xref: /linux/fs/exec.c (revision d91958815d214ea365b98cbff6215383897edcb6)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 #include <asm/tlb.h>
56 
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60 
61 #ifdef __alpha__
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
64 #endif
65 
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
69 
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 int register_binfmt(struct linux_binfmt * fmt)
76 {
77 	if (!fmt)
78 		return -EINVAL;
79 	write_lock(&binfmt_lock);
80 	list_add(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 asmlinkage long sys_uselib(const char __user * library)
108 {
109 	struct file * file;
110 	struct nameidata nd;
111 	int error;
112 
113 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
114 	if (error)
115 		goto out;
116 
117 	error = -EINVAL;
118 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
119 		goto exit;
120 
121 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
122 	if (error)
123 		goto exit;
124 
125 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -ENOEXEC;
131 	if(file->f_op) {
132 		struct linux_binfmt * fmt;
133 
134 		read_lock(&binfmt_lock);
135 		list_for_each_entry(fmt, &formats, lh) {
136 			if (!fmt->load_shlib)
137 				continue;
138 			if (!try_module_get(fmt->module))
139 				continue;
140 			read_unlock(&binfmt_lock);
141 			error = fmt->load_shlib(file);
142 			read_lock(&binfmt_lock);
143 			put_binfmt(fmt);
144 			if (error != -ENOEXEC)
145 				break;
146 		}
147 		read_unlock(&binfmt_lock);
148 	}
149 	fput(file);
150 out:
151   	return error;
152 exit:
153 	release_open_intent(&nd);
154 	path_put(&nd.path);
155 	goto out;
156 }
157 
158 #ifdef CONFIG_MMU
159 
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 		int write)
162 {
163 	struct page *page;
164 	int ret;
165 
166 #ifdef CONFIG_STACK_GROWSUP
167 	if (write) {
168 		ret = expand_stack_downwards(bprm->vma, pos);
169 		if (ret < 0)
170 			return NULL;
171 	}
172 #endif
173 	ret = get_user_pages(current, bprm->mm, pos,
174 			1, write, 1, &page, NULL);
175 	if (ret <= 0)
176 		return NULL;
177 
178 	if (write) {
179 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 		struct rlimit *rlim;
181 
182 		/*
183 		 * We've historically supported up to 32 pages (ARG_MAX)
184 		 * of argument strings even with small stacks
185 		 */
186 		if (size <= ARG_MAX)
187 			return page;
188 
189 		/*
190 		 * Limit to 1/4-th the stack size for the argv+env strings.
191 		 * This ensures that:
192 		 *  - the remaining binfmt code will not run out of stack space,
193 		 *  - the program will have a reasonable amount of stack left
194 		 *    to work from.
195 		 */
196 		rlim = current->signal->rlim;
197 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
198 			put_page(page);
199 			return NULL;
200 		}
201 	}
202 
203 	return page;
204 }
205 
206 static void put_arg_page(struct page *page)
207 {
208 	put_page(page);
209 }
210 
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214 
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218 
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 		struct page *page)
221 {
222 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224 
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 	int err = -ENOMEM;
228 	struct vm_area_struct *vma = NULL;
229 	struct mm_struct *mm = bprm->mm;
230 
231 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 	if (!vma)
233 		goto err;
234 
235 	down_write(&mm->mmap_sem);
236 	vma->vm_mm = mm;
237 
238 	/*
239 	 * Place the stack at the largest stack address the architecture
240 	 * supports. Later, we'll move this to an appropriate place. We don't
241 	 * use STACK_TOP because that can depend on attributes which aren't
242 	 * configured yet.
243 	 */
244 	vma->vm_end = STACK_TOP_MAX;
245 	vma->vm_start = vma->vm_end - PAGE_SIZE;
246 
247 	vma->vm_flags = VM_STACK_FLAGS;
248 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 	err = insert_vm_struct(mm, vma);
250 	if (err) {
251 		up_write(&mm->mmap_sem);
252 		goto err;
253 	}
254 
255 	mm->stack_vm = mm->total_vm = 1;
256 	up_write(&mm->mmap_sem);
257 
258 	bprm->p = vma->vm_end - sizeof(void *);
259 
260 	return 0;
261 
262 err:
263 	if (vma) {
264 		bprm->vma = NULL;
265 		kmem_cache_free(vm_area_cachep, vma);
266 	}
267 
268 	return err;
269 }
270 
271 static bool valid_arg_len(struct linux_binprm *bprm, long len)
272 {
273 	return len <= MAX_ARG_STRLEN;
274 }
275 
276 #else
277 
278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
279 		int write)
280 {
281 	struct page *page;
282 
283 	page = bprm->page[pos / PAGE_SIZE];
284 	if (!page && write) {
285 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
286 		if (!page)
287 			return NULL;
288 		bprm->page[pos / PAGE_SIZE] = page;
289 	}
290 
291 	return page;
292 }
293 
294 static void put_arg_page(struct page *page)
295 {
296 }
297 
298 static void free_arg_page(struct linux_binprm *bprm, int i)
299 {
300 	if (bprm->page[i]) {
301 		__free_page(bprm->page[i]);
302 		bprm->page[i] = NULL;
303 	}
304 }
305 
306 static void free_arg_pages(struct linux_binprm *bprm)
307 {
308 	int i;
309 
310 	for (i = 0; i < MAX_ARG_PAGES; i++)
311 		free_arg_page(bprm, i);
312 }
313 
314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
315 		struct page *page)
316 {
317 }
318 
319 static int __bprm_mm_init(struct linux_binprm *bprm)
320 {
321 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
322 	return 0;
323 }
324 
325 static bool valid_arg_len(struct linux_binprm *bprm, long len)
326 {
327 	return len <= bprm->p;
328 }
329 
330 #endif /* CONFIG_MMU */
331 
332 /*
333  * Create a new mm_struct and populate it with a temporary stack
334  * vm_area_struct.  We don't have enough context at this point to set the stack
335  * flags, permissions, and offset, so we use temporary values.  We'll update
336  * them later in setup_arg_pages().
337  */
338 int bprm_mm_init(struct linux_binprm *bprm)
339 {
340 	int err;
341 	struct mm_struct *mm = NULL;
342 
343 	bprm->mm = mm = mm_alloc();
344 	err = -ENOMEM;
345 	if (!mm)
346 		goto err;
347 
348 	err = init_new_context(current, mm);
349 	if (err)
350 		goto err;
351 
352 	err = __bprm_mm_init(bprm);
353 	if (err)
354 		goto err;
355 
356 	return 0;
357 
358 err:
359 	if (mm) {
360 		bprm->mm = NULL;
361 		mmdrop(mm);
362 	}
363 
364 	return err;
365 }
366 
367 /*
368  * count() counts the number of strings in array ARGV.
369  */
370 static int count(char __user * __user * argv, int max)
371 {
372 	int i = 0;
373 
374 	if (argv != NULL) {
375 		for (;;) {
376 			char __user * p;
377 
378 			if (get_user(p, argv))
379 				return -EFAULT;
380 			if (!p)
381 				break;
382 			argv++;
383 			if(++i > max)
384 				return -E2BIG;
385 			cond_resched();
386 		}
387 	}
388 	return i;
389 }
390 
391 /*
392  * 'copy_strings()' copies argument/environment strings from the old
393  * processes's memory to the new process's stack.  The call to get_user_pages()
394  * ensures the destination page is created and not swapped out.
395  */
396 static int copy_strings(int argc, char __user * __user * argv,
397 			struct linux_binprm *bprm)
398 {
399 	struct page *kmapped_page = NULL;
400 	char *kaddr = NULL;
401 	unsigned long kpos = 0;
402 	int ret;
403 
404 	while (argc-- > 0) {
405 		char __user *str;
406 		int len;
407 		unsigned long pos;
408 
409 		if (get_user(str, argv+argc) ||
410 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
411 			ret = -EFAULT;
412 			goto out;
413 		}
414 
415 		if (!valid_arg_len(bprm, len)) {
416 			ret = -E2BIG;
417 			goto out;
418 		}
419 
420 		/* We're going to work our way backwords. */
421 		pos = bprm->p;
422 		str += len;
423 		bprm->p -= len;
424 
425 		while (len > 0) {
426 			int offset, bytes_to_copy;
427 
428 			offset = pos % PAGE_SIZE;
429 			if (offset == 0)
430 				offset = PAGE_SIZE;
431 
432 			bytes_to_copy = offset;
433 			if (bytes_to_copy > len)
434 				bytes_to_copy = len;
435 
436 			offset -= bytes_to_copy;
437 			pos -= bytes_to_copy;
438 			str -= bytes_to_copy;
439 			len -= bytes_to_copy;
440 
441 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
442 				struct page *page;
443 
444 				page = get_arg_page(bprm, pos, 1);
445 				if (!page) {
446 					ret = -E2BIG;
447 					goto out;
448 				}
449 
450 				if (kmapped_page) {
451 					flush_kernel_dcache_page(kmapped_page);
452 					kunmap(kmapped_page);
453 					put_arg_page(kmapped_page);
454 				}
455 				kmapped_page = page;
456 				kaddr = kmap(kmapped_page);
457 				kpos = pos & PAGE_MASK;
458 				flush_arg_page(bprm, kpos, kmapped_page);
459 			}
460 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
461 				ret = -EFAULT;
462 				goto out;
463 			}
464 		}
465 	}
466 	ret = 0;
467 out:
468 	if (kmapped_page) {
469 		flush_kernel_dcache_page(kmapped_page);
470 		kunmap(kmapped_page);
471 		put_arg_page(kmapped_page);
472 	}
473 	return ret;
474 }
475 
476 /*
477  * Like copy_strings, but get argv and its values from kernel memory.
478  */
479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
480 {
481 	int r;
482 	mm_segment_t oldfs = get_fs();
483 	set_fs(KERNEL_DS);
484 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
485 	set_fs(oldfs);
486 	return r;
487 }
488 EXPORT_SYMBOL(copy_strings_kernel);
489 
490 #ifdef CONFIG_MMU
491 
492 /*
493  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
494  * the binfmt code determines where the new stack should reside, we shift it to
495  * its final location.  The process proceeds as follows:
496  *
497  * 1) Use shift to calculate the new vma endpoints.
498  * 2) Extend vma to cover both the old and new ranges.  This ensures the
499  *    arguments passed to subsequent functions are consistent.
500  * 3) Move vma's page tables to the new range.
501  * 4) Free up any cleared pgd range.
502  * 5) Shrink the vma to cover only the new range.
503  */
504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
505 {
506 	struct mm_struct *mm = vma->vm_mm;
507 	unsigned long old_start = vma->vm_start;
508 	unsigned long old_end = vma->vm_end;
509 	unsigned long length = old_end - old_start;
510 	unsigned long new_start = old_start - shift;
511 	unsigned long new_end = old_end - shift;
512 	struct mmu_gather *tlb;
513 
514 	BUG_ON(new_start > new_end);
515 
516 	/*
517 	 * ensure there are no vmas between where we want to go
518 	 * and where we are
519 	 */
520 	if (vma != find_vma(mm, new_start))
521 		return -EFAULT;
522 
523 	/*
524 	 * cover the whole range: [new_start, old_end)
525 	 */
526 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
527 
528 	/*
529 	 * move the page tables downwards, on failure we rely on
530 	 * process cleanup to remove whatever mess we made.
531 	 */
532 	if (length != move_page_tables(vma, old_start,
533 				       vma, new_start, length))
534 		return -ENOMEM;
535 
536 	lru_add_drain();
537 	tlb = tlb_gather_mmu(mm, 0);
538 	if (new_end > old_start) {
539 		/*
540 		 * when the old and new regions overlap clear from new_end.
541 		 */
542 		free_pgd_range(tlb, new_end, old_end, new_end,
543 			vma->vm_next ? vma->vm_next->vm_start : 0);
544 	} else {
545 		/*
546 		 * otherwise, clean from old_start; this is done to not touch
547 		 * the address space in [new_end, old_start) some architectures
548 		 * have constraints on va-space that make this illegal (IA64) -
549 		 * for the others its just a little faster.
550 		 */
551 		free_pgd_range(tlb, old_start, old_end, new_end,
552 			vma->vm_next ? vma->vm_next->vm_start : 0);
553 	}
554 	tlb_finish_mmu(tlb, new_end, old_end);
555 
556 	/*
557 	 * shrink the vma to just the new range.
558 	 */
559 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
560 
561 	return 0;
562 }
563 
564 #define EXTRA_STACK_VM_PAGES	20	/* random */
565 
566 /*
567  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568  * the stack is optionally relocated, and some extra space is added.
569  */
570 int setup_arg_pages(struct linux_binprm *bprm,
571 		    unsigned long stack_top,
572 		    int executable_stack)
573 {
574 	unsigned long ret;
575 	unsigned long stack_shift;
576 	struct mm_struct *mm = current->mm;
577 	struct vm_area_struct *vma = bprm->vma;
578 	struct vm_area_struct *prev = NULL;
579 	unsigned long vm_flags;
580 	unsigned long stack_base;
581 
582 #ifdef CONFIG_STACK_GROWSUP
583 	/* Limit stack size to 1GB */
584 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
585 	if (stack_base > (1 << 30))
586 		stack_base = 1 << 30;
587 
588 	/* Make sure we didn't let the argument array grow too large. */
589 	if (vma->vm_end - vma->vm_start > stack_base)
590 		return -ENOMEM;
591 
592 	stack_base = PAGE_ALIGN(stack_top - stack_base);
593 
594 	stack_shift = vma->vm_start - stack_base;
595 	mm->arg_start = bprm->p - stack_shift;
596 	bprm->p = vma->vm_end - stack_shift;
597 #else
598 	stack_top = arch_align_stack(stack_top);
599 	stack_top = PAGE_ALIGN(stack_top);
600 	stack_shift = vma->vm_end - stack_top;
601 
602 	bprm->p -= stack_shift;
603 	mm->arg_start = bprm->p;
604 #endif
605 
606 	if (bprm->loader)
607 		bprm->loader -= stack_shift;
608 	bprm->exec -= stack_shift;
609 
610 	down_write(&mm->mmap_sem);
611 	vm_flags = VM_STACK_FLAGS;
612 
613 	/*
614 	 * Adjust stack execute permissions; explicitly enable for
615 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 	 * (arch default) otherwise.
617 	 */
618 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
619 		vm_flags |= VM_EXEC;
620 	else if (executable_stack == EXSTACK_DISABLE_X)
621 		vm_flags &= ~VM_EXEC;
622 	vm_flags |= mm->def_flags;
623 
624 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
625 			vm_flags);
626 	if (ret)
627 		goto out_unlock;
628 	BUG_ON(prev != vma);
629 
630 	/* Move stack pages down in memory. */
631 	if (stack_shift) {
632 		ret = shift_arg_pages(vma, stack_shift);
633 		if (ret) {
634 			up_write(&mm->mmap_sem);
635 			return ret;
636 		}
637 	}
638 
639 #ifdef CONFIG_STACK_GROWSUP
640 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #else
642 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #endif
644 	ret = expand_stack(vma, stack_base);
645 	if (ret)
646 		ret = -EFAULT;
647 
648 out_unlock:
649 	up_write(&mm->mmap_sem);
650 	return 0;
651 }
652 EXPORT_SYMBOL(setup_arg_pages);
653 
654 #endif /* CONFIG_MMU */
655 
656 struct file *open_exec(const char *name)
657 {
658 	struct nameidata nd;
659 	int err;
660 	struct file *file;
661 
662 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
663 	file = ERR_PTR(err);
664 
665 	if (!err) {
666 		struct inode *inode = nd.path.dentry->d_inode;
667 		file = ERR_PTR(-EACCES);
668 		if (S_ISREG(inode->i_mode)) {
669 			int err = vfs_permission(&nd, MAY_EXEC);
670 			file = ERR_PTR(err);
671 			if (!err) {
672 				file = nameidata_to_filp(&nd,
673 							O_RDONLY|O_LARGEFILE);
674 				if (!IS_ERR(file)) {
675 					err = deny_write_access(file);
676 					if (err) {
677 						fput(file);
678 						file = ERR_PTR(err);
679 					}
680 				}
681 out:
682 				return file;
683 			}
684 		}
685 		release_open_intent(&nd);
686 		path_put(&nd.path);
687 	}
688 	goto out;
689 }
690 
691 EXPORT_SYMBOL(open_exec);
692 
693 int kernel_read(struct file *file, unsigned long offset,
694 	char *addr, unsigned long count)
695 {
696 	mm_segment_t old_fs;
697 	loff_t pos = offset;
698 	int result;
699 
700 	old_fs = get_fs();
701 	set_fs(get_ds());
702 	/* The cast to a user pointer is valid due to the set_fs() */
703 	result = vfs_read(file, (void __user *)addr, count, &pos);
704 	set_fs(old_fs);
705 	return result;
706 }
707 
708 EXPORT_SYMBOL(kernel_read);
709 
710 static int exec_mmap(struct mm_struct *mm)
711 {
712 	struct task_struct *tsk;
713 	struct mm_struct * old_mm, *active_mm;
714 
715 	/* Notify parent that we're no longer interested in the old VM */
716 	tsk = current;
717 	old_mm = current->mm;
718 	mm_release(tsk, old_mm);
719 
720 	if (old_mm) {
721 		/*
722 		 * Make sure that if there is a core dump in progress
723 		 * for the old mm, we get out and die instead of going
724 		 * through with the exec.  We must hold mmap_sem around
725 		 * checking core_state and changing tsk->mm.
726 		 */
727 		down_read(&old_mm->mmap_sem);
728 		if (unlikely(old_mm->core_state)) {
729 			up_read(&old_mm->mmap_sem);
730 			return -EINTR;
731 		}
732 	}
733 	task_lock(tsk);
734 	active_mm = tsk->active_mm;
735 	tsk->mm = mm;
736 	tsk->active_mm = mm;
737 	activate_mm(active_mm, mm);
738 	task_unlock(tsk);
739 	mm_update_next_owner(old_mm);
740 	arch_pick_mmap_layout(mm);
741 	if (old_mm) {
742 		up_read(&old_mm->mmap_sem);
743 		BUG_ON(active_mm != old_mm);
744 		mmput(old_mm);
745 		return 0;
746 	}
747 	mmdrop(active_mm);
748 	return 0;
749 }
750 
751 /*
752  * This function makes sure the current process has its own signal table,
753  * so that flush_signal_handlers can later reset the handlers without
754  * disturbing other processes.  (Other processes might share the signal
755  * table via the CLONE_SIGHAND option to clone().)
756  */
757 static int de_thread(struct task_struct *tsk)
758 {
759 	struct signal_struct *sig = tsk->signal;
760 	struct sighand_struct *oldsighand = tsk->sighand;
761 	spinlock_t *lock = &oldsighand->siglock;
762 	struct task_struct *leader = NULL;
763 	int count;
764 
765 	if (thread_group_empty(tsk))
766 		goto no_thread_group;
767 
768 	/*
769 	 * Kill all other threads in the thread group.
770 	 */
771 	spin_lock_irq(lock);
772 	if (signal_group_exit(sig)) {
773 		/*
774 		 * Another group action in progress, just
775 		 * return so that the signal is processed.
776 		 */
777 		spin_unlock_irq(lock);
778 		return -EAGAIN;
779 	}
780 	sig->group_exit_task = tsk;
781 	zap_other_threads(tsk);
782 
783 	/* Account for the thread group leader hanging around: */
784 	count = thread_group_leader(tsk) ? 1 : 2;
785 	sig->notify_count = count;
786 	while (atomic_read(&sig->count) > count) {
787 		__set_current_state(TASK_UNINTERRUPTIBLE);
788 		spin_unlock_irq(lock);
789 		schedule();
790 		spin_lock_irq(lock);
791 	}
792 	spin_unlock_irq(lock);
793 
794 	/*
795 	 * At this point all other threads have exited, all we have to
796 	 * do is to wait for the thread group leader to become inactive,
797 	 * and to assume its PID:
798 	 */
799 	if (!thread_group_leader(tsk)) {
800 		leader = tsk->group_leader;
801 
802 		sig->notify_count = -1;	/* for exit_notify() */
803 		for (;;) {
804 			write_lock_irq(&tasklist_lock);
805 			if (likely(leader->exit_state))
806 				break;
807 			__set_current_state(TASK_UNINTERRUPTIBLE);
808 			write_unlock_irq(&tasklist_lock);
809 			schedule();
810 		}
811 
812 		if (unlikely(task_child_reaper(tsk) == leader))
813 			task_active_pid_ns(tsk)->child_reaper = tsk;
814 		/*
815 		 * The only record we have of the real-time age of a
816 		 * process, regardless of execs it's done, is start_time.
817 		 * All the past CPU time is accumulated in signal_struct
818 		 * from sister threads now dead.  But in this non-leader
819 		 * exec, nothing survives from the original leader thread,
820 		 * whose birth marks the true age of this process now.
821 		 * When we take on its identity by switching to its PID, we
822 		 * also take its birthdate (always earlier than our own).
823 		 */
824 		tsk->start_time = leader->start_time;
825 
826 		BUG_ON(!same_thread_group(leader, tsk));
827 		BUG_ON(has_group_leader_pid(tsk));
828 		/*
829 		 * An exec() starts a new thread group with the
830 		 * TGID of the previous thread group. Rehash the
831 		 * two threads with a switched PID, and release
832 		 * the former thread group leader:
833 		 */
834 
835 		/* Become a process group leader with the old leader's pid.
836 		 * The old leader becomes a thread of the this thread group.
837 		 * Note: The old leader also uses this pid until release_task
838 		 *       is called.  Odd but simple and correct.
839 		 */
840 		detach_pid(tsk, PIDTYPE_PID);
841 		tsk->pid = leader->pid;
842 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
843 		transfer_pid(leader, tsk, PIDTYPE_PGID);
844 		transfer_pid(leader, tsk, PIDTYPE_SID);
845 		list_replace_rcu(&leader->tasks, &tsk->tasks);
846 
847 		tsk->group_leader = tsk;
848 		leader->group_leader = tsk;
849 
850 		tsk->exit_signal = SIGCHLD;
851 
852 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853 		leader->exit_state = EXIT_DEAD;
854 
855 		write_unlock_irq(&tasklist_lock);
856 	}
857 
858 	sig->group_exit_task = NULL;
859 	sig->notify_count = 0;
860 
861 no_thread_group:
862 	exit_itimers(sig);
863 	flush_itimer_signals();
864 	if (leader)
865 		release_task(leader);
866 
867 	if (atomic_read(&oldsighand->count) != 1) {
868 		struct sighand_struct *newsighand;
869 		/*
870 		 * This ->sighand is shared with the CLONE_SIGHAND
871 		 * but not CLONE_THREAD task, switch to the new one.
872 		 */
873 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874 		if (!newsighand)
875 			return -ENOMEM;
876 
877 		atomic_set(&newsighand->count, 1);
878 		memcpy(newsighand->action, oldsighand->action,
879 		       sizeof(newsighand->action));
880 
881 		write_lock_irq(&tasklist_lock);
882 		spin_lock(&oldsighand->siglock);
883 		rcu_assign_pointer(tsk->sighand, newsighand);
884 		spin_unlock(&oldsighand->siglock);
885 		write_unlock_irq(&tasklist_lock);
886 
887 		__cleanup_sighand(oldsighand);
888 	}
889 
890 	BUG_ON(!thread_group_leader(tsk));
891 	return 0;
892 }
893 
894 /*
895  * These functions flushes out all traces of the currently running executable
896  * so that a new one can be started
897  */
898 static void flush_old_files(struct files_struct * files)
899 {
900 	long j = -1;
901 	struct fdtable *fdt;
902 
903 	spin_lock(&files->file_lock);
904 	for (;;) {
905 		unsigned long set, i;
906 
907 		j++;
908 		i = j * __NFDBITS;
909 		fdt = files_fdtable(files);
910 		if (i >= fdt->max_fds)
911 			break;
912 		set = fdt->close_on_exec->fds_bits[j];
913 		if (!set)
914 			continue;
915 		fdt->close_on_exec->fds_bits[j] = 0;
916 		spin_unlock(&files->file_lock);
917 		for ( ; set ; i++,set >>= 1) {
918 			if (set & 1) {
919 				sys_close(i);
920 			}
921 		}
922 		spin_lock(&files->file_lock);
923 
924 	}
925 	spin_unlock(&files->file_lock);
926 }
927 
928 char *get_task_comm(char *buf, struct task_struct *tsk)
929 {
930 	/* buf must be at least sizeof(tsk->comm) in size */
931 	task_lock(tsk);
932 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
933 	task_unlock(tsk);
934 	return buf;
935 }
936 
937 void set_task_comm(struct task_struct *tsk, char *buf)
938 {
939 	task_lock(tsk);
940 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941 	task_unlock(tsk);
942 }
943 
944 int flush_old_exec(struct linux_binprm * bprm)
945 {
946 	char * name;
947 	int i, ch, retval;
948 	char tcomm[sizeof(current->comm)];
949 
950 	/*
951 	 * Make sure we have a private signal table and that
952 	 * we are unassociated from the previous thread group.
953 	 */
954 	retval = de_thread(current);
955 	if (retval)
956 		goto out;
957 
958 	set_mm_exe_file(bprm->mm, bprm->file);
959 
960 	/*
961 	 * Release all of the old mmap stuff
962 	 */
963 	retval = exec_mmap(bprm->mm);
964 	if (retval)
965 		goto out;
966 
967 	bprm->mm = NULL;		/* We're using it now */
968 
969 	/* This is the point of no return */
970 	current->sas_ss_sp = current->sas_ss_size = 0;
971 
972 	if (current->euid == current->uid && current->egid == current->gid)
973 		set_dumpable(current->mm, 1);
974 	else
975 		set_dumpable(current->mm, suid_dumpable);
976 
977 	name = bprm->filename;
978 
979 	/* Copies the binary name from after last slash */
980 	for (i=0; (ch = *(name++)) != '\0';) {
981 		if (ch == '/')
982 			i = 0; /* overwrite what we wrote */
983 		else
984 			if (i < (sizeof(tcomm) - 1))
985 				tcomm[i++] = ch;
986 	}
987 	tcomm[i] = '\0';
988 	set_task_comm(current, tcomm);
989 
990 	current->flags &= ~PF_RANDOMIZE;
991 	flush_thread();
992 
993 	/* Set the new mm task size. We have to do that late because it may
994 	 * depend on TIF_32BIT which is only updated in flush_thread() on
995 	 * some architectures like powerpc
996 	 */
997 	current->mm->task_size = TASK_SIZE;
998 
999 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1000 		suid_keys(current);
1001 		set_dumpable(current->mm, suid_dumpable);
1002 		current->pdeath_signal = 0;
1003 	} else if (file_permission(bprm->file, MAY_READ) ||
1004 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1005 		suid_keys(current);
1006 		set_dumpable(current->mm, suid_dumpable);
1007 	}
1008 
1009 	/* An exec changes our domain. We are no longer part of the thread
1010 	   group */
1011 
1012 	current->self_exec_id++;
1013 
1014 	flush_signal_handlers(current, 0);
1015 	flush_old_files(current->files);
1016 
1017 	return 0;
1018 
1019 out:
1020 	return retval;
1021 }
1022 
1023 EXPORT_SYMBOL(flush_old_exec);
1024 
1025 /*
1026  * Fill the binprm structure from the inode.
1027  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1028  */
1029 int prepare_binprm(struct linux_binprm *bprm)
1030 {
1031 	int mode;
1032 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1033 	int retval;
1034 
1035 	mode = inode->i_mode;
1036 	if (bprm->file->f_op == NULL)
1037 		return -EACCES;
1038 
1039 	bprm->e_uid = current->euid;
1040 	bprm->e_gid = current->egid;
1041 
1042 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1043 		/* Set-uid? */
1044 		if (mode & S_ISUID) {
1045 			current->personality &= ~PER_CLEAR_ON_SETID;
1046 			bprm->e_uid = inode->i_uid;
1047 		}
1048 
1049 		/* Set-gid? */
1050 		/*
1051 		 * If setgid is set but no group execute bit then this
1052 		 * is a candidate for mandatory locking, not a setgid
1053 		 * executable.
1054 		 */
1055 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1056 			current->personality &= ~PER_CLEAR_ON_SETID;
1057 			bprm->e_gid = inode->i_gid;
1058 		}
1059 	}
1060 
1061 	/* fill in binprm security blob */
1062 	retval = security_bprm_set(bprm);
1063 	if (retval)
1064 		return retval;
1065 
1066 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1067 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1068 }
1069 
1070 EXPORT_SYMBOL(prepare_binprm);
1071 
1072 static int unsafe_exec(struct task_struct *p)
1073 {
1074 	int unsafe = 0;
1075 	if (p->ptrace & PT_PTRACED) {
1076 		if (p->ptrace & PT_PTRACE_CAP)
1077 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1078 		else
1079 			unsafe |= LSM_UNSAFE_PTRACE;
1080 	}
1081 	if (atomic_read(&p->fs->count) > 1 ||
1082 	    atomic_read(&p->files->count) > 1 ||
1083 	    atomic_read(&p->sighand->count) > 1)
1084 		unsafe |= LSM_UNSAFE_SHARE;
1085 
1086 	return unsafe;
1087 }
1088 
1089 void compute_creds(struct linux_binprm *bprm)
1090 {
1091 	int unsafe;
1092 
1093 	if (bprm->e_uid != current->uid) {
1094 		suid_keys(current);
1095 		current->pdeath_signal = 0;
1096 	}
1097 	exec_keys(current);
1098 
1099 	task_lock(current);
1100 	unsafe = unsafe_exec(current);
1101 	security_bprm_apply_creds(bprm, unsafe);
1102 	task_unlock(current);
1103 	security_bprm_post_apply_creds(bprm);
1104 }
1105 EXPORT_SYMBOL(compute_creds);
1106 
1107 /*
1108  * Arguments are '\0' separated strings found at the location bprm->p
1109  * points to; chop off the first by relocating brpm->p to right after
1110  * the first '\0' encountered.
1111  */
1112 int remove_arg_zero(struct linux_binprm *bprm)
1113 {
1114 	int ret = 0;
1115 	unsigned long offset;
1116 	char *kaddr;
1117 	struct page *page;
1118 
1119 	if (!bprm->argc)
1120 		return 0;
1121 
1122 	do {
1123 		offset = bprm->p & ~PAGE_MASK;
1124 		page = get_arg_page(bprm, bprm->p, 0);
1125 		if (!page) {
1126 			ret = -EFAULT;
1127 			goto out;
1128 		}
1129 		kaddr = kmap_atomic(page, KM_USER0);
1130 
1131 		for (; offset < PAGE_SIZE && kaddr[offset];
1132 				offset++, bprm->p++)
1133 			;
1134 
1135 		kunmap_atomic(kaddr, KM_USER0);
1136 		put_arg_page(page);
1137 
1138 		if (offset == PAGE_SIZE)
1139 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1140 	} while (offset == PAGE_SIZE);
1141 
1142 	bprm->p++;
1143 	bprm->argc--;
1144 	ret = 0;
1145 
1146 out:
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL(remove_arg_zero);
1150 
1151 /*
1152  * cycle the list of binary formats handler, until one recognizes the image
1153  */
1154 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1155 {
1156 	int try,retval;
1157 	struct linux_binfmt *fmt;
1158 #ifdef __alpha__
1159 	/* handle /sbin/loader.. */
1160 	{
1161 	    struct exec * eh = (struct exec *) bprm->buf;
1162 
1163 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1164 		(eh->fh.f_flags & 0x3000) == 0x3000)
1165 	    {
1166 		struct file * file;
1167 		unsigned long loader;
1168 
1169 		allow_write_access(bprm->file);
1170 		fput(bprm->file);
1171 		bprm->file = NULL;
1172 
1173 		loader = bprm->vma->vm_end - sizeof(void *);
1174 
1175 		file = open_exec("/sbin/loader");
1176 		retval = PTR_ERR(file);
1177 		if (IS_ERR(file))
1178 			return retval;
1179 
1180 		/* Remember if the application is TASO.  */
1181 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1182 
1183 		bprm->file = file;
1184 		bprm->loader = loader;
1185 		retval = prepare_binprm(bprm);
1186 		if (retval<0)
1187 			return retval;
1188 		/* should call search_binary_handler recursively here,
1189 		   but it does not matter */
1190 	    }
1191 	}
1192 #endif
1193 	retval = security_bprm_check(bprm);
1194 	if (retval)
1195 		return retval;
1196 
1197 	/* kernel module loader fixup */
1198 	/* so we don't try to load run modprobe in kernel space. */
1199 	set_fs(USER_DS);
1200 
1201 	retval = audit_bprm(bprm);
1202 	if (retval)
1203 		return retval;
1204 
1205 	retval = -ENOENT;
1206 	for (try=0; try<2; try++) {
1207 		read_lock(&binfmt_lock);
1208 		list_for_each_entry(fmt, &formats, lh) {
1209 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1210 			if (!fn)
1211 				continue;
1212 			if (!try_module_get(fmt->module))
1213 				continue;
1214 			read_unlock(&binfmt_lock);
1215 			retval = fn(bprm, regs);
1216 			if (retval >= 0) {
1217 				put_binfmt(fmt);
1218 				allow_write_access(bprm->file);
1219 				if (bprm->file)
1220 					fput(bprm->file);
1221 				bprm->file = NULL;
1222 				current->did_exec = 1;
1223 				proc_exec_connector(current);
1224 				return retval;
1225 			}
1226 			read_lock(&binfmt_lock);
1227 			put_binfmt(fmt);
1228 			if (retval != -ENOEXEC || bprm->mm == NULL)
1229 				break;
1230 			if (!bprm->file) {
1231 				read_unlock(&binfmt_lock);
1232 				return retval;
1233 			}
1234 		}
1235 		read_unlock(&binfmt_lock);
1236 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1237 			break;
1238 #ifdef CONFIG_KMOD
1239 		}else{
1240 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1241 			if (printable(bprm->buf[0]) &&
1242 			    printable(bprm->buf[1]) &&
1243 			    printable(bprm->buf[2]) &&
1244 			    printable(bprm->buf[3]))
1245 				break; /* -ENOEXEC */
1246 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1247 #endif
1248 		}
1249 	}
1250 	return retval;
1251 }
1252 
1253 EXPORT_SYMBOL(search_binary_handler);
1254 
1255 void free_bprm(struct linux_binprm *bprm)
1256 {
1257 	free_arg_pages(bprm);
1258 	kfree(bprm);
1259 }
1260 
1261 /*
1262  * sys_execve() executes a new program.
1263  */
1264 int do_execve(char * filename,
1265 	char __user *__user *argv,
1266 	char __user *__user *envp,
1267 	struct pt_regs * regs)
1268 {
1269 	struct linux_binprm *bprm;
1270 	struct file *file;
1271 	struct files_struct *displaced;
1272 	int retval;
1273 
1274 	retval = unshare_files(&displaced);
1275 	if (retval)
1276 		goto out_ret;
1277 
1278 	retval = -ENOMEM;
1279 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1280 	if (!bprm)
1281 		goto out_files;
1282 
1283 	file = open_exec(filename);
1284 	retval = PTR_ERR(file);
1285 	if (IS_ERR(file))
1286 		goto out_kfree;
1287 
1288 	sched_exec();
1289 
1290 	bprm->file = file;
1291 	bprm->filename = filename;
1292 	bprm->interp = filename;
1293 
1294 	retval = bprm_mm_init(bprm);
1295 	if (retval)
1296 		goto out_file;
1297 
1298 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1299 	if ((retval = bprm->argc) < 0)
1300 		goto out_mm;
1301 
1302 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1303 	if ((retval = bprm->envc) < 0)
1304 		goto out_mm;
1305 
1306 	retval = security_bprm_alloc(bprm);
1307 	if (retval)
1308 		goto out;
1309 
1310 	retval = prepare_binprm(bprm);
1311 	if (retval < 0)
1312 		goto out;
1313 
1314 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1315 	if (retval < 0)
1316 		goto out;
1317 
1318 	bprm->exec = bprm->p;
1319 	retval = copy_strings(bprm->envc, envp, bprm);
1320 	if (retval < 0)
1321 		goto out;
1322 
1323 	retval = copy_strings(bprm->argc, argv, bprm);
1324 	if (retval < 0)
1325 		goto out;
1326 
1327 	current->flags &= ~PF_KTHREAD;
1328 	retval = search_binary_handler(bprm,regs);
1329 	if (retval >= 0) {
1330 		/* execve success */
1331 		security_bprm_free(bprm);
1332 		acct_update_integrals(current);
1333 		free_bprm(bprm);
1334 		if (displaced)
1335 			put_files_struct(displaced);
1336 		return retval;
1337 	}
1338 
1339 out:
1340 	if (bprm->security)
1341 		security_bprm_free(bprm);
1342 
1343 out_mm:
1344 	if (bprm->mm)
1345 		mmput (bprm->mm);
1346 
1347 out_file:
1348 	if (bprm->file) {
1349 		allow_write_access(bprm->file);
1350 		fput(bprm->file);
1351 	}
1352 out_kfree:
1353 	free_bprm(bprm);
1354 
1355 out_files:
1356 	if (displaced)
1357 		reset_files_struct(displaced);
1358 out_ret:
1359 	return retval;
1360 }
1361 
1362 int set_binfmt(struct linux_binfmt *new)
1363 {
1364 	struct linux_binfmt *old = current->binfmt;
1365 
1366 	if (new) {
1367 		if (!try_module_get(new->module))
1368 			return -1;
1369 	}
1370 	current->binfmt = new;
1371 	if (old)
1372 		module_put(old->module);
1373 	return 0;
1374 }
1375 
1376 EXPORT_SYMBOL(set_binfmt);
1377 
1378 /* format_corename will inspect the pattern parameter, and output a
1379  * name into corename, which must have space for at least
1380  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1381  */
1382 static int format_corename(char *corename, int nr_threads, long signr)
1383 {
1384 	const char *pat_ptr = core_pattern;
1385 	int ispipe = (*pat_ptr == '|');
1386 	char *out_ptr = corename;
1387 	char *const out_end = corename + CORENAME_MAX_SIZE;
1388 	int rc;
1389 	int pid_in_pattern = 0;
1390 
1391 	/* Repeat as long as we have more pattern to process and more output
1392 	   space */
1393 	while (*pat_ptr) {
1394 		if (*pat_ptr != '%') {
1395 			if (out_ptr == out_end)
1396 				goto out;
1397 			*out_ptr++ = *pat_ptr++;
1398 		} else {
1399 			switch (*++pat_ptr) {
1400 			case 0:
1401 				goto out;
1402 			/* Double percent, output one percent */
1403 			case '%':
1404 				if (out_ptr == out_end)
1405 					goto out;
1406 				*out_ptr++ = '%';
1407 				break;
1408 			/* pid */
1409 			case 'p':
1410 				pid_in_pattern = 1;
1411 				rc = snprintf(out_ptr, out_end - out_ptr,
1412 					      "%d", task_tgid_vnr(current));
1413 				if (rc > out_end - out_ptr)
1414 					goto out;
1415 				out_ptr += rc;
1416 				break;
1417 			/* uid */
1418 			case 'u':
1419 				rc = snprintf(out_ptr, out_end - out_ptr,
1420 					      "%d", current->uid);
1421 				if (rc > out_end - out_ptr)
1422 					goto out;
1423 				out_ptr += rc;
1424 				break;
1425 			/* gid */
1426 			case 'g':
1427 				rc = snprintf(out_ptr, out_end - out_ptr,
1428 					      "%d", current->gid);
1429 				if (rc > out_end - out_ptr)
1430 					goto out;
1431 				out_ptr += rc;
1432 				break;
1433 			/* signal that caused the coredump */
1434 			case 's':
1435 				rc = snprintf(out_ptr, out_end - out_ptr,
1436 					      "%ld", signr);
1437 				if (rc > out_end - out_ptr)
1438 					goto out;
1439 				out_ptr += rc;
1440 				break;
1441 			/* UNIX time of coredump */
1442 			case 't': {
1443 				struct timeval tv;
1444 				do_gettimeofday(&tv);
1445 				rc = snprintf(out_ptr, out_end - out_ptr,
1446 					      "%lu", tv.tv_sec);
1447 				if (rc > out_end - out_ptr)
1448 					goto out;
1449 				out_ptr += rc;
1450 				break;
1451 			}
1452 			/* hostname */
1453 			case 'h':
1454 				down_read(&uts_sem);
1455 				rc = snprintf(out_ptr, out_end - out_ptr,
1456 					      "%s", utsname()->nodename);
1457 				up_read(&uts_sem);
1458 				if (rc > out_end - out_ptr)
1459 					goto out;
1460 				out_ptr += rc;
1461 				break;
1462 			/* executable */
1463 			case 'e':
1464 				rc = snprintf(out_ptr, out_end - out_ptr,
1465 					      "%s", current->comm);
1466 				if (rc > out_end - out_ptr)
1467 					goto out;
1468 				out_ptr += rc;
1469 				break;
1470 			/* core limit size */
1471 			case 'c':
1472 				rc = snprintf(out_ptr, out_end - out_ptr,
1473 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1474 				if (rc > out_end - out_ptr)
1475 					goto out;
1476 				out_ptr += rc;
1477 				break;
1478 			default:
1479 				break;
1480 			}
1481 			++pat_ptr;
1482 		}
1483 	}
1484 	/* Backward compatibility with core_uses_pid:
1485 	 *
1486 	 * If core_pattern does not include a %p (as is the default)
1487 	 * and core_uses_pid is set, then .%pid will be appended to
1488 	 * the filename. Do not do this for piped commands. */
1489 	if (!ispipe && !pid_in_pattern
1490 	    && (core_uses_pid || nr_threads)) {
1491 		rc = snprintf(out_ptr, out_end - out_ptr,
1492 			      ".%d", task_tgid_vnr(current));
1493 		if (rc > out_end - out_ptr)
1494 			goto out;
1495 		out_ptr += rc;
1496 	}
1497 out:
1498 	*out_ptr = 0;
1499 	return ispipe;
1500 }
1501 
1502 static int zap_process(struct task_struct *start)
1503 {
1504 	struct task_struct *t;
1505 	int nr = 0;
1506 
1507 	start->signal->flags = SIGNAL_GROUP_EXIT;
1508 	start->signal->group_stop_count = 0;
1509 
1510 	t = start;
1511 	do {
1512 		if (t != current && t->mm) {
1513 			sigaddset(&t->pending.signal, SIGKILL);
1514 			signal_wake_up(t, 1);
1515 			nr++;
1516 		}
1517 	} while_each_thread(start, t);
1518 
1519 	return nr;
1520 }
1521 
1522 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1523 				struct core_state *core_state, int exit_code)
1524 {
1525 	struct task_struct *g, *p;
1526 	unsigned long flags;
1527 	int nr = -EAGAIN;
1528 
1529 	spin_lock_irq(&tsk->sighand->siglock);
1530 	if (!signal_group_exit(tsk->signal)) {
1531 		mm->core_state = core_state;
1532 		tsk->signal->group_exit_code = exit_code;
1533 		nr = zap_process(tsk);
1534 	}
1535 	spin_unlock_irq(&tsk->sighand->siglock);
1536 	if (unlikely(nr < 0))
1537 		return nr;
1538 
1539 	if (atomic_read(&mm->mm_users) == nr + 1)
1540 		goto done;
1541 	/*
1542 	 * We should find and kill all tasks which use this mm, and we should
1543 	 * count them correctly into ->nr_threads. We don't take tasklist
1544 	 * lock, but this is safe wrt:
1545 	 *
1546 	 * fork:
1547 	 *	None of sub-threads can fork after zap_process(leader). All
1548 	 *	processes which were created before this point should be
1549 	 *	visible to zap_threads() because copy_process() adds the new
1550 	 *	process to the tail of init_task.tasks list, and lock/unlock
1551 	 *	of ->siglock provides a memory barrier.
1552 	 *
1553 	 * do_exit:
1554 	 *	The caller holds mm->mmap_sem. This means that the task which
1555 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1556 	 *	its ->mm.
1557 	 *
1558 	 * de_thread:
1559 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1560 	 *	we must see either old or new leader, this does not matter.
1561 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1562 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1563 	 *	it can't fail.
1564 	 *
1565 	 *	Note also that "g" can be the old leader with ->mm == NULL
1566 	 *	and already unhashed and thus removed from ->thread_group.
1567 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1568 	 *	clear the ->next pointer, we will find the new leader via
1569 	 *	next_thread().
1570 	 */
1571 	rcu_read_lock();
1572 	for_each_process(g) {
1573 		if (g == tsk->group_leader)
1574 			continue;
1575 		if (g->flags & PF_KTHREAD)
1576 			continue;
1577 		p = g;
1578 		do {
1579 			if (p->mm) {
1580 				if (unlikely(p->mm == mm)) {
1581 					lock_task_sighand(p, &flags);
1582 					nr += zap_process(p);
1583 					unlock_task_sighand(p, &flags);
1584 				}
1585 				break;
1586 			}
1587 		} while_each_thread(g, p);
1588 	}
1589 	rcu_read_unlock();
1590 done:
1591 	atomic_set(&core_state->nr_threads, nr);
1592 	return nr;
1593 }
1594 
1595 static int coredump_wait(int exit_code, struct core_state *core_state)
1596 {
1597 	struct task_struct *tsk = current;
1598 	struct mm_struct *mm = tsk->mm;
1599 	struct completion *vfork_done;
1600 	int core_waiters;
1601 
1602 	init_completion(&core_state->startup);
1603 	core_state->dumper.task = tsk;
1604 	core_state->dumper.next = NULL;
1605 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1606 	up_write(&mm->mmap_sem);
1607 
1608 	if (unlikely(core_waiters < 0))
1609 		goto fail;
1610 
1611 	/*
1612 	 * Make sure nobody is waiting for us to release the VM,
1613 	 * otherwise we can deadlock when we wait on each other
1614 	 */
1615 	vfork_done = tsk->vfork_done;
1616 	if (vfork_done) {
1617 		tsk->vfork_done = NULL;
1618 		complete(vfork_done);
1619 	}
1620 
1621 	if (core_waiters)
1622 		wait_for_completion(&core_state->startup);
1623 fail:
1624 	return core_waiters;
1625 }
1626 
1627 static void coredump_finish(struct mm_struct *mm)
1628 {
1629 	struct core_thread *curr, *next;
1630 	struct task_struct *task;
1631 
1632 	next = mm->core_state->dumper.next;
1633 	while ((curr = next) != NULL) {
1634 		next = curr->next;
1635 		task = curr->task;
1636 		/*
1637 		 * see exit_mm(), curr->task must not see
1638 		 * ->task == NULL before we read ->next.
1639 		 */
1640 		smp_mb();
1641 		curr->task = NULL;
1642 		wake_up_process(task);
1643 	}
1644 
1645 	mm->core_state = NULL;
1646 }
1647 
1648 /*
1649  * set_dumpable converts traditional three-value dumpable to two flags and
1650  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1651  * these bits are not changed atomically.  So get_dumpable can observe the
1652  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1653  * return either old dumpable or new one by paying attention to the order of
1654  * modifying the bits.
1655  *
1656  * dumpable |   mm->flags (binary)
1657  * old  new | initial interim  final
1658  * ---------+-----------------------
1659  *  0    1  |   00      01      01
1660  *  0    2  |   00      10(*)   11
1661  *  1    0  |   01      00      00
1662  *  1    2  |   01      11      11
1663  *  2    0  |   11      10(*)   00
1664  *  2    1  |   11      11      01
1665  *
1666  * (*) get_dumpable regards interim value of 10 as 11.
1667  */
1668 void set_dumpable(struct mm_struct *mm, int value)
1669 {
1670 	switch (value) {
1671 	case 0:
1672 		clear_bit(MMF_DUMPABLE, &mm->flags);
1673 		smp_wmb();
1674 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1675 		break;
1676 	case 1:
1677 		set_bit(MMF_DUMPABLE, &mm->flags);
1678 		smp_wmb();
1679 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1680 		break;
1681 	case 2:
1682 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1683 		smp_wmb();
1684 		set_bit(MMF_DUMPABLE, &mm->flags);
1685 		break;
1686 	}
1687 }
1688 
1689 int get_dumpable(struct mm_struct *mm)
1690 {
1691 	int ret;
1692 
1693 	ret = mm->flags & 0x3;
1694 	return (ret >= 2) ? 2 : ret;
1695 }
1696 
1697 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1698 {
1699 	struct core_state core_state;
1700 	char corename[CORENAME_MAX_SIZE + 1];
1701 	struct mm_struct *mm = current->mm;
1702 	struct linux_binfmt * binfmt;
1703 	struct inode * inode;
1704 	struct file * file;
1705 	int retval = 0;
1706 	int fsuid = current->fsuid;
1707 	int flag = 0;
1708 	int ispipe = 0;
1709 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1710 	char **helper_argv = NULL;
1711 	int helper_argc = 0;
1712 	char *delimit;
1713 
1714 	audit_core_dumps(signr);
1715 
1716 	binfmt = current->binfmt;
1717 	if (!binfmt || !binfmt->core_dump)
1718 		goto fail;
1719 	down_write(&mm->mmap_sem);
1720 	/*
1721 	 * If another thread got here first, or we are not dumpable, bail out.
1722 	 */
1723 	if (mm->core_state || !get_dumpable(mm)) {
1724 		up_write(&mm->mmap_sem);
1725 		goto fail;
1726 	}
1727 
1728 	/*
1729 	 *	We cannot trust fsuid as being the "true" uid of the
1730 	 *	process nor do we know its entire history. We only know it
1731 	 *	was tainted so we dump it as root in mode 2.
1732 	 */
1733 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1734 		flag = O_EXCL;		/* Stop rewrite attacks */
1735 		current->fsuid = 0;	/* Dump root private */
1736 	}
1737 
1738 	retval = coredump_wait(exit_code, &core_state);
1739 	if (retval < 0)
1740 		goto fail;
1741 
1742 	/*
1743 	 * Clear any false indication of pending signals that might
1744 	 * be seen by the filesystem code called to write the core file.
1745 	 */
1746 	clear_thread_flag(TIF_SIGPENDING);
1747 
1748 	/*
1749 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1750 	 * uses lock_kernel()
1751 	 */
1752  	lock_kernel();
1753 	ispipe = format_corename(corename, retval, signr);
1754 	unlock_kernel();
1755 	/*
1756 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1757 	 * to a pipe.  Since we're not writing directly to the filesystem
1758 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1759 	 * created unless the pipe reader choses to write out the core file
1760 	 * at which point file size limits and permissions will be imposed
1761 	 * as it does with any other process
1762 	 */
1763 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1764 		goto fail_unlock;
1765 
1766  	if (ispipe) {
1767 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1768 		/* Terminate the string before the first option */
1769 		delimit = strchr(corename, ' ');
1770 		if (delimit)
1771 			*delimit = '\0';
1772 		delimit = strrchr(helper_argv[0], '/');
1773 		if (delimit)
1774 			delimit++;
1775 		else
1776 			delimit = helper_argv[0];
1777 		if (!strcmp(delimit, current->comm)) {
1778 			printk(KERN_NOTICE "Recursive core dump detected, "
1779 					"aborting\n");
1780 			goto fail_unlock;
1781 		}
1782 
1783 		core_limit = RLIM_INFINITY;
1784 
1785 		/* SIGPIPE can happen, but it's just never processed */
1786  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1787 				&file)) {
1788  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1789 			       corename);
1790  			goto fail_unlock;
1791  		}
1792  	} else
1793  		file = filp_open(corename,
1794 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1795 				 0600);
1796 	if (IS_ERR(file))
1797 		goto fail_unlock;
1798 	inode = file->f_path.dentry->d_inode;
1799 	if (inode->i_nlink > 1)
1800 		goto close_fail;	/* multiple links - don't dump */
1801 	if (!ispipe && d_unhashed(file->f_path.dentry))
1802 		goto close_fail;
1803 
1804 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1805 	   but keep the previous behaviour for now. */
1806 	if (!ispipe && !S_ISREG(inode->i_mode))
1807 		goto close_fail;
1808 	/*
1809 	 * Dont allow local users get cute and trick others to coredump
1810 	 * into their pre-created files:
1811 	 */
1812 	if (inode->i_uid != current->fsuid)
1813 		goto close_fail;
1814 	if (!file->f_op)
1815 		goto close_fail;
1816 	if (!file->f_op->write)
1817 		goto close_fail;
1818 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1819 		goto close_fail;
1820 
1821 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1822 
1823 	if (retval)
1824 		current->signal->group_exit_code |= 0x80;
1825 close_fail:
1826 	filp_close(file, NULL);
1827 fail_unlock:
1828 	if (helper_argv)
1829 		argv_free(helper_argv);
1830 
1831 	current->fsuid = fsuid;
1832 	coredump_finish(mm);
1833 fail:
1834 	return retval;
1835 }
1836