xref: /linux/fs/exec.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/tlb.h>
74 
75 #include <trace/events/task.h>
76 #include "internal.h"
77 
78 #include <trace/events/sched.h>
79 
80 static int bprm_creds_from_file(struct linux_binprm *bprm);
81 
82 int suid_dumpable = 0;
83 
84 static LIST_HEAD(formats);
85 static DEFINE_RWLOCK(binfmt_lock);
86 
87 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 {
89 	write_lock(&binfmt_lock);
90 	insert ? list_add(&fmt->lh, &formats) :
91 		 list_add_tail(&fmt->lh, &formats);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(__register_binfmt);
96 
97 void unregister_binfmt(struct linux_binfmt * fmt)
98 {
99 	write_lock(&binfmt_lock);
100 	list_del(&fmt->lh);
101 	write_unlock(&binfmt_lock);
102 }
103 
104 EXPORT_SYMBOL(unregister_binfmt);
105 
106 static inline void put_binfmt(struct linux_binfmt * fmt)
107 {
108 	module_put(fmt->module);
109 }
110 
111 bool path_noexec(const struct path *path)
112 {
113 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
114 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115 }
116 
117 #ifdef CONFIG_USELIB
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from the file itself.
123  */
124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126 	struct linux_binfmt *fmt;
127 	struct file *file;
128 	struct filename *tmp = getname(library);
129 	int error = PTR_ERR(tmp);
130 	static const struct open_flags uselib_flags = {
131 		.open_flag = O_LARGEFILE | O_RDONLY,
132 		.acc_mode = MAY_READ | MAY_EXEC,
133 		.intent = LOOKUP_OPEN,
134 		.lookup_flags = LOOKUP_FOLLOW,
135 	};
136 
137 	if (IS_ERR(tmp))
138 		goto out;
139 
140 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 	putname(tmp);
142 	error = PTR_ERR(file);
143 	if (IS_ERR(file))
144 		goto out;
145 
146 	/*
147 	 * may_open() has already checked for this, so it should be
148 	 * impossible to trip now. But we need to be extra cautious
149 	 * and check again at the very end too.
150 	 */
151 	error = -EACCES;
152 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
153 			 path_noexec(&file->f_path)))
154 		goto exit;
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175 	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	struct vm_area_struct *vma = bprm->vma;
203 	struct mm_struct *mm = bprm->mm;
204 	int ret;
205 
206 	/*
207 	 * Avoid relying on expanding the stack down in GUP (which
208 	 * does not work for STACK_GROWSUP anyway), and just do it
209 	 * by hand ahead of time.
210 	 */
211 	if (write && pos < vma->vm_start) {
212 		mmap_write_lock(mm);
213 		ret = expand_downwards(vma, pos);
214 		if (unlikely(ret < 0)) {
215 			mmap_write_unlock(mm);
216 			return NULL;
217 		}
218 		mmap_write_downgrade(mm);
219 	} else
220 		mmap_read_lock(mm);
221 
222 	/*
223 	 * We are doing an exec().  'current' is the process
224 	 * doing the exec and 'mm' is the new process's mm.
225 	 */
226 	ret = get_user_pages_remote(mm, pos, 1,
227 			write ? FOLL_WRITE : 0,
228 			&page, NULL);
229 	mmap_read_unlock(mm);
230 	if (ret <= 0)
231 		return NULL;
232 
233 	if (write)
234 		acct_arg_size(bprm, vma_pages(vma));
235 
236 	return page;
237 }
238 
239 static void put_arg_page(struct page *page)
240 {
241 	put_page(page);
242 }
243 
244 static void free_arg_pages(struct linux_binprm *bprm)
245 {
246 }
247 
248 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
249 		struct page *page)
250 {
251 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
252 }
253 
254 static int __bprm_mm_init(struct linux_binprm *bprm)
255 {
256 	int err;
257 	struct vm_area_struct *vma = NULL;
258 	struct mm_struct *mm = bprm->mm;
259 
260 	bprm->vma = vma = vm_area_alloc(mm);
261 	if (!vma)
262 		return -ENOMEM;
263 	vma_set_anonymous(vma);
264 
265 	if (mmap_write_lock_killable(mm)) {
266 		err = -EINTR;
267 		goto err_free;
268 	}
269 
270 	/*
271 	 * Place the stack at the largest stack address the architecture
272 	 * supports. Later, we'll move this to an appropriate place. We don't
273 	 * use STACK_TOP because that can depend on attributes which aren't
274 	 * configured yet.
275 	 */
276 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277 	vma->vm_end = STACK_TOP_MAX;
278 	vma->vm_start = vma->vm_end - PAGE_SIZE;
279 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
280 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 
282 	err = insert_vm_struct(mm, vma);
283 	if (err)
284 		goto err;
285 
286 	mm->stack_vm = mm->total_vm = 1;
287 	mmap_write_unlock(mm);
288 	bprm->p = vma->vm_end - sizeof(void *);
289 	return 0;
290 err:
291 	mmap_write_unlock(mm);
292 err_free:
293 	bprm->vma = NULL;
294 	vm_area_free(vma);
295 	return err;
296 }
297 
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300 	return len <= MAX_ARG_STRLEN;
301 }
302 
303 #else
304 
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308 
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 		int write)
311 {
312 	struct page *page;
313 
314 	page = bprm->page[pos / PAGE_SIZE];
315 	if (!page && write) {
316 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 		if (!page)
318 			return NULL;
319 		bprm->page[pos / PAGE_SIZE] = page;
320 	}
321 
322 	return page;
323 }
324 
325 static void put_arg_page(struct page *page)
326 {
327 }
328 
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331 	if (bprm->page[i]) {
332 		__free_page(bprm->page[i]);
333 		bprm->page[i] = NULL;
334 	}
335 }
336 
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339 	int i;
340 
341 	for (i = 0; i < MAX_ARG_PAGES; i++)
342 		free_arg_page(bprm, i);
343 }
344 
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 		struct page *page)
347 {
348 }
349 
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 	return 0;
354 }
355 
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358 	return len <= bprm->p;
359 }
360 
361 #endif /* CONFIG_MMU */
362 
363 /*
364  * Create a new mm_struct and populate it with a temporary stack
365  * vm_area_struct.  We don't have enough context at this point to set the stack
366  * flags, permissions, and offset, so we use temporary values.  We'll update
367  * them later in setup_arg_pages().
368  */
369 static int bprm_mm_init(struct linux_binprm *bprm)
370 {
371 	int err;
372 	struct mm_struct *mm = NULL;
373 
374 	bprm->mm = mm = mm_alloc();
375 	err = -ENOMEM;
376 	if (!mm)
377 		goto err;
378 
379 	/* Save current stack limit for all calculations made during exec. */
380 	task_lock(current->group_leader);
381 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
382 	task_unlock(current->group_leader);
383 
384 	err = __bprm_mm_init(bprm);
385 	if (err)
386 		goto err;
387 
388 	return 0;
389 
390 err:
391 	if (mm) {
392 		bprm->mm = NULL;
393 		mmdrop(mm);
394 	}
395 
396 	return err;
397 }
398 
399 struct user_arg_ptr {
400 #ifdef CONFIG_COMPAT
401 	bool is_compat;
402 #endif
403 	union {
404 		const char __user *const __user *native;
405 #ifdef CONFIG_COMPAT
406 		const compat_uptr_t __user *compat;
407 #endif
408 	} ptr;
409 };
410 
411 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412 {
413 	const char __user *native;
414 
415 #ifdef CONFIG_COMPAT
416 	if (unlikely(argv.is_compat)) {
417 		compat_uptr_t compat;
418 
419 		if (get_user(compat, argv.ptr.compat + nr))
420 			return ERR_PTR(-EFAULT);
421 
422 		return compat_ptr(compat);
423 	}
424 #endif
425 
426 	if (get_user(native, argv.ptr.native + nr))
427 		return ERR_PTR(-EFAULT);
428 
429 	return native;
430 }
431 
432 /*
433  * count() counts the number of strings in array ARGV.
434  */
435 static int count(struct user_arg_ptr argv, int max)
436 {
437 	int i = 0;
438 
439 	if (argv.ptr.native != NULL) {
440 		for (;;) {
441 			const char __user *p = get_user_arg_ptr(argv, i);
442 
443 			if (!p)
444 				break;
445 
446 			if (IS_ERR(p))
447 				return -EFAULT;
448 
449 			if (i >= max)
450 				return -E2BIG;
451 			++i;
452 
453 			if (fatal_signal_pending(current))
454 				return -ERESTARTNOHAND;
455 			cond_resched();
456 		}
457 	}
458 	return i;
459 }
460 
461 static int count_strings_kernel(const char *const *argv)
462 {
463 	int i;
464 
465 	if (!argv)
466 		return 0;
467 
468 	for (i = 0; argv[i]; ++i) {
469 		if (i >= MAX_ARG_STRINGS)
470 			return -E2BIG;
471 		if (fatal_signal_pending(current))
472 			return -ERESTARTNOHAND;
473 		cond_resched();
474 	}
475 	return i;
476 }
477 
478 static int bprm_stack_limits(struct linux_binprm *bprm)
479 {
480 	unsigned long limit, ptr_size;
481 
482 	/*
483 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
484 	 * (whichever is smaller) for the argv+env strings.
485 	 * This ensures that:
486 	 *  - the remaining binfmt code will not run out of stack space,
487 	 *  - the program will have a reasonable amount of stack left
488 	 *    to work from.
489 	 */
490 	limit = _STK_LIM / 4 * 3;
491 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
492 	/*
493 	 * We've historically supported up to 32 pages (ARG_MAX)
494 	 * of argument strings even with small stacks
495 	 */
496 	limit = max_t(unsigned long, limit, ARG_MAX);
497 	/*
498 	 * We must account for the size of all the argv and envp pointers to
499 	 * the argv and envp strings, since they will also take up space in
500 	 * the stack. They aren't stored until much later when we can't
501 	 * signal to the parent that the child has run out of stack space.
502 	 * Instead, calculate it here so it's possible to fail gracefully.
503 	 *
504 	 * In the case of argc = 0, make sure there is space for adding a
505 	 * empty string (which will bump argc to 1), to ensure confused
506 	 * userspace programs don't start processing from argv[1], thinking
507 	 * argc can never be 0, to keep them from walking envp by accident.
508 	 * See do_execveat_common().
509 	 */
510 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
511 	if (limit <= ptr_size)
512 		return -E2BIG;
513 	limit -= ptr_size;
514 
515 	bprm->argmin = bprm->p - limit;
516 	return 0;
517 }
518 
519 /*
520  * 'copy_strings()' copies argument/environment strings from the old
521  * processes's memory to the new process's stack.  The call to get_user_pages()
522  * ensures the destination page is created and not swapped out.
523  */
524 static int copy_strings(int argc, struct user_arg_ptr argv,
525 			struct linux_binprm *bprm)
526 {
527 	struct page *kmapped_page = NULL;
528 	char *kaddr = NULL;
529 	unsigned long kpos = 0;
530 	int ret;
531 
532 	while (argc-- > 0) {
533 		const char __user *str;
534 		int len;
535 		unsigned long pos;
536 
537 		ret = -EFAULT;
538 		str = get_user_arg_ptr(argv, argc);
539 		if (IS_ERR(str))
540 			goto out;
541 
542 		len = strnlen_user(str, MAX_ARG_STRLEN);
543 		if (!len)
544 			goto out;
545 
546 		ret = -E2BIG;
547 		if (!valid_arg_len(bprm, len))
548 			goto out;
549 
550 		/* We're going to work our way backwards. */
551 		pos = bprm->p;
552 		str += len;
553 		bprm->p -= len;
554 #ifdef CONFIG_MMU
555 		if (bprm->p < bprm->argmin)
556 			goto out;
557 #endif
558 
559 		while (len > 0) {
560 			int offset, bytes_to_copy;
561 
562 			if (fatal_signal_pending(current)) {
563 				ret = -ERESTARTNOHAND;
564 				goto out;
565 			}
566 			cond_resched();
567 
568 			offset = pos % PAGE_SIZE;
569 			if (offset == 0)
570 				offset = PAGE_SIZE;
571 
572 			bytes_to_copy = offset;
573 			if (bytes_to_copy > len)
574 				bytes_to_copy = len;
575 
576 			offset -= bytes_to_copy;
577 			pos -= bytes_to_copy;
578 			str -= bytes_to_copy;
579 			len -= bytes_to_copy;
580 
581 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
582 				struct page *page;
583 
584 				page = get_arg_page(bprm, pos, 1);
585 				if (!page) {
586 					ret = -E2BIG;
587 					goto out;
588 				}
589 
590 				if (kmapped_page) {
591 					flush_dcache_page(kmapped_page);
592 					kunmap_local(kaddr);
593 					put_arg_page(kmapped_page);
594 				}
595 				kmapped_page = page;
596 				kaddr = kmap_local_page(kmapped_page);
597 				kpos = pos & PAGE_MASK;
598 				flush_arg_page(bprm, kpos, kmapped_page);
599 			}
600 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
601 				ret = -EFAULT;
602 				goto out;
603 			}
604 		}
605 	}
606 	ret = 0;
607 out:
608 	if (kmapped_page) {
609 		flush_dcache_page(kmapped_page);
610 		kunmap_local(kaddr);
611 		put_arg_page(kmapped_page);
612 	}
613 	return ret;
614 }
615 
616 /*
617  * Copy and argument/environment string from the kernel to the processes stack.
618  */
619 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
620 {
621 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
622 	unsigned long pos = bprm->p;
623 
624 	if (len == 0)
625 		return -EFAULT;
626 	if (!valid_arg_len(bprm, len))
627 		return -E2BIG;
628 
629 	/* We're going to work our way backwards. */
630 	arg += len;
631 	bprm->p -= len;
632 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
633 		return -E2BIG;
634 
635 	while (len > 0) {
636 		unsigned int bytes_to_copy = min_t(unsigned int, len,
637 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
638 		struct page *page;
639 
640 		pos -= bytes_to_copy;
641 		arg -= bytes_to_copy;
642 		len -= bytes_to_copy;
643 
644 		page = get_arg_page(bprm, pos, 1);
645 		if (!page)
646 			return -E2BIG;
647 		flush_arg_page(bprm, pos & PAGE_MASK, page);
648 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
649 		put_arg_page(page);
650 	}
651 
652 	return 0;
653 }
654 EXPORT_SYMBOL(copy_string_kernel);
655 
656 static int copy_strings_kernel(int argc, const char *const *argv,
657 			       struct linux_binprm *bprm)
658 {
659 	while (argc-- > 0) {
660 		int ret = copy_string_kernel(argv[argc], bprm);
661 		if (ret < 0)
662 			return ret;
663 		if (fatal_signal_pending(current))
664 			return -ERESTARTNOHAND;
665 		cond_resched();
666 	}
667 	return 0;
668 }
669 
670 #ifdef CONFIG_MMU
671 
672 /*
673  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
674  * the binfmt code determines where the new stack should reside, we shift it to
675  * its final location.  The process proceeds as follows:
676  *
677  * 1) Use shift to calculate the new vma endpoints.
678  * 2) Extend vma to cover both the old and new ranges.  This ensures the
679  *    arguments passed to subsequent functions are consistent.
680  * 3) Move vma's page tables to the new range.
681  * 4) Free up any cleared pgd range.
682  * 5) Shrink the vma to cover only the new range.
683  */
684 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
685 {
686 	struct mm_struct *mm = vma->vm_mm;
687 	unsigned long old_start = vma->vm_start;
688 	unsigned long old_end = vma->vm_end;
689 	unsigned long length = old_end - old_start;
690 	unsigned long new_start = old_start - shift;
691 	unsigned long new_end = old_end - shift;
692 	VMA_ITERATOR(vmi, mm, new_start);
693 	struct vm_area_struct *next;
694 	struct mmu_gather tlb;
695 
696 	BUG_ON(new_start > new_end);
697 
698 	/*
699 	 * ensure there are no vmas between where we want to go
700 	 * and where we are
701 	 */
702 	if (vma != vma_next(&vmi))
703 		return -EFAULT;
704 
705 	vma_iter_prev_range(&vmi);
706 	/*
707 	 * cover the whole range: [new_start, old_end)
708 	 */
709 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
710 		return -ENOMEM;
711 
712 	/*
713 	 * move the page tables downwards, on failure we rely on
714 	 * process cleanup to remove whatever mess we made.
715 	 */
716 	if (length != move_page_tables(vma, old_start,
717 				       vma, new_start, length, false, true))
718 		return -ENOMEM;
719 
720 	lru_add_drain();
721 	tlb_gather_mmu(&tlb, mm);
722 	next = vma_next(&vmi);
723 	if (new_end > old_start) {
724 		/*
725 		 * when the old and new regions overlap clear from new_end.
726 		 */
727 		free_pgd_range(&tlb, new_end, old_end, new_end,
728 			next ? next->vm_start : USER_PGTABLES_CEILING);
729 	} else {
730 		/*
731 		 * otherwise, clean from old_start; this is done to not touch
732 		 * the address space in [new_end, old_start) some architectures
733 		 * have constraints on va-space that make this illegal (IA64) -
734 		 * for the others its just a little faster.
735 		 */
736 		free_pgd_range(&tlb, old_start, old_end, new_end,
737 			next ? next->vm_start : USER_PGTABLES_CEILING);
738 	}
739 	tlb_finish_mmu(&tlb);
740 
741 	vma_prev(&vmi);
742 	/* Shrink the vma to just the new range */
743 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
744 }
745 
746 /*
747  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
748  * the stack is optionally relocated, and some extra space is added.
749  */
750 int setup_arg_pages(struct linux_binprm *bprm,
751 		    unsigned long stack_top,
752 		    int executable_stack)
753 {
754 	unsigned long ret;
755 	unsigned long stack_shift;
756 	struct mm_struct *mm = current->mm;
757 	struct vm_area_struct *vma = bprm->vma;
758 	struct vm_area_struct *prev = NULL;
759 	unsigned long vm_flags;
760 	unsigned long stack_base;
761 	unsigned long stack_size;
762 	unsigned long stack_expand;
763 	unsigned long rlim_stack;
764 	struct mmu_gather tlb;
765 	struct vma_iterator vmi;
766 
767 #ifdef CONFIG_STACK_GROWSUP
768 	/* Limit stack size */
769 	stack_base = bprm->rlim_stack.rlim_max;
770 
771 	stack_base = calc_max_stack_size(stack_base);
772 
773 	/* Add space for stack randomization. */
774 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
775 
776 	/* Make sure we didn't let the argument array grow too large. */
777 	if (vma->vm_end - vma->vm_start > stack_base)
778 		return -ENOMEM;
779 
780 	stack_base = PAGE_ALIGN(stack_top - stack_base);
781 
782 	stack_shift = vma->vm_start - stack_base;
783 	mm->arg_start = bprm->p - stack_shift;
784 	bprm->p = vma->vm_end - stack_shift;
785 #else
786 	stack_top = arch_align_stack(stack_top);
787 	stack_top = PAGE_ALIGN(stack_top);
788 
789 	if (unlikely(stack_top < mmap_min_addr) ||
790 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
791 		return -ENOMEM;
792 
793 	stack_shift = vma->vm_end - stack_top;
794 
795 	bprm->p -= stack_shift;
796 	mm->arg_start = bprm->p;
797 #endif
798 
799 	if (bprm->loader)
800 		bprm->loader -= stack_shift;
801 	bprm->exec -= stack_shift;
802 
803 	if (mmap_write_lock_killable(mm))
804 		return -EINTR;
805 
806 	vm_flags = VM_STACK_FLAGS;
807 
808 	/*
809 	 * Adjust stack execute permissions; explicitly enable for
810 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811 	 * (arch default) otherwise.
812 	 */
813 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
814 		vm_flags |= VM_EXEC;
815 	else if (executable_stack == EXSTACK_DISABLE_X)
816 		vm_flags &= ~VM_EXEC;
817 	vm_flags |= mm->def_flags;
818 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
819 
820 	vma_iter_init(&vmi, mm, vma->vm_start);
821 
822 	tlb_gather_mmu(&tlb, mm);
823 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
824 			vm_flags);
825 	tlb_finish_mmu(&tlb);
826 
827 	if (ret)
828 		goto out_unlock;
829 	BUG_ON(prev != vma);
830 
831 	if (unlikely(vm_flags & VM_EXEC)) {
832 		pr_warn_once("process '%pD4' started with executable stack\n",
833 			     bprm->file);
834 	}
835 
836 	/* Move stack pages down in memory. */
837 	if (stack_shift) {
838 		ret = shift_arg_pages(vma, stack_shift);
839 		if (ret)
840 			goto out_unlock;
841 	}
842 
843 	/* mprotect_fixup is overkill to remove the temporary stack flags */
844 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
845 
846 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
847 	stack_size = vma->vm_end - vma->vm_start;
848 	/*
849 	 * Align this down to a page boundary as expand_stack
850 	 * will align it up.
851 	 */
852 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
853 
854 	stack_expand = min(rlim_stack, stack_size + stack_expand);
855 
856 #ifdef CONFIG_STACK_GROWSUP
857 	stack_base = vma->vm_start + stack_expand;
858 #else
859 	stack_base = vma->vm_end - stack_expand;
860 #endif
861 	current->mm->start_stack = bprm->p;
862 	ret = expand_stack_locked(vma, stack_base);
863 	if (ret)
864 		ret = -EFAULT;
865 
866 out_unlock:
867 	mmap_write_unlock(mm);
868 	return ret;
869 }
870 EXPORT_SYMBOL(setup_arg_pages);
871 
872 #else
873 
874 /*
875  * Transfer the program arguments and environment from the holding pages
876  * onto the stack. The provided stack pointer is adjusted accordingly.
877  */
878 int transfer_args_to_stack(struct linux_binprm *bprm,
879 			   unsigned long *sp_location)
880 {
881 	unsigned long index, stop, sp;
882 	int ret = 0;
883 
884 	stop = bprm->p >> PAGE_SHIFT;
885 	sp = *sp_location;
886 
887 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
888 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
889 		char *src = kmap_local_page(bprm->page[index]) + offset;
890 		sp -= PAGE_SIZE - offset;
891 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
892 			ret = -EFAULT;
893 		kunmap_local(src);
894 		if (ret)
895 			goto out;
896 	}
897 
898 	*sp_location = sp;
899 
900 out:
901 	return ret;
902 }
903 EXPORT_SYMBOL(transfer_args_to_stack);
904 
905 #endif /* CONFIG_MMU */
906 
907 /*
908  * On success, caller must call do_close_execat() on the returned
909  * struct file to close it.
910  */
911 static struct file *do_open_execat(int fd, struct filename *name, int flags)
912 {
913 	struct file *file;
914 	int err;
915 	struct open_flags open_exec_flags = {
916 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
917 		.acc_mode = MAY_EXEC,
918 		.intent = LOOKUP_OPEN,
919 		.lookup_flags = LOOKUP_FOLLOW,
920 	};
921 
922 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
923 		return ERR_PTR(-EINVAL);
924 	if (flags & AT_SYMLINK_NOFOLLOW)
925 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
926 	if (flags & AT_EMPTY_PATH)
927 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
928 
929 	file = do_filp_open(fd, name, &open_exec_flags);
930 	if (IS_ERR(file))
931 		goto out;
932 
933 	/*
934 	 * may_open() has already checked for this, so it should be
935 	 * impossible to trip now. But we need to be extra cautious
936 	 * and check again at the very end too.
937 	 */
938 	err = -EACCES;
939 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
940 			 path_noexec(&file->f_path)))
941 		goto exit;
942 
943 	err = deny_write_access(file);
944 	if (err)
945 		goto exit;
946 
947 out:
948 	return file;
949 
950 exit:
951 	fput(file);
952 	return ERR_PTR(err);
953 }
954 
955 /**
956  * open_exec - Open a path name for execution
957  *
958  * @name: path name to open with the intent of executing it.
959  *
960  * Returns ERR_PTR on failure or allocated struct file on success.
961  *
962  * As this is a wrapper for the internal do_open_execat(), callers
963  * must call allow_write_access() before fput() on release. Also see
964  * do_close_execat().
965  */
966 struct file *open_exec(const char *name)
967 {
968 	struct filename *filename = getname_kernel(name);
969 	struct file *f = ERR_CAST(filename);
970 
971 	if (!IS_ERR(filename)) {
972 		f = do_open_execat(AT_FDCWD, filename, 0);
973 		putname(filename);
974 	}
975 	return f;
976 }
977 EXPORT_SYMBOL(open_exec);
978 
979 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
980 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
981 {
982 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
983 	if (res > 0)
984 		flush_icache_user_range(addr, addr + len);
985 	return res;
986 }
987 EXPORT_SYMBOL(read_code);
988 #endif
989 
990 /*
991  * Maps the mm_struct mm into the current task struct.
992  * On success, this function returns with exec_update_lock
993  * held for writing.
994  */
995 static int exec_mmap(struct mm_struct *mm)
996 {
997 	struct task_struct *tsk;
998 	struct mm_struct *old_mm, *active_mm;
999 	int ret;
1000 
1001 	/* Notify parent that we're no longer interested in the old VM */
1002 	tsk = current;
1003 	old_mm = current->mm;
1004 	exec_mm_release(tsk, old_mm);
1005 
1006 	ret = down_write_killable(&tsk->signal->exec_update_lock);
1007 	if (ret)
1008 		return ret;
1009 
1010 	if (old_mm) {
1011 		/*
1012 		 * If there is a pending fatal signal perhaps a signal
1013 		 * whose default action is to create a coredump get
1014 		 * out and die instead of going through with the exec.
1015 		 */
1016 		ret = mmap_read_lock_killable(old_mm);
1017 		if (ret) {
1018 			up_write(&tsk->signal->exec_update_lock);
1019 			return ret;
1020 		}
1021 	}
1022 
1023 	task_lock(tsk);
1024 	membarrier_exec_mmap(mm);
1025 
1026 	local_irq_disable();
1027 	active_mm = tsk->active_mm;
1028 	tsk->active_mm = mm;
1029 	tsk->mm = mm;
1030 	mm_init_cid(mm);
1031 	/*
1032 	 * This prevents preemption while active_mm is being loaded and
1033 	 * it and mm are being updated, which could cause problems for
1034 	 * lazy tlb mm refcounting when these are updated by context
1035 	 * switches. Not all architectures can handle irqs off over
1036 	 * activate_mm yet.
1037 	 */
1038 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1039 		local_irq_enable();
1040 	activate_mm(active_mm, mm);
1041 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1042 		local_irq_enable();
1043 	lru_gen_add_mm(mm);
1044 	task_unlock(tsk);
1045 	lru_gen_use_mm(mm);
1046 	if (old_mm) {
1047 		mmap_read_unlock(old_mm);
1048 		BUG_ON(active_mm != old_mm);
1049 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1050 		mm_update_next_owner(old_mm);
1051 		mmput(old_mm);
1052 		return 0;
1053 	}
1054 	mmdrop_lazy_tlb(active_mm);
1055 	return 0;
1056 }
1057 
1058 static int de_thread(struct task_struct *tsk)
1059 {
1060 	struct signal_struct *sig = tsk->signal;
1061 	struct sighand_struct *oldsighand = tsk->sighand;
1062 	spinlock_t *lock = &oldsighand->siglock;
1063 
1064 	if (thread_group_empty(tsk))
1065 		goto no_thread_group;
1066 
1067 	/*
1068 	 * Kill all other threads in the thread group.
1069 	 */
1070 	spin_lock_irq(lock);
1071 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1072 		/*
1073 		 * Another group action in progress, just
1074 		 * return so that the signal is processed.
1075 		 */
1076 		spin_unlock_irq(lock);
1077 		return -EAGAIN;
1078 	}
1079 
1080 	sig->group_exec_task = tsk;
1081 	sig->notify_count = zap_other_threads(tsk);
1082 	if (!thread_group_leader(tsk))
1083 		sig->notify_count--;
1084 
1085 	while (sig->notify_count) {
1086 		__set_current_state(TASK_KILLABLE);
1087 		spin_unlock_irq(lock);
1088 		schedule();
1089 		if (__fatal_signal_pending(tsk))
1090 			goto killed;
1091 		spin_lock_irq(lock);
1092 	}
1093 	spin_unlock_irq(lock);
1094 
1095 	/*
1096 	 * At this point all other threads have exited, all we have to
1097 	 * do is to wait for the thread group leader to become inactive,
1098 	 * and to assume its PID:
1099 	 */
1100 	if (!thread_group_leader(tsk)) {
1101 		struct task_struct *leader = tsk->group_leader;
1102 
1103 		for (;;) {
1104 			cgroup_threadgroup_change_begin(tsk);
1105 			write_lock_irq(&tasklist_lock);
1106 			/*
1107 			 * Do this under tasklist_lock to ensure that
1108 			 * exit_notify() can't miss ->group_exec_task
1109 			 */
1110 			sig->notify_count = -1;
1111 			if (likely(leader->exit_state))
1112 				break;
1113 			__set_current_state(TASK_KILLABLE);
1114 			write_unlock_irq(&tasklist_lock);
1115 			cgroup_threadgroup_change_end(tsk);
1116 			schedule();
1117 			if (__fatal_signal_pending(tsk))
1118 				goto killed;
1119 		}
1120 
1121 		/*
1122 		 * The only record we have of the real-time age of a
1123 		 * process, regardless of execs it's done, is start_time.
1124 		 * All the past CPU time is accumulated in signal_struct
1125 		 * from sister threads now dead.  But in this non-leader
1126 		 * exec, nothing survives from the original leader thread,
1127 		 * whose birth marks the true age of this process now.
1128 		 * When we take on its identity by switching to its PID, we
1129 		 * also take its birthdate (always earlier than our own).
1130 		 */
1131 		tsk->start_time = leader->start_time;
1132 		tsk->start_boottime = leader->start_boottime;
1133 
1134 		BUG_ON(!same_thread_group(leader, tsk));
1135 		/*
1136 		 * An exec() starts a new thread group with the
1137 		 * TGID of the previous thread group. Rehash the
1138 		 * two threads with a switched PID, and release
1139 		 * the former thread group leader:
1140 		 */
1141 
1142 		/* Become a process group leader with the old leader's pid.
1143 		 * The old leader becomes a thread of the this thread group.
1144 		 */
1145 		exchange_tids(tsk, leader);
1146 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1147 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1148 		transfer_pid(leader, tsk, PIDTYPE_SID);
1149 
1150 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1151 		list_replace_init(&leader->sibling, &tsk->sibling);
1152 
1153 		tsk->group_leader = tsk;
1154 		leader->group_leader = tsk;
1155 
1156 		tsk->exit_signal = SIGCHLD;
1157 		leader->exit_signal = -1;
1158 
1159 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1160 		leader->exit_state = EXIT_DEAD;
1161 		/*
1162 		 * We are going to release_task()->ptrace_unlink() silently,
1163 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1164 		 * the tracer won't block again waiting for this thread.
1165 		 */
1166 		if (unlikely(leader->ptrace))
1167 			__wake_up_parent(leader, leader->parent);
1168 		write_unlock_irq(&tasklist_lock);
1169 		cgroup_threadgroup_change_end(tsk);
1170 
1171 		release_task(leader);
1172 	}
1173 
1174 	sig->group_exec_task = NULL;
1175 	sig->notify_count = 0;
1176 
1177 no_thread_group:
1178 	/* we have changed execution domain */
1179 	tsk->exit_signal = SIGCHLD;
1180 
1181 	BUG_ON(!thread_group_leader(tsk));
1182 	return 0;
1183 
1184 killed:
1185 	/* protects against exit_notify() and __exit_signal() */
1186 	read_lock(&tasklist_lock);
1187 	sig->group_exec_task = NULL;
1188 	sig->notify_count = 0;
1189 	read_unlock(&tasklist_lock);
1190 	return -EAGAIN;
1191 }
1192 
1193 
1194 /*
1195  * This function makes sure the current process has its own signal table,
1196  * so that flush_signal_handlers can later reset the handlers without
1197  * disturbing other processes.  (Other processes might share the signal
1198  * table via the CLONE_SIGHAND option to clone().)
1199  */
1200 static int unshare_sighand(struct task_struct *me)
1201 {
1202 	struct sighand_struct *oldsighand = me->sighand;
1203 
1204 	if (refcount_read(&oldsighand->count) != 1) {
1205 		struct sighand_struct *newsighand;
1206 		/*
1207 		 * This ->sighand is shared with the CLONE_SIGHAND
1208 		 * but not CLONE_THREAD task, switch to the new one.
1209 		 */
1210 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1211 		if (!newsighand)
1212 			return -ENOMEM;
1213 
1214 		refcount_set(&newsighand->count, 1);
1215 
1216 		write_lock_irq(&tasklist_lock);
1217 		spin_lock(&oldsighand->siglock);
1218 		memcpy(newsighand->action, oldsighand->action,
1219 		       sizeof(newsighand->action));
1220 		rcu_assign_pointer(me->sighand, newsighand);
1221 		spin_unlock(&oldsighand->siglock);
1222 		write_unlock_irq(&tasklist_lock);
1223 
1224 		__cleanup_sighand(oldsighand);
1225 	}
1226 	return 0;
1227 }
1228 
1229 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1230 {
1231 	task_lock(tsk);
1232 	/* Always NUL terminated and zero-padded */
1233 	strscpy_pad(buf, tsk->comm, buf_size);
1234 	task_unlock(tsk);
1235 	return buf;
1236 }
1237 EXPORT_SYMBOL_GPL(__get_task_comm);
1238 
1239 /*
1240  * These functions flushes out all traces of the currently running executable
1241  * so that a new one can be started
1242  */
1243 
1244 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1245 {
1246 	task_lock(tsk);
1247 	trace_task_rename(tsk, buf);
1248 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1249 	task_unlock(tsk);
1250 	perf_event_comm(tsk, exec);
1251 }
1252 
1253 /*
1254  * Calling this is the point of no return. None of the failures will be
1255  * seen by userspace since either the process is already taking a fatal
1256  * signal (via de_thread() or coredump), or will have SEGV raised
1257  * (after exec_mmap()) by search_binary_handler (see below).
1258  */
1259 int begin_new_exec(struct linux_binprm * bprm)
1260 {
1261 	struct task_struct *me = current;
1262 	int retval;
1263 
1264 	/* Once we are committed compute the creds */
1265 	retval = bprm_creds_from_file(bprm);
1266 	if (retval)
1267 		return retval;
1268 
1269 	/*
1270 	 * Ensure all future errors are fatal.
1271 	 */
1272 	bprm->point_of_no_return = true;
1273 
1274 	/*
1275 	 * Make this the only thread in the thread group.
1276 	 */
1277 	retval = de_thread(me);
1278 	if (retval)
1279 		goto out;
1280 
1281 	/*
1282 	 * Cancel any io_uring activity across execve
1283 	 */
1284 	io_uring_task_cancel();
1285 
1286 	/* Ensure the files table is not shared. */
1287 	retval = unshare_files();
1288 	if (retval)
1289 		goto out;
1290 
1291 	/*
1292 	 * Must be called _before_ exec_mmap() as bprm->mm is
1293 	 * not visible until then. Doing it here also ensures
1294 	 * we don't race against replace_mm_exe_file().
1295 	 */
1296 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1297 	if (retval)
1298 		goto out;
1299 
1300 	/* If the binary is not readable then enforce mm->dumpable=0 */
1301 	would_dump(bprm, bprm->file);
1302 	if (bprm->have_execfd)
1303 		would_dump(bprm, bprm->executable);
1304 
1305 	/*
1306 	 * Release all of the old mmap stuff
1307 	 */
1308 	acct_arg_size(bprm, 0);
1309 	retval = exec_mmap(bprm->mm);
1310 	if (retval)
1311 		goto out;
1312 
1313 	bprm->mm = NULL;
1314 
1315 	retval = exec_task_namespaces();
1316 	if (retval)
1317 		goto out_unlock;
1318 
1319 #ifdef CONFIG_POSIX_TIMERS
1320 	spin_lock_irq(&me->sighand->siglock);
1321 	posix_cpu_timers_exit(me);
1322 	spin_unlock_irq(&me->sighand->siglock);
1323 	exit_itimers(me);
1324 	flush_itimer_signals();
1325 #endif
1326 
1327 	/*
1328 	 * Make the signal table private.
1329 	 */
1330 	retval = unshare_sighand(me);
1331 	if (retval)
1332 		goto out_unlock;
1333 
1334 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1335 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1336 	flush_thread();
1337 	me->personality &= ~bprm->per_clear;
1338 
1339 	clear_syscall_work_syscall_user_dispatch(me);
1340 
1341 	/*
1342 	 * We have to apply CLOEXEC before we change whether the process is
1343 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1344 	 * trying to access the should-be-closed file descriptors of a process
1345 	 * undergoing exec(2).
1346 	 */
1347 	do_close_on_exec(me->files);
1348 
1349 	if (bprm->secureexec) {
1350 		/* Make sure parent cannot signal privileged process. */
1351 		me->pdeath_signal = 0;
1352 
1353 		/*
1354 		 * For secureexec, reset the stack limit to sane default to
1355 		 * avoid bad behavior from the prior rlimits. This has to
1356 		 * happen before arch_pick_mmap_layout(), which examines
1357 		 * RLIMIT_STACK, but after the point of no return to avoid
1358 		 * needing to clean up the change on failure.
1359 		 */
1360 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1361 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1362 	}
1363 
1364 	me->sas_ss_sp = me->sas_ss_size = 0;
1365 
1366 	/*
1367 	 * Figure out dumpability. Note that this checking only of current
1368 	 * is wrong, but userspace depends on it. This should be testing
1369 	 * bprm->secureexec instead.
1370 	 */
1371 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1372 	    !(uid_eq(current_euid(), current_uid()) &&
1373 	      gid_eq(current_egid(), current_gid())))
1374 		set_dumpable(current->mm, suid_dumpable);
1375 	else
1376 		set_dumpable(current->mm, SUID_DUMP_USER);
1377 
1378 	perf_event_exec();
1379 	__set_task_comm(me, kbasename(bprm->filename), true);
1380 
1381 	/* An exec changes our domain. We are no longer part of the thread
1382 	   group */
1383 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1384 	flush_signal_handlers(me, 0);
1385 
1386 	retval = set_cred_ucounts(bprm->cred);
1387 	if (retval < 0)
1388 		goto out_unlock;
1389 
1390 	/*
1391 	 * install the new credentials for this executable
1392 	 */
1393 	security_bprm_committing_creds(bprm);
1394 
1395 	commit_creds(bprm->cred);
1396 	bprm->cred = NULL;
1397 
1398 	/*
1399 	 * Disable monitoring for regular users
1400 	 * when executing setuid binaries. Must
1401 	 * wait until new credentials are committed
1402 	 * by commit_creds() above
1403 	 */
1404 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1405 		perf_event_exit_task(me);
1406 	/*
1407 	 * cred_guard_mutex must be held at least to this point to prevent
1408 	 * ptrace_attach() from altering our determination of the task's
1409 	 * credentials; any time after this it may be unlocked.
1410 	 */
1411 	security_bprm_committed_creds(bprm);
1412 
1413 	/* Pass the opened binary to the interpreter. */
1414 	if (bprm->have_execfd) {
1415 		retval = get_unused_fd_flags(0);
1416 		if (retval < 0)
1417 			goto out_unlock;
1418 		fd_install(retval, bprm->executable);
1419 		bprm->executable = NULL;
1420 		bprm->execfd = retval;
1421 	}
1422 	return 0;
1423 
1424 out_unlock:
1425 	up_write(&me->signal->exec_update_lock);
1426 	if (!bprm->cred)
1427 		mutex_unlock(&me->signal->cred_guard_mutex);
1428 
1429 out:
1430 	return retval;
1431 }
1432 EXPORT_SYMBOL(begin_new_exec);
1433 
1434 void would_dump(struct linux_binprm *bprm, struct file *file)
1435 {
1436 	struct inode *inode = file_inode(file);
1437 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1438 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1439 		struct user_namespace *old, *user_ns;
1440 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1441 
1442 		/* Ensure mm->user_ns contains the executable */
1443 		user_ns = old = bprm->mm->user_ns;
1444 		while ((user_ns != &init_user_ns) &&
1445 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1446 			user_ns = user_ns->parent;
1447 
1448 		if (old != user_ns) {
1449 			bprm->mm->user_ns = get_user_ns(user_ns);
1450 			put_user_ns(old);
1451 		}
1452 	}
1453 }
1454 EXPORT_SYMBOL(would_dump);
1455 
1456 void setup_new_exec(struct linux_binprm * bprm)
1457 {
1458 	/* Setup things that can depend upon the personality */
1459 	struct task_struct *me = current;
1460 
1461 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1462 
1463 	arch_setup_new_exec();
1464 
1465 	/* Set the new mm task size. We have to do that late because it may
1466 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1467 	 * some architectures like powerpc
1468 	 */
1469 	me->mm->task_size = TASK_SIZE;
1470 	up_write(&me->signal->exec_update_lock);
1471 	mutex_unlock(&me->signal->cred_guard_mutex);
1472 }
1473 EXPORT_SYMBOL(setup_new_exec);
1474 
1475 /* Runs immediately before start_thread() takes over. */
1476 void finalize_exec(struct linux_binprm *bprm)
1477 {
1478 	/* Store any stack rlimit changes before starting thread. */
1479 	task_lock(current->group_leader);
1480 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1481 	task_unlock(current->group_leader);
1482 }
1483 EXPORT_SYMBOL(finalize_exec);
1484 
1485 /*
1486  * Prepare credentials and lock ->cred_guard_mutex.
1487  * setup_new_exec() commits the new creds and drops the lock.
1488  * Or, if exec fails before, free_bprm() should release ->cred
1489  * and unlock.
1490  */
1491 static int prepare_bprm_creds(struct linux_binprm *bprm)
1492 {
1493 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1494 		return -ERESTARTNOINTR;
1495 
1496 	bprm->cred = prepare_exec_creds();
1497 	if (likely(bprm->cred))
1498 		return 0;
1499 
1500 	mutex_unlock(&current->signal->cred_guard_mutex);
1501 	return -ENOMEM;
1502 }
1503 
1504 /* Matches do_open_execat() */
1505 static void do_close_execat(struct file *file)
1506 {
1507 	if (!file)
1508 		return;
1509 	allow_write_access(file);
1510 	fput(file);
1511 }
1512 
1513 static void free_bprm(struct linux_binprm *bprm)
1514 {
1515 	if (bprm->mm) {
1516 		acct_arg_size(bprm, 0);
1517 		mmput(bprm->mm);
1518 	}
1519 	free_arg_pages(bprm);
1520 	if (bprm->cred) {
1521 		mutex_unlock(&current->signal->cred_guard_mutex);
1522 		abort_creds(bprm->cred);
1523 	}
1524 	do_close_execat(bprm->file);
1525 	if (bprm->executable)
1526 		fput(bprm->executable);
1527 	/* If a binfmt changed the interp, free it. */
1528 	if (bprm->interp != bprm->filename)
1529 		kfree(bprm->interp);
1530 	kfree(bprm->fdpath);
1531 	kfree(bprm);
1532 }
1533 
1534 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1535 {
1536 	struct linux_binprm *bprm;
1537 	struct file *file;
1538 	int retval = -ENOMEM;
1539 
1540 	file = do_open_execat(fd, filename, flags);
1541 	if (IS_ERR(file))
1542 		return ERR_CAST(file);
1543 
1544 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1545 	if (!bprm) {
1546 		do_close_execat(file);
1547 		return ERR_PTR(-ENOMEM);
1548 	}
1549 
1550 	bprm->file = file;
1551 
1552 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1553 		bprm->filename = filename->name;
1554 	} else {
1555 		if (filename->name[0] == '\0')
1556 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1557 		else
1558 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1559 						  fd, filename->name);
1560 		if (!bprm->fdpath)
1561 			goto out_free;
1562 
1563 		/*
1564 		 * Record that a name derived from an O_CLOEXEC fd will be
1565 		 * inaccessible after exec.  This allows the code in exec to
1566 		 * choose to fail when the executable is not mmaped into the
1567 		 * interpreter and an open file descriptor is not passed to
1568 		 * the interpreter.  This makes for a better user experience
1569 		 * than having the interpreter start and then immediately fail
1570 		 * when it finds the executable is inaccessible.
1571 		 */
1572 		if (get_close_on_exec(fd))
1573 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1574 
1575 		bprm->filename = bprm->fdpath;
1576 	}
1577 	bprm->interp = bprm->filename;
1578 
1579 	retval = bprm_mm_init(bprm);
1580 	if (!retval)
1581 		return bprm;
1582 
1583 out_free:
1584 	free_bprm(bprm);
1585 	return ERR_PTR(retval);
1586 }
1587 
1588 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1589 {
1590 	/* If a binfmt changed the interp, free it first. */
1591 	if (bprm->interp != bprm->filename)
1592 		kfree(bprm->interp);
1593 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1594 	if (!bprm->interp)
1595 		return -ENOMEM;
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(bprm_change_interp);
1599 
1600 /*
1601  * determine how safe it is to execute the proposed program
1602  * - the caller must hold ->cred_guard_mutex to protect against
1603  *   PTRACE_ATTACH or seccomp thread-sync
1604  */
1605 static void check_unsafe_exec(struct linux_binprm *bprm)
1606 {
1607 	struct task_struct *p = current, *t;
1608 	unsigned n_fs;
1609 
1610 	if (p->ptrace)
1611 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1612 
1613 	/*
1614 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1615 	 * mess up.
1616 	 */
1617 	if (task_no_new_privs(current))
1618 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1619 
1620 	/*
1621 	 * If another task is sharing our fs, we cannot safely
1622 	 * suid exec because the differently privileged task
1623 	 * will be able to manipulate the current directory, etc.
1624 	 * It would be nice to force an unshare instead...
1625 	 */
1626 	n_fs = 1;
1627 	spin_lock(&p->fs->lock);
1628 	rcu_read_lock();
1629 	for_other_threads(p, t) {
1630 		if (t->fs == p->fs)
1631 			n_fs++;
1632 	}
1633 	rcu_read_unlock();
1634 
1635 	/* "users" and "in_exec" locked for copy_fs() */
1636 	if (p->fs->users > n_fs)
1637 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1638 	else
1639 		p->fs->in_exec = 1;
1640 	spin_unlock(&p->fs->lock);
1641 }
1642 
1643 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1644 {
1645 	/* Handle suid and sgid on files */
1646 	struct mnt_idmap *idmap;
1647 	struct inode *inode = file_inode(file);
1648 	unsigned int mode;
1649 	vfsuid_t vfsuid;
1650 	vfsgid_t vfsgid;
1651 
1652 	if (!mnt_may_suid(file->f_path.mnt))
1653 		return;
1654 
1655 	if (task_no_new_privs(current))
1656 		return;
1657 
1658 	mode = READ_ONCE(inode->i_mode);
1659 	if (!(mode & (S_ISUID|S_ISGID)))
1660 		return;
1661 
1662 	idmap = file_mnt_idmap(file);
1663 
1664 	/* Be careful if suid/sgid is set */
1665 	inode_lock(inode);
1666 
1667 	/* reload atomically mode/uid/gid now that lock held */
1668 	mode = inode->i_mode;
1669 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1670 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1671 	inode_unlock(inode);
1672 
1673 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1674 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1675 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1676 		return;
1677 
1678 	if (mode & S_ISUID) {
1679 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1680 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1681 	}
1682 
1683 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1684 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1685 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1686 	}
1687 }
1688 
1689 /*
1690  * Compute brpm->cred based upon the final binary.
1691  */
1692 static int bprm_creds_from_file(struct linux_binprm *bprm)
1693 {
1694 	/* Compute creds based on which file? */
1695 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1696 
1697 	bprm_fill_uid(bprm, file);
1698 	return security_bprm_creds_from_file(bprm, file);
1699 }
1700 
1701 /*
1702  * Fill the binprm structure from the inode.
1703  * Read the first BINPRM_BUF_SIZE bytes
1704  *
1705  * This may be called multiple times for binary chains (scripts for example).
1706  */
1707 static int prepare_binprm(struct linux_binprm *bprm)
1708 {
1709 	loff_t pos = 0;
1710 
1711 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1712 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1713 }
1714 
1715 /*
1716  * Arguments are '\0' separated strings found at the location bprm->p
1717  * points to; chop off the first by relocating brpm->p to right after
1718  * the first '\0' encountered.
1719  */
1720 int remove_arg_zero(struct linux_binprm *bprm)
1721 {
1722 	unsigned long offset;
1723 	char *kaddr;
1724 	struct page *page;
1725 
1726 	if (!bprm->argc)
1727 		return 0;
1728 
1729 	do {
1730 		offset = bprm->p & ~PAGE_MASK;
1731 		page = get_arg_page(bprm, bprm->p, 0);
1732 		if (!page)
1733 			return -EFAULT;
1734 		kaddr = kmap_local_page(page);
1735 
1736 		for (; offset < PAGE_SIZE && kaddr[offset];
1737 				offset++, bprm->p++)
1738 			;
1739 
1740 		kunmap_local(kaddr);
1741 		put_arg_page(page);
1742 	} while (offset == PAGE_SIZE);
1743 
1744 	bprm->p++;
1745 	bprm->argc--;
1746 
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(remove_arg_zero);
1750 
1751 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1752 /*
1753  * cycle the list of binary formats handler, until one recognizes the image
1754  */
1755 static int search_binary_handler(struct linux_binprm *bprm)
1756 {
1757 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1758 	struct linux_binfmt *fmt;
1759 	int retval;
1760 
1761 	retval = prepare_binprm(bprm);
1762 	if (retval < 0)
1763 		return retval;
1764 
1765 	retval = security_bprm_check(bprm);
1766 	if (retval)
1767 		return retval;
1768 
1769 	retval = -ENOENT;
1770  retry:
1771 	read_lock(&binfmt_lock);
1772 	list_for_each_entry(fmt, &formats, lh) {
1773 		if (!try_module_get(fmt->module))
1774 			continue;
1775 		read_unlock(&binfmt_lock);
1776 
1777 		retval = fmt->load_binary(bprm);
1778 
1779 		read_lock(&binfmt_lock);
1780 		put_binfmt(fmt);
1781 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1782 			read_unlock(&binfmt_lock);
1783 			return retval;
1784 		}
1785 	}
1786 	read_unlock(&binfmt_lock);
1787 
1788 	if (need_retry) {
1789 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1790 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1791 			return retval;
1792 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1793 			return retval;
1794 		need_retry = false;
1795 		goto retry;
1796 	}
1797 
1798 	return retval;
1799 }
1800 
1801 /* binfmt handlers will call back into begin_new_exec() on success. */
1802 static int exec_binprm(struct linux_binprm *bprm)
1803 {
1804 	pid_t old_pid, old_vpid;
1805 	int ret, depth;
1806 
1807 	/* Need to fetch pid before load_binary changes it */
1808 	old_pid = current->pid;
1809 	rcu_read_lock();
1810 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1811 	rcu_read_unlock();
1812 
1813 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1814 	for (depth = 0;; depth++) {
1815 		struct file *exec;
1816 		if (depth > 5)
1817 			return -ELOOP;
1818 
1819 		ret = search_binary_handler(bprm);
1820 		if (ret < 0)
1821 			return ret;
1822 		if (!bprm->interpreter)
1823 			break;
1824 
1825 		exec = bprm->file;
1826 		bprm->file = bprm->interpreter;
1827 		bprm->interpreter = NULL;
1828 
1829 		allow_write_access(exec);
1830 		if (unlikely(bprm->have_execfd)) {
1831 			if (bprm->executable) {
1832 				fput(exec);
1833 				return -ENOEXEC;
1834 			}
1835 			bprm->executable = exec;
1836 		} else
1837 			fput(exec);
1838 	}
1839 
1840 	audit_bprm(bprm);
1841 	trace_sched_process_exec(current, old_pid, bprm);
1842 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1843 	proc_exec_connector(current);
1844 	return 0;
1845 }
1846 
1847 static int bprm_execve(struct linux_binprm *bprm)
1848 {
1849 	int retval;
1850 
1851 	retval = prepare_bprm_creds(bprm);
1852 	if (retval)
1853 		return retval;
1854 
1855 	/*
1856 	 * Check for unsafe execution states before exec_binprm(), which
1857 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1858 	 * where setuid-ness is evaluated.
1859 	 */
1860 	check_unsafe_exec(bprm);
1861 	current->in_execve = 1;
1862 	sched_mm_cid_before_execve(current);
1863 
1864 	sched_exec();
1865 
1866 	/* Set the unchanging part of bprm->cred */
1867 	retval = security_bprm_creds_for_exec(bprm);
1868 	if (retval)
1869 		goto out;
1870 
1871 	retval = exec_binprm(bprm);
1872 	if (retval < 0)
1873 		goto out;
1874 
1875 	sched_mm_cid_after_execve(current);
1876 	/* execve succeeded */
1877 	current->fs->in_exec = 0;
1878 	current->in_execve = 0;
1879 	rseq_execve(current);
1880 	user_events_execve(current);
1881 	acct_update_integrals(current);
1882 	task_numa_free(current, false);
1883 	return retval;
1884 
1885 out:
1886 	/*
1887 	 * If past the point of no return ensure the code never
1888 	 * returns to the userspace process.  Use an existing fatal
1889 	 * signal if present otherwise terminate the process with
1890 	 * SIGSEGV.
1891 	 */
1892 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1893 		force_fatal_sig(SIGSEGV);
1894 
1895 	sched_mm_cid_after_execve(current);
1896 	current->fs->in_exec = 0;
1897 	current->in_execve = 0;
1898 
1899 	return retval;
1900 }
1901 
1902 static int do_execveat_common(int fd, struct filename *filename,
1903 			      struct user_arg_ptr argv,
1904 			      struct user_arg_ptr envp,
1905 			      int flags)
1906 {
1907 	struct linux_binprm *bprm;
1908 	int retval;
1909 
1910 	if (IS_ERR(filename))
1911 		return PTR_ERR(filename);
1912 
1913 	/*
1914 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1915 	 * set*uid() to execve() because too many poorly written programs
1916 	 * don't check setuid() return code.  Here we additionally recheck
1917 	 * whether NPROC limit is still exceeded.
1918 	 */
1919 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1920 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1921 		retval = -EAGAIN;
1922 		goto out_ret;
1923 	}
1924 
1925 	/* We're below the limit (still or again), so we don't want to make
1926 	 * further execve() calls fail. */
1927 	current->flags &= ~PF_NPROC_EXCEEDED;
1928 
1929 	bprm = alloc_bprm(fd, filename, flags);
1930 	if (IS_ERR(bprm)) {
1931 		retval = PTR_ERR(bprm);
1932 		goto out_ret;
1933 	}
1934 
1935 	retval = count(argv, MAX_ARG_STRINGS);
1936 	if (retval == 0)
1937 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1938 			     current->comm, bprm->filename);
1939 	if (retval < 0)
1940 		goto out_free;
1941 	bprm->argc = retval;
1942 
1943 	retval = count(envp, MAX_ARG_STRINGS);
1944 	if (retval < 0)
1945 		goto out_free;
1946 	bprm->envc = retval;
1947 
1948 	retval = bprm_stack_limits(bprm);
1949 	if (retval < 0)
1950 		goto out_free;
1951 
1952 	retval = copy_string_kernel(bprm->filename, bprm);
1953 	if (retval < 0)
1954 		goto out_free;
1955 	bprm->exec = bprm->p;
1956 
1957 	retval = copy_strings(bprm->envc, envp, bprm);
1958 	if (retval < 0)
1959 		goto out_free;
1960 
1961 	retval = copy_strings(bprm->argc, argv, bprm);
1962 	if (retval < 0)
1963 		goto out_free;
1964 
1965 	/*
1966 	 * When argv is empty, add an empty string ("") as argv[0] to
1967 	 * ensure confused userspace programs that start processing
1968 	 * from argv[1] won't end up walking envp. See also
1969 	 * bprm_stack_limits().
1970 	 */
1971 	if (bprm->argc == 0) {
1972 		retval = copy_string_kernel("", bprm);
1973 		if (retval < 0)
1974 			goto out_free;
1975 		bprm->argc = 1;
1976 	}
1977 
1978 	retval = bprm_execve(bprm);
1979 out_free:
1980 	free_bprm(bprm);
1981 
1982 out_ret:
1983 	putname(filename);
1984 	return retval;
1985 }
1986 
1987 int kernel_execve(const char *kernel_filename,
1988 		  const char *const *argv, const char *const *envp)
1989 {
1990 	struct filename *filename;
1991 	struct linux_binprm *bprm;
1992 	int fd = AT_FDCWD;
1993 	int retval;
1994 
1995 	/* It is non-sense for kernel threads to call execve */
1996 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1997 		return -EINVAL;
1998 
1999 	filename = getname_kernel(kernel_filename);
2000 	if (IS_ERR(filename))
2001 		return PTR_ERR(filename);
2002 
2003 	bprm = alloc_bprm(fd, filename, 0);
2004 	if (IS_ERR(bprm)) {
2005 		retval = PTR_ERR(bprm);
2006 		goto out_ret;
2007 	}
2008 
2009 	retval = count_strings_kernel(argv);
2010 	if (WARN_ON_ONCE(retval == 0))
2011 		retval = -EINVAL;
2012 	if (retval < 0)
2013 		goto out_free;
2014 	bprm->argc = retval;
2015 
2016 	retval = count_strings_kernel(envp);
2017 	if (retval < 0)
2018 		goto out_free;
2019 	bprm->envc = retval;
2020 
2021 	retval = bprm_stack_limits(bprm);
2022 	if (retval < 0)
2023 		goto out_free;
2024 
2025 	retval = copy_string_kernel(bprm->filename, bprm);
2026 	if (retval < 0)
2027 		goto out_free;
2028 	bprm->exec = bprm->p;
2029 
2030 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2031 	if (retval < 0)
2032 		goto out_free;
2033 
2034 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2035 	if (retval < 0)
2036 		goto out_free;
2037 
2038 	retval = bprm_execve(bprm);
2039 out_free:
2040 	free_bprm(bprm);
2041 out_ret:
2042 	putname(filename);
2043 	return retval;
2044 }
2045 
2046 static int do_execve(struct filename *filename,
2047 	const char __user *const __user *__argv,
2048 	const char __user *const __user *__envp)
2049 {
2050 	struct user_arg_ptr argv = { .ptr.native = __argv };
2051 	struct user_arg_ptr envp = { .ptr.native = __envp };
2052 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2053 }
2054 
2055 static int do_execveat(int fd, struct filename *filename,
2056 		const char __user *const __user *__argv,
2057 		const char __user *const __user *__envp,
2058 		int flags)
2059 {
2060 	struct user_arg_ptr argv = { .ptr.native = __argv };
2061 	struct user_arg_ptr envp = { .ptr.native = __envp };
2062 
2063 	return do_execveat_common(fd, filename, argv, envp, flags);
2064 }
2065 
2066 #ifdef CONFIG_COMPAT
2067 static int compat_do_execve(struct filename *filename,
2068 	const compat_uptr_t __user *__argv,
2069 	const compat_uptr_t __user *__envp)
2070 {
2071 	struct user_arg_ptr argv = {
2072 		.is_compat = true,
2073 		.ptr.compat = __argv,
2074 	};
2075 	struct user_arg_ptr envp = {
2076 		.is_compat = true,
2077 		.ptr.compat = __envp,
2078 	};
2079 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2080 }
2081 
2082 static int compat_do_execveat(int fd, struct filename *filename,
2083 			      const compat_uptr_t __user *__argv,
2084 			      const compat_uptr_t __user *__envp,
2085 			      int flags)
2086 {
2087 	struct user_arg_ptr argv = {
2088 		.is_compat = true,
2089 		.ptr.compat = __argv,
2090 	};
2091 	struct user_arg_ptr envp = {
2092 		.is_compat = true,
2093 		.ptr.compat = __envp,
2094 	};
2095 	return do_execveat_common(fd, filename, argv, envp, flags);
2096 }
2097 #endif
2098 
2099 void set_binfmt(struct linux_binfmt *new)
2100 {
2101 	struct mm_struct *mm = current->mm;
2102 
2103 	if (mm->binfmt)
2104 		module_put(mm->binfmt->module);
2105 
2106 	mm->binfmt = new;
2107 	if (new)
2108 		__module_get(new->module);
2109 }
2110 EXPORT_SYMBOL(set_binfmt);
2111 
2112 /*
2113  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2114  */
2115 void set_dumpable(struct mm_struct *mm, int value)
2116 {
2117 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2118 		return;
2119 
2120 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2121 }
2122 
2123 SYSCALL_DEFINE3(execve,
2124 		const char __user *, filename,
2125 		const char __user *const __user *, argv,
2126 		const char __user *const __user *, envp)
2127 {
2128 	return do_execve(getname(filename), argv, envp);
2129 }
2130 
2131 SYSCALL_DEFINE5(execveat,
2132 		int, fd, const char __user *, filename,
2133 		const char __user *const __user *, argv,
2134 		const char __user *const __user *, envp,
2135 		int, flags)
2136 {
2137 	return do_execveat(fd,
2138 			   getname_uflags(filename, flags),
2139 			   argv, envp, flags);
2140 }
2141 
2142 #ifdef CONFIG_COMPAT
2143 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2144 	const compat_uptr_t __user *, argv,
2145 	const compat_uptr_t __user *, envp)
2146 {
2147 	return compat_do_execve(getname(filename), argv, envp);
2148 }
2149 
2150 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2151 		       const char __user *, filename,
2152 		       const compat_uptr_t __user *, argv,
2153 		       const compat_uptr_t __user *, envp,
2154 		       int,  flags)
2155 {
2156 	return compat_do_execveat(fd,
2157 				  getname_uflags(filename, flags),
2158 				  argv, envp, flags);
2159 }
2160 #endif
2161 
2162 #ifdef CONFIG_SYSCTL
2163 
2164 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2165 		void *buffer, size_t *lenp, loff_t *ppos)
2166 {
2167 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2168 
2169 	if (!error)
2170 		validate_coredump_safety();
2171 	return error;
2172 }
2173 
2174 static struct ctl_table fs_exec_sysctls[] = {
2175 	{
2176 		.procname	= "suid_dumpable",
2177 		.data		= &suid_dumpable,
2178 		.maxlen		= sizeof(int),
2179 		.mode		= 0644,
2180 		.proc_handler	= proc_dointvec_minmax_coredump,
2181 		.extra1		= SYSCTL_ZERO,
2182 		.extra2		= SYSCTL_TWO,
2183 	},
2184 };
2185 
2186 static int __init init_fs_exec_sysctls(void)
2187 {
2188 	register_sysctl_init("fs", fs_exec_sysctls);
2189 	return 0;
2190 }
2191 
2192 fs_initcall(init_fs_exec_sysctls);
2193 #endif /* CONFIG_SYSCTL */
2194