xref: /linux/fs/exec.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int register_binfmt(struct linux_binfmt * fmt)
73 {
74 	if (!fmt)
75 		return -EINVAL;
76 	write_lock(&binfmt_lock);
77 	list_add(&fmt->lh, &formats);
78 	write_unlock(&binfmt_lock);
79 	return 0;
80 }
81 
82 EXPORT_SYMBOL(register_binfmt);
83 
84 void unregister_binfmt(struct linux_binfmt * fmt)
85 {
86 	write_lock(&binfmt_lock);
87 	list_del(&fmt->lh);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(unregister_binfmt);
92 
93 static inline void put_binfmt(struct linux_binfmt * fmt)
94 {
95 	module_put(fmt->module);
96 }
97 
98 /*
99  * Note that a shared library must be both readable and executable due to
100  * security reasons.
101  *
102  * Also note that we take the address to load from from the file itself.
103  */
104 asmlinkage long sys_uselib(const char __user * library)
105 {
106 	struct file * file;
107 	struct nameidata nd;
108 	int error;
109 
110 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 	if (error)
112 		goto out;
113 
114 	error = -EINVAL;
115 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
116 		goto exit;
117 
118 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 	if (error)
120 		goto exit;
121 
122 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
123 	error = PTR_ERR(file);
124 	if (IS_ERR(file))
125 		goto out;
126 
127 	error = -ENOEXEC;
128 	if(file->f_op) {
129 		struct linux_binfmt * fmt;
130 
131 		read_lock(&binfmt_lock);
132 		list_for_each_entry(fmt, &formats, lh) {
133 			if (!fmt->load_shlib)
134 				continue;
135 			if (!try_module_get(fmt->module))
136 				continue;
137 			read_unlock(&binfmt_lock);
138 			error = fmt->load_shlib(file);
139 			read_lock(&binfmt_lock);
140 			put_binfmt(fmt);
141 			if (error != -ENOEXEC)
142 				break;
143 		}
144 		read_unlock(&binfmt_lock);
145 	}
146 	fput(file);
147 out:
148   	return error;
149 exit:
150 	release_open_intent(&nd);
151 	path_put(&nd.path);
152 	goto out;
153 }
154 
155 #ifdef CONFIG_MMU
156 
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 		int write)
159 {
160 	struct page *page;
161 	int ret;
162 
163 #ifdef CONFIG_STACK_GROWSUP
164 	if (write) {
165 		ret = expand_stack_downwards(bprm->vma, pos);
166 		if (ret < 0)
167 			return NULL;
168 	}
169 #endif
170 	ret = get_user_pages(current, bprm->mm, pos,
171 			1, write, 1, &page, NULL);
172 	if (ret <= 0)
173 		return NULL;
174 
175 	if (write) {
176 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
177 		struct rlimit *rlim;
178 
179 		/*
180 		 * We've historically supported up to 32 pages (ARG_MAX)
181 		 * of argument strings even with small stacks
182 		 */
183 		if (size <= ARG_MAX)
184 			return page;
185 
186 		/*
187 		 * Limit to 1/4-th the stack size for the argv+env strings.
188 		 * This ensures that:
189 		 *  - the remaining binfmt code will not run out of stack space,
190 		 *  - the program will have a reasonable amount of stack left
191 		 *    to work from.
192 		 */
193 		rlim = current->signal->rlim;
194 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
195 			put_page(page);
196 			return NULL;
197 		}
198 	}
199 
200 	return page;
201 }
202 
203 static void put_arg_page(struct page *page)
204 {
205 	put_page(page);
206 }
207 
208 static void free_arg_page(struct linux_binprm *bprm, int i)
209 {
210 }
211 
212 static void free_arg_pages(struct linux_binprm *bprm)
213 {
214 }
215 
216 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
217 		struct page *page)
218 {
219 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
220 }
221 
222 static int __bprm_mm_init(struct linux_binprm *bprm)
223 {
224 	int err = -ENOMEM;
225 	struct vm_area_struct *vma = NULL;
226 	struct mm_struct *mm = bprm->mm;
227 
228 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
229 	if (!vma)
230 		goto err;
231 
232 	down_write(&mm->mmap_sem);
233 	vma->vm_mm = mm;
234 
235 	/*
236 	 * Place the stack at the largest stack address the architecture
237 	 * supports. Later, we'll move this to an appropriate place. We don't
238 	 * use STACK_TOP because that can depend on attributes which aren't
239 	 * configured yet.
240 	 */
241 	vma->vm_end = STACK_TOP_MAX;
242 	vma->vm_start = vma->vm_end - PAGE_SIZE;
243 
244 	vma->vm_flags = VM_STACK_FLAGS;
245 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
246 	err = insert_vm_struct(mm, vma);
247 	if (err) {
248 		up_write(&mm->mmap_sem);
249 		goto err;
250 	}
251 
252 	mm->stack_vm = mm->total_vm = 1;
253 	up_write(&mm->mmap_sem);
254 
255 	bprm->p = vma->vm_end - sizeof(void *);
256 
257 	return 0;
258 
259 err:
260 	if (vma) {
261 		bprm->vma = NULL;
262 		kmem_cache_free(vm_area_cachep, vma);
263 	}
264 
265 	return err;
266 }
267 
268 static bool valid_arg_len(struct linux_binprm *bprm, long len)
269 {
270 	return len <= MAX_ARG_STRLEN;
271 }
272 
273 #else
274 
275 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
276 		int write)
277 {
278 	struct page *page;
279 
280 	page = bprm->page[pos / PAGE_SIZE];
281 	if (!page && write) {
282 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
283 		if (!page)
284 			return NULL;
285 		bprm->page[pos / PAGE_SIZE] = page;
286 	}
287 
288 	return page;
289 }
290 
291 static void put_arg_page(struct page *page)
292 {
293 }
294 
295 static void free_arg_page(struct linux_binprm *bprm, int i)
296 {
297 	if (bprm->page[i]) {
298 		__free_page(bprm->page[i]);
299 		bprm->page[i] = NULL;
300 	}
301 }
302 
303 static void free_arg_pages(struct linux_binprm *bprm)
304 {
305 	int i;
306 
307 	for (i = 0; i < MAX_ARG_PAGES; i++)
308 		free_arg_page(bprm, i);
309 }
310 
311 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
312 		struct page *page)
313 {
314 }
315 
316 static int __bprm_mm_init(struct linux_binprm *bprm)
317 {
318 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
319 	return 0;
320 }
321 
322 static bool valid_arg_len(struct linux_binprm *bprm, long len)
323 {
324 	return len <= bprm->p;
325 }
326 
327 #endif /* CONFIG_MMU */
328 
329 /*
330  * Create a new mm_struct and populate it with a temporary stack
331  * vm_area_struct.  We don't have enough context at this point to set the stack
332  * flags, permissions, and offset, so we use temporary values.  We'll update
333  * them later in setup_arg_pages().
334  */
335 int bprm_mm_init(struct linux_binprm *bprm)
336 {
337 	int err;
338 	struct mm_struct *mm = NULL;
339 
340 	bprm->mm = mm = mm_alloc();
341 	err = -ENOMEM;
342 	if (!mm)
343 		goto err;
344 
345 	err = init_new_context(current, mm);
346 	if (err)
347 		goto err;
348 
349 	err = __bprm_mm_init(bprm);
350 	if (err)
351 		goto err;
352 
353 	return 0;
354 
355 err:
356 	if (mm) {
357 		bprm->mm = NULL;
358 		mmdrop(mm);
359 	}
360 
361 	return err;
362 }
363 
364 /*
365  * count() counts the number of strings in array ARGV.
366  */
367 static int count(char __user * __user * argv, int max)
368 {
369 	int i = 0;
370 
371 	if (argv != NULL) {
372 		for (;;) {
373 			char __user * p;
374 
375 			if (get_user(p, argv))
376 				return -EFAULT;
377 			if (!p)
378 				break;
379 			argv++;
380 			if(++i > max)
381 				return -E2BIG;
382 			cond_resched();
383 		}
384 	}
385 	return i;
386 }
387 
388 /*
389  * 'copy_strings()' copies argument/environment strings from the old
390  * processes's memory to the new process's stack.  The call to get_user_pages()
391  * ensures the destination page is created and not swapped out.
392  */
393 static int copy_strings(int argc, char __user * __user * argv,
394 			struct linux_binprm *bprm)
395 {
396 	struct page *kmapped_page = NULL;
397 	char *kaddr = NULL;
398 	unsigned long kpos = 0;
399 	int ret;
400 
401 	while (argc-- > 0) {
402 		char __user *str;
403 		int len;
404 		unsigned long pos;
405 
406 		if (get_user(str, argv+argc) ||
407 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
408 			ret = -EFAULT;
409 			goto out;
410 		}
411 
412 		if (!valid_arg_len(bprm, len)) {
413 			ret = -E2BIG;
414 			goto out;
415 		}
416 
417 		/* We're going to work our way backwords. */
418 		pos = bprm->p;
419 		str += len;
420 		bprm->p -= len;
421 
422 		while (len > 0) {
423 			int offset, bytes_to_copy;
424 
425 			offset = pos % PAGE_SIZE;
426 			if (offset == 0)
427 				offset = PAGE_SIZE;
428 
429 			bytes_to_copy = offset;
430 			if (bytes_to_copy > len)
431 				bytes_to_copy = len;
432 
433 			offset -= bytes_to_copy;
434 			pos -= bytes_to_copy;
435 			str -= bytes_to_copy;
436 			len -= bytes_to_copy;
437 
438 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
439 				struct page *page;
440 
441 				page = get_arg_page(bprm, pos, 1);
442 				if (!page) {
443 					ret = -E2BIG;
444 					goto out;
445 				}
446 
447 				if (kmapped_page) {
448 					flush_kernel_dcache_page(kmapped_page);
449 					kunmap(kmapped_page);
450 					put_arg_page(kmapped_page);
451 				}
452 				kmapped_page = page;
453 				kaddr = kmap(kmapped_page);
454 				kpos = pos & PAGE_MASK;
455 				flush_arg_page(bprm, kpos, kmapped_page);
456 			}
457 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
458 				ret = -EFAULT;
459 				goto out;
460 			}
461 		}
462 	}
463 	ret = 0;
464 out:
465 	if (kmapped_page) {
466 		flush_kernel_dcache_page(kmapped_page);
467 		kunmap(kmapped_page);
468 		put_arg_page(kmapped_page);
469 	}
470 	return ret;
471 }
472 
473 /*
474  * Like copy_strings, but get argv and its values from kernel memory.
475  */
476 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
477 {
478 	int r;
479 	mm_segment_t oldfs = get_fs();
480 	set_fs(KERNEL_DS);
481 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
482 	set_fs(oldfs);
483 	return r;
484 }
485 EXPORT_SYMBOL(copy_strings_kernel);
486 
487 #ifdef CONFIG_MMU
488 
489 /*
490  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
491  * the binfmt code determines where the new stack should reside, we shift it to
492  * its final location.  The process proceeds as follows:
493  *
494  * 1) Use shift to calculate the new vma endpoints.
495  * 2) Extend vma to cover both the old and new ranges.  This ensures the
496  *    arguments passed to subsequent functions are consistent.
497  * 3) Move vma's page tables to the new range.
498  * 4) Free up any cleared pgd range.
499  * 5) Shrink the vma to cover only the new range.
500  */
501 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
502 {
503 	struct mm_struct *mm = vma->vm_mm;
504 	unsigned long old_start = vma->vm_start;
505 	unsigned long old_end = vma->vm_end;
506 	unsigned long length = old_end - old_start;
507 	unsigned long new_start = old_start - shift;
508 	unsigned long new_end = old_end - shift;
509 	struct mmu_gather *tlb;
510 
511 	BUG_ON(new_start > new_end);
512 
513 	/*
514 	 * ensure there are no vmas between where we want to go
515 	 * and where we are
516 	 */
517 	if (vma != find_vma(mm, new_start))
518 		return -EFAULT;
519 
520 	/*
521 	 * cover the whole range: [new_start, old_end)
522 	 */
523 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
524 
525 	/*
526 	 * move the page tables downwards, on failure we rely on
527 	 * process cleanup to remove whatever mess we made.
528 	 */
529 	if (length != move_page_tables(vma, old_start,
530 				       vma, new_start, length))
531 		return -ENOMEM;
532 
533 	lru_add_drain();
534 	tlb = tlb_gather_mmu(mm, 0);
535 	if (new_end > old_start) {
536 		/*
537 		 * when the old and new regions overlap clear from new_end.
538 		 */
539 		free_pgd_range(&tlb, new_end, old_end, new_end,
540 			vma->vm_next ? vma->vm_next->vm_start : 0);
541 	} else {
542 		/*
543 		 * otherwise, clean from old_start; this is done to not touch
544 		 * the address space in [new_end, old_start) some architectures
545 		 * have constraints on va-space that make this illegal (IA64) -
546 		 * for the others its just a little faster.
547 		 */
548 		free_pgd_range(&tlb, old_start, old_end, new_end,
549 			vma->vm_next ? vma->vm_next->vm_start : 0);
550 	}
551 	tlb_finish_mmu(tlb, new_end, old_end);
552 
553 	/*
554 	 * shrink the vma to just the new range.
555 	 */
556 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
557 
558 	return 0;
559 }
560 
561 #define EXTRA_STACK_VM_PAGES	20	/* random */
562 
563 /*
564  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
565  * the stack is optionally relocated, and some extra space is added.
566  */
567 int setup_arg_pages(struct linux_binprm *bprm,
568 		    unsigned long stack_top,
569 		    int executable_stack)
570 {
571 	unsigned long ret;
572 	unsigned long stack_shift;
573 	struct mm_struct *mm = current->mm;
574 	struct vm_area_struct *vma = bprm->vma;
575 	struct vm_area_struct *prev = NULL;
576 	unsigned long vm_flags;
577 	unsigned long stack_base;
578 
579 #ifdef CONFIG_STACK_GROWSUP
580 	/* Limit stack size to 1GB */
581 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
582 	if (stack_base > (1 << 30))
583 		stack_base = 1 << 30;
584 
585 	/* Make sure we didn't let the argument array grow too large. */
586 	if (vma->vm_end - vma->vm_start > stack_base)
587 		return -ENOMEM;
588 
589 	stack_base = PAGE_ALIGN(stack_top - stack_base);
590 
591 	stack_shift = vma->vm_start - stack_base;
592 	mm->arg_start = bprm->p - stack_shift;
593 	bprm->p = vma->vm_end - stack_shift;
594 #else
595 	stack_top = arch_align_stack(stack_top);
596 	stack_top = PAGE_ALIGN(stack_top);
597 	stack_shift = vma->vm_end - stack_top;
598 
599 	bprm->p -= stack_shift;
600 	mm->arg_start = bprm->p;
601 #endif
602 
603 	if (bprm->loader)
604 		bprm->loader -= stack_shift;
605 	bprm->exec -= stack_shift;
606 
607 	down_write(&mm->mmap_sem);
608 	vm_flags = vma->vm_flags;
609 
610 	/*
611 	 * Adjust stack execute permissions; explicitly enable for
612 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 	 * (arch default) otherwise.
614 	 */
615 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 		vm_flags |= VM_EXEC;
617 	else if (executable_stack == EXSTACK_DISABLE_X)
618 		vm_flags &= ~VM_EXEC;
619 	vm_flags |= mm->def_flags;
620 
621 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
622 			vm_flags);
623 	if (ret)
624 		goto out_unlock;
625 	BUG_ON(prev != vma);
626 
627 	/* Move stack pages down in memory. */
628 	if (stack_shift) {
629 		ret = shift_arg_pages(vma, stack_shift);
630 		if (ret) {
631 			up_write(&mm->mmap_sem);
632 			return ret;
633 		}
634 	}
635 
636 #ifdef CONFIG_STACK_GROWSUP
637 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
638 #else
639 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
640 #endif
641 	ret = expand_stack(vma, stack_base);
642 	if (ret)
643 		ret = -EFAULT;
644 
645 out_unlock:
646 	up_write(&mm->mmap_sem);
647 	return 0;
648 }
649 EXPORT_SYMBOL(setup_arg_pages);
650 
651 #endif /* CONFIG_MMU */
652 
653 struct file *open_exec(const char *name)
654 {
655 	struct nameidata nd;
656 	int err;
657 	struct file *file;
658 
659 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
660 	file = ERR_PTR(err);
661 
662 	if (!err) {
663 		struct inode *inode = nd.path.dentry->d_inode;
664 		file = ERR_PTR(-EACCES);
665 		if (S_ISREG(inode->i_mode)) {
666 			int err = vfs_permission(&nd, MAY_EXEC);
667 			file = ERR_PTR(err);
668 			if (!err) {
669 				file = nameidata_to_filp(&nd,
670 							O_RDONLY|O_LARGEFILE);
671 				if (!IS_ERR(file)) {
672 					err = deny_write_access(file);
673 					if (err) {
674 						fput(file);
675 						file = ERR_PTR(err);
676 					}
677 				}
678 out:
679 				return file;
680 			}
681 		}
682 		release_open_intent(&nd);
683 		path_put(&nd.path);
684 	}
685 	goto out;
686 }
687 
688 EXPORT_SYMBOL(open_exec);
689 
690 int kernel_read(struct file *file, unsigned long offset,
691 	char *addr, unsigned long count)
692 {
693 	mm_segment_t old_fs;
694 	loff_t pos = offset;
695 	int result;
696 
697 	old_fs = get_fs();
698 	set_fs(get_ds());
699 	/* The cast to a user pointer is valid due to the set_fs() */
700 	result = vfs_read(file, (void __user *)addr, count, &pos);
701 	set_fs(old_fs);
702 	return result;
703 }
704 
705 EXPORT_SYMBOL(kernel_read);
706 
707 static int exec_mmap(struct mm_struct *mm)
708 {
709 	struct task_struct *tsk;
710 	struct mm_struct * old_mm, *active_mm;
711 
712 	/* Notify parent that we're no longer interested in the old VM */
713 	tsk = current;
714 	old_mm = current->mm;
715 	mm_release(tsk, old_mm);
716 
717 	if (old_mm) {
718 		/*
719 		 * Make sure that if there is a core dump in progress
720 		 * for the old mm, we get out and die instead of going
721 		 * through with the exec.  We must hold mmap_sem around
722 		 * checking core_waiters and changing tsk->mm.  The
723 		 * core-inducing thread will increment core_waiters for
724 		 * each thread whose ->mm == old_mm.
725 		 */
726 		down_read(&old_mm->mmap_sem);
727 		if (unlikely(old_mm->core_waiters)) {
728 			up_read(&old_mm->mmap_sem);
729 			return -EINTR;
730 		}
731 	}
732 	task_lock(tsk);
733 	active_mm = tsk->active_mm;
734 	tsk->mm = mm;
735 	tsk->active_mm = mm;
736 	activate_mm(active_mm, mm);
737 	task_unlock(tsk);
738 	mm_update_next_owner(mm);
739 	arch_pick_mmap_layout(mm);
740 	if (old_mm) {
741 		up_read(&old_mm->mmap_sem);
742 		BUG_ON(active_mm != old_mm);
743 		mmput(old_mm);
744 		return 0;
745 	}
746 	mmdrop(active_mm);
747 	return 0;
748 }
749 
750 /*
751  * This function makes sure the current process has its own signal table,
752  * so that flush_signal_handlers can later reset the handlers without
753  * disturbing other processes.  (Other processes might share the signal
754  * table via the CLONE_SIGHAND option to clone().)
755  */
756 static int de_thread(struct task_struct *tsk)
757 {
758 	struct signal_struct *sig = tsk->signal;
759 	struct sighand_struct *oldsighand = tsk->sighand;
760 	spinlock_t *lock = &oldsighand->siglock;
761 	struct task_struct *leader = NULL;
762 	int count;
763 
764 	if (thread_group_empty(tsk))
765 		goto no_thread_group;
766 
767 	/*
768 	 * Kill all other threads in the thread group.
769 	 */
770 	spin_lock_irq(lock);
771 	if (signal_group_exit(sig)) {
772 		/*
773 		 * Another group action in progress, just
774 		 * return so that the signal is processed.
775 		 */
776 		spin_unlock_irq(lock);
777 		return -EAGAIN;
778 	}
779 	sig->group_exit_task = tsk;
780 	zap_other_threads(tsk);
781 
782 	/* Account for the thread group leader hanging around: */
783 	count = thread_group_leader(tsk) ? 1 : 2;
784 	sig->notify_count = count;
785 	while (atomic_read(&sig->count) > count) {
786 		__set_current_state(TASK_UNINTERRUPTIBLE);
787 		spin_unlock_irq(lock);
788 		schedule();
789 		spin_lock_irq(lock);
790 	}
791 	spin_unlock_irq(lock);
792 
793 	/*
794 	 * At this point all other threads have exited, all we have to
795 	 * do is to wait for the thread group leader to become inactive,
796 	 * and to assume its PID:
797 	 */
798 	if (!thread_group_leader(tsk)) {
799 		leader = tsk->group_leader;
800 
801 		sig->notify_count = -1;	/* for exit_notify() */
802 		for (;;) {
803 			write_lock_irq(&tasklist_lock);
804 			if (likely(leader->exit_state))
805 				break;
806 			__set_current_state(TASK_UNINTERRUPTIBLE);
807 			write_unlock_irq(&tasklist_lock);
808 			schedule();
809 		}
810 
811 		if (unlikely(task_child_reaper(tsk) == leader))
812 			task_active_pid_ns(tsk)->child_reaper = tsk;
813 		/*
814 		 * The only record we have of the real-time age of a
815 		 * process, regardless of execs it's done, is start_time.
816 		 * All the past CPU time is accumulated in signal_struct
817 		 * from sister threads now dead.  But in this non-leader
818 		 * exec, nothing survives from the original leader thread,
819 		 * whose birth marks the true age of this process now.
820 		 * When we take on its identity by switching to its PID, we
821 		 * also take its birthdate (always earlier than our own).
822 		 */
823 		tsk->start_time = leader->start_time;
824 
825 		BUG_ON(!same_thread_group(leader, tsk));
826 		BUG_ON(has_group_leader_pid(tsk));
827 		/*
828 		 * An exec() starts a new thread group with the
829 		 * TGID of the previous thread group. Rehash the
830 		 * two threads with a switched PID, and release
831 		 * the former thread group leader:
832 		 */
833 
834 		/* Become a process group leader with the old leader's pid.
835 		 * The old leader becomes a thread of the this thread group.
836 		 * Note: The old leader also uses this pid until release_task
837 		 *       is called.  Odd but simple and correct.
838 		 */
839 		detach_pid(tsk, PIDTYPE_PID);
840 		tsk->pid = leader->pid;
841 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
842 		transfer_pid(leader, tsk, PIDTYPE_PGID);
843 		transfer_pid(leader, tsk, PIDTYPE_SID);
844 		list_replace_rcu(&leader->tasks, &tsk->tasks);
845 
846 		tsk->group_leader = tsk;
847 		leader->group_leader = tsk;
848 
849 		tsk->exit_signal = SIGCHLD;
850 
851 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
852 		leader->exit_state = EXIT_DEAD;
853 
854 		write_unlock_irq(&tasklist_lock);
855 	}
856 
857 	sig->group_exit_task = NULL;
858 	sig->notify_count = 0;
859 
860 no_thread_group:
861 	exit_itimers(sig);
862 	if (leader)
863 		release_task(leader);
864 
865 	if (atomic_read(&oldsighand->count) != 1) {
866 		struct sighand_struct *newsighand;
867 		/*
868 		 * This ->sighand is shared with the CLONE_SIGHAND
869 		 * but not CLONE_THREAD task, switch to the new one.
870 		 */
871 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
872 		if (!newsighand)
873 			return -ENOMEM;
874 
875 		atomic_set(&newsighand->count, 1);
876 		memcpy(newsighand->action, oldsighand->action,
877 		       sizeof(newsighand->action));
878 
879 		write_lock_irq(&tasklist_lock);
880 		spin_lock(&oldsighand->siglock);
881 		rcu_assign_pointer(tsk->sighand, newsighand);
882 		spin_unlock(&oldsighand->siglock);
883 		write_unlock_irq(&tasklist_lock);
884 
885 		__cleanup_sighand(oldsighand);
886 	}
887 
888 	BUG_ON(!thread_group_leader(tsk));
889 	return 0;
890 }
891 
892 /*
893  * These functions flushes out all traces of the currently running executable
894  * so that a new one can be started
895  */
896 static void flush_old_files(struct files_struct * files)
897 {
898 	long j = -1;
899 	struct fdtable *fdt;
900 
901 	spin_lock(&files->file_lock);
902 	for (;;) {
903 		unsigned long set, i;
904 
905 		j++;
906 		i = j * __NFDBITS;
907 		fdt = files_fdtable(files);
908 		if (i >= fdt->max_fds)
909 			break;
910 		set = fdt->close_on_exec->fds_bits[j];
911 		if (!set)
912 			continue;
913 		fdt->close_on_exec->fds_bits[j] = 0;
914 		spin_unlock(&files->file_lock);
915 		for ( ; set ; i++,set >>= 1) {
916 			if (set & 1) {
917 				sys_close(i);
918 			}
919 		}
920 		spin_lock(&files->file_lock);
921 
922 	}
923 	spin_unlock(&files->file_lock);
924 }
925 
926 char *get_task_comm(char *buf, struct task_struct *tsk)
927 {
928 	/* buf must be at least sizeof(tsk->comm) in size */
929 	task_lock(tsk);
930 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
931 	task_unlock(tsk);
932 	return buf;
933 }
934 
935 void set_task_comm(struct task_struct *tsk, char *buf)
936 {
937 	task_lock(tsk);
938 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
939 	task_unlock(tsk);
940 }
941 
942 int flush_old_exec(struct linux_binprm * bprm)
943 {
944 	char * name;
945 	int i, ch, retval;
946 	char tcomm[sizeof(current->comm)];
947 
948 	/*
949 	 * Make sure we have a private signal table and that
950 	 * we are unassociated from the previous thread group.
951 	 */
952 	retval = de_thread(current);
953 	if (retval)
954 		goto out;
955 
956 	set_mm_exe_file(bprm->mm, bprm->file);
957 
958 	/*
959 	 * Release all of the old mmap stuff
960 	 */
961 	retval = exec_mmap(bprm->mm);
962 	if (retval)
963 		goto out;
964 
965 	bprm->mm = NULL;		/* We're using it now */
966 
967 	/* This is the point of no return */
968 	current->sas_ss_sp = current->sas_ss_size = 0;
969 
970 	if (current->euid == current->uid && current->egid == current->gid)
971 		set_dumpable(current->mm, 1);
972 	else
973 		set_dumpable(current->mm, suid_dumpable);
974 
975 	name = bprm->filename;
976 
977 	/* Copies the binary name from after last slash */
978 	for (i=0; (ch = *(name++)) != '\0';) {
979 		if (ch == '/')
980 			i = 0; /* overwrite what we wrote */
981 		else
982 			if (i < (sizeof(tcomm) - 1))
983 				tcomm[i++] = ch;
984 	}
985 	tcomm[i] = '\0';
986 	set_task_comm(current, tcomm);
987 
988 	current->flags &= ~PF_RANDOMIZE;
989 	flush_thread();
990 
991 	/* Set the new mm task size. We have to do that late because it may
992 	 * depend on TIF_32BIT which is only updated in flush_thread() on
993 	 * some architectures like powerpc
994 	 */
995 	current->mm->task_size = TASK_SIZE;
996 
997 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
998 		suid_keys(current);
999 		set_dumpable(current->mm, suid_dumpable);
1000 		current->pdeath_signal = 0;
1001 	} else if (file_permission(bprm->file, MAY_READ) ||
1002 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1003 		suid_keys(current);
1004 		set_dumpable(current->mm, suid_dumpable);
1005 	}
1006 
1007 	/* An exec changes our domain. We are no longer part of the thread
1008 	   group */
1009 
1010 	current->self_exec_id++;
1011 
1012 	flush_signal_handlers(current, 0);
1013 	flush_old_files(current->files);
1014 
1015 	return 0;
1016 
1017 out:
1018 	return retval;
1019 }
1020 
1021 EXPORT_SYMBOL(flush_old_exec);
1022 
1023 /*
1024  * Fill the binprm structure from the inode.
1025  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1026  */
1027 int prepare_binprm(struct linux_binprm *bprm)
1028 {
1029 	int mode;
1030 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1031 	int retval;
1032 
1033 	mode = inode->i_mode;
1034 	if (bprm->file->f_op == NULL)
1035 		return -EACCES;
1036 
1037 	bprm->e_uid = current->euid;
1038 	bprm->e_gid = current->egid;
1039 
1040 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1041 		/* Set-uid? */
1042 		if (mode & S_ISUID) {
1043 			current->personality &= ~PER_CLEAR_ON_SETID;
1044 			bprm->e_uid = inode->i_uid;
1045 		}
1046 
1047 		/* Set-gid? */
1048 		/*
1049 		 * If setgid is set but no group execute bit then this
1050 		 * is a candidate for mandatory locking, not a setgid
1051 		 * executable.
1052 		 */
1053 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1054 			current->personality &= ~PER_CLEAR_ON_SETID;
1055 			bprm->e_gid = inode->i_gid;
1056 		}
1057 	}
1058 
1059 	/* fill in binprm security blob */
1060 	retval = security_bprm_set(bprm);
1061 	if (retval)
1062 		return retval;
1063 
1064 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1065 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1066 }
1067 
1068 EXPORT_SYMBOL(prepare_binprm);
1069 
1070 static int unsafe_exec(struct task_struct *p)
1071 {
1072 	int unsafe = 0;
1073 	if (p->ptrace & PT_PTRACED) {
1074 		if (p->ptrace & PT_PTRACE_CAP)
1075 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1076 		else
1077 			unsafe |= LSM_UNSAFE_PTRACE;
1078 	}
1079 	if (atomic_read(&p->fs->count) > 1 ||
1080 	    atomic_read(&p->files->count) > 1 ||
1081 	    atomic_read(&p->sighand->count) > 1)
1082 		unsafe |= LSM_UNSAFE_SHARE;
1083 
1084 	return unsafe;
1085 }
1086 
1087 void compute_creds(struct linux_binprm *bprm)
1088 {
1089 	int unsafe;
1090 
1091 	if (bprm->e_uid != current->uid) {
1092 		suid_keys(current);
1093 		current->pdeath_signal = 0;
1094 	}
1095 	exec_keys(current);
1096 
1097 	task_lock(current);
1098 	unsafe = unsafe_exec(current);
1099 	security_bprm_apply_creds(bprm, unsafe);
1100 	task_unlock(current);
1101 	security_bprm_post_apply_creds(bprm);
1102 }
1103 EXPORT_SYMBOL(compute_creds);
1104 
1105 /*
1106  * Arguments are '\0' separated strings found at the location bprm->p
1107  * points to; chop off the first by relocating brpm->p to right after
1108  * the first '\0' encountered.
1109  */
1110 int remove_arg_zero(struct linux_binprm *bprm)
1111 {
1112 	int ret = 0;
1113 	unsigned long offset;
1114 	char *kaddr;
1115 	struct page *page;
1116 
1117 	if (!bprm->argc)
1118 		return 0;
1119 
1120 	do {
1121 		offset = bprm->p & ~PAGE_MASK;
1122 		page = get_arg_page(bprm, bprm->p, 0);
1123 		if (!page) {
1124 			ret = -EFAULT;
1125 			goto out;
1126 		}
1127 		kaddr = kmap_atomic(page, KM_USER0);
1128 
1129 		for (; offset < PAGE_SIZE && kaddr[offset];
1130 				offset++, bprm->p++)
1131 			;
1132 
1133 		kunmap_atomic(kaddr, KM_USER0);
1134 		put_arg_page(page);
1135 
1136 		if (offset == PAGE_SIZE)
1137 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1138 	} while (offset == PAGE_SIZE);
1139 
1140 	bprm->p++;
1141 	bprm->argc--;
1142 	ret = 0;
1143 
1144 out:
1145 	return ret;
1146 }
1147 EXPORT_SYMBOL(remove_arg_zero);
1148 
1149 /*
1150  * cycle the list of binary formats handler, until one recognizes the image
1151  */
1152 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1153 {
1154 	int try,retval;
1155 	struct linux_binfmt *fmt;
1156 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1157 	/* handle /sbin/loader.. */
1158 	{
1159 	    struct exec * eh = (struct exec *) bprm->buf;
1160 
1161 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1162 		(eh->fh.f_flags & 0x3000) == 0x3000)
1163 	    {
1164 		struct file * file;
1165 		unsigned long loader;
1166 
1167 		allow_write_access(bprm->file);
1168 		fput(bprm->file);
1169 		bprm->file = NULL;
1170 
1171 		loader = bprm->vma->vm_end - sizeof(void *);
1172 
1173 		file = open_exec("/sbin/loader");
1174 		retval = PTR_ERR(file);
1175 		if (IS_ERR(file))
1176 			return retval;
1177 
1178 		/* Remember if the application is TASO.  */
1179 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1180 
1181 		bprm->file = file;
1182 		bprm->loader = loader;
1183 		retval = prepare_binprm(bprm);
1184 		if (retval<0)
1185 			return retval;
1186 		/* should call search_binary_handler recursively here,
1187 		   but it does not matter */
1188 	    }
1189 	}
1190 #endif
1191 	retval = security_bprm_check(bprm);
1192 	if (retval)
1193 		return retval;
1194 
1195 	/* kernel module loader fixup */
1196 	/* so we don't try to load run modprobe in kernel space. */
1197 	set_fs(USER_DS);
1198 
1199 	retval = audit_bprm(bprm);
1200 	if (retval)
1201 		return retval;
1202 
1203 	retval = -ENOENT;
1204 	for (try=0; try<2; try++) {
1205 		read_lock(&binfmt_lock);
1206 		list_for_each_entry(fmt, &formats, lh) {
1207 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1208 			if (!fn)
1209 				continue;
1210 			if (!try_module_get(fmt->module))
1211 				continue;
1212 			read_unlock(&binfmt_lock);
1213 			retval = fn(bprm, regs);
1214 			if (retval >= 0) {
1215 				put_binfmt(fmt);
1216 				allow_write_access(bprm->file);
1217 				if (bprm->file)
1218 					fput(bprm->file);
1219 				bprm->file = NULL;
1220 				current->did_exec = 1;
1221 				proc_exec_connector(current);
1222 				return retval;
1223 			}
1224 			read_lock(&binfmt_lock);
1225 			put_binfmt(fmt);
1226 			if (retval != -ENOEXEC || bprm->mm == NULL)
1227 				break;
1228 			if (!bprm->file) {
1229 				read_unlock(&binfmt_lock);
1230 				return retval;
1231 			}
1232 		}
1233 		read_unlock(&binfmt_lock);
1234 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1235 			break;
1236 #ifdef CONFIG_KMOD
1237 		}else{
1238 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1239 			if (printable(bprm->buf[0]) &&
1240 			    printable(bprm->buf[1]) &&
1241 			    printable(bprm->buf[2]) &&
1242 			    printable(bprm->buf[3]))
1243 				break; /* -ENOEXEC */
1244 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1245 #endif
1246 		}
1247 	}
1248 	return retval;
1249 }
1250 
1251 EXPORT_SYMBOL(search_binary_handler);
1252 
1253 /*
1254  * sys_execve() executes a new program.
1255  */
1256 int do_execve(char * filename,
1257 	char __user *__user *argv,
1258 	char __user *__user *envp,
1259 	struct pt_regs * regs)
1260 {
1261 	struct linux_binprm *bprm;
1262 	struct file *file;
1263 	struct files_struct *displaced;
1264 	int retval;
1265 
1266 	retval = unshare_files(&displaced);
1267 	if (retval)
1268 		goto out_ret;
1269 
1270 	retval = -ENOMEM;
1271 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1272 	if (!bprm)
1273 		goto out_files;
1274 
1275 	file = open_exec(filename);
1276 	retval = PTR_ERR(file);
1277 	if (IS_ERR(file))
1278 		goto out_kfree;
1279 
1280 	sched_exec();
1281 
1282 	bprm->file = file;
1283 	bprm->filename = filename;
1284 	bprm->interp = filename;
1285 
1286 	retval = bprm_mm_init(bprm);
1287 	if (retval)
1288 		goto out_file;
1289 
1290 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1291 	if ((retval = bprm->argc) < 0)
1292 		goto out_mm;
1293 
1294 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1295 	if ((retval = bprm->envc) < 0)
1296 		goto out_mm;
1297 
1298 	retval = security_bprm_alloc(bprm);
1299 	if (retval)
1300 		goto out;
1301 
1302 	retval = prepare_binprm(bprm);
1303 	if (retval < 0)
1304 		goto out;
1305 
1306 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1307 	if (retval < 0)
1308 		goto out;
1309 
1310 	bprm->exec = bprm->p;
1311 	retval = copy_strings(bprm->envc, envp, bprm);
1312 	if (retval < 0)
1313 		goto out;
1314 
1315 	retval = copy_strings(bprm->argc, argv, bprm);
1316 	if (retval < 0)
1317 		goto out;
1318 
1319 	retval = search_binary_handler(bprm,regs);
1320 	if (retval >= 0) {
1321 		/* execve success */
1322 		free_arg_pages(bprm);
1323 		security_bprm_free(bprm);
1324 		acct_update_integrals(current);
1325 		kfree(bprm);
1326 		if (displaced)
1327 			put_files_struct(displaced);
1328 		return retval;
1329 	}
1330 
1331 out:
1332 	free_arg_pages(bprm);
1333 	if (bprm->security)
1334 		security_bprm_free(bprm);
1335 
1336 out_mm:
1337 	if (bprm->mm)
1338 		mmput (bprm->mm);
1339 
1340 out_file:
1341 	if (bprm->file) {
1342 		allow_write_access(bprm->file);
1343 		fput(bprm->file);
1344 	}
1345 out_kfree:
1346 	kfree(bprm);
1347 
1348 out_files:
1349 	if (displaced)
1350 		reset_files_struct(displaced);
1351 out_ret:
1352 	return retval;
1353 }
1354 
1355 int set_binfmt(struct linux_binfmt *new)
1356 {
1357 	struct linux_binfmt *old = current->binfmt;
1358 
1359 	if (new) {
1360 		if (!try_module_get(new->module))
1361 			return -1;
1362 	}
1363 	current->binfmt = new;
1364 	if (old)
1365 		module_put(old->module);
1366 	return 0;
1367 }
1368 
1369 EXPORT_SYMBOL(set_binfmt);
1370 
1371 /* format_corename will inspect the pattern parameter, and output a
1372  * name into corename, which must have space for at least
1373  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1374  */
1375 static int format_corename(char *corename, const char *pattern, long signr)
1376 {
1377 	const char *pat_ptr = pattern;
1378 	char *out_ptr = corename;
1379 	char *const out_end = corename + CORENAME_MAX_SIZE;
1380 	int rc;
1381 	int pid_in_pattern = 0;
1382 	int ispipe = 0;
1383 
1384 	if (*pattern == '|')
1385 		ispipe = 1;
1386 
1387 	/* Repeat as long as we have more pattern to process and more output
1388 	   space */
1389 	while (*pat_ptr) {
1390 		if (*pat_ptr != '%') {
1391 			if (out_ptr == out_end)
1392 				goto out;
1393 			*out_ptr++ = *pat_ptr++;
1394 		} else {
1395 			switch (*++pat_ptr) {
1396 			case 0:
1397 				goto out;
1398 			/* Double percent, output one percent */
1399 			case '%':
1400 				if (out_ptr == out_end)
1401 					goto out;
1402 				*out_ptr++ = '%';
1403 				break;
1404 			/* pid */
1405 			case 'p':
1406 				pid_in_pattern = 1;
1407 				rc = snprintf(out_ptr, out_end - out_ptr,
1408 					      "%d", task_tgid_vnr(current));
1409 				if (rc > out_end - out_ptr)
1410 					goto out;
1411 				out_ptr += rc;
1412 				break;
1413 			/* uid */
1414 			case 'u':
1415 				rc = snprintf(out_ptr, out_end - out_ptr,
1416 					      "%d", current->uid);
1417 				if (rc > out_end - out_ptr)
1418 					goto out;
1419 				out_ptr += rc;
1420 				break;
1421 			/* gid */
1422 			case 'g':
1423 				rc = snprintf(out_ptr, out_end - out_ptr,
1424 					      "%d", current->gid);
1425 				if (rc > out_end - out_ptr)
1426 					goto out;
1427 				out_ptr += rc;
1428 				break;
1429 			/* signal that caused the coredump */
1430 			case 's':
1431 				rc = snprintf(out_ptr, out_end - out_ptr,
1432 					      "%ld", signr);
1433 				if (rc > out_end - out_ptr)
1434 					goto out;
1435 				out_ptr += rc;
1436 				break;
1437 			/* UNIX time of coredump */
1438 			case 't': {
1439 				struct timeval tv;
1440 				do_gettimeofday(&tv);
1441 				rc = snprintf(out_ptr, out_end - out_ptr,
1442 					      "%lu", tv.tv_sec);
1443 				if (rc > out_end - out_ptr)
1444 					goto out;
1445 				out_ptr += rc;
1446 				break;
1447 			}
1448 			/* hostname */
1449 			case 'h':
1450 				down_read(&uts_sem);
1451 				rc = snprintf(out_ptr, out_end - out_ptr,
1452 					      "%s", utsname()->nodename);
1453 				up_read(&uts_sem);
1454 				if (rc > out_end - out_ptr)
1455 					goto out;
1456 				out_ptr += rc;
1457 				break;
1458 			/* executable */
1459 			case 'e':
1460 				rc = snprintf(out_ptr, out_end - out_ptr,
1461 					      "%s", current->comm);
1462 				if (rc > out_end - out_ptr)
1463 					goto out;
1464 				out_ptr += rc;
1465 				break;
1466 			/* core limit size */
1467 			case 'c':
1468 				rc = snprintf(out_ptr, out_end - out_ptr,
1469 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1470 				if (rc > out_end - out_ptr)
1471 					goto out;
1472 				out_ptr += rc;
1473 				break;
1474 			default:
1475 				break;
1476 			}
1477 			++pat_ptr;
1478 		}
1479 	}
1480 	/* Backward compatibility with core_uses_pid:
1481 	 *
1482 	 * If core_pattern does not include a %p (as is the default)
1483 	 * and core_uses_pid is set, then .%pid will be appended to
1484 	 * the filename. Do not do this for piped commands. */
1485 	if (!ispipe && !pid_in_pattern
1486             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1487 		rc = snprintf(out_ptr, out_end - out_ptr,
1488 			      ".%d", task_tgid_vnr(current));
1489 		if (rc > out_end - out_ptr)
1490 			goto out;
1491 		out_ptr += rc;
1492 	}
1493 out:
1494 	*out_ptr = 0;
1495 	return ispipe;
1496 }
1497 
1498 static void zap_process(struct task_struct *start)
1499 {
1500 	struct task_struct *t;
1501 
1502 	start->signal->flags = SIGNAL_GROUP_EXIT;
1503 	start->signal->group_stop_count = 0;
1504 
1505 	t = start;
1506 	do {
1507 		if (t != current && t->mm) {
1508 			t->mm->core_waiters++;
1509 			sigaddset(&t->pending.signal, SIGKILL);
1510 			signal_wake_up(t, 1);
1511 		}
1512 	} while ((t = next_thread(t)) != start);
1513 }
1514 
1515 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1516 				int exit_code)
1517 {
1518 	struct task_struct *g, *p;
1519 	unsigned long flags;
1520 	int err = -EAGAIN;
1521 
1522 	spin_lock_irq(&tsk->sighand->siglock);
1523 	if (!signal_group_exit(tsk->signal)) {
1524 		tsk->signal->group_exit_code = exit_code;
1525 		zap_process(tsk);
1526 		err = 0;
1527 	}
1528 	spin_unlock_irq(&tsk->sighand->siglock);
1529 	if (err)
1530 		return err;
1531 
1532 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1533 		goto done;
1534 
1535 	rcu_read_lock();
1536 	for_each_process(g) {
1537 		if (g == tsk->group_leader)
1538 			continue;
1539 
1540 		p = g;
1541 		do {
1542 			if (p->mm) {
1543 				if (p->mm == mm) {
1544 					/*
1545 					 * p->sighand can't disappear, but
1546 					 * may be changed by de_thread()
1547 					 */
1548 					lock_task_sighand(p, &flags);
1549 					zap_process(p);
1550 					unlock_task_sighand(p, &flags);
1551 				}
1552 				break;
1553 			}
1554 		} while ((p = next_thread(p)) != g);
1555 	}
1556 	rcu_read_unlock();
1557 done:
1558 	return mm->core_waiters;
1559 }
1560 
1561 static int coredump_wait(int exit_code)
1562 {
1563 	struct task_struct *tsk = current;
1564 	struct mm_struct *mm = tsk->mm;
1565 	struct completion startup_done;
1566 	struct completion *vfork_done;
1567 	int core_waiters;
1568 
1569 	init_completion(&mm->core_done);
1570 	init_completion(&startup_done);
1571 	mm->core_startup_done = &startup_done;
1572 
1573 	core_waiters = zap_threads(tsk, mm, exit_code);
1574 	up_write(&mm->mmap_sem);
1575 
1576 	if (unlikely(core_waiters < 0))
1577 		goto fail;
1578 
1579 	/*
1580 	 * Make sure nobody is waiting for us to release the VM,
1581 	 * otherwise we can deadlock when we wait on each other
1582 	 */
1583 	vfork_done = tsk->vfork_done;
1584 	if (vfork_done) {
1585 		tsk->vfork_done = NULL;
1586 		complete(vfork_done);
1587 	}
1588 
1589 	if (core_waiters)
1590 		wait_for_completion(&startup_done);
1591 fail:
1592 	BUG_ON(mm->core_waiters);
1593 	return core_waiters;
1594 }
1595 
1596 /*
1597  * set_dumpable converts traditional three-value dumpable to two flags and
1598  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1599  * these bits are not changed atomically.  So get_dumpable can observe the
1600  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1601  * return either old dumpable or new one by paying attention to the order of
1602  * modifying the bits.
1603  *
1604  * dumpable |   mm->flags (binary)
1605  * old  new | initial interim  final
1606  * ---------+-----------------------
1607  *  0    1  |   00      01      01
1608  *  0    2  |   00      10(*)   11
1609  *  1    0  |   01      00      00
1610  *  1    2  |   01      11      11
1611  *  2    0  |   11      10(*)   00
1612  *  2    1  |   11      11      01
1613  *
1614  * (*) get_dumpable regards interim value of 10 as 11.
1615  */
1616 void set_dumpable(struct mm_struct *mm, int value)
1617 {
1618 	switch (value) {
1619 	case 0:
1620 		clear_bit(MMF_DUMPABLE, &mm->flags);
1621 		smp_wmb();
1622 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1623 		break;
1624 	case 1:
1625 		set_bit(MMF_DUMPABLE, &mm->flags);
1626 		smp_wmb();
1627 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1628 		break;
1629 	case 2:
1630 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1631 		smp_wmb();
1632 		set_bit(MMF_DUMPABLE, &mm->flags);
1633 		break;
1634 	}
1635 }
1636 
1637 int get_dumpable(struct mm_struct *mm)
1638 {
1639 	int ret;
1640 
1641 	ret = mm->flags & 0x3;
1642 	return (ret >= 2) ? 2 : ret;
1643 }
1644 
1645 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1646 {
1647 	char corename[CORENAME_MAX_SIZE + 1];
1648 	struct mm_struct *mm = current->mm;
1649 	struct linux_binfmt * binfmt;
1650 	struct inode * inode;
1651 	struct file * file;
1652 	int retval = 0;
1653 	int fsuid = current->fsuid;
1654 	int flag = 0;
1655 	int ispipe = 0;
1656 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1657 	char **helper_argv = NULL;
1658 	int helper_argc = 0;
1659 	char *delimit;
1660 
1661 	audit_core_dumps(signr);
1662 
1663 	binfmt = current->binfmt;
1664 	if (!binfmt || !binfmt->core_dump)
1665 		goto fail;
1666 	down_write(&mm->mmap_sem);
1667 	/*
1668 	 * If another thread got here first, or we are not dumpable, bail out.
1669 	 */
1670 	if (mm->core_waiters || !get_dumpable(mm)) {
1671 		up_write(&mm->mmap_sem);
1672 		goto fail;
1673 	}
1674 
1675 	/*
1676 	 *	We cannot trust fsuid as being the "true" uid of the
1677 	 *	process nor do we know its entire history. We only know it
1678 	 *	was tainted so we dump it as root in mode 2.
1679 	 */
1680 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1681 		flag = O_EXCL;		/* Stop rewrite attacks */
1682 		current->fsuid = 0;	/* Dump root private */
1683 	}
1684 
1685 	retval = coredump_wait(exit_code);
1686 	if (retval < 0)
1687 		goto fail;
1688 
1689 	/*
1690 	 * Clear any false indication of pending signals that might
1691 	 * be seen by the filesystem code called to write the core file.
1692 	 */
1693 	clear_thread_flag(TIF_SIGPENDING);
1694 
1695 	/*
1696 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1697 	 * uses lock_kernel()
1698 	 */
1699  	lock_kernel();
1700 	ispipe = format_corename(corename, core_pattern, signr);
1701 	unlock_kernel();
1702 	/*
1703 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1704 	 * to a pipe.  Since we're not writing directly to the filesystem
1705 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1706 	 * created unless the pipe reader choses to write out the core file
1707 	 * at which point file size limits and permissions will be imposed
1708 	 * as it does with any other process
1709 	 */
1710 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1711 		goto fail_unlock;
1712 
1713  	if (ispipe) {
1714 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1715 		/* Terminate the string before the first option */
1716 		delimit = strchr(corename, ' ');
1717 		if (delimit)
1718 			*delimit = '\0';
1719 		delimit = strrchr(helper_argv[0], '/');
1720 		if (delimit)
1721 			delimit++;
1722 		else
1723 			delimit = helper_argv[0];
1724 		if (!strcmp(delimit, current->comm)) {
1725 			printk(KERN_NOTICE "Recursive core dump detected, "
1726 					"aborting\n");
1727 			goto fail_unlock;
1728 		}
1729 
1730 		core_limit = RLIM_INFINITY;
1731 
1732 		/* SIGPIPE can happen, but it's just never processed */
1733  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1734 				&file)) {
1735  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1736 			       corename);
1737  			goto fail_unlock;
1738  		}
1739  	} else
1740  		file = filp_open(corename,
1741 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1742 				 0600);
1743 	if (IS_ERR(file))
1744 		goto fail_unlock;
1745 	inode = file->f_path.dentry->d_inode;
1746 	if (inode->i_nlink > 1)
1747 		goto close_fail;	/* multiple links - don't dump */
1748 	if (!ispipe && d_unhashed(file->f_path.dentry))
1749 		goto close_fail;
1750 
1751 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1752 	   but keep the previous behaviour for now. */
1753 	if (!ispipe && !S_ISREG(inode->i_mode))
1754 		goto close_fail;
1755 	/*
1756 	 * Dont allow local users get cute and trick others to coredump
1757 	 * into their pre-created files:
1758 	 */
1759 	if (inode->i_uid != current->fsuid)
1760 		goto close_fail;
1761 	if (!file->f_op)
1762 		goto close_fail;
1763 	if (!file->f_op->write)
1764 		goto close_fail;
1765 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1766 		goto close_fail;
1767 
1768 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1769 
1770 	if (retval)
1771 		current->signal->group_exit_code |= 0x80;
1772 close_fail:
1773 	filp_close(file, NULL);
1774 fail_unlock:
1775 	if (helper_argv)
1776 		argv_free(helper_argv);
1777 
1778 	current->fsuid = fsuid;
1779 	complete_all(&mm->core_done);
1780 fail:
1781 	return retval;
1782 }
1783