1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext2/balloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include "ext2.h" 16 #include <linux/quotaops.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cred.h> 20 #include <linux/buffer_head.h> 21 #include <linux/capability.h> 22 23 /* 24 * balloc.c contains the blocks allocation and deallocation routines 25 */ 26 27 /* 28 * The free blocks are managed by bitmaps. A file system contains several 29 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 30 * block for inodes, N blocks for the inode table and data blocks. 31 * 32 * The file system contains group descriptors which are located after the 33 * super block. Each descriptor contains the number of the bitmap block and 34 * the free blocks count in the block. The descriptors are loaded in memory 35 * when a file system is mounted (see ext2_fill_super). 36 */ 37 38 39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 40 41 struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb, 42 unsigned int block_group, 43 struct buffer_head ** bh) 44 { 45 unsigned long group_desc; 46 unsigned long offset; 47 struct ext2_group_desc * desc; 48 struct ext2_sb_info *sbi = EXT2_SB(sb); 49 50 if (block_group >= sbi->s_groups_count) { 51 WARN(1, "block_group >= groups_count - " 52 "block_group = %d, groups_count = %lu", 53 block_group, sbi->s_groups_count); 54 55 return NULL; 56 } 57 58 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb); 59 offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1); 60 if (!sbi->s_group_desc[group_desc]) { 61 WARN(1, "Group descriptor not loaded - " 62 "block_group = %d, group_desc = %lu, desc = %lu", 63 block_group, group_desc, offset); 64 return NULL; 65 } 66 67 desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data; 68 if (bh) 69 *bh = sbi->s_group_desc[group_desc]; 70 return desc + offset; 71 } 72 73 static int ext2_valid_block_bitmap(struct super_block *sb, 74 struct ext2_group_desc *desc, 75 unsigned int block_group, 76 struct buffer_head *bh) 77 { 78 ext2_grpblk_t offset; 79 ext2_grpblk_t next_zero_bit; 80 ext2_fsblk_t bitmap_blk; 81 ext2_fsblk_t group_first_block; 82 83 group_first_block = ext2_group_first_block_no(sb, block_group); 84 85 /* check whether block bitmap block number is set */ 86 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); 87 offset = bitmap_blk - group_first_block; 88 if (!ext2_test_bit(offset, bh->b_data)) 89 /* bad block bitmap */ 90 goto err_out; 91 92 /* check whether the inode bitmap block number is set */ 93 bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap); 94 offset = bitmap_blk - group_first_block; 95 if (!ext2_test_bit(offset, bh->b_data)) 96 /* bad block bitmap */ 97 goto err_out; 98 99 /* check whether the inode table block number is set */ 100 bitmap_blk = le32_to_cpu(desc->bg_inode_table); 101 offset = bitmap_blk - group_first_block; 102 next_zero_bit = ext2_find_next_zero_bit(bh->b_data, 103 offset + EXT2_SB(sb)->s_itb_per_group, 104 offset); 105 if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group) 106 /* good bitmap for inode tables */ 107 return 1; 108 109 err_out: 110 ext2_error(sb, __func__, 111 "Invalid block bitmap - " 112 "block_group = %d, block = %lu", 113 block_group, bitmap_blk); 114 return 0; 115 } 116 117 /* 118 * Read the bitmap for a given block_group,and validate the 119 * bits for block/inode/inode tables are set in the bitmaps 120 * 121 * Return buffer_head on success or NULL in case of failure. 122 */ 123 static struct buffer_head * 124 read_block_bitmap(struct super_block *sb, unsigned int block_group) 125 { 126 struct ext2_group_desc * desc; 127 struct buffer_head * bh = NULL; 128 ext2_fsblk_t bitmap_blk; 129 int ret; 130 131 desc = ext2_get_group_desc(sb, block_group, NULL); 132 if (!desc) 133 return NULL; 134 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); 135 bh = sb_getblk(sb, bitmap_blk); 136 if (unlikely(!bh)) { 137 ext2_error(sb, __func__, 138 "Cannot read block bitmap - " 139 "block_group = %d, block_bitmap = %u", 140 block_group, le32_to_cpu(desc->bg_block_bitmap)); 141 return NULL; 142 } 143 ret = bh_read(bh, 0); 144 if (ret > 0) 145 return bh; 146 if (ret < 0) { 147 brelse(bh); 148 ext2_error(sb, __func__, 149 "Cannot read block bitmap - " 150 "block_group = %d, block_bitmap = %u", 151 block_group, le32_to_cpu(desc->bg_block_bitmap)); 152 return NULL; 153 } 154 155 ext2_valid_block_bitmap(sb, desc, block_group, bh); 156 /* 157 * file system mounted not to panic on error, continue with corrupt 158 * bitmap 159 */ 160 return bh; 161 } 162 163 static void group_adjust_blocks(struct super_block *sb, int group_no, 164 struct ext2_group_desc *desc, struct buffer_head *bh, int count) 165 { 166 if (count) { 167 struct ext2_sb_info *sbi = EXT2_SB(sb); 168 unsigned free_blocks; 169 170 spin_lock(sb_bgl_lock(sbi, group_no)); 171 free_blocks = le16_to_cpu(desc->bg_free_blocks_count); 172 desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count); 173 spin_unlock(sb_bgl_lock(sbi, group_no)); 174 mark_buffer_dirty(bh); 175 } 176 } 177 178 /* 179 * The reservation window structure operations 180 * -------------------------------------------- 181 * Operations include: 182 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 183 * 184 * We use a red-black tree to represent per-filesystem reservation 185 * windows. 186 * 187 */ 188 189 /** 190 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 191 * @root: root of per-filesystem reservation rb tree 192 * @verbose: verbose mode 193 * @fn: function which wishes to dump the reservation map 194 * 195 * If verbose is turned on, it will print the whole block reservation 196 * windows(start, end). Otherwise, it will only print out the "bad" windows, 197 * those windows that overlap with their immediate neighbors. 198 */ 199 #if 1 200 static void __rsv_window_dump(struct rb_root *root, int verbose, 201 const char *fn) 202 { 203 struct rb_node *n; 204 struct ext2_reserve_window_node *rsv, *prev; 205 int bad; 206 207 restart: 208 n = rb_first(root); 209 bad = 0; 210 prev = NULL; 211 212 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 213 while (n) { 214 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 215 if (verbose) 216 printk("reservation window 0x%p " 217 "start: %lu, end: %lu\n", 218 rsv, rsv->rsv_start, rsv->rsv_end); 219 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 220 printk("Bad reservation %p (start >= end)\n", 221 rsv); 222 bad = 1; 223 } 224 if (prev && prev->rsv_end >= rsv->rsv_start) { 225 printk("Bad reservation %p (prev->end >= start)\n", 226 rsv); 227 bad = 1; 228 } 229 if (bad) { 230 if (!verbose) { 231 printk("Restarting reservation walk in verbose mode\n"); 232 verbose = 1; 233 goto restart; 234 } 235 } 236 n = rb_next(n); 237 prev = rsv; 238 } 239 printk("Window map complete.\n"); 240 BUG_ON(bad); 241 } 242 #define rsv_window_dump(root, verbose) \ 243 __rsv_window_dump((root), (verbose), __func__) 244 #else 245 #define rsv_window_dump(root, verbose) do {} while (0) 246 #endif 247 248 /** 249 * goal_in_my_reservation() 250 * @rsv: inode's reservation window 251 * @grp_goal: given goal block relative to the allocation block group 252 * @group: the current allocation block group 253 * @sb: filesystem super block 254 * 255 * Test if the given goal block (group relative) is within the file's 256 * own block reservation window range. 257 * 258 * If the reservation window is outside the goal allocation group, return 0; 259 * grp_goal (given goal block) could be -1, which means no specific 260 * goal block. In this case, always return 1. 261 * If the goal block is within the reservation window, return 1; 262 * otherwise, return 0; 263 */ 264 static int 265 goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal, 266 unsigned int group, struct super_block * sb) 267 { 268 ext2_fsblk_t group_first_block, group_last_block; 269 270 group_first_block = ext2_group_first_block_no(sb, group); 271 group_last_block = ext2_group_last_block_no(sb, group); 272 273 if ((rsv->_rsv_start > group_last_block) || 274 (rsv->_rsv_end < group_first_block)) 275 return 0; 276 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 277 || (grp_goal + group_first_block > rsv->_rsv_end))) 278 return 0; 279 return 1; 280 } 281 282 /** 283 * search_reserve_window() 284 * @root: root of reservation tree 285 * @goal: target allocation block 286 * 287 * Find the reserved window which includes the goal, or the previous one 288 * if the goal is not in any window. 289 * Returns NULL if there are no windows or if all windows start after the goal. 290 */ 291 static struct ext2_reserve_window_node * 292 search_reserve_window(struct rb_root *root, ext2_fsblk_t goal) 293 { 294 struct rb_node *n = root->rb_node; 295 struct ext2_reserve_window_node *rsv; 296 297 if (!n) 298 return NULL; 299 300 do { 301 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 302 303 if (goal < rsv->rsv_start) 304 n = n->rb_left; 305 else if (goal > rsv->rsv_end) 306 n = n->rb_right; 307 else 308 return rsv; 309 } while (n); 310 /* 311 * We've fallen off the end of the tree: the goal wasn't inside 312 * any particular node. OK, the previous node must be to one 313 * side of the interval containing the goal. If it's the RHS, 314 * we need to back up one. 315 */ 316 if (rsv->rsv_start > goal) { 317 n = rb_prev(&rsv->rsv_node); 318 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 319 } 320 return rsv; 321 } 322 323 /* 324 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree. 325 * @sb: super block 326 * @rsv: reservation window to add 327 * 328 * Must be called with rsv_lock held. 329 */ 330 void ext2_rsv_window_add(struct super_block *sb, 331 struct ext2_reserve_window_node *rsv) 332 { 333 struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root; 334 struct rb_node *node = &rsv->rsv_node; 335 ext2_fsblk_t start = rsv->rsv_start; 336 337 struct rb_node ** p = &root->rb_node; 338 struct rb_node * parent = NULL; 339 struct ext2_reserve_window_node *this; 340 341 while (*p) 342 { 343 parent = *p; 344 this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node); 345 346 if (start < this->rsv_start) 347 p = &(*p)->rb_left; 348 else if (start > this->rsv_end) 349 p = &(*p)->rb_right; 350 else { 351 rsv_window_dump(root, 1); 352 BUG(); 353 } 354 } 355 356 rb_link_node(node, parent, p); 357 rb_insert_color(node, root); 358 } 359 360 /** 361 * rsv_window_remove() -- unlink a window from the reservation rb tree 362 * @sb: super block 363 * @rsv: reservation window to remove 364 * 365 * Mark the block reservation window as not allocated, and unlink it 366 * from the filesystem reservation window rb tree. Must be called with 367 * rsv_lock held. 368 */ 369 static void rsv_window_remove(struct super_block *sb, 370 struct ext2_reserve_window_node *rsv) 371 { 372 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 373 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 374 rsv->rsv_alloc_hit = 0; 375 rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root); 376 } 377 378 /* 379 * rsv_is_empty() -- Check if the reservation window is allocated. 380 * @rsv: given reservation window to check 381 * 382 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED. 383 */ 384 static inline int rsv_is_empty(struct ext2_reserve_window *rsv) 385 { 386 /* a valid reservation end block could not be 0 */ 387 return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED); 388 } 389 390 /** 391 * ext2_init_block_alloc_info() 392 * @inode: file inode structure 393 * 394 * Allocate and initialize the reservation window structure, and 395 * link the window to the ext2 inode structure at last 396 * 397 * The reservation window structure is only dynamically allocated 398 * and linked to ext2 inode the first time the open file 399 * needs a new block. So, before every ext2_new_block(s) call, for 400 * regular files, we should check whether the reservation window 401 * structure exists or not. In the latter case, this function is called. 402 * Fail to do so will result in block reservation being turned off for that 403 * open file. 404 * 405 * This function is called from ext2_get_blocks_handle(), also called 406 * when setting the reservation window size through ioctl before the file 407 * is open for write (needs block allocation). 408 * 409 * Needs truncate_mutex protection prior to calling this function. 410 */ 411 void ext2_init_block_alloc_info(struct inode *inode) 412 { 413 struct ext2_inode_info *ei = EXT2_I(inode); 414 struct ext2_block_alloc_info *block_i; 415 struct super_block *sb = inode->i_sb; 416 417 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 418 if (block_i) { 419 struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node; 420 421 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 422 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 423 424 /* 425 * if filesystem is mounted with NORESERVATION, the goal 426 * reservation window size is set to zero to indicate 427 * block reservation is off 428 */ 429 if (!test_opt(sb, RESERVATION)) 430 rsv->rsv_goal_size = 0; 431 else 432 rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; 433 rsv->rsv_alloc_hit = 0; 434 block_i->last_alloc_logical_block = 0; 435 block_i->last_alloc_physical_block = 0; 436 } 437 ei->i_block_alloc_info = block_i; 438 } 439 440 /** 441 * ext2_discard_reservation() 442 * @inode: inode 443 * 444 * Discard(free) block reservation window on last file close, or truncate 445 * or at last iput(). 446 * 447 * It is being called in three cases: 448 * ext2_release_file(): last writer closes the file 449 * ext2_clear_inode(): last iput(), when nobody links to this file. 450 * ext2_truncate(): when the block indirect map is about to change. 451 */ 452 void ext2_discard_reservation(struct inode *inode) 453 { 454 struct ext2_inode_info *ei = EXT2_I(inode); 455 struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; 456 struct ext2_reserve_window_node *rsv; 457 spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock; 458 459 if (!block_i) 460 return; 461 462 rsv = &block_i->rsv_window_node; 463 if (!rsv_is_empty(&rsv->rsv_window)) { 464 spin_lock(rsv_lock); 465 if (!rsv_is_empty(&rsv->rsv_window)) 466 rsv_window_remove(inode->i_sb, rsv); 467 spin_unlock(rsv_lock); 468 } 469 } 470 471 /** 472 * ext2_free_blocks() -- Free given blocks and update quota and i_blocks 473 * @inode: inode 474 * @block: start physical block to free 475 * @count: number of blocks to free 476 */ 477 void ext2_free_blocks (struct inode * inode, unsigned long block, 478 unsigned long count) 479 { 480 struct buffer_head *bitmap_bh = NULL; 481 struct buffer_head * bh2; 482 unsigned long block_group; 483 unsigned long bit; 484 unsigned long i; 485 unsigned long overflow; 486 struct super_block * sb = inode->i_sb; 487 struct ext2_sb_info * sbi = EXT2_SB(sb); 488 struct ext2_group_desc * desc; 489 struct ext2_super_block * es = sbi->s_es; 490 unsigned freed = 0, group_freed; 491 492 if (!ext2_data_block_valid(sbi, block, count)) { 493 ext2_error (sb, "ext2_free_blocks", 494 "Freeing blocks not in datazone - " 495 "block = %lu, count = %lu", block, count); 496 goto error_return; 497 } 498 499 ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1); 500 501 do_more: 502 overflow = 0; 503 block_group = (block - le32_to_cpu(es->s_first_data_block)) / 504 EXT2_BLOCKS_PER_GROUP(sb); 505 bit = (block - le32_to_cpu(es->s_first_data_block)) % 506 EXT2_BLOCKS_PER_GROUP(sb); 507 /* 508 * Check to see if we are freeing blocks across a group 509 * boundary. 510 */ 511 if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) { 512 overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb); 513 count -= overflow; 514 } 515 brelse(bitmap_bh); 516 bitmap_bh = read_block_bitmap(sb, block_group); 517 if (!bitmap_bh) 518 goto error_return; 519 520 desc = ext2_get_group_desc (sb, block_group, &bh2); 521 if (!desc) 522 goto error_return; 523 524 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) || 525 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) || 526 in_range (block, le32_to_cpu(desc->bg_inode_table), 527 sbi->s_itb_per_group) || 528 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table), 529 sbi->s_itb_per_group)) { 530 ext2_error (sb, "ext2_free_blocks", 531 "Freeing blocks in system zones - " 532 "Block = %lu, count = %lu", 533 block, count); 534 goto error_return; 535 } 536 537 for (i = 0, group_freed = 0; i < count; i++) { 538 if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 539 bit + i, bitmap_bh->b_data)) { 540 ext2_error(sb, __func__, 541 "bit already cleared for block %lu", block + i); 542 } else { 543 group_freed++; 544 } 545 } 546 547 mark_buffer_dirty(bitmap_bh); 548 if (sb->s_flags & SB_SYNCHRONOUS) 549 sync_dirty_buffer(bitmap_bh); 550 551 group_adjust_blocks(sb, block_group, desc, bh2, group_freed); 552 freed += group_freed; 553 554 if (overflow) { 555 block += count; 556 count = overflow; 557 goto do_more; 558 } 559 error_return: 560 brelse(bitmap_bh); 561 if (freed) { 562 percpu_counter_add(&sbi->s_freeblocks_counter, freed); 563 dquot_free_block_nodirty(inode, freed); 564 mark_inode_dirty(inode); 565 } 566 } 567 568 /** 569 * bitmap_search_next_usable_block() 570 * @start: the starting block (group relative) of the search 571 * @bh: bufferhead contains the block group bitmap 572 * @maxblocks: the ending block (group relative) of the reservation 573 * 574 * The bitmap search --- search forward through the actual bitmap on disk until 575 * we find a bit free. 576 */ 577 static ext2_grpblk_t 578 bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh, 579 ext2_grpblk_t maxblocks) 580 { 581 ext2_grpblk_t next; 582 583 next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start); 584 if (next >= maxblocks) 585 return -1; 586 return next; 587 } 588 589 /** 590 * find_next_usable_block() 591 * @start: the starting block (group relative) to find next 592 * allocatable block in bitmap. 593 * @bh: bufferhead contains the block group bitmap 594 * @maxblocks: the ending block (group relative) for the search 595 * 596 * Find an allocatable block in a bitmap. We perform the "most 597 * appropriate allocation" algorithm of looking for a free block near 598 * the initial goal; then for a free byte somewhere in the bitmap; 599 * then for any free bit in the bitmap. 600 */ 601 static ext2_grpblk_t 602 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) 603 { 604 ext2_grpblk_t here, next; 605 char *p, *r; 606 607 if (start > 0) { 608 /* 609 * The goal was occupied; search forward for a free 610 * block within the next XX blocks. 611 * 612 * end_goal is more or less random, but it has to be 613 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the 614 * next 64-bit boundary is simple.. 615 */ 616 ext2_grpblk_t end_goal = (start + 63) & ~63; 617 if (end_goal > maxblocks) 618 end_goal = maxblocks; 619 here = ext2_find_next_zero_bit(bh->b_data, end_goal, start); 620 if (here < end_goal) 621 return here; 622 ext2_debug("Bit not found near goal\n"); 623 } 624 625 here = start; 626 if (here < 0) 627 here = 0; 628 629 p = ((char *)bh->b_data) + (here >> 3); 630 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 631 next = (r - ((char *)bh->b_data)) << 3; 632 633 if (next < maxblocks && next >= here) 634 return next; 635 636 here = bitmap_search_next_usable_block(here, bh, maxblocks); 637 return here; 638 } 639 640 /** 641 * ext2_try_to_allocate() 642 * @sb: superblock 643 * @group: given allocation block group 644 * @bitmap_bh: bufferhead holds the block bitmap 645 * @grp_goal: given target block within the group 646 * @count: target number of blocks to allocate 647 * @my_rsv: reservation window 648 * 649 * Attempt to allocate blocks within a give range. Set the range of allocation 650 * first, then find the first free bit(s) from the bitmap (within the range), 651 * and at last, allocate the blocks by claiming the found free bit as allocated. 652 * 653 * To set the range of this allocation: 654 * if there is a reservation window, only try to allocate block(s) 655 * from the file's own reservation window; 656 * Otherwise, the allocation range starts from the give goal block, 657 * ends at the block group's last block. 658 * 659 * If we failed to allocate the desired block then we may end up crossing to a 660 * new bitmap. 661 */ 662 static int 663 ext2_try_to_allocate(struct super_block *sb, int group, 664 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 665 unsigned long *count, 666 struct ext2_reserve_window *my_rsv) 667 { 668 ext2_fsblk_t group_first_block = ext2_group_first_block_no(sb, group); 669 ext2_fsblk_t group_last_block = ext2_group_last_block_no(sb, group); 670 ext2_grpblk_t start, end; 671 unsigned long num = 0; 672 673 start = 0; 674 end = group_last_block - group_first_block + 1; 675 /* we do allocation within the reservation window if we have a window */ 676 if (my_rsv) { 677 if (my_rsv->_rsv_start >= group_first_block) 678 start = my_rsv->_rsv_start - group_first_block; 679 if (my_rsv->_rsv_end < group_last_block) 680 end = my_rsv->_rsv_end - group_first_block + 1; 681 if (grp_goal < start || grp_goal >= end) 682 grp_goal = -1; 683 } 684 BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb)); 685 686 if (grp_goal < 0) { 687 grp_goal = find_next_usable_block(start, bitmap_bh, end); 688 if (grp_goal < 0) 689 goto fail_access; 690 if (!my_rsv) { 691 int i; 692 693 for (i = 0; i < 7 && grp_goal > start && 694 !ext2_test_bit(grp_goal - 1, 695 bitmap_bh->b_data); 696 i++, grp_goal--) 697 ; 698 } 699 } 700 701 for (; num < *count && grp_goal < end; grp_goal++) { 702 if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), 703 grp_goal, bitmap_bh->b_data)) { 704 if (num == 0) 705 continue; 706 break; 707 } 708 num++; 709 } 710 711 if (num == 0) 712 goto fail_access; 713 714 *count = num; 715 return grp_goal - num; 716 fail_access: 717 return -1; 718 } 719 720 /** 721 * find_next_reservable_window(): 722 * find a reservable space within the given range. 723 * It does not allocate the reservation window for now: 724 * alloc_new_reservation() will do the work later. 725 * 726 * @search_head: the head of the searching list; 727 * This is not necessarily the list head of the whole filesystem 728 * 729 * We have both head and start_block to assist the search 730 * for the reservable space. The list starts from head, 731 * but we will shift to the place where start_block is, 732 * then start from there, when looking for a reservable space. 733 * 734 * @sb: the super block. 735 * 736 * @start_block: the first block we consider to start the real search from 737 * 738 * @last_block: 739 * the maximum block number that our goal reservable space 740 * could start from. This is normally the last block in this 741 * group. The search will end when we found the start of next 742 * possible reservable space is out of this boundary. 743 * This could handle the cross boundary reservation window 744 * request. 745 * 746 * basically we search from the given range, rather than the whole 747 * reservation double linked list, (start_block, last_block) 748 * to find a free region that is of my size and has not 749 * been reserved. 750 * 751 */ 752 static int find_next_reservable_window( 753 struct ext2_reserve_window_node *search_head, 754 struct ext2_reserve_window_node *my_rsv, 755 struct super_block * sb, 756 ext2_fsblk_t start_block, 757 ext2_fsblk_t last_block) 758 { 759 struct rb_node *next; 760 struct ext2_reserve_window_node *rsv, *prev; 761 ext2_fsblk_t cur; 762 int size = my_rsv->rsv_goal_size; 763 764 /* TODO: make the start of the reservation window byte-aligned */ 765 /* cur = *start_block & ~7;*/ 766 cur = start_block; 767 rsv = search_head; 768 if (!rsv) 769 return -1; 770 771 while (1) { 772 if (cur <= rsv->rsv_end) 773 cur = rsv->rsv_end + 1; 774 775 /* TODO? 776 * in the case we could not find a reservable space 777 * that is what is expected, during the re-search, we could 778 * remember what's the largest reservable space we could have 779 * and return that one. 780 * 781 * For now it will fail if we could not find the reservable 782 * space with expected-size (or more)... 783 */ 784 if (cur > last_block) 785 return -1; /* fail */ 786 787 prev = rsv; 788 next = rb_next(&rsv->rsv_node); 789 rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node); 790 791 /* 792 * Reached the last reservation, we can just append to the 793 * previous one. 794 */ 795 if (!next) 796 break; 797 798 if (cur + size <= rsv->rsv_start) { 799 /* 800 * Found a reserveable space big enough. We could 801 * have a reservation across the group boundary here 802 */ 803 break; 804 } 805 } 806 /* 807 * we come here either : 808 * when we reach the end of the whole list, 809 * and there is empty reservable space after last entry in the list. 810 * append it to the end of the list. 811 * 812 * or we found one reservable space in the middle of the list, 813 * return the reservation window that we could append to. 814 * succeed. 815 */ 816 817 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 818 rsv_window_remove(sb, my_rsv); 819 820 /* 821 * Let's book the whole available window for now. We will check the 822 * disk bitmap later and then, if there are free blocks then we adjust 823 * the window size if it's larger than requested. 824 * Otherwise, we will remove this node from the tree next time 825 * call find_next_reservable_window. 826 */ 827 my_rsv->rsv_start = cur; 828 my_rsv->rsv_end = cur + size - 1; 829 my_rsv->rsv_alloc_hit = 0; 830 831 if (prev != my_rsv) 832 ext2_rsv_window_add(sb, my_rsv); 833 834 return 0; 835 } 836 837 /** 838 * alloc_new_reservation()--allocate a new reservation window 839 * 840 * To make a new reservation, we search part of the filesystem 841 * reservation list (the list that inside the group). We try to 842 * allocate a new reservation window near the allocation goal, 843 * or the beginning of the group, if there is no goal. 844 * 845 * We first find a reservable space after the goal, then from 846 * there, we check the bitmap for the first free block after 847 * it. If there is no free block until the end of group, then the 848 * whole group is full, we failed. Otherwise, check if the free 849 * block is inside the expected reservable space, if so, we 850 * succeed. 851 * If the first free block is outside the reservable space, then 852 * start from the first free block, we search for next available 853 * space, and go on. 854 * 855 * on succeed, a new reservation will be found and inserted into the list 856 * It contains at least one free block, and it does not overlap with other 857 * reservation windows. 858 * 859 * failed: we failed to find a reservation window in this group 860 * 861 * @my_rsv: the reservation 862 * 863 * @grp_goal: The goal (group-relative). It is where the search for a 864 * free reservable space should start from. 865 * if we have a goal(goal >0 ), then start from there, 866 * no goal(goal = -1), we start from the first block 867 * of the group. 868 * 869 * @sb: the super block 870 * @group: the group we are trying to allocate in 871 * @bitmap_bh: the block group block bitmap 872 * 873 */ 874 static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv, 875 ext2_grpblk_t grp_goal, struct super_block *sb, 876 unsigned int group, struct buffer_head *bitmap_bh) 877 { 878 struct ext2_reserve_window_node *search_head; 879 ext2_fsblk_t group_first_block, group_end_block, start_block; 880 ext2_grpblk_t first_free_block; 881 struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root; 882 unsigned long size; 883 int ret; 884 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 885 886 group_first_block = ext2_group_first_block_no(sb, group); 887 group_end_block = ext2_group_last_block_no(sb, group); 888 889 if (grp_goal < 0) 890 start_block = group_first_block; 891 else 892 start_block = grp_goal + group_first_block; 893 894 size = my_rsv->rsv_goal_size; 895 896 if (!rsv_is_empty(&my_rsv->rsv_window)) { 897 /* 898 * if the old reservation is cross group boundary 899 * and if the goal is inside the old reservation window, 900 * we will come here when we just failed to allocate from 901 * the first part of the window. We still have another part 902 * that belongs to the next group. In this case, there is no 903 * point to discard our window and try to allocate a new one 904 * in this group(which will fail). we should 905 * keep the reservation window, just simply move on. 906 * 907 * Maybe we could shift the start block of the reservation 908 * window to the first block of next group. 909 */ 910 911 if ((my_rsv->rsv_start <= group_end_block) && 912 (my_rsv->rsv_end > group_end_block) && 913 (start_block >= my_rsv->rsv_start)) 914 return -1; 915 916 if ((my_rsv->rsv_alloc_hit > 917 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 918 /* 919 * if the previously allocation hit ratio is 920 * greater than 1/2, then we double the size of 921 * the reservation window the next time, 922 * otherwise we keep the same size window 923 */ 924 size = size * 2; 925 if (size > EXT2_MAX_RESERVE_BLOCKS) 926 size = EXT2_MAX_RESERVE_BLOCKS; 927 my_rsv->rsv_goal_size= size; 928 } 929 } 930 931 spin_lock(rsv_lock); 932 /* 933 * shift the search start to the window near the goal block 934 */ 935 search_head = search_reserve_window(fs_rsv_root, start_block); 936 937 /* 938 * find_next_reservable_window() simply finds a reservable window 939 * inside the given range(start_block, group_end_block). 940 * 941 * To make sure the reservation window has a free bit inside it, we 942 * need to check the bitmap after we found a reservable window. 943 */ 944 retry: 945 ret = find_next_reservable_window(search_head, my_rsv, sb, 946 start_block, group_end_block); 947 948 if (ret == -1) { 949 if (!rsv_is_empty(&my_rsv->rsv_window)) 950 rsv_window_remove(sb, my_rsv); 951 spin_unlock(rsv_lock); 952 return -1; 953 } 954 955 /* 956 * On success, find_next_reservable_window() returns the 957 * reservation window where there is a reservable space after it. 958 * Before we reserve this reservable space, we need 959 * to make sure there is at least a free block inside this region. 960 * 961 * Search the first free bit on the block bitmap. Search starts from 962 * the start block of the reservable space we just found. 963 */ 964 spin_unlock(rsv_lock); 965 first_free_block = bitmap_search_next_usable_block( 966 my_rsv->rsv_start - group_first_block, 967 bitmap_bh, group_end_block - group_first_block + 1); 968 969 if (first_free_block < 0) { 970 /* 971 * no free block left on the bitmap, no point 972 * to reserve the space. return failed. 973 */ 974 spin_lock(rsv_lock); 975 if (!rsv_is_empty(&my_rsv->rsv_window)) 976 rsv_window_remove(sb, my_rsv); 977 spin_unlock(rsv_lock); 978 return -1; /* failed */ 979 } 980 981 start_block = first_free_block + group_first_block; 982 /* 983 * check if the first free block is within the 984 * free space we just reserved 985 */ 986 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 987 return 0; /* success */ 988 /* 989 * if the first free bit we found is out of the reservable space 990 * continue search for next reservable space, 991 * start from where the free block is, 992 * we also shift the list head to where we stopped last time 993 */ 994 search_head = my_rsv; 995 spin_lock(rsv_lock); 996 goto retry; 997 } 998 999 /** 1000 * try_to_extend_reservation() 1001 * @my_rsv: given reservation window 1002 * @sb: super block 1003 * @size: the delta to extend 1004 * 1005 * Attempt to expand the reservation window large enough to have 1006 * required number of free blocks 1007 * 1008 * Since ext2_try_to_allocate() will always allocate blocks within 1009 * the reservation window range, if the window size is too small, 1010 * multiple blocks allocation has to stop at the end of the reservation 1011 * window. To make this more efficient, given the total number of 1012 * blocks needed and the current size of the window, we try to 1013 * expand the reservation window size if necessary on a best-effort 1014 * basis before ext2_new_blocks() tries to allocate blocks. 1015 */ 1016 static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv, 1017 struct super_block *sb, int size) 1018 { 1019 struct ext2_reserve_window_node *next_rsv; 1020 struct rb_node *next; 1021 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 1022 1023 if (!spin_trylock(rsv_lock)) 1024 return; 1025 1026 next = rb_next(&my_rsv->rsv_node); 1027 1028 if (!next) 1029 my_rsv->rsv_end += size; 1030 else { 1031 next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node); 1032 1033 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1034 my_rsv->rsv_end += size; 1035 else 1036 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1037 } 1038 spin_unlock(rsv_lock); 1039 } 1040 1041 /** 1042 * ext2_try_to_allocate_with_rsv() 1043 * @sb: superblock 1044 * @group: given allocation block group 1045 * @bitmap_bh: bufferhead holds the block bitmap 1046 * @grp_goal: given target block within the group 1047 * @count: target number of blocks to allocate 1048 * @my_rsv: reservation window 1049 * 1050 * This is the main function used to allocate a new block and its reservation 1051 * window. 1052 * 1053 * Each time when a new block allocation is need, first try to allocate from 1054 * its own reservation. If it does not have a reservation window, instead of 1055 * looking for a free bit on bitmap first, then look up the reservation list to 1056 * see if it is inside somebody else's reservation window, we try to allocate a 1057 * reservation window for it starting from the goal first. Then do the block 1058 * allocation within the reservation window. 1059 * 1060 * This will avoid keeping on searching the reservation list again and 1061 * again when somebody is looking for a free block (without 1062 * reservation), and there are lots of free blocks, but they are all 1063 * being reserved. 1064 * 1065 * We use a red-black tree for the per-filesystem reservation list. 1066 */ 1067 static ext2_grpblk_t 1068 ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group, 1069 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 1070 struct ext2_reserve_window_node * my_rsv, 1071 unsigned long *count) 1072 { 1073 ext2_fsblk_t group_first_block, group_last_block; 1074 ext2_grpblk_t ret = 0; 1075 unsigned long num = *count; 1076 1077 /* 1078 * we don't deal with reservation when 1079 * filesystem is mounted without reservation 1080 * or the file is not a regular file 1081 * or last attempt to allocate a block with reservation turned on failed 1082 */ 1083 if (my_rsv == NULL) { 1084 return ext2_try_to_allocate(sb, group, bitmap_bh, 1085 grp_goal, count, NULL); 1086 } 1087 /* 1088 * grp_goal is a group relative block number (if there is a goal) 1089 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb) 1090 * first block is a filesystem wide block number 1091 * first block is the block number of the first block in this group 1092 */ 1093 group_first_block = ext2_group_first_block_no(sb, group); 1094 group_last_block = ext2_group_last_block_no(sb, group); 1095 1096 /* 1097 * Basically we will allocate a new block from inode's reservation 1098 * window. 1099 * 1100 * We need to allocate a new reservation window, if: 1101 * a) inode does not have a reservation window; or 1102 * b) last attempt to allocate a block from existing reservation 1103 * failed; or 1104 * c) we come here with a goal and with a reservation window 1105 * 1106 * We do not need to allocate a new reservation window if we come here 1107 * at the beginning with a goal and the goal is inside the window, or 1108 * we don't have a goal but already have a reservation window. 1109 * then we could go to allocate from the reservation window directly. 1110 */ 1111 while (1) { 1112 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1113 !goal_in_my_reservation(&my_rsv->rsv_window, 1114 grp_goal, group, sb)) { 1115 if (my_rsv->rsv_goal_size < *count) 1116 my_rsv->rsv_goal_size = *count; 1117 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1118 group, bitmap_bh); 1119 if (ret < 0) 1120 break; /* failed */ 1121 1122 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1123 grp_goal, group, sb)) 1124 grp_goal = -1; 1125 } else if (grp_goal >= 0) { 1126 int curr = my_rsv->rsv_end - 1127 (grp_goal + group_first_block) + 1; 1128 1129 if (curr < *count) 1130 try_to_extend_reservation(my_rsv, sb, 1131 *count - curr); 1132 } 1133 1134 if ((my_rsv->rsv_start > group_last_block) || 1135 (my_rsv->rsv_end < group_first_block)) { 1136 rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1); 1137 BUG(); 1138 } 1139 ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal, 1140 &num, &my_rsv->rsv_window); 1141 if (ret >= 0) { 1142 my_rsv->rsv_alloc_hit += num; 1143 *count = num; 1144 break; /* succeed */ 1145 } 1146 num = *count; 1147 } 1148 return ret; 1149 } 1150 1151 /** 1152 * ext2_has_free_blocks() 1153 * @sbi: in-core super block structure. 1154 * 1155 * Check if filesystem has at least 1 free block available for allocation. 1156 */ 1157 static int ext2_has_free_blocks(struct ext2_sb_info *sbi) 1158 { 1159 ext2_fsblk_t free_blocks, root_blocks; 1160 1161 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1162 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); 1163 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1164 !uid_eq(sbi->s_resuid, current_fsuid()) && 1165 (gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) || 1166 !in_group_p (sbi->s_resgid))) { 1167 return 0; 1168 } 1169 return 1; 1170 } 1171 1172 /* 1173 * Returns 1 if the passed-in block region is valid; 0 if some part overlaps 1174 * with filesystem metadata blocks. 1175 */ 1176 int ext2_data_block_valid(struct ext2_sb_info *sbi, ext2_fsblk_t start_blk, 1177 unsigned int count) 1178 { 1179 if ((start_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 1180 (start_blk + count - 1 < start_blk) || 1181 (start_blk + count - 1 >= le32_to_cpu(sbi->s_es->s_blocks_count))) 1182 return 0; 1183 1184 /* Ensure we do not step over superblock */ 1185 if ((start_blk <= sbi->s_sb_block) && 1186 (start_blk + count - 1 >= sbi->s_sb_block)) 1187 return 0; 1188 1189 return 1; 1190 } 1191 1192 /* 1193 * ext2_new_blocks() -- core block(s) allocation function 1194 * @inode: file inode 1195 * @goal: given target block(filesystem wide) 1196 * @count: target number of blocks to allocate 1197 * @errp: error code 1198 * 1199 * ext2_new_blocks uses a goal block to assist allocation. If the goal is 1200 * free, or there is a free block within 32 blocks of the goal, that block 1201 * is allocated. Otherwise a forward search is made for a free block; within 1202 * each block group the search first looks for an entire free byte in the block 1203 * bitmap, and then for any free bit if that fails. 1204 * This function also updates quota and i_blocks field. 1205 */ 1206 ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal, 1207 unsigned long *count, int *errp) 1208 { 1209 struct buffer_head *bitmap_bh = NULL; 1210 struct buffer_head *gdp_bh; 1211 int group_no; 1212 int goal_group; 1213 ext2_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1214 ext2_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1215 ext2_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1216 int bgi; /* blockgroup iteration index */ 1217 int performed_allocation = 0; 1218 ext2_grpblk_t free_blocks; /* number of free blocks in a group */ 1219 struct super_block *sb; 1220 struct ext2_group_desc *gdp; 1221 struct ext2_super_block *es; 1222 struct ext2_sb_info *sbi; 1223 struct ext2_reserve_window_node *my_rsv = NULL; 1224 struct ext2_block_alloc_info *block_i; 1225 unsigned short windowsz = 0; 1226 unsigned long ngroups; 1227 unsigned long num = *count; 1228 int ret; 1229 1230 *errp = -ENOSPC; 1231 sb = inode->i_sb; 1232 1233 /* 1234 * Check quota for allocation of this block. 1235 */ 1236 ret = dquot_alloc_block(inode, num); 1237 if (ret) { 1238 *errp = ret; 1239 return 0; 1240 } 1241 1242 sbi = EXT2_SB(sb); 1243 es = EXT2_SB(sb)->s_es; 1244 ext2_debug("goal=%lu.\n", goal); 1245 /* 1246 * Allocate a block from reservation only when 1247 * filesystem is mounted with reservation(default,-o reservation), and 1248 * it's a regular file, and 1249 * the desired window size is greater than 0 (One could use ioctl 1250 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off 1251 * reservation on that particular file) 1252 */ 1253 block_i = EXT2_I(inode)->i_block_alloc_info; 1254 if (block_i) { 1255 windowsz = block_i->rsv_window_node.rsv_goal_size; 1256 if (windowsz > 0) 1257 my_rsv = &block_i->rsv_window_node; 1258 } 1259 1260 if (!ext2_has_free_blocks(sbi)) { 1261 *errp = -ENOSPC; 1262 goto out; 1263 } 1264 1265 /* 1266 * First, test whether the goal block is free. 1267 */ 1268 if (goal < le32_to_cpu(es->s_first_data_block) || 1269 goal >= le32_to_cpu(es->s_blocks_count)) 1270 goal = le32_to_cpu(es->s_first_data_block); 1271 group_no = (goal - le32_to_cpu(es->s_first_data_block)) / 1272 EXT2_BLOCKS_PER_GROUP(sb); 1273 goal_group = group_no; 1274 retry_alloc: 1275 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1276 if (!gdp) 1277 goto io_error; 1278 1279 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1280 /* 1281 * if there is not enough free blocks to make a new resevation 1282 * turn off reservation for this allocation 1283 */ 1284 if (my_rsv && (free_blocks < windowsz) 1285 && (free_blocks > 0) 1286 && (rsv_is_empty(&my_rsv->rsv_window))) 1287 my_rsv = NULL; 1288 1289 if (free_blocks > 0) { 1290 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) % 1291 EXT2_BLOCKS_PER_GROUP(sb)); 1292 /* 1293 * In case we retry allocation (due to fs reservation not 1294 * working out or fs corruption), the bitmap_bh is non-null 1295 * pointer and we have to release it before calling 1296 * read_block_bitmap(). 1297 */ 1298 brelse(bitmap_bh); 1299 bitmap_bh = read_block_bitmap(sb, group_no); 1300 if (!bitmap_bh) 1301 goto io_error; 1302 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1303 bitmap_bh, grp_target_blk, 1304 my_rsv, &num); 1305 if (grp_alloc_blk >= 0) 1306 goto allocated; 1307 } 1308 1309 ngroups = EXT2_SB(sb)->s_groups_count; 1310 smp_rmb(); 1311 1312 /* 1313 * Now search the rest of the groups. We assume that 1314 * group_no and gdp correctly point to the last group visited. 1315 */ 1316 for (bgi = 0; bgi < ngroups; bgi++) { 1317 group_no++; 1318 if (group_no >= ngroups) 1319 group_no = 0; 1320 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1321 if (!gdp) 1322 goto io_error; 1323 1324 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1325 /* 1326 * skip this group (and avoid loading bitmap) if there 1327 * are no free blocks 1328 */ 1329 if (!free_blocks) 1330 continue; 1331 /* 1332 * skip this group if the number of 1333 * free blocks is less than half of the reservation 1334 * window size. 1335 */ 1336 if (my_rsv && (free_blocks <= (windowsz/2))) 1337 continue; 1338 1339 brelse(bitmap_bh); 1340 bitmap_bh = read_block_bitmap(sb, group_no); 1341 if (!bitmap_bh) 1342 goto io_error; 1343 /* 1344 * try to allocate block(s) from this group, without a goal(-1). 1345 */ 1346 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1347 bitmap_bh, -1, my_rsv, &num); 1348 if (grp_alloc_blk >= 0) 1349 goto allocated; 1350 } 1351 /* 1352 * We may end up a bogus earlier ENOSPC error due to 1353 * filesystem is "full" of reservations, but 1354 * there maybe indeed free blocks available on disk 1355 * In this case, we just forget about the reservations 1356 * just do block allocation as without reservations. 1357 */ 1358 if (my_rsv) { 1359 my_rsv = NULL; 1360 windowsz = 0; 1361 group_no = goal_group; 1362 goto retry_alloc; 1363 } 1364 /* No space left on the device */ 1365 *errp = -ENOSPC; 1366 goto out; 1367 1368 allocated: 1369 1370 ext2_debug("using block group %d(%d)\n", 1371 group_no, gdp->bg_free_blocks_count); 1372 1373 ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no); 1374 1375 if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) || 1376 in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) || 1377 in_range(ret_block, le32_to_cpu(gdp->bg_inode_table), 1378 EXT2_SB(sb)->s_itb_per_group) || 1379 in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table), 1380 EXT2_SB(sb)->s_itb_per_group)) { 1381 ext2_error(sb, "ext2_new_blocks", 1382 "Allocating block in system zone - " 1383 "blocks from "E2FSBLK", length %lu", 1384 ret_block, num); 1385 /* 1386 * ext2_try_to_allocate marked the blocks we allocated as in 1387 * use. So we may want to selectively mark some of the blocks 1388 * as free 1389 */ 1390 num = *count; 1391 goto retry_alloc; 1392 } 1393 1394 performed_allocation = 1; 1395 1396 if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) { 1397 ext2_error(sb, "ext2_new_blocks", 1398 "block("E2FSBLK") >= blocks count(%d) - " 1399 "block_group = %d, es == %p ", ret_block, 1400 le32_to_cpu(es->s_blocks_count), group_no, es); 1401 goto out; 1402 } 1403 1404 group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num); 1405 percpu_counter_sub(&sbi->s_freeblocks_counter, num); 1406 1407 mark_buffer_dirty(bitmap_bh); 1408 if (sb->s_flags & SB_SYNCHRONOUS) 1409 sync_dirty_buffer(bitmap_bh); 1410 1411 *errp = 0; 1412 brelse(bitmap_bh); 1413 if (num < *count) { 1414 dquot_free_block_nodirty(inode, *count-num); 1415 mark_inode_dirty(inode); 1416 *count = num; 1417 } 1418 return ret_block; 1419 1420 io_error: 1421 *errp = -EIO; 1422 out: 1423 /* 1424 * Undo the block allocation 1425 */ 1426 if (!performed_allocation) { 1427 dquot_free_block_nodirty(inode, *count); 1428 mark_inode_dirty(inode); 1429 } 1430 brelse(bitmap_bh); 1431 return 0; 1432 } 1433 1434 ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp) 1435 { 1436 unsigned long count = 1; 1437 1438 return ext2_new_blocks(inode, goal, &count, errp); 1439 } 1440 1441 #ifdef EXT2FS_DEBUG 1442 1443 unsigned long ext2_count_free(struct buffer_head *map, unsigned int numchars) 1444 { 1445 return numchars * BITS_PER_BYTE - memweight(map->b_data, numchars); 1446 } 1447 1448 #endif /* EXT2FS_DEBUG */ 1449 1450 unsigned long ext2_count_free_blocks (struct super_block * sb) 1451 { 1452 struct ext2_group_desc * desc; 1453 unsigned long desc_count = 0; 1454 int i; 1455 #ifdef EXT2FS_DEBUG 1456 unsigned long bitmap_count, x; 1457 struct ext2_super_block *es; 1458 1459 es = EXT2_SB(sb)->s_es; 1460 desc_count = 0; 1461 bitmap_count = 0; 1462 desc = NULL; 1463 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1464 struct buffer_head *bitmap_bh; 1465 desc = ext2_get_group_desc (sb, i, NULL); 1466 if (!desc) 1467 continue; 1468 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1469 bitmap_bh = read_block_bitmap(sb, i); 1470 if (!bitmap_bh) 1471 continue; 1472 1473 x = ext2_count_free(bitmap_bh, sb->s_blocksize); 1474 printk ("group %d: stored = %d, counted = %lu\n", 1475 i, le16_to_cpu(desc->bg_free_blocks_count), x); 1476 bitmap_count += x; 1477 brelse(bitmap_bh); 1478 } 1479 printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n", 1480 (long)le32_to_cpu(es->s_free_blocks_count), 1481 desc_count, bitmap_count); 1482 return bitmap_count; 1483 #else 1484 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1485 desc = ext2_get_group_desc (sb, i, NULL); 1486 if (!desc) 1487 continue; 1488 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1489 } 1490 return desc_count; 1491 #endif 1492 } 1493 1494 static inline int test_root(int a, int b) 1495 { 1496 int num = b; 1497 1498 while (a > num) 1499 num *= b; 1500 return num == a; 1501 } 1502 1503 static int ext2_group_sparse(int group) 1504 { 1505 if (group <= 1) 1506 return 1; 1507 return (test_root(group, 3) || test_root(group, 5) || 1508 test_root(group, 7)); 1509 } 1510 1511 /** 1512 * ext2_bg_has_super - number of blocks used by the superblock in group 1513 * @sb: superblock for filesystem 1514 * @group: group number to check 1515 * 1516 * Return the number of blocks used by the superblock (primary or backup) 1517 * in this group. Currently this will be only 0 or 1. 1518 */ 1519 int ext2_bg_has_super(struct super_block *sb, int group) 1520 { 1521 if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&& 1522 !ext2_group_sparse(group)) 1523 return 0; 1524 return 1; 1525 } 1526 1527 /** 1528 * ext2_bg_num_gdb - number of blocks used by the group table in group 1529 * @sb: superblock for filesystem 1530 * @group: group number to check 1531 * 1532 * Return the number of blocks used by the group descriptor table 1533 * (primary or backup) in this group. In the future there may be a 1534 * different number of descriptor blocks in each group. 1535 */ 1536 unsigned long ext2_bg_num_gdb(struct super_block *sb, int group) 1537 { 1538 return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0; 1539 } 1540 1541