1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 struct vm_area_struct *vma = bprm->vma; 204 struct mm_struct *mm = bprm->mm; 205 int ret; 206 207 /* 208 * Avoid relying on expanding the stack down in GUP (which 209 * does not work for STACK_GROWSUP anyway), and just do it 210 * by hand ahead of time. 211 */ 212 if (write && pos < vma->vm_start) { 213 mmap_write_lock(mm); 214 ret = expand_downwards(vma, pos); 215 if (unlikely(ret < 0)) { 216 mmap_write_unlock(mm); 217 return NULL; 218 } 219 mmap_write_downgrade(mm); 220 } else 221 mmap_read_lock(mm); 222 223 /* 224 * We are doing an exec(). 'current' is the process 225 * doing the exec and 'mm' is the new process's mm. 226 */ 227 ret = get_user_pages_remote(mm, pos, 1, 228 write ? FOLL_WRITE : 0, 229 &page, NULL); 230 mmap_read_unlock(mm); 231 if (ret <= 0) 232 return NULL; 233 234 if (write) 235 acct_arg_size(bprm, vma_pages(vma)); 236 237 return page; 238 } 239 240 static void put_arg_page(struct page *page) 241 { 242 put_page(page); 243 } 244 245 static void free_arg_pages(struct linux_binprm *bprm) 246 { 247 } 248 249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 250 struct page *page) 251 { 252 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 253 } 254 255 static int __bprm_mm_init(struct linux_binprm *bprm) 256 { 257 int err; 258 struct vm_area_struct *vma = NULL; 259 struct mm_struct *mm = bprm->mm; 260 261 bprm->vma = vma = vm_area_alloc(mm); 262 if (!vma) 263 return -ENOMEM; 264 vma_set_anonymous(vma); 265 266 if (mmap_write_lock_killable(mm)) { 267 err = -EINTR; 268 goto err_free; 269 } 270 271 /* 272 * Place the stack at the largest stack address the architecture 273 * supports. Later, we'll move this to an appropriate place. We don't 274 * use STACK_TOP because that can depend on attributes which aren't 275 * configured yet. 276 */ 277 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 278 vma->vm_end = STACK_TOP_MAX; 279 vma->vm_start = vma->vm_end - PAGE_SIZE; 280 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 281 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 282 283 err = insert_vm_struct(mm, vma); 284 if (err) 285 goto err; 286 287 mm->stack_vm = mm->total_vm = 1; 288 mmap_write_unlock(mm); 289 bprm->p = vma->vm_end - sizeof(void *); 290 return 0; 291 err: 292 mmap_write_unlock(mm); 293 err_free: 294 bprm->vma = NULL; 295 vm_area_free(vma); 296 return err; 297 } 298 299 static bool valid_arg_len(struct linux_binprm *bprm, long len) 300 { 301 return len <= MAX_ARG_STRLEN; 302 } 303 304 #else 305 306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 307 { 308 } 309 310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 311 int write) 312 { 313 struct page *page; 314 315 page = bprm->page[pos / PAGE_SIZE]; 316 if (!page && write) { 317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 318 if (!page) 319 return NULL; 320 bprm->page[pos / PAGE_SIZE] = page; 321 } 322 323 return page; 324 } 325 326 static void put_arg_page(struct page *page) 327 { 328 } 329 330 static void free_arg_page(struct linux_binprm *bprm, int i) 331 { 332 if (bprm->page[i]) { 333 __free_page(bprm->page[i]); 334 bprm->page[i] = NULL; 335 } 336 } 337 338 static void free_arg_pages(struct linux_binprm *bprm) 339 { 340 int i; 341 342 for (i = 0; i < MAX_ARG_PAGES; i++) 343 free_arg_page(bprm, i); 344 } 345 346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 347 struct page *page) 348 { 349 } 350 351 static int __bprm_mm_init(struct linux_binprm *bprm) 352 { 353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 354 return 0; 355 } 356 357 static bool valid_arg_len(struct linux_binprm *bprm, long len) 358 { 359 return len <= bprm->p; 360 } 361 362 #endif /* CONFIG_MMU */ 363 364 /* 365 * Create a new mm_struct and populate it with a temporary stack 366 * vm_area_struct. We don't have enough context at this point to set the stack 367 * flags, permissions, and offset, so we use temporary values. We'll update 368 * them later in setup_arg_pages(). 369 */ 370 static int bprm_mm_init(struct linux_binprm *bprm) 371 { 372 int err; 373 struct mm_struct *mm = NULL; 374 375 bprm->mm = mm = mm_alloc(); 376 err = -ENOMEM; 377 if (!mm) 378 goto err; 379 380 /* Save current stack limit for all calculations made during exec. */ 381 task_lock(current->group_leader); 382 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 383 task_unlock(current->group_leader); 384 385 err = __bprm_mm_init(bprm); 386 if (err) 387 goto err; 388 389 return 0; 390 391 err: 392 if (mm) { 393 bprm->mm = NULL; 394 mmdrop(mm); 395 } 396 397 return err; 398 } 399 400 struct user_arg_ptr { 401 #ifdef CONFIG_COMPAT 402 bool is_compat; 403 #endif 404 union { 405 const char __user *const __user *native; 406 #ifdef CONFIG_COMPAT 407 const compat_uptr_t __user *compat; 408 #endif 409 } ptr; 410 }; 411 412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 413 { 414 const char __user *native; 415 416 #ifdef CONFIG_COMPAT 417 if (unlikely(argv.is_compat)) { 418 compat_uptr_t compat; 419 420 if (get_user(compat, argv.ptr.compat + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return compat_ptr(compat); 424 } 425 #endif 426 427 if (get_user(native, argv.ptr.native + nr)) 428 return ERR_PTR(-EFAULT); 429 430 return native; 431 } 432 433 /* 434 * count() counts the number of strings in array ARGV. 435 */ 436 static int count(struct user_arg_ptr argv, int max) 437 { 438 int i = 0; 439 440 if (argv.ptr.native != NULL) { 441 for (;;) { 442 const char __user *p = get_user_arg_ptr(argv, i); 443 444 if (!p) 445 break; 446 447 if (IS_ERR(p)) 448 return -EFAULT; 449 450 if (i >= max) 451 return -E2BIG; 452 ++i; 453 454 if (fatal_signal_pending(current)) 455 return -ERESTARTNOHAND; 456 cond_resched(); 457 } 458 } 459 return i; 460 } 461 462 static int count_strings_kernel(const char *const *argv) 463 { 464 int i; 465 466 if (!argv) 467 return 0; 468 469 for (i = 0; argv[i]; ++i) { 470 if (i >= MAX_ARG_STRINGS) 471 return -E2BIG; 472 if (fatal_signal_pending(current)) 473 return -ERESTARTNOHAND; 474 cond_resched(); 475 } 476 return i; 477 } 478 479 static int bprm_stack_limits(struct linux_binprm *bprm) 480 { 481 unsigned long limit, ptr_size; 482 483 /* 484 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 485 * (whichever is smaller) for the argv+env strings. 486 * This ensures that: 487 * - the remaining binfmt code will not run out of stack space, 488 * - the program will have a reasonable amount of stack left 489 * to work from. 490 */ 491 limit = _STK_LIM / 4 * 3; 492 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 493 /* 494 * We've historically supported up to 32 pages (ARG_MAX) 495 * of argument strings even with small stacks 496 */ 497 limit = max_t(unsigned long, limit, ARG_MAX); 498 /* 499 * We must account for the size of all the argv and envp pointers to 500 * the argv and envp strings, since they will also take up space in 501 * the stack. They aren't stored until much later when we can't 502 * signal to the parent that the child has run out of stack space. 503 * Instead, calculate it here so it's possible to fail gracefully. 504 * 505 * In the case of argc = 0, make sure there is space for adding a 506 * empty string (which will bump argc to 1), to ensure confused 507 * userspace programs don't start processing from argv[1], thinking 508 * argc can never be 0, to keep them from walking envp by accident. 509 * See do_execveat_common(). 510 */ 511 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 512 if (limit <= ptr_size) 513 return -E2BIG; 514 limit -= ptr_size; 515 516 bprm->argmin = bprm->p - limit; 517 return 0; 518 } 519 520 /* 521 * 'copy_strings()' copies argument/environment strings from the old 522 * processes's memory to the new process's stack. The call to get_user_pages() 523 * ensures the destination page is created and not swapped out. 524 */ 525 static int copy_strings(int argc, struct user_arg_ptr argv, 526 struct linux_binprm *bprm) 527 { 528 struct page *kmapped_page = NULL; 529 char *kaddr = NULL; 530 unsigned long kpos = 0; 531 int ret; 532 533 while (argc-- > 0) { 534 const char __user *str; 535 int len; 536 unsigned long pos; 537 538 ret = -EFAULT; 539 str = get_user_arg_ptr(argv, argc); 540 if (IS_ERR(str)) 541 goto out; 542 543 len = strnlen_user(str, MAX_ARG_STRLEN); 544 if (!len) 545 goto out; 546 547 ret = -E2BIG; 548 if (!valid_arg_len(bprm, len)) 549 goto out; 550 551 /* We're going to work our way backwards. */ 552 pos = bprm->p; 553 str += len; 554 bprm->p -= len; 555 #ifdef CONFIG_MMU 556 if (bprm->p < bprm->argmin) 557 goto out; 558 #endif 559 560 while (len > 0) { 561 int offset, bytes_to_copy; 562 563 if (fatal_signal_pending(current)) { 564 ret = -ERESTARTNOHAND; 565 goto out; 566 } 567 cond_resched(); 568 569 offset = pos % PAGE_SIZE; 570 if (offset == 0) 571 offset = PAGE_SIZE; 572 573 bytes_to_copy = offset; 574 if (bytes_to_copy > len) 575 bytes_to_copy = len; 576 577 offset -= bytes_to_copy; 578 pos -= bytes_to_copy; 579 str -= bytes_to_copy; 580 len -= bytes_to_copy; 581 582 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 583 struct page *page; 584 585 page = get_arg_page(bprm, pos, 1); 586 if (!page) { 587 ret = -E2BIG; 588 goto out; 589 } 590 591 if (kmapped_page) { 592 flush_dcache_page(kmapped_page); 593 kunmap_local(kaddr); 594 put_arg_page(kmapped_page); 595 } 596 kmapped_page = page; 597 kaddr = kmap_local_page(kmapped_page); 598 kpos = pos & PAGE_MASK; 599 flush_arg_page(bprm, kpos, kmapped_page); 600 } 601 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 602 ret = -EFAULT; 603 goto out; 604 } 605 } 606 } 607 ret = 0; 608 out: 609 if (kmapped_page) { 610 flush_dcache_page(kmapped_page); 611 kunmap_local(kaddr); 612 put_arg_page(kmapped_page); 613 } 614 return ret; 615 } 616 617 /* 618 * Copy and argument/environment string from the kernel to the processes stack. 619 */ 620 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 621 { 622 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 623 unsigned long pos = bprm->p; 624 625 if (len == 0) 626 return -EFAULT; 627 if (!valid_arg_len(bprm, len)) 628 return -E2BIG; 629 630 /* We're going to work our way backwards. */ 631 arg += len; 632 bprm->p -= len; 633 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 634 return -E2BIG; 635 636 while (len > 0) { 637 unsigned int bytes_to_copy = min_t(unsigned int, len, 638 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 639 struct page *page; 640 641 pos -= bytes_to_copy; 642 arg -= bytes_to_copy; 643 len -= bytes_to_copy; 644 645 page = get_arg_page(bprm, pos, 1); 646 if (!page) 647 return -E2BIG; 648 flush_arg_page(bprm, pos & PAGE_MASK, page); 649 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 650 put_arg_page(page); 651 } 652 653 return 0; 654 } 655 EXPORT_SYMBOL(copy_string_kernel); 656 657 static int copy_strings_kernel(int argc, const char *const *argv, 658 struct linux_binprm *bprm) 659 { 660 while (argc-- > 0) { 661 int ret = copy_string_kernel(argv[argc], bprm); 662 if (ret < 0) 663 return ret; 664 if (fatal_signal_pending(current)) 665 return -ERESTARTNOHAND; 666 cond_resched(); 667 } 668 return 0; 669 } 670 671 #ifdef CONFIG_MMU 672 673 /* 674 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 675 * the binfmt code determines where the new stack should reside, we shift it to 676 * its final location. The process proceeds as follows: 677 * 678 * 1) Use shift to calculate the new vma endpoints. 679 * 2) Extend vma to cover both the old and new ranges. This ensures the 680 * arguments passed to subsequent functions are consistent. 681 * 3) Move vma's page tables to the new range. 682 * 4) Free up any cleared pgd range. 683 * 5) Shrink the vma to cover only the new range. 684 */ 685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 686 { 687 struct mm_struct *mm = vma->vm_mm; 688 unsigned long old_start = vma->vm_start; 689 unsigned long old_end = vma->vm_end; 690 unsigned long length = old_end - old_start; 691 unsigned long new_start = old_start - shift; 692 unsigned long new_end = old_end - shift; 693 VMA_ITERATOR(vmi, mm, new_start); 694 struct vm_area_struct *next; 695 struct mmu_gather tlb; 696 697 BUG_ON(new_start > new_end); 698 699 /* 700 * ensure there are no vmas between where we want to go 701 * and where we are 702 */ 703 if (vma != vma_next(&vmi)) 704 return -EFAULT; 705 706 /* 707 * cover the whole range: [new_start, old_end) 708 */ 709 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 710 return -ENOMEM; 711 712 /* 713 * move the page tables downwards, on failure we rely on 714 * process cleanup to remove whatever mess we made. 715 */ 716 if (length != move_page_tables(vma, old_start, 717 vma, new_start, length, false)) 718 return -ENOMEM; 719 720 lru_add_drain(); 721 tlb_gather_mmu(&tlb, mm); 722 next = vma_next(&vmi); 723 if (new_end > old_start) { 724 /* 725 * when the old and new regions overlap clear from new_end. 726 */ 727 free_pgd_range(&tlb, new_end, old_end, new_end, 728 next ? next->vm_start : USER_PGTABLES_CEILING); 729 } else { 730 /* 731 * otherwise, clean from old_start; this is done to not touch 732 * the address space in [new_end, old_start) some architectures 733 * have constraints on va-space that make this illegal (IA64) - 734 * for the others its just a little faster. 735 */ 736 free_pgd_range(&tlb, old_start, old_end, new_end, 737 next ? next->vm_start : USER_PGTABLES_CEILING); 738 } 739 tlb_finish_mmu(&tlb); 740 741 vma_prev(&vmi); 742 /* Shrink the vma to just the new range */ 743 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 744 } 745 746 /* 747 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 748 * the stack is optionally relocated, and some extra space is added. 749 */ 750 int setup_arg_pages(struct linux_binprm *bprm, 751 unsigned long stack_top, 752 int executable_stack) 753 { 754 unsigned long ret; 755 unsigned long stack_shift; 756 struct mm_struct *mm = current->mm; 757 struct vm_area_struct *vma = bprm->vma; 758 struct vm_area_struct *prev = NULL; 759 unsigned long vm_flags; 760 unsigned long stack_base; 761 unsigned long stack_size; 762 unsigned long stack_expand; 763 unsigned long rlim_stack; 764 struct mmu_gather tlb; 765 struct vma_iterator vmi; 766 767 #ifdef CONFIG_STACK_GROWSUP 768 /* Limit stack size */ 769 stack_base = bprm->rlim_stack.rlim_max; 770 771 stack_base = calc_max_stack_size(stack_base); 772 773 /* Add space for stack randomization. */ 774 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 775 776 /* Make sure we didn't let the argument array grow too large. */ 777 if (vma->vm_end - vma->vm_start > stack_base) 778 return -ENOMEM; 779 780 stack_base = PAGE_ALIGN(stack_top - stack_base); 781 782 stack_shift = vma->vm_start - stack_base; 783 mm->arg_start = bprm->p - stack_shift; 784 bprm->p = vma->vm_end - stack_shift; 785 #else 786 stack_top = arch_align_stack(stack_top); 787 stack_top = PAGE_ALIGN(stack_top); 788 789 if (unlikely(stack_top < mmap_min_addr) || 790 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 791 return -ENOMEM; 792 793 stack_shift = vma->vm_end - stack_top; 794 795 bprm->p -= stack_shift; 796 mm->arg_start = bprm->p; 797 #endif 798 799 if (bprm->loader) 800 bprm->loader -= stack_shift; 801 bprm->exec -= stack_shift; 802 803 if (mmap_write_lock_killable(mm)) 804 return -EINTR; 805 806 vm_flags = VM_STACK_FLAGS; 807 808 /* 809 * Adjust stack execute permissions; explicitly enable for 810 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 811 * (arch default) otherwise. 812 */ 813 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 814 vm_flags |= VM_EXEC; 815 else if (executable_stack == EXSTACK_DISABLE_X) 816 vm_flags &= ~VM_EXEC; 817 vm_flags |= mm->def_flags; 818 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 819 820 vma_iter_init(&vmi, mm, vma->vm_start); 821 822 tlb_gather_mmu(&tlb, mm); 823 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 824 vm_flags); 825 tlb_finish_mmu(&tlb); 826 827 if (ret) 828 goto out_unlock; 829 BUG_ON(prev != vma); 830 831 if (unlikely(vm_flags & VM_EXEC)) { 832 pr_warn_once("process '%pD4' started with executable stack\n", 833 bprm->file); 834 } 835 836 /* Move stack pages down in memory. */ 837 if (stack_shift) { 838 ret = shift_arg_pages(vma, stack_shift); 839 if (ret) 840 goto out_unlock; 841 } 842 843 /* mprotect_fixup is overkill to remove the temporary stack flags */ 844 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 845 846 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 847 stack_size = vma->vm_end - vma->vm_start; 848 /* 849 * Align this down to a page boundary as expand_stack 850 * will align it up. 851 */ 852 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 853 854 stack_expand = min(rlim_stack, stack_size + stack_expand); 855 856 #ifdef CONFIG_STACK_GROWSUP 857 stack_base = vma->vm_start + stack_expand; 858 #else 859 stack_base = vma->vm_end - stack_expand; 860 #endif 861 current->mm->start_stack = bprm->p; 862 ret = expand_stack_locked(vma, stack_base); 863 if (ret) 864 ret = -EFAULT; 865 866 out_unlock: 867 mmap_write_unlock(mm); 868 return ret; 869 } 870 EXPORT_SYMBOL(setup_arg_pages); 871 872 #else 873 874 /* 875 * Transfer the program arguments and environment from the holding pages 876 * onto the stack. The provided stack pointer is adjusted accordingly. 877 */ 878 int transfer_args_to_stack(struct linux_binprm *bprm, 879 unsigned long *sp_location) 880 { 881 unsigned long index, stop, sp; 882 int ret = 0; 883 884 stop = bprm->p >> PAGE_SHIFT; 885 sp = *sp_location; 886 887 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 888 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 889 char *src = kmap_local_page(bprm->page[index]) + offset; 890 sp -= PAGE_SIZE - offset; 891 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 892 ret = -EFAULT; 893 kunmap_local(src); 894 if (ret) 895 goto out; 896 } 897 898 *sp_location = sp; 899 900 out: 901 return ret; 902 } 903 EXPORT_SYMBOL(transfer_args_to_stack); 904 905 #endif /* CONFIG_MMU */ 906 907 static struct file *do_open_execat(int fd, struct filename *name, int flags) 908 { 909 struct file *file; 910 int err; 911 struct open_flags open_exec_flags = { 912 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 913 .acc_mode = MAY_EXEC, 914 .intent = LOOKUP_OPEN, 915 .lookup_flags = LOOKUP_FOLLOW, 916 }; 917 918 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 919 return ERR_PTR(-EINVAL); 920 if (flags & AT_SYMLINK_NOFOLLOW) 921 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 922 if (flags & AT_EMPTY_PATH) 923 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 924 925 file = do_filp_open(fd, name, &open_exec_flags); 926 if (IS_ERR(file)) 927 goto out; 928 929 /* 930 * may_open() has already checked for this, so it should be 931 * impossible to trip now. But we need to be extra cautious 932 * and check again at the very end too. 933 */ 934 err = -EACCES; 935 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 936 path_noexec(&file->f_path))) 937 goto exit; 938 939 err = deny_write_access(file); 940 if (err) 941 goto exit; 942 943 if (name->name[0] != '\0') 944 fsnotify_open(file); 945 946 out: 947 return file; 948 949 exit: 950 fput(file); 951 return ERR_PTR(err); 952 } 953 954 struct file *open_exec(const char *name) 955 { 956 struct filename *filename = getname_kernel(name); 957 struct file *f = ERR_CAST(filename); 958 959 if (!IS_ERR(filename)) { 960 f = do_open_execat(AT_FDCWD, filename, 0); 961 putname(filename); 962 } 963 return f; 964 } 965 EXPORT_SYMBOL(open_exec); 966 967 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 968 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 969 { 970 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 971 if (res > 0) 972 flush_icache_user_range(addr, addr + len); 973 return res; 974 } 975 EXPORT_SYMBOL(read_code); 976 #endif 977 978 /* 979 * Maps the mm_struct mm into the current task struct. 980 * On success, this function returns with exec_update_lock 981 * held for writing. 982 */ 983 static int exec_mmap(struct mm_struct *mm) 984 { 985 struct task_struct *tsk; 986 struct mm_struct *old_mm, *active_mm; 987 int ret; 988 989 /* Notify parent that we're no longer interested in the old VM */ 990 tsk = current; 991 old_mm = current->mm; 992 exec_mm_release(tsk, old_mm); 993 if (old_mm) 994 sync_mm_rss(old_mm); 995 996 ret = down_write_killable(&tsk->signal->exec_update_lock); 997 if (ret) 998 return ret; 999 1000 if (old_mm) { 1001 /* 1002 * If there is a pending fatal signal perhaps a signal 1003 * whose default action is to create a coredump get 1004 * out and die instead of going through with the exec. 1005 */ 1006 ret = mmap_read_lock_killable(old_mm); 1007 if (ret) { 1008 up_write(&tsk->signal->exec_update_lock); 1009 return ret; 1010 } 1011 } 1012 1013 task_lock(tsk); 1014 membarrier_exec_mmap(mm); 1015 1016 local_irq_disable(); 1017 active_mm = tsk->active_mm; 1018 tsk->active_mm = mm; 1019 tsk->mm = mm; 1020 mm_init_cid(mm); 1021 /* 1022 * This prevents preemption while active_mm is being loaded and 1023 * it and mm are being updated, which could cause problems for 1024 * lazy tlb mm refcounting when these are updated by context 1025 * switches. Not all architectures can handle irqs off over 1026 * activate_mm yet. 1027 */ 1028 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1029 local_irq_enable(); 1030 activate_mm(active_mm, mm); 1031 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1032 local_irq_enable(); 1033 lru_gen_add_mm(mm); 1034 task_unlock(tsk); 1035 lru_gen_use_mm(mm); 1036 if (old_mm) { 1037 mmap_read_unlock(old_mm); 1038 BUG_ON(active_mm != old_mm); 1039 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1040 mm_update_next_owner(old_mm); 1041 mmput(old_mm); 1042 return 0; 1043 } 1044 mmdrop_lazy_tlb(active_mm); 1045 return 0; 1046 } 1047 1048 static int de_thread(struct task_struct *tsk) 1049 { 1050 struct signal_struct *sig = tsk->signal; 1051 struct sighand_struct *oldsighand = tsk->sighand; 1052 spinlock_t *lock = &oldsighand->siglock; 1053 1054 if (thread_group_empty(tsk)) 1055 goto no_thread_group; 1056 1057 /* 1058 * Kill all other threads in the thread group. 1059 */ 1060 spin_lock_irq(lock); 1061 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1062 /* 1063 * Another group action in progress, just 1064 * return so that the signal is processed. 1065 */ 1066 spin_unlock_irq(lock); 1067 return -EAGAIN; 1068 } 1069 1070 sig->group_exec_task = tsk; 1071 sig->notify_count = zap_other_threads(tsk); 1072 if (!thread_group_leader(tsk)) 1073 sig->notify_count--; 1074 1075 while (sig->notify_count) { 1076 __set_current_state(TASK_KILLABLE); 1077 spin_unlock_irq(lock); 1078 schedule(); 1079 if (__fatal_signal_pending(tsk)) 1080 goto killed; 1081 spin_lock_irq(lock); 1082 } 1083 spin_unlock_irq(lock); 1084 1085 /* 1086 * At this point all other threads have exited, all we have to 1087 * do is to wait for the thread group leader to become inactive, 1088 * and to assume its PID: 1089 */ 1090 if (!thread_group_leader(tsk)) { 1091 struct task_struct *leader = tsk->group_leader; 1092 1093 for (;;) { 1094 cgroup_threadgroup_change_begin(tsk); 1095 write_lock_irq(&tasklist_lock); 1096 /* 1097 * Do this under tasklist_lock to ensure that 1098 * exit_notify() can't miss ->group_exec_task 1099 */ 1100 sig->notify_count = -1; 1101 if (likely(leader->exit_state)) 1102 break; 1103 __set_current_state(TASK_KILLABLE); 1104 write_unlock_irq(&tasklist_lock); 1105 cgroup_threadgroup_change_end(tsk); 1106 schedule(); 1107 if (__fatal_signal_pending(tsk)) 1108 goto killed; 1109 } 1110 1111 /* 1112 * The only record we have of the real-time age of a 1113 * process, regardless of execs it's done, is start_time. 1114 * All the past CPU time is accumulated in signal_struct 1115 * from sister threads now dead. But in this non-leader 1116 * exec, nothing survives from the original leader thread, 1117 * whose birth marks the true age of this process now. 1118 * When we take on its identity by switching to its PID, we 1119 * also take its birthdate (always earlier than our own). 1120 */ 1121 tsk->start_time = leader->start_time; 1122 tsk->start_boottime = leader->start_boottime; 1123 1124 BUG_ON(!same_thread_group(leader, tsk)); 1125 /* 1126 * An exec() starts a new thread group with the 1127 * TGID of the previous thread group. Rehash the 1128 * two threads with a switched PID, and release 1129 * the former thread group leader: 1130 */ 1131 1132 /* Become a process group leader with the old leader's pid. 1133 * The old leader becomes a thread of the this thread group. 1134 */ 1135 exchange_tids(tsk, leader); 1136 transfer_pid(leader, tsk, PIDTYPE_TGID); 1137 transfer_pid(leader, tsk, PIDTYPE_PGID); 1138 transfer_pid(leader, tsk, PIDTYPE_SID); 1139 1140 list_replace_rcu(&leader->tasks, &tsk->tasks); 1141 list_replace_init(&leader->sibling, &tsk->sibling); 1142 1143 tsk->group_leader = tsk; 1144 leader->group_leader = tsk; 1145 1146 tsk->exit_signal = SIGCHLD; 1147 leader->exit_signal = -1; 1148 1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1150 leader->exit_state = EXIT_DEAD; 1151 1152 /* 1153 * We are going to release_task()->ptrace_unlink() silently, 1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1155 * the tracer won't block again waiting for this thread. 1156 */ 1157 if (unlikely(leader->ptrace)) 1158 __wake_up_parent(leader, leader->parent); 1159 write_unlock_irq(&tasklist_lock); 1160 cgroup_threadgroup_change_end(tsk); 1161 1162 release_task(leader); 1163 } 1164 1165 sig->group_exec_task = NULL; 1166 sig->notify_count = 0; 1167 1168 no_thread_group: 1169 /* we have changed execution domain */ 1170 tsk->exit_signal = SIGCHLD; 1171 1172 BUG_ON(!thread_group_leader(tsk)); 1173 return 0; 1174 1175 killed: 1176 /* protects against exit_notify() and __exit_signal() */ 1177 read_lock(&tasklist_lock); 1178 sig->group_exec_task = NULL; 1179 sig->notify_count = 0; 1180 read_unlock(&tasklist_lock); 1181 return -EAGAIN; 1182 } 1183 1184 1185 /* 1186 * This function makes sure the current process has its own signal table, 1187 * so that flush_signal_handlers can later reset the handlers without 1188 * disturbing other processes. (Other processes might share the signal 1189 * table via the CLONE_SIGHAND option to clone().) 1190 */ 1191 static int unshare_sighand(struct task_struct *me) 1192 { 1193 struct sighand_struct *oldsighand = me->sighand; 1194 1195 if (refcount_read(&oldsighand->count) != 1) { 1196 struct sighand_struct *newsighand; 1197 /* 1198 * This ->sighand is shared with the CLONE_SIGHAND 1199 * but not CLONE_THREAD task, switch to the new one. 1200 */ 1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1202 if (!newsighand) 1203 return -ENOMEM; 1204 1205 refcount_set(&newsighand->count, 1); 1206 1207 write_lock_irq(&tasklist_lock); 1208 spin_lock(&oldsighand->siglock); 1209 memcpy(newsighand->action, oldsighand->action, 1210 sizeof(newsighand->action)); 1211 rcu_assign_pointer(me->sighand, newsighand); 1212 spin_unlock(&oldsighand->siglock); 1213 write_unlock_irq(&tasklist_lock); 1214 1215 __cleanup_sighand(oldsighand); 1216 } 1217 return 0; 1218 } 1219 1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1221 { 1222 task_lock(tsk); 1223 /* Always NUL terminated and zero-padded */ 1224 strscpy_pad(buf, tsk->comm, buf_size); 1225 task_unlock(tsk); 1226 return buf; 1227 } 1228 EXPORT_SYMBOL_GPL(__get_task_comm); 1229 1230 /* 1231 * These functions flushes out all traces of the currently running executable 1232 * so that a new one can be started 1233 */ 1234 1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1236 { 1237 task_lock(tsk); 1238 trace_task_rename(tsk, buf); 1239 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1240 task_unlock(tsk); 1241 perf_event_comm(tsk, exec); 1242 } 1243 1244 /* 1245 * Calling this is the point of no return. None of the failures will be 1246 * seen by userspace since either the process is already taking a fatal 1247 * signal (via de_thread() or coredump), or will have SEGV raised 1248 * (after exec_mmap()) by search_binary_handler (see below). 1249 */ 1250 int begin_new_exec(struct linux_binprm * bprm) 1251 { 1252 struct task_struct *me = current; 1253 int retval; 1254 1255 /* Once we are committed compute the creds */ 1256 retval = bprm_creds_from_file(bprm); 1257 if (retval) 1258 return retval; 1259 1260 /* 1261 * Ensure all future errors are fatal. 1262 */ 1263 bprm->point_of_no_return = true; 1264 1265 /* 1266 * Make this the only thread in the thread group. 1267 */ 1268 retval = de_thread(me); 1269 if (retval) 1270 goto out; 1271 1272 /* 1273 * Cancel any io_uring activity across execve 1274 */ 1275 io_uring_task_cancel(); 1276 1277 /* Ensure the files table is not shared. */ 1278 retval = unshare_files(); 1279 if (retval) 1280 goto out; 1281 1282 /* 1283 * Must be called _before_ exec_mmap() as bprm->mm is 1284 * not visible until then. This also enables the update 1285 * to be lockless. 1286 */ 1287 retval = set_mm_exe_file(bprm->mm, bprm->file); 1288 if (retval) 1289 goto out; 1290 1291 /* If the binary is not readable then enforce mm->dumpable=0 */ 1292 would_dump(bprm, bprm->file); 1293 if (bprm->have_execfd) 1294 would_dump(bprm, bprm->executable); 1295 1296 /* 1297 * Release all of the old mmap stuff 1298 */ 1299 acct_arg_size(bprm, 0); 1300 retval = exec_mmap(bprm->mm); 1301 if (retval) 1302 goto out; 1303 1304 bprm->mm = NULL; 1305 1306 retval = exec_task_namespaces(); 1307 if (retval) 1308 goto out_unlock; 1309 1310 #ifdef CONFIG_POSIX_TIMERS 1311 spin_lock_irq(&me->sighand->siglock); 1312 posix_cpu_timers_exit(me); 1313 spin_unlock_irq(&me->sighand->siglock); 1314 exit_itimers(me); 1315 flush_itimer_signals(); 1316 #endif 1317 1318 /* 1319 * Make the signal table private. 1320 */ 1321 retval = unshare_sighand(me); 1322 if (retval) 1323 goto out_unlock; 1324 1325 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1326 PF_NOFREEZE | PF_NO_SETAFFINITY); 1327 flush_thread(); 1328 me->personality &= ~bprm->per_clear; 1329 1330 clear_syscall_work_syscall_user_dispatch(me); 1331 1332 /* 1333 * We have to apply CLOEXEC before we change whether the process is 1334 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1335 * trying to access the should-be-closed file descriptors of a process 1336 * undergoing exec(2). 1337 */ 1338 do_close_on_exec(me->files); 1339 1340 if (bprm->secureexec) { 1341 /* Make sure parent cannot signal privileged process. */ 1342 me->pdeath_signal = 0; 1343 1344 /* 1345 * For secureexec, reset the stack limit to sane default to 1346 * avoid bad behavior from the prior rlimits. This has to 1347 * happen before arch_pick_mmap_layout(), which examines 1348 * RLIMIT_STACK, but after the point of no return to avoid 1349 * needing to clean up the change on failure. 1350 */ 1351 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1352 bprm->rlim_stack.rlim_cur = _STK_LIM; 1353 } 1354 1355 me->sas_ss_sp = me->sas_ss_size = 0; 1356 1357 /* 1358 * Figure out dumpability. Note that this checking only of current 1359 * is wrong, but userspace depends on it. This should be testing 1360 * bprm->secureexec instead. 1361 */ 1362 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1363 !(uid_eq(current_euid(), current_uid()) && 1364 gid_eq(current_egid(), current_gid()))) 1365 set_dumpable(current->mm, suid_dumpable); 1366 else 1367 set_dumpable(current->mm, SUID_DUMP_USER); 1368 1369 perf_event_exec(); 1370 __set_task_comm(me, kbasename(bprm->filename), true); 1371 1372 /* An exec changes our domain. We are no longer part of the thread 1373 group */ 1374 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1375 flush_signal_handlers(me, 0); 1376 1377 retval = set_cred_ucounts(bprm->cred); 1378 if (retval < 0) 1379 goto out_unlock; 1380 1381 /* 1382 * install the new credentials for this executable 1383 */ 1384 security_bprm_committing_creds(bprm); 1385 1386 commit_creds(bprm->cred); 1387 bprm->cred = NULL; 1388 1389 /* 1390 * Disable monitoring for regular users 1391 * when executing setuid binaries. Must 1392 * wait until new credentials are committed 1393 * by commit_creds() above 1394 */ 1395 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1396 perf_event_exit_task(me); 1397 /* 1398 * cred_guard_mutex must be held at least to this point to prevent 1399 * ptrace_attach() from altering our determination of the task's 1400 * credentials; any time after this it may be unlocked. 1401 */ 1402 security_bprm_committed_creds(bprm); 1403 1404 /* Pass the opened binary to the interpreter. */ 1405 if (bprm->have_execfd) { 1406 retval = get_unused_fd_flags(0); 1407 if (retval < 0) 1408 goto out_unlock; 1409 fd_install(retval, bprm->executable); 1410 bprm->executable = NULL; 1411 bprm->execfd = retval; 1412 } 1413 return 0; 1414 1415 out_unlock: 1416 up_write(&me->signal->exec_update_lock); 1417 out: 1418 return retval; 1419 } 1420 EXPORT_SYMBOL(begin_new_exec); 1421 1422 void would_dump(struct linux_binprm *bprm, struct file *file) 1423 { 1424 struct inode *inode = file_inode(file); 1425 struct mnt_idmap *idmap = file_mnt_idmap(file); 1426 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1427 struct user_namespace *old, *user_ns; 1428 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1429 1430 /* Ensure mm->user_ns contains the executable */ 1431 user_ns = old = bprm->mm->user_ns; 1432 while ((user_ns != &init_user_ns) && 1433 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1434 user_ns = user_ns->parent; 1435 1436 if (old != user_ns) { 1437 bprm->mm->user_ns = get_user_ns(user_ns); 1438 put_user_ns(old); 1439 } 1440 } 1441 } 1442 EXPORT_SYMBOL(would_dump); 1443 1444 void setup_new_exec(struct linux_binprm * bprm) 1445 { 1446 /* Setup things that can depend upon the personality */ 1447 struct task_struct *me = current; 1448 1449 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1450 1451 arch_setup_new_exec(); 1452 1453 /* Set the new mm task size. We have to do that late because it may 1454 * depend on TIF_32BIT which is only updated in flush_thread() on 1455 * some architectures like powerpc 1456 */ 1457 me->mm->task_size = TASK_SIZE; 1458 up_write(&me->signal->exec_update_lock); 1459 mutex_unlock(&me->signal->cred_guard_mutex); 1460 } 1461 EXPORT_SYMBOL(setup_new_exec); 1462 1463 /* Runs immediately before start_thread() takes over. */ 1464 void finalize_exec(struct linux_binprm *bprm) 1465 { 1466 /* Store any stack rlimit changes before starting thread. */ 1467 task_lock(current->group_leader); 1468 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1469 task_unlock(current->group_leader); 1470 } 1471 EXPORT_SYMBOL(finalize_exec); 1472 1473 /* 1474 * Prepare credentials and lock ->cred_guard_mutex. 1475 * setup_new_exec() commits the new creds and drops the lock. 1476 * Or, if exec fails before, free_bprm() should release ->cred 1477 * and unlock. 1478 */ 1479 static int prepare_bprm_creds(struct linux_binprm *bprm) 1480 { 1481 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1482 return -ERESTARTNOINTR; 1483 1484 bprm->cred = prepare_exec_creds(); 1485 if (likely(bprm->cred)) 1486 return 0; 1487 1488 mutex_unlock(¤t->signal->cred_guard_mutex); 1489 return -ENOMEM; 1490 } 1491 1492 static void free_bprm(struct linux_binprm *bprm) 1493 { 1494 if (bprm->mm) { 1495 acct_arg_size(bprm, 0); 1496 mmput(bprm->mm); 1497 } 1498 free_arg_pages(bprm); 1499 if (bprm->cred) { 1500 mutex_unlock(¤t->signal->cred_guard_mutex); 1501 abort_creds(bprm->cred); 1502 } 1503 if (bprm->file) { 1504 allow_write_access(bprm->file); 1505 fput(bprm->file); 1506 } 1507 if (bprm->executable) 1508 fput(bprm->executable); 1509 /* If a binfmt changed the interp, free it. */ 1510 if (bprm->interp != bprm->filename) 1511 kfree(bprm->interp); 1512 kfree(bprm->fdpath); 1513 kfree(bprm); 1514 } 1515 1516 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1517 { 1518 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1519 int retval = -ENOMEM; 1520 if (!bprm) 1521 goto out; 1522 1523 if (fd == AT_FDCWD || filename->name[0] == '/') { 1524 bprm->filename = filename->name; 1525 } else { 1526 if (filename->name[0] == '\0') 1527 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1528 else 1529 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1530 fd, filename->name); 1531 if (!bprm->fdpath) 1532 goto out_free; 1533 1534 bprm->filename = bprm->fdpath; 1535 } 1536 bprm->interp = bprm->filename; 1537 1538 retval = bprm_mm_init(bprm); 1539 if (retval) 1540 goto out_free; 1541 return bprm; 1542 1543 out_free: 1544 free_bprm(bprm); 1545 out: 1546 return ERR_PTR(retval); 1547 } 1548 1549 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1550 { 1551 /* If a binfmt changed the interp, free it first. */ 1552 if (bprm->interp != bprm->filename) 1553 kfree(bprm->interp); 1554 bprm->interp = kstrdup(interp, GFP_KERNEL); 1555 if (!bprm->interp) 1556 return -ENOMEM; 1557 return 0; 1558 } 1559 EXPORT_SYMBOL(bprm_change_interp); 1560 1561 /* 1562 * determine how safe it is to execute the proposed program 1563 * - the caller must hold ->cred_guard_mutex to protect against 1564 * PTRACE_ATTACH or seccomp thread-sync 1565 */ 1566 static void check_unsafe_exec(struct linux_binprm *bprm) 1567 { 1568 struct task_struct *p = current, *t; 1569 unsigned n_fs; 1570 1571 if (p->ptrace) 1572 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1573 1574 /* 1575 * This isn't strictly necessary, but it makes it harder for LSMs to 1576 * mess up. 1577 */ 1578 if (task_no_new_privs(current)) 1579 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1580 1581 /* 1582 * If another task is sharing our fs, we cannot safely 1583 * suid exec because the differently privileged task 1584 * will be able to manipulate the current directory, etc. 1585 * It would be nice to force an unshare instead... 1586 */ 1587 t = p; 1588 n_fs = 1; 1589 spin_lock(&p->fs->lock); 1590 rcu_read_lock(); 1591 while_each_thread(p, t) { 1592 if (t->fs == p->fs) 1593 n_fs++; 1594 } 1595 rcu_read_unlock(); 1596 1597 if (p->fs->users > n_fs) 1598 bprm->unsafe |= LSM_UNSAFE_SHARE; 1599 else 1600 p->fs->in_exec = 1; 1601 spin_unlock(&p->fs->lock); 1602 } 1603 1604 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1605 { 1606 /* Handle suid and sgid on files */ 1607 struct mnt_idmap *idmap; 1608 struct inode *inode = file_inode(file); 1609 unsigned int mode; 1610 vfsuid_t vfsuid; 1611 vfsgid_t vfsgid; 1612 1613 if (!mnt_may_suid(file->f_path.mnt)) 1614 return; 1615 1616 if (task_no_new_privs(current)) 1617 return; 1618 1619 mode = READ_ONCE(inode->i_mode); 1620 if (!(mode & (S_ISUID|S_ISGID))) 1621 return; 1622 1623 idmap = file_mnt_idmap(file); 1624 1625 /* Be careful if suid/sgid is set */ 1626 inode_lock(inode); 1627 1628 /* reload atomically mode/uid/gid now that lock held */ 1629 mode = inode->i_mode; 1630 vfsuid = i_uid_into_vfsuid(idmap, inode); 1631 vfsgid = i_gid_into_vfsgid(idmap, inode); 1632 inode_unlock(inode); 1633 1634 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1635 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1636 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1637 return; 1638 1639 if (mode & S_ISUID) { 1640 bprm->per_clear |= PER_CLEAR_ON_SETID; 1641 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1642 } 1643 1644 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1645 bprm->per_clear |= PER_CLEAR_ON_SETID; 1646 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1647 } 1648 } 1649 1650 /* 1651 * Compute brpm->cred based upon the final binary. 1652 */ 1653 static int bprm_creds_from_file(struct linux_binprm *bprm) 1654 { 1655 /* Compute creds based on which file? */ 1656 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1657 1658 bprm_fill_uid(bprm, file); 1659 return security_bprm_creds_from_file(bprm, file); 1660 } 1661 1662 /* 1663 * Fill the binprm structure from the inode. 1664 * Read the first BINPRM_BUF_SIZE bytes 1665 * 1666 * This may be called multiple times for binary chains (scripts for example). 1667 */ 1668 static int prepare_binprm(struct linux_binprm *bprm) 1669 { 1670 loff_t pos = 0; 1671 1672 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1673 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1674 } 1675 1676 /* 1677 * Arguments are '\0' separated strings found at the location bprm->p 1678 * points to; chop off the first by relocating brpm->p to right after 1679 * the first '\0' encountered. 1680 */ 1681 int remove_arg_zero(struct linux_binprm *bprm) 1682 { 1683 int ret = 0; 1684 unsigned long offset; 1685 char *kaddr; 1686 struct page *page; 1687 1688 if (!bprm->argc) 1689 return 0; 1690 1691 do { 1692 offset = bprm->p & ~PAGE_MASK; 1693 page = get_arg_page(bprm, bprm->p, 0); 1694 if (!page) { 1695 ret = -EFAULT; 1696 goto out; 1697 } 1698 kaddr = kmap_local_page(page); 1699 1700 for (; offset < PAGE_SIZE && kaddr[offset]; 1701 offset++, bprm->p++) 1702 ; 1703 1704 kunmap_local(kaddr); 1705 put_arg_page(page); 1706 } while (offset == PAGE_SIZE); 1707 1708 bprm->p++; 1709 bprm->argc--; 1710 ret = 0; 1711 1712 out: 1713 return ret; 1714 } 1715 EXPORT_SYMBOL(remove_arg_zero); 1716 1717 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1718 /* 1719 * cycle the list of binary formats handler, until one recognizes the image 1720 */ 1721 static int search_binary_handler(struct linux_binprm *bprm) 1722 { 1723 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1724 struct linux_binfmt *fmt; 1725 int retval; 1726 1727 retval = prepare_binprm(bprm); 1728 if (retval < 0) 1729 return retval; 1730 1731 retval = security_bprm_check(bprm); 1732 if (retval) 1733 return retval; 1734 1735 retval = -ENOENT; 1736 retry: 1737 read_lock(&binfmt_lock); 1738 list_for_each_entry(fmt, &formats, lh) { 1739 if (!try_module_get(fmt->module)) 1740 continue; 1741 read_unlock(&binfmt_lock); 1742 1743 retval = fmt->load_binary(bprm); 1744 1745 read_lock(&binfmt_lock); 1746 put_binfmt(fmt); 1747 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1748 read_unlock(&binfmt_lock); 1749 return retval; 1750 } 1751 } 1752 read_unlock(&binfmt_lock); 1753 1754 if (need_retry) { 1755 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1756 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1757 return retval; 1758 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1759 return retval; 1760 need_retry = false; 1761 goto retry; 1762 } 1763 1764 return retval; 1765 } 1766 1767 /* binfmt handlers will call back into begin_new_exec() on success. */ 1768 static int exec_binprm(struct linux_binprm *bprm) 1769 { 1770 pid_t old_pid, old_vpid; 1771 int ret, depth; 1772 1773 /* Need to fetch pid before load_binary changes it */ 1774 old_pid = current->pid; 1775 rcu_read_lock(); 1776 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1777 rcu_read_unlock(); 1778 1779 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1780 for (depth = 0;; depth++) { 1781 struct file *exec; 1782 if (depth > 5) 1783 return -ELOOP; 1784 1785 ret = search_binary_handler(bprm); 1786 if (ret < 0) 1787 return ret; 1788 if (!bprm->interpreter) 1789 break; 1790 1791 exec = bprm->file; 1792 bprm->file = bprm->interpreter; 1793 bprm->interpreter = NULL; 1794 1795 allow_write_access(exec); 1796 if (unlikely(bprm->have_execfd)) { 1797 if (bprm->executable) { 1798 fput(exec); 1799 return -ENOEXEC; 1800 } 1801 bprm->executable = exec; 1802 } else 1803 fput(exec); 1804 } 1805 1806 audit_bprm(bprm); 1807 trace_sched_process_exec(current, old_pid, bprm); 1808 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1809 proc_exec_connector(current); 1810 return 0; 1811 } 1812 1813 /* 1814 * sys_execve() executes a new program. 1815 */ 1816 static int bprm_execve(struct linux_binprm *bprm, 1817 int fd, struct filename *filename, int flags) 1818 { 1819 struct file *file; 1820 int retval; 1821 1822 retval = prepare_bprm_creds(bprm); 1823 if (retval) 1824 return retval; 1825 1826 /* 1827 * Check for unsafe execution states before exec_binprm(), which 1828 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1829 * where setuid-ness is evaluated. 1830 */ 1831 check_unsafe_exec(bprm); 1832 current->in_execve = 1; 1833 sched_mm_cid_before_execve(current); 1834 1835 file = do_open_execat(fd, filename, flags); 1836 retval = PTR_ERR(file); 1837 if (IS_ERR(file)) 1838 goto out_unmark; 1839 1840 sched_exec(); 1841 1842 bprm->file = file; 1843 /* 1844 * Record that a name derived from an O_CLOEXEC fd will be 1845 * inaccessible after exec. This allows the code in exec to 1846 * choose to fail when the executable is not mmaped into the 1847 * interpreter and an open file descriptor is not passed to 1848 * the interpreter. This makes for a better user experience 1849 * than having the interpreter start and then immediately fail 1850 * when it finds the executable is inaccessible. 1851 */ 1852 if (bprm->fdpath && get_close_on_exec(fd)) 1853 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1854 1855 /* Set the unchanging part of bprm->cred */ 1856 retval = security_bprm_creds_for_exec(bprm); 1857 if (retval) 1858 goto out; 1859 1860 retval = exec_binprm(bprm); 1861 if (retval < 0) 1862 goto out; 1863 1864 sched_mm_cid_after_execve(current); 1865 /* execve succeeded */ 1866 current->fs->in_exec = 0; 1867 current->in_execve = 0; 1868 rseq_execve(current); 1869 user_events_execve(current); 1870 acct_update_integrals(current); 1871 task_numa_free(current, false); 1872 return retval; 1873 1874 out: 1875 /* 1876 * If past the point of no return ensure the code never 1877 * returns to the userspace process. Use an existing fatal 1878 * signal if present otherwise terminate the process with 1879 * SIGSEGV. 1880 */ 1881 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1882 force_fatal_sig(SIGSEGV); 1883 1884 out_unmark: 1885 sched_mm_cid_after_execve(current); 1886 current->fs->in_exec = 0; 1887 current->in_execve = 0; 1888 1889 return retval; 1890 } 1891 1892 static int do_execveat_common(int fd, struct filename *filename, 1893 struct user_arg_ptr argv, 1894 struct user_arg_ptr envp, 1895 int flags) 1896 { 1897 struct linux_binprm *bprm; 1898 int retval; 1899 1900 if (IS_ERR(filename)) 1901 return PTR_ERR(filename); 1902 1903 /* 1904 * We move the actual failure in case of RLIMIT_NPROC excess from 1905 * set*uid() to execve() because too many poorly written programs 1906 * don't check setuid() return code. Here we additionally recheck 1907 * whether NPROC limit is still exceeded. 1908 */ 1909 if ((current->flags & PF_NPROC_EXCEEDED) && 1910 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1911 retval = -EAGAIN; 1912 goto out_ret; 1913 } 1914 1915 /* We're below the limit (still or again), so we don't want to make 1916 * further execve() calls fail. */ 1917 current->flags &= ~PF_NPROC_EXCEEDED; 1918 1919 bprm = alloc_bprm(fd, filename); 1920 if (IS_ERR(bprm)) { 1921 retval = PTR_ERR(bprm); 1922 goto out_ret; 1923 } 1924 1925 retval = count(argv, MAX_ARG_STRINGS); 1926 if (retval == 0) 1927 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1928 current->comm, bprm->filename); 1929 if (retval < 0) 1930 goto out_free; 1931 bprm->argc = retval; 1932 1933 retval = count(envp, MAX_ARG_STRINGS); 1934 if (retval < 0) 1935 goto out_free; 1936 bprm->envc = retval; 1937 1938 retval = bprm_stack_limits(bprm); 1939 if (retval < 0) 1940 goto out_free; 1941 1942 retval = copy_string_kernel(bprm->filename, bprm); 1943 if (retval < 0) 1944 goto out_free; 1945 bprm->exec = bprm->p; 1946 1947 retval = copy_strings(bprm->envc, envp, bprm); 1948 if (retval < 0) 1949 goto out_free; 1950 1951 retval = copy_strings(bprm->argc, argv, bprm); 1952 if (retval < 0) 1953 goto out_free; 1954 1955 /* 1956 * When argv is empty, add an empty string ("") as argv[0] to 1957 * ensure confused userspace programs that start processing 1958 * from argv[1] won't end up walking envp. See also 1959 * bprm_stack_limits(). 1960 */ 1961 if (bprm->argc == 0) { 1962 retval = copy_string_kernel("", bprm); 1963 if (retval < 0) 1964 goto out_free; 1965 bprm->argc = 1; 1966 } 1967 1968 retval = bprm_execve(bprm, fd, filename, flags); 1969 out_free: 1970 free_bprm(bprm); 1971 1972 out_ret: 1973 putname(filename); 1974 return retval; 1975 } 1976 1977 int kernel_execve(const char *kernel_filename, 1978 const char *const *argv, const char *const *envp) 1979 { 1980 struct filename *filename; 1981 struct linux_binprm *bprm; 1982 int fd = AT_FDCWD; 1983 int retval; 1984 1985 /* It is non-sense for kernel threads to call execve */ 1986 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1987 return -EINVAL; 1988 1989 filename = getname_kernel(kernel_filename); 1990 if (IS_ERR(filename)) 1991 return PTR_ERR(filename); 1992 1993 bprm = alloc_bprm(fd, filename); 1994 if (IS_ERR(bprm)) { 1995 retval = PTR_ERR(bprm); 1996 goto out_ret; 1997 } 1998 1999 retval = count_strings_kernel(argv); 2000 if (WARN_ON_ONCE(retval == 0)) 2001 retval = -EINVAL; 2002 if (retval < 0) 2003 goto out_free; 2004 bprm->argc = retval; 2005 2006 retval = count_strings_kernel(envp); 2007 if (retval < 0) 2008 goto out_free; 2009 bprm->envc = retval; 2010 2011 retval = bprm_stack_limits(bprm); 2012 if (retval < 0) 2013 goto out_free; 2014 2015 retval = copy_string_kernel(bprm->filename, bprm); 2016 if (retval < 0) 2017 goto out_free; 2018 bprm->exec = bprm->p; 2019 2020 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2021 if (retval < 0) 2022 goto out_free; 2023 2024 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2025 if (retval < 0) 2026 goto out_free; 2027 2028 retval = bprm_execve(bprm, fd, filename, 0); 2029 out_free: 2030 free_bprm(bprm); 2031 out_ret: 2032 putname(filename); 2033 return retval; 2034 } 2035 2036 static int do_execve(struct filename *filename, 2037 const char __user *const __user *__argv, 2038 const char __user *const __user *__envp) 2039 { 2040 struct user_arg_ptr argv = { .ptr.native = __argv }; 2041 struct user_arg_ptr envp = { .ptr.native = __envp }; 2042 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2043 } 2044 2045 static int do_execveat(int fd, struct filename *filename, 2046 const char __user *const __user *__argv, 2047 const char __user *const __user *__envp, 2048 int flags) 2049 { 2050 struct user_arg_ptr argv = { .ptr.native = __argv }; 2051 struct user_arg_ptr envp = { .ptr.native = __envp }; 2052 2053 return do_execveat_common(fd, filename, argv, envp, flags); 2054 } 2055 2056 #ifdef CONFIG_COMPAT 2057 static int compat_do_execve(struct filename *filename, 2058 const compat_uptr_t __user *__argv, 2059 const compat_uptr_t __user *__envp) 2060 { 2061 struct user_arg_ptr argv = { 2062 .is_compat = true, 2063 .ptr.compat = __argv, 2064 }; 2065 struct user_arg_ptr envp = { 2066 .is_compat = true, 2067 .ptr.compat = __envp, 2068 }; 2069 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2070 } 2071 2072 static int compat_do_execveat(int fd, struct filename *filename, 2073 const compat_uptr_t __user *__argv, 2074 const compat_uptr_t __user *__envp, 2075 int flags) 2076 { 2077 struct user_arg_ptr argv = { 2078 .is_compat = true, 2079 .ptr.compat = __argv, 2080 }; 2081 struct user_arg_ptr envp = { 2082 .is_compat = true, 2083 .ptr.compat = __envp, 2084 }; 2085 return do_execveat_common(fd, filename, argv, envp, flags); 2086 } 2087 #endif 2088 2089 void set_binfmt(struct linux_binfmt *new) 2090 { 2091 struct mm_struct *mm = current->mm; 2092 2093 if (mm->binfmt) 2094 module_put(mm->binfmt->module); 2095 2096 mm->binfmt = new; 2097 if (new) 2098 __module_get(new->module); 2099 } 2100 EXPORT_SYMBOL(set_binfmt); 2101 2102 /* 2103 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2104 */ 2105 void set_dumpable(struct mm_struct *mm, int value) 2106 { 2107 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2108 return; 2109 2110 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2111 } 2112 2113 SYSCALL_DEFINE3(execve, 2114 const char __user *, filename, 2115 const char __user *const __user *, argv, 2116 const char __user *const __user *, envp) 2117 { 2118 return do_execve(getname(filename), argv, envp); 2119 } 2120 2121 SYSCALL_DEFINE5(execveat, 2122 int, fd, const char __user *, filename, 2123 const char __user *const __user *, argv, 2124 const char __user *const __user *, envp, 2125 int, flags) 2126 { 2127 return do_execveat(fd, 2128 getname_uflags(filename, flags), 2129 argv, envp, flags); 2130 } 2131 2132 #ifdef CONFIG_COMPAT 2133 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2134 const compat_uptr_t __user *, argv, 2135 const compat_uptr_t __user *, envp) 2136 { 2137 return compat_do_execve(getname(filename), argv, envp); 2138 } 2139 2140 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2141 const char __user *, filename, 2142 const compat_uptr_t __user *, argv, 2143 const compat_uptr_t __user *, envp, 2144 int, flags) 2145 { 2146 return compat_do_execveat(fd, 2147 getname_uflags(filename, flags), 2148 argv, envp, flags); 2149 } 2150 #endif 2151 2152 #ifdef CONFIG_SYSCTL 2153 2154 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2155 void *buffer, size_t *lenp, loff_t *ppos) 2156 { 2157 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2158 2159 if (!error) 2160 validate_coredump_safety(); 2161 return error; 2162 } 2163 2164 static struct ctl_table fs_exec_sysctls[] = { 2165 { 2166 .procname = "suid_dumpable", 2167 .data = &suid_dumpable, 2168 .maxlen = sizeof(int), 2169 .mode = 0644, 2170 .proc_handler = proc_dointvec_minmax_coredump, 2171 .extra1 = SYSCTL_ZERO, 2172 .extra2 = SYSCTL_TWO, 2173 }, 2174 { } 2175 }; 2176 2177 static int __init init_fs_exec_sysctls(void) 2178 { 2179 register_sysctl_init("fs", fs_exec_sysctls); 2180 return 0; 2181 } 2182 2183 fs_initcall(init_fs_exec_sysctls); 2184 #endif /* CONFIG_SYSCTL */ 2185