xref: /linux/fs/ext2/inode.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext2/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Goal-directed block allocation by Stephen Tweedie
17  * 	(sct@dcs.ed.ac.uk), 1993, 1998
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *  64-bit file support on 64-bit platforms by Jakub Jelinek
21  * 	(jj@sunsite.ms.mff.cuni.cz)
22  *
23  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24  */
25 
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/fiemap.h>
40 #include "ext2.h"
41 #include "acl.h"
42 #include "xattr.h"
43 
44 static int __ext2_write_inode(struct inode *inode, int do_sync);
45 
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 {
51 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
52 		(inode->i_sb->s_blocksize >> 9) : 0;
53 
54 	return (S_ISLNK(inode->i_mode) &&
55 		inode->i_blocks - ea_blocks == 0);
56 }
57 
58 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59 
60 static void ext2_write_failed(struct address_space *mapping, loff_t to)
61 {
62 	struct inode *inode = mapping->host;
63 
64 	if (to > inode->i_size) {
65 		truncate_pagecache(inode, inode->i_size);
66 		ext2_truncate_blocks(inode, inode->i_size);
67 	}
68 }
69 
70 /*
71  * Called at the last iput() if i_nlink is zero.
72  */
73 void ext2_evict_inode(struct inode * inode)
74 {
75 	struct ext2_block_alloc_info *rsv;
76 	int want_delete = 0;
77 
78 	if (!inode->i_nlink && !is_bad_inode(inode)) {
79 		want_delete = 1;
80 		dquot_initialize(inode);
81 	} else {
82 		dquot_drop(inode);
83 	}
84 
85 	truncate_inode_pages_final(&inode->i_data);
86 
87 	if (want_delete) {
88 		sb_start_intwrite(inode->i_sb);
89 		/* set dtime */
90 		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
91 		mark_inode_dirty(inode);
92 		__ext2_write_inode(inode, inode_needs_sync(inode));
93 		/* truncate to 0 */
94 		inode->i_size = 0;
95 		if (inode->i_blocks)
96 			ext2_truncate_blocks(inode, 0);
97 		ext2_xattr_delete_inode(inode);
98 	}
99 
100 	invalidate_inode_buffers(inode);
101 	clear_inode(inode);
102 
103 	ext2_discard_reservation(inode);
104 	rsv = EXT2_I(inode)->i_block_alloc_info;
105 	EXT2_I(inode)->i_block_alloc_info = NULL;
106 	if (unlikely(rsv))
107 		kfree(rsv);
108 
109 	if (want_delete) {
110 		ext2_free_inode(inode);
111 		sb_end_intwrite(inode->i_sb);
112 	}
113 }
114 
115 typedef struct {
116 	__le32	*p;
117 	__le32	key;
118 	struct buffer_head *bh;
119 } Indirect;
120 
121 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
122 {
123 	p->key = *(p->p = v);
124 	p->bh = bh;
125 }
126 
127 static inline int verify_chain(Indirect *from, Indirect *to)
128 {
129 	while (from <= to && from->key == *from->p)
130 		from++;
131 	return (from > to);
132 }
133 
134 /**
135  *	ext2_block_to_path - parse the block number into array of offsets
136  *	@inode: inode in question (we are only interested in its superblock)
137  *	@i_block: block number to be parsed
138  *	@offsets: array to store the offsets in
139  *      @boundary: set this non-zero if the referred-to block is likely to be
140  *             followed (on disk) by an indirect block.
141  *	To store the locations of file's data ext2 uses a data structure common
142  *	for UNIX filesystems - tree of pointers anchored in the inode, with
143  *	data blocks at leaves and indirect blocks in intermediate nodes.
144  *	This function translates the block number into path in that tree -
145  *	return value is the path length and @offsets[n] is the offset of
146  *	pointer to (n+1)th node in the nth one. If @block is out of range
147  *	(negative or too large) warning is printed and zero returned.
148  *
149  *	Note: function doesn't find node addresses, so no IO is needed. All
150  *	we need to know is the capacity of indirect blocks (taken from the
151  *	inode->i_sb).
152  */
153 
154 /*
155  * Portability note: the last comparison (check that we fit into triple
156  * indirect block) is spelled differently, because otherwise on an
157  * architecture with 32-bit longs and 8Kb pages we might get into trouble
158  * if our filesystem had 8Kb blocks. We might use long long, but that would
159  * kill us on x86. Oh, well, at least the sign propagation does not matter -
160  * i_block would have to be negative in the very beginning, so we would not
161  * get there at all.
162  */
163 
164 static int ext2_block_to_path(struct inode *inode,
165 			long i_block, int offsets[4], int *boundary)
166 {
167 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
168 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
169 	const long direct_blocks = EXT2_NDIR_BLOCKS,
170 		indirect_blocks = ptrs,
171 		double_blocks = (1 << (ptrs_bits * 2));
172 	int n = 0;
173 	int final = 0;
174 
175 	if (i_block < 0) {
176 		ext2_msg(inode->i_sb, KERN_WARNING,
177 			"warning: %s: block < 0", __func__);
178 	} else if (i_block < direct_blocks) {
179 		offsets[n++] = i_block;
180 		final = direct_blocks;
181 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
182 		offsets[n++] = EXT2_IND_BLOCK;
183 		offsets[n++] = i_block;
184 		final = ptrs;
185 	} else if ((i_block -= indirect_blocks) < double_blocks) {
186 		offsets[n++] = EXT2_DIND_BLOCK;
187 		offsets[n++] = i_block >> ptrs_bits;
188 		offsets[n++] = i_block & (ptrs - 1);
189 		final = ptrs;
190 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
191 		offsets[n++] = EXT2_TIND_BLOCK;
192 		offsets[n++] = i_block >> (ptrs_bits * 2);
193 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
194 		offsets[n++] = i_block & (ptrs - 1);
195 		final = ptrs;
196 	} else {
197 		ext2_msg(inode->i_sb, KERN_WARNING,
198 			"warning: %s: block is too big", __func__);
199 	}
200 	if (boundary)
201 		*boundary = final - 1 - (i_block & (ptrs - 1));
202 
203 	return n;
204 }
205 
206 /**
207  *	ext2_get_branch - read the chain of indirect blocks leading to data
208  *	@inode: inode in question
209  *	@depth: depth of the chain (1 - direct pointer, etc.)
210  *	@offsets: offsets of pointers in inode/indirect blocks
211  *	@chain: place to store the result
212  *	@err: here we store the error value
213  *
214  *	Function fills the array of triples <key, p, bh> and returns %NULL
215  *	if everything went OK or the pointer to the last filled triple
216  *	(incomplete one) otherwise. Upon the return chain[i].key contains
217  *	the number of (i+1)-th block in the chain (as it is stored in memory,
218  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
219  *	number (it points into struct inode for i==0 and into the bh->b_data
220  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
221  *	block for i>0 and NULL for i==0. In other words, it holds the block
222  *	numbers of the chain, addresses they were taken from (and where we can
223  *	verify that chain did not change) and buffer_heads hosting these
224  *	numbers.
225  *
226  *	Function stops when it stumbles upon zero pointer (absent block)
227  *		(pointer to last triple returned, *@err == 0)
228  *	or when it gets an IO error reading an indirect block
229  *		(ditto, *@err == -EIO)
230  *	or when it notices that chain had been changed while it was reading
231  *		(ditto, *@err == -EAGAIN)
232  *	or when it reads all @depth-1 indirect blocks successfully and finds
233  *	the whole chain, all way to the data (returns %NULL, *err == 0).
234  */
235 static Indirect *ext2_get_branch(struct inode *inode,
236 				 int depth,
237 				 int *offsets,
238 				 Indirect chain[4],
239 				 int *err)
240 {
241 	struct super_block *sb = inode->i_sb;
242 	Indirect *p = chain;
243 	struct buffer_head *bh;
244 
245 	*err = 0;
246 	/* i_data is not going away, no lock needed */
247 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
248 	if (!p->key)
249 		goto no_block;
250 	while (--depth) {
251 		bh = sb_bread(sb, le32_to_cpu(p->key));
252 		if (!bh)
253 			goto failure;
254 		read_lock(&EXT2_I(inode)->i_meta_lock);
255 		if (!verify_chain(chain, p))
256 			goto changed;
257 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
258 		read_unlock(&EXT2_I(inode)->i_meta_lock);
259 		if (!p->key)
260 			goto no_block;
261 	}
262 	return NULL;
263 
264 changed:
265 	read_unlock(&EXT2_I(inode)->i_meta_lock);
266 	brelse(bh);
267 	*err = -EAGAIN;
268 	goto no_block;
269 failure:
270 	*err = -EIO;
271 no_block:
272 	return p;
273 }
274 
275 /**
276  *	ext2_find_near - find a place for allocation with sufficient locality
277  *	@inode: owner
278  *	@ind: descriptor of indirect block.
279  *
280  *	This function returns the preferred place for block allocation.
281  *	It is used when heuristic for sequential allocation fails.
282  *	Rules are:
283  *	  + if there is a block to the left of our position - allocate near it.
284  *	  + if pointer will live in indirect block - allocate near that block.
285  *	  + if pointer will live in inode - allocate in the same cylinder group.
286  *
287  * In the latter case we colour the starting block by the callers PID to
288  * prevent it from clashing with concurrent allocations for a different inode
289  * in the same block group.   The PID is used here so that functionally related
290  * files will be close-by on-disk.
291  *
292  *	Caller must make sure that @ind is valid and will stay that way.
293  */
294 
295 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
296 {
297 	struct ext2_inode_info *ei = EXT2_I(inode);
298 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
299 	__le32 *p;
300 	ext2_fsblk_t bg_start;
301 	ext2_fsblk_t colour;
302 
303 	/* Try to find previous block */
304 	for (p = ind->p - 1; p >= start; p--)
305 		if (*p)
306 			return le32_to_cpu(*p);
307 
308 	/* No such thing, so let's try location of indirect block */
309 	if (ind->bh)
310 		return ind->bh->b_blocknr;
311 
312 	/*
313 	 * It is going to be referred from inode itself? OK, just put it into
314 	 * the same cylinder group then.
315 	 */
316 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
317 	colour = (current->pid % 16) *
318 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
319 	return bg_start + colour;
320 }
321 
322 /**
323  *	ext2_find_goal - find a preferred place for allocation.
324  *	@inode: owner
325  *	@block:  block we want
326  *	@partial: pointer to the last triple within a chain
327  *
328  *	Returns preferred place for a block (the goal).
329  */
330 
331 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
332 					  Indirect *partial)
333 {
334 	struct ext2_block_alloc_info *block_i;
335 
336 	block_i = EXT2_I(inode)->i_block_alloc_info;
337 
338 	/*
339 	 * try the heuristic for sequential allocation,
340 	 * failing that at least try to get decent locality.
341 	 */
342 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
343 		&& (block_i->last_alloc_physical_block != 0)) {
344 		return block_i->last_alloc_physical_block + 1;
345 	}
346 
347 	return ext2_find_near(inode, partial);
348 }
349 
350 /**
351  *	ext2_blks_to_allocate: Look up the block map and count the number
352  *	of direct blocks need to be allocated for the given branch.
353  *
354  * 	@branch: chain of indirect blocks
355  *	@k: number of blocks need for indirect blocks
356  *	@blks: number of data blocks to be mapped.
357  *	@blocks_to_boundary:  the offset in the indirect block
358  *
359  *	return the total number of blocks to be allocate, including the
360  *	direct and indirect blocks.
361  */
362 static int
363 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
364 		int blocks_to_boundary)
365 {
366 	unsigned long count = 0;
367 
368 	/*
369 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
370 	 * then it's clear blocks on that path have not allocated
371 	 */
372 	if (k > 0) {
373 		/* right now don't hanel cross boundary allocation */
374 		if (blks < blocks_to_boundary + 1)
375 			count += blks;
376 		else
377 			count += blocks_to_boundary + 1;
378 		return count;
379 	}
380 
381 	count++;
382 	while (count < blks && count <= blocks_to_boundary
383 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
384 		count++;
385 	}
386 	return count;
387 }
388 
389 /**
390  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
391  *	@indirect_blks: the number of blocks need to allocate for indirect
392  *			blocks
393  *
394  *	@new_blocks: on return it will store the new block numbers for
395  *	the indirect blocks(if needed) and the first direct block,
396  *	@blks:	on return it will store the total number of allocated
397  *		direct blocks
398  */
399 static int ext2_alloc_blocks(struct inode *inode,
400 			ext2_fsblk_t goal, int indirect_blks, int blks,
401 			ext2_fsblk_t new_blocks[4], int *err)
402 {
403 	int target, i;
404 	unsigned long count = 0;
405 	int index = 0;
406 	ext2_fsblk_t current_block = 0;
407 	int ret = 0;
408 
409 	/*
410 	 * Here we try to allocate the requested multiple blocks at once,
411 	 * on a best-effort basis.
412 	 * To build a branch, we should allocate blocks for
413 	 * the indirect blocks(if not allocated yet), and at least
414 	 * the first direct block of this branch.  That's the
415 	 * minimum number of blocks need to allocate(required)
416 	 */
417 	target = blks + indirect_blks;
418 
419 	while (1) {
420 		count = target;
421 		/* allocating blocks for indirect blocks and direct blocks */
422 		current_block = ext2_new_blocks(inode,goal,&count,err);
423 		if (*err)
424 			goto failed_out;
425 
426 		target -= count;
427 		/* allocate blocks for indirect blocks */
428 		while (index < indirect_blks && count) {
429 			new_blocks[index++] = current_block++;
430 			count--;
431 		}
432 
433 		if (count > 0)
434 			break;
435 	}
436 
437 	/* save the new block number for the first direct block */
438 	new_blocks[index] = current_block;
439 
440 	/* total number of blocks allocated for direct blocks */
441 	ret = count;
442 	*err = 0;
443 	return ret;
444 failed_out:
445 	for (i = 0; i <index; i++)
446 		ext2_free_blocks(inode, new_blocks[i], 1);
447 	if (index)
448 		mark_inode_dirty(inode);
449 	return ret;
450 }
451 
452 /**
453  *	ext2_alloc_branch - allocate and set up a chain of blocks.
454  *	@inode: owner
455  *	@indirect_blks: depth of the chain (number of blocks to allocate)
456  *	@blks: number of allocated direct blocks
457  *	@goal: preferred place for allocation
458  *	@offsets: offsets (in the blocks) to store the pointers to next.
459  *	@branch: place to store the chain in.
460  *
461  *	This function allocates @num blocks, zeroes out all but the last one,
462  *	links them into chain and (if we are synchronous) writes them to disk.
463  *	In other words, it prepares a branch that can be spliced onto the
464  *	inode. It stores the information about that chain in the branch[], in
465  *	the same format as ext2_get_branch() would do. We are calling it after
466  *	we had read the existing part of chain and partial points to the last
467  *	triple of that (one with zero ->key). Upon the exit we have the same
468  *	picture as after the successful ext2_get_block(), except that in one
469  *	place chain is disconnected - *branch->p is still zero (we did not
470  *	set the last link), but branch->key contains the number that should
471  *	be placed into *branch->p to fill that gap.
472  *
473  *	If allocation fails we free all blocks we've allocated (and forget
474  *	their buffer_heads) and return the error value the from failed
475  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
476  *	as described above and return 0.
477  */
478 
479 static int ext2_alloc_branch(struct inode *inode,
480 			int indirect_blks, int *blks, ext2_fsblk_t goal,
481 			int *offsets, Indirect *branch)
482 {
483 	int blocksize = inode->i_sb->s_blocksize;
484 	int i, n = 0;
485 	int err = 0;
486 	struct buffer_head *bh;
487 	int num;
488 	ext2_fsblk_t new_blocks[4];
489 	ext2_fsblk_t current_block;
490 
491 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
492 				*blks, new_blocks, &err);
493 	if (err)
494 		return err;
495 
496 	branch[0].key = cpu_to_le32(new_blocks[0]);
497 	/*
498 	 * metadata blocks and data blocks are allocated.
499 	 */
500 	for (n = 1; n <= indirect_blks;  n++) {
501 		/*
502 		 * Get buffer_head for parent block, zero it out
503 		 * and set the pointer to new one, then send
504 		 * parent to disk.
505 		 */
506 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
507 		if (unlikely(!bh)) {
508 			err = -ENOMEM;
509 			goto failed;
510 		}
511 		branch[n].bh = bh;
512 		lock_buffer(bh);
513 		memset(bh->b_data, 0, blocksize);
514 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
515 		branch[n].key = cpu_to_le32(new_blocks[n]);
516 		*branch[n].p = branch[n].key;
517 		if ( n == indirect_blks) {
518 			current_block = new_blocks[n];
519 			/*
520 			 * End of chain, update the last new metablock of
521 			 * the chain to point to the new allocated
522 			 * data blocks numbers
523 			 */
524 			for (i=1; i < num; i++)
525 				*(branch[n].p + i) = cpu_to_le32(++current_block);
526 		}
527 		set_buffer_uptodate(bh);
528 		unlock_buffer(bh);
529 		mark_buffer_dirty_inode(bh, inode);
530 		/* We used to sync bh here if IS_SYNC(inode).
531 		 * But we now rely upon generic_write_sync()
532 		 * and b_inode_buffers.  But not for directories.
533 		 */
534 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
535 			sync_dirty_buffer(bh);
536 	}
537 	*blks = num;
538 	return err;
539 
540 failed:
541 	for (i = 1; i < n; i++)
542 		bforget(branch[i].bh);
543 	for (i = 0; i < indirect_blks; i++)
544 		ext2_free_blocks(inode, new_blocks[i], 1);
545 	ext2_free_blocks(inode, new_blocks[i], num);
546 	return err;
547 }
548 
549 /**
550  * ext2_splice_branch - splice the allocated branch onto inode.
551  * @inode: owner
552  * @block: (logical) number of block we are adding
553  * @where: location of missing link
554  * @num:   number of indirect blocks we are adding
555  * @blks:  number of direct blocks we are adding
556  *
557  * This function fills the missing link and does all housekeeping needed in
558  * inode (->i_blocks, etc.). In case of success we end up with the full
559  * chain to new block and return 0.
560  */
561 static void ext2_splice_branch(struct inode *inode,
562 			long block, Indirect *where, int num, int blks)
563 {
564 	int i;
565 	struct ext2_block_alloc_info *block_i;
566 	ext2_fsblk_t current_block;
567 
568 	block_i = EXT2_I(inode)->i_block_alloc_info;
569 
570 	/* XXX LOCKING probably should have i_meta_lock ?*/
571 	/* That's it */
572 
573 	*where->p = where->key;
574 
575 	/*
576 	 * Update the host buffer_head or inode to point to more just allocated
577 	 * direct blocks blocks
578 	 */
579 	if (num == 0 && blks > 1) {
580 		current_block = le32_to_cpu(where->key) + 1;
581 		for (i = 1; i < blks; i++)
582 			*(where->p + i ) = cpu_to_le32(current_block++);
583 	}
584 
585 	/*
586 	 * update the most recently allocated logical & physical block
587 	 * in i_block_alloc_info, to assist find the proper goal block for next
588 	 * allocation
589 	 */
590 	if (block_i) {
591 		block_i->last_alloc_logical_block = block + blks - 1;
592 		block_i->last_alloc_physical_block =
593 				le32_to_cpu(where[num].key) + blks - 1;
594 	}
595 
596 	/* We are done with atomic stuff, now do the rest of housekeeping */
597 
598 	/* had we spliced it onto indirect block? */
599 	if (where->bh)
600 		mark_buffer_dirty_inode(where->bh, inode);
601 
602 	inode->i_ctime = current_time(inode);
603 	mark_inode_dirty(inode);
604 }
605 
606 /*
607  * Allocation strategy is simple: if we have to allocate something, we will
608  * have to go the whole way to leaf. So let's do it before attaching anything
609  * to tree, set linkage between the newborn blocks, write them if sync is
610  * required, recheck the path, free and repeat if check fails, otherwise
611  * set the last missing link (that will protect us from any truncate-generated
612  * removals - all blocks on the path are immune now) and possibly force the
613  * write on the parent block.
614  * That has a nice additional property: no special recovery from the failed
615  * allocations is needed - we simply release blocks and do not touch anything
616  * reachable from inode.
617  *
618  * `handle' can be NULL if create == 0.
619  *
620  * return > 0, # of blocks mapped or allocated.
621  * return = 0, if plain lookup failed.
622  * return < 0, error case.
623  */
624 static int ext2_get_blocks(struct inode *inode,
625 			   sector_t iblock, unsigned long maxblocks,
626 			   u32 *bno, bool *new, bool *boundary,
627 			   int create)
628 {
629 	int err;
630 	int offsets[4];
631 	Indirect chain[4];
632 	Indirect *partial;
633 	ext2_fsblk_t goal;
634 	int indirect_blks;
635 	int blocks_to_boundary = 0;
636 	int depth;
637 	struct ext2_inode_info *ei = EXT2_I(inode);
638 	int count = 0;
639 	ext2_fsblk_t first_block = 0;
640 
641 	BUG_ON(maxblocks == 0);
642 
643 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
644 
645 	if (depth == 0)
646 		return -EIO;
647 
648 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
649 	/* Simplest case - block found, no allocation needed */
650 	if (!partial) {
651 		first_block = le32_to_cpu(chain[depth - 1].key);
652 		count++;
653 		/*map more blocks*/
654 		while (count < maxblocks && count <= blocks_to_boundary) {
655 			ext2_fsblk_t blk;
656 
657 			if (!verify_chain(chain, chain + depth - 1)) {
658 				/*
659 				 * Indirect block might be removed by
660 				 * truncate while we were reading it.
661 				 * Handling of that case: forget what we've
662 				 * got now, go to reread.
663 				 */
664 				err = -EAGAIN;
665 				count = 0;
666 				partial = chain + depth - 1;
667 				break;
668 			}
669 			blk = le32_to_cpu(*(chain[depth-1].p + count));
670 			if (blk == first_block + count)
671 				count++;
672 			else
673 				break;
674 		}
675 		if (err != -EAGAIN)
676 			goto got_it;
677 	}
678 
679 	/* Next simple case - plain lookup or failed read of indirect block */
680 	if (!create || err == -EIO)
681 		goto cleanup;
682 
683 	mutex_lock(&ei->truncate_mutex);
684 	/*
685 	 * If the indirect block is missing while we are reading
686 	 * the chain(ext2_get_branch() returns -EAGAIN err), or
687 	 * if the chain has been changed after we grab the semaphore,
688 	 * (either because another process truncated this branch, or
689 	 * another get_block allocated this branch) re-grab the chain to see if
690 	 * the request block has been allocated or not.
691 	 *
692 	 * Since we already block the truncate/other get_block
693 	 * at this point, we will have the current copy of the chain when we
694 	 * splice the branch into the tree.
695 	 */
696 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
697 		while (partial > chain) {
698 			brelse(partial->bh);
699 			partial--;
700 		}
701 		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
702 		if (!partial) {
703 			count++;
704 			mutex_unlock(&ei->truncate_mutex);
705 			goto got_it;
706 		}
707 
708 		if (err) {
709 			mutex_unlock(&ei->truncate_mutex);
710 			goto cleanup;
711 		}
712 	}
713 
714 	/*
715 	 * Okay, we need to do block allocation.  Lazily initialize the block
716 	 * allocation info here if necessary
717 	*/
718 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
719 		ext2_init_block_alloc_info(inode);
720 
721 	goal = ext2_find_goal(inode, iblock, partial);
722 
723 	/* the number of blocks need to allocate for [d,t]indirect blocks */
724 	indirect_blks = (chain + depth) - partial - 1;
725 	/*
726 	 * Next look up the indirect map to count the total number of
727 	 * direct blocks to allocate for this branch.
728 	 */
729 	count = ext2_blks_to_allocate(partial, indirect_blks,
730 					maxblocks, blocks_to_boundary);
731 	/*
732 	 * XXX ???? Block out ext2_truncate while we alter the tree
733 	 */
734 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
735 				offsets + (partial - chain), partial);
736 
737 	if (err) {
738 		mutex_unlock(&ei->truncate_mutex);
739 		goto cleanup;
740 	}
741 
742 	if (IS_DAX(inode)) {
743 		/*
744 		 * We must unmap blocks before zeroing so that writeback cannot
745 		 * overwrite zeros with stale data from block device page cache.
746 		 */
747 		clean_bdev_aliases(inode->i_sb->s_bdev,
748 				   le32_to_cpu(chain[depth-1].key),
749 				   count);
750 		/*
751 		 * block must be initialised before we put it in the tree
752 		 * so that it's not found by another thread before it's
753 		 * initialised
754 		 */
755 		err = sb_issue_zeroout(inode->i_sb,
756 				le32_to_cpu(chain[depth-1].key), count,
757 				GFP_NOFS);
758 		if (err) {
759 			mutex_unlock(&ei->truncate_mutex);
760 			goto cleanup;
761 		}
762 	}
763 	*new = true;
764 
765 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
766 	mutex_unlock(&ei->truncate_mutex);
767 got_it:
768 	if (count > blocks_to_boundary)
769 		*boundary = true;
770 	err = count;
771 	/* Clean up and exit */
772 	partial = chain + depth - 1;	/* the whole chain */
773 cleanup:
774 	while (partial > chain) {
775 		brelse(partial->bh);
776 		partial--;
777 	}
778 	if (err > 0)
779 		*bno = le32_to_cpu(chain[depth-1].key);
780 	return err;
781 }
782 
783 int ext2_get_block(struct inode *inode, sector_t iblock,
784 		struct buffer_head *bh_result, int create)
785 {
786 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
787 	bool new = false, boundary = false;
788 	u32 bno;
789 	int ret;
790 
791 	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
792 			create);
793 	if (ret <= 0)
794 		return ret;
795 
796 	map_bh(bh_result, inode->i_sb, bno);
797 	bh_result->b_size = (ret << inode->i_blkbits);
798 	if (new)
799 		set_buffer_new(bh_result);
800 	if (boundary)
801 		set_buffer_boundary(bh_result);
802 	return 0;
803 
804 }
805 
806 #ifdef CONFIG_FS_DAX
807 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
808 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
809 {
810 	unsigned int blkbits = inode->i_blkbits;
811 	unsigned long first_block = offset >> blkbits;
812 	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
813 	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
814 	bool new = false, boundary = false;
815 	u32 bno;
816 	int ret;
817 
818 	ret = ext2_get_blocks(inode, first_block, max_blocks,
819 			&bno, &new, &boundary, flags & IOMAP_WRITE);
820 	if (ret < 0)
821 		return ret;
822 
823 	iomap->flags = 0;
824 	iomap->bdev = inode->i_sb->s_bdev;
825 	iomap->offset = (u64)first_block << blkbits;
826 	iomap->dax_dev = sbi->s_daxdev;
827 
828 	if (ret == 0) {
829 		iomap->type = IOMAP_HOLE;
830 		iomap->addr = IOMAP_NULL_ADDR;
831 		iomap->length = 1 << blkbits;
832 	} else {
833 		iomap->type = IOMAP_MAPPED;
834 		iomap->addr = (u64)bno << blkbits;
835 		iomap->length = (u64)ret << blkbits;
836 		iomap->flags |= IOMAP_F_MERGED;
837 	}
838 
839 	if (new)
840 		iomap->flags |= IOMAP_F_NEW;
841 	return 0;
842 }
843 
844 static int
845 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
846 		ssize_t written, unsigned flags, struct iomap *iomap)
847 {
848 	if (iomap->type == IOMAP_MAPPED &&
849 	    written < length &&
850 	    (flags & IOMAP_WRITE))
851 		ext2_write_failed(inode->i_mapping, offset + length);
852 	return 0;
853 }
854 
855 const struct iomap_ops ext2_iomap_ops = {
856 	.iomap_begin		= ext2_iomap_begin,
857 	.iomap_end		= ext2_iomap_end,
858 };
859 #else
860 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
861 const struct iomap_ops ext2_iomap_ops;
862 #endif /* CONFIG_FS_DAX */
863 
864 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
865 		u64 start, u64 len)
866 {
867 	return generic_block_fiemap(inode, fieinfo, start, len,
868 				    ext2_get_block);
869 }
870 
871 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
872 {
873 	return block_write_full_page(page, ext2_get_block, wbc);
874 }
875 
876 static int ext2_readpage(struct file *file, struct page *page)
877 {
878 	return mpage_readpage(page, ext2_get_block);
879 }
880 
881 static void ext2_readahead(struct readahead_control *rac)
882 {
883 	mpage_readahead(rac, ext2_get_block);
884 }
885 
886 static int
887 ext2_write_begin(struct file *file, struct address_space *mapping,
888 		loff_t pos, unsigned len, unsigned flags,
889 		struct page **pagep, void **fsdata)
890 {
891 	int ret;
892 
893 	ret = block_write_begin(mapping, pos, len, flags, pagep,
894 				ext2_get_block);
895 	if (ret < 0)
896 		ext2_write_failed(mapping, pos + len);
897 	return ret;
898 }
899 
900 static int ext2_write_end(struct file *file, struct address_space *mapping,
901 			loff_t pos, unsigned len, unsigned copied,
902 			struct page *page, void *fsdata)
903 {
904 	int ret;
905 
906 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
907 	if (ret < len)
908 		ext2_write_failed(mapping, pos + len);
909 	return ret;
910 }
911 
912 static int
913 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
914 		loff_t pos, unsigned len, unsigned flags,
915 		struct page **pagep, void **fsdata)
916 {
917 	int ret;
918 
919 	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
920 			       ext2_get_block);
921 	if (ret < 0)
922 		ext2_write_failed(mapping, pos + len);
923 	return ret;
924 }
925 
926 static int ext2_nobh_writepage(struct page *page,
927 			struct writeback_control *wbc)
928 {
929 	return nobh_writepage(page, ext2_get_block, wbc);
930 }
931 
932 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
933 {
934 	return generic_block_bmap(mapping,block,ext2_get_block);
935 }
936 
937 static ssize_t
938 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
939 {
940 	struct file *file = iocb->ki_filp;
941 	struct address_space *mapping = file->f_mapping;
942 	struct inode *inode = mapping->host;
943 	size_t count = iov_iter_count(iter);
944 	loff_t offset = iocb->ki_pos;
945 	ssize_t ret;
946 
947 	ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
948 	if (ret < 0 && iov_iter_rw(iter) == WRITE)
949 		ext2_write_failed(mapping, offset + count);
950 	return ret;
951 }
952 
953 static int
954 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
955 {
956 	return mpage_writepages(mapping, wbc, ext2_get_block);
957 }
958 
959 static int
960 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
961 {
962 	struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
963 
964 	return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
965 }
966 
967 const struct address_space_operations ext2_aops = {
968 	.readpage		= ext2_readpage,
969 	.readahead		= ext2_readahead,
970 	.writepage		= ext2_writepage,
971 	.write_begin		= ext2_write_begin,
972 	.write_end		= ext2_write_end,
973 	.bmap			= ext2_bmap,
974 	.direct_IO		= ext2_direct_IO,
975 	.writepages		= ext2_writepages,
976 	.migratepage		= buffer_migrate_page,
977 	.is_partially_uptodate	= block_is_partially_uptodate,
978 	.error_remove_page	= generic_error_remove_page,
979 };
980 
981 const struct address_space_operations ext2_nobh_aops = {
982 	.readpage		= ext2_readpage,
983 	.readahead		= ext2_readahead,
984 	.writepage		= ext2_nobh_writepage,
985 	.write_begin		= ext2_nobh_write_begin,
986 	.write_end		= nobh_write_end,
987 	.bmap			= ext2_bmap,
988 	.direct_IO		= ext2_direct_IO,
989 	.writepages		= ext2_writepages,
990 	.migratepage		= buffer_migrate_page,
991 	.error_remove_page	= generic_error_remove_page,
992 };
993 
994 static const struct address_space_operations ext2_dax_aops = {
995 	.writepages		= ext2_dax_writepages,
996 	.direct_IO		= noop_direct_IO,
997 	.set_page_dirty		= noop_set_page_dirty,
998 	.invalidatepage		= noop_invalidatepage,
999 };
1000 
1001 /*
1002  * Probably it should be a library function... search for first non-zero word
1003  * or memcmp with zero_page, whatever is better for particular architecture.
1004  * Linus?
1005  */
1006 static inline int all_zeroes(__le32 *p, __le32 *q)
1007 {
1008 	while (p < q)
1009 		if (*p++)
1010 			return 0;
1011 	return 1;
1012 }
1013 
1014 /**
1015  *	ext2_find_shared - find the indirect blocks for partial truncation.
1016  *	@inode:	  inode in question
1017  *	@depth:	  depth of the affected branch
1018  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
1019  *	@chain:	  place to store the pointers to partial indirect blocks
1020  *	@top:	  place to the (detached) top of branch
1021  *
1022  *	This is a helper function used by ext2_truncate().
1023  *
1024  *	When we do truncate() we may have to clean the ends of several indirect
1025  *	blocks but leave the blocks themselves alive. Block is partially
1026  *	truncated if some data below the new i_size is referred from it (and
1027  *	it is on the path to the first completely truncated data block, indeed).
1028  *	We have to free the top of that path along with everything to the right
1029  *	of the path. Since no allocation past the truncation point is possible
1030  *	until ext2_truncate() finishes, we may safely do the latter, but top
1031  *	of branch may require special attention - pageout below the truncation
1032  *	point might try to populate it.
1033  *
1034  *	We atomically detach the top of branch from the tree, store the block
1035  *	number of its root in *@top, pointers to buffer_heads of partially
1036  *	truncated blocks - in @chain[].bh and pointers to their last elements
1037  *	that should not be removed - in @chain[].p. Return value is the pointer
1038  *	to last filled element of @chain.
1039  *
1040  *	The work left to caller to do the actual freeing of subtrees:
1041  *		a) free the subtree starting from *@top
1042  *		b) free the subtrees whose roots are stored in
1043  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1044  *		c) free the subtrees growing from the inode past the @chain[0].p
1045  *			(no partially truncated stuff there).
1046  */
1047 
1048 static Indirect *ext2_find_shared(struct inode *inode,
1049 				int depth,
1050 				int offsets[4],
1051 				Indirect chain[4],
1052 				__le32 *top)
1053 {
1054 	Indirect *partial, *p;
1055 	int k, err;
1056 
1057 	*top = 0;
1058 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1059 		;
1060 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
1061 	if (!partial)
1062 		partial = chain + k-1;
1063 	/*
1064 	 * If the branch acquired continuation since we've looked at it -
1065 	 * fine, it should all survive and (new) top doesn't belong to us.
1066 	 */
1067 	write_lock(&EXT2_I(inode)->i_meta_lock);
1068 	if (!partial->key && *partial->p) {
1069 		write_unlock(&EXT2_I(inode)->i_meta_lock);
1070 		goto no_top;
1071 	}
1072 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1073 		;
1074 	/*
1075 	 * OK, we've found the last block that must survive. The rest of our
1076 	 * branch should be detached before unlocking. However, if that rest
1077 	 * of branch is all ours and does not grow immediately from the inode
1078 	 * it's easier to cheat and just decrement partial->p.
1079 	 */
1080 	if (p == chain + k - 1 && p > chain) {
1081 		p->p--;
1082 	} else {
1083 		*top = *p->p;
1084 		*p->p = 0;
1085 	}
1086 	write_unlock(&EXT2_I(inode)->i_meta_lock);
1087 
1088 	while(partial > p)
1089 	{
1090 		brelse(partial->bh);
1091 		partial--;
1092 	}
1093 no_top:
1094 	return partial;
1095 }
1096 
1097 /**
1098  *	ext2_free_data - free a list of data blocks
1099  *	@inode:	inode we are dealing with
1100  *	@p:	array of block numbers
1101  *	@q:	points immediately past the end of array
1102  *
1103  *	We are freeing all blocks referred from that array (numbers are
1104  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1105  *	appropriately.
1106  */
1107 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1108 {
1109 	unsigned long block_to_free = 0, count = 0;
1110 	unsigned long nr;
1111 
1112 	for ( ; p < q ; p++) {
1113 		nr = le32_to_cpu(*p);
1114 		if (nr) {
1115 			*p = 0;
1116 			/* accumulate blocks to free if they're contiguous */
1117 			if (count == 0)
1118 				goto free_this;
1119 			else if (block_to_free == nr - count)
1120 				count++;
1121 			else {
1122 				ext2_free_blocks (inode, block_to_free, count);
1123 				mark_inode_dirty(inode);
1124 			free_this:
1125 				block_to_free = nr;
1126 				count = 1;
1127 			}
1128 		}
1129 	}
1130 	if (count > 0) {
1131 		ext2_free_blocks (inode, block_to_free, count);
1132 		mark_inode_dirty(inode);
1133 	}
1134 }
1135 
1136 /**
1137  *	ext2_free_branches - free an array of branches
1138  *	@inode:	inode we are dealing with
1139  *	@p:	array of block numbers
1140  *	@q:	pointer immediately past the end of array
1141  *	@depth:	depth of the branches to free
1142  *
1143  *	We are freeing all blocks referred from these branches (numbers are
1144  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1145  *	appropriately.
1146  */
1147 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1148 {
1149 	struct buffer_head * bh;
1150 	unsigned long nr;
1151 
1152 	if (depth--) {
1153 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1154 		for ( ; p < q ; p++) {
1155 			nr = le32_to_cpu(*p);
1156 			if (!nr)
1157 				continue;
1158 			*p = 0;
1159 			bh = sb_bread(inode->i_sb, nr);
1160 			/*
1161 			 * A read failure? Report error and clear slot
1162 			 * (should be rare).
1163 			 */
1164 			if (!bh) {
1165 				ext2_error(inode->i_sb, "ext2_free_branches",
1166 					"Read failure, inode=%ld, block=%ld",
1167 					inode->i_ino, nr);
1168 				continue;
1169 			}
1170 			ext2_free_branches(inode,
1171 					   (__le32*)bh->b_data,
1172 					   (__le32*)bh->b_data + addr_per_block,
1173 					   depth);
1174 			bforget(bh);
1175 			ext2_free_blocks(inode, nr, 1);
1176 			mark_inode_dirty(inode);
1177 		}
1178 	} else
1179 		ext2_free_data(inode, p, q);
1180 }
1181 
1182 /* dax_sem must be held when calling this function */
1183 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1184 {
1185 	__le32 *i_data = EXT2_I(inode)->i_data;
1186 	struct ext2_inode_info *ei = EXT2_I(inode);
1187 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1188 	int offsets[4];
1189 	Indirect chain[4];
1190 	Indirect *partial;
1191 	__le32 nr = 0;
1192 	int n;
1193 	long iblock;
1194 	unsigned blocksize;
1195 	blocksize = inode->i_sb->s_blocksize;
1196 	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1197 
1198 #ifdef CONFIG_FS_DAX
1199 	WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1200 #endif
1201 
1202 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1203 	if (n == 0)
1204 		return;
1205 
1206 	/*
1207 	 * From here we block out all ext2_get_block() callers who want to
1208 	 * modify the block allocation tree.
1209 	 */
1210 	mutex_lock(&ei->truncate_mutex);
1211 
1212 	if (n == 1) {
1213 		ext2_free_data(inode, i_data+offsets[0],
1214 					i_data + EXT2_NDIR_BLOCKS);
1215 		goto do_indirects;
1216 	}
1217 
1218 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1219 	/* Kill the top of shared branch (already detached) */
1220 	if (nr) {
1221 		if (partial == chain)
1222 			mark_inode_dirty(inode);
1223 		else
1224 			mark_buffer_dirty_inode(partial->bh, inode);
1225 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1226 	}
1227 	/* Clear the ends of indirect blocks on the shared branch */
1228 	while (partial > chain) {
1229 		ext2_free_branches(inode,
1230 				   partial->p + 1,
1231 				   (__le32*)partial->bh->b_data+addr_per_block,
1232 				   (chain+n-1) - partial);
1233 		mark_buffer_dirty_inode(partial->bh, inode);
1234 		brelse (partial->bh);
1235 		partial--;
1236 	}
1237 do_indirects:
1238 	/* Kill the remaining (whole) subtrees */
1239 	switch (offsets[0]) {
1240 		default:
1241 			nr = i_data[EXT2_IND_BLOCK];
1242 			if (nr) {
1243 				i_data[EXT2_IND_BLOCK] = 0;
1244 				mark_inode_dirty(inode);
1245 				ext2_free_branches(inode, &nr, &nr+1, 1);
1246 			}
1247 			/* fall through */
1248 		case EXT2_IND_BLOCK:
1249 			nr = i_data[EXT2_DIND_BLOCK];
1250 			if (nr) {
1251 				i_data[EXT2_DIND_BLOCK] = 0;
1252 				mark_inode_dirty(inode);
1253 				ext2_free_branches(inode, &nr, &nr+1, 2);
1254 			}
1255 			/* fall through */
1256 		case EXT2_DIND_BLOCK:
1257 			nr = i_data[EXT2_TIND_BLOCK];
1258 			if (nr) {
1259 				i_data[EXT2_TIND_BLOCK] = 0;
1260 				mark_inode_dirty(inode);
1261 				ext2_free_branches(inode, &nr, &nr+1, 3);
1262 			}
1263 		case EXT2_TIND_BLOCK:
1264 			;
1265 	}
1266 
1267 	ext2_discard_reservation(inode);
1268 
1269 	mutex_unlock(&ei->truncate_mutex);
1270 }
1271 
1272 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1273 {
1274 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275 	    S_ISLNK(inode->i_mode)))
1276 		return;
1277 	if (ext2_inode_is_fast_symlink(inode))
1278 		return;
1279 
1280 	dax_sem_down_write(EXT2_I(inode));
1281 	__ext2_truncate_blocks(inode, offset);
1282 	dax_sem_up_write(EXT2_I(inode));
1283 }
1284 
1285 static int ext2_setsize(struct inode *inode, loff_t newsize)
1286 {
1287 	int error;
1288 
1289 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1290 	    S_ISLNK(inode->i_mode)))
1291 		return -EINVAL;
1292 	if (ext2_inode_is_fast_symlink(inode))
1293 		return -EINVAL;
1294 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1295 		return -EPERM;
1296 
1297 	inode_dio_wait(inode);
1298 
1299 	if (IS_DAX(inode)) {
1300 		error = iomap_zero_range(inode, newsize,
1301 					 PAGE_ALIGN(newsize) - newsize, NULL,
1302 					 &ext2_iomap_ops);
1303 	} else if (test_opt(inode->i_sb, NOBH))
1304 		error = nobh_truncate_page(inode->i_mapping,
1305 				newsize, ext2_get_block);
1306 	else
1307 		error = block_truncate_page(inode->i_mapping,
1308 				newsize, ext2_get_block);
1309 	if (error)
1310 		return error;
1311 
1312 	dax_sem_down_write(EXT2_I(inode));
1313 	truncate_setsize(inode, newsize);
1314 	__ext2_truncate_blocks(inode, newsize);
1315 	dax_sem_up_write(EXT2_I(inode));
1316 
1317 	inode->i_mtime = inode->i_ctime = current_time(inode);
1318 	if (inode_needs_sync(inode)) {
1319 		sync_mapping_buffers(inode->i_mapping);
1320 		sync_inode_metadata(inode, 1);
1321 	} else {
1322 		mark_inode_dirty(inode);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1329 					struct buffer_head **p)
1330 {
1331 	struct buffer_head * bh;
1332 	unsigned long block_group;
1333 	unsigned long block;
1334 	unsigned long offset;
1335 	struct ext2_group_desc * gdp;
1336 
1337 	*p = NULL;
1338 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1339 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1340 		goto Einval;
1341 
1342 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1343 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1344 	if (!gdp)
1345 		goto Egdp;
1346 	/*
1347 	 * Figure out the offset within the block group inode table
1348 	 */
1349 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1350 	block = le32_to_cpu(gdp->bg_inode_table) +
1351 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1352 	if (!(bh = sb_bread(sb, block)))
1353 		goto Eio;
1354 
1355 	*p = bh;
1356 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1357 	return (struct ext2_inode *) (bh->b_data + offset);
1358 
1359 Einval:
1360 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1361 		   (unsigned long) ino);
1362 	return ERR_PTR(-EINVAL);
1363 Eio:
1364 	ext2_error(sb, "ext2_get_inode",
1365 		   "unable to read inode block - inode=%lu, block=%lu",
1366 		   (unsigned long) ino, block);
1367 Egdp:
1368 	return ERR_PTR(-EIO);
1369 }
1370 
1371 void ext2_set_inode_flags(struct inode *inode)
1372 {
1373 	unsigned int flags = EXT2_I(inode)->i_flags;
1374 
1375 	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1376 				S_DIRSYNC | S_DAX);
1377 	if (flags & EXT2_SYNC_FL)
1378 		inode->i_flags |= S_SYNC;
1379 	if (flags & EXT2_APPEND_FL)
1380 		inode->i_flags |= S_APPEND;
1381 	if (flags & EXT2_IMMUTABLE_FL)
1382 		inode->i_flags |= S_IMMUTABLE;
1383 	if (flags & EXT2_NOATIME_FL)
1384 		inode->i_flags |= S_NOATIME;
1385 	if (flags & EXT2_DIRSYNC_FL)
1386 		inode->i_flags |= S_DIRSYNC;
1387 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1388 		inode->i_flags |= S_DAX;
1389 }
1390 
1391 void ext2_set_file_ops(struct inode *inode)
1392 {
1393 	inode->i_op = &ext2_file_inode_operations;
1394 	inode->i_fop = &ext2_file_operations;
1395 	if (IS_DAX(inode))
1396 		inode->i_mapping->a_ops = &ext2_dax_aops;
1397 	else if (test_opt(inode->i_sb, NOBH))
1398 		inode->i_mapping->a_ops = &ext2_nobh_aops;
1399 	else
1400 		inode->i_mapping->a_ops = &ext2_aops;
1401 }
1402 
1403 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1404 {
1405 	struct ext2_inode_info *ei;
1406 	struct buffer_head * bh = NULL;
1407 	struct ext2_inode *raw_inode;
1408 	struct inode *inode;
1409 	long ret = -EIO;
1410 	int n;
1411 	uid_t i_uid;
1412 	gid_t i_gid;
1413 
1414 	inode = iget_locked(sb, ino);
1415 	if (!inode)
1416 		return ERR_PTR(-ENOMEM);
1417 	if (!(inode->i_state & I_NEW))
1418 		return inode;
1419 
1420 	ei = EXT2_I(inode);
1421 	ei->i_block_alloc_info = NULL;
1422 
1423 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1424 	if (IS_ERR(raw_inode)) {
1425 		ret = PTR_ERR(raw_inode);
1426  		goto bad_inode;
1427 	}
1428 
1429 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1430 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1431 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1432 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1433 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1434 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1435 	}
1436 	i_uid_write(inode, i_uid);
1437 	i_gid_write(inode, i_gid);
1438 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1439 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1440 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1441 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1442 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1443 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1444 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1445 	/* We now have enough fields to check if the inode was active or not.
1446 	 * This is needed because nfsd might try to access dead inodes
1447 	 * the test is that same one that e2fsck uses
1448 	 * NeilBrown 1999oct15
1449 	 */
1450 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1451 		/* this inode is deleted */
1452 		ret = -ESTALE;
1453 		goto bad_inode;
1454 	}
1455 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1456 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1457 	ext2_set_inode_flags(inode);
1458 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1459 	ei->i_frag_no = raw_inode->i_frag;
1460 	ei->i_frag_size = raw_inode->i_fsize;
1461 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1462 	ei->i_dir_acl = 0;
1463 
1464 	if (ei->i_file_acl &&
1465 	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1466 		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1467 			   ei->i_file_acl);
1468 		ret = -EFSCORRUPTED;
1469 		goto bad_inode;
1470 	}
1471 
1472 	if (S_ISREG(inode->i_mode))
1473 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1474 	else
1475 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1476 	if (i_size_read(inode) < 0) {
1477 		ret = -EFSCORRUPTED;
1478 		goto bad_inode;
1479 	}
1480 	ei->i_dtime = 0;
1481 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1482 	ei->i_state = 0;
1483 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1484 	ei->i_dir_start_lookup = 0;
1485 
1486 	/*
1487 	 * NOTE! The in-memory inode i_data array is in little-endian order
1488 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1489 	 */
1490 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1491 		ei->i_data[n] = raw_inode->i_block[n];
1492 
1493 	if (S_ISREG(inode->i_mode)) {
1494 		ext2_set_file_ops(inode);
1495 	} else if (S_ISDIR(inode->i_mode)) {
1496 		inode->i_op = &ext2_dir_inode_operations;
1497 		inode->i_fop = &ext2_dir_operations;
1498 		if (test_opt(inode->i_sb, NOBH))
1499 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1500 		else
1501 			inode->i_mapping->a_ops = &ext2_aops;
1502 	} else if (S_ISLNK(inode->i_mode)) {
1503 		if (ext2_inode_is_fast_symlink(inode)) {
1504 			inode->i_link = (char *)ei->i_data;
1505 			inode->i_op = &ext2_fast_symlink_inode_operations;
1506 			nd_terminate_link(ei->i_data, inode->i_size,
1507 				sizeof(ei->i_data) - 1);
1508 		} else {
1509 			inode->i_op = &ext2_symlink_inode_operations;
1510 			inode_nohighmem(inode);
1511 			if (test_opt(inode->i_sb, NOBH))
1512 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1513 			else
1514 				inode->i_mapping->a_ops = &ext2_aops;
1515 		}
1516 	} else {
1517 		inode->i_op = &ext2_special_inode_operations;
1518 		if (raw_inode->i_block[0])
1519 			init_special_inode(inode, inode->i_mode,
1520 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1521 		else
1522 			init_special_inode(inode, inode->i_mode,
1523 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1524 	}
1525 	brelse (bh);
1526 	unlock_new_inode(inode);
1527 	return inode;
1528 
1529 bad_inode:
1530 	brelse(bh);
1531 	iget_failed(inode);
1532 	return ERR_PTR(ret);
1533 }
1534 
1535 static int __ext2_write_inode(struct inode *inode, int do_sync)
1536 {
1537 	struct ext2_inode_info *ei = EXT2_I(inode);
1538 	struct super_block *sb = inode->i_sb;
1539 	ino_t ino = inode->i_ino;
1540 	uid_t uid = i_uid_read(inode);
1541 	gid_t gid = i_gid_read(inode);
1542 	struct buffer_head * bh;
1543 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1544 	int n;
1545 	int err = 0;
1546 
1547 	if (IS_ERR(raw_inode))
1548  		return -EIO;
1549 
1550 	/* For fields not not tracking in the in-memory inode,
1551 	 * initialise them to zero for new inodes. */
1552 	if (ei->i_state & EXT2_STATE_NEW)
1553 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1554 
1555 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1556 	if (!(test_opt(sb, NO_UID32))) {
1557 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1558 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1559 /*
1560  * Fix up interoperability with old kernels. Otherwise, old inodes get
1561  * re-used with the upper 16 bits of the uid/gid intact
1562  */
1563 		if (!ei->i_dtime) {
1564 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1565 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1566 		} else {
1567 			raw_inode->i_uid_high = 0;
1568 			raw_inode->i_gid_high = 0;
1569 		}
1570 	} else {
1571 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1572 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1573 		raw_inode->i_uid_high = 0;
1574 		raw_inode->i_gid_high = 0;
1575 	}
1576 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1577 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1578 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1579 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1580 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1581 
1582 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1583 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1584 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1585 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1586 	raw_inode->i_frag = ei->i_frag_no;
1587 	raw_inode->i_fsize = ei->i_frag_size;
1588 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1589 	if (!S_ISREG(inode->i_mode))
1590 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1591 	else {
1592 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1593 		if (inode->i_size > 0x7fffffffULL) {
1594 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1595 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1596 			    EXT2_SB(sb)->s_es->s_rev_level ==
1597 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1598 			       /* If this is the first large file
1599 				* created, add a flag to the superblock.
1600 				*/
1601 				spin_lock(&EXT2_SB(sb)->s_lock);
1602 				ext2_update_dynamic_rev(sb);
1603 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1604 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1605 				spin_unlock(&EXT2_SB(sb)->s_lock);
1606 				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1607 			}
1608 		}
1609 	}
1610 
1611 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1612 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1613 		if (old_valid_dev(inode->i_rdev)) {
1614 			raw_inode->i_block[0] =
1615 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1616 			raw_inode->i_block[1] = 0;
1617 		} else {
1618 			raw_inode->i_block[0] = 0;
1619 			raw_inode->i_block[1] =
1620 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1621 			raw_inode->i_block[2] = 0;
1622 		}
1623 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1624 		raw_inode->i_block[n] = ei->i_data[n];
1625 	mark_buffer_dirty(bh);
1626 	if (do_sync) {
1627 		sync_dirty_buffer(bh);
1628 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1629 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1630 				sb->s_id, (unsigned long) ino);
1631 			err = -EIO;
1632 		}
1633 	}
1634 	ei->i_state &= ~EXT2_STATE_NEW;
1635 	brelse (bh);
1636 	return err;
1637 }
1638 
1639 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1640 {
1641 	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1642 }
1643 
1644 int ext2_getattr(const struct path *path, struct kstat *stat,
1645 		u32 request_mask, unsigned int query_flags)
1646 {
1647 	struct inode *inode = d_inode(path->dentry);
1648 	struct ext2_inode_info *ei = EXT2_I(inode);
1649 	unsigned int flags;
1650 
1651 	flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1652 	if (flags & EXT2_APPEND_FL)
1653 		stat->attributes |= STATX_ATTR_APPEND;
1654 	if (flags & EXT2_COMPR_FL)
1655 		stat->attributes |= STATX_ATTR_COMPRESSED;
1656 	if (flags & EXT2_IMMUTABLE_FL)
1657 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1658 	if (flags & EXT2_NODUMP_FL)
1659 		stat->attributes |= STATX_ATTR_NODUMP;
1660 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1661 			STATX_ATTR_COMPRESSED |
1662 			STATX_ATTR_ENCRYPTED |
1663 			STATX_ATTR_IMMUTABLE |
1664 			STATX_ATTR_NODUMP);
1665 
1666 	generic_fillattr(inode, stat);
1667 	return 0;
1668 }
1669 
1670 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1671 {
1672 	struct inode *inode = d_inode(dentry);
1673 	int error;
1674 
1675 	error = setattr_prepare(dentry, iattr);
1676 	if (error)
1677 		return error;
1678 
1679 	if (is_quota_modification(inode, iattr)) {
1680 		error = dquot_initialize(inode);
1681 		if (error)
1682 			return error;
1683 	}
1684 	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1685 	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1686 		error = dquot_transfer(inode, iattr);
1687 		if (error)
1688 			return error;
1689 	}
1690 	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1691 		error = ext2_setsize(inode, iattr->ia_size);
1692 		if (error)
1693 			return error;
1694 	}
1695 	setattr_copy(inode, iattr);
1696 	if (iattr->ia_valid & ATTR_MODE)
1697 		error = posix_acl_chmod(inode, inode->i_mode);
1698 	mark_inode_dirty(inode);
1699 
1700 	return error;
1701 }
1702