xref: /linux/fs/ext2/inode.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include "ext2.h"
37 #include "acl.h"
38 #include "xip.h"
39 
40 MODULE_AUTHOR("Remy Card and others");
41 MODULE_DESCRIPTION("Second Extended Filesystem");
42 MODULE_LICENSE("GPL");
43 
44 static int __ext2_write_inode(struct inode *inode, int do_sync);
45 
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 {
51 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
52 		(inode->i_sb->s_blocksize >> 9) : 0;
53 
54 	return (S_ISLNK(inode->i_mode) &&
55 		inode->i_blocks - ea_blocks == 0);
56 }
57 
58 /*
59  * Called at the last iput() if i_nlink is zero.
60  */
61 void ext2_delete_inode (struct inode * inode)
62 {
63 	if (!is_bad_inode(inode))
64 		dquot_initialize(inode);
65 	truncate_inode_pages(&inode->i_data, 0);
66 
67 	if (is_bad_inode(inode))
68 		goto no_delete;
69 	EXT2_I(inode)->i_dtime	= get_seconds();
70 	mark_inode_dirty(inode);
71 	__ext2_write_inode(inode, inode_needs_sync(inode));
72 
73 	inode->i_size = 0;
74 	if (inode->i_blocks)
75 		ext2_truncate (inode);
76 	ext2_free_inode (inode);
77 
78 	return;
79 no_delete:
80 	clear_inode(inode);	/* We must guarantee clearing of inode... */
81 }
82 
83 typedef struct {
84 	__le32	*p;
85 	__le32	key;
86 	struct buffer_head *bh;
87 } Indirect;
88 
89 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
90 {
91 	p->key = *(p->p = v);
92 	p->bh = bh;
93 }
94 
95 static inline int verify_chain(Indirect *from, Indirect *to)
96 {
97 	while (from <= to && from->key == *from->p)
98 		from++;
99 	return (from > to);
100 }
101 
102 /**
103  *	ext2_block_to_path - parse the block number into array of offsets
104  *	@inode: inode in question (we are only interested in its superblock)
105  *	@i_block: block number to be parsed
106  *	@offsets: array to store the offsets in
107  *      @boundary: set this non-zero if the referred-to block is likely to be
108  *             followed (on disk) by an indirect block.
109  *	To store the locations of file's data ext2 uses a data structure common
110  *	for UNIX filesystems - tree of pointers anchored in the inode, with
111  *	data blocks at leaves and indirect blocks in intermediate nodes.
112  *	This function translates the block number into path in that tree -
113  *	return value is the path length and @offsets[n] is the offset of
114  *	pointer to (n+1)th node in the nth one. If @block is out of range
115  *	(negative or too large) warning is printed and zero returned.
116  *
117  *	Note: function doesn't find node addresses, so no IO is needed. All
118  *	we need to know is the capacity of indirect blocks (taken from the
119  *	inode->i_sb).
120  */
121 
122 /*
123  * Portability note: the last comparison (check that we fit into triple
124  * indirect block) is spelled differently, because otherwise on an
125  * architecture with 32-bit longs and 8Kb pages we might get into trouble
126  * if our filesystem had 8Kb blocks. We might use long long, but that would
127  * kill us on x86. Oh, well, at least the sign propagation does not matter -
128  * i_block would have to be negative in the very beginning, so we would not
129  * get there at all.
130  */
131 
132 static int ext2_block_to_path(struct inode *inode,
133 			long i_block, int offsets[4], int *boundary)
134 {
135 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
136 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
137 	const long direct_blocks = EXT2_NDIR_BLOCKS,
138 		indirect_blocks = ptrs,
139 		double_blocks = (1 << (ptrs_bits * 2));
140 	int n = 0;
141 	int final = 0;
142 
143 	if (i_block < 0) {
144 		ext2_msg(inode->i_sb, KERN_WARNING,
145 			"warning: %s: block < 0", __func__);
146 	} else if (i_block < direct_blocks) {
147 		offsets[n++] = i_block;
148 		final = direct_blocks;
149 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
150 		offsets[n++] = EXT2_IND_BLOCK;
151 		offsets[n++] = i_block;
152 		final = ptrs;
153 	} else if ((i_block -= indirect_blocks) < double_blocks) {
154 		offsets[n++] = EXT2_DIND_BLOCK;
155 		offsets[n++] = i_block >> ptrs_bits;
156 		offsets[n++] = i_block & (ptrs - 1);
157 		final = ptrs;
158 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
159 		offsets[n++] = EXT2_TIND_BLOCK;
160 		offsets[n++] = i_block >> (ptrs_bits * 2);
161 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
162 		offsets[n++] = i_block & (ptrs - 1);
163 		final = ptrs;
164 	} else {
165 		ext2_msg(inode->i_sb, KERN_WARNING,
166 			"warning: %s: block is too big", __func__);
167 	}
168 	if (boundary)
169 		*boundary = final - 1 - (i_block & (ptrs - 1));
170 
171 	return n;
172 }
173 
174 /**
175  *	ext2_get_branch - read the chain of indirect blocks leading to data
176  *	@inode: inode in question
177  *	@depth: depth of the chain (1 - direct pointer, etc.)
178  *	@offsets: offsets of pointers in inode/indirect blocks
179  *	@chain: place to store the result
180  *	@err: here we store the error value
181  *
182  *	Function fills the array of triples <key, p, bh> and returns %NULL
183  *	if everything went OK or the pointer to the last filled triple
184  *	(incomplete one) otherwise. Upon the return chain[i].key contains
185  *	the number of (i+1)-th block in the chain (as it is stored in memory,
186  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
187  *	number (it points into struct inode for i==0 and into the bh->b_data
188  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
189  *	block for i>0 and NULL for i==0. In other words, it holds the block
190  *	numbers of the chain, addresses they were taken from (and where we can
191  *	verify that chain did not change) and buffer_heads hosting these
192  *	numbers.
193  *
194  *	Function stops when it stumbles upon zero pointer (absent block)
195  *		(pointer to last triple returned, *@err == 0)
196  *	or when it gets an IO error reading an indirect block
197  *		(ditto, *@err == -EIO)
198  *	or when it notices that chain had been changed while it was reading
199  *		(ditto, *@err == -EAGAIN)
200  *	or when it reads all @depth-1 indirect blocks successfully and finds
201  *	the whole chain, all way to the data (returns %NULL, *err == 0).
202  */
203 static Indirect *ext2_get_branch(struct inode *inode,
204 				 int depth,
205 				 int *offsets,
206 				 Indirect chain[4],
207 				 int *err)
208 {
209 	struct super_block *sb = inode->i_sb;
210 	Indirect *p = chain;
211 	struct buffer_head *bh;
212 
213 	*err = 0;
214 	/* i_data is not going away, no lock needed */
215 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
216 	if (!p->key)
217 		goto no_block;
218 	while (--depth) {
219 		bh = sb_bread(sb, le32_to_cpu(p->key));
220 		if (!bh)
221 			goto failure;
222 		read_lock(&EXT2_I(inode)->i_meta_lock);
223 		if (!verify_chain(chain, p))
224 			goto changed;
225 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
226 		read_unlock(&EXT2_I(inode)->i_meta_lock);
227 		if (!p->key)
228 			goto no_block;
229 	}
230 	return NULL;
231 
232 changed:
233 	read_unlock(&EXT2_I(inode)->i_meta_lock);
234 	brelse(bh);
235 	*err = -EAGAIN;
236 	goto no_block;
237 failure:
238 	*err = -EIO;
239 no_block:
240 	return p;
241 }
242 
243 /**
244  *	ext2_find_near - find a place for allocation with sufficient locality
245  *	@inode: owner
246  *	@ind: descriptor of indirect block.
247  *
248  *	This function returns the preferred place for block allocation.
249  *	It is used when heuristic for sequential allocation fails.
250  *	Rules are:
251  *	  + if there is a block to the left of our position - allocate near it.
252  *	  + if pointer will live in indirect block - allocate near that block.
253  *	  + if pointer will live in inode - allocate in the same cylinder group.
254  *
255  * In the latter case we colour the starting block by the callers PID to
256  * prevent it from clashing with concurrent allocations for a different inode
257  * in the same block group.   The PID is used here so that functionally related
258  * files will be close-by on-disk.
259  *
260  *	Caller must make sure that @ind is valid and will stay that way.
261  */
262 
263 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
264 {
265 	struct ext2_inode_info *ei = EXT2_I(inode);
266 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
267 	__le32 *p;
268 	ext2_fsblk_t bg_start;
269 	ext2_fsblk_t colour;
270 
271 	/* Try to find previous block */
272 	for (p = ind->p - 1; p >= start; p--)
273 		if (*p)
274 			return le32_to_cpu(*p);
275 
276 	/* No such thing, so let's try location of indirect block */
277 	if (ind->bh)
278 		return ind->bh->b_blocknr;
279 
280 	/*
281 	 * It is going to be refered from inode itself? OK, just put it into
282 	 * the same cylinder group then.
283 	 */
284 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
285 	colour = (current->pid % 16) *
286 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
287 	return bg_start + colour;
288 }
289 
290 /**
291  *	ext2_find_goal - find a preferred place for allocation.
292  *	@inode: owner
293  *	@block:  block we want
294  *	@partial: pointer to the last triple within a chain
295  *
296  *	Returns preferred place for a block (the goal).
297  */
298 
299 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
300 					  Indirect *partial)
301 {
302 	struct ext2_block_alloc_info *block_i;
303 
304 	block_i = EXT2_I(inode)->i_block_alloc_info;
305 
306 	/*
307 	 * try the heuristic for sequential allocation,
308 	 * failing that at least try to get decent locality.
309 	 */
310 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
311 		&& (block_i->last_alloc_physical_block != 0)) {
312 		return block_i->last_alloc_physical_block + 1;
313 	}
314 
315 	return ext2_find_near(inode, partial);
316 }
317 
318 /**
319  *	ext2_blks_to_allocate: Look up the block map and count the number
320  *	of direct blocks need to be allocated for the given branch.
321  *
322  * 	@branch: chain of indirect blocks
323  *	@k: number of blocks need for indirect blocks
324  *	@blks: number of data blocks to be mapped.
325  *	@blocks_to_boundary:  the offset in the indirect block
326  *
327  *	return the total number of blocks to be allocate, including the
328  *	direct and indirect blocks.
329  */
330 static int
331 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
332 		int blocks_to_boundary)
333 {
334 	unsigned long count = 0;
335 
336 	/*
337 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
338 	 * then it's clear blocks on that path have not allocated
339 	 */
340 	if (k > 0) {
341 		/* right now don't hanel cross boundary allocation */
342 		if (blks < blocks_to_boundary + 1)
343 			count += blks;
344 		else
345 			count += blocks_to_boundary + 1;
346 		return count;
347 	}
348 
349 	count++;
350 	while (count < blks && count <= blocks_to_boundary
351 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
352 		count++;
353 	}
354 	return count;
355 }
356 
357 /**
358  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
359  *	@indirect_blks: the number of blocks need to allocate for indirect
360  *			blocks
361  *
362  *	@new_blocks: on return it will store the new block numbers for
363  *	the indirect blocks(if needed) and the first direct block,
364  *	@blks:	on return it will store the total number of allocated
365  *		direct blocks
366  */
367 static int ext2_alloc_blocks(struct inode *inode,
368 			ext2_fsblk_t goal, int indirect_blks, int blks,
369 			ext2_fsblk_t new_blocks[4], int *err)
370 {
371 	int target, i;
372 	unsigned long count = 0;
373 	int index = 0;
374 	ext2_fsblk_t current_block = 0;
375 	int ret = 0;
376 
377 	/*
378 	 * Here we try to allocate the requested multiple blocks at once,
379 	 * on a best-effort basis.
380 	 * To build a branch, we should allocate blocks for
381 	 * the indirect blocks(if not allocated yet), and at least
382 	 * the first direct block of this branch.  That's the
383 	 * minimum number of blocks need to allocate(required)
384 	 */
385 	target = blks + indirect_blks;
386 
387 	while (1) {
388 		count = target;
389 		/* allocating blocks for indirect blocks and direct blocks */
390 		current_block = ext2_new_blocks(inode,goal,&count,err);
391 		if (*err)
392 			goto failed_out;
393 
394 		target -= count;
395 		/* allocate blocks for indirect blocks */
396 		while (index < indirect_blks && count) {
397 			new_blocks[index++] = current_block++;
398 			count--;
399 		}
400 
401 		if (count > 0)
402 			break;
403 	}
404 
405 	/* save the new block number for the first direct block */
406 	new_blocks[index] = current_block;
407 
408 	/* total number of blocks allocated for direct blocks */
409 	ret = count;
410 	*err = 0;
411 	return ret;
412 failed_out:
413 	for (i = 0; i <index; i++)
414 		ext2_free_blocks(inode, new_blocks[i], 1);
415 	return ret;
416 }
417 
418 /**
419  *	ext2_alloc_branch - allocate and set up a chain of blocks.
420  *	@inode: owner
421  *	@num: depth of the chain (number of blocks to allocate)
422  *	@offsets: offsets (in the blocks) to store the pointers to next.
423  *	@branch: place to store the chain in.
424  *
425  *	This function allocates @num blocks, zeroes out all but the last one,
426  *	links them into chain and (if we are synchronous) writes them to disk.
427  *	In other words, it prepares a branch that can be spliced onto the
428  *	inode. It stores the information about that chain in the branch[], in
429  *	the same format as ext2_get_branch() would do. We are calling it after
430  *	we had read the existing part of chain and partial points to the last
431  *	triple of that (one with zero ->key). Upon the exit we have the same
432  *	picture as after the successful ext2_get_block(), excpet that in one
433  *	place chain is disconnected - *branch->p is still zero (we did not
434  *	set the last link), but branch->key contains the number that should
435  *	be placed into *branch->p to fill that gap.
436  *
437  *	If allocation fails we free all blocks we've allocated (and forget
438  *	their buffer_heads) and return the error value the from failed
439  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
440  *	as described above and return 0.
441  */
442 
443 static int ext2_alloc_branch(struct inode *inode,
444 			int indirect_blks, int *blks, ext2_fsblk_t goal,
445 			int *offsets, Indirect *branch)
446 {
447 	int blocksize = inode->i_sb->s_blocksize;
448 	int i, n = 0;
449 	int err = 0;
450 	struct buffer_head *bh;
451 	int num;
452 	ext2_fsblk_t new_blocks[4];
453 	ext2_fsblk_t current_block;
454 
455 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
456 				*blks, new_blocks, &err);
457 	if (err)
458 		return err;
459 
460 	branch[0].key = cpu_to_le32(new_blocks[0]);
461 	/*
462 	 * metadata blocks and data blocks are allocated.
463 	 */
464 	for (n = 1; n <= indirect_blks;  n++) {
465 		/*
466 		 * Get buffer_head for parent block, zero it out
467 		 * and set the pointer to new one, then send
468 		 * parent to disk.
469 		 */
470 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
471 		branch[n].bh = bh;
472 		lock_buffer(bh);
473 		memset(bh->b_data, 0, blocksize);
474 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
475 		branch[n].key = cpu_to_le32(new_blocks[n]);
476 		*branch[n].p = branch[n].key;
477 		if ( n == indirect_blks) {
478 			current_block = new_blocks[n];
479 			/*
480 			 * End of chain, update the last new metablock of
481 			 * the chain to point to the new allocated
482 			 * data blocks numbers
483 			 */
484 			for (i=1; i < num; i++)
485 				*(branch[n].p + i) = cpu_to_le32(++current_block);
486 		}
487 		set_buffer_uptodate(bh);
488 		unlock_buffer(bh);
489 		mark_buffer_dirty_inode(bh, inode);
490 		/* We used to sync bh here if IS_SYNC(inode).
491 		 * But we now rely upon generic_write_sync()
492 		 * and b_inode_buffers.  But not for directories.
493 		 */
494 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
495 			sync_dirty_buffer(bh);
496 	}
497 	*blks = num;
498 	return err;
499 }
500 
501 /**
502  * ext2_splice_branch - splice the allocated branch onto inode.
503  * @inode: owner
504  * @block: (logical) number of block we are adding
505  * @where: location of missing link
506  * @num:   number of indirect blocks we are adding
507  * @blks:  number of direct blocks we are adding
508  *
509  * This function fills the missing link and does all housekeeping needed in
510  * inode (->i_blocks, etc.). In case of success we end up with the full
511  * chain to new block and return 0.
512  */
513 static void ext2_splice_branch(struct inode *inode,
514 			long block, Indirect *where, int num, int blks)
515 {
516 	int i;
517 	struct ext2_block_alloc_info *block_i;
518 	ext2_fsblk_t current_block;
519 
520 	block_i = EXT2_I(inode)->i_block_alloc_info;
521 
522 	/* XXX LOCKING probably should have i_meta_lock ?*/
523 	/* That's it */
524 
525 	*where->p = where->key;
526 
527 	/*
528 	 * Update the host buffer_head or inode to point to more just allocated
529 	 * direct blocks blocks
530 	 */
531 	if (num == 0 && blks > 1) {
532 		current_block = le32_to_cpu(where->key) + 1;
533 		for (i = 1; i < blks; i++)
534 			*(where->p + i ) = cpu_to_le32(current_block++);
535 	}
536 
537 	/*
538 	 * update the most recently allocated logical & physical block
539 	 * in i_block_alloc_info, to assist find the proper goal block for next
540 	 * allocation
541 	 */
542 	if (block_i) {
543 		block_i->last_alloc_logical_block = block + blks - 1;
544 		block_i->last_alloc_physical_block =
545 				le32_to_cpu(where[num].key) + blks - 1;
546 	}
547 
548 	/* We are done with atomic stuff, now do the rest of housekeeping */
549 
550 	/* had we spliced it onto indirect block? */
551 	if (where->bh)
552 		mark_buffer_dirty_inode(where->bh, inode);
553 
554 	inode->i_ctime = CURRENT_TIME_SEC;
555 	mark_inode_dirty(inode);
556 }
557 
558 /*
559  * Allocation strategy is simple: if we have to allocate something, we will
560  * have to go the whole way to leaf. So let's do it before attaching anything
561  * to tree, set linkage between the newborn blocks, write them if sync is
562  * required, recheck the path, free and repeat if check fails, otherwise
563  * set the last missing link (that will protect us from any truncate-generated
564  * removals - all blocks on the path are immune now) and possibly force the
565  * write on the parent block.
566  * That has a nice additional property: no special recovery from the failed
567  * allocations is needed - we simply release blocks and do not touch anything
568  * reachable from inode.
569  *
570  * `handle' can be NULL if create == 0.
571  *
572  * return > 0, # of blocks mapped or allocated.
573  * return = 0, if plain lookup failed.
574  * return < 0, error case.
575  */
576 static int ext2_get_blocks(struct inode *inode,
577 			   sector_t iblock, unsigned long maxblocks,
578 			   struct buffer_head *bh_result,
579 			   int create)
580 {
581 	int err = -EIO;
582 	int offsets[4];
583 	Indirect chain[4];
584 	Indirect *partial;
585 	ext2_fsblk_t goal;
586 	int indirect_blks;
587 	int blocks_to_boundary = 0;
588 	int depth;
589 	struct ext2_inode_info *ei = EXT2_I(inode);
590 	int count = 0;
591 	ext2_fsblk_t first_block = 0;
592 
593 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
594 
595 	if (depth == 0)
596 		return (err);
597 
598 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
599 	/* Simplest case - block found, no allocation needed */
600 	if (!partial) {
601 		first_block = le32_to_cpu(chain[depth - 1].key);
602 		clear_buffer_new(bh_result); /* What's this do? */
603 		count++;
604 		/*map more blocks*/
605 		while (count < maxblocks && count <= blocks_to_boundary) {
606 			ext2_fsblk_t blk;
607 
608 			if (!verify_chain(chain, chain + depth - 1)) {
609 				/*
610 				 * Indirect block might be removed by
611 				 * truncate while we were reading it.
612 				 * Handling of that case: forget what we've
613 				 * got now, go to reread.
614 				 */
615 				err = -EAGAIN;
616 				count = 0;
617 				break;
618 			}
619 			blk = le32_to_cpu(*(chain[depth-1].p + count));
620 			if (blk == first_block + count)
621 				count++;
622 			else
623 				break;
624 		}
625 		if (err != -EAGAIN)
626 			goto got_it;
627 	}
628 
629 	/* Next simple case - plain lookup or failed read of indirect block */
630 	if (!create || err == -EIO)
631 		goto cleanup;
632 
633 	mutex_lock(&ei->truncate_mutex);
634 	/*
635 	 * If the indirect block is missing while we are reading
636 	 * the chain(ext3_get_branch() returns -EAGAIN err), or
637 	 * if the chain has been changed after we grab the semaphore,
638 	 * (either because another process truncated this branch, or
639 	 * another get_block allocated this branch) re-grab the chain to see if
640 	 * the request block has been allocated or not.
641 	 *
642 	 * Since we already block the truncate/other get_block
643 	 * at this point, we will have the current copy of the chain when we
644 	 * splice the branch into the tree.
645 	 */
646 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
647 		while (partial > chain) {
648 			brelse(partial->bh);
649 			partial--;
650 		}
651 		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
652 		if (!partial) {
653 			count++;
654 			mutex_unlock(&ei->truncate_mutex);
655 			if (err)
656 				goto cleanup;
657 			clear_buffer_new(bh_result);
658 			goto got_it;
659 		}
660 	}
661 
662 	/*
663 	 * Okay, we need to do block allocation.  Lazily initialize the block
664 	 * allocation info here if necessary
665 	*/
666 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
667 		ext2_init_block_alloc_info(inode);
668 
669 	goal = ext2_find_goal(inode, iblock, partial);
670 
671 	/* the number of blocks need to allocate for [d,t]indirect blocks */
672 	indirect_blks = (chain + depth) - partial - 1;
673 	/*
674 	 * Next look up the indirect map to count the totoal number of
675 	 * direct blocks to allocate for this branch.
676 	 */
677 	count = ext2_blks_to_allocate(partial, indirect_blks,
678 					maxblocks, blocks_to_boundary);
679 	/*
680 	 * XXX ???? Block out ext2_truncate while we alter the tree
681 	 */
682 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
683 				offsets + (partial - chain), partial);
684 
685 	if (err) {
686 		mutex_unlock(&ei->truncate_mutex);
687 		goto cleanup;
688 	}
689 
690 	if (ext2_use_xip(inode->i_sb)) {
691 		/*
692 		 * we need to clear the block
693 		 */
694 		err = ext2_clear_xip_target (inode,
695 			le32_to_cpu(chain[depth-1].key));
696 		if (err) {
697 			mutex_unlock(&ei->truncate_mutex);
698 			goto cleanup;
699 		}
700 	}
701 
702 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
703 	mutex_unlock(&ei->truncate_mutex);
704 	set_buffer_new(bh_result);
705 got_it:
706 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
707 	if (count > blocks_to_boundary)
708 		set_buffer_boundary(bh_result);
709 	err = count;
710 	/* Clean up and exit */
711 	partial = chain + depth - 1;	/* the whole chain */
712 cleanup:
713 	while (partial > chain) {
714 		brelse(partial->bh);
715 		partial--;
716 	}
717 	return err;
718 }
719 
720 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
721 {
722 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
723 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
724 			      bh_result, create);
725 	if (ret > 0) {
726 		bh_result->b_size = (ret << inode->i_blkbits);
727 		ret = 0;
728 	}
729 	return ret;
730 
731 }
732 
733 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
734 		u64 start, u64 len)
735 {
736 	return generic_block_fiemap(inode, fieinfo, start, len,
737 				    ext2_get_block);
738 }
739 
740 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
741 {
742 	return block_write_full_page(page, ext2_get_block, wbc);
743 }
744 
745 static int ext2_readpage(struct file *file, struct page *page)
746 {
747 	return mpage_readpage(page, ext2_get_block);
748 }
749 
750 static int
751 ext2_readpages(struct file *file, struct address_space *mapping,
752 		struct list_head *pages, unsigned nr_pages)
753 {
754 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
755 }
756 
757 int __ext2_write_begin(struct file *file, struct address_space *mapping,
758 		loff_t pos, unsigned len, unsigned flags,
759 		struct page **pagep, void **fsdata)
760 {
761 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
762 							ext2_get_block);
763 }
764 
765 static int
766 ext2_write_begin(struct file *file, struct address_space *mapping,
767 		loff_t pos, unsigned len, unsigned flags,
768 		struct page **pagep, void **fsdata)
769 {
770 	*pagep = NULL;
771 	return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
772 }
773 
774 static int
775 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
776 		loff_t pos, unsigned len, unsigned flags,
777 		struct page **pagep, void **fsdata)
778 {
779 	/*
780 	 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
781 	 * directory handling code to pass around offsets rather than struct
782 	 * pages in order to make this work easily.
783 	 */
784 	return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
785 							ext2_get_block);
786 }
787 
788 static int ext2_nobh_writepage(struct page *page,
789 			struct writeback_control *wbc)
790 {
791 	return nobh_writepage(page, ext2_get_block, wbc);
792 }
793 
794 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
795 {
796 	return generic_block_bmap(mapping,block,ext2_get_block);
797 }
798 
799 static ssize_t
800 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
801 			loff_t offset, unsigned long nr_segs)
802 {
803 	struct file *file = iocb->ki_filp;
804 	struct inode *inode = file->f_mapping->host;
805 
806 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
807 				offset, nr_segs, ext2_get_block, NULL);
808 }
809 
810 static int
811 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
812 {
813 	return mpage_writepages(mapping, wbc, ext2_get_block);
814 }
815 
816 const struct address_space_operations ext2_aops = {
817 	.readpage		= ext2_readpage,
818 	.readpages		= ext2_readpages,
819 	.writepage		= ext2_writepage,
820 	.sync_page		= block_sync_page,
821 	.write_begin		= ext2_write_begin,
822 	.write_end		= generic_write_end,
823 	.bmap			= ext2_bmap,
824 	.direct_IO		= ext2_direct_IO,
825 	.writepages		= ext2_writepages,
826 	.migratepage		= buffer_migrate_page,
827 	.is_partially_uptodate	= block_is_partially_uptodate,
828 	.error_remove_page	= generic_error_remove_page,
829 };
830 
831 const struct address_space_operations ext2_aops_xip = {
832 	.bmap			= ext2_bmap,
833 	.get_xip_mem		= ext2_get_xip_mem,
834 };
835 
836 const struct address_space_operations ext2_nobh_aops = {
837 	.readpage		= ext2_readpage,
838 	.readpages		= ext2_readpages,
839 	.writepage		= ext2_nobh_writepage,
840 	.sync_page		= block_sync_page,
841 	.write_begin		= ext2_nobh_write_begin,
842 	.write_end		= nobh_write_end,
843 	.bmap			= ext2_bmap,
844 	.direct_IO		= ext2_direct_IO,
845 	.writepages		= ext2_writepages,
846 	.migratepage		= buffer_migrate_page,
847 	.error_remove_page	= generic_error_remove_page,
848 };
849 
850 /*
851  * Probably it should be a library function... search for first non-zero word
852  * or memcmp with zero_page, whatever is better for particular architecture.
853  * Linus?
854  */
855 static inline int all_zeroes(__le32 *p, __le32 *q)
856 {
857 	while (p < q)
858 		if (*p++)
859 			return 0;
860 	return 1;
861 }
862 
863 /**
864  *	ext2_find_shared - find the indirect blocks for partial truncation.
865  *	@inode:	  inode in question
866  *	@depth:	  depth of the affected branch
867  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
868  *	@chain:	  place to store the pointers to partial indirect blocks
869  *	@top:	  place to the (detached) top of branch
870  *
871  *	This is a helper function used by ext2_truncate().
872  *
873  *	When we do truncate() we may have to clean the ends of several indirect
874  *	blocks but leave the blocks themselves alive. Block is partially
875  *	truncated if some data below the new i_size is refered from it (and
876  *	it is on the path to the first completely truncated data block, indeed).
877  *	We have to free the top of that path along with everything to the right
878  *	of the path. Since no allocation past the truncation point is possible
879  *	until ext2_truncate() finishes, we may safely do the latter, but top
880  *	of branch may require special attention - pageout below the truncation
881  *	point might try to populate it.
882  *
883  *	We atomically detach the top of branch from the tree, store the block
884  *	number of its root in *@top, pointers to buffer_heads of partially
885  *	truncated blocks - in @chain[].bh and pointers to their last elements
886  *	that should not be removed - in @chain[].p. Return value is the pointer
887  *	to last filled element of @chain.
888  *
889  *	The work left to caller to do the actual freeing of subtrees:
890  *		a) free the subtree starting from *@top
891  *		b) free the subtrees whose roots are stored in
892  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
893  *		c) free the subtrees growing from the inode past the @chain[0].p
894  *			(no partially truncated stuff there).
895  */
896 
897 static Indirect *ext2_find_shared(struct inode *inode,
898 				int depth,
899 				int offsets[4],
900 				Indirect chain[4],
901 				__le32 *top)
902 {
903 	Indirect *partial, *p;
904 	int k, err;
905 
906 	*top = 0;
907 	for (k = depth; k > 1 && !offsets[k-1]; k--)
908 		;
909 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
910 	if (!partial)
911 		partial = chain + k-1;
912 	/*
913 	 * If the branch acquired continuation since we've looked at it -
914 	 * fine, it should all survive and (new) top doesn't belong to us.
915 	 */
916 	write_lock(&EXT2_I(inode)->i_meta_lock);
917 	if (!partial->key && *partial->p) {
918 		write_unlock(&EXT2_I(inode)->i_meta_lock);
919 		goto no_top;
920 	}
921 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
922 		;
923 	/*
924 	 * OK, we've found the last block that must survive. The rest of our
925 	 * branch should be detached before unlocking. However, if that rest
926 	 * of branch is all ours and does not grow immediately from the inode
927 	 * it's easier to cheat and just decrement partial->p.
928 	 */
929 	if (p == chain + k - 1 && p > chain) {
930 		p->p--;
931 	} else {
932 		*top = *p->p;
933 		*p->p = 0;
934 	}
935 	write_unlock(&EXT2_I(inode)->i_meta_lock);
936 
937 	while(partial > p)
938 	{
939 		brelse(partial->bh);
940 		partial--;
941 	}
942 no_top:
943 	return partial;
944 }
945 
946 /**
947  *	ext2_free_data - free a list of data blocks
948  *	@inode:	inode we are dealing with
949  *	@p:	array of block numbers
950  *	@q:	points immediately past the end of array
951  *
952  *	We are freeing all blocks refered from that array (numbers are
953  *	stored as little-endian 32-bit) and updating @inode->i_blocks
954  *	appropriately.
955  */
956 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
957 {
958 	unsigned long block_to_free = 0, count = 0;
959 	unsigned long nr;
960 
961 	for ( ; p < q ; p++) {
962 		nr = le32_to_cpu(*p);
963 		if (nr) {
964 			*p = 0;
965 			/* accumulate blocks to free if they're contiguous */
966 			if (count == 0)
967 				goto free_this;
968 			else if (block_to_free == nr - count)
969 				count++;
970 			else {
971 				mark_inode_dirty(inode);
972 				ext2_free_blocks (inode, block_to_free, count);
973 			free_this:
974 				block_to_free = nr;
975 				count = 1;
976 			}
977 		}
978 	}
979 	if (count > 0) {
980 		mark_inode_dirty(inode);
981 		ext2_free_blocks (inode, block_to_free, count);
982 	}
983 }
984 
985 /**
986  *	ext2_free_branches - free an array of branches
987  *	@inode:	inode we are dealing with
988  *	@p:	array of block numbers
989  *	@q:	pointer immediately past the end of array
990  *	@depth:	depth of the branches to free
991  *
992  *	We are freeing all blocks refered from these branches (numbers are
993  *	stored as little-endian 32-bit) and updating @inode->i_blocks
994  *	appropriately.
995  */
996 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
997 {
998 	struct buffer_head * bh;
999 	unsigned long nr;
1000 
1001 	if (depth--) {
1002 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1003 		for ( ; p < q ; p++) {
1004 			nr = le32_to_cpu(*p);
1005 			if (!nr)
1006 				continue;
1007 			*p = 0;
1008 			bh = sb_bread(inode->i_sb, nr);
1009 			/*
1010 			 * A read failure? Report error and clear slot
1011 			 * (should be rare).
1012 			 */
1013 			if (!bh) {
1014 				ext2_error(inode->i_sb, "ext2_free_branches",
1015 					"Read failure, inode=%ld, block=%ld",
1016 					inode->i_ino, nr);
1017 				continue;
1018 			}
1019 			ext2_free_branches(inode,
1020 					   (__le32*)bh->b_data,
1021 					   (__le32*)bh->b_data + addr_per_block,
1022 					   depth);
1023 			bforget(bh);
1024 			ext2_free_blocks(inode, nr, 1);
1025 			mark_inode_dirty(inode);
1026 		}
1027 	} else
1028 		ext2_free_data(inode, p, q);
1029 }
1030 
1031 void ext2_truncate(struct inode *inode)
1032 {
1033 	__le32 *i_data = EXT2_I(inode)->i_data;
1034 	struct ext2_inode_info *ei = EXT2_I(inode);
1035 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1036 	int offsets[4];
1037 	Indirect chain[4];
1038 	Indirect *partial;
1039 	__le32 nr = 0;
1040 	int n;
1041 	long iblock;
1042 	unsigned blocksize;
1043 
1044 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1045 	    S_ISLNK(inode->i_mode)))
1046 		return;
1047 	if (ext2_inode_is_fast_symlink(inode))
1048 		return;
1049 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1050 		return;
1051 
1052 	blocksize = inode->i_sb->s_blocksize;
1053 	iblock = (inode->i_size + blocksize-1)
1054 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1055 
1056 	if (mapping_is_xip(inode->i_mapping))
1057 		xip_truncate_page(inode->i_mapping, inode->i_size);
1058 	else if (test_opt(inode->i_sb, NOBH))
1059 		nobh_truncate_page(inode->i_mapping,
1060 				inode->i_size, ext2_get_block);
1061 	else
1062 		block_truncate_page(inode->i_mapping,
1063 				inode->i_size, ext2_get_block);
1064 
1065 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1066 	if (n == 0)
1067 		return;
1068 
1069 	/*
1070 	 * From here we block out all ext2_get_block() callers who want to
1071 	 * modify the block allocation tree.
1072 	 */
1073 	mutex_lock(&ei->truncate_mutex);
1074 
1075 	if (n == 1) {
1076 		ext2_free_data(inode, i_data+offsets[0],
1077 					i_data + EXT2_NDIR_BLOCKS);
1078 		goto do_indirects;
1079 	}
1080 
1081 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1082 	/* Kill the top of shared branch (already detached) */
1083 	if (nr) {
1084 		if (partial == chain)
1085 			mark_inode_dirty(inode);
1086 		else
1087 			mark_buffer_dirty_inode(partial->bh, inode);
1088 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1089 	}
1090 	/* Clear the ends of indirect blocks on the shared branch */
1091 	while (partial > chain) {
1092 		ext2_free_branches(inode,
1093 				   partial->p + 1,
1094 				   (__le32*)partial->bh->b_data+addr_per_block,
1095 				   (chain+n-1) - partial);
1096 		mark_buffer_dirty_inode(partial->bh, inode);
1097 		brelse (partial->bh);
1098 		partial--;
1099 	}
1100 do_indirects:
1101 	/* Kill the remaining (whole) subtrees */
1102 	switch (offsets[0]) {
1103 		default:
1104 			nr = i_data[EXT2_IND_BLOCK];
1105 			if (nr) {
1106 				i_data[EXT2_IND_BLOCK] = 0;
1107 				mark_inode_dirty(inode);
1108 				ext2_free_branches(inode, &nr, &nr+1, 1);
1109 			}
1110 		case EXT2_IND_BLOCK:
1111 			nr = i_data[EXT2_DIND_BLOCK];
1112 			if (nr) {
1113 				i_data[EXT2_DIND_BLOCK] = 0;
1114 				mark_inode_dirty(inode);
1115 				ext2_free_branches(inode, &nr, &nr+1, 2);
1116 			}
1117 		case EXT2_DIND_BLOCK:
1118 			nr = i_data[EXT2_TIND_BLOCK];
1119 			if (nr) {
1120 				i_data[EXT2_TIND_BLOCK] = 0;
1121 				mark_inode_dirty(inode);
1122 				ext2_free_branches(inode, &nr, &nr+1, 3);
1123 			}
1124 		case EXT2_TIND_BLOCK:
1125 			;
1126 	}
1127 
1128 	ext2_discard_reservation(inode);
1129 
1130 	mutex_unlock(&ei->truncate_mutex);
1131 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1132 	if (inode_needs_sync(inode)) {
1133 		sync_mapping_buffers(inode->i_mapping);
1134 		ext2_sync_inode (inode);
1135 	} else {
1136 		mark_inode_dirty(inode);
1137 	}
1138 }
1139 
1140 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1141 					struct buffer_head **p)
1142 {
1143 	struct buffer_head * bh;
1144 	unsigned long block_group;
1145 	unsigned long block;
1146 	unsigned long offset;
1147 	struct ext2_group_desc * gdp;
1148 
1149 	*p = NULL;
1150 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1151 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1152 		goto Einval;
1153 
1154 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1155 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1156 	if (!gdp)
1157 		goto Egdp;
1158 	/*
1159 	 * Figure out the offset within the block group inode table
1160 	 */
1161 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1162 	block = le32_to_cpu(gdp->bg_inode_table) +
1163 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1164 	if (!(bh = sb_bread(sb, block)))
1165 		goto Eio;
1166 
1167 	*p = bh;
1168 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1169 	return (struct ext2_inode *) (bh->b_data + offset);
1170 
1171 Einval:
1172 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1173 		   (unsigned long) ino);
1174 	return ERR_PTR(-EINVAL);
1175 Eio:
1176 	ext2_error(sb, "ext2_get_inode",
1177 		   "unable to read inode block - inode=%lu, block=%lu",
1178 		   (unsigned long) ino, block);
1179 Egdp:
1180 	return ERR_PTR(-EIO);
1181 }
1182 
1183 void ext2_set_inode_flags(struct inode *inode)
1184 {
1185 	unsigned int flags = EXT2_I(inode)->i_flags;
1186 
1187 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1188 	if (flags & EXT2_SYNC_FL)
1189 		inode->i_flags |= S_SYNC;
1190 	if (flags & EXT2_APPEND_FL)
1191 		inode->i_flags |= S_APPEND;
1192 	if (flags & EXT2_IMMUTABLE_FL)
1193 		inode->i_flags |= S_IMMUTABLE;
1194 	if (flags & EXT2_NOATIME_FL)
1195 		inode->i_flags |= S_NOATIME;
1196 	if (flags & EXT2_DIRSYNC_FL)
1197 		inode->i_flags |= S_DIRSYNC;
1198 }
1199 
1200 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1201 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1202 {
1203 	unsigned int flags = ei->vfs_inode.i_flags;
1204 
1205 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1206 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1207 	if (flags & S_SYNC)
1208 		ei->i_flags |= EXT2_SYNC_FL;
1209 	if (flags & S_APPEND)
1210 		ei->i_flags |= EXT2_APPEND_FL;
1211 	if (flags & S_IMMUTABLE)
1212 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1213 	if (flags & S_NOATIME)
1214 		ei->i_flags |= EXT2_NOATIME_FL;
1215 	if (flags & S_DIRSYNC)
1216 		ei->i_flags |= EXT2_DIRSYNC_FL;
1217 }
1218 
1219 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1220 {
1221 	struct ext2_inode_info *ei;
1222 	struct buffer_head * bh;
1223 	struct ext2_inode *raw_inode;
1224 	struct inode *inode;
1225 	long ret = -EIO;
1226 	int n;
1227 
1228 	inode = iget_locked(sb, ino);
1229 	if (!inode)
1230 		return ERR_PTR(-ENOMEM);
1231 	if (!(inode->i_state & I_NEW))
1232 		return inode;
1233 
1234 	ei = EXT2_I(inode);
1235 	ei->i_block_alloc_info = NULL;
1236 
1237 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1238 	if (IS_ERR(raw_inode)) {
1239 		ret = PTR_ERR(raw_inode);
1240  		goto bad_inode;
1241 	}
1242 
1243 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1244 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1245 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1246 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1247 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1248 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1249 	}
1250 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1251 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1252 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1253 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1254 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1255 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1256 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1257 	/* We now have enough fields to check if the inode was active or not.
1258 	 * This is needed because nfsd might try to access dead inodes
1259 	 * the test is that same one that e2fsck uses
1260 	 * NeilBrown 1999oct15
1261 	 */
1262 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1263 		/* this inode is deleted */
1264 		brelse (bh);
1265 		ret = -ESTALE;
1266 		goto bad_inode;
1267 	}
1268 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1269 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1270 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1271 	ei->i_frag_no = raw_inode->i_frag;
1272 	ei->i_frag_size = raw_inode->i_fsize;
1273 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1274 	ei->i_dir_acl = 0;
1275 	if (S_ISREG(inode->i_mode))
1276 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1277 	else
1278 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1279 	ei->i_dtime = 0;
1280 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1281 	ei->i_state = 0;
1282 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1283 	ei->i_dir_start_lookup = 0;
1284 
1285 	/*
1286 	 * NOTE! The in-memory inode i_data array is in little-endian order
1287 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1288 	 */
1289 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1290 		ei->i_data[n] = raw_inode->i_block[n];
1291 
1292 	if (S_ISREG(inode->i_mode)) {
1293 		inode->i_op = &ext2_file_inode_operations;
1294 		if (ext2_use_xip(inode->i_sb)) {
1295 			inode->i_mapping->a_ops = &ext2_aops_xip;
1296 			inode->i_fop = &ext2_xip_file_operations;
1297 		} else if (test_opt(inode->i_sb, NOBH)) {
1298 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1299 			inode->i_fop = &ext2_file_operations;
1300 		} else {
1301 			inode->i_mapping->a_ops = &ext2_aops;
1302 			inode->i_fop = &ext2_file_operations;
1303 		}
1304 	} else if (S_ISDIR(inode->i_mode)) {
1305 		inode->i_op = &ext2_dir_inode_operations;
1306 		inode->i_fop = &ext2_dir_operations;
1307 		if (test_opt(inode->i_sb, NOBH))
1308 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1309 		else
1310 			inode->i_mapping->a_ops = &ext2_aops;
1311 	} else if (S_ISLNK(inode->i_mode)) {
1312 		if (ext2_inode_is_fast_symlink(inode)) {
1313 			inode->i_op = &ext2_fast_symlink_inode_operations;
1314 			nd_terminate_link(ei->i_data, inode->i_size,
1315 				sizeof(ei->i_data) - 1);
1316 		} else {
1317 			inode->i_op = &ext2_symlink_inode_operations;
1318 			if (test_opt(inode->i_sb, NOBH))
1319 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1320 			else
1321 				inode->i_mapping->a_ops = &ext2_aops;
1322 		}
1323 	} else {
1324 		inode->i_op = &ext2_special_inode_operations;
1325 		if (raw_inode->i_block[0])
1326 			init_special_inode(inode, inode->i_mode,
1327 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1328 		else
1329 			init_special_inode(inode, inode->i_mode,
1330 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1331 	}
1332 	brelse (bh);
1333 	ext2_set_inode_flags(inode);
1334 	unlock_new_inode(inode);
1335 	return inode;
1336 
1337 bad_inode:
1338 	iget_failed(inode);
1339 	return ERR_PTR(ret);
1340 }
1341 
1342 static int __ext2_write_inode(struct inode *inode, int do_sync)
1343 {
1344 	struct ext2_inode_info *ei = EXT2_I(inode);
1345 	struct super_block *sb = inode->i_sb;
1346 	ino_t ino = inode->i_ino;
1347 	uid_t uid = inode->i_uid;
1348 	gid_t gid = inode->i_gid;
1349 	struct buffer_head * bh;
1350 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1351 	int n;
1352 	int err = 0;
1353 
1354 	if (IS_ERR(raw_inode))
1355  		return -EIO;
1356 
1357 	/* For fields not not tracking in the in-memory inode,
1358 	 * initialise them to zero for new inodes. */
1359 	if (ei->i_state & EXT2_STATE_NEW)
1360 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1361 
1362 	ext2_get_inode_flags(ei);
1363 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1364 	if (!(test_opt(sb, NO_UID32))) {
1365 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1366 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1367 /*
1368  * Fix up interoperability with old kernels. Otherwise, old inodes get
1369  * re-used with the upper 16 bits of the uid/gid intact
1370  */
1371 		if (!ei->i_dtime) {
1372 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1373 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1374 		} else {
1375 			raw_inode->i_uid_high = 0;
1376 			raw_inode->i_gid_high = 0;
1377 		}
1378 	} else {
1379 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1380 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1381 		raw_inode->i_uid_high = 0;
1382 		raw_inode->i_gid_high = 0;
1383 	}
1384 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1385 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1386 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1387 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1388 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1389 
1390 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1391 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1392 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1393 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1394 	raw_inode->i_frag = ei->i_frag_no;
1395 	raw_inode->i_fsize = ei->i_frag_size;
1396 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1397 	if (!S_ISREG(inode->i_mode))
1398 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1399 	else {
1400 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1401 		if (inode->i_size > 0x7fffffffULL) {
1402 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1403 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1404 			    EXT2_SB(sb)->s_es->s_rev_level ==
1405 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1406 			       /* If this is the first large file
1407 				* created, add a flag to the superblock.
1408 				*/
1409 				lock_kernel();
1410 				ext2_update_dynamic_rev(sb);
1411 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1412 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1413 				unlock_kernel();
1414 				ext2_write_super(sb);
1415 			}
1416 		}
1417 	}
1418 
1419 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1420 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1421 		if (old_valid_dev(inode->i_rdev)) {
1422 			raw_inode->i_block[0] =
1423 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1424 			raw_inode->i_block[1] = 0;
1425 		} else {
1426 			raw_inode->i_block[0] = 0;
1427 			raw_inode->i_block[1] =
1428 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1429 			raw_inode->i_block[2] = 0;
1430 		}
1431 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1432 		raw_inode->i_block[n] = ei->i_data[n];
1433 	mark_buffer_dirty(bh);
1434 	if (do_sync) {
1435 		sync_dirty_buffer(bh);
1436 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1437 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1438 				sb->s_id, (unsigned long) ino);
1439 			err = -EIO;
1440 		}
1441 	}
1442 	ei->i_state &= ~EXT2_STATE_NEW;
1443 	brelse (bh);
1444 	return err;
1445 }
1446 
1447 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1448 {
1449 	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1450 }
1451 
1452 int ext2_sync_inode(struct inode *inode)
1453 {
1454 	struct writeback_control wbc = {
1455 		.sync_mode = WB_SYNC_ALL,
1456 		.nr_to_write = 0,	/* sys_fsync did this */
1457 	};
1458 	return sync_inode(inode, &wbc);
1459 }
1460 
1461 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1462 {
1463 	struct inode *inode = dentry->d_inode;
1464 	int error;
1465 
1466 	error = inode_change_ok(inode, iattr);
1467 	if (error)
1468 		return error;
1469 
1470 	if (iattr->ia_valid & ATTR_SIZE)
1471 		dquot_initialize(inode);
1472 	if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1473 	    (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1474 		error = dquot_transfer(inode, iattr);
1475 		if (error)
1476 			return error;
1477 	}
1478 	error = inode_setattr(inode, iattr);
1479 	if (!error && (iattr->ia_valid & ATTR_MODE))
1480 		error = ext2_acl_chmod(inode);
1481 	return error;
1482 }
1483