xref: /linux/fs/exec.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176 	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	struct vm_area_struct *vma = bprm->vma;
204 	struct mm_struct *mm = bprm->mm;
205 	int ret;
206 
207 	/*
208 	 * Avoid relying on expanding the stack down in GUP (which
209 	 * does not work for STACK_GROWSUP anyway), and just do it
210 	 * by hand ahead of time.
211 	 */
212 	if (write && pos < vma->vm_start) {
213 		mmap_write_lock(mm);
214 		ret = expand_downwards(vma, pos);
215 		if (unlikely(ret < 0)) {
216 			mmap_write_unlock(mm);
217 			return NULL;
218 		}
219 		mmap_write_downgrade(mm);
220 	} else
221 		mmap_read_lock(mm);
222 
223 	/*
224 	 * We are doing an exec().  'current' is the process
225 	 * doing the exec and 'mm' is the new process's mm.
226 	 */
227 	ret = get_user_pages_remote(mm, pos, 1,
228 			write ? FOLL_WRITE : 0,
229 			&page, NULL);
230 	mmap_read_unlock(mm);
231 	if (ret <= 0)
232 		return NULL;
233 
234 	if (write)
235 		acct_arg_size(bprm, vma_pages(vma));
236 
237 	return page;
238 }
239 
240 static void put_arg_page(struct page *page)
241 {
242 	put_page(page);
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = vm_area_alloc(mm);
262 	if (!vma)
263 		return -ENOMEM;
264 	vma_set_anonymous(vma);
265 
266 	if (mmap_write_lock_killable(mm)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 
271 	/*
272 	 * Need to be called with mmap write lock
273 	 * held, to avoid race with ksmd.
274 	 */
275 	err = ksm_execve(mm);
276 	if (err)
277 		goto err_ksm;
278 
279 	/*
280 	 * Place the stack at the largest stack address the architecture
281 	 * supports. Later, we'll move this to an appropriate place. We don't
282 	 * use STACK_TOP because that can depend on attributes which aren't
283 	 * configured yet.
284 	 */
285 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 	vma->vm_end = STACK_TOP_MAX;
287 	vma->vm_start = vma->vm_end - PAGE_SIZE;
288 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 
291 	err = insert_vm_struct(mm, vma);
292 	if (err)
293 		goto err;
294 
295 	mm->stack_vm = mm->total_vm = 1;
296 	mmap_write_unlock(mm);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	ksm_exit(mm);
301 err_ksm:
302 	mmap_write_unlock(mm);
303 err_free:
304 	bprm->vma = NULL;
305 	vm_area_free(vma);
306 	return err;
307 }
308 
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 	return len <= MAX_ARG_STRLEN;
312 }
313 
314 #else
315 
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319 
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 		int write)
322 {
323 	struct page *page;
324 
325 	page = bprm->page[pos / PAGE_SIZE];
326 	if (!page && write) {
327 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 		if (!page)
329 			return NULL;
330 		bprm->page[pos / PAGE_SIZE] = page;
331 	}
332 
333 	return page;
334 }
335 
336 static void put_arg_page(struct page *page)
337 {
338 }
339 
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 	if (bprm->page[i]) {
343 		__free_page(bprm->page[i]);
344 		bprm->page[i] = NULL;
345 	}
346 }
347 
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 	int i;
351 
352 	for (i = 0; i < MAX_ARG_PAGES; i++)
353 		free_arg_page(bprm, i);
354 }
355 
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 		struct page *page)
358 {
359 }
360 
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 	return 0;
365 }
366 
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 	return len <= bprm->p;
370 }
371 
372 #endif /* CONFIG_MMU */
373 
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 	int err;
383 	struct mm_struct *mm = NULL;
384 
385 	bprm->mm = mm = mm_alloc();
386 	err = -ENOMEM;
387 	if (!mm)
388 		goto err;
389 
390 	/* Save current stack limit for all calculations made during exec. */
391 	task_lock(current->group_leader);
392 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 	task_unlock(current->group_leader);
394 
395 	err = __bprm_mm_init(bprm);
396 	if (err)
397 		goto err;
398 
399 	return 0;
400 
401 err:
402 	if (mm) {
403 		bprm->mm = NULL;
404 		mmdrop(mm);
405 	}
406 
407 	return err;
408 }
409 
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412 	bool is_compat;
413 #endif
414 	union {
415 		const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417 		const compat_uptr_t __user *compat;
418 #endif
419 	} ptr;
420 };
421 
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424 	const char __user *native;
425 
426 #ifdef CONFIG_COMPAT
427 	if (unlikely(argv.is_compat)) {
428 		compat_uptr_t compat;
429 
430 		if (get_user(compat, argv.ptr.compat + nr))
431 			return ERR_PTR(-EFAULT);
432 
433 		return compat_ptr(compat);
434 	}
435 #endif
436 
437 	if (get_user(native, argv.ptr.native + nr))
438 		return ERR_PTR(-EFAULT);
439 
440 	return native;
441 }
442 
443 /*
444  * count() counts the number of strings in array ARGV.
445  */
446 static int count(struct user_arg_ptr argv, int max)
447 {
448 	int i = 0;
449 
450 	if (argv.ptr.native != NULL) {
451 		for (;;) {
452 			const char __user *p = get_user_arg_ptr(argv, i);
453 
454 			if (!p)
455 				break;
456 
457 			if (IS_ERR(p))
458 				return -EFAULT;
459 
460 			if (i >= max)
461 				return -E2BIG;
462 			++i;
463 
464 			if (fatal_signal_pending(current))
465 				return -ERESTARTNOHAND;
466 			cond_resched();
467 		}
468 	}
469 	return i;
470 }
471 
472 static int count_strings_kernel(const char *const *argv)
473 {
474 	int i;
475 
476 	if (!argv)
477 		return 0;
478 
479 	for (i = 0; argv[i]; ++i) {
480 		if (i >= MAX_ARG_STRINGS)
481 			return -E2BIG;
482 		if (fatal_signal_pending(current))
483 			return -ERESTARTNOHAND;
484 		cond_resched();
485 	}
486 	return i;
487 }
488 
489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490 				       unsigned long limit)
491 {
492 #ifdef CONFIG_MMU
493 	/* Avoid a pathological bprm->p. */
494 	if (bprm->p < limit)
495 		return -E2BIG;
496 	bprm->argmin = bprm->p - limit;
497 #endif
498 	return 0;
499 }
500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501 {
502 #ifdef CONFIG_MMU
503 	return bprm->p < bprm->argmin;
504 #else
505 	return false;
506 #endif
507 }
508 
509 /*
510  * Calculate bprm->argmin from:
511  * - _STK_LIM
512  * - ARG_MAX
513  * - bprm->rlim_stack.rlim_cur
514  * - bprm->argc
515  * - bprm->envc
516  * - bprm->p
517  */
518 static int bprm_stack_limits(struct linux_binprm *bprm)
519 {
520 	unsigned long limit, ptr_size;
521 
522 	/*
523 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524 	 * (whichever is smaller) for the argv+env strings.
525 	 * This ensures that:
526 	 *  - the remaining binfmt code will not run out of stack space,
527 	 *  - the program will have a reasonable amount of stack left
528 	 *    to work from.
529 	 */
530 	limit = _STK_LIM / 4 * 3;
531 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
532 	/*
533 	 * We've historically supported up to 32 pages (ARG_MAX)
534 	 * of argument strings even with small stacks
535 	 */
536 	limit = max_t(unsigned long, limit, ARG_MAX);
537 	/* Reject totally pathological counts. */
538 	if (bprm->argc < 0 || bprm->envc < 0)
539 		return -E2BIG;
540 	/*
541 	 * We must account for the size of all the argv and envp pointers to
542 	 * the argv and envp strings, since they will also take up space in
543 	 * the stack. They aren't stored until much later when we can't
544 	 * signal to the parent that the child has run out of stack space.
545 	 * Instead, calculate it here so it's possible to fail gracefully.
546 	 *
547 	 * In the case of argc = 0, make sure there is space for adding a
548 	 * empty string (which will bump argc to 1), to ensure confused
549 	 * userspace programs don't start processing from argv[1], thinking
550 	 * argc can never be 0, to keep them from walking envp by accident.
551 	 * See do_execveat_common().
552 	 */
553 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
555 		return -E2BIG;
556 	if (limit <= ptr_size)
557 		return -E2BIG;
558 	limit -= ptr_size;
559 
560 	return bprm_set_stack_limit(bprm, limit);
561 }
562 
563 /*
564  * 'copy_strings()' copies argument/environment strings from the old
565  * processes's memory to the new process's stack.  The call to get_user_pages()
566  * ensures the destination page is created and not swapped out.
567  */
568 static int copy_strings(int argc, struct user_arg_ptr argv,
569 			struct linux_binprm *bprm)
570 {
571 	struct page *kmapped_page = NULL;
572 	char *kaddr = NULL;
573 	unsigned long kpos = 0;
574 	int ret;
575 
576 	while (argc-- > 0) {
577 		const char __user *str;
578 		int len;
579 		unsigned long pos;
580 
581 		ret = -EFAULT;
582 		str = get_user_arg_ptr(argv, argc);
583 		if (IS_ERR(str))
584 			goto out;
585 
586 		len = strnlen_user(str, MAX_ARG_STRLEN);
587 		if (!len)
588 			goto out;
589 
590 		ret = -E2BIG;
591 		if (!valid_arg_len(bprm, len))
592 			goto out;
593 
594 		/* We're going to work our way backwards. */
595 		pos = bprm->p;
596 		str += len;
597 		bprm->p -= len;
598 		if (bprm_hit_stack_limit(bprm))
599 			goto out;
600 
601 		while (len > 0) {
602 			int offset, bytes_to_copy;
603 
604 			if (fatal_signal_pending(current)) {
605 				ret = -ERESTARTNOHAND;
606 				goto out;
607 			}
608 			cond_resched();
609 
610 			offset = pos % PAGE_SIZE;
611 			if (offset == 0)
612 				offset = PAGE_SIZE;
613 
614 			bytes_to_copy = offset;
615 			if (bytes_to_copy > len)
616 				bytes_to_copy = len;
617 
618 			offset -= bytes_to_copy;
619 			pos -= bytes_to_copy;
620 			str -= bytes_to_copy;
621 			len -= bytes_to_copy;
622 
623 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624 				struct page *page;
625 
626 				page = get_arg_page(bprm, pos, 1);
627 				if (!page) {
628 					ret = -E2BIG;
629 					goto out;
630 				}
631 
632 				if (kmapped_page) {
633 					flush_dcache_page(kmapped_page);
634 					kunmap_local(kaddr);
635 					put_arg_page(kmapped_page);
636 				}
637 				kmapped_page = page;
638 				kaddr = kmap_local_page(kmapped_page);
639 				kpos = pos & PAGE_MASK;
640 				flush_arg_page(bprm, kpos, kmapped_page);
641 			}
642 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
643 				ret = -EFAULT;
644 				goto out;
645 			}
646 		}
647 	}
648 	ret = 0;
649 out:
650 	if (kmapped_page) {
651 		flush_dcache_page(kmapped_page);
652 		kunmap_local(kaddr);
653 		put_arg_page(kmapped_page);
654 	}
655 	return ret;
656 }
657 
658 /*
659  * Copy and argument/environment string from the kernel to the processes stack.
660  */
661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
662 {
663 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664 	unsigned long pos = bprm->p;
665 
666 	if (len == 0)
667 		return -EFAULT;
668 	if (!valid_arg_len(bprm, len))
669 		return -E2BIG;
670 
671 	/* We're going to work our way backwards. */
672 	arg += len;
673 	bprm->p -= len;
674 	if (bprm_hit_stack_limit(bprm))
675 		return -E2BIG;
676 
677 	while (len > 0) {
678 		unsigned int bytes_to_copy = min_t(unsigned int, len,
679 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
680 		struct page *page;
681 
682 		pos -= bytes_to_copy;
683 		arg -= bytes_to_copy;
684 		len -= bytes_to_copy;
685 
686 		page = get_arg_page(bprm, pos, 1);
687 		if (!page)
688 			return -E2BIG;
689 		flush_arg_page(bprm, pos & PAGE_MASK, page);
690 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
691 		put_arg_page(page);
692 	}
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL(copy_string_kernel);
697 
698 static int copy_strings_kernel(int argc, const char *const *argv,
699 			       struct linux_binprm *bprm)
700 {
701 	while (argc-- > 0) {
702 		int ret = copy_string_kernel(argv[argc], bprm);
703 		if (ret < 0)
704 			return ret;
705 		if (fatal_signal_pending(current))
706 			return -ERESTARTNOHAND;
707 		cond_resched();
708 	}
709 	return 0;
710 }
711 
712 #ifdef CONFIG_MMU
713 
714 /*
715  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
716  * the binfmt code determines where the new stack should reside, we shift it to
717  * its final location.  The process proceeds as follows:
718  *
719  * 1) Use shift to calculate the new vma endpoints.
720  * 2) Extend vma to cover both the old and new ranges.  This ensures the
721  *    arguments passed to subsequent functions are consistent.
722  * 3) Move vma's page tables to the new range.
723  * 4) Free up any cleared pgd range.
724  * 5) Shrink the vma to cover only the new range.
725  */
726 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
727 {
728 	struct mm_struct *mm = vma->vm_mm;
729 	unsigned long old_start = vma->vm_start;
730 	unsigned long old_end = vma->vm_end;
731 	unsigned long length = old_end - old_start;
732 	unsigned long new_start = old_start - shift;
733 	unsigned long new_end = old_end - shift;
734 	VMA_ITERATOR(vmi, mm, new_start);
735 	struct vm_area_struct *next;
736 	struct mmu_gather tlb;
737 
738 	BUG_ON(new_start > new_end);
739 
740 	/*
741 	 * ensure there are no vmas between where we want to go
742 	 * and where we are
743 	 */
744 	if (vma != vma_next(&vmi))
745 		return -EFAULT;
746 
747 	vma_iter_prev_range(&vmi);
748 	/*
749 	 * cover the whole range: [new_start, old_end)
750 	 */
751 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
752 		return -ENOMEM;
753 
754 	/*
755 	 * move the page tables downwards, on failure we rely on
756 	 * process cleanup to remove whatever mess we made.
757 	 */
758 	if (length != move_page_tables(vma, old_start,
759 				       vma, new_start, length, false, true))
760 		return -ENOMEM;
761 
762 	lru_add_drain();
763 	tlb_gather_mmu(&tlb, mm);
764 	next = vma_next(&vmi);
765 	if (new_end > old_start) {
766 		/*
767 		 * when the old and new regions overlap clear from new_end.
768 		 */
769 		free_pgd_range(&tlb, new_end, old_end, new_end,
770 			next ? next->vm_start : USER_PGTABLES_CEILING);
771 	} else {
772 		/*
773 		 * otherwise, clean from old_start; this is done to not touch
774 		 * the address space in [new_end, old_start) some architectures
775 		 * have constraints on va-space that make this illegal (IA64) -
776 		 * for the others its just a little faster.
777 		 */
778 		free_pgd_range(&tlb, old_start, old_end, new_end,
779 			next ? next->vm_start : USER_PGTABLES_CEILING);
780 	}
781 	tlb_finish_mmu(&tlb);
782 
783 	vma_prev(&vmi);
784 	/* Shrink the vma to just the new range */
785 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
786 }
787 
788 /*
789  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
790  * the stack is optionally relocated, and some extra space is added.
791  */
792 int setup_arg_pages(struct linux_binprm *bprm,
793 		    unsigned long stack_top,
794 		    int executable_stack)
795 {
796 	unsigned long ret;
797 	unsigned long stack_shift;
798 	struct mm_struct *mm = current->mm;
799 	struct vm_area_struct *vma = bprm->vma;
800 	struct vm_area_struct *prev = NULL;
801 	unsigned long vm_flags;
802 	unsigned long stack_base;
803 	unsigned long stack_size;
804 	unsigned long stack_expand;
805 	unsigned long rlim_stack;
806 	struct mmu_gather tlb;
807 	struct vma_iterator vmi;
808 
809 #ifdef CONFIG_STACK_GROWSUP
810 	/* Limit stack size */
811 	stack_base = bprm->rlim_stack.rlim_max;
812 
813 	stack_base = calc_max_stack_size(stack_base);
814 
815 	/* Add space for stack randomization. */
816 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
817 
818 	/* Make sure we didn't let the argument array grow too large. */
819 	if (vma->vm_end - vma->vm_start > stack_base)
820 		return -ENOMEM;
821 
822 	stack_base = PAGE_ALIGN(stack_top - stack_base);
823 
824 	stack_shift = vma->vm_start - stack_base;
825 	mm->arg_start = bprm->p - stack_shift;
826 	bprm->p = vma->vm_end - stack_shift;
827 #else
828 	stack_top = arch_align_stack(stack_top);
829 	stack_top = PAGE_ALIGN(stack_top);
830 
831 	if (unlikely(stack_top < mmap_min_addr) ||
832 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
833 		return -ENOMEM;
834 
835 	stack_shift = vma->vm_end - stack_top;
836 
837 	bprm->p -= stack_shift;
838 	mm->arg_start = bprm->p;
839 #endif
840 
841 	if (bprm->loader)
842 		bprm->loader -= stack_shift;
843 	bprm->exec -= stack_shift;
844 
845 	if (mmap_write_lock_killable(mm))
846 		return -EINTR;
847 
848 	vm_flags = VM_STACK_FLAGS;
849 
850 	/*
851 	 * Adjust stack execute permissions; explicitly enable for
852 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
853 	 * (arch default) otherwise.
854 	 */
855 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
856 		vm_flags |= VM_EXEC;
857 	else if (executable_stack == EXSTACK_DISABLE_X)
858 		vm_flags &= ~VM_EXEC;
859 	vm_flags |= mm->def_flags;
860 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
861 
862 	vma_iter_init(&vmi, mm, vma->vm_start);
863 
864 	tlb_gather_mmu(&tlb, mm);
865 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
866 			vm_flags);
867 	tlb_finish_mmu(&tlb);
868 
869 	if (ret)
870 		goto out_unlock;
871 	BUG_ON(prev != vma);
872 
873 	if (unlikely(vm_flags & VM_EXEC)) {
874 		pr_warn_once("process '%pD4' started with executable stack\n",
875 			     bprm->file);
876 	}
877 
878 	/* Move stack pages down in memory. */
879 	if (stack_shift) {
880 		ret = shift_arg_pages(vma, stack_shift);
881 		if (ret)
882 			goto out_unlock;
883 	}
884 
885 	/* mprotect_fixup is overkill to remove the temporary stack flags */
886 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
887 
888 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
889 	stack_size = vma->vm_end - vma->vm_start;
890 	/*
891 	 * Align this down to a page boundary as expand_stack
892 	 * will align it up.
893 	 */
894 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
895 
896 	stack_expand = min(rlim_stack, stack_size + stack_expand);
897 
898 #ifdef CONFIG_STACK_GROWSUP
899 	stack_base = vma->vm_start + stack_expand;
900 #else
901 	stack_base = vma->vm_end - stack_expand;
902 #endif
903 	current->mm->start_stack = bprm->p;
904 	ret = expand_stack_locked(vma, stack_base);
905 	if (ret)
906 		ret = -EFAULT;
907 
908 out_unlock:
909 	mmap_write_unlock(mm);
910 	return ret;
911 }
912 EXPORT_SYMBOL(setup_arg_pages);
913 
914 #else
915 
916 /*
917  * Transfer the program arguments and environment from the holding pages
918  * onto the stack. The provided stack pointer is adjusted accordingly.
919  */
920 int transfer_args_to_stack(struct linux_binprm *bprm,
921 			   unsigned long *sp_location)
922 {
923 	unsigned long index, stop, sp;
924 	int ret = 0;
925 
926 	stop = bprm->p >> PAGE_SHIFT;
927 	sp = *sp_location;
928 
929 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
930 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
931 		char *src = kmap_local_page(bprm->page[index]) + offset;
932 		sp -= PAGE_SIZE - offset;
933 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
934 			ret = -EFAULT;
935 		kunmap_local(src);
936 		if (ret)
937 			goto out;
938 	}
939 
940 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
941 	*sp_location = sp;
942 
943 out:
944 	return ret;
945 }
946 EXPORT_SYMBOL(transfer_args_to_stack);
947 
948 #endif /* CONFIG_MMU */
949 
950 /*
951  * On success, caller must call do_close_execat() on the returned
952  * struct file to close it.
953  */
954 static struct file *do_open_execat(int fd, struct filename *name, int flags)
955 {
956 	struct file *file;
957 	int err;
958 	struct open_flags open_exec_flags = {
959 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
960 		.acc_mode = MAY_EXEC,
961 		.intent = LOOKUP_OPEN,
962 		.lookup_flags = LOOKUP_FOLLOW,
963 	};
964 
965 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
966 		return ERR_PTR(-EINVAL);
967 	if (flags & AT_SYMLINK_NOFOLLOW)
968 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
969 	if (flags & AT_EMPTY_PATH)
970 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
971 
972 	file = do_filp_open(fd, name, &open_exec_flags);
973 	if (IS_ERR(file))
974 		goto out;
975 
976 	/*
977 	 * may_open() has already checked for this, so it should be
978 	 * impossible to trip now. But we need to be extra cautious
979 	 * and check again at the very end too.
980 	 */
981 	err = -EACCES;
982 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
983 			 path_noexec(&file->f_path)))
984 		goto exit;
985 
986 out:
987 	return file;
988 
989 exit:
990 	fput(file);
991 	return ERR_PTR(err);
992 }
993 
994 /**
995  * open_exec - Open a path name for execution
996  *
997  * @name: path name to open with the intent of executing it.
998  *
999  * Returns ERR_PTR on failure or allocated struct file on success.
1000  *
1001  * As this is a wrapper for the internal do_open_execat(). Also see
1002  * do_close_execat().
1003  */
1004 struct file *open_exec(const char *name)
1005 {
1006 	struct filename *filename = getname_kernel(name);
1007 	struct file *f = ERR_CAST(filename);
1008 
1009 	if (!IS_ERR(filename)) {
1010 		f = do_open_execat(AT_FDCWD, filename, 0);
1011 		putname(filename);
1012 	}
1013 	return f;
1014 }
1015 EXPORT_SYMBOL(open_exec);
1016 
1017 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1018 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1019 {
1020 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1021 	if (res > 0)
1022 		flush_icache_user_range(addr, addr + len);
1023 	return res;
1024 }
1025 EXPORT_SYMBOL(read_code);
1026 #endif
1027 
1028 /*
1029  * Maps the mm_struct mm into the current task struct.
1030  * On success, this function returns with exec_update_lock
1031  * held for writing.
1032  */
1033 static int exec_mmap(struct mm_struct *mm)
1034 {
1035 	struct task_struct *tsk;
1036 	struct mm_struct *old_mm, *active_mm;
1037 	int ret;
1038 
1039 	/* Notify parent that we're no longer interested in the old VM */
1040 	tsk = current;
1041 	old_mm = current->mm;
1042 	exec_mm_release(tsk, old_mm);
1043 
1044 	ret = down_write_killable(&tsk->signal->exec_update_lock);
1045 	if (ret)
1046 		return ret;
1047 
1048 	if (old_mm) {
1049 		/*
1050 		 * If there is a pending fatal signal perhaps a signal
1051 		 * whose default action is to create a coredump get
1052 		 * out and die instead of going through with the exec.
1053 		 */
1054 		ret = mmap_read_lock_killable(old_mm);
1055 		if (ret) {
1056 			up_write(&tsk->signal->exec_update_lock);
1057 			return ret;
1058 		}
1059 	}
1060 
1061 	task_lock(tsk);
1062 	membarrier_exec_mmap(mm);
1063 
1064 	local_irq_disable();
1065 	active_mm = tsk->active_mm;
1066 	tsk->active_mm = mm;
1067 	tsk->mm = mm;
1068 	mm_init_cid(mm);
1069 	/*
1070 	 * This prevents preemption while active_mm is being loaded and
1071 	 * it and mm are being updated, which could cause problems for
1072 	 * lazy tlb mm refcounting when these are updated by context
1073 	 * switches. Not all architectures can handle irqs off over
1074 	 * activate_mm yet.
1075 	 */
1076 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1077 		local_irq_enable();
1078 	activate_mm(active_mm, mm);
1079 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1080 		local_irq_enable();
1081 	lru_gen_add_mm(mm);
1082 	task_unlock(tsk);
1083 	lru_gen_use_mm(mm);
1084 	if (old_mm) {
1085 		mmap_read_unlock(old_mm);
1086 		BUG_ON(active_mm != old_mm);
1087 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1088 		mm_update_next_owner(old_mm);
1089 		mmput(old_mm);
1090 		return 0;
1091 	}
1092 	mmdrop_lazy_tlb(active_mm);
1093 	return 0;
1094 }
1095 
1096 static int de_thread(struct task_struct *tsk)
1097 {
1098 	struct signal_struct *sig = tsk->signal;
1099 	struct sighand_struct *oldsighand = tsk->sighand;
1100 	spinlock_t *lock = &oldsighand->siglock;
1101 
1102 	if (thread_group_empty(tsk))
1103 		goto no_thread_group;
1104 
1105 	/*
1106 	 * Kill all other threads in the thread group.
1107 	 */
1108 	spin_lock_irq(lock);
1109 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1110 		/*
1111 		 * Another group action in progress, just
1112 		 * return so that the signal is processed.
1113 		 */
1114 		spin_unlock_irq(lock);
1115 		return -EAGAIN;
1116 	}
1117 
1118 	sig->group_exec_task = tsk;
1119 	sig->notify_count = zap_other_threads(tsk);
1120 	if (!thread_group_leader(tsk))
1121 		sig->notify_count--;
1122 
1123 	while (sig->notify_count) {
1124 		__set_current_state(TASK_KILLABLE);
1125 		spin_unlock_irq(lock);
1126 		schedule();
1127 		if (__fatal_signal_pending(tsk))
1128 			goto killed;
1129 		spin_lock_irq(lock);
1130 	}
1131 	spin_unlock_irq(lock);
1132 
1133 	/*
1134 	 * At this point all other threads have exited, all we have to
1135 	 * do is to wait for the thread group leader to become inactive,
1136 	 * and to assume its PID:
1137 	 */
1138 	if (!thread_group_leader(tsk)) {
1139 		struct task_struct *leader = tsk->group_leader;
1140 
1141 		for (;;) {
1142 			cgroup_threadgroup_change_begin(tsk);
1143 			write_lock_irq(&tasklist_lock);
1144 			/*
1145 			 * Do this under tasklist_lock to ensure that
1146 			 * exit_notify() can't miss ->group_exec_task
1147 			 */
1148 			sig->notify_count = -1;
1149 			if (likely(leader->exit_state))
1150 				break;
1151 			__set_current_state(TASK_KILLABLE);
1152 			write_unlock_irq(&tasklist_lock);
1153 			cgroup_threadgroup_change_end(tsk);
1154 			schedule();
1155 			if (__fatal_signal_pending(tsk))
1156 				goto killed;
1157 		}
1158 
1159 		/*
1160 		 * The only record we have of the real-time age of a
1161 		 * process, regardless of execs it's done, is start_time.
1162 		 * All the past CPU time is accumulated in signal_struct
1163 		 * from sister threads now dead.  But in this non-leader
1164 		 * exec, nothing survives from the original leader thread,
1165 		 * whose birth marks the true age of this process now.
1166 		 * When we take on its identity by switching to its PID, we
1167 		 * also take its birthdate (always earlier than our own).
1168 		 */
1169 		tsk->start_time = leader->start_time;
1170 		tsk->start_boottime = leader->start_boottime;
1171 
1172 		BUG_ON(!same_thread_group(leader, tsk));
1173 		/*
1174 		 * An exec() starts a new thread group with the
1175 		 * TGID of the previous thread group. Rehash the
1176 		 * two threads with a switched PID, and release
1177 		 * the former thread group leader:
1178 		 */
1179 
1180 		/* Become a process group leader with the old leader's pid.
1181 		 * The old leader becomes a thread of the this thread group.
1182 		 */
1183 		exchange_tids(tsk, leader);
1184 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1185 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1186 		transfer_pid(leader, tsk, PIDTYPE_SID);
1187 
1188 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1189 		list_replace_init(&leader->sibling, &tsk->sibling);
1190 
1191 		tsk->group_leader = tsk;
1192 		leader->group_leader = tsk;
1193 
1194 		tsk->exit_signal = SIGCHLD;
1195 		leader->exit_signal = -1;
1196 
1197 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1198 		leader->exit_state = EXIT_DEAD;
1199 		/*
1200 		 * We are going to release_task()->ptrace_unlink() silently,
1201 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1202 		 * the tracer won't block again waiting for this thread.
1203 		 */
1204 		if (unlikely(leader->ptrace))
1205 			__wake_up_parent(leader, leader->parent);
1206 		write_unlock_irq(&tasklist_lock);
1207 		cgroup_threadgroup_change_end(tsk);
1208 
1209 		release_task(leader);
1210 	}
1211 
1212 	sig->group_exec_task = NULL;
1213 	sig->notify_count = 0;
1214 
1215 no_thread_group:
1216 	/* we have changed execution domain */
1217 	tsk->exit_signal = SIGCHLD;
1218 
1219 	BUG_ON(!thread_group_leader(tsk));
1220 	return 0;
1221 
1222 killed:
1223 	/* protects against exit_notify() and __exit_signal() */
1224 	read_lock(&tasklist_lock);
1225 	sig->group_exec_task = NULL;
1226 	sig->notify_count = 0;
1227 	read_unlock(&tasklist_lock);
1228 	return -EAGAIN;
1229 }
1230 
1231 
1232 /*
1233  * This function makes sure the current process has its own signal table,
1234  * so that flush_signal_handlers can later reset the handlers without
1235  * disturbing other processes.  (Other processes might share the signal
1236  * table via the CLONE_SIGHAND option to clone().)
1237  */
1238 static int unshare_sighand(struct task_struct *me)
1239 {
1240 	struct sighand_struct *oldsighand = me->sighand;
1241 
1242 	if (refcount_read(&oldsighand->count) != 1) {
1243 		struct sighand_struct *newsighand;
1244 		/*
1245 		 * This ->sighand is shared with the CLONE_SIGHAND
1246 		 * but not CLONE_THREAD task, switch to the new one.
1247 		 */
1248 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1249 		if (!newsighand)
1250 			return -ENOMEM;
1251 
1252 		refcount_set(&newsighand->count, 1);
1253 
1254 		write_lock_irq(&tasklist_lock);
1255 		spin_lock(&oldsighand->siglock);
1256 		memcpy(newsighand->action, oldsighand->action,
1257 		       sizeof(newsighand->action));
1258 		rcu_assign_pointer(me->sighand, newsighand);
1259 		spin_unlock(&oldsighand->siglock);
1260 		write_unlock_irq(&tasklist_lock);
1261 
1262 		__cleanup_sighand(oldsighand);
1263 	}
1264 	return 0;
1265 }
1266 
1267 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1268 {
1269 	task_lock(tsk);
1270 	/* Always NUL terminated and zero-padded */
1271 	strscpy_pad(buf, tsk->comm, buf_size);
1272 	task_unlock(tsk);
1273 	return buf;
1274 }
1275 EXPORT_SYMBOL_GPL(__get_task_comm);
1276 
1277 /*
1278  * These functions flushes out all traces of the currently running executable
1279  * so that a new one can be started
1280  */
1281 
1282 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1283 {
1284 	task_lock(tsk);
1285 	trace_task_rename(tsk, buf);
1286 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1287 	task_unlock(tsk);
1288 	perf_event_comm(tsk, exec);
1289 }
1290 
1291 /*
1292  * Calling this is the point of no return. None of the failures will be
1293  * seen by userspace since either the process is already taking a fatal
1294  * signal (via de_thread() or coredump), or will have SEGV raised
1295  * (after exec_mmap()) by search_binary_handler (see below).
1296  */
1297 int begin_new_exec(struct linux_binprm * bprm)
1298 {
1299 	struct task_struct *me = current;
1300 	int retval;
1301 
1302 	/* Once we are committed compute the creds */
1303 	retval = bprm_creds_from_file(bprm);
1304 	if (retval)
1305 		return retval;
1306 
1307 	/*
1308 	 * This tracepoint marks the point before flushing the old exec where
1309 	 * the current task is still unchanged, but errors are fatal (point of
1310 	 * no return). The later "sched_process_exec" tracepoint is called after
1311 	 * the current task has successfully switched to the new exec.
1312 	 */
1313 	trace_sched_prepare_exec(current, bprm);
1314 
1315 	/*
1316 	 * Ensure all future errors are fatal.
1317 	 */
1318 	bprm->point_of_no_return = true;
1319 
1320 	/*
1321 	 * Make this the only thread in the thread group.
1322 	 */
1323 	retval = de_thread(me);
1324 	if (retval)
1325 		goto out;
1326 
1327 	/*
1328 	 * Cancel any io_uring activity across execve
1329 	 */
1330 	io_uring_task_cancel();
1331 
1332 	/* Ensure the files table is not shared. */
1333 	retval = unshare_files();
1334 	if (retval)
1335 		goto out;
1336 
1337 	/*
1338 	 * Must be called _before_ exec_mmap() as bprm->mm is
1339 	 * not visible until then. Doing it here also ensures
1340 	 * we don't race against replace_mm_exe_file().
1341 	 */
1342 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1343 	if (retval)
1344 		goto out;
1345 
1346 	/* If the binary is not readable then enforce mm->dumpable=0 */
1347 	would_dump(bprm, bprm->file);
1348 	if (bprm->have_execfd)
1349 		would_dump(bprm, bprm->executable);
1350 
1351 	/*
1352 	 * Release all of the old mmap stuff
1353 	 */
1354 	acct_arg_size(bprm, 0);
1355 	retval = exec_mmap(bprm->mm);
1356 	if (retval)
1357 		goto out;
1358 
1359 	bprm->mm = NULL;
1360 
1361 	retval = exec_task_namespaces();
1362 	if (retval)
1363 		goto out_unlock;
1364 
1365 #ifdef CONFIG_POSIX_TIMERS
1366 	spin_lock_irq(&me->sighand->siglock);
1367 	posix_cpu_timers_exit(me);
1368 	spin_unlock_irq(&me->sighand->siglock);
1369 	exit_itimers(me);
1370 	flush_itimer_signals();
1371 #endif
1372 
1373 	/*
1374 	 * Make the signal table private.
1375 	 */
1376 	retval = unshare_sighand(me);
1377 	if (retval)
1378 		goto out_unlock;
1379 
1380 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1381 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1382 	flush_thread();
1383 	me->personality &= ~bprm->per_clear;
1384 
1385 	clear_syscall_work_syscall_user_dispatch(me);
1386 
1387 	/*
1388 	 * We have to apply CLOEXEC before we change whether the process is
1389 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1390 	 * trying to access the should-be-closed file descriptors of a process
1391 	 * undergoing exec(2).
1392 	 */
1393 	do_close_on_exec(me->files);
1394 
1395 	if (bprm->secureexec) {
1396 		/* Make sure parent cannot signal privileged process. */
1397 		me->pdeath_signal = 0;
1398 
1399 		/*
1400 		 * For secureexec, reset the stack limit to sane default to
1401 		 * avoid bad behavior from the prior rlimits. This has to
1402 		 * happen before arch_pick_mmap_layout(), which examines
1403 		 * RLIMIT_STACK, but after the point of no return to avoid
1404 		 * needing to clean up the change on failure.
1405 		 */
1406 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1407 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1408 	}
1409 
1410 	me->sas_ss_sp = me->sas_ss_size = 0;
1411 
1412 	/*
1413 	 * Figure out dumpability. Note that this checking only of current
1414 	 * is wrong, but userspace depends on it. This should be testing
1415 	 * bprm->secureexec instead.
1416 	 */
1417 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1418 	    !(uid_eq(current_euid(), current_uid()) &&
1419 	      gid_eq(current_egid(), current_gid())))
1420 		set_dumpable(current->mm, suid_dumpable);
1421 	else
1422 		set_dumpable(current->mm, SUID_DUMP_USER);
1423 
1424 	perf_event_exec();
1425 	__set_task_comm(me, kbasename(bprm->filename), true);
1426 
1427 	/* An exec changes our domain. We are no longer part of the thread
1428 	   group */
1429 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1430 	flush_signal_handlers(me, 0);
1431 
1432 	retval = set_cred_ucounts(bprm->cred);
1433 	if (retval < 0)
1434 		goto out_unlock;
1435 
1436 	/*
1437 	 * install the new credentials for this executable
1438 	 */
1439 	security_bprm_committing_creds(bprm);
1440 
1441 	commit_creds(bprm->cred);
1442 	bprm->cred = NULL;
1443 
1444 	/*
1445 	 * Disable monitoring for regular users
1446 	 * when executing setuid binaries. Must
1447 	 * wait until new credentials are committed
1448 	 * by commit_creds() above
1449 	 */
1450 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1451 		perf_event_exit_task(me);
1452 	/*
1453 	 * cred_guard_mutex must be held at least to this point to prevent
1454 	 * ptrace_attach() from altering our determination of the task's
1455 	 * credentials; any time after this it may be unlocked.
1456 	 */
1457 	security_bprm_committed_creds(bprm);
1458 
1459 	/* Pass the opened binary to the interpreter. */
1460 	if (bprm->have_execfd) {
1461 		retval = get_unused_fd_flags(0);
1462 		if (retval < 0)
1463 			goto out_unlock;
1464 		fd_install(retval, bprm->executable);
1465 		bprm->executable = NULL;
1466 		bprm->execfd = retval;
1467 	}
1468 	return 0;
1469 
1470 out_unlock:
1471 	up_write(&me->signal->exec_update_lock);
1472 	if (!bprm->cred)
1473 		mutex_unlock(&me->signal->cred_guard_mutex);
1474 
1475 out:
1476 	return retval;
1477 }
1478 EXPORT_SYMBOL(begin_new_exec);
1479 
1480 void would_dump(struct linux_binprm *bprm, struct file *file)
1481 {
1482 	struct inode *inode = file_inode(file);
1483 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1484 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1485 		struct user_namespace *old, *user_ns;
1486 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1487 
1488 		/* Ensure mm->user_ns contains the executable */
1489 		user_ns = old = bprm->mm->user_ns;
1490 		while ((user_ns != &init_user_ns) &&
1491 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1492 			user_ns = user_ns->parent;
1493 
1494 		if (old != user_ns) {
1495 			bprm->mm->user_ns = get_user_ns(user_ns);
1496 			put_user_ns(old);
1497 		}
1498 	}
1499 }
1500 EXPORT_SYMBOL(would_dump);
1501 
1502 void setup_new_exec(struct linux_binprm * bprm)
1503 {
1504 	/* Setup things that can depend upon the personality */
1505 	struct task_struct *me = current;
1506 
1507 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1508 
1509 	arch_setup_new_exec();
1510 
1511 	/* Set the new mm task size. We have to do that late because it may
1512 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1513 	 * some architectures like powerpc
1514 	 */
1515 	me->mm->task_size = TASK_SIZE;
1516 	up_write(&me->signal->exec_update_lock);
1517 	mutex_unlock(&me->signal->cred_guard_mutex);
1518 }
1519 EXPORT_SYMBOL(setup_new_exec);
1520 
1521 /* Runs immediately before start_thread() takes over. */
1522 void finalize_exec(struct linux_binprm *bprm)
1523 {
1524 	/* Store any stack rlimit changes before starting thread. */
1525 	task_lock(current->group_leader);
1526 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1527 	task_unlock(current->group_leader);
1528 }
1529 EXPORT_SYMBOL(finalize_exec);
1530 
1531 /*
1532  * Prepare credentials and lock ->cred_guard_mutex.
1533  * setup_new_exec() commits the new creds and drops the lock.
1534  * Or, if exec fails before, free_bprm() should release ->cred
1535  * and unlock.
1536  */
1537 static int prepare_bprm_creds(struct linux_binprm *bprm)
1538 {
1539 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1540 		return -ERESTARTNOINTR;
1541 
1542 	bprm->cred = prepare_exec_creds();
1543 	if (likely(bprm->cred))
1544 		return 0;
1545 
1546 	mutex_unlock(&current->signal->cred_guard_mutex);
1547 	return -ENOMEM;
1548 }
1549 
1550 /* Matches do_open_execat() */
1551 static void do_close_execat(struct file *file)
1552 {
1553 	if (file)
1554 		fput(file);
1555 }
1556 
1557 static void free_bprm(struct linux_binprm *bprm)
1558 {
1559 	if (bprm->mm) {
1560 		acct_arg_size(bprm, 0);
1561 		mmput(bprm->mm);
1562 	}
1563 	free_arg_pages(bprm);
1564 	if (bprm->cred) {
1565 		mutex_unlock(&current->signal->cred_guard_mutex);
1566 		abort_creds(bprm->cred);
1567 	}
1568 	do_close_execat(bprm->file);
1569 	if (bprm->executable)
1570 		fput(bprm->executable);
1571 	/* If a binfmt changed the interp, free it. */
1572 	if (bprm->interp != bprm->filename)
1573 		kfree(bprm->interp);
1574 	kfree(bprm->fdpath);
1575 	kfree(bprm);
1576 }
1577 
1578 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1579 {
1580 	struct linux_binprm *bprm;
1581 	struct file *file;
1582 	int retval = -ENOMEM;
1583 
1584 	file = do_open_execat(fd, filename, flags);
1585 	if (IS_ERR(file))
1586 		return ERR_CAST(file);
1587 
1588 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1589 	if (!bprm) {
1590 		do_close_execat(file);
1591 		return ERR_PTR(-ENOMEM);
1592 	}
1593 
1594 	bprm->file = file;
1595 
1596 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1597 		bprm->filename = filename->name;
1598 	} else {
1599 		if (filename->name[0] == '\0')
1600 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1601 		else
1602 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1603 						  fd, filename->name);
1604 		if (!bprm->fdpath)
1605 			goto out_free;
1606 
1607 		/*
1608 		 * Record that a name derived from an O_CLOEXEC fd will be
1609 		 * inaccessible after exec.  This allows the code in exec to
1610 		 * choose to fail when the executable is not mmaped into the
1611 		 * interpreter and an open file descriptor is not passed to
1612 		 * the interpreter.  This makes for a better user experience
1613 		 * than having the interpreter start and then immediately fail
1614 		 * when it finds the executable is inaccessible.
1615 		 */
1616 		if (get_close_on_exec(fd))
1617 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1618 
1619 		bprm->filename = bprm->fdpath;
1620 	}
1621 	bprm->interp = bprm->filename;
1622 
1623 	retval = bprm_mm_init(bprm);
1624 	if (!retval)
1625 		return bprm;
1626 
1627 out_free:
1628 	free_bprm(bprm);
1629 	return ERR_PTR(retval);
1630 }
1631 
1632 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1633 {
1634 	/* If a binfmt changed the interp, free it first. */
1635 	if (bprm->interp != bprm->filename)
1636 		kfree(bprm->interp);
1637 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1638 	if (!bprm->interp)
1639 		return -ENOMEM;
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL(bprm_change_interp);
1643 
1644 /*
1645  * determine how safe it is to execute the proposed program
1646  * - the caller must hold ->cred_guard_mutex to protect against
1647  *   PTRACE_ATTACH or seccomp thread-sync
1648  */
1649 static void check_unsafe_exec(struct linux_binprm *bprm)
1650 {
1651 	struct task_struct *p = current, *t;
1652 	unsigned n_fs;
1653 
1654 	if (p->ptrace)
1655 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1656 
1657 	/*
1658 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1659 	 * mess up.
1660 	 */
1661 	if (task_no_new_privs(current))
1662 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1663 
1664 	/*
1665 	 * If another task is sharing our fs, we cannot safely
1666 	 * suid exec because the differently privileged task
1667 	 * will be able to manipulate the current directory, etc.
1668 	 * It would be nice to force an unshare instead...
1669 	 */
1670 	n_fs = 1;
1671 	spin_lock(&p->fs->lock);
1672 	rcu_read_lock();
1673 	for_other_threads(p, t) {
1674 		if (t->fs == p->fs)
1675 			n_fs++;
1676 	}
1677 	rcu_read_unlock();
1678 
1679 	/* "users" and "in_exec" locked for copy_fs() */
1680 	if (p->fs->users > n_fs)
1681 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1682 	else
1683 		p->fs->in_exec = 1;
1684 	spin_unlock(&p->fs->lock);
1685 }
1686 
1687 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1688 {
1689 	/* Handle suid and sgid on files */
1690 	struct mnt_idmap *idmap;
1691 	struct inode *inode = file_inode(file);
1692 	unsigned int mode;
1693 	vfsuid_t vfsuid;
1694 	vfsgid_t vfsgid;
1695 	int err;
1696 
1697 	if (!mnt_may_suid(file->f_path.mnt))
1698 		return;
1699 
1700 	if (task_no_new_privs(current))
1701 		return;
1702 
1703 	mode = READ_ONCE(inode->i_mode);
1704 	if (!(mode & (S_ISUID|S_ISGID)))
1705 		return;
1706 
1707 	idmap = file_mnt_idmap(file);
1708 
1709 	/* Be careful if suid/sgid is set */
1710 	inode_lock(inode);
1711 
1712 	/* Atomically reload and check mode/uid/gid now that lock held. */
1713 	mode = inode->i_mode;
1714 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1715 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1716 	err = inode_permission(idmap, inode, MAY_EXEC);
1717 	inode_unlock(inode);
1718 
1719 	/* Did the exec bit vanish out from under us? Give up. */
1720 	if (err)
1721 		return;
1722 
1723 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1724 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1725 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1726 		return;
1727 
1728 	if (mode & S_ISUID) {
1729 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1730 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1731 	}
1732 
1733 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1734 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1735 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1736 	}
1737 }
1738 
1739 /*
1740  * Compute brpm->cred based upon the final binary.
1741  */
1742 static int bprm_creds_from_file(struct linux_binprm *bprm)
1743 {
1744 	/* Compute creds based on which file? */
1745 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1746 
1747 	bprm_fill_uid(bprm, file);
1748 	return security_bprm_creds_from_file(bprm, file);
1749 }
1750 
1751 /*
1752  * Fill the binprm structure from the inode.
1753  * Read the first BINPRM_BUF_SIZE bytes
1754  *
1755  * This may be called multiple times for binary chains (scripts for example).
1756  */
1757 static int prepare_binprm(struct linux_binprm *bprm)
1758 {
1759 	loff_t pos = 0;
1760 
1761 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1762 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1763 }
1764 
1765 /*
1766  * Arguments are '\0' separated strings found at the location bprm->p
1767  * points to; chop off the first by relocating brpm->p to right after
1768  * the first '\0' encountered.
1769  */
1770 int remove_arg_zero(struct linux_binprm *bprm)
1771 {
1772 	unsigned long offset;
1773 	char *kaddr;
1774 	struct page *page;
1775 
1776 	if (!bprm->argc)
1777 		return 0;
1778 
1779 	do {
1780 		offset = bprm->p & ~PAGE_MASK;
1781 		page = get_arg_page(bprm, bprm->p, 0);
1782 		if (!page)
1783 			return -EFAULT;
1784 		kaddr = kmap_local_page(page);
1785 
1786 		for (; offset < PAGE_SIZE && kaddr[offset];
1787 				offset++, bprm->p++)
1788 			;
1789 
1790 		kunmap_local(kaddr);
1791 		put_arg_page(page);
1792 	} while (offset == PAGE_SIZE);
1793 
1794 	bprm->p++;
1795 	bprm->argc--;
1796 
1797 	return 0;
1798 }
1799 EXPORT_SYMBOL(remove_arg_zero);
1800 
1801 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1802 /*
1803  * cycle the list of binary formats handler, until one recognizes the image
1804  */
1805 static int search_binary_handler(struct linux_binprm *bprm)
1806 {
1807 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1808 	struct linux_binfmt *fmt;
1809 	int retval;
1810 
1811 	retval = prepare_binprm(bprm);
1812 	if (retval < 0)
1813 		return retval;
1814 
1815 	retval = security_bprm_check(bprm);
1816 	if (retval)
1817 		return retval;
1818 
1819 	retval = -ENOENT;
1820  retry:
1821 	read_lock(&binfmt_lock);
1822 	list_for_each_entry(fmt, &formats, lh) {
1823 		if (!try_module_get(fmt->module))
1824 			continue;
1825 		read_unlock(&binfmt_lock);
1826 
1827 		retval = fmt->load_binary(bprm);
1828 
1829 		read_lock(&binfmt_lock);
1830 		put_binfmt(fmt);
1831 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1832 			read_unlock(&binfmt_lock);
1833 			return retval;
1834 		}
1835 	}
1836 	read_unlock(&binfmt_lock);
1837 
1838 	if (need_retry) {
1839 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1840 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1841 			return retval;
1842 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1843 			return retval;
1844 		need_retry = false;
1845 		goto retry;
1846 	}
1847 
1848 	return retval;
1849 }
1850 
1851 /* binfmt handlers will call back into begin_new_exec() on success. */
1852 static int exec_binprm(struct linux_binprm *bprm)
1853 {
1854 	pid_t old_pid, old_vpid;
1855 	int ret, depth;
1856 
1857 	/* Need to fetch pid before load_binary changes it */
1858 	old_pid = current->pid;
1859 	rcu_read_lock();
1860 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1861 	rcu_read_unlock();
1862 
1863 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1864 	for (depth = 0;; depth++) {
1865 		struct file *exec;
1866 		if (depth > 5)
1867 			return -ELOOP;
1868 
1869 		ret = search_binary_handler(bprm);
1870 		if (ret < 0)
1871 			return ret;
1872 		if (!bprm->interpreter)
1873 			break;
1874 
1875 		exec = bprm->file;
1876 		bprm->file = bprm->interpreter;
1877 		bprm->interpreter = NULL;
1878 
1879 		if (unlikely(bprm->have_execfd)) {
1880 			if (bprm->executable) {
1881 				fput(exec);
1882 				return -ENOEXEC;
1883 			}
1884 			bprm->executable = exec;
1885 		} else
1886 			fput(exec);
1887 	}
1888 
1889 	audit_bprm(bprm);
1890 	trace_sched_process_exec(current, old_pid, bprm);
1891 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1892 	proc_exec_connector(current);
1893 	return 0;
1894 }
1895 
1896 static int bprm_execve(struct linux_binprm *bprm)
1897 {
1898 	int retval;
1899 
1900 	retval = prepare_bprm_creds(bprm);
1901 	if (retval)
1902 		return retval;
1903 
1904 	/*
1905 	 * Check for unsafe execution states before exec_binprm(), which
1906 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1907 	 * where setuid-ness is evaluated.
1908 	 */
1909 	check_unsafe_exec(bprm);
1910 	current->in_execve = 1;
1911 	sched_mm_cid_before_execve(current);
1912 
1913 	sched_exec();
1914 
1915 	/* Set the unchanging part of bprm->cred */
1916 	retval = security_bprm_creds_for_exec(bprm);
1917 	if (retval)
1918 		goto out;
1919 
1920 	retval = exec_binprm(bprm);
1921 	if (retval < 0)
1922 		goto out;
1923 
1924 	sched_mm_cid_after_execve(current);
1925 	/* execve succeeded */
1926 	current->fs->in_exec = 0;
1927 	current->in_execve = 0;
1928 	rseq_execve(current);
1929 	user_events_execve(current);
1930 	acct_update_integrals(current);
1931 	task_numa_free(current, false);
1932 	return retval;
1933 
1934 out:
1935 	/*
1936 	 * If past the point of no return ensure the code never
1937 	 * returns to the userspace process.  Use an existing fatal
1938 	 * signal if present otherwise terminate the process with
1939 	 * SIGSEGV.
1940 	 */
1941 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1942 		force_fatal_sig(SIGSEGV);
1943 
1944 	sched_mm_cid_after_execve(current);
1945 	current->fs->in_exec = 0;
1946 	current->in_execve = 0;
1947 
1948 	return retval;
1949 }
1950 
1951 static int do_execveat_common(int fd, struct filename *filename,
1952 			      struct user_arg_ptr argv,
1953 			      struct user_arg_ptr envp,
1954 			      int flags)
1955 {
1956 	struct linux_binprm *bprm;
1957 	int retval;
1958 
1959 	if (IS_ERR(filename))
1960 		return PTR_ERR(filename);
1961 
1962 	/*
1963 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1964 	 * set*uid() to execve() because too many poorly written programs
1965 	 * don't check setuid() return code.  Here we additionally recheck
1966 	 * whether NPROC limit is still exceeded.
1967 	 */
1968 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1969 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1970 		retval = -EAGAIN;
1971 		goto out_ret;
1972 	}
1973 
1974 	/* We're below the limit (still or again), so we don't want to make
1975 	 * further execve() calls fail. */
1976 	current->flags &= ~PF_NPROC_EXCEEDED;
1977 
1978 	bprm = alloc_bprm(fd, filename, flags);
1979 	if (IS_ERR(bprm)) {
1980 		retval = PTR_ERR(bprm);
1981 		goto out_ret;
1982 	}
1983 
1984 	retval = count(argv, MAX_ARG_STRINGS);
1985 	if (retval == 0)
1986 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1987 			     current->comm, bprm->filename);
1988 	if (retval < 0)
1989 		goto out_free;
1990 	bprm->argc = retval;
1991 
1992 	retval = count(envp, MAX_ARG_STRINGS);
1993 	if (retval < 0)
1994 		goto out_free;
1995 	bprm->envc = retval;
1996 
1997 	retval = bprm_stack_limits(bprm);
1998 	if (retval < 0)
1999 		goto out_free;
2000 
2001 	retval = copy_string_kernel(bprm->filename, bprm);
2002 	if (retval < 0)
2003 		goto out_free;
2004 	bprm->exec = bprm->p;
2005 
2006 	retval = copy_strings(bprm->envc, envp, bprm);
2007 	if (retval < 0)
2008 		goto out_free;
2009 
2010 	retval = copy_strings(bprm->argc, argv, bprm);
2011 	if (retval < 0)
2012 		goto out_free;
2013 
2014 	/*
2015 	 * When argv is empty, add an empty string ("") as argv[0] to
2016 	 * ensure confused userspace programs that start processing
2017 	 * from argv[1] won't end up walking envp. See also
2018 	 * bprm_stack_limits().
2019 	 */
2020 	if (bprm->argc == 0) {
2021 		retval = copy_string_kernel("", bprm);
2022 		if (retval < 0)
2023 			goto out_free;
2024 		bprm->argc = 1;
2025 	}
2026 
2027 	retval = bprm_execve(bprm);
2028 out_free:
2029 	free_bprm(bprm);
2030 
2031 out_ret:
2032 	putname(filename);
2033 	return retval;
2034 }
2035 
2036 int kernel_execve(const char *kernel_filename,
2037 		  const char *const *argv, const char *const *envp)
2038 {
2039 	struct filename *filename;
2040 	struct linux_binprm *bprm;
2041 	int fd = AT_FDCWD;
2042 	int retval;
2043 
2044 	/* It is non-sense for kernel threads to call execve */
2045 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2046 		return -EINVAL;
2047 
2048 	filename = getname_kernel(kernel_filename);
2049 	if (IS_ERR(filename))
2050 		return PTR_ERR(filename);
2051 
2052 	bprm = alloc_bprm(fd, filename, 0);
2053 	if (IS_ERR(bprm)) {
2054 		retval = PTR_ERR(bprm);
2055 		goto out_ret;
2056 	}
2057 
2058 	retval = count_strings_kernel(argv);
2059 	if (WARN_ON_ONCE(retval == 0))
2060 		retval = -EINVAL;
2061 	if (retval < 0)
2062 		goto out_free;
2063 	bprm->argc = retval;
2064 
2065 	retval = count_strings_kernel(envp);
2066 	if (retval < 0)
2067 		goto out_free;
2068 	bprm->envc = retval;
2069 
2070 	retval = bprm_stack_limits(bprm);
2071 	if (retval < 0)
2072 		goto out_free;
2073 
2074 	retval = copy_string_kernel(bprm->filename, bprm);
2075 	if (retval < 0)
2076 		goto out_free;
2077 	bprm->exec = bprm->p;
2078 
2079 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2080 	if (retval < 0)
2081 		goto out_free;
2082 
2083 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2084 	if (retval < 0)
2085 		goto out_free;
2086 
2087 	retval = bprm_execve(bprm);
2088 out_free:
2089 	free_bprm(bprm);
2090 out_ret:
2091 	putname(filename);
2092 	return retval;
2093 }
2094 
2095 static int do_execve(struct filename *filename,
2096 	const char __user *const __user *__argv,
2097 	const char __user *const __user *__envp)
2098 {
2099 	struct user_arg_ptr argv = { .ptr.native = __argv };
2100 	struct user_arg_ptr envp = { .ptr.native = __envp };
2101 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2102 }
2103 
2104 static int do_execveat(int fd, struct filename *filename,
2105 		const char __user *const __user *__argv,
2106 		const char __user *const __user *__envp,
2107 		int flags)
2108 {
2109 	struct user_arg_ptr argv = { .ptr.native = __argv };
2110 	struct user_arg_ptr envp = { .ptr.native = __envp };
2111 
2112 	return do_execveat_common(fd, filename, argv, envp, flags);
2113 }
2114 
2115 #ifdef CONFIG_COMPAT
2116 static int compat_do_execve(struct filename *filename,
2117 	const compat_uptr_t __user *__argv,
2118 	const compat_uptr_t __user *__envp)
2119 {
2120 	struct user_arg_ptr argv = {
2121 		.is_compat = true,
2122 		.ptr.compat = __argv,
2123 	};
2124 	struct user_arg_ptr envp = {
2125 		.is_compat = true,
2126 		.ptr.compat = __envp,
2127 	};
2128 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2129 }
2130 
2131 static int compat_do_execveat(int fd, struct filename *filename,
2132 			      const compat_uptr_t __user *__argv,
2133 			      const compat_uptr_t __user *__envp,
2134 			      int flags)
2135 {
2136 	struct user_arg_ptr argv = {
2137 		.is_compat = true,
2138 		.ptr.compat = __argv,
2139 	};
2140 	struct user_arg_ptr envp = {
2141 		.is_compat = true,
2142 		.ptr.compat = __envp,
2143 	};
2144 	return do_execveat_common(fd, filename, argv, envp, flags);
2145 }
2146 #endif
2147 
2148 void set_binfmt(struct linux_binfmt *new)
2149 {
2150 	struct mm_struct *mm = current->mm;
2151 
2152 	if (mm->binfmt)
2153 		module_put(mm->binfmt->module);
2154 
2155 	mm->binfmt = new;
2156 	if (new)
2157 		__module_get(new->module);
2158 }
2159 EXPORT_SYMBOL(set_binfmt);
2160 
2161 /*
2162  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2163  */
2164 void set_dumpable(struct mm_struct *mm, int value)
2165 {
2166 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2167 		return;
2168 
2169 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2170 }
2171 
2172 SYSCALL_DEFINE3(execve,
2173 		const char __user *, filename,
2174 		const char __user *const __user *, argv,
2175 		const char __user *const __user *, envp)
2176 {
2177 	return do_execve(getname(filename), argv, envp);
2178 }
2179 
2180 SYSCALL_DEFINE5(execveat,
2181 		int, fd, const char __user *, filename,
2182 		const char __user *const __user *, argv,
2183 		const char __user *const __user *, envp,
2184 		int, flags)
2185 {
2186 	return do_execveat(fd,
2187 			   getname_uflags(filename, flags),
2188 			   argv, envp, flags);
2189 }
2190 
2191 #ifdef CONFIG_COMPAT
2192 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2193 	const compat_uptr_t __user *, argv,
2194 	const compat_uptr_t __user *, envp)
2195 {
2196 	return compat_do_execve(getname(filename), argv, envp);
2197 }
2198 
2199 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2200 		       const char __user *, filename,
2201 		       const compat_uptr_t __user *, argv,
2202 		       const compat_uptr_t __user *, envp,
2203 		       int,  flags)
2204 {
2205 	return compat_do_execveat(fd,
2206 				  getname_uflags(filename, flags),
2207 				  argv, envp, flags);
2208 }
2209 #endif
2210 
2211 #ifdef CONFIG_SYSCTL
2212 
2213 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2214 		void *buffer, size_t *lenp, loff_t *ppos)
2215 {
2216 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2217 
2218 	if (!error)
2219 		validate_coredump_safety();
2220 	return error;
2221 }
2222 
2223 static struct ctl_table fs_exec_sysctls[] = {
2224 	{
2225 		.procname	= "suid_dumpable",
2226 		.data		= &suid_dumpable,
2227 		.maxlen		= sizeof(int),
2228 		.mode		= 0644,
2229 		.proc_handler	= proc_dointvec_minmax_coredump,
2230 		.extra1		= SYSCTL_ZERO,
2231 		.extra2		= SYSCTL_TWO,
2232 	},
2233 };
2234 
2235 static int __init init_fs_exec_sysctls(void)
2236 {
2237 	register_sysctl_init("fs", fs_exec_sysctls);
2238 	return 0;
2239 }
2240 
2241 fs_initcall(init_fs_exec_sysctls);
2242 #endif /* CONFIG_SYSCTL */
2243 
2244 #ifdef CONFIG_EXEC_KUNIT_TEST
2245 #include "tests/exec_kunit.c"
2246 #endif
2247