptodate(bh);
487 		unlock_buffer(bh);
488 		mark_buffer_dirty_inode(bh, inode);
489 		/* We used to sync bh here if IS_SYNC(inode).
490 		 * But we now rely upon generic_write_sync()
491 		 * and b_inode_buffers.  But not for directories.
492 		 */
493 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
494 			sync_dirty_buffer(bh);
495 	}
496 	*blks = num;
497 	return err;
498 }
499 
500 /**
501  * ext2_splice_branch - splice the allocated branch onto inode.
502  * @inode: owner
503  * @block: (logical) number of block we are adding
504  * @where: location of missing link
505  * @num:   number of indirect blocks we are adding
506  * @blks:  number of direct blocks we are adding
507  *
508  * This function fills the missing link and does all housekeeping needed in
509  * inode (->i_blocks, etc.). In case of success we end up with the full
510  * chain to new block and return 0.
511  */
512 static void ext2_splice_branch(struct inode *inode,
513 			long block, Indirect *where, int num, int blks)
514 {
515 	int i;
516 	struct ext2_block_alloc_info *block_i;
517 	ext2_fsblk_t current_block;
518 
519 	block_i = EXT2_I(inode)->i_block_alloc_info;
520 
521 	/* XXX LOCKING probably should have i_meta_lock ?*/
522 	/* That's it */
523 
524 	*where->p = where->key;
525 
526 	/*
527 	 * Update the host buffer_head or inode to point to more just allocated
528 	 * direct blocks blocks
529 	 */
530 	if (num == 0 && blks > 1) {
531 		current_block = le32_to_cpu(where->key) + 1;
532 		for (i = 1; i < blks; i++)
533 			*(where->p + i ) = cpu_to_le32(current_block++);
534 	}
535 
536 	/*
537 	 * update the most recently allocated logical & physical block
538 	 * in i_block_alloc_info, to assist find the proper goal block for next
539 	 * allocation
540 	 */
541 	if (block_i) {
542 		block_i->last_alloc_logical_block = block + blks - 1;
543 		block_i->last_alloc_physical_block =
544 				le32_to_cpu(where[num].key) + blks - 1;
545 	}
546 
547 	/* We are done with atomic stuff, now do the rest of housekeeping */
548 
549 	/* had we spliced it onto indirect block? */
550 	if (where->bh)
551 		mark_buffer_dirty_inode(where->bh, inode);
552 
553 	inode->i_ctime = CURRENT_TIME_SEC;
554 	mark_inode_dirty(inode);
555 }
556 
557 /*
558  * Allocation strategy is simple: if we have to allocate something, we will
559  * have to go the whole way to leaf. So let's do it before attaching anything
560  * to tree, set linkage between the newborn blocks, write them if sync is
561  * required, recheck the path, free and repeat if check fails, otherwise
562  * set the last missing link (that will protect us from any truncate-generated
563  * removals - all blocks on the path are immune now) and possibly force the
564  * write on the parent block.
565  * That has a nice additional property: no special recovery from the failed
566  * allocations is needed - we simply release blocks and do not touch anything
567  * reachable from inode.
568  *
569  * `handle' can be NULL if create == 0.
570  *
571  * return > 0, # of blocks mapped or allocated.
572  * return = 0, if plain lookup failed.
573  * return < 0, error case.
574  */
575 static int ext2_get_blocks(struct inode *inode,
576 			   sector_t iblock, unsigned long maxblocks,
577 			   struct buffer_head *bh_result,
578 			   int create)
579 {
580 	int err = -EIO;
581 	int offsets[4];
582 	Indirect chain[4];
583 	Indirect *partial;
584 	ext2_fsblk_t goal;
585 	int indirect_blks;
586 	int blocks_to_boundary = 0;
587 	int depth;
588 	struct ext2_inode_info *ei = EXT2_I(inode);
589 	int count = 0;
590 	ext2_fsblk_t first_block = 0;
591 
592 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
593 
594 	if (depth == 0)
595 		return (err);
596 
597 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
598 	/* Simplest case - block found, no allocation needed */
599 	if (!partial) {
600 		first_block = le32_to_cpu(chain[depth - 1].key);
601 		clear_buffer_new(bh_result); /* What's this do? */
602 		count++;
603 		/*map more blocks*/
604 		while (count < maxblocks && count <= blocks_to_boundary) {
605 			ext2_fsblk_t blk;
606 
607 			if (!verify_chain(chain, chain + depth - 1)) {
608 				/*
609 				 * Indirect block might be removed by
610 				 * truncate while we were reading it.
611 				 * Handling of that case: forget what we've
612 				 * got now, go to reread.
613 				 */
614 				err = -EAGAIN;
615 				count = 0;
616 				break;
617 			}
618 			blk = le32_to_cpu(*(chain[depth-1].p + count));
619 			if (blk == first_block + count)
620 				count++;
621 			else
622 				break;
623 		}
624 		if (err != -EAGAIN)
625 			goto got_it;
626 	}
627 
628 	/* Next simple case - plain lookup or failed read of indirect block */
629 	if (!create || err == -EIO)
630 		goto cleanup;
631 
632 	mutex_lock(&ei->truncate_mutex);
633 	/*
634 	 * If the indirect block is missing while we are reading
635 	 * the chain(ext3_get_branch() returns -EAGAIN err), or
636 	 * if the chain has been changed after we grab the semaphore,
637 	 * (either because another process truncated this branch, or
638 	 * another get_block allocated this branch) re-grab the chain to see if
639 	 * the request block has been allocated or not.
640 	 *
641 	 * Since we already block the truncate/other get_block
642 	 * at this point, we will have the current copy of the chain when we
643 	 * splice the branch into the tree.
644 	 */
645 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
646 		while (partial > chain) {
647 			brelse(partial->bh);
648 			partial--;
649 		}
650 		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
651 		if (!partial) {
652 			count++;
653 			mutex_unlock(&ei->truncate_mutex);
654 			if (err)
655 				goto cleanup;
656 			clear_buffer_new(bh_result);
657 			goto got_it;
658 		}
659 	}
660 
661 	/*
662 	 * Okay, we need to do block allocation.  Lazily initialize the block
663 	 * allocation info here if necessary
664 	*/
665 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
666 		ext2_init_block_alloc_info(inode);
667 
668 	goal = ext2_find_goal(inode, iblock, partial);
669 
670 	/* the number of blocks need to allocate for [d,t]indirect blocks */
671 	indirect_blks = (chain + depth) - partial - 1;
672 	/*
673 	 * Next look up the indirect map to count the totoal number of
674 	 * direct blocks to allocate for this branch.
675 	 */
676 	count = ext2_blks_to_allocate(partial, indirect_blks,
677 					maxblocks, blocks_to_boundary);
678 	/*
679 	 * XXX ???? Block out ext2_truncate while we alter the tree
680 	 */
681 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
682 				offsets + (partial - chain), partial);
683 
684 	if (err) {
685 		mutex_unlock(&ei->truncate_mutex);
686 		goto cleanup;
687 	}
688 
689 	if (ext2_use_xip(inode->i_sb)) {
690 		/*
691 		 * we need to clear the block
692 		 */
693 		err = ext2_clear_xip_target (inode,
694 			le32_to_cpu(chain[depth-1].key));
695 		if (err) {
696 			mutex_unlock(&ei->truncate_mutex);
697 			goto cleanup;
698 		}
699 	}
700 
701 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
702 	mutex_unlock(&ei->truncate_mutex);
703 	set_buffer_new(bh_result);
704 got_it:
705 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
706 	if (count > blocks_to_boundary)
707 		set_buffer_boundary(bh_result);
708 	err = count;
709 	/* Clean up and exit */
710 	partial = chain + depth - 1;	/* the whole chain */
711 cleanup:
712 	while (partial > chain) {
713 		brelse(partial->bh);
714 		partial--;
715 	}
716 	return err;
717 }
718 
719 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
720 {
721 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
722 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
723 			      bh_result, create);
724 	if (ret > 0) {
725 		bh_result->b_size = (ret << inode->i_blkbits);
726 		ret = 0;
727 	}
728 	return ret;
729 
730 }
731 
732 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
733 		u64 start, u64 len)
734 {
735 	return generic_block_fiemap(inode, fieinfo, start, len,
736 				    ext2_get_block);
737 }
738 
739 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
740 {
741 	return block_write_full_page(page, ext2_get_block, wbc);
742 }
743 
744 static int ext2_readpage(struct file *file, struct page *page)
745 {
746 	return mpage_readpage(page, ext2_get_block);
747 }
748 
749 static int
750 ext2_readpages(struct file *file, struct address_space *mapping,
751 		struct list_head *pages, unsigned nr_pages)
752 {
753 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
754 }
755 
756 int __ext2_write_begin(struct file *file, struct address_space *mapping,
757 		loff_t pos, unsigned len, unsigned flags,
758 		struct page **pagep, void **fsdata)
759 {
760 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
761 							ext2_get_block);
762 }
763 
764 static int
765 ext2_write_begin(struct file *file, struct address_space *mapping,
766 		loff_t pos, unsigned len, unsigned flags,
767 		struct page **pagep, void **fsdata)
768 {
769 	*pagep = NULL;
770 	return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
771 }
772 
773 static int
774 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
775 		loff_t pos, unsigned len, unsigned flags,
776 		struct page **pagep, void **fsdata)
777 {
778 	/*
779 	 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
780 	 * directory handling code to pass around offsets rather than struct
781 	 * pages in order to make this work easily.
782 	 */
783 	return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
784 							ext2_get_block);
785 }
786 
787 static int ext2_nobh_writepage(struct page *page,
788 			struct writeback_control *wbc)
789 {
790 	return nobh_writepage(page, ext2_get_block, wbc);
791 }
792 
793 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
794 {
795 	return generic_block_bmap(mapping,block,ext2_get_block);
796 }
797 
798 static ssize_t
799 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
800 			loff_t offset, unsigned long nr_segs)
801 {
802 	struct file *file = iocb->ki_filp;
803 	struct inode *inode = file->f_mapping->host;
804 
805 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
806 				offset, nr_segs, ext2_get_block, NULL);
807 }
808 
809 static int
810 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
811 {
812 	return mpage_writepages(mapping, wbc, ext2_get_block);
813 }
814 
815 const struct address_space_operations ext2_aops = {
816 	.readpage		= ext2_readpage,
817 	.readpages		= ext2_readpages,
818 	.writepage		= ext2_writepage,
819 	.sync_page		= block_sync_page,
820 	.write_begin		= ext2_write_begin,
821 	.write_end		= generic_write_end,
822 	.bmap			= ext2_bmap,
823 	.direct_IO		= ext2_direct_IO,
824 	.writepages		= ext2_writepages,
825 	.migratepage		= buffer_migrate_page,
826 	.is_partially_uptodate	= block_is_partially_uptodate,
827 	.error_remove_page	= generic_error_remove_page,
828 };
829 
830 const struct address_space_operations ext2_aops_xip = {
831 	.bmap			= ext2_bmap,
832 	.get_xip_mem		= ext2_get_xip_mem,
833 };
834 
835 const struct address_space_operations ext2_nobh_aops = {
836 	.readpage		= ext2_readpage,
837 	.readpages		= ext2_readpages,
838 	.writepage		= ext2_nobh_writepage,
839 	.sync_page		= block_sync_page,
840 	.write_begin		= ext2_nobh_write_begin,
841 	.write_end		= nobh_write_end,
842 	.bmap			= ext2_bmap,
843 	.direct_IO		= ext2_direct_IO,
844 	.writepages		= ext2_writepages,
845 	.migratepage		= buffer_migrate_page,
846 	.error_remove_page	= generic_error_remove_page,
847 };
848 
849 /*
850  * Probably it should be a library function... search for first non-zero word
851  * or memcmp with zero_page, whatever is better for particular architecture.
852  * Linus?
853  */
854 static inline int all_zeroes(__le32 *p, __le32 *q)
855 {
856 	while (p < q)
857 		if (*p++)
858 			return 0;
859 	return 1;
860 }
861 
862 /**
863  *	ext2_find_shared - find the indirect blocks for partial truncation.
864  *	@inode:	  inode in question
865  *	@depth:	  depth of the affected branch
866  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
867  *	@chain:	  place to store the pointers to partial indirect blocks
868  *	@top:	  place to the (detached) top of branch
869  *
870  *	This is a helper function used by ext2_truncate().
871  *
872  *	When we do truncate() we may have to clean the ends of several indirect
873  *	blocks but leave the blocks themselves alive. Block is partially
874  *	truncated if some data below the new i_size is refered from it (and
875  *	it is on the path to the first completely truncated data block, indeed).
876  *	We have to free the top of that path along with everything to the right
877  *	of the path. Since no allocation past the truncation point is possible
878  *	until ext2_truncate() finishes, we may safely do the latter, but top
879  *	of branch may require special attention - pageout below the truncation
880  *	point might try to populate it.
881  *
882  *	We atomically detach the top of branch from the tree, store the block
883  *	number of its root in *@top, pointers to buffer_heads of partially
884  *	truncated blocks - in @chain[].bh and pointers to their last elements
885  *	that should not be removed - in @chain[].p. Return value is the pointer
886  *	to last filled element of @chain.
887  *
888  *	The work left to caller to do the actual freeing of subtrees:
889  *		a) free the subtree starting from *@top
890  *		b) free the subtrees whose roots are stored in
891  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
892  *		c) free the subtrees growing from the inode past the @chain[0].p
893  *			(no partially truncated stuff there).
894  */
895 
896 static Indirect *ext2_find_shared(struct inode *inode,
897 				int depth,
898 				int offsets[4],
899 				Indirect chain[4],
900 				__le32 *top)
901 {
902 	Indirect *partial, *p;
903 	int k, err;
904 
905 	*top = 0;
906 	for (k = depth; k > 1 && !offsets[k-1]; k--)
907 		;
908 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
909 	if (!partial)
910 		partial = chain + k-1;
911 	/*
912 	 * If the branch acquired continuation since we've looked at it -
913 	 * fine, it should all survive and (new) top doesn't belong to us.
914 	 */
915 	write_lock(&EXT2_I(inode)->i_meta_lock);
916 	if (!partial->key && *partial->p) {
917 		write_unlock(&EXT2_I(inode)->i_meta_lock);
918 		goto no_top;
919 	}
920 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
921 		;
922 	/*
923 	 * OK, we've found the last block that must survive. The rest of our
924 	 * branch should be detached before unlocking. However, if that rest
925 	 * of branch is all ours and does not grow immediately from the inode
926 	 * it's easier to cheat and just decrement partial->p.
927 	 */
928 	if (p == chain + k - 1 && p > chain) {
929 		p->p--;
930 	} else {
931 		*top = *p->p;
932 		*p->p = 0;
933 	}
934 	write_unlock(&EXT2_I(inode)->i_meta_lock);
935 
936 	while(partial > p)
937 	{
938 		brelse(partial->bh);
939 		partial--;
940 	}
941 no_top:
942 	return partial;
943 }
944 
945 /**
946  *	ext2_free_data - free a list of data blocks
947  *	@inode:	inode we are dealing with
948  *	@p:	array of block numbers
949  *	@q:	points immediately past the end of array
950  *
951  *	We are freeing all blocks refered from that array (numbers are
952  *	stored as little-endian 32-bit) and updating @inode->i_blocks
953  *	appropriately.
954  */
955 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
956 {
957 	unsigned long block_to_free = 0, count = 0;
958 	unsigned long nr;
959 
960 	for ( ; p < q ; p++) {
961 		nr = le32_to_cpu(*p);
962 		if (nr) {
963 			*p = 0;
964 			/* accumulate blocks to free if they're contiguous */
965 			if (count == 0)
966 				goto free_this;
967 			else if (block_to_free == nr - count)
968 				count++;
969 			else {
970 				mark_inode_dirty(inode);
971 				ext2_free_blocks (inode, block_to_free, count);
972 			free_this:
973 				block_to_free = nr;
974 				count = 1;
975 			}
976 		}
977 	}
978 	if (count > 0) {
979 		mark_inode_dirty(inode);
980 		ext2_free_blocks (inode, block_to_free, count);
981 	}
982 }
983 
984 /**
985  *	ext2_free_branches - free an array of branches
986  *	@inode:	inode we are dealing with
987  *	@p:	array of block numbers
988  *	@q:	pointer immediately past the end of array
989  *	@depth:	depth of the branches to free
990  *
991  *	We are freeing all blocks refered from these branches (numbers are
992  *	stored as little-endian 32-bit) and updating @inode->i_blocks
993  *	appropriately.
994  */
995 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
996 {
997 	struct buffer_head * bh;
998 	unsigned long nr;
999 
1000 	if (depth--) {
1001 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1002 		for ( ; p < q ; p++) {
1003 			nr = le32_to_cpu(*p);
1004 			if (!nr)
1005 				continue;
1006 			*p = 0;
1007 			bh = sb_bread(inode->i_sb, nr);
1008 			/*
1009 			 * A read failure? Report error and clear slot
1010 			 * (should be rare).
1011 			 */
1012 			if (!bh) {
1013 				ext2_error(inode->i_sb, "ext2_free_branches",
1014 					"Read failure, inode=%ld, block=%ld",
1015 					inode->i_ino, nr);
1016 				continue;
1017 			}
1018 			ext2_free_branches(inode,
1019 					   (__le32*)bh->b_data,
1020 					   (__le32*)bh->b_data + addr_per_block,
1021 					   depth);
1022 			bforget(bh);
1023 			ext2_free_blocks(inode, nr, 1);
1024 			mark_inode_dirty(inode);
1025 		}
1026 	} else
1027 		ext2_free_data(inode, p, q);
1028 }
1029 
1030 void ext2_truncate(struct inode *inode)
1031 {
1032 	__le32 *i_data = EXT2_I(inode)->i_data;
1033 	struct ext2_inode_info *ei = EXT2_I(inode);
1034 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1035 	int offsets[4];
1036 	Indirect chain[4];
1037 	Indirect *partial;
1038 	__le32 nr = 0;
1039 	int n;
1040 	long iblock;
1041 	unsigned blocksize;
1042 
1043 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1044 	    S_ISLNK(inode->i_mode)))
1045 		return;
1046 	if (ext2_inode_is_fast_symlink(inode))
1047 		return;
1048 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1049 		return;
1050 
1051 	blocksize = inode->i_sb->s_blocksize;
1052 	iblock = (inode->i_size + blocksize-1)
1053 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1054 
1055 	if (mapping_is_xip(inode->i_mapping))
1056 		xip_truncate_page(inode->i_mapping, inode->i_size);
1057 	else if (test_opt(inode->i_sb, NOBH))
1058 		nobh_truncate_page(inode->i_mapping,
1059 				inode->i_size, ext2_get_block);
1060 	else
1061 		block_truncate_page(inode->i_mapping,
1062 				inode->i_size, ext2_get_block);
1063 
1064 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1065 	if (n == 0)
1066 		return;
1067 
1068 	/*
1069 	 * From here we block out all ext2_get_block() callers who want to
1070 	 * modify the block allocation tree.
1071 	 */
1072 	mutex_lock(&ei->truncate_mutex);
1073 
1074 	if (n == 1) {
1075 		ext2_free_data(inode, i_data+offsets[0],
1076 					i_data + EXT2_NDIR_BLOCKS);
1077 		goto do_indirects;
1078 	}
1079 
1080 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1081 	/* Kill the top of shared branch (already detached) */
1082 	if (nr) {
1083 		if (partial == chain)
1084 			mark_inode_dirty(inode);
1085 		else
1086 			mark_buffer_dirty_inode(partial->bh, inode);
1087 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1088 	}
1089 	/* Clear the ends of indirect blocks on the shared branch */
1090 	while (partial > chain) {
1091 		ext2_free_branches(inode,
1092 				   partial->p + 1,
1093 				   (__le32*)partial->bh->b_data+addr_per_block,
1094 				   (chain+n-1) - partial);
1095 		mark_buffer_dirty_inode(partial->bh, inode);
1096 		brelse (partial->bh);
1097 		partial--;
1098 	}
1099 do_indirects:
1100 	/* Kill the remaining (whole) subtrees */
1101 	switch (offsets[0]) {
1102 		default:
1103 			nr = i_data[EXT2_IND_BLOCK];
1104 			if (nr) {
1105 				i_data[EXT2_IND_BLOCK] = 0;
1106 				mark_inode_dirty(inode);
1107 				ext2_free_branches(inode, &nr, &nr+1, 1);
1108 			}
1109 		case EXT2_IND_BLOCK:
1110 			nr = i_data[EXT2_DIND_BLOCK];
1111 			if (nr) {
1112 				i_data[EXT2_DIND_BLOCK] = 0;
1113 				mark_inode_dirty(inode);
1114 				ext2_free_branches(inode, &nr, &nr+1, 2);
1115 			}
1116 		case EXT2_DIND_BLOCK:
1117 			nr = i_data[EXT2_TIND_BLOCK];
1118 			if (nr) {
1119 				i_data[EXT2_TIND_BLOCK] = 0;
1120 				mark_inode_dirty(inode);
1121 				ext2_free_branches(inode, &nr, &nr+1, 3);
1122 			}
1123 		case EXT2_TIND_BLOCK:
1124 			;
1125 	}
1126 
1127 	ext2_discard_reservation(inode);
1128 
1129 	mutex_unlock(&ei->truncate_mutex);
1130 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1131 	if (inode_needs_sync(inode)) {
1132 		sync_mapping_buffers(inode->i_mapping);
1133 		ext2_sync_inode (inode);
1134 	} else {
1135 		mark_inode_dirty(inode);
1136 	}
1137 }
1138 
1139 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1140 					struct buffer_head **p)
1141 {
1142 	struct buffer_head * bh;
1143 	unsigned long block_group;
1144 	unsigned long block;
1145 	unsigned long offset;
1146 	struct ext2_group_desc * gdp;
1147 
1148 	*p = NULL;
1149 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1150 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1151 		goto Einval;
1152 
1153 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1154 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1155 	if (!gdp)
1156 		goto Egdp;
1157 	/*
1158 	 * Figure out the offset within the block group inode table
1159 	 */
1160 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1161 	block = le32_to_cpu(gdp->bg_inode_table) +
1162 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1163 	if (!(bh = sb_bread(sb, block)))
1164 		goto Eio;
1165 
1166 	*p = bh;
1167 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1168 	return (struct ext2_inode *) (bh->b_data + offset);
1169 
1170 Einval:
1171 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1172 		   (unsigned long) ino);
1173 	return ERR_PTR(-EINVAL);
1174 Eio:
1175 	ext2_error(sb, "ext2_get_inode",
1176 		   "unable to read inode block - inode=%lu, block=%lu",
1177 		   (unsigned long) ino, block);
1178 Egdp:
1179 	return ERR_PTR(-EIO);
1180 }
1181 
1182 void ext2_set_inode_flags(struct inode *inode)
1183 {
1184 	unsigned int flags = EXT2_I(inode)->i_flags;
1185 
1186 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1187 	if (flags & EXT2_SYNC_FL)
1188 		inode->i_flags |= S_SYNC;
1189 	if (flags & EXT2_APPEND_FL)
1190 		inode->i_flags |= S_APPEND;
1191 	if (flags & EXT2_IMMUTABLE_FL)
1192 		inode->i_flags |= S_IMMUTABLE;
1193 	if (flags & EXT2_NOATIME_FL)
1194 		inode->i_flags |= S_NOATIME;
1195 	if (flags & EXT2_DIRSYNC_FL)
1196 		inode->i_flags |= S_DIRSYNC;
1197 }
1198 
1199 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1200 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1201 {
1202 	unsigned int flags = ei->vfs_inode.i_flags;
1203 
1204 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1205 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1206 	if (flags & S_SYNC)
1207 		ei->i_flags |= EXT2_SYNC_FL;
1208 	if (flags & S_APPEND)
1209 		ei->i_flags |= EXT2_APPEND_FL;
1210 	if (flags & S_IMMUTABLE)
1211 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1212 	if (flags & S_NOATIME)
1213 		ei->i_flags |= EXT2_NOATIME_FL;
1214 	if (flags & S_DIRSYNC)
1215 		ei->i_flags |= EXT2_DIRSYNC_FL;
1216 }
1217 
1218 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1219 {
1220 	struct ext2_inode_info *ei;
1221 	struct buffer_head * bh;
1222 	struct ext2_inode *raw_inode;
1223 	struct inode *inode;
1224 	long ret = -EIO;
1225 	int n;
1226 
1227 	inode = iget_locked(sb, ino);
1228 	if (!inode)
1229 		return ERR_PTR(-ENOMEM);
1230 	if (!(inode->i_state & I_NEW))
1231 		return inode;
1232 
1233 	ei = EXT2_I(inode);
1234 	ei->i_block_alloc_info = NULL;
1235 
1236 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1237 	if (IS_ERR(raw_inode)) {
1238 		ret = PTR_ERR(raw_inode);
1239  		goto bad_inode;
1240 	}
1241 
1242 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1243 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1244 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1245 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1246 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1247 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1248 	}
1249 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1250 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1251 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1252 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1253 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1254 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1255 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1256 	/* We now have enough fields to check if the inode was active or not.
1257 	 * This is needed because nfsd might try to access dead inodes
1258 	 * the test is that same one that e2fsck uses
1259 	 * NeilBrown 1999oct15
1260 	 */
1261 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1262 		/* this inode is deleted */
1263 		brelse (bh);
1264 		ret = -ESTALE;
1265 		goto bad_inode;
1266 	}
1267 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1268 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1269 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1270 	ei->i_frag_no = raw_inode->i_frag;
1271 	ei->i_frag_size = raw_inode->i_fsize;
1272 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1273 	ei->i_dir_acl = 0;
1274 	if (S_ISREG(inode->i_mode))
1275 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1276 	else
1277 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1278 	ei->i_dtime = 0;
1279 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1280 	ei->i_state = 0;
1281 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1282 	ei->i_dir_start_lookup = 0;
1283 
1284 	/*
1285 	 * NOTE! The in-memory inode i_data array is in little-endian order
1286 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1287 	 */
1288 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1289 		ei->i_data[n] = raw_inode->i_block[n];
1290 
1291 	if (S_ISREG(inode->i_mode)) {
1292 		inode->i_op = &ext2_file_inode_operations;
1293 		if (ext2_use_xip(inode->i_sb)) {
1294 			inode->i_mapping->a_ops = &ext2_aops_xip;
1295 			inode->i_fop = &ext2_xip_file_operations;
1296 		} else if (test_opt(inode->i_sb, NOBH)) {
1297 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1298 			inode->i_fop = &ext2_file_operations;
1299 		} else {
1300 			inode->i_mapping->a_ops = &ext2_aops;
1301 			inode->i_fop = &ext2_file_operations;
1302 		}
1303 	} else if (S_ISDIR(inode->i_mode)) {
1304 		inode->i_op = &ext2_dir_inode_operations;
1305 		inode->i_fop = &ext2_dir_operations;
1306 		if (test_opt(inode->i_sb, NOBH))
1307 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1308 		else
1309 			inode->i_mapping->a_ops = &ext2_aops;
1310 	} else if (S_ISLNK(inode->i_mode)) {
1311 		if (ext2_inode_is_fast_symlink(inode)) {
1312 			inode->i_op = &ext2_fast_symlink_inode_operations;
1313 			nd_terminate_link(ei->i_data, inode->i_size,
1314 				sizeof(ei->i_data) - 1);
1315 		} else {
1316 			inode->i_op = &ext2_symlink_inode_operations;
1317 			if (test_opt(inode->i_sb, NOBH))
1318 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1319 			else
1320 				inode->i_mapping->a_ops = &ext2_aops;
1321 		}
1322 	} else {
1323 		inode->i_op = &ext2_special_inode_operations;
1324 		if (raw_inode->i_block[0])
1325 			init_special_inode(inode, inode->i_mode,
1326 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1327 		else
1328 			init_special_inode(inode, inode->i_mode,
1329 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1330 	}
1331 	brelse (bh);
1332 	ext2_set_inode_flags(inode);
1333 	unlock_new_inode(inode);
1334 	return inode;
1335 
1336 bad_inode:
1337 	iget_failed(inode);
1338 	return ERR_PTR(ret);
1339 }
1340 
1341 static int __ext2_write_inode(struct inode *inode, int do_sync)
1342 {
1343 	struct ext2_inode_info *ei = EXT2_I(inode);
1344 	struct super_block *sb = inode->i_sb;
1345 	ino_t ino = inode->i_ino;
1346 	uid_t uid = inode->i_uid;
1347 	gid_t gid = inode->i_gid;
1348 	struct buffer_head * bh;
1349 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1350 	int n;
1351 	int err = 0;
1352 
1353 	if (IS_ERR(raw_inode))
1354  		return -EIO;
1355 
1356 	/* For fields not not tracking in the in-memory inode,
1357 	 * initialise them to zero for new inodes. */
1358 	if (ei->i_state & EXT2_STATE_NEW)
1359 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1360 
1361 	ext2_get_inode_flags(ei);
1362 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1363 	if (!(test_opt(sb, NO_UID32))) {
1364 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1365 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1366 /*
1367  * Fix up interoperability with old kernels. Otherwise, old inodes get
1368  * re-used with the upper 16 bits of the uid/gid intact
1369  */
1370 		if (!ei->i_dtime) {
1371 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1372 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1373 		} else {
1374 			raw_inode->i_uid_high = 0;
1375 			raw_inode->i_gid_high = 0;
1376 		}
1377 	} else {
1378 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1379 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1380 		raw_inode->i_uid_high = 0;
1381 		raw_inode->i_gid_high = 0;
1382 	}
1383 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1384 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1385 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1386 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1387 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1388 
1389 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1390 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1391 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1392 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1393 	raw_inode->i_frag = ei->i_frag_no;
1394 	raw_inode->i_fsize = ei->i_frag_size;
1395 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1396 	if (!S_ISREG(inode->i_mode))
1397 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1398 	else {
1399 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1400 		if (inode->i_size > 0x7fffffffULL) {
1401 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1402 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1403 			    EXT2_SB(sb)->s_es->s_rev_level ==
1404 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1405 			       /* If this is the first large file
1406 				* created, add a flag to the superblock.
1407 				*/
1408 				spin_lock(&EXT2_SB(sb)->s_lock);
1409 				ext2_update_dynamic_rev(sb);
1410 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1411 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1412 				spin_unlock(&EXT2_SB(sb)->s_lock);
1413 				ext2_write_super(sb);
1414 			}
1415 		}
1416 	}
1417 
1418 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1419 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1420 		if (old_valid_dev(inode->i_rdev)) {
1421 			raw_inode->i_block[0] =
1422 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1423 			raw_inode->i_block[1] = 0;
1424 		} else {
1425 			raw_inode->i_block[0] = 0;
1426 			raw_inode->i_block[1] =
1427 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1428 			raw_inode->i_block[2] = 0;
1429 		}
1430 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1431 		raw_inode->i_block[n] = ei->i_data[n];
1432 	mark_buffer_dirty(bh);
1433 	if (do_sync) {
1434 		sync_dirty_buffer(bh);
1435 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1436 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1437 				sb->s_id, (unsigned long) ino);
1438 			err = -EIO;
1439 		}
1440 	}
1441 	ei->i_state &= ~EXT2_STATE_NEW;
1442 	brelse (bh);
1443 	return err;
1444 }
1445 
1446 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1447 {
1448 	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1449 }
1450 
1451 int ext2_sync_inode(struct inode *inode)
1452 {
1453 	struct writeback_control wbc = {
1454 		.sync_mode = WB_SYNC_ALL,
1455 		.nr_to_write = 0,	/* sys_fsync did this */
1456 	};
1457 	return sync_inode(inode, &wbc);
1458 }
1459 
1460 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1461 {
1462 	struct inode *inode = dentry->d_inode;
1463 	int error;
1464 
1465 	error = inode_change_ok(inode, iattr);
1466 	if (error)
1467 		return error;
1468 
1469 	if (is_quota_modification(inode, iattr))
1470 		dquot_initialize(inode);
1471 	if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1472 	    (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1473 		error = dquot_transfer(inode, iattr);
1474 		if (error)
1475 			return error;
1476 	}
1477 	error = inode_setattr(inode, iattr);
1478 	if (!error && (iattr->ia_valid & ATTR_MODE))
1479 		error = ext2_acl_chmod(inode);
1480 	return error;
1481 }
1482