xref: /linux/fs/ext2/inode.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include "ext2.h"
37 #include "acl.h"
38 #include "xip.h"
39 
40 MODULE_AUTHOR("Remy Card and others");
41 MODULE_DESCRIPTION("Second Extended Filesystem");
42 MODULE_LICENSE("GPL");
43 
44 static int ext2_update_inode(struct inode * inode, int do_sync);
45 
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 {
51 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
52 		(inode->i_sb->s_blocksize >> 9) : 0;
53 
54 	return (S_ISLNK(inode->i_mode) &&
55 		inode->i_blocks - ea_blocks == 0);
56 }
57 
58 /*
59  * Called at the last iput() if i_nlink is zero.
60  */
61 void ext2_delete_inode (struct inode * inode)
62 {
63 	truncate_inode_pages(&inode->i_data, 0);
64 
65 	if (is_bad_inode(inode))
66 		goto no_delete;
67 	EXT2_I(inode)->i_dtime	= get_seconds();
68 	mark_inode_dirty(inode);
69 	ext2_update_inode(inode, inode_needs_sync(inode));
70 
71 	inode->i_size = 0;
72 	if (inode->i_blocks)
73 		ext2_truncate (inode);
74 	ext2_free_inode (inode);
75 
76 	return;
77 no_delete:
78 	clear_inode(inode);	/* We must guarantee clearing of inode... */
79 }
80 
81 typedef struct {
82 	__le32	*p;
83 	__le32	key;
84 	struct buffer_head *bh;
85 } Indirect;
86 
87 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
88 {
89 	p->key = *(p->p = v);
90 	p->bh = bh;
91 }
92 
93 static inline int verify_chain(Indirect *from, Indirect *to)
94 {
95 	while (from <= to && from->key == *from->p)
96 		from++;
97 	return (from > to);
98 }
99 
100 /**
101  *	ext2_block_to_path - parse the block number into array of offsets
102  *	@inode: inode in question (we are only interested in its superblock)
103  *	@i_block: block number to be parsed
104  *	@offsets: array to store the offsets in
105  *      @boundary: set this non-zero if the referred-to block is likely to be
106  *             followed (on disk) by an indirect block.
107  *	To store the locations of file's data ext2 uses a data structure common
108  *	for UNIX filesystems - tree of pointers anchored in the inode, with
109  *	data blocks at leaves and indirect blocks in intermediate nodes.
110  *	This function translates the block number into path in that tree -
111  *	return value is the path length and @offsets[n] is the offset of
112  *	pointer to (n+1)th node in the nth one. If @block is out of range
113  *	(negative or too large) warning is printed and zero returned.
114  *
115  *	Note: function doesn't find node addresses, so no IO is needed. All
116  *	we need to know is the capacity of indirect blocks (taken from the
117  *	inode->i_sb).
118  */
119 
120 /*
121  * Portability note: the last comparison (check that we fit into triple
122  * indirect block) is spelled differently, because otherwise on an
123  * architecture with 32-bit longs and 8Kb pages we might get into trouble
124  * if our filesystem had 8Kb blocks. We might use long long, but that would
125  * kill us on x86. Oh, well, at least the sign propagation does not matter -
126  * i_block would have to be negative in the very beginning, so we would not
127  * get there at all.
128  */
129 
130 static int ext2_block_to_path(struct inode *inode,
131 			long i_block, int offsets[4], int *boundary)
132 {
133 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
134 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
135 	const long direct_blocks = EXT2_NDIR_BLOCKS,
136 		indirect_blocks = ptrs,
137 		double_blocks = (1 << (ptrs_bits * 2));
138 	int n = 0;
139 	int final = 0;
140 
141 	if (i_block < 0) {
142 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
143 	} else if (i_block < direct_blocks) {
144 		offsets[n++] = i_block;
145 		final = direct_blocks;
146 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
147 		offsets[n++] = EXT2_IND_BLOCK;
148 		offsets[n++] = i_block;
149 		final = ptrs;
150 	} else if ((i_block -= indirect_blocks) < double_blocks) {
151 		offsets[n++] = EXT2_DIND_BLOCK;
152 		offsets[n++] = i_block >> ptrs_bits;
153 		offsets[n++] = i_block & (ptrs - 1);
154 		final = ptrs;
155 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
156 		offsets[n++] = EXT2_TIND_BLOCK;
157 		offsets[n++] = i_block >> (ptrs_bits * 2);
158 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
159 		offsets[n++] = i_block & (ptrs - 1);
160 		final = ptrs;
161 	} else {
162 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
163 	}
164 	if (boundary)
165 		*boundary = final - 1 - (i_block & (ptrs - 1));
166 
167 	return n;
168 }
169 
170 /**
171  *	ext2_get_branch - read the chain of indirect blocks leading to data
172  *	@inode: inode in question
173  *	@depth: depth of the chain (1 - direct pointer, etc.)
174  *	@offsets: offsets of pointers in inode/indirect blocks
175  *	@chain: place to store the result
176  *	@err: here we store the error value
177  *
178  *	Function fills the array of triples <key, p, bh> and returns %NULL
179  *	if everything went OK or the pointer to the last filled triple
180  *	(incomplete one) otherwise. Upon the return chain[i].key contains
181  *	the number of (i+1)-th block in the chain (as it is stored in memory,
182  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
183  *	number (it points into struct inode for i==0 and into the bh->b_data
184  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
185  *	block for i>0 and NULL for i==0. In other words, it holds the block
186  *	numbers of the chain, addresses they were taken from (and where we can
187  *	verify that chain did not change) and buffer_heads hosting these
188  *	numbers.
189  *
190  *	Function stops when it stumbles upon zero pointer (absent block)
191  *		(pointer to last triple returned, *@err == 0)
192  *	or when it gets an IO error reading an indirect block
193  *		(ditto, *@err == -EIO)
194  *	or when it notices that chain had been changed while it was reading
195  *		(ditto, *@err == -EAGAIN)
196  *	or when it reads all @depth-1 indirect blocks successfully and finds
197  *	the whole chain, all way to the data (returns %NULL, *err == 0).
198  */
199 static Indirect *ext2_get_branch(struct inode *inode,
200 				 int depth,
201 				 int *offsets,
202 				 Indirect chain[4],
203 				 int *err)
204 {
205 	struct super_block *sb = inode->i_sb;
206 	Indirect *p = chain;
207 	struct buffer_head *bh;
208 
209 	*err = 0;
210 	/* i_data is not going away, no lock needed */
211 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
212 	if (!p->key)
213 		goto no_block;
214 	while (--depth) {
215 		bh = sb_bread(sb, le32_to_cpu(p->key));
216 		if (!bh)
217 			goto failure;
218 		read_lock(&EXT2_I(inode)->i_meta_lock);
219 		if (!verify_chain(chain, p))
220 			goto changed;
221 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
222 		read_unlock(&EXT2_I(inode)->i_meta_lock);
223 		if (!p->key)
224 			goto no_block;
225 	}
226 	return NULL;
227 
228 changed:
229 	read_unlock(&EXT2_I(inode)->i_meta_lock);
230 	brelse(bh);
231 	*err = -EAGAIN;
232 	goto no_block;
233 failure:
234 	*err = -EIO;
235 no_block:
236 	return p;
237 }
238 
239 /**
240  *	ext2_find_near - find a place for allocation with sufficient locality
241  *	@inode: owner
242  *	@ind: descriptor of indirect block.
243  *
244  *	This function returns the preferred place for block allocation.
245  *	It is used when heuristic for sequential allocation fails.
246  *	Rules are:
247  *	  + if there is a block to the left of our position - allocate near it.
248  *	  + if pointer will live in indirect block - allocate near that block.
249  *	  + if pointer will live in inode - allocate in the same cylinder group.
250  *
251  * In the latter case we colour the starting block by the callers PID to
252  * prevent it from clashing with concurrent allocations for a different inode
253  * in the same block group.   The PID is used here so that functionally related
254  * files will be close-by on-disk.
255  *
256  *	Caller must make sure that @ind is valid and will stay that way.
257  */
258 
259 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
260 {
261 	struct ext2_inode_info *ei = EXT2_I(inode);
262 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
263 	__le32 *p;
264 	ext2_fsblk_t bg_start;
265 	ext2_fsblk_t colour;
266 
267 	/* Try to find previous block */
268 	for (p = ind->p - 1; p >= start; p--)
269 		if (*p)
270 			return le32_to_cpu(*p);
271 
272 	/* No such thing, so let's try location of indirect block */
273 	if (ind->bh)
274 		return ind->bh->b_blocknr;
275 
276 	/*
277 	 * It is going to be refered from inode itself? OK, just put it into
278 	 * the same cylinder group then.
279 	 */
280 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
281 	colour = (current->pid % 16) *
282 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
283 	return bg_start + colour;
284 }
285 
286 /**
287  *	ext2_find_goal - find a preferred place for allocation.
288  *	@inode: owner
289  *	@block:  block we want
290  *	@partial: pointer to the last triple within a chain
291  *
292  *	Returns preferred place for a block (the goal).
293  */
294 
295 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
296 					  Indirect *partial)
297 {
298 	struct ext2_block_alloc_info *block_i;
299 
300 	block_i = EXT2_I(inode)->i_block_alloc_info;
301 
302 	/*
303 	 * try the heuristic for sequential allocation,
304 	 * failing that at least try to get decent locality.
305 	 */
306 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
307 		&& (block_i->last_alloc_physical_block != 0)) {
308 		return block_i->last_alloc_physical_block + 1;
309 	}
310 
311 	return ext2_find_near(inode, partial);
312 }
313 
314 /**
315  *	ext2_blks_to_allocate: Look up the block map and count the number
316  *	of direct blocks need to be allocated for the given branch.
317  *
318  * 	@branch: chain of indirect blocks
319  *	@k: number of blocks need for indirect blocks
320  *	@blks: number of data blocks to be mapped.
321  *	@blocks_to_boundary:  the offset in the indirect block
322  *
323  *	return the total number of blocks to be allocate, including the
324  *	direct and indirect blocks.
325  */
326 static int
327 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
328 		int blocks_to_boundary)
329 {
330 	unsigned long count = 0;
331 
332 	/*
333 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
334 	 * then it's clear blocks on that path have not allocated
335 	 */
336 	if (k > 0) {
337 		/* right now don't hanel cross boundary allocation */
338 		if (blks < blocks_to_boundary + 1)
339 			count += blks;
340 		else
341 			count += blocks_to_boundary + 1;
342 		return count;
343 	}
344 
345 	count++;
346 	while (count < blks && count <= blocks_to_boundary
347 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
348 		count++;
349 	}
350 	return count;
351 }
352 
353 /**
354  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
355  *	@indirect_blks: the number of blocks need to allocate for indirect
356  *			blocks
357  *
358  *	@new_blocks: on return it will store the new block numbers for
359  *	the indirect blocks(if needed) and the first direct block,
360  *	@blks:	on return it will store the total number of allocated
361  *		direct blocks
362  */
363 static int ext2_alloc_blocks(struct inode *inode,
364 			ext2_fsblk_t goal, int indirect_blks, int blks,
365 			ext2_fsblk_t new_blocks[4], int *err)
366 {
367 	int target, i;
368 	unsigned long count = 0;
369 	int index = 0;
370 	ext2_fsblk_t current_block = 0;
371 	int ret = 0;
372 
373 	/*
374 	 * Here we try to allocate the requested multiple blocks at once,
375 	 * on a best-effort basis.
376 	 * To build a branch, we should allocate blocks for
377 	 * the indirect blocks(if not allocated yet), and at least
378 	 * the first direct block of this branch.  That's the
379 	 * minimum number of blocks need to allocate(required)
380 	 */
381 	target = blks + indirect_blks;
382 
383 	while (1) {
384 		count = target;
385 		/* allocating blocks for indirect blocks and direct blocks */
386 		current_block = ext2_new_blocks(inode,goal,&count,err);
387 		if (*err)
388 			goto failed_out;
389 
390 		target -= count;
391 		/* allocate blocks for indirect blocks */
392 		while (index < indirect_blks && count) {
393 			new_blocks[index++] = current_block++;
394 			count--;
395 		}
396 
397 		if (count > 0)
398 			break;
399 	}
400 
401 	/* save the new block number for the first direct block */
402 	new_blocks[index] = current_block;
403 
404 	/* total number of blocks allocated for direct blocks */
405 	ret = count;
406 	*err = 0;
407 	return ret;
408 failed_out:
409 	for (i = 0; i <index; i++)
410 		ext2_free_blocks(inode, new_blocks[i], 1);
411 	return ret;
412 }
413 
414 /**
415  *	ext2_alloc_branch - allocate and set up a chain of blocks.
416  *	@inode: owner
417  *	@num: depth of the chain (number of blocks to allocate)
418  *	@offsets: offsets (in the blocks) to store the pointers to next.
419  *	@branch: place to store the chain in.
420  *
421  *	This function allocates @num blocks, zeroes out all but the last one,
422  *	links them into chain and (if we are synchronous) writes them to disk.
423  *	In other words, it prepares a branch that can be spliced onto the
424  *	inode. It stores the information about that chain in the branch[], in
425  *	the same format as ext2_get_branch() would do. We are calling it after
426  *	we had read the existing part of chain and partial points to the last
427  *	triple of that (one with zero ->key). Upon the exit we have the same
428  *	picture as after the successful ext2_get_block(), excpet that in one
429  *	place chain is disconnected - *branch->p is still zero (we did not
430  *	set the last link), but branch->key contains the number that should
431  *	be placed into *branch->p to fill that gap.
432  *
433  *	If allocation fails we free all blocks we've allocated (and forget
434  *	their buffer_heads) and return the error value the from failed
435  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
436  *	as described above and return 0.
437  */
438 
439 static int ext2_alloc_branch(struct inode *inode,
440 			int indirect_blks, int *blks, ext2_fsblk_t goal,
441 			int *offsets, Indirect *branch)
442 {
443 	int blocksize = inode->i_sb->s_blocksize;
444 	int i, n = 0;
445 	int err = 0;
446 	struct buffer_head *bh;
447 	int num;
448 	ext2_fsblk_t new_blocks[4];
449 	ext2_fsblk_t current_block;
450 
451 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
452 				*blks, new_blocks, &err);
453 	if (err)
454 		return err;
455 
456 	branch[0].key = cpu_to_le32(new_blocks[0]);
457 	/*
458 	 * metadata blocks and data blocks are allocated.
459 	 */
460 	for (n = 1; n <= indirect_blks;  n++) {
461 		/*
462 		 * Get buffer_head for parent block, zero it out
463 		 * and set the pointer to new one, then send
464 		 * parent to disk.
465 		 */
466 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
467 		branch[n].bh = bh;
468 		lock_buffer(bh);
469 		memset(bh->b_data, 0, blocksize);
470 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
471 		branch[n].key = cpu_to_le32(new_blocks[n]);
472 		*branch[n].p = branch[n].key;
473 		if ( n == indirect_blks) {
474 			current_block = new_blocks[n];
475 			/*
476 			 * End of chain, update the last new metablock of
477 			 * the chain to point to the new allocated
478 			 * data blocks numbers
479 			 */
480 			for (i=1; i < num; i++)
481 				*(branch[n].p + i) = cpu_to_le32(++current_block);
482 		}
483 		set_buffer_uptodate(bh);
484 		unlock_buffer(bh);
485 		mark_buffer_dirty_inode(bh, inode);
486 		/* We used to sync bh here if IS_SYNC(inode).
487 		 * But we now rely upon generic_osync_inode()
488 		 * and b_inode_buffers.  But not for directories.
489 		 */
490 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
491 			sync_dirty_buffer(bh);
492 	}
493 	*blks = num;
494 	return err;
495 }
496 
497 /**
498  * ext2_splice_branch - splice the allocated branch onto inode.
499  * @inode: owner
500  * @block: (logical) number of block we are adding
501  * @chain: chain of indirect blocks (with a missing link - see
502  *	ext2_alloc_branch)
503  * @where: location of missing link
504  * @num:   number of indirect blocks we are adding
505  * @blks:  number of direct blocks we are adding
506  *
507  * This function fills the missing link and does all housekeeping needed in
508  * inode (->i_blocks, etc.). In case of success we end up with the full
509  * chain to new block and return 0.
510  */
511 static void ext2_splice_branch(struct inode *inode,
512 			long block, Indirect *where, int num, int blks)
513 {
514 	int i;
515 	struct ext2_block_alloc_info *block_i;
516 	ext2_fsblk_t current_block;
517 
518 	block_i = EXT2_I(inode)->i_block_alloc_info;
519 
520 	/* XXX LOCKING probably should have i_meta_lock ?*/
521 	/* That's it */
522 
523 	*where->p = where->key;
524 
525 	/*
526 	 * Update the host buffer_head or inode to point to more just allocated
527 	 * direct blocks blocks
528 	 */
529 	if (num == 0 && blks > 1) {
530 		current_block = le32_to_cpu(where->key) + 1;
531 		for (i = 1; i < blks; i++)
532 			*(where->p + i ) = cpu_to_le32(current_block++);
533 	}
534 
535 	/*
536 	 * update the most recently allocated logical & physical block
537 	 * in i_block_alloc_info, to assist find the proper goal block for next
538 	 * allocation
539 	 */
540 	if (block_i) {
541 		block_i->last_alloc_logical_block = block + blks - 1;
542 		block_i->last_alloc_physical_block =
543 				le32_to_cpu(where[num].key) + blks - 1;
544 	}
545 
546 	/* We are done with atomic stuff, now do the rest of housekeeping */
547 
548 	/* had we spliced it onto indirect block? */
549 	if (where->bh)
550 		mark_buffer_dirty_inode(where->bh, inode);
551 
552 	inode->i_ctime = CURRENT_TIME_SEC;
553 	mark_inode_dirty(inode);
554 }
555 
556 /*
557  * Allocation strategy is simple: if we have to allocate something, we will
558  * have to go the whole way to leaf. So let's do it before attaching anything
559  * to tree, set linkage between the newborn blocks, write them if sync is
560  * required, recheck the path, free and repeat if check fails, otherwise
561  * set the last missing link (that will protect us from any truncate-generated
562  * removals - all blocks on the path are immune now) and possibly force the
563  * write on the parent block.
564  * That has a nice additional property: no special recovery from the failed
565  * allocations is needed - we simply release blocks and do not touch anything
566  * reachable from inode.
567  *
568  * `handle' can be NULL if create == 0.
569  *
570  * return > 0, # of blocks mapped or allocated.
571  * return = 0, if plain lookup failed.
572  * return < 0, error case.
573  */
574 static int ext2_get_blocks(struct inode *inode,
575 			   sector_t iblock, unsigned long maxblocks,
576 			   struct buffer_head *bh_result,
577 			   int create)
578 {
579 	int err = -EIO;
580 	int offsets[4];
581 	Indirect chain[4];
582 	Indirect *partial;
583 	ext2_fsblk_t goal;
584 	int indirect_blks;
585 	int blocks_to_boundary = 0;
586 	int depth;
587 	struct ext2_inode_info *ei = EXT2_I(inode);
588 	int count = 0;
589 	ext2_fsblk_t first_block = 0;
590 
591 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
592 
593 	if (depth == 0)
594 		return (err);
595 reread:
596 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
597 
598 	/* Simplest case - block found, no allocation needed */
599 	if (!partial) {
600 		first_block = le32_to_cpu(chain[depth - 1].key);
601 		clear_buffer_new(bh_result); /* What's this do? */
602 		count++;
603 		/*map more blocks*/
604 		while (count < maxblocks && count <= blocks_to_boundary) {
605 			ext2_fsblk_t blk;
606 
607 			if (!verify_chain(chain, partial)) {
608 				/*
609 				 * Indirect block might be removed by
610 				 * truncate while we were reading it.
611 				 * Handling of that case: forget what we've
612 				 * got now, go to reread.
613 				 */
614 				count = 0;
615 				goto changed;
616 			}
617 			blk = le32_to_cpu(*(chain[depth-1].p + count));
618 			if (blk == first_block + count)
619 				count++;
620 			else
621 				break;
622 		}
623 		goto got_it;
624 	}
625 
626 	/* Next simple case - plain lookup or failed read of indirect block */
627 	if (!create || err == -EIO)
628 		goto cleanup;
629 
630 	mutex_lock(&ei->truncate_mutex);
631 
632 	/*
633 	 * Okay, we need to do block allocation.  Lazily initialize the block
634 	 * allocation info here if necessary
635 	*/
636 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
637 		ext2_init_block_alloc_info(inode);
638 
639 	goal = ext2_find_goal(inode, iblock, partial);
640 
641 	/* the number of blocks need to allocate for [d,t]indirect blocks */
642 	indirect_blks = (chain + depth) - partial - 1;
643 	/*
644 	 * Next look up the indirect map to count the totoal number of
645 	 * direct blocks to allocate for this branch.
646 	 */
647 	count = ext2_blks_to_allocate(partial, indirect_blks,
648 					maxblocks, blocks_to_boundary);
649 	/*
650 	 * XXX ???? Block out ext2_truncate while we alter the tree
651 	 */
652 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
653 				offsets + (partial - chain), partial);
654 
655 	if (err) {
656 		mutex_unlock(&ei->truncate_mutex);
657 		goto cleanup;
658 	}
659 
660 	if (ext2_use_xip(inode->i_sb)) {
661 		/*
662 		 * we need to clear the block
663 		 */
664 		err = ext2_clear_xip_target (inode,
665 			le32_to_cpu(chain[depth-1].key));
666 		if (err) {
667 			mutex_unlock(&ei->truncate_mutex);
668 			goto cleanup;
669 		}
670 	}
671 
672 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
673 	mutex_unlock(&ei->truncate_mutex);
674 	set_buffer_new(bh_result);
675 got_it:
676 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
677 	if (count > blocks_to_boundary)
678 		set_buffer_boundary(bh_result);
679 	err = count;
680 	/* Clean up and exit */
681 	partial = chain + depth - 1;	/* the whole chain */
682 cleanup:
683 	while (partial > chain) {
684 		brelse(partial->bh);
685 		partial--;
686 	}
687 	return err;
688 changed:
689 	while (partial > chain) {
690 		brelse(partial->bh);
691 		partial--;
692 	}
693 	goto reread;
694 }
695 
696 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
697 {
698 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
699 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
700 			      bh_result, create);
701 	if (ret > 0) {
702 		bh_result->b_size = (ret << inode->i_blkbits);
703 		ret = 0;
704 	}
705 	return ret;
706 
707 }
708 
709 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
710 		u64 start, u64 len)
711 {
712 	return generic_block_fiemap(inode, fieinfo, start, len,
713 				    ext2_get_block);
714 }
715 
716 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
717 {
718 	return block_write_full_page(page, ext2_get_block, wbc);
719 }
720 
721 static int ext2_readpage(struct file *file, struct page *page)
722 {
723 	return mpage_readpage(page, ext2_get_block);
724 }
725 
726 static int
727 ext2_readpages(struct file *file, struct address_space *mapping,
728 		struct list_head *pages, unsigned nr_pages)
729 {
730 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
731 }
732 
733 int __ext2_write_begin(struct file *file, struct address_space *mapping,
734 		loff_t pos, unsigned len, unsigned flags,
735 		struct page **pagep, void **fsdata)
736 {
737 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
738 							ext2_get_block);
739 }
740 
741 static int
742 ext2_write_begin(struct file *file, struct address_space *mapping,
743 		loff_t pos, unsigned len, unsigned flags,
744 		struct page **pagep, void **fsdata)
745 {
746 	*pagep = NULL;
747 	return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
748 }
749 
750 static int
751 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
752 		loff_t pos, unsigned len, unsigned flags,
753 		struct page **pagep, void **fsdata)
754 {
755 	/*
756 	 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
757 	 * directory handling code to pass around offsets rather than struct
758 	 * pages in order to make this work easily.
759 	 */
760 	return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
761 							ext2_get_block);
762 }
763 
764 static int ext2_nobh_writepage(struct page *page,
765 			struct writeback_control *wbc)
766 {
767 	return nobh_writepage(page, ext2_get_block, wbc);
768 }
769 
770 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
771 {
772 	return generic_block_bmap(mapping,block,ext2_get_block);
773 }
774 
775 static ssize_t
776 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
777 			loff_t offset, unsigned long nr_segs)
778 {
779 	struct file *file = iocb->ki_filp;
780 	struct inode *inode = file->f_mapping->host;
781 
782 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
783 				offset, nr_segs, ext2_get_block, NULL);
784 }
785 
786 static int
787 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
788 {
789 	return mpage_writepages(mapping, wbc, ext2_get_block);
790 }
791 
792 const struct address_space_operations ext2_aops = {
793 	.readpage		= ext2_readpage,
794 	.readpages		= ext2_readpages,
795 	.writepage		= ext2_writepage,
796 	.sync_page		= block_sync_page,
797 	.write_begin		= ext2_write_begin,
798 	.write_end		= generic_write_end,
799 	.bmap			= ext2_bmap,
800 	.direct_IO		= ext2_direct_IO,
801 	.writepages		= ext2_writepages,
802 	.migratepage		= buffer_migrate_page,
803 	.is_partially_uptodate	= block_is_partially_uptodate,
804 };
805 
806 const struct address_space_operations ext2_aops_xip = {
807 	.bmap			= ext2_bmap,
808 	.get_xip_mem		= ext2_get_xip_mem,
809 };
810 
811 const struct address_space_operations ext2_nobh_aops = {
812 	.readpage		= ext2_readpage,
813 	.readpages		= ext2_readpages,
814 	.writepage		= ext2_nobh_writepage,
815 	.sync_page		= block_sync_page,
816 	.write_begin		= ext2_nobh_write_begin,
817 	.write_end		= nobh_write_end,
818 	.bmap			= ext2_bmap,
819 	.direct_IO		= ext2_direct_IO,
820 	.writepages		= ext2_writepages,
821 	.migratepage		= buffer_migrate_page,
822 };
823 
824 /*
825  * Probably it should be a library function... search for first non-zero word
826  * or memcmp with zero_page, whatever is better for particular architecture.
827  * Linus?
828  */
829 static inline int all_zeroes(__le32 *p, __le32 *q)
830 {
831 	while (p < q)
832 		if (*p++)
833 			return 0;
834 	return 1;
835 }
836 
837 /**
838  *	ext2_find_shared - find the indirect blocks for partial truncation.
839  *	@inode:	  inode in question
840  *	@depth:	  depth of the affected branch
841  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
842  *	@chain:	  place to store the pointers to partial indirect blocks
843  *	@top:	  place to the (detached) top of branch
844  *
845  *	This is a helper function used by ext2_truncate().
846  *
847  *	When we do truncate() we may have to clean the ends of several indirect
848  *	blocks but leave the blocks themselves alive. Block is partially
849  *	truncated if some data below the new i_size is refered from it (and
850  *	it is on the path to the first completely truncated data block, indeed).
851  *	We have to free the top of that path along with everything to the right
852  *	of the path. Since no allocation past the truncation point is possible
853  *	until ext2_truncate() finishes, we may safely do the latter, but top
854  *	of branch may require special attention - pageout below the truncation
855  *	point might try to populate it.
856  *
857  *	We atomically detach the top of branch from the tree, store the block
858  *	number of its root in *@top, pointers to buffer_heads of partially
859  *	truncated blocks - in @chain[].bh and pointers to their last elements
860  *	that should not be removed - in @chain[].p. Return value is the pointer
861  *	to last filled element of @chain.
862  *
863  *	The work left to caller to do the actual freeing of subtrees:
864  *		a) free the subtree starting from *@top
865  *		b) free the subtrees whose roots are stored in
866  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
867  *		c) free the subtrees growing from the inode past the @chain[0].p
868  *			(no partially truncated stuff there).
869  */
870 
871 static Indirect *ext2_find_shared(struct inode *inode,
872 				int depth,
873 				int offsets[4],
874 				Indirect chain[4],
875 				__le32 *top)
876 {
877 	Indirect *partial, *p;
878 	int k, err;
879 
880 	*top = 0;
881 	for (k = depth; k > 1 && !offsets[k-1]; k--)
882 		;
883 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
884 	if (!partial)
885 		partial = chain + k-1;
886 	/*
887 	 * If the branch acquired continuation since we've looked at it -
888 	 * fine, it should all survive and (new) top doesn't belong to us.
889 	 */
890 	write_lock(&EXT2_I(inode)->i_meta_lock);
891 	if (!partial->key && *partial->p) {
892 		write_unlock(&EXT2_I(inode)->i_meta_lock);
893 		goto no_top;
894 	}
895 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
896 		;
897 	/*
898 	 * OK, we've found the last block that must survive. The rest of our
899 	 * branch should be detached before unlocking. However, if that rest
900 	 * of branch is all ours and does not grow immediately from the inode
901 	 * it's easier to cheat and just decrement partial->p.
902 	 */
903 	if (p == chain + k - 1 && p > chain) {
904 		p->p--;
905 	} else {
906 		*top = *p->p;
907 		*p->p = 0;
908 	}
909 	write_unlock(&EXT2_I(inode)->i_meta_lock);
910 
911 	while(partial > p)
912 	{
913 		brelse(partial->bh);
914 		partial--;
915 	}
916 no_top:
917 	return partial;
918 }
919 
920 /**
921  *	ext2_free_data - free a list of data blocks
922  *	@inode:	inode we are dealing with
923  *	@p:	array of block numbers
924  *	@q:	points immediately past the end of array
925  *
926  *	We are freeing all blocks refered from that array (numbers are
927  *	stored as little-endian 32-bit) and updating @inode->i_blocks
928  *	appropriately.
929  */
930 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
931 {
932 	unsigned long block_to_free = 0, count = 0;
933 	unsigned long nr;
934 
935 	for ( ; p < q ; p++) {
936 		nr = le32_to_cpu(*p);
937 		if (nr) {
938 			*p = 0;
939 			/* accumulate blocks to free if they're contiguous */
940 			if (count == 0)
941 				goto free_this;
942 			else if (block_to_free == nr - count)
943 				count++;
944 			else {
945 				mark_inode_dirty(inode);
946 				ext2_free_blocks (inode, block_to_free, count);
947 			free_this:
948 				block_to_free = nr;
949 				count = 1;
950 			}
951 		}
952 	}
953 	if (count > 0) {
954 		mark_inode_dirty(inode);
955 		ext2_free_blocks (inode, block_to_free, count);
956 	}
957 }
958 
959 /**
960  *	ext2_free_branches - free an array of branches
961  *	@inode:	inode we are dealing with
962  *	@p:	array of block numbers
963  *	@q:	pointer immediately past the end of array
964  *	@depth:	depth of the branches to free
965  *
966  *	We are freeing all blocks refered from these branches (numbers are
967  *	stored as little-endian 32-bit) and updating @inode->i_blocks
968  *	appropriately.
969  */
970 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
971 {
972 	struct buffer_head * bh;
973 	unsigned long nr;
974 
975 	if (depth--) {
976 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
977 		for ( ; p < q ; p++) {
978 			nr = le32_to_cpu(*p);
979 			if (!nr)
980 				continue;
981 			*p = 0;
982 			bh = sb_bread(inode->i_sb, nr);
983 			/*
984 			 * A read failure? Report error and clear slot
985 			 * (should be rare).
986 			 */
987 			if (!bh) {
988 				ext2_error(inode->i_sb, "ext2_free_branches",
989 					"Read failure, inode=%ld, block=%ld",
990 					inode->i_ino, nr);
991 				continue;
992 			}
993 			ext2_free_branches(inode,
994 					   (__le32*)bh->b_data,
995 					   (__le32*)bh->b_data + addr_per_block,
996 					   depth);
997 			bforget(bh);
998 			ext2_free_blocks(inode, nr, 1);
999 			mark_inode_dirty(inode);
1000 		}
1001 	} else
1002 		ext2_free_data(inode, p, q);
1003 }
1004 
1005 void ext2_truncate(struct inode *inode)
1006 {
1007 	__le32 *i_data = EXT2_I(inode)->i_data;
1008 	struct ext2_inode_info *ei = EXT2_I(inode);
1009 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1010 	int offsets[4];
1011 	Indirect chain[4];
1012 	Indirect *partial;
1013 	__le32 nr = 0;
1014 	int n;
1015 	long iblock;
1016 	unsigned blocksize;
1017 
1018 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1019 	    S_ISLNK(inode->i_mode)))
1020 		return;
1021 	if (ext2_inode_is_fast_symlink(inode))
1022 		return;
1023 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1024 		return;
1025 
1026 	blocksize = inode->i_sb->s_blocksize;
1027 	iblock = (inode->i_size + blocksize-1)
1028 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1029 
1030 	if (mapping_is_xip(inode->i_mapping))
1031 		xip_truncate_page(inode->i_mapping, inode->i_size);
1032 	else if (test_opt(inode->i_sb, NOBH))
1033 		nobh_truncate_page(inode->i_mapping,
1034 				inode->i_size, ext2_get_block);
1035 	else
1036 		block_truncate_page(inode->i_mapping,
1037 				inode->i_size, ext2_get_block);
1038 
1039 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1040 	if (n == 0)
1041 		return;
1042 
1043 	/*
1044 	 * From here we block out all ext2_get_block() callers who want to
1045 	 * modify the block allocation tree.
1046 	 */
1047 	mutex_lock(&ei->truncate_mutex);
1048 
1049 	if (n == 1) {
1050 		ext2_free_data(inode, i_data+offsets[0],
1051 					i_data + EXT2_NDIR_BLOCKS);
1052 		goto do_indirects;
1053 	}
1054 
1055 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1056 	/* Kill the top of shared branch (already detached) */
1057 	if (nr) {
1058 		if (partial == chain)
1059 			mark_inode_dirty(inode);
1060 		else
1061 			mark_buffer_dirty_inode(partial->bh, inode);
1062 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1063 	}
1064 	/* Clear the ends of indirect blocks on the shared branch */
1065 	while (partial > chain) {
1066 		ext2_free_branches(inode,
1067 				   partial->p + 1,
1068 				   (__le32*)partial->bh->b_data+addr_per_block,
1069 				   (chain+n-1) - partial);
1070 		mark_buffer_dirty_inode(partial->bh, inode);
1071 		brelse (partial->bh);
1072 		partial--;
1073 	}
1074 do_indirects:
1075 	/* Kill the remaining (whole) subtrees */
1076 	switch (offsets[0]) {
1077 		default:
1078 			nr = i_data[EXT2_IND_BLOCK];
1079 			if (nr) {
1080 				i_data[EXT2_IND_BLOCK] = 0;
1081 				mark_inode_dirty(inode);
1082 				ext2_free_branches(inode, &nr, &nr+1, 1);
1083 			}
1084 		case EXT2_IND_BLOCK:
1085 			nr = i_data[EXT2_DIND_BLOCK];
1086 			if (nr) {
1087 				i_data[EXT2_DIND_BLOCK] = 0;
1088 				mark_inode_dirty(inode);
1089 				ext2_free_branches(inode, &nr, &nr+1, 2);
1090 			}
1091 		case EXT2_DIND_BLOCK:
1092 			nr = i_data[EXT2_TIND_BLOCK];
1093 			if (nr) {
1094 				i_data[EXT2_TIND_BLOCK] = 0;
1095 				mark_inode_dirty(inode);
1096 				ext2_free_branches(inode, &nr, &nr+1, 3);
1097 			}
1098 		case EXT2_TIND_BLOCK:
1099 			;
1100 	}
1101 
1102 	ext2_discard_reservation(inode);
1103 
1104 	mutex_unlock(&ei->truncate_mutex);
1105 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1106 	if (inode_needs_sync(inode)) {
1107 		sync_mapping_buffers(inode->i_mapping);
1108 		ext2_sync_inode (inode);
1109 	} else {
1110 		mark_inode_dirty(inode);
1111 	}
1112 }
1113 
1114 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1115 					struct buffer_head **p)
1116 {
1117 	struct buffer_head * bh;
1118 	unsigned long block_group;
1119 	unsigned long block;
1120 	unsigned long offset;
1121 	struct ext2_group_desc * gdp;
1122 
1123 	*p = NULL;
1124 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1125 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1126 		goto Einval;
1127 
1128 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1129 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1130 	if (!gdp)
1131 		goto Egdp;
1132 	/*
1133 	 * Figure out the offset within the block group inode table
1134 	 */
1135 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1136 	block = le32_to_cpu(gdp->bg_inode_table) +
1137 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1138 	if (!(bh = sb_bread(sb, block)))
1139 		goto Eio;
1140 
1141 	*p = bh;
1142 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1143 	return (struct ext2_inode *) (bh->b_data + offset);
1144 
1145 Einval:
1146 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1147 		   (unsigned long) ino);
1148 	return ERR_PTR(-EINVAL);
1149 Eio:
1150 	ext2_error(sb, "ext2_get_inode",
1151 		   "unable to read inode block - inode=%lu, block=%lu",
1152 		   (unsigned long) ino, block);
1153 Egdp:
1154 	return ERR_PTR(-EIO);
1155 }
1156 
1157 void ext2_set_inode_flags(struct inode *inode)
1158 {
1159 	unsigned int flags = EXT2_I(inode)->i_flags;
1160 
1161 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1162 	if (flags & EXT2_SYNC_FL)
1163 		inode->i_flags |= S_SYNC;
1164 	if (flags & EXT2_APPEND_FL)
1165 		inode->i_flags |= S_APPEND;
1166 	if (flags & EXT2_IMMUTABLE_FL)
1167 		inode->i_flags |= S_IMMUTABLE;
1168 	if (flags & EXT2_NOATIME_FL)
1169 		inode->i_flags |= S_NOATIME;
1170 	if (flags & EXT2_DIRSYNC_FL)
1171 		inode->i_flags |= S_DIRSYNC;
1172 }
1173 
1174 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1175 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1176 {
1177 	unsigned int flags = ei->vfs_inode.i_flags;
1178 
1179 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1180 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1181 	if (flags & S_SYNC)
1182 		ei->i_flags |= EXT2_SYNC_FL;
1183 	if (flags & S_APPEND)
1184 		ei->i_flags |= EXT2_APPEND_FL;
1185 	if (flags & S_IMMUTABLE)
1186 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1187 	if (flags & S_NOATIME)
1188 		ei->i_flags |= EXT2_NOATIME_FL;
1189 	if (flags & S_DIRSYNC)
1190 		ei->i_flags |= EXT2_DIRSYNC_FL;
1191 }
1192 
1193 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1194 {
1195 	struct ext2_inode_info *ei;
1196 	struct buffer_head * bh;
1197 	struct ext2_inode *raw_inode;
1198 	struct inode *inode;
1199 	long ret = -EIO;
1200 	int n;
1201 
1202 	inode = iget_locked(sb, ino);
1203 	if (!inode)
1204 		return ERR_PTR(-ENOMEM);
1205 	if (!(inode->i_state & I_NEW))
1206 		return inode;
1207 
1208 	ei = EXT2_I(inode);
1209 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1210 	ei->i_acl = EXT2_ACL_NOT_CACHED;
1211 	ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1212 #endif
1213 	ei->i_block_alloc_info = NULL;
1214 
1215 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1216 	if (IS_ERR(raw_inode)) {
1217 		ret = PTR_ERR(raw_inode);
1218  		goto bad_inode;
1219 	}
1220 
1221 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1222 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1223 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1224 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1225 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1226 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1227 	}
1228 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1229 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1230 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1231 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1232 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1233 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1234 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1235 	/* We now have enough fields to check if the inode was active or not.
1236 	 * This is needed because nfsd might try to access dead inodes
1237 	 * the test is that same one that e2fsck uses
1238 	 * NeilBrown 1999oct15
1239 	 */
1240 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1241 		/* this inode is deleted */
1242 		brelse (bh);
1243 		ret = -ESTALE;
1244 		goto bad_inode;
1245 	}
1246 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1247 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1248 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1249 	ei->i_frag_no = raw_inode->i_frag;
1250 	ei->i_frag_size = raw_inode->i_fsize;
1251 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1252 	ei->i_dir_acl = 0;
1253 	if (S_ISREG(inode->i_mode))
1254 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1255 	else
1256 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1257 	ei->i_dtime = 0;
1258 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1259 	ei->i_state = 0;
1260 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1261 	ei->i_dir_start_lookup = 0;
1262 
1263 	/*
1264 	 * NOTE! The in-memory inode i_data array is in little-endian order
1265 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1266 	 */
1267 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1268 		ei->i_data[n] = raw_inode->i_block[n];
1269 
1270 	if (S_ISREG(inode->i_mode)) {
1271 		inode->i_op = &ext2_file_inode_operations;
1272 		if (ext2_use_xip(inode->i_sb)) {
1273 			inode->i_mapping->a_ops = &ext2_aops_xip;
1274 			inode->i_fop = &ext2_xip_file_operations;
1275 		} else if (test_opt(inode->i_sb, NOBH)) {
1276 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1277 			inode->i_fop = &ext2_file_operations;
1278 		} else {
1279 			inode->i_mapping->a_ops = &ext2_aops;
1280 			inode->i_fop = &ext2_file_operations;
1281 		}
1282 	} else if (S_ISDIR(inode->i_mode)) {
1283 		inode->i_op = &ext2_dir_inode_operations;
1284 		inode->i_fop = &ext2_dir_operations;
1285 		if (test_opt(inode->i_sb, NOBH))
1286 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1287 		else
1288 			inode->i_mapping->a_ops = &ext2_aops;
1289 	} else if (S_ISLNK(inode->i_mode)) {
1290 		if (ext2_inode_is_fast_symlink(inode)) {
1291 			inode->i_op = &ext2_fast_symlink_inode_operations;
1292 			nd_terminate_link(ei->i_data, inode->i_size,
1293 				sizeof(ei->i_data) - 1);
1294 		} else {
1295 			inode->i_op = &ext2_symlink_inode_operations;
1296 			if (test_opt(inode->i_sb, NOBH))
1297 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1298 			else
1299 				inode->i_mapping->a_ops = &ext2_aops;
1300 		}
1301 	} else {
1302 		inode->i_op = &ext2_special_inode_operations;
1303 		if (raw_inode->i_block[0])
1304 			init_special_inode(inode, inode->i_mode,
1305 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1306 		else
1307 			init_special_inode(inode, inode->i_mode,
1308 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1309 	}
1310 	brelse (bh);
1311 	ext2_set_inode_flags(inode);
1312 	unlock_new_inode(inode);
1313 	return inode;
1314 
1315 bad_inode:
1316 	iget_failed(inode);
1317 	return ERR_PTR(ret);
1318 }
1319 
1320 static int ext2_update_inode(struct inode * inode, int do_sync)
1321 {
1322 	struct ext2_inode_info *ei = EXT2_I(inode);
1323 	struct super_block *sb = inode->i_sb;
1324 	ino_t ino = inode->i_ino;
1325 	uid_t uid = inode->i_uid;
1326 	gid_t gid = inode->i_gid;
1327 	struct buffer_head * bh;
1328 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1329 	int n;
1330 	int err = 0;
1331 
1332 	if (IS_ERR(raw_inode))
1333  		return -EIO;
1334 
1335 	/* For fields not not tracking in the in-memory inode,
1336 	 * initialise them to zero for new inodes. */
1337 	if (ei->i_state & EXT2_STATE_NEW)
1338 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1339 
1340 	ext2_get_inode_flags(ei);
1341 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1342 	if (!(test_opt(sb, NO_UID32))) {
1343 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1344 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1345 /*
1346  * Fix up interoperability with old kernels. Otherwise, old inodes get
1347  * re-used with the upper 16 bits of the uid/gid intact
1348  */
1349 		if (!ei->i_dtime) {
1350 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1351 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1352 		} else {
1353 			raw_inode->i_uid_high = 0;
1354 			raw_inode->i_gid_high = 0;
1355 		}
1356 	} else {
1357 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1358 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1359 		raw_inode->i_uid_high = 0;
1360 		raw_inode->i_gid_high = 0;
1361 	}
1362 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1363 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1364 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1365 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1366 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1367 
1368 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1369 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1370 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1371 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1372 	raw_inode->i_frag = ei->i_frag_no;
1373 	raw_inode->i_fsize = ei->i_frag_size;
1374 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1375 	if (!S_ISREG(inode->i_mode))
1376 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1377 	else {
1378 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1379 		if (inode->i_size > 0x7fffffffULL) {
1380 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1381 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1382 			    EXT2_SB(sb)->s_es->s_rev_level ==
1383 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1384 			       /* If this is the first large file
1385 				* created, add a flag to the superblock.
1386 				*/
1387 				lock_kernel();
1388 				ext2_update_dynamic_rev(sb);
1389 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1390 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1391 				unlock_kernel();
1392 				ext2_write_super(sb);
1393 			}
1394 		}
1395 	}
1396 
1397 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1398 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1399 		if (old_valid_dev(inode->i_rdev)) {
1400 			raw_inode->i_block[0] =
1401 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1402 			raw_inode->i_block[1] = 0;
1403 		} else {
1404 			raw_inode->i_block[0] = 0;
1405 			raw_inode->i_block[1] =
1406 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1407 			raw_inode->i_block[2] = 0;
1408 		}
1409 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1410 		raw_inode->i_block[n] = ei->i_data[n];
1411 	mark_buffer_dirty(bh);
1412 	if (do_sync) {
1413 		sync_dirty_buffer(bh);
1414 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1415 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1416 				sb->s_id, (unsigned long) ino);
1417 			err = -EIO;
1418 		}
1419 	}
1420 	ei->i_state &= ~EXT2_STATE_NEW;
1421 	brelse (bh);
1422 	return err;
1423 }
1424 
1425 int ext2_write_inode(struct inode *inode, int wait)
1426 {
1427 	return ext2_update_inode(inode, wait);
1428 }
1429 
1430 int ext2_sync_inode(struct inode *inode)
1431 {
1432 	struct writeback_control wbc = {
1433 		.sync_mode = WB_SYNC_ALL,
1434 		.nr_to_write = 0,	/* sys_fsync did this */
1435 	};
1436 	return sync_inode(inode, &wbc);
1437 }
1438 
1439 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1440 {
1441 	struct inode *inode = dentry->d_inode;
1442 	int error;
1443 
1444 	error = inode_change_ok(inode, iattr);
1445 	if (error)
1446 		return error;
1447 	if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1448 	    (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1449 		error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1450 		if (error)
1451 			return error;
1452 	}
1453 	error = inode_setattr(inode, iattr);
1454 	if (!error && (iattr->ia_valid & ATTR_MODE))
1455 		error = ext2_acl_chmod(inode);
1456 	return error;
1457 }
1458