1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 58 #include <asm/uaccess.h> 59 #include <asm/mmu_context.h> 60 #include <asm/tlb.h> 61 #include "internal.h" 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 unsigned int core_pipe_limit; 66 int suid_dumpable = 0; 67 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int __register_binfmt(struct linux_binfmt * fmt, int insert) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 return 0; 82 } 83 84 EXPORT_SYMBOL(__register_binfmt); 85 86 void unregister_binfmt(struct linux_binfmt * fmt) 87 { 88 write_lock(&binfmt_lock); 89 list_del(&fmt->lh); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(unregister_binfmt); 94 95 static inline void put_binfmt(struct linux_binfmt * fmt) 96 { 97 module_put(fmt->module); 98 } 99 100 /* 101 * Note that a shared library must be both readable and executable due to 102 * security reasons. 103 * 104 * Also note that we take the address to load from from the file itself. 105 */ 106 SYSCALL_DEFINE1(uselib, const char __user *, library) 107 { 108 struct file *file; 109 char *tmp = getname(library); 110 int error = PTR_ERR(tmp); 111 112 if (IS_ERR(tmp)) 113 goto out; 114 115 file = do_filp_open(AT_FDCWD, tmp, 116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 117 MAY_READ | MAY_EXEC | MAY_OPEN); 118 putname(tmp); 119 error = PTR_ERR(file); 120 if (IS_ERR(file)) 121 goto out; 122 123 error = -EINVAL; 124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 125 goto exit; 126 127 error = -EACCES; 128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 129 goto exit; 130 131 fsnotify_open(file); 132 133 error = -ENOEXEC; 134 if(file->f_op) { 135 struct linux_binfmt * fmt; 136 137 read_lock(&binfmt_lock); 138 list_for_each_entry(fmt, &formats, lh) { 139 if (!fmt->load_shlib) 140 continue; 141 if (!try_module_get(fmt->module)) 142 continue; 143 read_unlock(&binfmt_lock); 144 error = fmt->load_shlib(file); 145 read_lock(&binfmt_lock); 146 put_binfmt(fmt); 147 if (error != -ENOEXEC) 148 break; 149 } 150 read_unlock(&binfmt_lock); 151 } 152 exit: 153 fput(file); 154 out: 155 return error; 156 } 157 158 #ifdef CONFIG_MMU 159 160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 161 int write) 162 { 163 struct page *page; 164 int ret; 165 166 #ifdef CONFIG_STACK_GROWSUP 167 if (write) { 168 ret = expand_stack_downwards(bprm->vma, pos); 169 if (ret < 0) 170 return NULL; 171 } 172 #endif 173 ret = get_user_pages(current, bprm->mm, pos, 174 1, write, 1, &page, NULL); 175 if (ret <= 0) 176 return NULL; 177 178 if (write) { 179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 180 struct rlimit *rlim; 181 182 /* 183 * We've historically supported up to 32 pages (ARG_MAX) 184 * of argument strings even with small stacks 185 */ 186 if (size <= ARG_MAX) 187 return page; 188 189 /* 190 * Limit to 1/4-th the stack size for the argv+env strings. 191 * This ensures that: 192 * - the remaining binfmt code will not run out of stack space, 193 * - the program will have a reasonable amount of stack left 194 * to work from. 195 */ 196 rlim = current->signal->rlim; 197 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 198 put_page(page); 199 return NULL; 200 } 201 } 202 203 return page; 204 } 205 206 static void put_arg_page(struct page *page) 207 { 208 put_page(page); 209 } 210 211 static void free_arg_page(struct linux_binprm *bprm, int i) 212 { 213 } 214 215 static void free_arg_pages(struct linux_binprm *bprm) 216 { 217 } 218 219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 220 struct page *page) 221 { 222 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 223 } 224 225 static int __bprm_mm_init(struct linux_binprm *bprm) 226 { 227 int err; 228 struct vm_area_struct *vma = NULL; 229 struct mm_struct *mm = bprm->mm; 230 231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 232 if (!vma) 233 return -ENOMEM; 234 235 down_write(&mm->mmap_sem); 236 vma->vm_mm = mm; 237 238 /* 239 * Place the stack at the largest stack address the architecture 240 * supports. Later, we'll move this to an appropriate place. We don't 241 * use STACK_TOP because that can depend on attributes which aren't 242 * configured yet. 243 */ 244 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 245 vma->vm_end = STACK_TOP_MAX; 246 vma->vm_start = vma->vm_end - PAGE_SIZE; 247 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 249 INIT_LIST_HEAD(&vma->anon_vma_chain); 250 err = insert_vm_struct(mm, vma); 251 if (err) 252 goto err; 253 254 mm->stack_vm = mm->total_vm = 1; 255 up_write(&mm->mmap_sem); 256 bprm->p = vma->vm_end - sizeof(void *); 257 return 0; 258 err: 259 up_write(&mm->mmap_sem); 260 bprm->vma = NULL; 261 kmem_cache_free(vm_area_cachep, vma); 262 return err; 263 } 264 265 static bool valid_arg_len(struct linux_binprm *bprm, long len) 266 { 267 return len <= MAX_ARG_STRLEN; 268 } 269 270 #else 271 272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 273 int write) 274 { 275 struct page *page; 276 277 page = bprm->page[pos / PAGE_SIZE]; 278 if (!page && write) { 279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 280 if (!page) 281 return NULL; 282 bprm->page[pos / PAGE_SIZE] = page; 283 } 284 285 return page; 286 } 287 288 static void put_arg_page(struct page *page) 289 { 290 } 291 292 static void free_arg_page(struct linux_binprm *bprm, int i) 293 { 294 if (bprm->page[i]) { 295 __free_page(bprm->page[i]); 296 bprm->page[i] = NULL; 297 } 298 } 299 300 static void free_arg_pages(struct linux_binprm *bprm) 301 { 302 int i; 303 304 for (i = 0; i < MAX_ARG_PAGES; i++) 305 free_arg_page(bprm, i); 306 } 307 308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 309 struct page *page) 310 { 311 } 312 313 static int __bprm_mm_init(struct linux_binprm *bprm) 314 { 315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 316 return 0; 317 } 318 319 static bool valid_arg_len(struct linux_binprm *bprm, long len) 320 { 321 return len <= bprm->p; 322 } 323 324 #endif /* CONFIG_MMU */ 325 326 /* 327 * Create a new mm_struct and populate it with a temporary stack 328 * vm_area_struct. We don't have enough context at this point to set the stack 329 * flags, permissions, and offset, so we use temporary values. We'll update 330 * them later in setup_arg_pages(). 331 */ 332 int bprm_mm_init(struct linux_binprm *bprm) 333 { 334 int err; 335 struct mm_struct *mm = NULL; 336 337 bprm->mm = mm = mm_alloc(); 338 err = -ENOMEM; 339 if (!mm) 340 goto err; 341 342 err = init_new_context(current, mm); 343 if (err) 344 goto err; 345 346 err = __bprm_mm_init(bprm); 347 if (err) 348 goto err; 349 350 return 0; 351 352 err: 353 if (mm) { 354 bprm->mm = NULL; 355 mmdrop(mm); 356 } 357 358 return err; 359 } 360 361 /* 362 * count() counts the number of strings in array ARGV. 363 */ 364 static int count(const char __user * const __user * argv, int max) 365 { 366 int i = 0; 367 368 if (argv != NULL) { 369 for (;;) { 370 const char __user * p; 371 372 if (get_user(p, argv)) 373 return -EFAULT; 374 if (!p) 375 break; 376 argv++; 377 if (i++ >= max) 378 return -E2BIG; 379 cond_resched(); 380 } 381 } 382 return i; 383 } 384 385 /* 386 * 'copy_strings()' copies argument/environment strings from the old 387 * processes's memory to the new process's stack. The call to get_user_pages() 388 * ensures the destination page is created and not swapped out. 389 */ 390 static int copy_strings(int argc, const char __user *const __user *argv, 391 struct linux_binprm *bprm) 392 { 393 struct page *kmapped_page = NULL; 394 char *kaddr = NULL; 395 unsigned long kpos = 0; 396 int ret; 397 398 while (argc-- > 0) { 399 const char __user *str; 400 int len; 401 unsigned long pos; 402 403 if (get_user(str, argv+argc) || 404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 405 ret = -EFAULT; 406 goto out; 407 } 408 409 if (!valid_arg_len(bprm, len)) { 410 ret = -E2BIG; 411 goto out; 412 } 413 414 /* We're going to work our way backwords. */ 415 pos = bprm->p; 416 str += len; 417 bprm->p -= len; 418 419 while (len > 0) { 420 int offset, bytes_to_copy; 421 422 offset = pos % PAGE_SIZE; 423 if (offset == 0) 424 offset = PAGE_SIZE; 425 426 bytes_to_copy = offset; 427 if (bytes_to_copy > len) 428 bytes_to_copy = len; 429 430 offset -= bytes_to_copy; 431 pos -= bytes_to_copy; 432 str -= bytes_to_copy; 433 len -= bytes_to_copy; 434 435 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 436 struct page *page; 437 438 page = get_arg_page(bprm, pos, 1); 439 if (!page) { 440 ret = -E2BIG; 441 goto out; 442 } 443 444 if (kmapped_page) { 445 flush_kernel_dcache_page(kmapped_page); 446 kunmap(kmapped_page); 447 put_arg_page(kmapped_page); 448 } 449 kmapped_page = page; 450 kaddr = kmap(kmapped_page); 451 kpos = pos & PAGE_MASK; 452 flush_arg_page(bprm, kpos, kmapped_page); 453 } 454 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 455 ret = -EFAULT; 456 goto out; 457 } 458 } 459 } 460 ret = 0; 461 out: 462 if (kmapped_page) { 463 flush_kernel_dcache_page(kmapped_page); 464 kunmap(kmapped_page); 465 put_arg_page(kmapped_page); 466 } 467 return ret; 468 } 469 470 /* 471 * Like copy_strings, but get argv and its values from kernel memory. 472 */ 473 int copy_strings_kernel(int argc, const char *const *argv, 474 struct linux_binprm *bprm) 475 { 476 int r; 477 mm_segment_t oldfs = get_fs(); 478 set_fs(KERNEL_DS); 479 r = copy_strings(argc, (const char __user *const __user *)argv, bprm); 480 set_fs(oldfs); 481 return r; 482 } 483 EXPORT_SYMBOL(copy_strings_kernel); 484 485 #ifdef CONFIG_MMU 486 487 /* 488 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 489 * the binfmt code determines where the new stack should reside, we shift it to 490 * its final location. The process proceeds as follows: 491 * 492 * 1) Use shift to calculate the new vma endpoints. 493 * 2) Extend vma to cover both the old and new ranges. This ensures the 494 * arguments passed to subsequent functions are consistent. 495 * 3) Move vma's page tables to the new range. 496 * 4) Free up any cleared pgd range. 497 * 5) Shrink the vma to cover only the new range. 498 */ 499 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 500 { 501 struct mm_struct *mm = vma->vm_mm; 502 unsigned long old_start = vma->vm_start; 503 unsigned long old_end = vma->vm_end; 504 unsigned long length = old_end - old_start; 505 unsigned long new_start = old_start - shift; 506 unsigned long new_end = old_end - shift; 507 struct mmu_gather *tlb; 508 509 BUG_ON(new_start > new_end); 510 511 /* 512 * ensure there are no vmas between where we want to go 513 * and where we are 514 */ 515 if (vma != find_vma(mm, new_start)) 516 return -EFAULT; 517 518 /* 519 * cover the whole range: [new_start, old_end) 520 */ 521 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 522 return -ENOMEM; 523 524 /* 525 * move the page tables downwards, on failure we rely on 526 * process cleanup to remove whatever mess we made. 527 */ 528 if (length != move_page_tables(vma, old_start, 529 vma, new_start, length)) 530 return -ENOMEM; 531 532 lru_add_drain(); 533 tlb = tlb_gather_mmu(mm, 0); 534 if (new_end > old_start) { 535 /* 536 * when the old and new regions overlap clear from new_end. 537 */ 538 free_pgd_range(tlb, new_end, old_end, new_end, 539 vma->vm_next ? vma->vm_next->vm_start : 0); 540 } else { 541 /* 542 * otherwise, clean from old_start; this is done to not touch 543 * the address space in [new_end, old_start) some architectures 544 * have constraints on va-space that make this illegal (IA64) - 545 * for the others its just a little faster. 546 */ 547 free_pgd_range(tlb, old_start, old_end, new_end, 548 vma->vm_next ? vma->vm_next->vm_start : 0); 549 } 550 tlb_finish_mmu(tlb, new_end, old_end); 551 552 /* 553 * Shrink the vma to just the new range. Always succeeds. 554 */ 555 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 556 557 return 0; 558 } 559 560 /* 561 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 562 * the stack is optionally relocated, and some extra space is added. 563 */ 564 int setup_arg_pages(struct linux_binprm *bprm, 565 unsigned long stack_top, 566 int executable_stack) 567 { 568 unsigned long ret; 569 unsigned long stack_shift; 570 struct mm_struct *mm = current->mm; 571 struct vm_area_struct *vma = bprm->vma; 572 struct vm_area_struct *prev = NULL; 573 unsigned long vm_flags; 574 unsigned long stack_base; 575 unsigned long stack_size; 576 unsigned long stack_expand; 577 unsigned long rlim_stack; 578 579 #ifdef CONFIG_STACK_GROWSUP 580 /* Limit stack size to 1GB */ 581 stack_base = rlimit_max(RLIMIT_STACK); 582 if (stack_base > (1 << 30)) 583 stack_base = 1 << 30; 584 585 /* Make sure we didn't let the argument array grow too large. */ 586 if (vma->vm_end - vma->vm_start > stack_base) 587 return -ENOMEM; 588 589 stack_base = PAGE_ALIGN(stack_top - stack_base); 590 591 stack_shift = vma->vm_start - stack_base; 592 mm->arg_start = bprm->p - stack_shift; 593 bprm->p = vma->vm_end - stack_shift; 594 #else 595 stack_top = arch_align_stack(stack_top); 596 stack_top = PAGE_ALIGN(stack_top); 597 stack_shift = vma->vm_end - stack_top; 598 599 bprm->p -= stack_shift; 600 mm->arg_start = bprm->p; 601 #endif 602 603 if (bprm->loader) 604 bprm->loader -= stack_shift; 605 bprm->exec -= stack_shift; 606 607 down_write(&mm->mmap_sem); 608 vm_flags = VM_STACK_FLAGS; 609 610 /* 611 * Adjust stack execute permissions; explicitly enable for 612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 613 * (arch default) otherwise. 614 */ 615 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 616 vm_flags |= VM_EXEC; 617 else if (executable_stack == EXSTACK_DISABLE_X) 618 vm_flags &= ~VM_EXEC; 619 vm_flags |= mm->def_flags; 620 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 621 622 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 623 vm_flags); 624 if (ret) 625 goto out_unlock; 626 BUG_ON(prev != vma); 627 628 /* Move stack pages down in memory. */ 629 if (stack_shift) { 630 ret = shift_arg_pages(vma, stack_shift); 631 if (ret) 632 goto out_unlock; 633 } 634 635 /* mprotect_fixup is overkill to remove the temporary stack flags */ 636 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 637 638 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 639 stack_size = vma->vm_end - vma->vm_start; 640 /* 641 * Align this down to a page boundary as expand_stack 642 * will align it up. 643 */ 644 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 645 #ifdef CONFIG_STACK_GROWSUP 646 if (stack_size + stack_expand > rlim_stack) 647 stack_base = vma->vm_start + rlim_stack; 648 else 649 stack_base = vma->vm_end + stack_expand; 650 #else 651 if (stack_size + stack_expand > rlim_stack) 652 stack_base = vma->vm_end - rlim_stack; 653 else 654 stack_base = vma->vm_start - stack_expand; 655 #endif 656 current->mm->start_stack = bprm->p; 657 ret = expand_stack(vma, stack_base); 658 if (ret) 659 ret = -EFAULT; 660 661 out_unlock: 662 up_write(&mm->mmap_sem); 663 return ret; 664 } 665 EXPORT_SYMBOL(setup_arg_pages); 666 667 #endif /* CONFIG_MMU */ 668 669 struct file *open_exec(const char *name) 670 { 671 struct file *file; 672 int err; 673 674 file = do_filp_open(AT_FDCWD, name, 675 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 676 MAY_EXEC | MAY_OPEN); 677 if (IS_ERR(file)) 678 goto out; 679 680 err = -EACCES; 681 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 682 goto exit; 683 684 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 685 goto exit; 686 687 fsnotify_open(file); 688 689 err = deny_write_access(file); 690 if (err) 691 goto exit; 692 693 out: 694 return file; 695 696 exit: 697 fput(file); 698 return ERR_PTR(err); 699 } 700 EXPORT_SYMBOL(open_exec); 701 702 int kernel_read(struct file *file, loff_t offset, 703 char *addr, unsigned long count) 704 { 705 mm_segment_t old_fs; 706 loff_t pos = offset; 707 int result; 708 709 old_fs = get_fs(); 710 set_fs(get_ds()); 711 /* The cast to a user pointer is valid due to the set_fs() */ 712 result = vfs_read(file, (void __user *)addr, count, &pos); 713 set_fs(old_fs); 714 return result; 715 } 716 717 EXPORT_SYMBOL(kernel_read); 718 719 static int exec_mmap(struct mm_struct *mm) 720 { 721 struct task_struct *tsk; 722 struct mm_struct * old_mm, *active_mm; 723 724 /* Notify parent that we're no longer interested in the old VM */ 725 tsk = current; 726 old_mm = current->mm; 727 sync_mm_rss(tsk, old_mm); 728 mm_release(tsk, old_mm); 729 730 if (old_mm) { 731 /* 732 * Make sure that if there is a core dump in progress 733 * for the old mm, we get out and die instead of going 734 * through with the exec. We must hold mmap_sem around 735 * checking core_state and changing tsk->mm. 736 */ 737 down_read(&old_mm->mmap_sem); 738 if (unlikely(old_mm->core_state)) { 739 up_read(&old_mm->mmap_sem); 740 return -EINTR; 741 } 742 } 743 task_lock(tsk); 744 active_mm = tsk->active_mm; 745 tsk->mm = mm; 746 tsk->active_mm = mm; 747 activate_mm(active_mm, mm); 748 task_unlock(tsk); 749 arch_pick_mmap_layout(mm); 750 if (old_mm) { 751 up_read(&old_mm->mmap_sem); 752 BUG_ON(active_mm != old_mm); 753 mm_update_next_owner(old_mm); 754 mmput(old_mm); 755 return 0; 756 } 757 mmdrop(active_mm); 758 return 0; 759 } 760 761 /* 762 * This function makes sure the current process has its own signal table, 763 * so that flush_signal_handlers can later reset the handlers without 764 * disturbing other processes. (Other processes might share the signal 765 * table via the CLONE_SIGHAND option to clone().) 766 */ 767 static int de_thread(struct task_struct *tsk) 768 { 769 struct signal_struct *sig = tsk->signal; 770 struct sighand_struct *oldsighand = tsk->sighand; 771 spinlock_t *lock = &oldsighand->siglock; 772 773 if (thread_group_empty(tsk)) 774 goto no_thread_group; 775 776 /* 777 * Kill all other threads in the thread group. 778 */ 779 spin_lock_irq(lock); 780 if (signal_group_exit(sig)) { 781 /* 782 * Another group action in progress, just 783 * return so that the signal is processed. 784 */ 785 spin_unlock_irq(lock); 786 return -EAGAIN; 787 } 788 789 sig->group_exit_task = tsk; 790 sig->notify_count = zap_other_threads(tsk); 791 if (!thread_group_leader(tsk)) 792 sig->notify_count--; 793 794 while (sig->notify_count) { 795 __set_current_state(TASK_UNINTERRUPTIBLE); 796 spin_unlock_irq(lock); 797 schedule(); 798 spin_lock_irq(lock); 799 } 800 spin_unlock_irq(lock); 801 802 /* 803 * At this point all other threads have exited, all we have to 804 * do is to wait for the thread group leader to become inactive, 805 * and to assume its PID: 806 */ 807 if (!thread_group_leader(tsk)) { 808 struct task_struct *leader = tsk->group_leader; 809 810 sig->notify_count = -1; /* for exit_notify() */ 811 for (;;) { 812 write_lock_irq(&tasklist_lock); 813 if (likely(leader->exit_state)) 814 break; 815 __set_current_state(TASK_UNINTERRUPTIBLE); 816 write_unlock_irq(&tasklist_lock); 817 schedule(); 818 } 819 820 /* 821 * The only record we have of the real-time age of a 822 * process, regardless of execs it's done, is start_time. 823 * All the past CPU time is accumulated in signal_struct 824 * from sister threads now dead. But in this non-leader 825 * exec, nothing survives from the original leader thread, 826 * whose birth marks the true age of this process now. 827 * When we take on its identity by switching to its PID, we 828 * also take its birthdate (always earlier than our own). 829 */ 830 tsk->start_time = leader->start_time; 831 832 BUG_ON(!same_thread_group(leader, tsk)); 833 BUG_ON(has_group_leader_pid(tsk)); 834 /* 835 * An exec() starts a new thread group with the 836 * TGID of the previous thread group. Rehash the 837 * two threads with a switched PID, and release 838 * the former thread group leader: 839 */ 840 841 /* Become a process group leader with the old leader's pid. 842 * The old leader becomes a thread of the this thread group. 843 * Note: The old leader also uses this pid until release_task 844 * is called. Odd but simple and correct. 845 */ 846 detach_pid(tsk, PIDTYPE_PID); 847 tsk->pid = leader->pid; 848 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 849 transfer_pid(leader, tsk, PIDTYPE_PGID); 850 transfer_pid(leader, tsk, PIDTYPE_SID); 851 852 list_replace_rcu(&leader->tasks, &tsk->tasks); 853 list_replace_init(&leader->sibling, &tsk->sibling); 854 855 tsk->group_leader = tsk; 856 leader->group_leader = tsk; 857 858 tsk->exit_signal = SIGCHLD; 859 860 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 861 leader->exit_state = EXIT_DEAD; 862 write_unlock_irq(&tasklist_lock); 863 864 release_task(leader); 865 } 866 867 sig->group_exit_task = NULL; 868 sig->notify_count = 0; 869 870 no_thread_group: 871 if (current->mm) 872 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 873 874 exit_itimers(sig); 875 flush_itimer_signals(); 876 877 if (atomic_read(&oldsighand->count) != 1) { 878 struct sighand_struct *newsighand; 879 /* 880 * This ->sighand is shared with the CLONE_SIGHAND 881 * but not CLONE_THREAD task, switch to the new one. 882 */ 883 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 884 if (!newsighand) 885 return -ENOMEM; 886 887 atomic_set(&newsighand->count, 1); 888 memcpy(newsighand->action, oldsighand->action, 889 sizeof(newsighand->action)); 890 891 write_lock_irq(&tasklist_lock); 892 spin_lock(&oldsighand->siglock); 893 rcu_assign_pointer(tsk->sighand, newsighand); 894 spin_unlock(&oldsighand->siglock); 895 write_unlock_irq(&tasklist_lock); 896 897 __cleanup_sighand(oldsighand); 898 } 899 900 BUG_ON(!thread_group_leader(tsk)); 901 return 0; 902 } 903 904 /* 905 * These functions flushes out all traces of the currently running executable 906 * so that a new one can be started 907 */ 908 static void flush_old_files(struct files_struct * files) 909 { 910 long j = -1; 911 struct fdtable *fdt; 912 913 spin_lock(&files->file_lock); 914 for (;;) { 915 unsigned long set, i; 916 917 j++; 918 i = j * __NFDBITS; 919 fdt = files_fdtable(files); 920 if (i >= fdt->max_fds) 921 break; 922 set = fdt->close_on_exec->fds_bits[j]; 923 if (!set) 924 continue; 925 fdt->close_on_exec->fds_bits[j] = 0; 926 spin_unlock(&files->file_lock); 927 for ( ; set ; i++,set >>= 1) { 928 if (set & 1) { 929 sys_close(i); 930 } 931 } 932 spin_lock(&files->file_lock); 933 934 } 935 spin_unlock(&files->file_lock); 936 } 937 938 char *get_task_comm(char *buf, struct task_struct *tsk) 939 { 940 /* buf must be at least sizeof(tsk->comm) in size */ 941 task_lock(tsk); 942 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 943 task_unlock(tsk); 944 return buf; 945 } 946 947 void set_task_comm(struct task_struct *tsk, char *buf) 948 { 949 task_lock(tsk); 950 951 /* 952 * Threads may access current->comm without holding 953 * the task lock, so write the string carefully. 954 * Readers without a lock may see incomplete new 955 * names but are safe from non-terminating string reads. 956 */ 957 memset(tsk->comm, 0, TASK_COMM_LEN); 958 wmb(); 959 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 960 task_unlock(tsk); 961 perf_event_comm(tsk); 962 } 963 964 int flush_old_exec(struct linux_binprm * bprm) 965 { 966 int retval; 967 968 /* 969 * Make sure we have a private signal table and that 970 * we are unassociated from the previous thread group. 971 */ 972 retval = de_thread(current); 973 if (retval) 974 goto out; 975 976 set_mm_exe_file(bprm->mm, bprm->file); 977 978 /* 979 * Release all of the old mmap stuff 980 */ 981 retval = exec_mmap(bprm->mm); 982 if (retval) 983 goto out; 984 985 bprm->mm = NULL; /* We're using it now */ 986 987 current->flags &= ~PF_RANDOMIZE; 988 flush_thread(); 989 current->personality &= ~bprm->per_clear; 990 991 return 0; 992 993 out: 994 return retval; 995 } 996 EXPORT_SYMBOL(flush_old_exec); 997 998 void setup_new_exec(struct linux_binprm * bprm) 999 { 1000 int i, ch; 1001 const char *name; 1002 char tcomm[sizeof(current->comm)]; 1003 1004 arch_pick_mmap_layout(current->mm); 1005 1006 /* This is the point of no return */ 1007 current->sas_ss_sp = current->sas_ss_size = 0; 1008 1009 if (current_euid() == current_uid() && current_egid() == current_gid()) 1010 set_dumpable(current->mm, 1); 1011 else 1012 set_dumpable(current->mm, suid_dumpable); 1013 1014 name = bprm->filename; 1015 1016 /* Copies the binary name from after last slash */ 1017 for (i=0; (ch = *(name++)) != '\0';) { 1018 if (ch == '/') 1019 i = 0; /* overwrite what we wrote */ 1020 else 1021 if (i < (sizeof(tcomm) - 1)) 1022 tcomm[i++] = ch; 1023 } 1024 tcomm[i] = '\0'; 1025 set_task_comm(current, tcomm); 1026 1027 /* Set the new mm task size. We have to do that late because it may 1028 * depend on TIF_32BIT which is only updated in flush_thread() on 1029 * some architectures like powerpc 1030 */ 1031 current->mm->task_size = TASK_SIZE; 1032 1033 /* install the new credentials */ 1034 if (bprm->cred->uid != current_euid() || 1035 bprm->cred->gid != current_egid()) { 1036 current->pdeath_signal = 0; 1037 } else if (file_permission(bprm->file, MAY_READ) || 1038 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1039 set_dumpable(current->mm, suid_dumpable); 1040 } 1041 1042 /* 1043 * Flush performance counters when crossing a 1044 * security domain: 1045 */ 1046 if (!get_dumpable(current->mm)) 1047 perf_event_exit_task(current); 1048 1049 /* An exec changes our domain. We are no longer part of the thread 1050 group */ 1051 1052 current->self_exec_id++; 1053 1054 flush_signal_handlers(current, 0); 1055 flush_old_files(current->files); 1056 } 1057 EXPORT_SYMBOL(setup_new_exec); 1058 1059 /* 1060 * Prepare credentials and lock ->cred_guard_mutex. 1061 * install_exec_creds() commits the new creds and drops the lock. 1062 * Or, if exec fails before, free_bprm() should release ->cred and 1063 * and unlock. 1064 */ 1065 int prepare_bprm_creds(struct linux_binprm *bprm) 1066 { 1067 if (mutex_lock_interruptible(¤t->cred_guard_mutex)) 1068 return -ERESTARTNOINTR; 1069 1070 bprm->cred = prepare_exec_creds(); 1071 if (likely(bprm->cred)) 1072 return 0; 1073 1074 mutex_unlock(¤t->cred_guard_mutex); 1075 return -ENOMEM; 1076 } 1077 1078 void free_bprm(struct linux_binprm *bprm) 1079 { 1080 free_arg_pages(bprm); 1081 if (bprm->cred) { 1082 mutex_unlock(¤t->cred_guard_mutex); 1083 abort_creds(bprm->cred); 1084 } 1085 kfree(bprm); 1086 } 1087 1088 /* 1089 * install the new credentials for this executable 1090 */ 1091 void install_exec_creds(struct linux_binprm *bprm) 1092 { 1093 security_bprm_committing_creds(bprm); 1094 1095 commit_creds(bprm->cred); 1096 bprm->cred = NULL; 1097 /* 1098 * cred_guard_mutex must be held at least to this point to prevent 1099 * ptrace_attach() from altering our determination of the task's 1100 * credentials; any time after this it may be unlocked. 1101 */ 1102 security_bprm_committed_creds(bprm); 1103 mutex_unlock(¤t->cred_guard_mutex); 1104 } 1105 EXPORT_SYMBOL(install_exec_creds); 1106 1107 /* 1108 * determine how safe it is to execute the proposed program 1109 * - the caller must hold current->cred_guard_mutex to protect against 1110 * PTRACE_ATTACH 1111 */ 1112 int check_unsafe_exec(struct linux_binprm *bprm) 1113 { 1114 struct task_struct *p = current, *t; 1115 unsigned n_fs; 1116 int res = 0; 1117 1118 bprm->unsafe = tracehook_unsafe_exec(p); 1119 1120 n_fs = 1; 1121 spin_lock(&p->fs->lock); 1122 rcu_read_lock(); 1123 for (t = next_thread(p); t != p; t = next_thread(t)) { 1124 if (t->fs == p->fs) 1125 n_fs++; 1126 } 1127 rcu_read_unlock(); 1128 1129 if (p->fs->users > n_fs) { 1130 bprm->unsafe |= LSM_UNSAFE_SHARE; 1131 } else { 1132 res = -EAGAIN; 1133 if (!p->fs->in_exec) { 1134 p->fs->in_exec = 1; 1135 res = 1; 1136 } 1137 } 1138 spin_unlock(&p->fs->lock); 1139 1140 return res; 1141 } 1142 1143 /* 1144 * Fill the binprm structure from the inode. 1145 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1146 * 1147 * This may be called multiple times for binary chains (scripts for example). 1148 */ 1149 int prepare_binprm(struct linux_binprm *bprm) 1150 { 1151 umode_t mode; 1152 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1153 int retval; 1154 1155 mode = inode->i_mode; 1156 if (bprm->file->f_op == NULL) 1157 return -EACCES; 1158 1159 /* clear any previous set[ug]id data from a previous binary */ 1160 bprm->cred->euid = current_euid(); 1161 bprm->cred->egid = current_egid(); 1162 1163 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1164 /* Set-uid? */ 1165 if (mode & S_ISUID) { 1166 bprm->per_clear |= PER_CLEAR_ON_SETID; 1167 bprm->cred->euid = inode->i_uid; 1168 } 1169 1170 /* Set-gid? */ 1171 /* 1172 * If setgid is set but no group execute bit then this 1173 * is a candidate for mandatory locking, not a setgid 1174 * executable. 1175 */ 1176 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1177 bprm->per_clear |= PER_CLEAR_ON_SETID; 1178 bprm->cred->egid = inode->i_gid; 1179 } 1180 } 1181 1182 /* fill in binprm security blob */ 1183 retval = security_bprm_set_creds(bprm); 1184 if (retval) 1185 return retval; 1186 bprm->cred_prepared = 1; 1187 1188 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1189 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1190 } 1191 1192 EXPORT_SYMBOL(prepare_binprm); 1193 1194 /* 1195 * Arguments are '\0' separated strings found at the location bprm->p 1196 * points to; chop off the first by relocating brpm->p to right after 1197 * the first '\0' encountered. 1198 */ 1199 int remove_arg_zero(struct linux_binprm *bprm) 1200 { 1201 int ret = 0; 1202 unsigned long offset; 1203 char *kaddr; 1204 struct page *page; 1205 1206 if (!bprm->argc) 1207 return 0; 1208 1209 do { 1210 offset = bprm->p & ~PAGE_MASK; 1211 page = get_arg_page(bprm, bprm->p, 0); 1212 if (!page) { 1213 ret = -EFAULT; 1214 goto out; 1215 } 1216 kaddr = kmap_atomic(page, KM_USER0); 1217 1218 for (; offset < PAGE_SIZE && kaddr[offset]; 1219 offset++, bprm->p++) 1220 ; 1221 1222 kunmap_atomic(kaddr, KM_USER0); 1223 put_arg_page(page); 1224 1225 if (offset == PAGE_SIZE) 1226 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1227 } while (offset == PAGE_SIZE); 1228 1229 bprm->p++; 1230 bprm->argc--; 1231 ret = 0; 1232 1233 out: 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(remove_arg_zero); 1237 1238 /* 1239 * cycle the list of binary formats handler, until one recognizes the image 1240 */ 1241 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1242 { 1243 unsigned int depth = bprm->recursion_depth; 1244 int try,retval; 1245 struct linux_binfmt *fmt; 1246 1247 retval = security_bprm_check(bprm); 1248 if (retval) 1249 return retval; 1250 1251 /* kernel module loader fixup */ 1252 /* so we don't try to load run modprobe in kernel space. */ 1253 set_fs(USER_DS); 1254 1255 retval = audit_bprm(bprm); 1256 if (retval) 1257 return retval; 1258 1259 retval = -ENOENT; 1260 for (try=0; try<2; try++) { 1261 read_lock(&binfmt_lock); 1262 list_for_each_entry(fmt, &formats, lh) { 1263 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1264 if (!fn) 1265 continue; 1266 if (!try_module_get(fmt->module)) 1267 continue; 1268 read_unlock(&binfmt_lock); 1269 retval = fn(bprm, regs); 1270 /* 1271 * Restore the depth counter to its starting value 1272 * in this call, so we don't have to rely on every 1273 * load_binary function to restore it on return. 1274 */ 1275 bprm->recursion_depth = depth; 1276 if (retval >= 0) { 1277 if (depth == 0) 1278 tracehook_report_exec(fmt, bprm, regs); 1279 put_binfmt(fmt); 1280 allow_write_access(bprm->file); 1281 if (bprm->file) 1282 fput(bprm->file); 1283 bprm->file = NULL; 1284 current->did_exec = 1; 1285 proc_exec_connector(current); 1286 return retval; 1287 } 1288 read_lock(&binfmt_lock); 1289 put_binfmt(fmt); 1290 if (retval != -ENOEXEC || bprm->mm == NULL) 1291 break; 1292 if (!bprm->file) { 1293 read_unlock(&binfmt_lock); 1294 return retval; 1295 } 1296 } 1297 read_unlock(&binfmt_lock); 1298 if (retval != -ENOEXEC || bprm->mm == NULL) { 1299 break; 1300 #ifdef CONFIG_MODULES 1301 } else { 1302 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1303 if (printable(bprm->buf[0]) && 1304 printable(bprm->buf[1]) && 1305 printable(bprm->buf[2]) && 1306 printable(bprm->buf[3])) 1307 break; /* -ENOEXEC */ 1308 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1309 #endif 1310 } 1311 } 1312 return retval; 1313 } 1314 1315 EXPORT_SYMBOL(search_binary_handler); 1316 1317 /* 1318 * sys_execve() executes a new program. 1319 */ 1320 int do_execve(const char * filename, 1321 const char __user *const __user *argv, 1322 const char __user *const __user *envp, 1323 struct pt_regs * regs) 1324 { 1325 struct linux_binprm *bprm; 1326 struct file *file; 1327 struct files_struct *displaced; 1328 bool clear_in_exec; 1329 int retval; 1330 1331 retval = unshare_files(&displaced); 1332 if (retval) 1333 goto out_ret; 1334 1335 retval = -ENOMEM; 1336 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1337 if (!bprm) 1338 goto out_files; 1339 1340 retval = prepare_bprm_creds(bprm); 1341 if (retval) 1342 goto out_free; 1343 1344 retval = check_unsafe_exec(bprm); 1345 if (retval < 0) 1346 goto out_free; 1347 clear_in_exec = retval; 1348 current->in_execve = 1; 1349 1350 file = open_exec(filename); 1351 retval = PTR_ERR(file); 1352 if (IS_ERR(file)) 1353 goto out_unmark; 1354 1355 sched_exec(); 1356 1357 bprm->file = file; 1358 bprm->filename = filename; 1359 bprm->interp = filename; 1360 1361 retval = bprm_mm_init(bprm); 1362 if (retval) 1363 goto out_file; 1364 1365 bprm->argc = count(argv, MAX_ARG_STRINGS); 1366 if ((retval = bprm->argc) < 0) 1367 goto out; 1368 1369 bprm->envc = count(envp, MAX_ARG_STRINGS); 1370 if ((retval = bprm->envc) < 0) 1371 goto out; 1372 1373 retval = prepare_binprm(bprm); 1374 if (retval < 0) 1375 goto out; 1376 1377 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1378 if (retval < 0) 1379 goto out; 1380 1381 bprm->exec = bprm->p; 1382 retval = copy_strings(bprm->envc, envp, bprm); 1383 if (retval < 0) 1384 goto out; 1385 1386 retval = copy_strings(bprm->argc, argv, bprm); 1387 if (retval < 0) 1388 goto out; 1389 1390 current->flags &= ~PF_KTHREAD; 1391 retval = search_binary_handler(bprm,regs); 1392 if (retval < 0) 1393 goto out; 1394 1395 /* execve succeeded */ 1396 current->fs->in_exec = 0; 1397 current->in_execve = 0; 1398 acct_update_integrals(current); 1399 free_bprm(bprm); 1400 if (displaced) 1401 put_files_struct(displaced); 1402 return retval; 1403 1404 out: 1405 if (bprm->mm) 1406 mmput (bprm->mm); 1407 1408 out_file: 1409 if (bprm->file) { 1410 allow_write_access(bprm->file); 1411 fput(bprm->file); 1412 } 1413 1414 out_unmark: 1415 if (clear_in_exec) 1416 current->fs->in_exec = 0; 1417 current->in_execve = 0; 1418 1419 out_free: 1420 free_bprm(bprm); 1421 1422 out_files: 1423 if (displaced) 1424 reset_files_struct(displaced); 1425 out_ret: 1426 return retval; 1427 } 1428 1429 void set_binfmt(struct linux_binfmt *new) 1430 { 1431 struct mm_struct *mm = current->mm; 1432 1433 if (mm->binfmt) 1434 module_put(mm->binfmt->module); 1435 1436 mm->binfmt = new; 1437 if (new) 1438 __module_get(new->module); 1439 } 1440 1441 EXPORT_SYMBOL(set_binfmt); 1442 1443 /* format_corename will inspect the pattern parameter, and output a 1444 * name into corename, which must have space for at least 1445 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1446 */ 1447 static int format_corename(char *corename, long signr) 1448 { 1449 const struct cred *cred = current_cred(); 1450 const char *pat_ptr = core_pattern; 1451 int ispipe = (*pat_ptr == '|'); 1452 char *out_ptr = corename; 1453 char *const out_end = corename + CORENAME_MAX_SIZE; 1454 int rc; 1455 int pid_in_pattern = 0; 1456 1457 /* Repeat as long as we have more pattern to process and more output 1458 space */ 1459 while (*pat_ptr) { 1460 if (*pat_ptr != '%') { 1461 if (out_ptr == out_end) 1462 goto out; 1463 *out_ptr++ = *pat_ptr++; 1464 } else { 1465 switch (*++pat_ptr) { 1466 case 0: 1467 goto out; 1468 /* Double percent, output one percent */ 1469 case '%': 1470 if (out_ptr == out_end) 1471 goto out; 1472 *out_ptr++ = '%'; 1473 break; 1474 /* pid */ 1475 case 'p': 1476 pid_in_pattern = 1; 1477 rc = snprintf(out_ptr, out_end - out_ptr, 1478 "%d", task_tgid_vnr(current)); 1479 if (rc > out_end - out_ptr) 1480 goto out; 1481 out_ptr += rc; 1482 break; 1483 /* uid */ 1484 case 'u': 1485 rc = snprintf(out_ptr, out_end - out_ptr, 1486 "%d", cred->uid); 1487 if (rc > out_end - out_ptr) 1488 goto out; 1489 out_ptr += rc; 1490 break; 1491 /* gid */ 1492 case 'g': 1493 rc = snprintf(out_ptr, out_end - out_ptr, 1494 "%d", cred->gid); 1495 if (rc > out_end - out_ptr) 1496 goto out; 1497 out_ptr += rc; 1498 break; 1499 /* signal that caused the coredump */ 1500 case 's': 1501 rc = snprintf(out_ptr, out_end - out_ptr, 1502 "%ld", signr); 1503 if (rc > out_end - out_ptr) 1504 goto out; 1505 out_ptr += rc; 1506 break; 1507 /* UNIX time of coredump */ 1508 case 't': { 1509 struct timeval tv; 1510 do_gettimeofday(&tv); 1511 rc = snprintf(out_ptr, out_end - out_ptr, 1512 "%lu", tv.tv_sec); 1513 if (rc > out_end - out_ptr) 1514 goto out; 1515 out_ptr += rc; 1516 break; 1517 } 1518 /* hostname */ 1519 case 'h': 1520 down_read(&uts_sem); 1521 rc = snprintf(out_ptr, out_end - out_ptr, 1522 "%s", utsname()->nodename); 1523 up_read(&uts_sem); 1524 if (rc > out_end - out_ptr) 1525 goto out; 1526 out_ptr += rc; 1527 break; 1528 /* executable */ 1529 case 'e': 1530 rc = snprintf(out_ptr, out_end - out_ptr, 1531 "%s", current->comm); 1532 if (rc > out_end - out_ptr) 1533 goto out; 1534 out_ptr += rc; 1535 break; 1536 /* core limit size */ 1537 case 'c': 1538 rc = snprintf(out_ptr, out_end - out_ptr, 1539 "%lu", rlimit(RLIMIT_CORE)); 1540 if (rc > out_end - out_ptr) 1541 goto out; 1542 out_ptr += rc; 1543 break; 1544 default: 1545 break; 1546 } 1547 ++pat_ptr; 1548 } 1549 } 1550 /* Backward compatibility with core_uses_pid: 1551 * 1552 * If core_pattern does not include a %p (as is the default) 1553 * and core_uses_pid is set, then .%pid will be appended to 1554 * the filename. Do not do this for piped commands. */ 1555 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1556 rc = snprintf(out_ptr, out_end - out_ptr, 1557 ".%d", task_tgid_vnr(current)); 1558 if (rc > out_end - out_ptr) 1559 goto out; 1560 out_ptr += rc; 1561 } 1562 out: 1563 *out_ptr = 0; 1564 return ispipe; 1565 } 1566 1567 static int zap_process(struct task_struct *start, int exit_code) 1568 { 1569 struct task_struct *t; 1570 int nr = 0; 1571 1572 start->signal->flags = SIGNAL_GROUP_EXIT; 1573 start->signal->group_exit_code = exit_code; 1574 start->signal->group_stop_count = 0; 1575 1576 t = start; 1577 do { 1578 if (t != current && t->mm) { 1579 sigaddset(&t->pending.signal, SIGKILL); 1580 signal_wake_up(t, 1); 1581 nr++; 1582 } 1583 } while_each_thread(start, t); 1584 1585 return nr; 1586 } 1587 1588 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1589 struct core_state *core_state, int exit_code) 1590 { 1591 struct task_struct *g, *p; 1592 unsigned long flags; 1593 int nr = -EAGAIN; 1594 1595 spin_lock_irq(&tsk->sighand->siglock); 1596 if (!signal_group_exit(tsk->signal)) { 1597 mm->core_state = core_state; 1598 nr = zap_process(tsk, exit_code); 1599 } 1600 spin_unlock_irq(&tsk->sighand->siglock); 1601 if (unlikely(nr < 0)) 1602 return nr; 1603 1604 if (atomic_read(&mm->mm_users) == nr + 1) 1605 goto done; 1606 /* 1607 * We should find and kill all tasks which use this mm, and we should 1608 * count them correctly into ->nr_threads. We don't take tasklist 1609 * lock, but this is safe wrt: 1610 * 1611 * fork: 1612 * None of sub-threads can fork after zap_process(leader). All 1613 * processes which were created before this point should be 1614 * visible to zap_threads() because copy_process() adds the new 1615 * process to the tail of init_task.tasks list, and lock/unlock 1616 * of ->siglock provides a memory barrier. 1617 * 1618 * do_exit: 1619 * The caller holds mm->mmap_sem. This means that the task which 1620 * uses this mm can't pass exit_mm(), so it can't exit or clear 1621 * its ->mm. 1622 * 1623 * de_thread: 1624 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1625 * we must see either old or new leader, this does not matter. 1626 * However, it can change p->sighand, so lock_task_sighand(p) 1627 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1628 * it can't fail. 1629 * 1630 * Note also that "g" can be the old leader with ->mm == NULL 1631 * and already unhashed and thus removed from ->thread_group. 1632 * This is OK, __unhash_process()->list_del_rcu() does not 1633 * clear the ->next pointer, we will find the new leader via 1634 * next_thread(). 1635 */ 1636 rcu_read_lock(); 1637 for_each_process(g) { 1638 if (g == tsk->group_leader) 1639 continue; 1640 if (g->flags & PF_KTHREAD) 1641 continue; 1642 p = g; 1643 do { 1644 if (p->mm) { 1645 if (unlikely(p->mm == mm)) { 1646 lock_task_sighand(p, &flags); 1647 nr += zap_process(p, exit_code); 1648 unlock_task_sighand(p, &flags); 1649 } 1650 break; 1651 } 1652 } while_each_thread(g, p); 1653 } 1654 rcu_read_unlock(); 1655 done: 1656 atomic_set(&core_state->nr_threads, nr); 1657 return nr; 1658 } 1659 1660 static int coredump_wait(int exit_code, struct core_state *core_state) 1661 { 1662 struct task_struct *tsk = current; 1663 struct mm_struct *mm = tsk->mm; 1664 struct completion *vfork_done; 1665 int core_waiters = -EBUSY; 1666 1667 init_completion(&core_state->startup); 1668 core_state->dumper.task = tsk; 1669 core_state->dumper.next = NULL; 1670 1671 down_write(&mm->mmap_sem); 1672 if (!mm->core_state) 1673 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1674 up_write(&mm->mmap_sem); 1675 1676 if (unlikely(core_waiters < 0)) 1677 goto fail; 1678 1679 /* 1680 * Make sure nobody is waiting for us to release the VM, 1681 * otherwise we can deadlock when we wait on each other 1682 */ 1683 vfork_done = tsk->vfork_done; 1684 if (vfork_done) { 1685 tsk->vfork_done = NULL; 1686 complete(vfork_done); 1687 } 1688 1689 if (core_waiters) 1690 wait_for_completion(&core_state->startup); 1691 fail: 1692 return core_waiters; 1693 } 1694 1695 static void coredump_finish(struct mm_struct *mm) 1696 { 1697 struct core_thread *curr, *next; 1698 struct task_struct *task; 1699 1700 next = mm->core_state->dumper.next; 1701 while ((curr = next) != NULL) { 1702 next = curr->next; 1703 task = curr->task; 1704 /* 1705 * see exit_mm(), curr->task must not see 1706 * ->task == NULL before we read ->next. 1707 */ 1708 smp_mb(); 1709 curr->task = NULL; 1710 wake_up_process(task); 1711 } 1712 1713 mm->core_state = NULL; 1714 } 1715 1716 /* 1717 * set_dumpable converts traditional three-value dumpable to two flags and 1718 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1719 * these bits are not changed atomically. So get_dumpable can observe the 1720 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1721 * return either old dumpable or new one by paying attention to the order of 1722 * modifying the bits. 1723 * 1724 * dumpable | mm->flags (binary) 1725 * old new | initial interim final 1726 * ---------+----------------------- 1727 * 0 1 | 00 01 01 1728 * 0 2 | 00 10(*) 11 1729 * 1 0 | 01 00 00 1730 * 1 2 | 01 11 11 1731 * 2 0 | 11 10(*) 00 1732 * 2 1 | 11 11 01 1733 * 1734 * (*) get_dumpable regards interim value of 10 as 11. 1735 */ 1736 void set_dumpable(struct mm_struct *mm, int value) 1737 { 1738 switch (value) { 1739 case 0: 1740 clear_bit(MMF_DUMPABLE, &mm->flags); 1741 smp_wmb(); 1742 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1743 break; 1744 case 1: 1745 set_bit(MMF_DUMPABLE, &mm->flags); 1746 smp_wmb(); 1747 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1748 break; 1749 case 2: 1750 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1751 smp_wmb(); 1752 set_bit(MMF_DUMPABLE, &mm->flags); 1753 break; 1754 } 1755 } 1756 1757 static int __get_dumpable(unsigned long mm_flags) 1758 { 1759 int ret; 1760 1761 ret = mm_flags & MMF_DUMPABLE_MASK; 1762 return (ret >= 2) ? 2 : ret; 1763 } 1764 1765 int get_dumpable(struct mm_struct *mm) 1766 { 1767 return __get_dumpable(mm->flags); 1768 } 1769 1770 static void wait_for_dump_helpers(struct file *file) 1771 { 1772 struct pipe_inode_info *pipe; 1773 1774 pipe = file->f_path.dentry->d_inode->i_pipe; 1775 1776 pipe_lock(pipe); 1777 pipe->readers++; 1778 pipe->writers--; 1779 1780 while ((pipe->readers > 1) && (!signal_pending(current))) { 1781 wake_up_interruptible_sync(&pipe->wait); 1782 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1783 pipe_wait(pipe); 1784 } 1785 1786 pipe->readers--; 1787 pipe->writers++; 1788 pipe_unlock(pipe); 1789 1790 } 1791 1792 1793 /* 1794 * uhm_pipe_setup 1795 * helper function to customize the process used 1796 * to collect the core in userspace. Specifically 1797 * it sets up a pipe and installs it as fd 0 (stdin) 1798 * for the process. Returns 0 on success, or 1799 * PTR_ERR on failure. 1800 * Note that it also sets the core limit to 1. This 1801 * is a special value that we use to trap recursive 1802 * core dumps 1803 */ 1804 static int umh_pipe_setup(struct subprocess_info *info) 1805 { 1806 struct file *rp, *wp; 1807 struct fdtable *fdt; 1808 struct coredump_params *cp = (struct coredump_params *)info->data; 1809 struct files_struct *cf = current->files; 1810 1811 wp = create_write_pipe(0); 1812 if (IS_ERR(wp)) 1813 return PTR_ERR(wp); 1814 1815 rp = create_read_pipe(wp, 0); 1816 if (IS_ERR(rp)) { 1817 free_write_pipe(wp); 1818 return PTR_ERR(rp); 1819 } 1820 1821 cp->file = wp; 1822 1823 sys_close(0); 1824 fd_install(0, rp); 1825 spin_lock(&cf->file_lock); 1826 fdt = files_fdtable(cf); 1827 FD_SET(0, fdt->open_fds); 1828 FD_CLR(0, fdt->close_on_exec); 1829 spin_unlock(&cf->file_lock); 1830 1831 /* and disallow core files too */ 1832 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1833 1834 return 0; 1835 } 1836 1837 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1838 { 1839 struct core_state core_state; 1840 char corename[CORENAME_MAX_SIZE + 1]; 1841 struct mm_struct *mm = current->mm; 1842 struct linux_binfmt * binfmt; 1843 const struct cred *old_cred; 1844 struct cred *cred; 1845 int retval = 0; 1846 int flag = 0; 1847 int ispipe; 1848 static atomic_t core_dump_count = ATOMIC_INIT(0); 1849 struct coredump_params cprm = { 1850 .signr = signr, 1851 .regs = regs, 1852 .limit = rlimit(RLIMIT_CORE), 1853 /* 1854 * We must use the same mm->flags while dumping core to avoid 1855 * inconsistency of bit flags, since this flag is not protected 1856 * by any locks. 1857 */ 1858 .mm_flags = mm->flags, 1859 }; 1860 1861 audit_core_dumps(signr); 1862 1863 binfmt = mm->binfmt; 1864 if (!binfmt || !binfmt->core_dump) 1865 goto fail; 1866 if (!__get_dumpable(cprm.mm_flags)) 1867 goto fail; 1868 1869 cred = prepare_creds(); 1870 if (!cred) 1871 goto fail; 1872 /* 1873 * We cannot trust fsuid as being the "true" uid of the 1874 * process nor do we know its entire history. We only know it 1875 * was tainted so we dump it as root in mode 2. 1876 */ 1877 if (__get_dumpable(cprm.mm_flags) == 2) { 1878 /* Setuid core dump mode */ 1879 flag = O_EXCL; /* Stop rewrite attacks */ 1880 cred->fsuid = 0; /* Dump root private */ 1881 } 1882 1883 retval = coredump_wait(exit_code, &core_state); 1884 if (retval < 0) 1885 goto fail_creds; 1886 1887 old_cred = override_creds(cred); 1888 1889 /* 1890 * Clear any false indication of pending signals that might 1891 * be seen by the filesystem code called to write the core file. 1892 */ 1893 clear_thread_flag(TIF_SIGPENDING); 1894 1895 ispipe = format_corename(corename, signr); 1896 1897 if (ispipe) { 1898 int dump_count; 1899 char **helper_argv; 1900 1901 if (cprm.limit == 1) { 1902 /* 1903 * Normally core limits are irrelevant to pipes, since 1904 * we're not writing to the file system, but we use 1905 * cprm.limit of 1 here as a speacial value. Any 1906 * non-1 limit gets set to RLIM_INFINITY below, but 1907 * a limit of 0 skips the dump. This is a consistent 1908 * way to catch recursive crashes. We can still crash 1909 * if the core_pattern binary sets RLIM_CORE = !1 1910 * but it runs as root, and can do lots of stupid things 1911 * Note that we use task_tgid_vnr here to grab the pid 1912 * of the process group leader. That way we get the 1913 * right pid if a thread in a multi-threaded 1914 * core_pattern process dies. 1915 */ 1916 printk(KERN_WARNING 1917 "Process %d(%s) has RLIMIT_CORE set to 1\n", 1918 task_tgid_vnr(current), current->comm); 1919 printk(KERN_WARNING "Aborting core\n"); 1920 goto fail_unlock; 1921 } 1922 cprm.limit = RLIM_INFINITY; 1923 1924 dump_count = atomic_inc_return(&core_dump_count); 1925 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 1926 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 1927 task_tgid_vnr(current), current->comm); 1928 printk(KERN_WARNING "Skipping core dump\n"); 1929 goto fail_dropcount; 1930 } 1931 1932 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL); 1933 if (!helper_argv) { 1934 printk(KERN_WARNING "%s failed to allocate memory\n", 1935 __func__); 1936 goto fail_dropcount; 1937 } 1938 1939 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 1940 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 1941 NULL, &cprm); 1942 argv_free(helper_argv); 1943 if (retval) { 1944 printk(KERN_INFO "Core dump to %s pipe failed\n", 1945 corename); 1946 goto close_fail; 1947 } 1948 } else { 1949 struct inode *inode; 1950 1951 if (cprm.limit < binfmt->min_coredump) 1952 goto fail_unlock; 1953 1954 cprm.file = filp_open(corename, 1955 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1956 0600); 1957 if (IS_ERR(cprm.file)) 1958 goto fail_unlock; 1959 1960 inode = cprm.file->f_path.dentry->d_inode; 1961 if (inode->i_nlink > 1) 1962 goto close_fail; 1963 if (d_unhashed(cprm.file->f_path.dentry)) 1964 goto close_fail; 1965 /* 1966 * AK: actually i see no reason to not allow this for named 1967 * pipes etc, but keep the previous behaviour for now. 1968 */ 1969 if (!S_ISREG(inode->i_mode)) 1970 goto close_fail; 1971 /* 1972 * Dont allow local users get cute and trick others to coredump 1973 * into their pre-created files. 1974 */ 1975 if (inode->i_uid != current_fsuid()) 1976 goto close_fail; 1977 if (!cprm.file->f_op || !cprm.file->f_op->write) 1978 goto close_fail; 1979 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 1980 goto close_fail; 1981 } 1982 1983 retval = binfmt->core_dump(&cprm); 1984 if (retval) 1985 current->signal->group_exit_code |= 0x80; 1986 1987 if (ispipe && core_pipe_limit) 1988 wait_for_dump_helpers(cprm.file); 1989 close_fail: 1990 if (cprm.file) 1991 filp_close(cprm.file, NULL); 1992 fail_dropcount: 1993 if (ispipe) 1994 atomic_dec(&core_dump_count); 1995 fail_unlock: 1996 coredump_finish(mm); 1997 revert_creds(old_cred); 1998 fail_creds: 1999 put_cred(cred); 2000 fail: 2001 return; 2002 } 2003