1 /* 2 * linux/fs/ext2/balloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 10 * Big-endian to little-endian byte-swapping/bitmaps by 11 * David S. Miller (davem@caip.rutgers.edu), 1995 12 */ 13 14 #include "ext2.h" 15 #include <linux/quotaops.h> 16 #include <linux/sched.h> 17 #include <linux/buffer_head.h> 18 #include <linux/capability.h> 19 20 /* 21 * balloc.c contains the blocks allocation and deallocation routines 22 */ 23 24 /* 25 * The free blocks are managed by bitmaps. A file system contains several 26 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 27 * block for inodes, N blocks for the inode table and data blocks. 28 * 29 * The file system contains group descriptors which are located after the 30 * super block. Each descriptor contains the number of the bitmap block and 31 * the free blocks count in the block. The descriptors are loaded in memory 32 * when a file system is mounted (see ext2_fill_super). 33 */ 34 35 36 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 37 38 struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb, 39 unsigned int block_group, 40 struct buffer_head ** bh) 41 { 42 unsigned long group_desc; 43 unsigned long offset; 44 struct ext2_group_desc * desc; 45 struct ext2_sb_info *sbi = EXT2_SB(sb); 46 47 if (block_group >= sbi->s_groups_count) { 48 ext2_error (sb, "ext2_get_group_desc", 49 "block_group >= groups_count - " 50 "block_group = %d, groups_count = %lu", 51 block_group, sbi->s_groups_count); 52 53 return NULL; 54 } 55 56 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb); 57 offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1); 58 if (!sbi->s_group_desc[group_desc]) { 59 ext2_error (sb, "ext2_get_group_desc", 60 "Group descriptor not loaded - " 61 "block_group = %d, group_desc = %lu, desc = %lu", 62 block_group, group_desc, offset); 63 return NULL; 64 } 65 66 desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data; 67 if (bh) 68 *bh = sbi->s_group_desc[group_desc]; 69 return desc + offset; 70 } 71 72 /* 73 * Read the bitmap for a given block_group, reading into the specified 74 * slot in the superblock's bitmap cache. 75 * 76 * Return buffer_head on success or NULL in case of failure. 77 */ 78 static struct buffer_head * 79 read_block_bitmap(struct super_block *sb, unsigned int block_group) 80 { 81 struct ext2_group_desc * desc; 82 struct buffer_head * bh = NULL; 83 84 desc = ext2_get_group_desc (sb, block_group, NULL); 85 if (!desc) 86 goto error_out; 87 bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap)); 88 if (!bh) 89 ext2_error (sb, "read_block_bitmap", 90 "Cannot read block bitmap - " 91 "block_group = %d, block_bitmap = %u", 92 block_group, le32_to_cpu(desc->bg_block_bitmap)); 93 error_out: 94 return bh; 95 } 96 97 static void release_blocks(struct super_block *sb, int count) 98 { 99 if (count) { 100 struct ext2_sb_info *sbi = EXT2_SB(sb); 101 102 percpu_counter_add(&sbi->s_freeblocks_counter, count); 103 sb->s_dirt = 1; 104 } 105 } 106 107 static void group_adjust_blocks(struct super_block *sb, int group_no, 108 struct ext2_group_desc *desc, struct buffer_head *bh, int count) 109 { 110 if (count) { 111 struct ext2_sb_info *sbi = EXT2_SB(sb); 112 unsigned free_blocks; 113 114 spin_lock(sb_bgl_lock(sbi, group_no)); 115 free_blocks = le16_to_cpu(desc->bg_free_blocks_count); 116 desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count); 117 spin_unlock(sb_bgl_lock(sbi, group_no)); 118 sb->s_dirt = 1; 119 mark_buffer_dirty(bh); 120 } 121 } 122 123 /* 124 * The reservation window structure operations 125 * -------------------------------------------- 126 * Operations include: 127 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 128 * 129 * We use a red-black tree to represent per-filesystem reservation 130 * windows. 131 * 132 */ 133 134 /** 135 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 136 * @rb_root: root of per-filesystem reservation rb tree 137 * @verbose: verbose mode 138 * @fn: function which wishes to dump the reservation map 139 * 140 * If verbose is turned on, it will print the whole block reservation 141 * windows(start, end). Otherwise, it will only print out the "bad" windows, 142 * those windows that overlap with their immediate neighbors. 143 */ 144 #if 1 145 static void __rsv_window_dump(struct rb_root *root, int verbose, 146 const char *fn) 147 { 148 struct rb_node *n; 149 struct ext2_reserve_window_node *rsv, *prev; 150 int bad; 151 152 restart: 153 n = rb_first(root); 154 bad = 0; 155 prev = NULL; 156 157 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 158 while (n) { 159 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 160 if (verbose) 161 printk("reservation window 0x%p " 162 "start: %lu, end: %lu\n", 163 rsv, rsv->rsv_start, rsv->rsv_end); 164 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 165 printk("Bad reservation %p (start >= end)\n", 166 rsv); 167 bad = 1; 168 } 169 if (prev && prev->rsv_end >= rsv->rsv_start) { 170 printk("Bad reservation %p (prev->end >= start)\n", 171 rsv); 172 bad = 1; 173 } 174 if (bad) { 175 if (!verbose) { 176 printk("Restarting reservation walk in verbose mode\n"); 177 verbose = 1; 178 goto restart; 179 } 180 } 181 n = rb_next(n); 182 prev = rsv; 183 } 184 printk("Window map complete.\n"); 185 if (bad) 186 BUG(); 187 } 188 #define rsv_window_dump(root, verbose) \ 189 __rsv_window_dump((root), (verbose), __FUNCTION__) 190 #else 191 #define rsv_window_dump(root, verbose) do {} while (0) 192 #endif 193 194 /** 195 * goal_in_my_reservation() 196 * @rsv: inode's reservation window 197 * @grp_goal: given goal block relative to the allocation block group 198 * @group: the current allocation block group 199 * @sb: filesystem super block 200 * 201 * Test if the given goal block (group relative) is within the file's 202 * own block reservation window range. 203 * 204 * If the reservation window is outside the goal allocation group, return 0; 205 * grp_goal (given goal block) could be -1, which means no specific 206 * goal block. In this case, always return 1. 207 * If the goal block is within the reservation window, return 1; 208 * otherwise, return 0; 209 */ 210 static int 211 goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal, 212 unsigned int group, struct super_block * sb) 213 { 214 ext2_fsblk_t group_first_block, group_last_block; 215 216 group_first_block = ext2_group_first_block_no(sb, group); 217 group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1; 218 219 if ((rsv->_rsv_start > group_last_block) || 220 (rsv->_rsv_end < group_first_block)) 221 return 0; 222 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 223 || (grp_goal + group_first_block > rsv->_rsv_end))) 224 return 0; 225 return 1; 226 } 227 228 /** 229 * search_reserve_window() 230 * @rb_root: root of reservation tree 231 * @goal: target allocation block 232 * 233 * Find the reserved window which includes the goal, or the previous one 234 * if the goal is not in any window. 235 * Returns NULL if there are no windows or if all windows start after the goal. 236 */ 237 static struct ext2_reserve_window_node * 238 search_reserve_window(struct rb_root *root, ext2_fsblk_t goal) 239 { 240 struct rb_node *n = root->rb_node; 241 struct ext2_reserve_window_node *rsv; 242 243 if (!n) 244 return NULL; 245 246 do { 247 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 248 249 if (goal < rsv->rsv_start) 250 n = n->rb_left; 251 else if (goal > rsv->rsv_end) 252 n = n->rb_right; 253 else 254 return rsv; 255 } while (n); 256 /* 257 * We've fallen off the end of the tree: the goal wasn't inside 258 * any particular node. OK, the previous node must be to one 259 * side of the interval containing the goal. If it's the RHS, 260 * we need to back up one. 261 */ 262 if (rsv->rsv_start > goal) { 263 n = rb_prev(&rsv->rsv_node); 264 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 265 } 266 return rsv; 267 } 268 269 /* 270 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree. 271 * @sb: super block 272 * @rsv: reservation window to add 273 * 274 * Must be called with rsv_lock held. 275 */ 276 void ext2_rsv_window_add(struct super_block *sb, 277 struct ext2_reserve_window_node *rsv) 278 { 279 struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root; 280 struct rb_node *node = &rsv->rsv_node; 281 ext2_fsblk_t start = rsv->rsv_start; 282 283 struct rb_node ** p = &root->rb_node; 284 struct rb_node * parent = NULL; 285 struct ext2_reserve_window_node *this; 286 287 while (*p) 288 { 289 parent = *p; 290 this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node); 291 292 if (start < this->rsv_start) 293 p = &(*p)->rb_left; 294 else if (start > this->rsv_end) 295 p = &(*p)->rb_right; 296 else { 297 rsv_window_dump(root, 1); 298 BUG(); 299 } 300 } 301 302 rb_link_node(node, parent, p); 303 rb_insert_color(node, root); 304 } 305 306 /** 307 * rsv_window_remove() -- unlink a window from the reservation rb tree 308 * @sb: super block 309 * @rsv: reservation window to remove 310 * 311 * Mark the block reservation window as not allocated, and unlink it 312 * from the filesystem reservation window rb tree. Must be called with 313 * rsv_lock held. 314 */ 315 static void rsv_window_remove(struct super_block *sb, 316 struct ext2_reserve_window_node *rsv) 317 { 318 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 319 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 320 rsv->rsv_alloc_hit = 0; 321 rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root); 322 } 323 324 /* 325 * rsv_is_empty() -- Check if the reservation window is allocated. 326 * @rsv: given reservation window to check 327 * 328 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED. 329 */ 330 static inline int rsv_is_empty(struct ext2_reserve_window *rsv) 331 { 332 /* a valid reservation end block could not be 0 */ 333 return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED); 334 } 335 336 /** 337 * ext2_init_block_alloc_info() 338 * @inode: file inode structure 339 * 340 * Allocate and initialize the reservation window structure, and 341 * link the window to the ext2 inode structure at last 342 * 343 * The reservation window structure is only dynamically allocated 344 * and linked to ext2 inode the first time the open file 345 * needs a new block. So, before every ext2_new_block(s) call, for 346 * regular files, we should check whether the reservation window 347 * structure exists or not. In the latter case, this function is called. 348 * Fail to do so will result in block reservation being turned off for that 349 * open file. 350 * 351 * This function is called from ext2_get_blocks_handle(), also called 352 * when setting the reservation window size through ioctl before the file 353 * is open for write (needs block allocation). 354 * 355 * Needs truncate_mutex protection prior to calling this function. 356 */ 357 void ext2_init_block_alloc_info(struct inode *inode) 358 { 359 struct ext2_inode_info *ei = EXT2_I(inode); 360 struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; 361 struct super_block *sb = inode->i_sb; 362 363 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 364 if (block_i) { 365 struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node; 366 367 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 368 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 369 370 /* 371 * if filesystem is mounted with NORESERVATION, the goal 372 * reservation window size is set to zero to indicate 373 * block reservation is off 374 */ 375 if (!test_opt(sb, RESERVATION)) 376 rsv->rsv_goal_size = 0; 377 else 378 rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; 379 rsv->rsv_alloc_hit = 0; 380 block_i->last_alloc_logical_block = 0; 381 block_i->last_alloc_physical_block = 0; 382 } 383 ei->i_block_alloc_info = block_i; 384 } 385 386 /** 387 * ext2_discard_reservation() 388 * @inode: inode 389 * 390 * Discard(free) block reservation window on last file close, or truncate 391 * or at last iput(). 392 * 393 * It is being called in three cases: 394 * ext2_release_file(): last writer closes the file 395 * ext2_clear_inode(): last iput(), when nobody links to this file. 396 * ext2_truncate(): when the block indirect map is about to change. 397 */ 398 void ext2_discard_reservation(struct inode *inode) 399 { 400 struct ext2_inode_info *ei = EXT2_I(inode); 401 struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; 402 struct ext2_reserve_window_node *rsv; 403 spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock; 404 405 if (!block_i) 406 return; 407 408 rsv = &block_i->rsv_window_node; 409 if (!rsv_is_empty(&rsv->rsv_window)) { 410 spin_lock(rsv_lock); 411 if (!rsv_is_empty(&rsv->rsv_window)) 412 rsv_window_remove(inode->i_sb, rsv); 413 spin_unlock(rsv_lock); 414 } 415 } 416 417 /** 418 * ext2_free_blocks_sb() -- Free given blocks and update quota and i_blocks 419 * @inode: inode 420 * @block: start physcial block to free 421 * @count: number of blocks to free 422 */ 423 void ext2_free_blocks (struct inode * inode, unsigned long block, 424 unsigned long count) 425 { 426 struct buffer_head *bitmap_bh = NULL; 427 struct buffer_head * bh2; 428 unsigned long block_group; 429 unsigned long bit; 430 unsigned long i; 431 unsigned long overflow; 432 struct super_block * sb = inode->i_sb; 433 struct ext2_sb_info * sbi = EXT2_SB(sb); 434 struct ext2_group_desc * desc; 435 struct ext2_super_block * es = sbi->s_es; 436 unsigned freed = 0, group_freed; 437 438 if (block < le32_to_cpu(es->s_first_data_block) || 439 block + count < block || 440 block + count > le32_to_cpu(es->s_blocks_count)) { 441 ext2_error (sb, "ext2_free_blocks", 442 "Freeing blocks not in datazone - " 443 "block = %lu, count = %lu", block, count); 444 goto error_return; 445 } 446 447 ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1); 448 449 do_more: 450 overflow = 0; 451 block_group = (block - le32_to_cpu(es->s_first_data_block)) / 452 EXT2_BLOCKS_PER_GROUP(sb); 453 bit = (block - le32_to_cpu(es->s_first_data_block)) % 454 EXT2_BLOCKS_PER_GROUP(sb); 455 /* 456 * Check to see if we are freeing blocks across a group 457 * boundary. 458 */ 459 if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) { 460 overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb); 461 count -= overflow; 462 } 463 brelse(bitmap_bh); 464 bitmap_bh = read_block_bitmap(sb, block_group); 465 if (!bitmap_bh) 466 goto error_return; 467 468 desc = ext2_get_group_desc (sb, block_group, &bh2); 469 if (!desc) 470 goto error_return; 471 472 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) || 473 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) || 474 in_range (block, le32_to_cpu(desc->bg_inode_table), 475 sbi->s_itb_per_group) || 476 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table), 477 sbi->s_itb_per_group)) 478 ext2_error (sb, "ext2_free_blocks", 479 "Freeing blocks in system zones - " 480 "Block = %lu, count = %lu", 481 block, count); 482 483 for (i = 0, group_freed = 0; i < count; i++) { 484 if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 485 bit + i, bitmap_bh->b_data)) { 486 ext2_error(sb, __FUNCTION__, 487 "bit already cleared for block %lu", block + i); 488 } else { 489 group_freed++; 490 } 491 } 492 493 mark_buffer_dirty(bitmap_bh); 494 if (sb->s_flags & MS_SYNCHRONOUS) 495 sync_dirty_buffer(bitmap_bh); 496 497 group_adjust_blocks(sb, block_group, desc, bh2, group_freed); 498 freed += group_freed; 499 500 if (overflow) { 501 block += count; 502 count = overflow; 503 goto do_more; 504 } 505 error_return: 506 brelse(bitmap_bh); 507 release_blocks(sb, freed); 508 DQUOT_FREE_BLOCK(inode, freed); 509 } 510 511 /** 512 * bitmap_search_next_usable_block() 513 * @start: the starting block (group relative) of the search 514 * @bh: bufferhead contains the block group bitmap 515 * @maxblocks: the ending block (group relative) of the reservation 516 * 517 * The bitmap search --- search forward through the actual bitmap on disk until 518 * we find a bit free. 519 */ 520 static ext2_grpblk_t 521 bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh, 522 ext2_grpblk_t maxblocks) 523 { 524 ext2_grpblk_t next; 525 526 next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start); 527 if (next >= maxblocks) 528 return -1; 529 return next; 530 } 531 532 /** 533 * find_next_usable_block() 534 * @start: the starting block (group relative) to find next 535 * allocatable block in bitmap. 536 * @bh: bufferhead contains the block group bitmap 537 * @maxblocks: the ending block (group relative) for the search 538 * 539 * Find an allocatable block in a bitmap. We perform the "most 540 * appropriate allocation" algorithm of looking for a free block near 541 * the initial goal; then for a free byte somewhere in the bitmap; 542 * then for any free bit in the bitmap. 543 */ 544 static ext2_grpblk_t 545 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) 546 { 547 ext2_grpblk_t here, next; 548 char *p, *r; 549 550 if (start > 0) { 551 /* 552 * The goal was occupied; search forward for a free 553 * block within the next XX blocks. 554 * 555 * end_goal is more or less random, but it has to be 556 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the 557 * next 64-bit boundary is simple.. 558 */ 559 ext2_grpblk_t end_goal = (start + 63) & ~63; 560 if (end_goal > maxblocks) 561 end_goal = maxblocks; 562 here = ext2_find_next_zero_bit(bh->b_data, end_goal, start); 563 if (here < end_goal) 564 return here; 565 ext2_debug("Bit not found near goal\n"); 566 } 567 568 here = start; 569 if (here < 0) 570 here = 0; 571 572 p = ((char *)bh->b_data) + (here >> 3); 573 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 574 next = (r - ((char *)bh->b_data)) << 3; 575 576 if (next < maxblocks && next >= here) 577 return next; 578 579 here = bitmap_search_next_usable_block(here, bh, maxblocks); 580 return here; 581 } 582 583 /* 584 * ext2_try_to_allocate() 585 * @sb: superblock 586 * @handle: handle to this transaction 587 * @group: given allocation block group 588 * @bitmap_bh: bufferhead holds the block bitmap 589 * @grp_goal: given target block within the group 590 * @count: target number of blocks to allocate 591 * @my_rsv: reservation window 592 * 593 * Attempt to allocate blocks within a give range. Set the range of allocation 594 * first, then find the first free bit(s) from the bitmap (within the range), 595 * and at last, allocate the blocks by claiming the found free bit as allocated. 596 * 597 * To set the range of this allocation: 598 * if there is a reservation window, only try to allocate block(s) 599 * from the file's own reservation window; 600 * Otherwise, the allocation range starts from the give goal block, 601 * ends at the block group's last block. 602 * 603 * If we failed to allocate the desired block then we may end up crossing to a 604 * new bitmap. 605 */ 606 static int 607 ext2_try_to_allocate(struct super_block *sb, int group, 608 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 609 unsigned long *count, 610 struct ext2_reserve_window *my_rsv) 611 { 612 ext2_fsblk_t group_first_block; 613 ext2_grpblk_t start, end; 614 unsigned long num = 0; 615 616 /* we do allocation within the reservation window if we have a window */ 617 if (my_rsv) { 618 group_first_block = ext2_group_first_block_no(sb, group); 619 if (my_rsv->_rsv_start >= group_first_block) 620 start = my_rsv->_rsv_start - group_first_block; 621 else 622 /* reservation window cross group boundary */ 623 start = 0; 624 end = my_rsv->_rsv_end - group_first_block + 1; 625 if (end > EXT2_BLOCKS_PER_GROUP(sb)) 626 /* reservation window crosses group boundary */ 627 end = EXT2_BLOCKS_PER_GROUP(sb); 628 if ((start <= grp_goal) && (grp_goal < end)) 629 start = grp_goal; 630 else 631 grp_goal = -1; 632 } else { 633 if (grp_goal > 0) 634 start = grp_goal; 635 else 636 start = 0; 637 end = EXT2_BLOCKS_PER_GROUP(sb); 638 } 639 640 BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb)); 641 642 repeat: 643 if (grp_goal < 0) { 644 grp_goal = find_next_usable_block(start, bitmap_bh, end); 645 if (grp_goal < 0) 646 goto fail_access; 647 if (!my_rsv) { 648 int i; 649 650 for (i = 0; i < 7 && grp_goal > start && 651 !ext2_test_bit(grp_goal - 1, 652 bitmap_bh->b_data); 653 i++, grp_goal--) 654 ; 655 } 656 } 657 start = grp_goal; 658 659 if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal, 660 bitmap_bh->b_data)) { 661 /* 662 * The block was allocated by another thread, or it was 663 * allocated and then freed by another thread 664 */ 665 start++; 666 grp_goal++; 667 if (start >= end) 668 goto fail_access; 669 goto repeat; 670 } 671 num++; 672 grp_goal++; 673 while (num < *count && grp_goal < end 674 && !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), 675 grp_goal, bitmap_bh->b_data)) { 676 num++; 677 grp_goal++; 678 } 679 *count = num; 680 return grp_goal - num; 681 fail_access: 682 *count = num; 683 return -1; 684 } 685 686 /** 687 * find_next_reservable_window(): 688 * find a reservable space within the given range. 689 * It does not allocate the reservation window for now: 690 * alloc_new_reservation() will do the work later. 691 * 692 * @search_head: the head of the searching list; 693 * This is not necessarily the list head of the whole filesystem 694 * 695 * We have both head and start_block to assist the search 696 * for the reservable space. The list starts from head, 697 * but we will shift to the place where start_block is, 698 * then start from there, when looking for a reservable space. 699 * 700 * @size: the target new reservation window size 701 * 702 * @group_first_block: the first block we consider to start 703 * the real search from 704 * 705 * @last_block: 706 * the maximum block number that our goal reservable space 707 * could start from. This is normally the last block in this 708 * group. The search will end when we found the start of next 709 * possible reservable space is out of this boundary. 710 * This could handle the cross boundary reservation window 711 * request. 712 * 713 * basically we search from the given range, rather than the whole 714 * reservation double linked list, (start_block, last_block) 715 * to find a free region that is of my size and has not 716 * been reserved. 717 * 718 */ 719 static int find_next_reservable_window( 720 struct ext2_reserve_window_node *search_head, 721 struct ext2_reserve_window_node *my_rsv, 722 struct super_block * sb, 723 ext2_fsblk_t start_block, 724 ext2_fsblk_t last_block) 725 { 726 struct rb_node *next; 727 struct ext2_reserve_window_node *rsv, *prev; 728 ext2_fsblk_t cur; 729 int size = my_rsv->rsv_goal_size; 730 731 /* TODO: make the start of the reservation window byte-aligned */ 732 /* cur = *start_block & ~7;*/ 733 cur = start_block; 734 rsv = search_head; 735 if (!rsv) 736 return -1; 737 738 while (1) { 739 if (cur <= rsv->rsv_end) 740 cur = rsv->rsv_end + 1; 741 742 /* TODO? 743 * in the case we could not find a reservable space 744 * that is what is expected, during the re-search, we could 745 * remember what's the largest reservable space we could have 746 * and return that one. 747 * 748 * For now it will fail if we could not find the reservable 749 * space with expected-size (or more)... 750 */ 751 if (cur > last_block) 752 return -1; /* fail */ 753 754 prev = rsv; 755 next = rb_next(&rsv->rsv_node); 756 rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node); 757 758 /* 759 * Reached the last reservation, we can just append to the 760 * previous one. 761 */ 762 if (!next) 763 break; 764 765 if (cur + size <= rsv->rsv_start) { 766 /* 767 * Found a reserveable space big enough. We could 768 * have a reservation across the group boundary here 769 */ 770 break; 771 } 772 } 773 /* 774 * we come here either : 775 * when we reach the end of the whole list, 776 * and there is empty reservable space after last entry in the list. 777 * append it to the end of the list. 778 * 779 * or we found one reservable space in the middle of the list, 780 * return the reservation window that we could append to. 781 * succeed. 782 */ 783 784 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 785 rsv_window_remove(sb, my_rsv); 786 787 /* 788 * Let's book the whole avaliable window for now. We will check the 789 * disk bitmap later and then, if there are free blocks then we adjust 790 * the window size if it's larger than requested. 791 * Otherwise, we will remove this node from the tree next time 792 * call find_next_reservable_window. 793 */ 794 my_rsv->rsv_start = cur; 795 my_rsv->rsv_end = cur + size - 1; 796 my_rsv->rsv_alloc_hit = 0; 797 798 if (prev != my_rsv) 799 ext2_rsv_window_add(sb, my_rsv); 800 801 return 0; 802 } 803 804 /** 805 * alloc_new_reservation()--allocate a new reservation window 806 * 807 * To make a new reservation, we search part of the filesystem 808 * reservation list (the list that inside the group). We try to 809 * allocate a new reservation window near the allocation goal, 810 * or the beginning of the group, if there is no goal. 811 * 812 * We first find a reservable space after the goal, then from 813 * there, we check the bitmap for the first free block after 814 * it. If there is no free block until the end of group, then the 815 * whole group is full, we failed. Otherwise, check if the free 816 * block is inside the expected reservable space, if so, we 817 * succeed. 818 * If the first free block is outside the reservable space, then 819 * start from the first free block, we search for next available 820 * space, and go on. 821 * 822 * on succeed, a new reservation will be found and inserted into the list 823 * It contains at least one free block, and it does not overlap with other 824 * reservation windows. 825 * 826 * failed: we failed to find a reservation window in this group 827 * 828 * @rsv: the reservation 829 * 830 * @grp_goal: The goal (group-relative). It is where the search for a 831 * free reservable space should start from. 832 * if we have a goal(goal >0 ), then start from there, 833 * no goal(goal = -1), we start from the first block 834 * of the group. 835 * 836 * @sb: the super block 837 * @group: the group we are trying to allocate in 838 * @bitmap_bh: the block group block bitmap 839 * 840 */ 841 static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv, 842 ext2_grpblk_t grp_goal, struct super_block *sb, 843 unsigned int group, struct buffer_head *bitmap_bh) 844 { 845 struct ext2_reserve_window_node *search_head; 846 ext2_fsblk_t group_first_block, group_end_block, start_block; 847 ext2_grpblk_t first_free_block; 848 struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root; 849 unsigned long size; 850 int ret; 851 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 852 853 group_first_block = ext2_group_first_block_no(sb, group); 854 group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); 855 856 if (grp_goal < 0) 857 start_block = group_first_block; 858 else 859 start_block = grp_goal + group_first_block; 860 861 size = my_rsv->rsv_goal_size; 862 863 if (!rsv_is_empty(&my_rsv->rsv_window)) { 864 /* 865 * if the old reservation is cross group boundary 866 * and if the goal is inside the old reservation window, 867 * we will come here when we just failed to allocate from 868 * the first part of the window. We still have another part 869 * that belongs to the next group. In this case, there is no 870 * point to discard our window and try to allocate a new one 871 * in this group(which will fail). we should 872 * keep the reservation window, just simply move on. 873 * 874 * Maybe we could shift the start block of the reservation 875 * window to the first block of next group. 876 */ 877 878 if ((my_rsv->rsv_start <= group_end_block) && 879 (my_rsv->rsv_end > group_end_block) && 880 (start_block >= my_rsv->rsv_start)) 881 return -1; 882 883 if ((my_rsv->rsv_alloc_hit > 884 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 885 /* 886 * if the previously allocation hit ratio is 887 * greater than 1/2, then we double the size of 888 * the reservation window the next time, 889 * otherwise we keep the same size window 890 */ 891 size = size * 2; 892 if (size > EXT2_MAX_RESERVE_BLOCKS) 893 size = EXT2_MAX_RESERVE_BLOCKS; 894 my_rsv->rsv_goal_size= size; 895 } 896 } 897 898 spin_lock(rsv_lock); 899 /* 900 * shift the search start to the window near the goal block 901 */ 902 search_head = search_reserve_window(fs_rsv_root, start_block); 903 904 /* 905 * find_next_reservable_window() simply finds a reservable window 906 * inside the given range(start_block, group_end_block). 907 * 908 * To make sure the reservation window has a free bit inside it, we 909 * need to check the bitmap after we found a reservable window. 910 */ 911 retry: 912 ret = find_next_reservable_window(search_head, my_rsv, sb, 913 start_block, group_end_block); 914 915 if (ret == -1) { 916 if (!rsv_is_empty(&my_rsv->rsv_window)) 917 rsv_window_remove(sb, my_rsv); 918 spin_unlock(rsv_lock); 919 return -1; 920 } 921 922 /* 923 * On success, find_next_reservable_window() returns the 924 * reservation window where there is a reservable space after it. 925 * Before we reserve this reservable space, we need 926 * to make sure there is at least a free block inside this region. 927 * 928 * Search the first free bit on the block bitmap. Search starts from 929 * the start block of the reservable space we just found. 930 */ 931 spin_unlock(rsv_lock); 932 first_free_block = bitmap_search_next_usable_block( 933 my_rsv->rsv_start - group_first_block, 934 bitmap_bh, group_end_block - group_first_block + 1); 935 936 if (first_free_block < 0) { 937 /* 938 * no free block left on the bitmap, no point 939 * to reserve the space. return failed. 940 */ 941 spin_lock(rsv_lock); 942 if (!rsv_is_empty(&my_rsv->rsv_window)) 943 rsv_window_remove(sb, my_rsv); 944 spin_unlock(rsv_lock); 945 return -1; /* failed */ 946 } 947 948 start_block = first_free_block + group_first_block; 949 /* 950 * check if the first free block is within the 951 * free space we just reserved 952 */ 953 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 954 return 0; /* success */ 955 /* 956 * if the first free bit we found is out of the reservable space 957 * continue search for next reservable space, 958 * start from where the free block is, 959 * we also shift the list head to where we stopped last time 960 */ 961 search_head = my_rsv; 962 spin_lock(rsv_lock); 963 goto retry; 964 } 965 966 /** 967 * try_to_extend_reservation() 968 * @my_rsv: given reservation window 969 * @sb: super block 970 * @size: the delta to extend 971 * 972 * Attempt to expand the reservation window large enough to have 973 * required number of free blocks 974 * 975 * Since ext2_try_to_allocate() will always allocate blocks within 976 * the reservation window range, if the window size is too small, 977 * multiple blocks allocation has to stop at the end of the reservation 978 * window. To make this more efficient, given the total number of 979 * blocks needed and the current size of the window, we try to 980 * expand the reservation window size if necessary on a best-effort 981 * basis before ext2_new_blocks() tries to allocate blocks. 982 */ 983 static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv, 984 struct super_block *sb, int size) 985 { 986 struct ext2_reserve_window_node *next_rsv; 987 struct rb_node *next; 988 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 989 990 if (!spin_trylock(rsv_lock)) 991 return; 992 993 next = rb_next(&my_rsv->rsv_node); 994 995 if (!next) 996 my_rsv->rsv_end += size; 997 else { 998 next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node); 999 1000 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1001 my_rsv->rsv_end += size; 1002 else 1003 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1004 } 1005 spin_unlock(rsv_lock); 1006 } 1007 1008 /** 1009 * ext2_try_to_allocate_with_rsv() 1010 * @sb: superblock 1011 * @group: given allocation block group 1012 * @bitmap_bh: bufferhead holds the block bitmap 1013 * @grp_goal: given target block within the group 1014 * @count: target number of blocks to allocate 1015 * @my_rsv: reservation window 1016 * 1017 * This is the main function used to allocate a new block and its reservation 1018 * window. 1019 * 1020 * Each time when a new block allocation is need, first try to allocate from 1021 * its own reservation. If it does not have a reservation window, instead of 1022 * looking for a free bit on bitmap first, then look up the reservation list to 1023 * see if it is inside somebody else's reservation window, we try to allocate a 1024 * reservation window for it starting from the goal first. Then do the block 1025 * allocation within the reservation window. 1026 * 1027 * This will avoid keeping on searching the reservation list again and 1028 * again when somebody is looking for a free block (without 1029 * reservation), and there are lots of free blocks, but they are all 1030 * being reserved. 1031 * 1032 * We use a red-black tree for the per-filesystem reservation list. 1033 */ 1034 static ext2_grpblk_t 1035 ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group, 1036 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 1037 struct ext2_reserve_window_node * my_rsv, 1038 unsigned long *count) 1039 { 1040 ext2_fsblk_t group_first_block, group_last_block; 1041 ext2_grpblk_t ret = 0; 1042 unsigned long num = *count; 1043 1044 /* 1045 * we don't deal with reservation when 1046 * filesystem is mounted without reservation 1047 * or the file is not a regular file 1048 * or last attempt to allocate a block with reservation turned on failed 1049 */ 1050 if (my_rsv == NULL) { 1051 return ext2_try_to_allocate(sb, group, bitmap_bh, 1052 grp_goal, count, NULL); 1053 } 1054 /* 1055 * grp_goal is a group relative block number (if there is a goal) 1056 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb) 1057 * first block is a filesystem wide block number 1058 * first block is the block number of the first block in this group 1059 */ 1060 group_first_block = ext2_group_first_block_no(sb, group); 1061 group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); 1062 1063 /* 1064 * Basically we will allocate a new block from inode's reservation 1065 * window. 1066 * 1067 * We need to allocate a new reservation window, if: 1068 * a) inode does not have a reservation window; or 1069 * b) last attempt to allocate a block from existing reservation 1070 * failed; or 1071 * c) we come here with a goal and with a reservation window 1072 * 1073 * We do not need to allocate a new reservation window if we come here 1074 * at the beginning with a goal and the goal is inside the window, or 1075 * we don't have a goal but already have a reservation window. 1076 * then we could go to allocate from the reservation window directly. 1077 */ 1078 while (1) { 1079 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1080 !goal_in_my_reservation(&my_rsv->rsv_window, 1081 grp_goal, group, sb)) { 1082 if (my_rsv->rsv_goal_size < *count) 1083 my_rsv->rsv_goal_size = *count; 1084 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1085 group, bitmap_bh); 1086 if (ret < 0) 1087 break; /* failed */ 1088 1089 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1090 grp_goal, group, sb)) 1091 grp_goal = -1; 1092 } else if (grp_goal >= 0) { 1093 int curr = my_rsv->rsv_end - 1094 (grp_goal + group_first_block) + 1; 1095 1096 if (curr < *count) 1097 try_to_extend_reservation(my_rsv, sb, 1098 *count - curr); 1099 } 1100 1101 if ((my_rsv->rsv_start > group_last_block) || 1102 (my_rsv->rsv_end < group_first_block)) { 1103 rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1); 1104 BUG(); 1105 } 1106 ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal, 1107 &num, &my_rsv->rsv_window); 1108 if (ret >= 0) { 1109 my_rsv->rsv_alloc_hit += num; 1110 *count = num; 1111 break; /* succeed */ 1112 } 1113 num = *count; 1114 } 1115 return ret; 1116 } 1117 1118 /** 1119 * ext2_has_free_blocks() 1120 * @sbi: in-core super block structure. 1121 * 1122 * Check if filesystem has at least 1 free block available for allocation. 1123 */ 1124 static int ext2_has_free_blocks(struct ext2_sb_info *sbi) 1125 { 1126 ext2_fsblk_t free_blocks, root_blocks; 1127 1128 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1129 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); 1130 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1131 sbi->s_resuid != current->fsuid && 1132 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { 1133 return 0; 1134 } 1135 return 1; 1136 } 1137 1138 /* 1139 * ext2_new_blocks() -- core block(s) allocation function 1140 * @inode: file inode 1141 * @goal: given target block(filesystem wide) 1142 * @count: target number of blocks to allocate 1143 * @errp: error code 1144 * 1145 * ext2_new_blocks uses a goal block to assist allocation. If the goal is 1146 * free, or there is a free block within 32 blocks of the goal, that block 1147 * is allocated. Otherwise a forward search is made for a free block; within 1148 * each block group the search first looks for an entire free byte in the block 1149 * bitmap, and then for any free bit if that fails. 1150 * This function also updates quota and i_blocks field. 1151 */ 1152 ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal, 1153 unsigned long *count, int *errp) 1154 { 1155 struct buffer_head *bitmap_bh = NULL; 1156 struct buffer_head *gdp_bh; 1157 int group_no; 1158 int goal_group; 1159 ext2_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1160 ext2_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1161 ext2_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1162 int bgi; /* blockgroup iteration index */ 1163 int performed_allocation = 0; 1164 ext2_grpblk_t free_blocks; /* number of free blocks in a group */ 1165 struct super_block *sb; 1166 struct ext2_group_desc *gdp; 1167 struct ext2_super_block *es; 1168 struct ext2_sb_info *sbi; 1169 struct ext2_reserve_window_node *my_rsv = NULL; 1170 struct ext2_block_alloc_info *block_i; 1171 unsigned short windowsz = 0; 1172 unsigned long ngroups; 1173 unsigned long num = *count; 1174 1175 *errp = -ENOSPC; 1176 sb = inode->i_sb; 1177 if (!sb) { 1178 printk("ext2_new_blocks: nonexistent device"); 1179 return 0; 1180 } 1181 1182 /* 1183 * Check quota for allocation of this block. 1184 */ 1185 if (DQUOT_ALLOC_BLOCK(inode, num)) { 1186 *errp = -EDQUOT; 1187 return 0; 1188 } 1189 1190 sbi = EXT2_SB(sb); 1191 es = EXT2_SB(sb)->s_es; 1192 ext2_debug("goal=%lu.\n", goal); 1193 /* 1194 * Allocate a block from reservation only when 1195 * filesystem is mounted with reservation(default,-o reservation), and 1196 * it's a regular file, and 1197 * the desired window size is greater than 0 (One could use ioctl 1198 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off 1199 * reservation on that particular file) 1200 */ 1201 block_i = EXT2_I(inode)->i_block_alloc_info; 1202 if (block_i) { 1203 windowsz = block_i->rsv_window_node.rsv_goal_size; 1204 if (windowsz > 0) 1205 my_rsv = &block_i->rsv_window_node; 1206 } 1207 1208 if (!ext2_has_free_blocks(sbi)) { 1209 *errp = -ENOSPC; 1210 goto out; 1211 } 1212 1213 /* 1214 * First, test whether the goal block is free. 1215 */ 1216 if (goal < le32_to_cpu(es->s_first_data_block) || 1217 goal >= le32_to_cpu(es->s_blocks_count)) 1218 goal = le32_to_cpu(es->s_first_data_block); 1219 group_no = (goal - le32_to_cpu(es->s_first_data_block)) / 1220 EXT2_BLOCKS_PER_GROUP(sb); 1221 goal_group = group_no; 1222 retry_alloc: 1223 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1224 if (!gdp) 1225 goto io_error; 1226 1227 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1228 /* 1229 * if there is not enough free blocks to make a new resevation 1230 * turn off reservation for this allocation 1231 */ 1232 if (my_rsv && (free_blocks < windowsz) 1233 && (rsv_is_empty(&my_rsv->rsv_window))) 1234 my_rsv = NULL; 1235 1236 if (free_blocks > 0) { 1237 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) % 1238 EXT2_BLOCKS_PER_GROUP(sb)); 1239 bitmap_bh = read_block_bitmap(sb, group_no); 1240 if (!bitmap_bh) 1241 goto io_error; 1242 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1243 bitmap_bh, grp_target_blk, 1244 my_rsv, &num); 1245 if (grp_alloc_blk >= 0) 1246 goto allocated; 1247 } 1248 1249 ngroups = EXT2_SB(sb)->s_groups_count; 1250 smp_rmb(); 1251 1252 /* 1253 * Now search the rest of the groups. We assume that 1254 * i and gdp correctly point to the last group visited. 1255 */ 1256 for (bgi = 0; bgi < ngroups; bgi++) { 1257 group_no++; 1258 if (group_no >= ngroups) 1259 group_no = 0; 1260 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1261 if (!gdp) 1262 goto io_error; 1263 1264 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1265 /* 1266 * skip this group if the number of 1267 * free blocks is less than half of the reservation 1268 * window size. 1269 */ 1270 if (free_blocks <= (windowsz/2)) 1271 continue; 1272 1273 brelse(bitmap_bh); 1274 bitmap_bh = read_block_bitmap(sb, group_no); 1275 if (!bitmap_bh) 1276 goto io_error; 1277 /* 1278 * try to allocate block(s) from this group, without a goal(-1). 1279 */ 1280 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1281 bitmap_bh, -1, my_rsv, &num); 1282 if (grp_alloc_blk >= 0) 1283 goto allocated; 1284 } 1285 /* 1286 * We may end up a bogus ealier ENOSPC error due to 1287 * filesystem is "full" of reservations, but 1288 * there maybe indeed free blocks avaliable on disk 1289 * In this case, we just forget about the reservations 1290 * just do block allocation as without reservations. 1291 */ 1292 if (my_rsv) { 1293 my_rsv = NULL; 1294 windowsz = 0; 1295 group_no = goal_group; 1296 goto retry_alloc; 1297 } 1298 /* No space left on the device */ 1299 *errp = -ENOSPC; 1300 goto out; 1301 1302 allocated: 1303 1304 ext2_debug("using block group %d(%d)\n", 1305 group_no, gdp->bg_free_blocks_count); 1306 1307 ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no); 1308 1309 if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) || 1310 in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) || 1311 in_range(ret_block, le32_to_cpu(gdp->bg_inode_table), 1312 EXT2_SB(sb)->s_itb_per_group) || 1313 in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table), 1314 EXT2_SB(sb)->s_itb_per_group)) 1315 ext2_error(sb, "ext2_new_blocks", 1316 "Allocating block in system zone - " 1317 "blocks from "E2FSBLK", length %lu", 1318 ret_block, num); 1319 1320 performed_allocation = 1; 1321 1322 if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) { 1323 ext2_error(sb, "ext2_new_blocks", 1324 "block("E2FSBLK") >= blocks count(%d) - " 1325 "block_group = %d, es == %p ", ret_block, 1326 le32_to_cpu(es->s_blocks_count), group_no, es); 1327 goto out; 1328 } 1329 1330 group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num); 1331 percpu_counter_sub(&sbi->s_freeblocks_counter, num); 1332 1333 mark_buffer_dirty(bitmap_bh); 1334 if (sb->s_flags & MS_SYNCHRONOUS) 1335 sync_dirty_buffer(bitmap_bh); 1336 1337 *errp = 0; 1338 brelse(bitmap_bh); 1339 DQUOT_FREE_BLOCK(inode, *count-num); 1340 *count = num; 1341 return ret_block; 1342 1343 io_error: 1344 *errp = -EIO; 1345 out: 1346 /* 1347 * Undo the block allocation 1348 */ 1349 if (!performed_allocation) 1350 DQUOT_FREE_BLOCK(inode, *count); 1351 brelse(bitmap_bh); 1352 return 0; 1353 } 1354 1355 ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp) 1356 { 1357 unsigned long count = 1; 1358 1359 return ext2_new_blocks(inode, goal, &count, errp); 1360 } 1361 1362 #ifdef EXT2FS_DEBUG 1363 1364 static const int nibblemap[] = {4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0}; 1365 1366 unsigned long ext2_count_free (struct buffer_head * map, unsigned int numchars) 1367 { 1368 unsigned int i; 1369 unsigned long sum = 0; 1370 1371 if (!map) 1372 return (0); 1373 for (i = 0; i < numchars; i++) 1374 sum += nibblemap[map->b_data[i] & 0xf] + 1375 nibblemap[(map->b_data[i] >> 4) & 0xf]; 1376 return (sum); 1377 } 1378 1379 #endif /* EXT2FS_DEBUG */ 1380 1381 unsigned long ext2_count_free_blocks (struct super_block * sb) 1382 { 1383 struct ext2_group_desc * desc; 1384 unsigned long desc_count = 0; 1385 int i; 1386 #ifdef EXT2FS_DEBUG 1387 unsigned long bitmap_count, x; 1388 struct ext2_super_block *es; 1389 1390 es = EXT2_SB(sb)->s_es; 1391 desc_count = 0; 1392 bitmap_count = 0; 1393 desc = NULL; 1394 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1395 struct buffer_head *bitmap_bh; 1396 desc = ext2_get_group_desc (sb, i, NULL); 1397 if (!desc) 1398 continue; 1399 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1400 bitmap_bh = read_block_bitmap(sb, i); 1401 if (!bitmap_bh) 1402 continue; 1403 1404 x = ext2_count_free(bitmap_bh, sb->s_blocksize); 1405 printk ("group %d: stored = %d, counted = %lu\n", 1406 i, le16_to_cpu(desc->bg_free_blocks_count), x); 1407 bitmap_count += x; 1408 brelse(bitmap_bh); 1409 } 1410 printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n", 1411 (long)le32_to_cpu(es->s_free_blocks_count), 1412 desc_count, bitmap_count); 1413 return bitmap_count; 1414 #else 1415 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1416 desc = ext2_get_group_desc (sb, i, NULL); 1417 if (!desc) 1418 continue; 1419 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1420 } 1421 return desc_count; 1422 #endif 1423 } 1424 1425 static inline int test_root(int a, int b) 1426 { 1427 int num = b; 1428 1429 while (a > num) 1430 num *= b; 1431 return num == a; 1432 } 1433 1434 static int ext2_group_sparse(int group) 1435 { 1436 if (group <= 1) 1437 return 1; 1438 return (test_root(group, 3) || test_root(group, 5) || 1439 test_root(group, 7)); 1440 } 1441 1442 /** 1443 * ext2_bg_has_super - number of blocks used by the superblock in group 1444 * @sb: superblock for filesystem 1445 * @group: group number to check 1446 * 1447 * Return the number of blocks used by the superblock (primary or backup) 1448 * in this group. Currently this will be only 0 or 1. 1449 */ 1450 int ext2_bg_has_super(struct super_block *sb, int group) 1451 { 1452 if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&& 1453 !ext2_group_sparse(group)) 1454 return 0; 1455 return 1; 1456 } 1457 1458 /** 1459 * ext2_bg_num_gdb - number of blocks used by the group table in group 1460 * @sb: superblock for filesystem 1461 * @group: group number to check 1462 * 1463 * Return the number of blocks used by the group descriptor table 1464 * (primary or backup) in this group. In the future there may be a 1465 * different number of descriptor blocks in each group. 1466 */ 1467 unsigned long ext2_bg_num_gdb(struct super_block *sb, int group) 1468 { 1469 if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&& 1470 !ext2_group_sparse(group)) 1471 return 0; 1472 return EXT2_SB(sb)->s_gdb_count; 1473 } 1474 1475