xref: /linux/fs/exec.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 
55 #ifdef CONFIG_KMOD
56 #include <linux/kmod.h>
57 #endif
58 
59 int core_uses_pid;
60 char core_pattern[65] = "core";
61 int suid_dumpable = 0;
62 
63 EXPORT_SYMBOL(suid_dumpable);
64 /* The maximal length of core_pattern is also specified in sysctl.c */
65 
66 static struct linux_binfmt *formats;
67 static DEFINE_RWLOCK(binfmt_lock);
68 
69 int register_binfmt(struct linux_binfmt * fmt)
70 {
71 	struct linux_binfmt ** tmp = &formats;
72 
73 	if (!fmt)
74 		return -EINVAL;
75 	if (fmt->next)
76 		return -EBUSY;
77 	write_lock(&binfmt_lock);
78 	while (*tmp) {
79 		if (fmt == *tmp) {
80 			write_unlock(&binfmt_lock);
81 			return -EBUSY;
82 		}
83 		tmp = &(*tmp)->next;
84 	}
85 	fmt->next = formats;
86 	formats = fmt;
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(register_binfmt);
92 
93 int unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	struct linux_binfmt ** tmp = &formats;
96 
97 	write_lock(&binfmt_lock);
98 	while (*tmp) {
99 		if (fmt == *tmp) {
100 			*tmp = fmt->next;
101 			write_unlock(&binfmt_lock);
102 			return 0;
103 		}
104 		tmp = &(*tmp)->next;
105 	}
106 	write_unlock(&binfmt_lock);
107 	return -EINVAL;
108 }
109 
110 EXPORT_SYMBOL(unregister_binfmt);
111 
112 static inline void put_binfmt(struct linux_binfmt * fmt)
113 {
114 	module_put(fmt->module);
115 }
116 
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 asmlinkage long sys_uselib(const char __user * library)
124 {
125 	struct file * file;
126 	struct nameidata nd;
127 	int error;
128 
129 	nd.intent.open.flags = FMODE_READ;
130 	error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
131 	if (error)
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
139 	if (error)
140 		goto exit;
141 
142 	file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	error = -ENOEXEC;
148 	if(file->f_op) {
149 		struct linux_binfmt * fmt;
150 
151 		read_lock(&binfmt_lock);
152 		for (fmt = formats ; fmt ; fmt = fmt->next) {
153 			if (!fmt->load_shlib)
154 				continue;
155 			if (!try_module_get(fmt->module))
156 				continue;
157 			read_unlock(&binfmt_lock);
158 			error = fmt->load_shlib(file);
159 			read_lock(&binfmt_lock);
160 			put_binfmt(fmt);
161 			if (error != -ENOEXEC)
162 				break;
163 		}
164 		read_unlock(&binfmt_lock);
165 	}
166 	fput(file);
167 out:
168   	return error;
169 exit:
170 	path_release(&nd);
171 	goto out;
172 }
173 
174 /*
175  * count() counts the number of strings in array ARGV.
176  */
177 static int count(char __user * __user * argv, int max)
178 {
179 	int i = 0;
180 
181 	if (argv != NULL) {
182 		for (;;) {
183 			char __user * p;
184 
185 			if (get_user(p, argv))
186 				return -EFAULT;
187 			if (!p)
188 				break;
189 			argv++;
190 			if(++i > max)
191 				return -E2BIG;
192 			cond_resched();
193 		}
194 	}
195 	return i;
196 }
197 
198 /*
199  * 'copy_strings()' copies argument/environment strings from user
200  * memory to free pages in kernel mem. These are in a format ready
201  * to be put directly into the top of new user memory.
202  */
203 static int copy_strings(int argc, char __user * __user * argv,
204 			struct linux_binprm *bprm)
205 {
206 	struct page *kmapped_page = NULL;
207 	char *kaddr = NULL;
208 	int ret;
209 
210 	while (argc-- > 0) {
211 		char __user *str;
212 		int len;
213 		unsigned long pos;
214 
215 		if (get_user(str, argv+argc) ||
216 				!(len = strnlen_user(str, bprm->p))) {
217 			ret = -EFAULT;
218 			goto out;
219 		}
220 
221 		if (bprm->p < len)  {
222 			ret = -E2BIG;
223 			goto out;
224 		}
225 
226 		bprm->p -= len;
227 		/* XXX: add architecture specific overflow check here. */
228 		pos = bprm->p;
229 
230 		while (len > 0) {
231 			int i, new, err;
232 			int offset, bytes_to_copy;
233 			struct page *page;
234 
235 			offset = pos % PAGE_SIZE;
236 			i = pos/PAGE_SIZE;
237 			page = bprm->page[i];
238 			new = 0;
239 			if (!page) {
240 				page = alloc_page(GFP_HIGHUSER);
241 				bprm->page[i] = page;
242 				if (!page) {
243 					ret = -ENOMEM;
244 					goto out;
245 				}
246 				new = 1;
247 			}
248 
249 			if (page != kmapped_page) {
250 				if (kmapped_page)
251 					kunmap(kmapped_page);
252 				kmapped_page = page;
253 				kaddr = kmap(kmapped_page);
254 			}
255 			if (new && offset)
256 				memset(kaddr, 0, offset);
257 			bytes_to_copy = PAGE_SIZE - offset;
258 			if (bytes_to_copy > len) {
259 				bytes_to_copy = len;
260 				if (new)
261 					memset(kaddr+offset+len, 0,
262 						PAGE_SIZE-offset-len);
263 			}
264 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
265 			if (err) {
266 				ret = -EFAULT;
267 				goto out;
268 			}
269 
270 			pos += bytes_to_copy;
271 			str += bytes_to_copy;
272 			len -= bytes_to_copy;
273 		}
274 	}
275 	ret = 0;
276 out:
277 	if (kmapped_page)
278 		kunmap(kmapped_page);
279 	return ret;
280 }
281 
282 /*
283  * Like copy_strings, but get argv and its values from kernel memory.
284  */
285 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
286 {
287 	int r;
288 	mm_segment_t oldfs = get_fs();
289 	set_fs(KERNEL_DS);
290 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
291 	set_fs(oldfs);
292 	return r;
293 }
294 
295 EXPORT_SYMBOL(copy_strings_kernel);
296 
297 #ifdef CONFIG_MMU
298 /*
299  * This routine is used to map in a page into an address space: needed by
300  * execve() for the initial stack and environment pages.
301  *
302  * vma->vm_mm->mmap_sem is held for writing.
303  */
304 void install_arg_page(struct vm_area_struct *vma,
305 			struct page *page, unsigned long address)
306 {
307 	struct mm_struct *mm = vma->vm_mm;
308 	pgd_t * pgd;
309 	pud_t * pud;
310 	pmd_t * pmd;
311 	pte_t * pte;
312 
313 	if (unlikely(anon_vma_prepare(vma)))
314 		goto out_sig;
315 
316 	flush_dcache_page(page);
317 	pgd = pgd_offset(mm, address);
318 
319 	spin_lock(&mm->page_table_lock);
320 	pud = pud_alloc(mm, pgd, address);
321 	if (!pud)
322 		goto out;
323 	pmd = pmd_alloc(mm, pud, address);
324 	if (!pmd)
325 		goto out;
326 	pte = pte_alloc_map(mm, pmd, address);
327 	if (!pte)
328 		goto out;
329 	if (!pte_none(*pte)) {
330 		pte_unmap(pte);
331 		goto out;
332 	}
333 	inc_mm_counter(mm, rss);
334 	lru_cache_add_active(page);
335 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
336 					page, vma->vm_page_prot))));
337 	page_add_anon_rmap(page, vma, address);
338 	pte_unmap(pte);
339 	spin_unlock(&mm->page_table_lock);
340 
341 	/* no need for flush_tlb */
342 	return;
343 out:
344 	spin_unlock(&mm->page_table_lock);
345 out_sig:
346 	__free_page(page);
347 	force_sig(SIGKILL, current);
348 }
349 
350 #define EXTRA_STACK_VM_PAGES	20	/* random */
351 
352 int setup_arg_pages(struct linux_binprm *bprm,
353 		    unsigned long stack_top,
354 		    int executable_stack)
355 {
356 	unsigned long stack_base;
357 	struct vm_area_struct *mpnt;
358 	struct mm_struct *mm = current->mm;
359 	int i, ret;
360 	long arg_size;
361 
362 #ifdef CONFIG_STACK_GROWSUP
363 	/* Move the argument and environment strings to the bottom of the
364 	 * stack space.
365 	 */
366 	int offset, j;
367 	char *to, *from;
368 
369 	/* Start by shifting all the pages down */
370 	i = 0;
371 	for (j = 0; j < MAX_ARG_PAGES; j++) {
372 		struct page *page = bprm->page[j];
373 		if (!page)
374 			continue;
375 		bprm->page[i++] = page;
376 	}
377 
378 	/* Now move them within their pages */
379 	offset = bprm->p % PAGE_SIZE;
380 	to = kmap(bprm->page[0]);
381 	for (j = 1; j < i; j++) {
382 		memmove(to, to + offset, PAGE_SIZE - offset);
383 		from = kmap(bprm->page[j]);
384 		memcpy(to + PAGE_SIZE - offset, from, offset);
385 		kunmap(bprm->page[j - 1]);
386 		to = from;
387 	}
388 	memmove(to, to + offset, PAGE_SIZE - offset);
389 	kunmap(bprm->page[j - 1]);
390 
391 	/* Limit stack size to 1GB */
392 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
393 	if (stack_base > (1 << 30))
394 		stack_base = 1 << 30;
395 	stack_base = PAGE_ALIGN(stack_top - stack_base);
396 
397 	/* Adjust bprm->p to point to the end of the strings. */
398 	bprm->p = stack_base + PAGE_SIZE * i - offset;
399 
400 	mm->arg_start = stack_base;
401 	arg_size = i << PAGE_SHIFT;
402 
403 	/* zero pages that were copied above */
404 	while (i < MAX_ARG_PAGES)
405 		bprm->page[i++] = NULL;
406 #else
407 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
408 	stack_base = PAGE_ALIGN(stack_base);
409 	bprm->p += stack_base;
410 	mm->arg_start = bprm->p;
411 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
412 #endif
413 
414 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
415 
416 	if (bprm->loader)
417 		bprm->loader += stack_base;
418 	bprm->exec += stack_base;
419 
420 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
421 	if (!mpnt)
422 		return -ENOMEM;
423 
424 	if (security_vm_enough_memory(arg_size >> PAGE_SHIFT)) {
425 		kmem_cache_free(vm_area_cachep, mpnt);
426 		return -ENOMEM;
427 	}
428 
429 	memset(mpnt, 0, sizeof(*mpnt));
430 
431 	down_write(&mm->mmap_sem);
432 	{
433 		mpnt->vm_mm = mm;
434 #ifdef CONFIG_STACK_GROWSUP
435 		mpnt->vm_start = stack_base;
436 		mpnt->vm_end = stack_base + arg_size;
437 #else
438 		mpnt->vm_end = stack_top;
439 		mpnt->vm_start = mpnt->vm_end - arg_size;
440 #endif
441 		/* Adjust stack execute permissions; explicitly enable
442 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
443 		 * and leave alone (arch default) otherwise. */
444 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
445 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
446 		else if (executable_stack == EXSTACK_DISABLE_X)
447 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
448 		else
449 			mpnt->vm_flags = VM_STACK_FLAGS;
450 		mpnt->vm_flags |= mm->def_flags;
451 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
452 		if ((ret = insert_vm_struct(mm, mpnt))) {
453 			up_write(&mm->mmap_sem);
454 			kmem_cache_free(vm_area_cachep, mpnt);
455 			return ret;
456 		}
457 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
458 	}
459 
460 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
461 		struct page *page = bprm->page[i];
462 		if (page) {
463 			bprm->page[i] = NULL;
464 			install_arg_page(mpnt, page, stack_base);
465 		}
466 		stack_base += PAGE_SIZE;
467 	}
468 	up_write(&mm->mmap_sem);
469 
470 	return 0;
471 }
472 
473 EXPORT_SYMBOL(setup_arg_pages);
474 
475 #define free_arg_pages(bprm) do { } while (0)
476 
477 #else
478 
479 static inline void free_arg_pages(struct linux_binprm *bprm)
480 {
481 	int i;
482 
483 	for (i = 0; i < MAX_ARG_PAGES; i++) {
484 		if (bprm->page[i])
485 			__free_page(bprm->page[i]);
486 		bprm->page[i] = NULL;
487 	}
488 }
489 
490 #endif /* CONFIG_MMU */
491 
492 struct file *open_exec(const char *name)
493 {
494 	struct nameidata nd;
495 	int err;
496 	struct file *file;
497 
498 	nd.intent.open.flags = FMODE_READ;
499 	err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
500 	file = ERR_PTR(err);
501 
502 	if (!err) {
503 		struct inode *inode = nd.dentry->d_inode;
504 		file = ERR_PTR(-EACCES);
505 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
506 		    S_ISREG(inode->i_mode)) {
507 			int err = permission(inode, MAY_EXEC, &nd);
508 			if (!err && !(inode->i_mode & 0111))
509 				err = -EACCES;
510 			file = ERR_PTR(err);
511 			if (!err) {
512 				file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
513 				if (!IS_ERR(file)) {
514 					err = deny_write_access(file);
515 					if (err) {
516 						fput(file);
517 						file = ERR_PTR(err);
518 					}
519 				}
520 out:
521 				return file;
522 			}
523 		}
524 		path_release(&nd);
525 	}
526 	goto out;
527 }
528 
529 EXPORT_SYMBOL(open_exec);
530 
531 int kernel_read(struct file *file, unsigned long offset,
532 	char *addr, unsigned long count)
533 {
534 	mm_segment_t old_fs;
535 	loff_t pos = offset;
536 	int result;
537 
538 	old_fs = get_fs();
539 	set_fs(get_ds());
540 	/* The cast to a user pointer is valid due to the set_fs() */
541 	result = vfs_read(file, (void __user *)addr, count, &pos);
542 	set_fs(old_fs);
543 	return result;
544 }
545 
546 EXPORT_SYMBOL(kernel_read);
547 
548 static int exec_mmap(struct mm_struct *mm)
549 {
550 	struct task_struct *tsk;
551 	struct mm_struct * old_mm, *active_mm;
552 
553 	/* Notify parent that we're no longer interested in the old VM */
554 	tsk = current;
555 	old_mm = current->mm;
556 	mm_release(tsk, old_mm);
557 
558 	if (old_mm) {
559 		/*
560 		 * Make sure that if there is a core dump in progress
561 		 * for the old mm, we get out and die instead of going
562 		 * through with the exec.  We must hold mmap_sem around
563 		 * checking core_waiters and changing tsk->mm.  The
564 		 * core-inducing thread will increment core_waiters for
565 		 * each thread whose ->mm == old_mm.
566 		 */
567 		down_read(&old_mm->mmap_sem);
568 		if (unlikely(old_mm->core_waiters)) {
569 			up_read(&old_mm->mmap_sem);
570 			return -EINTR;
571 		}
572 	}
573 	task_lock(tsk);
574 	active_mm = tsk->active_mm;
575 	tsk->mm = mm;
576 	tsk->active_mm = mm;
577 	activate_mm(active_mm, mm);
578 	task_unlock(tsk);
579 	arch_pick_mmap_layout(mm);
580 	if (old_mm) {
581 		up_read(&old_mm->mmap_sem);
582 		if (active_mm != old_mm) BUG();
583 		mmput(old_mm);
584 		return 0;
585 	}
586 	mmdrop(active_mm);
587 	return 0;
588 }
589 
590 /*
591  * This function makes sure the current process has its own signal table,
592  * so that flush_signal_handlers can later reset the handlers without
593  * disturbing other processes.  (Other processes might share the signal
594  * table via the CLONE_SIGHAND option to clone().)
595  */
596 static inline int de_thread(struct task_struct *tsk)
597 {
598 	struct signal_struct *sig = tsk->signal;
599 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
600 	spinlock_t *lock = &oldsighand->siglock;
601 	int count;
602 
603 	/*
604 	 * If we don't share sighandlers, then we aren't sharing anything
605 	 * and we can just re-use it all.
606 	 */
607 	if (atomic_read(&oldsighand->count) <= 1) {
608 		BUG_ON(atomic_read(&sig->count) != 1);
609 		exit_itimers(sig);
610 		return 0;
611 	}
612 
613 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
614 	if (!newsighand)
615 		return -ENOMEM;
616 
617 	if (thread_group_empty(current))
618 		goto no_thread_group;
619 
620 	/*
621 	 * Kill all other threads in the thread group.
622 	 * We must hold tasklist_lock to call zap_other_threads.
623 	 */
624 	read_lock(&tasklist_lock);
625 	spin_lock_irq(lock);
626 	if (sig->flags & SIGNAL_GROUP_EXIT) {
627 		/*
628 		 * Another group action in progress, just
629 		 * return so that the signal is processed.
630 		 */
631 		spin_unlock_irq(lock);
632 		read_unlock(&tasklist_lock);
633 		kmem_cache_free(sighand_cachep, newsighand);
634 		return -EAGAIN;
635 	}
636 	zap_other_threads(current);
637 	read_unlock(&tasklist_lock);
638 
639 	/*
640 	 * Account for the thread group leader hanging around:
641 	 */
642 	count = 2;
643 	if (thread_group_leader(current))
644 		count = 1;
645 	while (atomic_read(&sig->count) > count) {
646 		sig->group_exit_task = current;
647 		sig->notify_count = count;
648 		__set_current_state(TASK_UNINTERRUPTIBLE);
649 		spin_unlock_irq(lock);
650 		schedule();
651 		spin_lock_irq(lock);
652 	}
653 	sig->group_exit_task = NULL;
654 	sig->notify_count = 0;
655 	sig->real_timer.data = (unsigned long)current;
656 	spin_unlock_irq(lock);
657 
658 	/*
659 	 * At this point all other threads have exited, all we have to
660 	 * do is to wait for the thread group leader to become inactive,
661 	 * and to assume its PID:
662 	 */
663 	if (!thread_group_leader(current)) {
664 		struct task_struct *leader = current->group_leader, *parent;
665 		struct dentry *proc_dentry1, *proc_dentry2;
666 		unsigned long exit_state, ptrace;
667 
668 		/*
669 		 * Wait for the thread group leader to be a zombie.
670 		 * It should already be zombie at this point, most
671 		 * of the time.
672 		 */
673 		while (leader->exit_state != EXIT_ZOMBIE)
674 			yield();
675 
676 		spin_lock(&leader->proc_lock);
677 		spin_lock(&current->proc_lock);
678 		proc_dentry1 = proc_pid_unhash(current);
679 		proc_dentry2 = proc_pid_unhash(leader);
680 		write_lock_irq(&tasklist_lock);
681 
682 		BUG_ON(leader->tgid != current->tgid);
683 		BUG_ON(current->pid == current->tgid);
684 		/*
685 		 * An exec() starts a new thread group with the
686 		 * TGID of the previous thread group. Rehash the
687 		 * two threads with a switched PID, and release
688 		 * the former thread group leader:
689 		 */
690 		ptrace = leader->ptrace;
691 		parent = leader->parent;
692 		if (unlikely(ptrace) && unlikely(parent == current)) {
693 			/*
694 			 * Joker was ptracing his own group leader,
695 			 * and now he wants to be his own parent!
696 			 * We can't have that.
697 			 */
698 			ptrace = 0;
699 		}
700 
701 		ptrace_unlink(current);
702 		ptrace_unlink(leader);
703 		remove_parent(current);
704 		remove_parent(leader);
705 
706 		switch_exec_pids(leader, current);
707 
708 		current->parent = current->real_parent = leader->real_parent;
709 		leader->parent = leader->real_parent = child_reaper;
710 		current->group_leader = current;
711 		leader->group_leader = leader;
712 
713 		add_parent(current, current->parent);
714 		add_parent(leader, leader->parent);
715 		if (ptrace) {
716 			current->ptrace = ptrace;
717 			__ptrace_link(current, parent);
718 		}
719 
720 		list_del(&current->tasks);
721 		list_add_tail(&current->tasks, &init_task.tasks);
722 		current->exit_signal = SIGCHLD;
723 		exit_state = leader->exit_state;
724 
725 		write_unlock_irq(&tasklist_lock);
726 		spin_unlock(&leader->proc_lock);
727 		spin_unlock(&current->proc_lock);
728 		proc_pid_flush(proc_dentry1);
729 		proc_pid_flush(proc_dentry2);
730 
731 		BUG_ON(exit_state != EXIT_ZOMBIE);
732 		release_task(leader);
733         }
734 
735 	/*
736 	 * Now there are really no other threads at all,
737 	 * so it's safe to stop telling them to kill themselves.
738 	 */
739 	sig->flags = 0;
740 
741 no_thread_group:
742 	BUG_ON(atomic_read(&sig->count) != 1);
743 	exit_itimers(sig);
744 
745 	if (atomic_read(&oldsighand->count) == 1) {
746 		/*
747 		 * Now that we nuked the rest of the thread group,
748 		 * it turns out we are not sharing sighand any more either.
749 		 * So we can just keep it.
750 		 */
751 		kmem_cache_free(sighand_cachep, newsighand);
752 	} else {
753 		/*
754 		 * Move our state over to newsighand and switch it in.
755 		 */
756 		spin_lock_init(&newsighand->siglock);
757 		atomic_set(&newsighand->count, 1);
758 		memcpy(newsighand->action, oldsighand->action,
759 		       sizeof(newsighand->action));
760 
761 		write_lock_irq(&tasklist_lock);
762 		spin_lock(&oldsighand->siglock);
763 		spin_lock(&newsighand->siglock);
764 
765 		current->sighand = newsighand;
766 		recalc_sigpending();
767 
768 		spin_unlock(&newsighand->siglock);
769 		spin_unlock(&oldsighand->siglock);
770 		write_unlock_irq(&tasklist_lock);
771 
772 		if (atomic_dec_and_test(&oldsighand->count))
773 			kmem_cache_free(sighand_cachep, oldsighand);
774 	}
775 
776 	BUG_ON(!thread_group_empty(current));
777 	BUG_ON(!thread_group_leader(current));
778 	return 0;
779 }
780 
781 /*
782  * These functions flushes out all traces of the currently running executable
783  * so that a new one can be started
784  */
785 
786 static inline void flush_old_files(struct files_struct * files)
787 {
788 	long j = -1;
789 
790 	spin_lock(&files->file_lock);
791 	for (;;) {
792 		unsigned long set, i;
793 
794 		j++;
795 		i = j * __NFDBITS;
796 		if (i >= files->max_fds || i >= files->max_fdset)
797 			break;
798 		set = files->close_on_exec->fds_bits[j];
799 		if (!set)
800 			continue;
801 		files->close_on_exec->fds_bits[j] = 0;
802 		spin_unlock(&files->file_lock);
803 		for ( ; set ; i++,set >>= 1) {
804 			if (set & 1) {
805 				sys_close(i);
806 			}
807 		}
808 		spin_lock(&files->file_lock);
809 
810 	}
811 	spin_unlock(&files->file_lock);
812 }
813 
814 void get_task_comm(char *buf, struct task_struct *tsk)
815 {
816 	/* buf must be at least sizeof(tsk->comm) in size */
817 	task_lock(tsk);
818 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
819 	task_unlock(tsk);
820 }
821 
822 void set_task_comm(struct task_struct *tsk, char *buf)
823 {
824 	task_lock(tsk);
825 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
826 	task_unlock(tsk);
827 }
828 
829 int flush_old_exec(struct linux_binprm * bprm)
830 {
831 	char * name;
832 	int i, ch, retval;
833 	struct files_struct *files;
834 	char tcomm[sizeof(current->comm)];
835 
836 	/*
837 	 * Make sure we have a private signal table and that
838 	 * we are unassociated from the previous thread group.
839 	 */
840 	retval = de_thread(current);
841 	if (retval)
842 		goto out;
843 
844 	/*
845 	 * Make sure we have private file handles. Ask the
846 	 * fork helper to do the work for us and the exit
847 	 * helper to do the cleanup of the old one.
848 	 */
849 	files = current->files;		/* refcounted so safe to hold */
850 	retval = unshare_files();
851 	if (retval)
852 		goto out;
853 	/*
854 	 * Release all of the old mmap stuff
855 	 */
856 	retval = exec_mmap(bprm->mm);
857 	if (retval)
858 		goto mmap_failed;
859 
860 	bprm->mm = NULL;		/* We're using it now */
861 
862 	/* This is the point of no return */
863 	steal_locks(files);
864 	put_files_struct(files);
865 
866 	current->sas_ss_sp = current->sas_ss_size = 0;
867 
868 	if (current->euid == current->uid && current->egid == current->gid)
869 		current->mm->dumpable = 1;
870 	else
871 		current->mm->dumpable = suid_dumpable;
872 
873 	name = bprm->filename;
874 
875 	/* Copies the binary name from after last slash */
876 	for (i=0; (ch = *(name++)) != '\0';) {
877 		if (ch == '/')
878 			i = 0; /* overwrite what we wrote */
879 		else
880 			if (i < (sizeof(tcomm) - 1))
881 				tcomm[i++] = ch;
882 	}
883 	tcomm[i] = '\0';
884 	set_task_comm(current, tcomm);
885 
886 	current->flags &= ~PF_RANDOMIZE;
887 	flush_thread();
888 
889 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
890 	    permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
891 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
892 		suid_keys(current);
893 		current->mm->dumpable = suid_dumpable;
894 	}
895 
896 	/* An exec changes our domain. We are no longer part of the thread
897 	   group */
898 
899 	current->self_exec_id++;
900 
901 	flush_signal_handlers(current, 0);
902 	flush_old_files(current->files);
903 
904 	return 0;
905 
906 mmap_failed:
907 	put_files_struct(current->files);
908 	current->files = files;
909 out:
910 	return retval;
911 }
912 
913 EXPORT_SYMBOL(flush_old_exec);
914 
915 /*
916  * Fill the binprm structure from the inode.
917  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
918  */
919 int prepare_binprm(struct linux_binprm *bprm)
920 {
921 	int mode;
922 	struct inode * inode = bprm->file->f_dentry->d_inode;
923 	int retval;
924 
925 	mode = inode->i_mode;
926 	/*
927 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
928 	 * generic_permission lets a non-executable through
929 	 */
930 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
931 		return -EACCES;
932 	if (bprm->file->f_op == NULL)
933 		return -EACCES;
934 
935 	bprm->e_uid = current->euid;
936 	bprm->e_gid = current->egid;
937 
938 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
939 		/* Set-uid? */
940 		if (mode & S_ISUID) {
941 			current->personality &= ~PER_CLEAR_ON_SETID;
942 			bprm->e_uid = inode->i_uid;
943 		}
944 
945 		/* Set-gid? */
946 		/*
947 		 * If setgid is set but no group execute bit then this
948 		 * is a candidate for mandatory locking, not a setgid
949 		 * executable.
950 		 */
951 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
952 			current->personality &= ~PER_CLEAR_ON_SETID;
953 			bprm->e_gid = inode->i_gid;
954 		}
955 	}
956 
957 	/* fill in binprm security blob */
958 	retval = security_bprm_set(bprm);
959 	if (retval)
960 		return retval;
961 
962 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
963 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
964 }
965 
966 EXPORT_SYMBOL(prepare_binprm);
967 
968 static inline int unsafe_exec(struct task_struct *p)
969 {
970 	int unsafe = 0;
971 	if (p->ptrace & PT_PTRACED) {
972 		if (p->ptrace & PT_PTRACE_CAP)
973 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
974 		else
975 			unsafe |= LSM_UNSAFE_PTRACE;
976 	}
977 	if (atomic_read(&p->fs->count) > 1 ||
978 	    atomic_read(&p->files->count) > 1 ||
979 	    atomic_read(&p->sighand->count) > 1)
980 		unsafe |= LSM_UNSAFE_SHARE;
981 
982 	return unsafe;
983 }
984 
985 void compute_creds(struct linux_binprm *bprm)
986 {
987 	int unsafe;
988 
989 	if (bprm->e_uid != current->uid)
990 		suid_keys(current);
991 	exec_keys(current);
992 
993 	task_lock(current);
994 	unsafe = unsafe_exec(current);
995 	security_bprm_apply_creds(bprm, unsafe);
996 	task_unlock(current);
997 	security_bprm_post_apply_creds(bprm);
998 }
999 
1000 EXPORT_SYMBOL(compute_creds);
1001 
1002 void remove_arg_zero(struct linux_binprm *bprm)
1003 {
1004 	if (bprm->argc) {
1005 		unsigned long offset;
1006 		char * kaddr;
1007 		struct page *page;
1008 
1009 		offset = bprm->p % PAGE_SIZE;
1010 		goto inside;
1011 
1012 		while (bprm->p++, *(kaddr+offset++)) {
1013 			if (offset != PAGE_SIZE)
1014 				continue;
1015 			offset = 0;
1016 			kunmap_atomic(kaddr, KM_USER0);
1017 inside:
1018 			page = bprm->page[bprm->p/PAGE_SIZE];
1019 			kaddr = kmap_atomic(page, KM_USER0);
1020 		}
1021 		kunmap_atomic(kaddr, KM_USER0);
1022 		bprm->argc--;
1023 	}
1024 }
1025 
1026 EXPORT_SYMBOL(remove_arg_zero);
1027 
1028 /*
1029  * cycle the list of binary formats handler, until one recognizes the image
1030  */
1031 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1032 {
1033 	int try,retval;
1034 	struct linux_binfmt *fmt;
1035 #ifdef __alpha__
1036 	/* handle /sbin/loader.. */
1037 	{
1038 	    struct exec * eh = (struct exec *) bprm->buf;
1039 
1040 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1041 		(eh->fh.f_flags & 0x3000) == 0x3000)
1042 	    {
1043 		struct file * file;
1044 		unsigned long loader;
1045 
1046 		allow_write_access(bprm->file);
1047 		fput(bprm->file);
1048 		bprm->file = NULL;
1049 
1050 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1051 
1052 		file = open_exec("/sbin/loader");
1053 		retval = PTR_ERR(file);
1054 		if (IS_ERR(file))
1055 			return retval;
1056 
1057 		/* Remember if the application is TASO.  */
1058 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1059 
1060 		bprm->file = file;
1061 		bprm->loader = loader;
1062 		retval = prepare_binprm(bprm);
1063 		if (retval<0)
1064 			return retval;
1065 		/* should call search_binary_handler recursively here,
1066 		   but it does not matter */
1067 	    }
1068 	}
1069 #endif
1070 	retval = security_bprm_check(bprm);
1071 	if (retval)
1072 		return retval;
1073 
1074 	/* kernel module loader fixup */
1075 	/* so we don't try to load run modprobe in kernel space. */
1076 	set_fs(USER_DS);
1077 	retval = -ENOENT;
1078 	for (try=0; try<2; try++) {
1079 		read_lock(&binfmt_lock);
1080 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1081 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1082 			if (!fn)
1083 				continue;
1084 			if (!try_module_get(fmt->module))
1085 				continue;
1086 			read_unlock(&binfmt_lock);
1087 			retval = fn(bprm, regs);
1088 			if (retval >= 0) {
1089 				put_binfmt(fmt);
1090 				allow_write_access(bprm->file);
1091 				if (bprm->file)
1092 					fput(bprm->file);
1093 				bprm->file = NULL;
1094 				current->did_exec = 1;
1095 				return retval;
1096 			}
1097 			read_lock(&binfmt_lock);
1098 			put_binfmt(fmt);
1099 			if (retval != -ENOEXEC || bprm->mm == NULL)
1100 				break;
1101 			if (!bprm->file) {
1102 				read_unlock(&binfmt_lock);
1103 				return retval;
1104 			}
1105 		}
1106 		read_unlock(&binfmt_lock);
1107 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1108 			break;
1109 #ifdef CONFIG_KMOD
1110 		}else{
1111 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1112 			if (printable(bprm->buf[0]) &&
1113 			    printable(bprm->buf[1]) &&
1114 			    printable(bprm->buf[2]) &&
1115 			    printable(bprm->buf[3]))
1116 				break; /* -ENOEXEC */
1117 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1118 #endif
1119 		}
1120 	}
1121 	return retval;
1122 }
1123 
1124 EXPORT_SYMBOL(search_binary_handler);
1125 
1126 /*
1127  * sys_execve() executes a new program.
1128  */
1129 int do_execve(char * filename,
1130 	char __user *__user *argv,
1131 	char __user *__user *envp,
1132 	struct pt_regs * regs)
1133 {
1134 	struct linux_binprm *bprm;
1135 	struct file *file;
1136 	int retval;
1137 	int i;
1138 
1139 	retval = -ENOMEM;
1140 	bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
1141 	if (!bprm)
1142 		goto out_ret;
1143 	memset(bprm, 0, sizeof(*bprm));
1144 
1145 	file = open_exec(filename);
1146 	retval = PTR_ERR(file);
1147 	if (IS_ERR(file))
1148 		goto out_kfree;
1149 
1150 	sched_exec();
1151 
1152 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1153 
1154 	bprm->file = file;
1155 	bprm->filename = filename;
1156 	bprm->interp = filename;
1157 	bprm->mm = mm_alloc();
1158 	retval = -ENOMEM;
1159 	if (!bprm->mm)
1160 		goto out_file;
1161 
1162 	retval = init_new_context(current, bprm->mm);
1163 	if (retval < 0)
1164 		goto out_mm;
1165 
1166 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1167 	if ((retval = bprm->argc) < 0)
1168 		goto out_mm;
1169 
1170 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1171 	if ((retval = bprm->envc) < 0)
1172 		goto out_mm;
1173 
1174 	retval = security_bprm_alloc(bprm);
1175 	if (retval)
1176 		goto out;
1177 
1178 	retval = prepare_binprm(bprm);
1179 	if (retval < 0)
1180 		goto out;
1181 
1182 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1183 	if (retval < 0)
1184 		goto out;
1185 
1186 	bprm->exec = bprm->p;
1187 	retval = copy_strings(bprm->envc, envp, bprm);
1188 	if (retval < 0)
1189 		goto out;
1190 
1191 	retval = copy_strings(bprm->argc, argv, bprm);
1192 	if (retval < 0)
1193 		goto out;
1194 
1195 	retval = search_binary_handler(bprm,regs);
1196 	if (retval >= 0) {
1197 		free_arg_pages(bprm);
1198 
1199 		/* execve success */
1200 		security_bprm_free(bprm);
1201 		acct_update_integrals(current);
1202 		update_mem_hiwater(current);
1203 		kfree(bprm);
1204 		return retval;
1205 	}
1206 
1207 out:
1208 	/* Something went wrong, return the inode and free the argument pages*/
1209 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1210 		struct page * page = bprm->page[i];
1211 		if (page)
1212 			__free_page(page);
1213 	}
1214 
1215 	if (bprm->security)
1216 		security_bprm_free(bprm);
1217 
1218 out_mm:
1219 	if (bprm->mm)
1220 		mmdrop(bprm->mm);
1221 
1222 out_file:
1223 	if (bprm->file) {
1224 		allow_write_access(bprm->file);
1225 		fput(bprm->file);
1226 	}
1227 
1228 out_kfree:
1229 	kfree(bprm);
1230 
1231 out_ret:
1232 	return retval;
1233 }
1234 
1235 int set_binfmt(struct linux_binfmt *new)
1236 {
1237 	struct linux_binfmt *old = current->binfmt;
1238 
1239 	if (new) {
1240 		if (!try_module_get(new->module))
1241 			return -1;
1242 	}
1243 	current->binfmt = new;
1244 	if (old)
1245 		module_put(old->module);
1246 	return 0;
1247 }
1248 
1249 EXPORT_SYMBOL(set_binfmt);
1250 
1251 #define CORENAME_MAX_SIZE 64
1252 
1253 /* format_corename will inspect the pattern parameter, and output a
1254  * name into corename, which must have space for at least
1255  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1256  */
1257 static void format_corename(char *corename, const char *pattern, long signr)
1258 {
1259 	const char *pat_ptr = pattern;
1260 	char *out_ptr = corename;
1261 	char *const out_end = corename + CORENAME_MAX_SIZE;
1262 	int rc;
1263 	int pid_in_pattern = 0;
1264 
1265 	/* Repeat as long as we have more pattern to process and more output
1266 	   space */
1267 	while (*pat_ptr) {
1268 		if (*pat_ptr != '%') {
1269 			if (out_ptr == out_end)
1270 				goto out;
1271 			*out_ptr++ = *pat_ptr++;
1272 		} else {
1273 			switch (*++pat_ptr) {
1274 			case 0:
1275 				goto out;
1276 			/* Double percent, output one percent */
1277 			case '%':
1278 				if (out_ptr == out_end)
1279 					goto out;
1280 				*out_ptr++ = '%';
1281 				break;
1282 			/* pid */
1283 			case 'p':
1284 				pid_in_pattern = 1;
1285 				rc = snprintf(out_ptr, out_end - out_ptr,
1286 					      "%d", current->tgid);
1287 				if (rc > out_end - out_ptr)
1288 					goto out;
1289 				out_ptr += rc;
1290 				break;
1291 			/* uid */
1292 			case 'u':
1293 				rc = snprintf(out_ptr, out_end - out_ptr,
1294 					      "%d", current->uid);
1295 				if (rc > out_end - out_ptr)
1296 					goto out;
1297 				out_ptr += rc;
1298 				break;
1299 			/* gid */
1300 			case 'g':
1301 				rc = snprintf(out_ptr, out_end - out_ptr,
1302 					      "%d", current->gid);
1303 				if (rc > out_end - out_ptr)
1304 					goto out;
1305 				out_ptr += rc;
1306 				break;
1307 			/* signal that caused the coredump */
1308 			case 's':
1309 				rc = snprintf(out_ptr, out_end - out_ptr,
1310 					      "%ld", signr);
1311 				if (rc > out_end - out_ptr)
1312 					goto out;
1313 				out_ptr += rc;
1314 				break;
1315 			/* UNIX time of coredump */
1316 			case 't': {
1317 				struct timeval tv;
1318 				do_gettimeofday(&tv);
1319 				rc = snprintf(out_ptr, out_end - out_ptr,
1320 					      "%lu", tv.tv_sec);
1321 				if (rc > out_end - out_ptr)
1322 					goto out;
1323 				out_ptr += rc;
1324 				break;
1325 			}
1326 			/* hostname */
1327 			case 'h':
1328 				down_read(&uts_sem);
1329 				rc = snprintf(out_ptr, out_end - out_ptr,
1330 					      "%s", system_utsname.nodename);
1331 				up_read(&uts_sem);
1332 				if (rc > out_end - out_ptr)
1333 					goto out;
1334 				out_ptr += rc;
1335 				break;
1336 			/* executable */
1337 			case 'e':
1338 				rc = snprintf(out_ptr, out_end - out_ptr,
1339 					      "%s", current->comm);
1340 				if (rc > out_end - out_ptr)
1341 					goto out;
1342 				out_ptr += rc;
1343 				break;
1344 			default:
1345 				break;
1346 			}
1347 			++pat_ptr;
1348 		}
1349 	}
1350 	/* Backward compatibility with core_uses_pid:
1351 	 *
1352 	 * If core_pattern does not include a %p (as is the default)
1353 	 * and core_uses_pid is set, then .%pid will be appended to
1354 	 * the filename */
1355 	if (!pid_in_pattern
1356             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1357 		rc = snprintf(out_ptr, out_end - out_ptr,
1358 			      ".%d", current->tgid);
1359 		if (rc > out_end - out_ptr)
1360 			goto out;
1361 		out_ptr += rc;
1362 	}
1363       out:
1364 	*out_ptr = 0;
1365 }
1366 
1367 static void zap_threads (struct mm_struct *mm)
1368 {
1369 	struct task_struct *g, *p;
1370 	struct task_struct *tsk = current;
1371 	struct completion *vfork_done = tsk->vfork_done;
1372 	int traced = 0;
1373 
1374 	/*
1375 	 * Make sure nobody is waiting for us to release the VM,
1376 	 * otherwise we can deadlock when we wait on each other
1377 	 */
1378 	if (vfork_done) {
1379 		tsk->vfork_done = NULL;
1380 		complete(vfork_done);
1381 	}
1382 
1383 	read_lock(&tasklist_lock);
1384 	do_each_thread(g,p)
1385 		if (mm == p->mm && p != tsk) {
1386 			force_sig_specific(SIGKILL, p);
1387 			mm->core_waiters++;
1388 			if (unlikely(p->ptrace) &&
1389 			    unlikely(p->parent->mm == mm))
1390 				traced = 1;
1391 		}
1392 	while_each_thread(g,p);
1393 
1394 	read_unlock(&tasklist_lock);
1395 
1396 	if (unlikely(traced)) {
1397 		/*
1398 		 * We are zapping a thread and the thread it ptraces.
1399 		 * If the tracee went into a ptrace stop for exit tracing,
1400 		 * we could deadlock since the tracer is waiting for this
1401 		 * coredump to finish.  Detach them so they can both die.
1402 		 */
1403 		write_lock_irq(&tasklist_lock);
1404 		do_each_thread(g,p) {
1405 			if (mm == p->mm && p != tsk &&
1406 			    p->ptrace && p->parent->mm == mm) {
1407 				__ptrace_unlink(p);
1408 			}
1409 		} while_each_thread(g,p);
1410 		write_unlock_irq(&tasklist_lock);
1411 	}
1412 }
1413 
1414 static void coredump_wait(struct mm_struct *mm)
1415 {
1416 	DECLARE_COMPLETION(startup_done);
1417 
1418 	mm->core_waiters++; /* let other threads block */
1419 	mm->core_startup_done = &startup_done;
1420 
1421 	/* give other threads a chance to run: */
1422 	yield();
1423 
1424 	zap_threads(mm);
1425 	if (--mm->core_waiters) {
1426 		up_write(&mm->mmap_sem);
1427 		wait_for_completion(&startup_done);
1428 	} else
1429 		up_write(&mm->mmap_sem);
1430 	BUG_ON(mm->core_waiters);
1431 }
1432 
1433 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1434 {
1435 	char corename[CORENAME_MAX_SIZE + 1];
1436 	struct mm_struct *mm = current->mm;
1437 	struct linux_binfmt * binfmt;
1438 	struct inode * inode;
1439 	struct file * file;
1440 	int retval = 0;
1441 	int fsuid = current->fsuid;
1442 	int flag = 0;
1443 
1444 	binfmt = current->binfmt;
1445 	if (!binfmt || !binfmt->core_dump)
1446 		goto fail;
1447 	down_write(&mm->mmap_sem);
1448 	if (!mm->dumpable) {
1449 		up_write(&mm->mmap_sem);
1450 		goto fail;
1451 	}
1452 
1453 	/*
1454 	 *	We cannot trust fsuid as being the "true" uid of the
1455 	 *	process nor do we know its entire history. We only know it
1456 	 *	was tainted so we dump it as root in mode 2.
1457 	 */
1458 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1459 		flag = O_EXCL;		/* Stop rewrite attacks */
1460 		current->fsuid = 0;	/* Dump root private */
1461 	}
1462 	mm->dumpable = 0;
1463 	init_completion(&mm->core_done);
1464 	spin_lock_irq(&current->sighand->siglock);
1465 	current->signal->flags = SIGNAL_GROUP_EXIT;
1466 	current->signal->group_exit_code = exit_code;
1467 	spin_unlock_irq(&current->sighand->siglock);
1468 	coredump_wait(mm);
1469 
1470 	/*
1471 	 * Clear any false indication of pending signals that might
1472 	 * be seen by the filesystem code called to write the core file.
1473 	 */
1474 	current->signal->group_stop_count = 0;
1475 	clear_thread_flag(TIF_SIGPENDING);
1476 
1477 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1478 		goto fail_unlock;
1479 
1480 	/*
1481 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1482 	 * uses lock_kernel()
1483 	 */
1484  	lock_kernel();
1485 	format_corename(corename, core_pattern, signr);
1486 	unlock_kernel();
1487 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1488 	if (IS_ERR(file))
1489 		goto fail_unlock;
1490 	inode = file->f_dentry->d_inode;
1491 	if (inode->i_nlink > 1)
1492 		goto close_fail;	/* multiple links - don't dump */
1493 	if (d_unhashed(file->f_dentry))
1494 		goto close_fail;
1495 
1496 	if (!S_ISREG(inode->i_mode))
1497 		goto close_fail;
1498 	if (!file->f_op)
1499 		goto close_fail;
1500 	if (!file->f_op->write)
1501 		goto close_fail;
1502 	if (do_truncate(file->f_dentry, 0) != 0)
1503 		goto close_fail;
1504 
1505 	retval = binfmt->core_dump(signr, regs, file);
1506 
1507 	if (retval)
1508 		current->signal->group_exit_code |= 0x80;
1509 close_fail:
1510 	filp_close(file, NULL);
1511 fail_unlock:
1512 	current->fsuid = fsuid;
1513 	complete_all(&mm->core_done);
1514 fail:
1515 	return retval;
1516 }
1517