1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 /* The maximal length of core_pattern is also specified in sysctl.c */ 68 69 static LIST_HEAD(formats); 70 static DEFINE_RWLOCK(binfmt_lock); 71 72 int register_binfmt(struct linux_binfmt * fmt) 73 { 74 if (!fmt) 75 return -EINVAL; 76 write_lock(&binfmt_lock); 77 list_add(&fmt->lh, &formats); 78 write_unlock(&binfmt_lock); 79 return 0; 80 } 81 82 EXPORT_SYMBOL(register_binfmt); 83 84 void unregister_binfmt(struct linux_binfmt * fmt) 85 { 86 write_lock(&binfmt_lock); 87 list_del(&fmt->lh); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(unregister_binfmt); 92 93 static inline void put_binfmt(struct linux_binfmt * fmt) 94 { 95 module_put(fmt->module); 96 } 97 98 /* 99 * Note that a shared library must be both readable and executable due to 100 * security reasons. 101 * 102 * Also note that we take the address to load from from the file itself. 103 */ 104 asmlinkage long sys_uselib(const char __user * library) 105 { 106 struct file * file; 107 struct nameidata nd; 108 int error; 109 110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 111 if (error) 112 goto out; 113 114 error = -EINVAL; 115 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 116 goto exit; 117 118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 119 if (error) 120 goto exit; 121 122 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 123 error = PTR_ERR(file); 124 if (IS_ERR(file)) 125 goto out; 126 127 error = -ENOEXEC; 128 if(file->f_op) { 129 struct linux_binfmt * fmt; 130 131 read_lock(&binfmt_lock); 132 list_for_each_entry(fmt, &formats, lh) { 133 if (!fmt->load_shlib) 134 continue; 135 if (!try_module_get(fmt->module)) 136 continue; 137 read_unlock(&binfmt_lock); 138 error = fmt->load_shlib(file); 139 read_lock(&binfmt_lock); 140 put_binfmt(fmt); 141 if (error != -ENOEXEC) 142 break; 143 } 144 read_unlock(&binfmt_lock); 145 } 146 fput(file); 147 out: 148 return error; 149 exit: 150 release_open_intent(&nd); 151 path_put(&nd.path); 152 goto out; 153 } 154 155 #ifdef CONFIG_MMU 156 157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 158 int write) 159 { 160 struct page *page; 161 int ret; 162 163 #ifdef CONFIG_STACK_GROWSUP 164 if (write) { 165 ret = expand_stack_downwards(bprm->vma, pos); 166 if (ret < 0) 167 return NULL; 168 } 169 #endif 170 ret = get_user_pages(current, bprm->mm, pos, 171 1, write, 1, &page, NULL); 172 if (ret <= 0) 173 return NULL; 174 175 if (write) { 176 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 177 struct rlimit *rlim; 178 179 /* 180 * We've historically supported up to 32 pages (ARG_MAX) 181 * of argument strings even with small stacks 182 */ 183 if (size <= ARG_MAX) 184 return page; 185 186 /* 187 * Limit to 1/4-th the stack size for the argv+env strings. 188 * This ensures that: 189 * - the remaining binfmt code will not run out of stack space, 190 * - the program will have a reasonable amount of stack left 191 * to work from. 192 */ 193 rlim = current->signal->rlim; 194 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 195 put_page(page); 196 return NULL; 197 } 198 } 199 200 return page; 201 } 202 203 static void put_arg_page(struct page *page) 204 { 205 put_page(page); 206 } 207 208 static void free_arg_page(struct linux_binprm *bprm, int i) 209 { 210 } 211 212 static void free_arg_pages(struct linux_binprm *bprm) 213 { 214 } 215 216 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 217 struct page *page) 218 { 219 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 220 } 221 222 static int __bprm_mm_init(struct linux_binprm *bprm) 223 { 224 int err = -ENOMEM; 225 struct vm_area_struct *vma = NULL; 226 struct mm_struct *mm = bprm->mm; 227 228 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 229 if (!vma) 230 goto err; 231 232 down_write(&mm->mmap_sem); 233 vma->vm_mm = mm; 234 235 /* 236 * Place the stack at the largest stack address the architecture 237 * supports. Later, we'll move this to an appropriate place. We don't 238 * use STACK_TOP because that can depend on attributes which aren't 239 * configured yet. 240 */ 241 vma->vm_end = STACK_TOP_MAX; 242 vma->vm_start = vma->vm_end - PAGE_SIZE; 243 244 vma->vm_flags = VM_STACK_FLAGS; 245 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 246 err = insert_vm_struct(mm, vma); 247 if (err) { 248 up_write(&mm->mmap_sem); 249 goto err; 250 } 251 252 mm->stack_vm = mm->total_vm = 1; 253 up_write(&mm->mmap_sem); 254 255 bprm->p = vma->vm_end - sizeof(void *); 256 257 return 0; 258 259 err: 260 if (vma) { 261 bprm->vma = NULL; 262 kmem_cache_free(vm_area_cachep, vma); 263 } 264 265 return err; 266 } 267 268 static bool valid_arg_len(struct linux_binprm *bprm, long len) 269 { 270 return len <= MAX_ARG_STRLEN; 271 } 272 273 #else 274 275 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 276 int write) 277 { 278 struct page *page; 279 280 page = bprm->page[pos / PAGE_SIZE]; 281 if (!page && write) { 282 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 283 if (!page) 284 return NULL; 285 bprm->page[pos / PAGE_SIZE] = page; 286 } 287 288 return page; 289 } 290 291 static void put_arg_page(struct page *page) 292 { 293 } 294 295 static void free_arg_page(struct linux_binprm *bprm, int i) 296 { 297 if (bprm->page[i]) { 298 __free_page(bprm->page[i]); 299 bprm->page[i] = NULL; 300 } 301 } 302 303 static void free_arg_pages(struct linux_binprm *bprm) 304 { 305 int i; 306 307 for (i = 0; i < MAX_ARG_PAGES; i++) 308 free_arg_page(bprm, i); 309 } 310 311 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 312 struct page *page) 313 { 314 } 315 316 static int __bprm_mm_init(struct linux_binprm *bprm) 317 { 318 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 319 return 0; 320 } 321 322 static bool valid_arg_len(struct linux_binprm *bprm, long len) 323 { 324 return len <= bprm->p; 325 } 326 327 #endif /* CONFIG_MMU */ 328 329 /* 330 * Create a new mm_struct and populate it with a temporary stack 331 * vm_area_struct. We don't have enough context at this point to set the stack 332 * flags, permissions, and offset, so we use temporary values. We'll update 333 * them later in setup_arg_pages(). 334 */ 335 int bprm_mm_init(struct linux_binprm *bprm) 336 { 337 int err; 338 struct mm_struct *mm = NULL; 339 340 bprm->mm = mm = mm_alloc(); 341 err = -ENOMEM; 342 if (!mm) 343 goto err; 344 345 err = init_new_context(current, mm); 346 if (err) 347 goto err; 348 349 err = __bprm_mm_init(bprm); 350 if (err) 351 goto err; 352 353 return 0; 354 355 err: 356 if (mm) { 357 bprm->mm = NULL; 358 mmdrop(mm); 359 } 360 361 return err; 362 } 363 364 /* 365 * count() counts the number of strings in array ARGV. 366 */ 367 static int count(char __user * __user * argv, int max) 368 { 369 int i = 0; 370 371 if (argv != NULL) { 372 for (;;) { 373 char __user * p; 374 375 if (get_user(p, argv)) 376 return -EFAULT; 377 if (!p) 378 break; 379 argv++; 380 if(++i > max) 381 return -E2BIG; 382 cond_resched(); 383 } 384 } 385 return i; 386 } 387 388 /* 389 * 'copy_strings()' copies argument/environment strings from the old 390 * processes's memory to the new process's stack. The call to get_user_pages() 391 * ensures the destination page is created and not swapped out. 392 */ 393 static int copy_strings(int argc, char __user * __user * argv, 394 struct linux_binprm *bprm) 395 { 396 struct page *kmapped_page = NULL; 397 char *kaddr = NULL; 398 unsigned long kpos = 0; 399 int ret; 400 401 while (argc-- > 0) { 402 char __user *str; 403 int len; 404 unsigned long pos; 405 406 if (get_user(str, argv+argc) || 407 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 408 ret = -EFAULT; 409 goto out; 410 } 411 412 if (!valid_arg_len(bprm, len)) { 413 ret = -E2BIG; 414 goto out; 415 } 416 417 /* We're going to work our way backwords. */ 418 pos = bprm->p; 419 str += len; 420 bprm->p -= len; 421 422 while (len > 0) { 423 int offset, bytes_to_copy; 424 425 offset = pos % PAGE_SIZE; 426 if (offset == 0) 427 offset = PAGE_SIZE; 428 429 bytes_to_copy = offset; 430 if (bytes_to_copy > len) 431 bytes_to_copy = len; 432 433 offset -= bytes_to_copy; 434 pos -= bytes_to_copy; 435 str -= bytes_to_copy; 436 len -= bytes_to_copy; 437 438 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 439 struct page *page; 440 441 page = get_arg_page(bprm, pos, 1); 442 if (!page) { 443 ret = -E2BIG; 444 goto out; 445 } 446 447 if (kmapped_page) { 448 flush_kernel_dcache_page(kmapped_page); 449 kunmap(kmapped_page); 450 put_arg_page(kmapped_page); 451 } 452 kmapped_page = page; 453 kaddr = kmap(kmapped_page); 454 kpos = pos & PAGE_MASK; 455 flush_arg_page(bprm, kpos, kmapped_page); 456 } 457 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 458 ret = -EFAULT; 459 goto out; 460 } 461 } 462 } 463 ret = 0; 464 out: 465 if (kmapped_page) { 466 flush_kernel_dcache_page(kmapped_page); 467 kunmap(kmapped_page); 468 put_arg_page(kmapped_page); 469 } 470 return ret; 471 } 472 473 /* 474 * Like copy_strings, but get argv and its values from kernel memory. 475 */ 476 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 477 { 478 int r; 479 mm_segment_t oldfs = get_fs(); 480 set_fs(KERNEL_DS); 481 r = copy_strings(argc, (char __user * __user *)argv, bprm); 482 set_fs(oldfs); 483 return r; 484 } 485 EXPORT_SYMBOL(copy_strings_kernel); 486 487 #ifdef CONFIG_MMU 488 489 /* 490 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 491 * the binfmt code determines where the new stack should reside, we shift it to 492 * its final location. The process proceeds as follows: 493 * 494 * 1) Use shift to calculate the new vma endpoints. 495 * 2) Extend vma to cover both the old and new ranges. This ensures the 496 * arguments passed to subsequent functions are consistent. 497 * 3) Move vma's page tables to the new range. 498 * 4) Free up any cleared pgd range. 499 * 5) Shrink the vma to cover only the new range. 500 */ 501 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 502 { 503 struct mm_struct *mm = vma->vm_mm; 504 unsigned long old_start = vma->vm_start; 505 unsigned long old_end = vma->vm_end; 506 unsigned long length = old_end - old_start; 507 unsigned long new_start = old_start - shift; 508 unsigned long new_end = old_end - shift; 509 struct mmu_gather *tlb; 510 511 BUG_ON(new_start > new_end); 512 513 /* 514 * ensure there are no vmas between where we want to go 515 * and where we are 516 */ 517 if (vma != find_vma(mm, new_start)) 518 return -EFAULT; 519 520 /* 521 * cover the whole range: [new_start, old_end) 522 */ 523 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 524 525 /* 526 * move the page tables downwards, on failure we rely on 527 * process cleanup to remove whatever mess we made. 528 */ 529 if (length != move_page_tables(vma, old_start, 530 vma, new_start, length)) 531 return -ENOMEM; 532 533 lru_add_drain(); 534 tlb = tlb_gather_mmu(mm, 0); 535 if (new_end > old_start) { 536 /* 537 * when the old and new regions overlap clear from new_end. 538 */ 539 free_pgd_range(&tlb, new_end, old_end, new_end, 540 vma->vm_next ? vma->vm_next->vm_start : 0); 541 } else { 542 /* 543 * otherwise, clean from old_start; this is done to not touch 544 * the address space in [new_end, old_start) some architectures 545 * have constraints on va-space that make this illegal (IA64) - 546 * for the others its just a little faster. 547 */ 548 free_pgd_range(&tlb, old_start, old_end, new_end, 549 vma->vm_next ? vma->vm_next->vm_start : 0); 550 } 551 tlb_finish_mmu(tlb, new_end, old_end); 552 553 /* 554 * shrink the vma to just the new range. 555 */ 556 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 557 558 return 0; 559 } 560 561 #define EXTRA_STACK_VM_PAGES 20 /* random */ 562 563 /* 564 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 565 * the stack is optionally relocated, and some extra space is added. 566 */ 567 int setup_arg_pages(struct linux_binprm *bprm, 568 unsigned long stack_top, 569 int executable_stack) 570 { 571 unsigned long ret; 572 unsigned long stack_shift; 573 struct mm_struct *mm = current->mm; 574 struct vm_area_struct *vma = bprm->vma; 575 struct vm_area_struct *prev = NULL; 576 unsigned long vm_flags; 577 unsigned long stack_base; 578 579 #ifdef CONFIG_STACK_GROWSUP 580 /* Limit stack size to 1GB */ 581 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 582 if (stack_base > (1 << 30)) 583 stack_base = 1 << 30; 584 585 /* Make sure we didn't let the argument array grow too large. */ 586 if (vma->vm_end - vma->vm_start > stack_base) 587 return -ENOMEM; 588 589 stack_base = PAGE_ALIGN(stack_top - stack_base); 590 591 stack_shift = vma->vm_start - stack_base; 592 mm->arg_start = bprm->p - stack_shift; 593 bprm->p = vma->vm_end - stack_shift; 594 #else 595 stack_top = arch_align_stack(stack_top); 596 stack_top = PAGE_ALIGN(stack_top); 597 stack_shift = vma->vm_end - stack_top; 598 599 bprm->p -= stack_shift; 600 mm->arg_start = bprm->p; 601 #endif 602 603 if (bprm->loader) 604 bprm->loader -= stack_shift; 605 bprm->exec -= stack_shift; 606 607 down_write(&mm->mmap_sem); 608 vm_flags = vma->vm_flags; 609 610 /* 611 * Adjust stack execute permissions; explicitly enable for 612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 613 * (arch default) otherwise. 614 */ 615 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 616 vm_flags |= VM_EXEC; 617 else if (executable_stack == EXSTACK_DISABLE_X) 618 vm_flags &= ~VM_EXEC; 619 vm_flags |= mm->def_flags; 620 621 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 622 vm_flags); 623 if (ret) 624 goto out_unlock; 625 BUG_ON(prev != vma); 626 627 /* Move stack pages down in memory. */ 628 if (stack_shift) { 629 ret = shift_arg_pages(vma, stack_shift); 630 if (ret) { 631 up_write(&mm->mmap_sem); 632 return ret; 633 } 634 } 635 636 #ifdef CONFIG_STACK_GROWSUP 637 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 638 #else 639 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 640 #endif 641 ret = expand_stack(vma, stack_base); 642 if (ret) 643 ret = -EFAULT; 644 645 out_unlock: 646 up_write(&mm->mmap_sem); 647 return 0; 648 } 649 EXPORT_SYMBOL(setup_arg_pages); 650 651 #endif /* CONFIG_MMU */ 652 653 struct file *open_exec(const char *name) 654 { 655 struct nameidata nd; 656 int err; 657 struct file *file; 658 659 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 660 file = ERR_PTR(err); 661 662 if (!err) { 663 struct inode *inode = nd.path.dentry->d_inode; 664 file = ERR_PTR(-EACCES); 665 if (S_ISREG(inode->i_mode)) { 666 int err = vfs_permission(&nd, MAY_EXEC); 667 file = ERR_PTR(err); 668 if (!err) { 669 file = nameidata_to_filp(&nd, 670 O_RDONLY|O_LARGEFILE); 671 if (!IS_ERR(file)) { 672 err = deny_write_access(file); 673 if (err) { 674 fput(file); 675 file = ERR_PTR(err); 676 } 677 } 678 out: 679 return file; 680 } 681 } 682 release_open_intent(&nd); 683 path_put(&nd.path); 684 } 685 goto out; 686 } 687 688 EXPORT_SYMBOL(open_exec); 689 690 int kernel_read(struct file *file, unsigned long offset, 691 char *addr, unsigned long count) 692 { 693 mm_segment_t old_fs; 694 loff_t pos = offset; 695 int result; 696 697 old_fs = get_fs(); 698 set_fs(get_ds()); 699 /* The cast to a user pointer is valid due to the set_fs() */ 700 result = vfs_read(file, (void __user *)addr, count, &pos); 701 set_fs(old_fs); 702 return result; 703 } 704 705 EXPORT_SYMBOL(kernel_read); 706 707 static int exec_mmap(struct mm_struct *mm) 708 { 709 struct task_struct *tsk; 710 struct mm_struct * old_mm, *active_mm; 711 712 /* Notify parent that we're no longer interested in the old VM */ 713 tsk = current; 714 old_mm = current->mm; 715 mm_release(tsk, old_mm); 716 717 if (old_mm) { 718 /* 719 * Make sure that if there is a core dump in progress 720 * for the old mm, we get out and die instead of going 721 * through with the exec. We must hold mmap_sem around 722 * checking core_waiters and changing tsk->mm. The 723 * core-inducing thread will increment core_waiters for 724 * each thread whose ->mm == old_mm. 725 */ 726 down_read(&old_mm->mmap_sem); 727 if (unlikely(old_mm->core_waiters)) { 728 up_read(&old_mm->mmap_sem); 729 return -EINTR; 730 } 731 } 732 task_lock(tsk); 733 active_mm = tsk->active_mm; 734 tsk->mm = mm; 735 tsk->active_mm = mm; 736 activate_mm(active_mm, mm); 737 task_unlock(tsk); 738 mm_update_next_owner(mm); 739 arch_pick_mmap_layout(mm); 740 if (old_mm) { 741 up_read(&old_mm->mmap_sem); 742 BUG_ON(active_mm != old_mm); 743 mmput(old_mm); 744 return 0; 745 } 746 mmdrop(active_mm); 747 return 0; 748 } 749 750 /* 751 * This function makes sure the current process has its own signal table, 752 * so that flush_signal_handlers can later reset the handlers without 753 * disturbing other processes. (Other processes might share the signal 754 * table via the CLONE_SIGHAND option to clone().) 755 */ 756 static int de_thread(struct task_struct *tsk) 757 { 758 struct signal_struct *sig = tsk->signal; 759 struct sighand_struct *oldsighand = tsk->sighand; 760 spinlock_t *lock = &oldsighand->siglock; 761 struct task_struct *leader = NULL; 762 int count; 763 764 if (thread_group_empty(tsk)) 765 goto no_thread_group; 766 767 /* 768 * Kill all other threads in the thread group. 769 */ 770 spin_lock_irq(lock); 771 if (signal_group_exit(sig)) { 772 /* 773 * Another group action in progress, just 774 * return so that the signal is processed. 775 */ 776 spin_unlock_irq(lock); 777 return -EAGAIN; 778 } 779 sig->group_exit_task = tsk; 780 zap_other_threads(tsk); 781 782 /* Account for the thread group leader hanging around: */ 783 count = thread_group_leader(tsk) ? 1 : 2; 784 sig->notify_count = count; 785 while (atomic_read(&sig->count) > count) { 786 __set_current_state(TASK_UNINTERRUPTIBLE); 787 spin_unlock_irq(lock); 788 schedule(); 789 spin_lock_irq(lock); 790 } 791 spin_unlock_irq(lock); 792 793 /* 794 * At this point all other threads have exited, all we have to 795 * do is to wait for the thread group leader to become inactive, 796 * and to assume its PID: 797 */ 798 if (!thread_group_leader(tsk)) { 799 leader = tsk->group_leader; 800 801 sig->notify_count = -1; /* for exit_notify() */ 802 for (;;) { 803 write_lock_irq(&tasklist_lock); 804 if (likely(leader->exit_state)) 805 break; 806 __set_current_state(TASK_UNINTERRUPTIBLE); 807 write_unlock_irq(&tasklist_lock); 808 schedule(); 809 } 810 811 if (unlikely(task_child_reaper(tsk) == leader)) 812 task_active_pid_ns(tsk)->child_reaper = tsk; 813 /* 814 * The only record we have of the real-time age of a 815 * process, regardless of execs it's done, is start_time. 816 * All the past CPU time is accumulated in signal_struct 817 * from sister threads now dead. But in this non-leader 818 * exec, nothing survives from the original leader thread, 819 * whose birth marks the true age of this process now. 820 * When we take on its identity by switching to its PID, we 821 * also take its birthdate (always earlier than our own). 822 */ 823 tsk->start_time = leader->start_time; 824 825 BUG_ON(!same_thread_group(leader, tsk)); 826 BUG_ON(has_group_leader_pid(tsk)); 827 /* 828 * An exec() starts a new thread group with the 829 * TGID of the previous thread group. Rehash the 830 * two threads with a switched PID, and release 831 * the former thread group leader: 832 */ 833 834 /* Become a process group leader with the old leader's pid. 835 * The old leader becomes a thread of the this thread group. 836 * Note: The old leader also uses this pid until release_task 837 * is called. Odd but simple and correct. 838 */ 839 detach_pid(tsk, PIDTYPE_PID); 840 tsk->pid = leader->pid; 841 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 842 transfer_pid(leader, tsk, PIDTYPE_PGID); 843 transfer_pid(leader, tsk, PIDTYPE_SID); 844 list_replace_rcu(&leader->tasks, &tsk->tasks); 845 846 tsk->group_leader = tsk; 847 leader->group_leader = tsk; 848 849 tsk->exit_signal = SIGCHLD; 850 851 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 852 leader->exit_state = EXIT_DEAD; 853 854 write_unlock_irq(&tasklist_lock); 855 } 856 857 sig->group_exit_task = NULL; 858 sig->notify_count = 0; 859 860 no_thread_group: 861 exit_itimers(sig); 862 if (leader) 863 release_task(leader); 864 865 if (atomic_read(&oldsighand->count) != 1) { 866 struct sighand_struct *newsighand; 867 /* 868 * This ->sighand is shared with the CLONE_SIGHAND 869 * but not CLONE_THREAD task, switch to the new one. 870 */ 871 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 872 if (!newsighand) 873 return -ENOMEM; 874 875 atomic_set(&newsighand->count, 1); 876 memcpy(newsighand->action, oldsighand->action, 877 sizeof(newsighand->action)); 878 879 write_lock_irq(&tasklist_lock); 880 spin_lock(&oldsighand->siglock); 881 rcu_assign_pointer(tsk->sighand, newsighand); 882 spin_unlock(&oldsighand->siglock); 883 write_unlock_irq(&tasklist_lock); 884 885 __cleanup_sighand(oldsighand); 886 } 887 888 BUG_ON(!thread_group_leader(tsk)); 889 return 0; 890 } 891 892 /* 893 * These functions flushes out all traces of the currently running executable 894 * so that a new one can be started 895 */ 896 static void flush_old_files(struct files_struct * files) 897 { 898 long j = -1; 899 struct fdtable *fdt; 900 901 spin_lock(&files->file_lock); 902 for (;;) { 903 unsigned long set, i; 904 905 j++; 906 i = j * __NFDBITS; 907 fdt = files_fdtable(files); 908 if (i >= fdt->max_fds) 909 break; 910 set = fdt->close_on_exec->fds_bits[j]; 911 if (!set) 912 continue; 913 fdt->close_on_exec->fds_bits[j] = 0; 914 spin_unlock(&files->file_lock); 915 for ( ; set ; i++,set >>= 1) { 916 if (set & 1) { 917 sys_close(i); 918 } 919 } 920 spin_lock(&files->file_lock); 921 922 } 923 spin_unlock(&files->file_lock); 924 } 925 926 char *get_task_comm(char *buf, struct task_struct *tsk) 927 { 928 /* buf must be at least sizeof(tsk->comm) in size */ 929 task_lock(tsk); 930 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 931 task_unlock(tsk); 932 return buf; 933 } 934 935 void set_task_comm(struct task_struct *tsk, char *buf) 936 { 937 task_lock(tsk); 938 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 939 task_unlock(tsk); 940 } 941 942 int flush_old_exec(struct linux_binprm * bprm) 943 { 944 char * name; 945 int i, ch, retval; 946 char tcomm[sizeof(current->comm)]; 947 948 /* 949 * Make sure we have a private signal table and that 950 * we are unassociated from the previous thread group. 951 */ 952 retval = de_thread(current); 953 if (retval) 954 goto out; 955 956 set_mm_exe_file(bprm->mm, bprm->file); 957 958 /* 959 * Release all of the old mmap stuff 960 */ 961 retval = exec_mmap(bprm->mm); 962 if (retval) 963 goto out; 964 965 bprm->mm = NULL; /* We're using it now */ 966 967 /* This is the point of no return */ 968 current->sas_ss_sp = current->sas_ss_size = 0; 969 970 if (current->euid == current->uid && current->egid == current->gid) 971 set_dumpable(current->mm, 1); 972 else 973 set_dumpable(current->mm, suid_dumpable); 974 975 name = bprm->filename; 976 977 /* Copies the binary name from after last slash */ 978 for (i=0; (ch = *(name++)) != '\0';) { 979 if (ch == '/') 980 i = 0; /* overwrite what we wrote */ 981 else 982 if (i < (sizeof(tcomm) - 1)) 983 tcomm[i++] = ch; 984 } 985 tcomm[i] = '\0'; 986 set_task_comm(current, tcomm); 987 988 current->flags &= ~PF_RANDOMIZE; 989 flush_thread(); 990 991 /* Set the new mm task size. We have to do that late because it may 992 * depend on TIF_32BIT which is only updated in flush_thread() on 993 * some architectures like powerpc 994 */ 995 current->mm->task_size = TASK_SIZE; 996 997 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 998 suid_keys(current); 999 set_dumpable(current->mm, suid_dumpable); 1000 current->pdeath_signal = 0; 1001 } else if (file_permission(bprm->file, MAY_READ) || 1002 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1003 suid_keys(current); 1004 set_dumpable(current->mm, suid_dumpable); 1005 } 1006 1007 /* An exec changes our domain. We are no longer part of the thread 1008 group */ 1009 1010 current->self_exec_id++; 1011 1012 flush_signal_handlers(current, 0); 1013 flush_old_files(current->files); 1014 1015 return 0; 1016 1017 out: 1018 return retval; 1019 } 1020 1021 EXPORT_SYMBOL(flush_old_exec); 1022 1023 /* 1024 * Fill the binprm structure from the inode. 1025 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1026 */ 1027 int prepare_binprm(struct linux_binprm *bprm) 1028 { 1029 int mode; 1030 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1031 int retval; 1032 1033 mode = inode->i_mode; 1034 if (bprm->file->f_op == NULL) 1035 return -EACCES; 1036 1037 bprm->e_uid = current->euid; 1038 bprm->e_gid = current->egid; 1039 1040 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1041 /* Set-uid? */ 1042 if (mode & S_ISUID) { 1043 current->personality &= ~PER_CLEAR_ON_SETID; 1044 bprm->e_uid = inode->i_uid; 1045 } 1046 1047 /* Set-gid? */ 1048 /* 1049 * If setgid is set but no group execute bit then this 1050 * is a candidate for mandatory locking, not a setgid 1051 * executable. 1052 */ 1053 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1054 current->personality &= ~PER_CLEAR_ON_SETID; 1055 bprm->e_gid = inode->i_gid; 1056 } 1057 } 1058 1059 /* fill in binprm security blob */ 1060 retval = security_bprm_set(bprm); 1061 if (retval) 1062 return retval; 1063 1064 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1065 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1066 } 1067 1068 EXPORT_SYMBOL(prepare_binprm); 1069 1070 static int unsafe_exec(struct task_struct *p) 1071 { 1072 int unsafe = 0; 1073 if (p->ptrace & PT_PTRACED) { 1074 if (p->ptrace & PT_PTRACE_CAP) 1075 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1076 else 1077 unsafe |= LSM_UNSAFE_PTRACE; 1078 } 1079 if (atomic_read(&p->fs->count) > 1 || 1080 atomic_read(&p->files->count) > 1 || 1081 atomic_read(&p->sighand->count) > 1) 1082 unsafe |= LSM_UNSAFE_SHARE; 1083 1084 return unsafe; 1085 } 1086 1087 void compute_creds(struct linux_binprm *bprm) 1088 { 1089 int unsafe; 1090 1091 if (bprm->e_uid != current->uid) { 1092 suid_keys(current); 1093 current->pdeath_signal = 0; 1094 } 1095 exec_keys(current); 1096 1097 task_lock(current); 1098 unsafe = unsafe_exec(current); 1099 security_bprm_apply_creds(bprm, unsafe); 1100 task_unlock(current); 1101 security_bprm_post_apply_creds(bprm); 1102 } 1103 EXPORT_SYMBOL(compute_creds); 1104 1105 /* 1106 * Arguments are '\0' separated strings found at the location bprm->p 1107 * points to; chop off the first by relocating brpm->p to right after 1108 * the first '\0' encountered. 1109 */ 1110 int remove_arg_zero(struct linux_binprm *bprm) 1111 { 1112 int ret = 0; 1113 unsigned long offset; 1114 char *kaddr; 1115 struct page *page; 1116 1117 if (!bprm->argc) 1118 return 0; 1119 1120 do { 1121 offset = bprm->p & ~PAGE_MASK; 1122 page = get_arg_page(bprm, bprm->p, 0); 1123 if (!page) { 1124 ret = -EFAULT; 1125 goto out; 1126 } 1127 kaddr = kmap_atomic(page, KM_USER0); 1128 1129 for (; offset < PAGE_SIZE && kaddr[offset]; 1130 offset++, bprm->p++) 1131 ; 1132 1133 kunmap_atomic(kaddr, KM_USER0); 1134 put_arg_page(page); 1135 1136 if (offset == PAGE_SIZE) 1137 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1138 } while (offset == PAGE_SIZE); 1139 1140 bprm->p++; 1141 bprm->argc--; 1142 ret = 0; 1143 1144 out: 1145 return ret; 1146 } 1147 EXPORT_SYMBOL(remove_arg_zero); 1148 1149 /* 1150 * cycle the list of binary formats handler, until one recognizes the image 1151 */ 1152 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1153 { 1154 int try,retval; 1155 struct linux_binfmt *fmt; 1156 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT) 1157 /* handle /sbin/loader.. */ 1158 { 1159 struct exec * eh = (struct exec *) bprm->buf; 1160 1161 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1162 (eh->fh.f_flags & 0x3000) == 0x3000) 1163 { 1164 struct file * file; 1165 unsigned long loader; 1166 1167 allow_write_access(bprm->file); 1168 fput(bprm->file); 1169 bprm->file = NULL; 1170 1171 loader = bprm->vma->vm_end - sizeof(void *); 1172 1173 file = open_exec("/sbin/loader"); 1174 retval = PTR_ERR(file); 1175 if (IS_ERR(file)) 1176 return retval; 1177 1178 /* Remember if the application is TASO. */ 1179 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1180 1181 bprm->file = file; 1182 bprm->loader = loader; 1183 retval = prepare_binprm(bprm); 1184 if (retval<0) 1185 return retval; 1186 /* should call search_binary_handler recursively here, 1187 but it does not matter */ 1188 } 1189 } 1190 #endif 1191 retval = security_bprm_check(bprm); 1192 if (retval) 1193 return retval; 1194 1195 /* kernel module loader fixup */ 1196 /* so we don't try to load run modprobe in kernel space. */ 1197 set_fs(USER_DS); 1198 1199 retval = audit_bprm(bprm); 1200 if (retval) 1201 return retval; 1202 1203 retval = -ENOENT; 1204 for (try=0; try<2; try++) { 1205 read_lock(&binfmt_lock); 1206 list_for_each_entry(fmt, &formats, lh) { 1207 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1208 if (!fn) 1209 continue; 1210 if (!try_module_get(fmt->module)) 1211 continue; 1212 read_unlock(&binfmt_lock); 1213 retval = fn(bprm, regs); 1214 if (retval >= 0) { 1215 put_binfmt(fmt); 1216 allow_write_access(bprm->file); 1217 if (bprm->file) 1218 fput(bprm->file); 1219 bprm->file = NULL; 1220 current->did_exec = 1; 1221 proc_exec_connector(current); 1222 return retval; 1223 } 1224 read_lock(&binfmt_lock); 1225 put_binfmt(fmt); 1226 if (retval != -ENOEXEC || bprm->mm == NULL) 1227 break; 1228 if (!bprm->file) { 1229 read_unlock(&binfmt_lock); 1230 return retval; 1231 } 1232 } 1233 read_unlock(&binfmt_lock); 1234 if (retval != -ENOEXEC || bprm->mm == NULL) { 1235 break; 1236 #ifdef CONFIG_KMOD 1237 }else{ 1238 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1239 if (printable(bprm->buf[0]) && 1240 printable(bprm->buf[1]) && 1241 printable(bprm->buf[2]) && 1242 printable(bprm->buf[3])) 1243 break; /* -ENOEXEC */ 1244 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1245 #endif 1246 } 1247 } 1248 return retval; 1249 } 1250 1251 EXPORT_SYMBOL(search_binary_handler); 1252 1253 /* 1254 * sys_execve() executes a new program. 1255 */ 1256 int do_execve(char * filename, 1257 char __user *__user *argv, 1258 char __user *__user *envp, 1259 struct pt_regs * regs) 1260 { 1261 struct linux_binprm *bprm; 1262 struct file *file; 1263 struct files_struct *displaced; 1264 int retval; 1265 1266 retval = unshare_files(&displaced); 1267 if (retval) 1268 goto out_ret; 1269 1270 retval = -ENOMEM; 1271 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1272 if (!bprm) 1273 goto out_files; 1274 1275 file = open_exec(filename); 1276 retval = PTR_ERR(file); 1277 if (IS_ERR(file)) 1278 goto out_kfree; 1279 1280 sched_exec(); 1281 1282 bprm->file = file; 1283 bprm->filename = filename; 1284 bprm->interp = filename; 1285 1286 retval = bprm_mm_init(bprm); 1287 if (retval) 1288 goto out_file; 1289 1290 bprm->argc = count(argv, MAX_ARG_STRINGS); 1291 if ((retval = bprm->argc) < 0) 1292 goto out_mm; 1293 1294 bprm->envc = count(envp, MAX_ARG_STRINGS); 1295 if ((retval = bprm->envc) < 0) 1296 goto out_mm; 1297 1298 retval = security_bprm_alloc(bprm); 1299 if (retval) 1300 goto out; 1301 1302 retval = prepare_binprm(bprm); 1303 if (retval < 0) 1304 goto out; 1305 1306 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1307 if (retval < 0) 1308 goto out; 1309 1310 bprm->exec = bprm->p; 1311 retval = copy_strings(bprm->envc, envp, bprm); 1312 if (retval < 0) 1313 goto out; 1314 1315 retval = copy_strings(bprm->argc, argv, bprm); 1316 if (retval < 0) 1317 goto out; 1318 1319 retval = search_binary_handler(bprm,regs); 1320 if (retval >= 0) { 1321 /* execve success */ 1322 free_arg_pages(bprm); 1323 security_bprm_free(bprm); 1324 acct_update_integrals(current); 1325 kfree(bprm); 1326 if (displaced) 1327 put_files_struct(displaced); 1328 return retval; 1329 } 1330 1331 out: 1332 free_arg_pages(bprm); 1333 if (bprm->security) 1334 security_bprm_free(bprm); 1335 1336 out_mm: 1337 if (bprm->mm) 1338 mmput (bprm->mm); 1339 1340 out_file: 1341 if (bprm->file) { 1342 allow_write_access(bprm->file); 1343 fput(bprm->file); 1344 } 1345 out_kfree: 1346 kfree(bprm); 1347 1348 out_files: 1349 if (displaced) 1350 reset_files_struct(displaced); 1351 out_ret: 1352 return retval; 1353 } 1354 1355 int set_binfmt(struct linux_binfmt *new) 1356 { 1357 struct linux_binfmt *old = current->binfmt; 1358 1359 if (new) { 1360 if (!try_module_get(new->module)) 1361 return -1; 1362 } 1363 current->binfmt = new; 1364 if (old) 1365 module_put(old->module); 1366 return 0; 1367 } 1368 1369 EXPORT_SYMBOL(set_binfmt); 1370 1371 /* format_corename will inspect the pattern parameter, and output a 1372 * name into corename, which must have space for at least 1373 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1374 */ 1375 static int format_corename(char *corename, const char *pattern, long signr) 1376 { 1377 const char *pat_ptr = pattern; 1378 char *out_ptr = corename; 1379 char *const out_end = corename + CORENAME_MAX_SIZE; 1380 int rc; 1381 int pid_in_pattern = 0; 1382 int ispipe = 0; 1383 1384 if (*pattern == '|') 1385 ispipe = 1; 1386 1387 /* Repeat as long as we have more pattern to process and more output 1388 space */ 1389 while (*pat_ptr) { 1390 if (*pat_ptr != '%') { 1391 if (out_ptr == out_end) 1392 goto out; 1393 *out_ptr++ = *pat_ptr++; 1394 } else { 1395 switch (*++pat_ptr) { 1396 case 0: 1397 goto out; 1398 /* Double percent, output one percent */ 1399 case '%': 1400 if (out_ptr == out_end) 1401 goto out; 1402 *out_ptr++ = '%'; 1403 break; 1404 /* pid */ 1405 case 'p': 1406 pid_in_pattern = 1; 1407 rc = snprintf(out_ptr, out_end - out_ptr, 1408 "%d", task_tgid_vnr(current)); 1409 if (rc > out_end - out_ptr) 1410 goto out; 1411 out_ptr += rc; 1412 break; 1413 /* uid */ 1414 case 'u': 1415 rc = snprintf(out_ptr, out_end - out_ptr, 1416 "%d", current->uid); 1417 if (rc > out_end - out_ptr) 1418 goto out; 1419 out_ptr += rc; 1420 break; 1421 /* gid */ 1422 case 'g': 1423 rc = snprintf(out_ptr, out_end - out_ptr, 1424 "%d", current->gid); 1425 if (rc > out_end - out_ptr) 1426 goto out; 1427 out_ptr += rc; 1428 break; 1429 /* signal that caused the coredump */ 1430 case 's': 1431 rc = snprintf(out_ptr, out_end - out_ptr, 1432 "%ld", signr); 1433 if (rc > out_end - out_ptr) 1434 goto out; 1435 out_ptr += rc; 1436 break; 1437 /* UNIX time of coredump */ 1438 case 't': { 1439 struct timeval tv; 1440 do_gettimeofday(&tv); 1441 rc = snprintf(out_ptr, out_end - out_ptr, 1442 "%lu", tv.tv_sec); 1443 if (rc > out_end - out_ptr) 1444 goto out; 1445 out_ptr += rc; 1446 break; 1447 } 1448 /* hostname */ 1449 case 'h': 1450 down_read(&uts_sem); 1451 rc = snprintf(out_ptr, out_end - out_ptr, 1452 "%s", utsname()->nodename); 1453 up_read(&uts_sem); 1454 if (rc > out_end - out_ptr) 1455 goto out; 1456 out_ptr += rc; 1457 break; 1458 /* executable */ 1459 case 'e': 1460 rc = snprintf(out_ptr, out_end - out_ptr, 1461 "%s", current->comm); 1462 if (rc > out_end - out_ptr) 1463 goto out; 1464 out_ptr += rc; 1465 break; 1466 /* core limit size */ 1467 case 'c': 1468 rc = snprintf(out_ptr, out_end - out_ptr, 1469 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1470 if (rc > out_end - out_ptr) 1471 goto out; 1472 out_ptr += rc; 1473 break; 1474 default: 1475 break; 1476 } 1477 ++pat_ptr; 1478 } 1479 } 1480 /* Backward compatibility with core_uses_pid: 1481 * 1482 * If core_pattern does not include a %p (as is the default) 1483 * and core_uses_pid is set, then .%pid will be appended to 1484 * the filename. Do not do this for piped commands. */ 1485 if (!ispipe && !pid_in_pattern 1486 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1487 rc = snprintf(out_ptr, out_end - out_ptr, 1488 ".%d", task_tgid_vnr(current)); 1489 if (rc > out_end - out_ptr) 1490 goto out; 1491 out_ptr += rc; 1492 } 1493 out: 1494 *out_ptr = 0; 1495 return ispipe; 1496 } 1497 1498 static void zap_process(struct task_struct *start) 1499 { 1500 struct task_struct *t; 1501 1502 start->signal->flags = SIGNAL_GROUP_EXIT; 1503 start->signal->group_stop_count = 0; 1504 1505 t = start; 1506 do { 1507 if (t != current && t->mm) { 1508 t->mm->core_waiters++; 1509 sigaddset(&t->pending.signal, SIGKILL); 1510 signal_wake_up(t, 1); 1511 } 1512 } while ((t = next_thread(t)) != start); 1513 } 1514 1515 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1516 int exit_code) 1517 { 1518 struct task_struct *g, *p; 1519 unsigned long flags; 1520 int err = -EAGAIN; 1521 1522 spin_lock_irq(&tsk->sighand->siglock); 1523 if (!signal_group_exit(tsk->signal)) { 1524 tsk->signal->group_exit_code = exit_code; 1525 zap_process(tsk); 1526 err = 0; 1527 } 1528 spin_unlock_irq(&tsk->sighand->siglock); 1529 if (err) 1530 return err; 1531 1532 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1533 goto done; 1534 1535 rcu_read_lock(); 1536 for_each_process(g) { 1537 if (g == tsk->group_leader) 1538 continue; 1539 1540 p = g; 1541 do { 1542 if (p->mm) { 1543 if (p->mm == mm) { 1544 /* 1545 * p->sighand can't disappear, but 1546 * may be changed by de_thread() 1547 */ 1548 lock_task_sighand(p, &flags); 1549 zap_process(p); 1550 unlock_task_sighand(p, &flags); 1551 } 1552 break; 1553 } 1554 } while ((p = next_thread(p)) != g); 1555 } 1556 rcu_read_unlock(); 1557 done: 1558 return mm->core_waiters; 1559 } 1560 1561 static int coredump_wait(int exit_code) 1562 { 1563 struct task_struct *tsk = current; 1564 struct mm_struct *mm = tsk->mm; 1565 struct completion startup_done; 1566 struct completion *vfork_done; 1567 int core_waiters; 1568 1569 init_completion(&mm->core_done); 1570 init_completion(&startup_done); 1571 mm->core_startup_done = &startup_done; 1572 1573 core_waiters = zap_threads(tsk, mm, exit_code); 1574 up_write(&mm->mmap_sem); 1575 1576 if (unlikely(core_waiters < 0)) 1577 goto fail; 1578 1579 /* 1580 * Make sure nobody is waiting for us to release the VM, 1581 * otherwise we can deadlock when we wait on each other 1582 */ 1583 vfork_done = tsk->vfork_done; 1584 if (vfork_done) { 1585 tsk->vfork_done = NULL; 1586 complete(vfork_done); 1587 } 1588 1589 if (core_waiters) 1590 wait_for_completion(&startup_done); 1591 fail: 1592 BUG_ON(mm->core_waiters); 1593 return core_waiters; 1594 } 1595 1596 /* 1597 * set_dumpable converts traditional three-value dumpable to two flags and 1598 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1599 * these bits are not changed atomically. So get_dumpable can observe the 1600 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1601 * return either old dumpable or new one by paying attention to the order of 1602 * modifying the bits. 1603 * 1604 * dumpable | mm->flags (binary) 1605 * old new | initial interim final 1606 * ---------+----------------------- 1607 * 0 1 | 00 01 01 1608 * 0 2 | 00 10(*) 11 1609 * 1 0 | 01 00 00 1610 * 1 2 | 01 11 11 1611 * 2 0 | 11 10(*) 00 1612 * 2 1 | 11 11 01 1613 * 1614 * (*) get_dumpable regards interim value of 10 as 11. 1615 */ 1616 void set_dumpable(struct mm_struct *mm, int value) 1617 { 1618 switch (value) { 1619 case 0: 1620 clear_bit(MMF_DUMPABLE, &mm->flags); 1621 smp_wmb(); 1622 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1623 break; 1624 case 1: 1625 set_bit(MMF_DUMPABLE, &mm->flags); 1626 smp_wmb(); 1627 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1628 break; 1629 case 2: 1630 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1631 smp_wmb(); 1632 set_bit(MMF_DUMPABLE, &mm->flags); 1633 break; 1634 } 1635 } 1636 1637 int get_dumpable(struct mm_struct *mm) 1638 { 1639 int ret; 1640 1641 ret = mm->flags & 0x3; 1642 return (ret >= 2) ? 2 : ret; 1643 } 1644 1645 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1646 { 1647 char corename[CORENAME_MAX_SIZE + 1]; 1648 struct mm_struct *mm = current->mm; 1649 struct linux_binfmt * binfmt; 1650 struct inode * inode; 1651 struct file * file; 1652 int retval = 0; 1653 int fsuid = current->fsuid; 1654 int flag = 0; 1655 int ispipe = 0; 1656 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1657 char **helper_argv = NULL; 1658 int helper_argc = 0; 1659 char *delimit; 1660 1661 audit_core_dumps(signr); 1662 1663 binfmt = current->binfmt; 1664 if (!binfmt || !binfmt->core_dump) 1665 goto fail; 1666 down_write(&mm->mmap_sem); 1667 /* 1668 * If another thread got here first, or we are not dumpable, bail out. 1669 */ 1670 if (mm->core_waiters || !get_dumpable(mm)) { 1671 up_write(&mm->mmap_sem); 1672 goto fail; 1673 } 1674 1675 /* 1676 * We cannot trust fsuid as being the "true" uid of the 1677 * process nor do we know its entire history. We only know it 1678 * was tainted so we dump it as root in mode 2. 1679 */ 1680 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1681 flag = O_EXCL; /* Stop rewrite attacks */ 1682 current->fsuid = 0; /* Dump root private */ 1683 } 1684 1685 retval = coredump_wait(exit_code); 1686 if (retval < 0) 1687 goto fail; 1688 1689 /* 1690 * Clear any false indication of pending signals that might 1691 * be seen by the filesystem code called to write the core file. 1692 */ 1693 clear_thread_flag(TIF_SIGPENDING); 1694 1695 /* 1696 * lock_kernel() because format_corename() is controlled by sysctl, which 1697 * uses lock_kernel() 1698 */ 1699 lock_kernel(); 1700 ispipe = format_corename(corename, core_pattern, signr); 1701 unlock_kernel(); 1702 /* 1703 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1704 * to a pipe. Since we're not writing directly to the filesystem 1705 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1706 * created unless the pipe reader choses to write out the core file 1707 * at which point file size limits and permissions will be imposed 1708 * as it does with any other process 1709 */ 1710 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1711 goto fail_unlock; 1712 1713 if (ispipe) { 1714 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1715 /* Terminate the string before the first option */ 1716 delimit = strchr(corename, ' '); 1717 if (delimit) 1718 *delimit = '\0'; 1719 delimit = strrchr(helper_argv[0], '/'); 1720 if (delimit) 1721 delimit++; 1722 else 1723 delimit = helper_argv[0]; 1724 if (!strcmp(delimit, current->comm)) { 1725 printk(KERN_NOTICE "Recursive core dump detected, " 1726 "aborting\n"); 1727 goto fail_unlock; 1728 } 1729 1730 core_limit = RLIM_INFINITY; 1731 1732 /* SIGPIPE can happen, but it's just never processed */ 1733 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1734 &file)) { 1735 printk(KERN_INFO "Core dump to %s pipe failed\n", 1736 corename); 1737 goto fail_unlock; 1738 } 1739 } else 1740 file = filp_open(corename, 1741 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1742 0600); 1743 if (IS_ERR(file)) 1744 goto fail_unlock; 1745 inode = file->f_path.dentry->d_inode; 1746 if (inode->i_nlink > 1) 1747 goto close_fail; /* multiple links - don't dump */ 1748 if (!ispipe && d_unhashed(file->f_path.dentry)) 1749 goto close_fail; 1750 1751 /* AK: actually i see no reason to not allow this for named pipes etc., 1752 but keep the previous behaviour for now. */ 1753 if (!ispipe && !S_ISREG(inode->i_mode)) 1754 goto close_fail; 1755 /* 1756 * Dont allow local users get cute and trick others to coredump 1757 * into their pre-created files: 1758 */ 1759 if (inode->i_uid != current->fsuid) 1760 goto close_fail; 1761 if (!file->f_op) 1762 goto close_fail; 1763 if (!file->f_op->write) 1764 goto close_fail; 1765 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1766 goto close_fail; 1767 1768 retval = binfmt->core_dump(signr, regs, file, core_limit); 1769 1770 if (retval) 1771 current->signal->group_exit_code |= 0x80; 1772 close_fail: 1773 filp_close(file, NULL); 1774 fail_unlock: 1775 if (helper_argv) 1776 argv_free(helper_argv); 1777 1778 current->fsuid = fsuid; 1779 complete_all(&mm->core_done); 1780 fail: 1781 return retval; 1782 } 1783