xref: /linux/fs/exec.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 unsigned int core_pipe_limit;
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	insert ? list_add(&fmt->lh, &formats) :
79 		 list_add_tail(&fmt->lh, &formats);
80 	write_unlock(&binfmt_lock);
81 	return 0;
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 	struct file *file;
109 	char *tmp = getname(library);
110 	int error = PTR_ERR(tmp);
111 
112 	if (IS_ERR(tmp))
113 		goto out;
114 
115 	file = do_filp_open(AT_FDCWD, tmp,
116 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 				MAY_READ | MAY_EXEC | MAY_OPEN);
118 	putname(tmp);
119 	error = PTR_ERR(file);
120 	if (IS_ERR(file))
121 		goto out;
122 
123 	error = -EINVAL;
124 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 		goto exit;
126 
127 	error = -EACCES;
128 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 		goto exit;
130 
131 	fsnotify_open(file);
132 
133 	error = -ENOEXEC;
134 	if(file->f_op) {
135 		struct linux_binfmt * fmt;
136 
137 		read_lock(&binfmt_lock);
138 		list_for_each_entry(fmt, &formats, lh) {
139 			if (!fmt->load_shlib)
140 				continue;
141 			if (!try_module_get(fmt->module))
142 				continue;
143 			read_unlock(&binfmt_lock);
144 			error = fmt->load_shlib(file);
145 			read_lock(&binfmt_lock);
146 			put_binfmt(fmt);
147 			if (error != -ENOEXEC)
148 				break;
149 		}
150 		read_unlock(&binfmt_lock);
151 	}
152 exit:
153 	fput(file);
154 out:
155   	return error;
156 }
157 
158 #ifdef CONFIG_MMU
159 
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 		int write)
162 {
163 	struct page *page;
164 	int ret;
165 
166 #ifdef CONFIG_STACK_GROWSUP
167 	if (write) {
168 		ret = expand_stack_downwards(bprm->vma, pos);
169 		if (ret < 0)
170 			return NULL;
171 	}
172 #endif
173 	ret = get_user_pages(current, bprm->mm, pos,
174 			1, write, 1, &page, NULL);
175 	if (ret <= 0)
176 		return NULL;
177 
178 	if (write) {
179 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 		struct rlimit *rlim;
181 
182 		/*
183 		 * We've historically supported up to 32 pages (ARG_MAX)
184 		 * of argument strings even with small stacks
185 		 */
186 		if (size <= ARG_MAX)
187 			return page;
188 
189 		/*
190 		 * Limit to 1/4-th the stack size for the argv+env strings.
191 		 * This ensures that:
192 		 *  - the remaining binfmt code will not run out of stack space,
193 		 *  - the program will have a reasonable amount of stack left
194 		 *    to work from.
195 		 */
196 		rlim = current->signal->rlim;
197 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
198 			put_page(page);
199 			return NULL;
200 		}
201 	}
202 
203 	return page;
204 }
205 
206 static void put_arg_page(struct page *page)
207 {
208 	put_page(page);
209 }
210 
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214 
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218 
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 		struct page *page)
221 {
222 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224 
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 	int err;
228 	struct vm_area_struct *vma = NULL;
229 	struct mm_struct *mm = bprm->mm;
230 
231 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 	if (!vma)
233 		return -ENOMEM;
234 
235 	down_write(&mm->mmap_sem);
236 	vma->vm_mm = mm;
237 
238 	/*
239 	 * Place the stack at the largest stack address the architecture
240 	 * supports. Later, we'll move this to an appropriate place. We don't
241 	 * use STACK_TOP because that can depend on attributes which aren't
242 	 * configured yet.
243 	 */
244 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
245 	vma->vm_end = STACK_TOP_MAX;
246 	vma->vm_start = vma->vm_end - PAGE_SIZE;
247 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
248 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 	INIT_LIST_HEAD(&vma->anon_vma_chain);
250 	err = insert_vm_struct(mm, vma);
251 	if (err)
252 		goto err;
253 
254 	mm->stack_vm = mm->total_vm = 1;
255 	up_write(&mm->mmap_sem);
256 	bprm->p = vma->vm_end - sizeof(void *);
257 	return 0;
258 err:
259 	up_write(&mm->mmap_sem);
260 	bprm->vma = NULL;
261 	kmem_cache_free(vm_area_cachep, vma);
262 	return err;
263 }
264 
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267 	return len <= MAX_ARG_STRLEN;
268 }
269 
270 #else
271 
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 		int write)
274 {
275 	struct page *page;
276 
277 	page = bprm->page[pos / PAGE_SIZE];
278 	if (!page && write) {
279 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 		if (!page)
281 			return NULL;
282 		bprm->page[pos / PAGE_SIZE] = page;
283 	}
284 
285 	return page;
286 }
287 
288 static void put_arg_page(struct page *page)
289 {
290 }
291 
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294 	if (bprm->page[i]) {
295 		__free_page(bprm->page[i]);
296 		bprm->page[i] = NULL;
297 	}
298 }
299 
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302 	int i;
303 
304 	for (i = 0; i < MAX_ARG_PAGES; i++)
305 		free_arg_page(bprm, i);
306 }
307 
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		struct page *page)
310 {
311 }
312 
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 	return 0;
317 }
318 
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321 	return len <= bprm->p;
322 }
323 
324 #endif /* CONFIG_MMU */
325 
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334 	int err;
335 	struct mm_struct *mm = NULL;
336 
337 	bprm->mm = mm = mm_alloc();
338 	err = -ENOMEM;
339 	if (!mm)
340 		goto err;
341 
342 	err = init_new_context(current, mm);
343 	if (err)
344 		goto err;
345 
346 	err = __bprm_mm_init(bprm);
347 	if (err)
348 		goto err;
349 
350 	return 0;
351 
352 err:
353 	if (mm) {
354 		bprm->mm = NULL;
355 		mmdrop(mm);
356 	}
357 
358 	return err;
359 }
360 
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(const char __user * const __user * argv, int max)
365 {
366 	int i = 0;
367 
368 	if (argv != NULL) {
369 		for (;;) {
370 			const char __user * p;
371 
372 			if (get_user(p, argv))
373 				return -EFAULT;
374 			if (!p)
375 				break;
376 			argv++;
377 			if (i++ >= max)
378 				return -E2BIG;
379 			cond_resched();
380 		}
381 	}
382 	return i;
383 }
384 
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, const char __user *const __user *argv,
391 			struct linux_binprm *bprm)
392 {
393 	struct page *kmapped_page = NULL;
394 	char *kaddr = NULL;
395 	unsigned long kpos = 0;
396 	int ret;
397 
398 	while (argc-- > 0) {
399 		const char __user *str;
400 		int len;
401 		unsigned long pos;
402 
403 		if (get_user(str, argv+argc) ||
404 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 			ret = -EFAULT;
406 			goto out;
407 		}
408 
409 		if (!valid_arg_len(bprm, len)) {
410 			ret = -E2BIG;
411 			goto out;
412 		}
413 
414 		/* We're going to work our way backwords. */
415 		pos = bprm->p;
416 		str += len;
417 		bprm->p -= len;
418 
419 		while (len > 0) {
420 			int offset, bytes_to_copy;
421 
422 			offset = pos % PAGE_SIZE;
423 			if (offset == 0)
424 				offset = PAGE_SIZE;
425 
426 			bytes_to_copy = offset;
427 			if (bytes_to_copy > len)
428 				bytes_to_copy = len;
429 
430 			offset -= bytes_to_copy;
431 			pos -= bytes_to_copy;
432 			str -= bytes_to_copy;
433 			len -= bytes_to_copy;
434 
435 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 				struct page *page;
437 
438 				page = get_arg_page(bprm, pos, 1);
439 				if (!page) {
440 					ret = -E2BIG;
441 					goto out;
442 				}
443 
444 				if (kmapped_page) {
445 					flush_kernel_dcache_page(kmapped_page);
446 					kunmap(kmapped_page);
447 					put_arg_page(kmapped_page);
448 				}
449 				kmapped_page = page;
450 				kaddr = kmap(kmapped_page);
451 				kpos = pos & PAGE_MASK;
452 				flush_arg_page(bprm, kpos, kmapped_page);
453 			}
454 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 				ret = -EFAULT;
456 				goto out;
457 			}
458 		}
459 	}
460 	ret = 0;
461 out:
462 	if (kmapped_page) {
463 		flush_kernel_dcache_page(kmapped_page);
464 		kunmap(kmapped_page);
465 		put_arg_page(kmapped_page);
466 	}
467 	return ret;
468 }
469 
470 /*
471  * Like copy_strings, but get argv and its values from kernel memory.
472  */
473 int copy_strings_kernel(int argc, const char *const *argv,
474 			struct linux_binprm *bprm)
475 {
476 	int r;
477 	mm_segment_t oldfs = get_fs();
478 	set_fs(KERNEL_DS);
479 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
480 	set_fs(oldfs);
481 	return r;
482 }
483 EXPORT_SYMBOL(copy_strings_kernel);
484 
485 #ifdef CONFIG_MMU
486 
487 /*
488  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
489  * the binfmt code determines where the new stack should reside, we shift it to
490  * its final location.  The process proceeds as follows:
491  *
492  * 1) Use shift to calculate the new vma endpoints.
493  * 2) Extend vma to cover both the old and new ranges.  This ensures the
494  *    arguments passed to subsequent functions are consistent.
495  * 3) Move vma's page tables to the new range.
496  * 4) Free up any cleared pgd range.
497  * 5) Shrink the vma to cover only the new range.
498  */
499 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	unsigned long old_start = vma->vm_start;
503 	unsigned long old_end = vma->vm_end;
504 	unsigned long length = old_end - old_start;
505 	unsigned long new_start = old_start - shift;
506 	unsigned long new_end = old_end - shift;
507 	struct mmu_gather *tlb;
508 
509 	BUG_ON(new_start > new_end);
510 
511 	/*
512 	 * ensure there are no vmas between where we want to go
513 	 * and where we are
514 	 */
515 	if (vma != find_vma(mm, new_start))
516 		return -EFAULT;
517 
518 	/*
519 	 * cover the whole range: [new_start, old_end)
520 	 */
521 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
522 		return -ENOMEM;
523 
524 	/*
525 	 * move the page tables downwards, on failure we rely on
526 	 * process cleanup to remove whatever mess we made.
527 	 */
528 	if (length != move_page_tables(vma, old_start,
529 				       vma, new_start, length))
530 		return -ENOMEM;
531 
532 	lru_add_drain();
533 	tlb = tlb_gather_mmu(mm, 0);
534 	if (new_end > old_start) {
535 		/*
536 		 * when the old and new regions overlap clear from new_end.
537 		 */
538 		free_pgd_range(tlb, new_end, old_end, new_end,
539 			vma->vm_next ? vma->vm_next->vm_start : 0);
540 	} else {
541 		/*
542 		 * otherwise, clean from old_start; this is done to not touch
543 		 * the address space in [new_end, old_start) some architectures
544 		 * have constraints on va-space that make this illegal (IA64) -
545 		 * for the others its just a little faster.
546 		 */
547 		free_pgd_range(tlb, old_start, old_end, new_end,
548 			vma->vm_next ? vma->vm_next->vm_start : 0);
549 	}
550 	tlb_finish_mmu(tlb, new_end, old_end);
551 
552 	/*
553 	 * Shrink the vma to just the new range.  Always succeeds.
554 	 */
555 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
556 
557 	return 0;
558 }
559 
560 /*
561  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562  * the stack is optionally relocated, and some extra space is added.
563  */
564 int setup_arg_pages(struct linux_binprm *bprm,
565 		    unsigned long stack_top,
566 		    int executable_stack)
567 {
568 	unsigned long ret;
569 	unsigned long stack_shift;
570 	struct mm_struct *mm = current->mm;
571 	struct vm_area_struct *vma = bprm->vma;
572 	struct vm_area_struct *prev = NULL;
573 	unsigned long vm_flags;
574 	unsigned long stack_base;
575 	unsigned long stack_size;
576 	unsigned long stack_expand;
577 	unsigned long rlim_stack;
578 
579 #ifdef CONFIG_STACK_GROWSUP
580 	/* Limit stack size to 1GB */
581 	stack_base = rlimit_max(RLIMIT_STACK);
582 	if (stack_base > (1 << 30))
583 		stack_base = 1 << 30;
584 
585 	/* Make sure we didn't let the argument array grow too large. */
586 	if (vma->vm_end - vma->vm_start > stack_base)
587 		return -ENOMEM;
588 
589 	stack_base = PAGE_ALIGN(stack_top - stack_base);
590 
591 	stack_shift = vma->vm_start - stack_base;
592 	mm->arg_start = bprm->p - stack_shift;
593 	bprm->p = vma->vm_end - stack_shift;
594 #else
595 	stack_top = arch_align_stack(stack_top);
596 	stack_top = PAGE_ALIGN(stack_top);
597 	stack_shift = vma->vm_end - stack_top;
598 
599 	bprm->p -= stack_shift;
600 	mm->arg_start = bprm->p;
601 #endif
602 
603 	if (bprm->loader)
604 		bprm->loader -= stack_shift;
605 	bprm->exec -= stack_shift;
606 
607 	down_write(&mm->mmap_sem);
608 	vm_flags = VM_STACK_FLAGS;
609 
610 	/*
611 	 * Adjust stack execute permissions; explicitly enable for
612 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 	 * (arch default) otherwise.
614 	 */
615 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 		vm_flags |= VM_EXEC;
617 	else if (executable_stack == EXSTACK_DISABLE_X)
618 		vm_flags &= ~VM_EXEC;
619 	vm_flags |= mm->def_flags;
620 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
621 
622 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623 			vm_flags);
624 	if (ret)
625 		goto out_unlock;
626 	BUG_ON(prev != vma);
627 
628 	/* Move stack pages down in memory. */
629 	if (stack_shift) {
630 		ret = shift_arg_pages(vma, stack_shift);
631 		if (ret)
632 			goto out_unlock;
633 	}
634 
635 	/* mprotect_fixup is overkill to remove the temporary stack flags */
636 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
637 
638 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
639 	stack_size = vma->vm_end - vma->vm_start;
640 	/*
641 	 * Align this down to a page boundary as expand_stack
642 	 * will align it up.
643 	 */
644 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
645 #ifdef CONFIG_STACK_GROWSUP
646 	if (stack_size + stack_expand > rlim_stack)
647 		stack_base = vma->vm_start + rlim_stack;
648 	else
649 		stack_base = vma->vm_end + stack_expand;
650 #else
651 	if (stack_size + stack_expand > rlim_stack)
652 		stack_base = vma->vm_end - rlim_stack;
653 	else
654 		stack_base = vma->vm_start - stack_expand;
655 #endif
656 	current->mm->start_stack = bprm->p;
657 	ret = expand_stack(vma, stack_base);
658 	if (ret)
659 		ret = -EFAULT;
660 
661 out_unlock:
662 	up_write(&mm->mmap_sem);
663 	return ret;
664 }
665 EXPORT_SYMBOL(setup_arg_pages);
666 
667 #endif /* CONFIG_MMU */
668 
669 struct file *open_exec(const char *name)
670 {
671 	struct file *file;
672 	int err;
673 
674 	file = do_filp_open(AT_FDCWD, name,
675 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
676 				MAY_EXEC | MAY_OPEN);
677 	if (IS_ERR(file))
678 		goto out;
679 
680 	err = -EACCES;
681 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
682 		goto exit;
683 
684 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
685 		goto exit;
686 
687 	fsnotify_open(file);
688 
689 	err = deny_write_access(file);
690 	if (err)
691 		goto exit;
692 
693 out:
694 	return file;
695 
696 exit:
697 	fput(file);
698 	return ERR_PTR(err);
699 }
700 EXPORT_SYMBOL(open_exec);
701 
702 int kernel_read(struct file *file, loff_t offset,
703 		char *addr, unsigned long count)
704 {
705 	mm_segment_t old_fs;
706 	loff_t pos = offset;
707 	int result;
708 
709 	old_fs = get_fs();
710 	set_fs(get_ds());
711 	/* The cast to a user pointer is valid due to the set_fs() */
712 	result = vfs_read(file, (void __user *)addr, count, &pos);
713 	set_fs(old_fs);
714 	return result;
715 }
716 
717 EXPORT_SYMBOL(kernel_read);
718 
719 static int exec_mmap(struct mm_struct *mm)
720 {
721 	struct task_struct *tsk;
722 	struct mm_struct * old_mm, *active_mm;
723 
724 	/* Notify parent that we're no longer interested in the old VM */
725 	tsk = current;
726 	old_mm = current->mm;
727 	sync_mm_rss(tsk, old_mm);
728 	mm_release(tsk, old_mm);
729 
730 	if (old_mm) {
731 		/*
732 		 * Make sure that if there is a core dump in progress
733 		 * for the old mm, we get out and die instead of going
734 		 * through with the exec.  We must hold mmap_sem around
735 		 * checking core_state and changing tsk->mm.
736 		 */
737 		down_read(&old_mm->mmap_sem);
738 		if (unlikely(old_mm->core_state)) {
739 			up_read(&old_mm->mmap_sem);
740 			return -EINTR;
741 		}
742 	}
743 	task_lock(tsk);
744 	active_mm = tsk->active_mm;
745 	tsk->mm = mm;
746 	tsk->active_mm = mm;
747 	activate_mm(active_mm, mm);
748 	task_unlock(tsk);
749 	arch_pick_mmap_layout(mm);
750 	if (old_mm) {
751 		up_read(&old_mm->mmap_sem);
752 		BUG_ON(active_mm != old_mm);
753 		mm_update_next_owner(old_mm);
754 		mmput(old_mm);
755 		return 0;
756 	}
757 	mmdrop(active_mm);
758 	return 0;
759 }
760 
761 /*
762  * This function makes sure the current process has its own signal table,
763  * so that flush_signal_handlers can later reset the handlers without
764  * disturbing other processes.  (Other processes might share the signal
765  * table via the CLONE_SIGHAND option to clone().)
766  */
767 static int de_thread(struct task_struct *tsk)
768 {
769 	struct signal_struct *sig = tsk->signal;
770 	struct sighand_struct *oldsighand = tsk->sighand;
771 	spinlock_t *lock = &oldsighand->siglock;
772 
773 	if (thread_group_empty(tsk))
774 		goto no_thread_group;
775 
776 	/*
777 	 * Kill all other threads in the thread group.
778 	 */
779 	spin_lock_irq(lock);
780 	if (signal_group_exit(sig)) {
781 		/*
782 		 * Another group action in progress, just
783 		 * return so that the signal is processed.
784 		 */
785 		spin_unlock_irq(lock);
786 		return -EAGAIN;
787 	}
788 
789 	sig->group_exit_task = tsk;
790 	sig->notify_count = zap_other_threads(tsk);
791 	if (!thread_group_leader(tsk))
792 		sig->notify_count--;
793 
794 	while (sig->notify_count) {
795 		__set_current_state(TASK_UNINTERRUPTIBLE);
796 		spin_unlock_irq(lock);
797 		schedule();
798 		spin_lock_irq(lock);
799 	}
800 	spin_unlock_irq(lock);
801 
802 	/*
803 	 * At this point all other threads have exited, all we have to
804 	 * do is to wait for the thread group leader to become inactive,
805 	 * and to assume its PID:
806 	 */
807 	if (!thread_group_leader(tsk)) {
808 		struct task_struct *leader = tsk->group_leader;
809 
810 		sig->notify_count = -1;	/* for exit_notify() */
811 		for (;;) {
812 			write_lock_irq(&tasklist_lock);
813 			if (likely(leader->exit_state))
814 				break;
815 			__set_current_state(TASK_UNINTERRUPTIBLE);
816 			write_unlock_irq(&tasklist_lock);
817 			schedule();
818 		}
819 
820 		/*
821 		 * The only record we have of the real-time age of a
822 		 * process, regardless of execs it's done, is start_time.
823 		 * All the past CPU time is accumulated in signal_struct
824 		 * from sister threads now dead.  But in this non-leader
825 		 * exec, nothing survives from the original leader thread,
826 		 * whose birth marks the true age of this process now.
827 		 * When we take on its identity by switching to its PID, we
828 		 * also take its birthdate (always earlier than our own).
829 		 */
830 		tsk->start_time = leader->start_time;
831 
832 		BUG_ON(!same_thread_group(leader, tsk));
833 		BUG_ON(has_group_leader_pid(tsk));
834 		/*
835 		 * An exec() starts a new thread group with the
836 		 * TGID of the previous thread group. Rehash the
837 		 * two threads with a switched PID, and release
838 		 * the former thread group leader:
839 		 */
840 
841 		/* Become a process group leader with the old leader's pid.
842 		 * The old leader becomes a thread of the this thread group.
843 		 * Note: The old leader also uses this pid until release_task
844 		 *       is called.  Odd but simple and correct.
845 		 */
846 		detach_pid(tsk, PIDTYPE_PID);
847 		tsk->pid = leader->pid;
848 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
849 		transfer_pid(leader, tsk, PIDTYPE_PGID);
850 		transfer_pid(leader, tsk, PIDTYPE_SID);
851 
852 		list_replace_rcu(&leader->tasks, &tsk->tasks);
853 		list_replace_init(&leader->sibling, &tsk->sibling);
854 
855 		tsk->group_leader = tsk;
856 		leader->group_leader = tsk;
857 
858 		tsk->exit_signal = SIGCHLD;
859 
860 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
861 		leader->exit_state = EXIT_DEAD;
862 		write_unlock_irq(&tasklist_lock);
863 
864 		release_task(leader);
865 	}
866 
867 	sig->group_exit_task = NULL;
868 	sig->notify_count = 0;
869 
870 no_thread_group:
871 	if (current->mm)
872 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
873 
874 	exit_itimers(sig);
875 	flush_itimer_signals();
876 
877 	if (atomic_read(&oldsighand->count) != 1) {
878 		struct sighand_struct *newsighand;
879 		/*
880 		 * This ->sighand is shared with the CLONE_SIGHAND
881 		 * but not CLONE_THREAD task, switch to the new one.
882 		 */
883 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884 		if (!newsighand)
885 			return -ENOMEM;
886 
887 		atomic_set(&newsighand->count, 1);
888 		memcpy(newsighand->action, oldsighand->action,
889 		       sizeof(newsighand->action));
890 
891 		write_lock_irq(&tasklist_lock);
892 		spin_lock(&oldsighand->siglock);
893 		rcu_assign_pointer(tsk->sighand, newsighand);
894 		spin_unlock(&oldsighand->siglock);
895 		write_unlock_irq(&tasklist_lock);
896 
897 		__cleanup_sighand(oldsighand);
898 	}
899 
900 	BUG_ON(!thread_group_leader(tsk));
901 	return 0;
902 }
903 
904 /*
905  * These functions flushes out all traces of the currently running executable
906  * so that a new one can be started
907  */
908 static void flush_old_files(struct files_struct * files)
909 {
910 	long j = -1;
911 	struct fdtable *fdt;
912 
913 	spin_lock(&files->file_lock);
914 	for (;;) {
915 		unsigned long set, i;
916 
917 		j++;
918 		i = j * __NFDBITS;
919 		fdt = files_fdtable(files);
920 		if (i >= fdt->max_fds)
921 			break;
922 		set = fdt->close_on_exec->fds_bits[j];
923 		if (!set)
924 			continue;
925 		fdt->close_on_exec->fds_bits[j] = 0;
926 		spin_unlock(&files->file_lock);
927 		for ( ; set ; i++,set >>= 1) {
928 			if (set & 1) {
929 				sys_close(i);
930 			}
931 		}
932 		spin_lock(&files->file_lock);
933 
934 	}
935 	spin_unlock(&files->file_lock);
936 }
937 
938 char *get_task_comm(char *buf, struct task_struct *tsk)
939 {
940 	/* buf must be at least sizeof(tsk->comm) in size */
941 	task_lock(tsk);
942 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 	task_unlock(tsk);
944 	return buf;
945 }
946 
947 void set_task_comm(struct task_struct *tsk, char *buf)
948 {
949 	task_lock(tsk);
950 
951 	/*
952 	 * Threads may access current->comm without holding
953 	 * the task lock, so write the string carefully.
954 	 * Readers without a lock may see incomplete new
955 	 * names but are safe from non-terminating string reads.
956 	 */
957 	memset(tsk->comm, 0, TASK_COMM_LEN);
958 	wmb();
959 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
960 	task_unlock(tsk);
961 	perf_event_comm(tsk);
962 }
963 
964 int flush_old_exec(struct linux_binprm * bprm)
965 {
966 	int retval;
967 
968 	/*
969 	 * Make sure we have a private signal table and that
970 	 * we are unassociated from the previous thread group.
971 	 */
972 	retval = de_thread(current);
973 	if (retval)
974 		goto out;
975 
976 	set_mm_exe_file(bprm->mm, bprm->file);
977 
978 	/*
979 	 * Release all of the old mmap stuff
980 	 */
981 	retval = exec_mmap(bprm->mm);
982 	if (retval)
983 		goto out;
984 
985 	bprm->mm = NULL;		/* We're using it now */
986 
987 	current->flags &= ~PF_RANDOMIZE;
988 	flush_thread();
989 	current->personality &= ~bprm->per_clear;
990 
991 	return 0;
992 
993 out:
994 	return retval;
995 }
996 EXPORT_SYMBOL(flush_old_exec);
997 
998 void setup_new_exec(struct linux_binprm * bprm)
999 {
1000 	int i, ch;
1001 	const char *name;
1002 	char tcomm[sizeof(current->comm)];
1003 
1004 	arch_pick_mmap_layout(current->mm);
1005 
1006 	/* This is the point of no return */
1007 	current->sas_ss_sp = current->sas_ss_size = 0;
1008 
1009 	if (current_euid() == current_uid() && current_egid() == current_gid())
1010 		set_dumpable(current->mm, 1);
1011 	else
1012 		set_dumpable(current->mm, suid_dumpable);
1013 
1014 	name = bprm->filename;
1015 
1016 	/* Copies the binary name from after last slash */
1017 	for (i=0; (ch = *(name++)) != '\0';) {
1018 		if (ch == '/')
1019 			i = 0; /* overwrite what we wrote */
1020 		else
1021 			if (i < (sizeof(tcomm) - 1))
1022 				tcomm[i++] = ch;
1023 	}
1024 	tcomm[i] = '\0';
1025 	set_task_comm(current, tcomm);
1026 
1027 	/* Set the new mm task size. We have to do that late because it may
1028 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1029 	 * some architectures like powerpc
1030 	 */
1031 	current->mm->task_size = TASK_SIZE;
1032 
1033 	/* install the new credentials */
1034 	if (bprm->cred->uid != current_euid() ||
1035 	    bprm->cred->gid != current_egid()) {
1036 		current->pdeath_signal = 0;
1037 	} else if (file_permission(bprm->file, MAY_READ) ||
1038 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1039 		set_dumpable(current->mm, suid_dumpable);
1040 	}
1041 
1042 	/*
1043 	 * Flush performance counters when crossing a
1044 	 * security domain:
1045 	 */
1046 	if (!get_dumpable(current->mm))
1047 		perf_event_exit_task(current);
1048 
1049 	/* An exec changes our domain. We are no longer part of the thread
1050 	   group */
1051 
1052 	current->self_exec_id++;
1053 
1054 	flush_signal_handlers(current, 0);
1055 	flush_old_files(current->files);
1056 }
1057 EXPORT_SYMBOL(setup_new_exec);
1058 
1059 /*
1060  * Prepare credentials and lock ->cred_guard_mutex.
1061  * install_exec_creds() commits the new creds and drops the lock.
1062  * Or, if exec fails before, free_bprm() should release ->cred and
1063  * and unlock.
1064  */
1065 int prepare_bprm_creds(struct linux_binprm *bprm)
1066 {
1067 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1068 		return -ERESTARTNOINTR;
1069 
1070 	bprm->cred = prepare_exec_creds();
1071 	if (likely(bprm->cred))
1072 		return 0;
1073 
1074 	mutex_unlock(&current->cred_guard_mutex);
1075 	return -ENOMEM;
1076 }
1077 
1078 void free_bprm(struct linux_binprm *bprm)
1079 {
1080 	free_arg_pages(bprm);
1081 	if (bprm->cred) {
1082 		mutex_unlock(&current->cred_guard_mutex);
1083 		abort_creds(bprm->cred);
1084 	}
1085 	kfree(bprm);
1086 }
1087 
1088 /*
1089  * install the new credentials for this executable
1090  */
1091 void install_exec_creds(struct linux_binprm *bprm)
1092 {
1093 	security_bprm_committing_creds(bprm);
1094 
1095 	commit_creds(bprm->cred);
1096 	bprm->cred = NULL;
1097 	/*
1098 	 * cred_guard_mutex must be held at least to this point to prevent
1099 	 * ptrace_attach() from altering our determination of the task's
1100 	 * credentials; any time after this it may be unlocked.
1101 	 */
1102 	security_bprm_committed_creds(bprm);
1103 	mutex_unlock(&current->cred_guard_mutex);
1104 }
1105 EXPORT_SYMBOL(install_exec_creds);
1106 
1107 /*
1108  * determine how safe it is to execute the proposed program
1109  * - the caller must hold current->cred_guard_mutex to protect against
1110  *   PTRACE_ATTACH
1111  */
1112 int check_unsafe_exec(struct linux_binprm *bprm)
1113 {
1114 	struct task_struct *p = current, *t;
1115 	unsigned n_fs;
1116 	int res = 0;
1117 
1118 	bprm->unsafe = tracehook_unsafe_exec(p);
1119 
1120 	n_fs = 1;
1121 	spin_lock(&p->fs->lock);
1122 	rcu_read_lock();
1123 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1124 		if (t->fs == p->fs)
1125 			n_fs++;
1126 	}
1127 	rcu_read_unlock();
1128 
1129 	if (p->fs->users > n_fs) {
1130 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1131 	} else {
1132 		res = -EAGAIN;
1133 		if (!p->fs->in_exec) {
1134 			p->fs->in_exec = 1;
1135 			res = 1;
1136 		}
1137 	}
1138 	spin_unlock(&p->fs->lock);
1139 
1140 	return res;
1141 }
1142 
1143 /*
1144  * Fill the binprm structure from the inode.
1145  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1146  *
1147  * This may be called multiple times for binary chains (scripts for example).
1148  */
1149 int prepare_binprm(struct linux_binprm *bprm)
1150 {
1151 	umode_t mode;
1152 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1153 	int retval;
1154 
1155 	mode = inode->i_mode;
1156 	if (bprm->file->f_op == NULL)
1157 		return -EACCES;
1158 
1159 	/* clear any previous set[ug]id data from a previous binary */
1160 	bprm->cred->euid = current_euid();
1161 	bprm->cred->egid = current_egid();
1162 
1163 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1164 		/* Set-uid? */
1165 		if (mode & S_ISUID) {
1166 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1167 			bprm->cred->euid = inode->i_uid;
1168 		}
1169 
1170 		/* Set-gid? */
1171 		/*
1172 		 * If setgid is set but no group execute bit then this
1173 		 * is a candidate for mandatory locking, not a setgid
1174 		 * executable.
1175 		 */
1176 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1177 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1178 			bprm->cred->egid = inode->i_gid;
1179 		}
1180 	}
1181 
1182 	/* fill in binprm security blob */
1183 	retval = security_bprm_set_creds(bprm);
1184 	if (retval)
1185 		return retval;
1186 	bprm->cred_prepared = 1;
1187 
1188 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1189 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1190 }
1191 
1192 EXPORT_SYMBOL(prepare_binprm);
1193 
1194 /*
1195  * Arguments are '\0' separated strings found at the location bprm->p
1196  * points to; chop off the first by relocating brpm->p to right after
1197  * the first '\0' encountered.
1198  */
1199 int remove_arg_zero(struct linux_binprm *bprm)
1200 {
1201 	int ret = 0;
1202 	unsigned long offset;
1203 	char *kaddr;
1204 	struct page *page;
1205 
1206 	if (!bprm->argc)
1207 		return 0;
1208 
1209 	do {
1210 		offset = bprm->p & ~PAGE_MASK;
1211 		page = get_arg_page(bprm, bprm->p, 0);
1212 		if (!page) {
1213 			ret = -EFAULT;
1214 			goto out;
1215 		}
1216 		kaddr = kmap_atomic(page, KM_USER0);
1217 
1218 		for (; offset < PAGE_SIZE && kaddr[offset];
1219 				offset++, bprm->p++)
1220 			;
1221 
1222 		kunmap_atomic(kaddr, KM_USER0);
1223 		put_arg_page(page);
1224 
1225 		if (offset == PAGE_SIZE)
1226 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1227 	} while (offset == PAGE_SIZE);
1228 
1229 	bprm->p++;
1230 	bprm->argc--;
1231 	ret = 0;
1232 
1233 out:
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(remove_arg_zero);
1237 
1238 /*
1239  * cycle the list of binary formats handler, until one recognizes the image
1240  */
1241 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1242 {
1243 	unsigned int depth = bprm->recursion_depth;
1244 	int try,retval;
1245 	struct linux_binfmt *fmt;
1246 
1247 	retval = security_bprm_check(bprm);
1248 	if (retval)
1249 		return retval;
1250 
1251 	/* kernel module loader fixup */
1252 	/* so we don't try to load run modprobe in kernel space. */
1253 	set_fs(USER_DS);
1254 
1255 	retval = audit_bprm(bprm);
1256 	if (retval)
1257 		return retval;
1258 
1259 	retval = -ENOENT;
1260 	for (try=0; try<2; try++) {
1261 		read_lock(&binfmt_lock);
1262 		list_for_each_entry(fmt, &formats, lh) {
1263 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1264 			if (!fn)
1265 				continue;
1266 			if (!try_module_get(fmt->module))
1267 				continue;
1268 			read_unlock(&binfmt_lock);
1269 			retval = fn(bprm, regs);
1270 			/*
1271 			 * Restore the depth counter to its starting value
1272 			 * in this call, so we don't have to rely on every
1273 			 * load_binary function to restore it on return.
1274 			 */
1275 			bprm->recursion_depth = depth;
1276 			if (retval >= 0) {
1277 				if (depth == 0)
1278 					tracehook_report_exec(fmt, bprm, regs);
1279 				put_binfmt(fmt);
1280 				allow_write_access(bprm->file);
1281 				if (bprm->file)
1282 					fput(bprm->file);
1283 				bprm->file = NULL;
1284 				current->did_exec = 1;
1285 				proc_exec_connector(current);
1286 				return retval;
1287 			}
1288 			read_lock(&binfmt_lock);
1289 			put_binfmt(fmt);
1290 			if (retval != -ENOEXEC || bprm->mm == NULL)
1291 				break;
1292 			if (!bprm->file) {
1293 				read_unlock(&binfmt_lock);
1294 				return retval;
1295 			}
1296 		}
1297 		read_unlock(&binfmt_lock);
1298 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1299 			break;
1300 #ifdef CONFIG_MODULES
1301 		} else {
1302 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1303 			if (printable(bprm->buf[0]) &&
1304 			    printable(bprm->buf[1]) &&
1305 			    printable(bprm->buf[2]) &&
1306 			    printable(bprm->buf[3]))
1307 				break; /* -ENOEXEC */
1308 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1309 #endif
1310 		}
1311 	}
1312 	return retval;
1313 }
1314 
1315 EXPORT_SYMBOL(search_binary_handler);
1316 
1317 /*
1318  * sys_execve() executes a new program.
1319  */
1320 int do_execve(const char * filename,
1321 	const char __user *const __user *argv,
1322 	const char __user *const __user *envp,
1323 	struct pt_regs * regs)
1324 {
1325 	struct linux_binprm *bprm;
1326 	struct file *file;
1327 	struct files_struct *displaced;
1328 	bool clear_in_exec;
1329 	int retval;
1330 
1331 	retval = unshare_files(&displaced);
1332 	if (retval)
1333 		goto out_ret;
1334 
1335 	retval = -ENOMEM;
1336 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1337 	if (!bprm)
1338 		goto out_files;
1339 
1340 	retval = prepare_bprm_creds(bprm);
1341 	if (retval)
1342 		goto out_free;
1343 
1344 	retval = check_unsafe_exec(bprm);
1345 	if (retval < 0)
1346 		goto out_free;
1347 	clear_in_exec = retval;
1348 	current->in_execve = 1;
1349 
1350 	file = open_exec(filename);
1351 	retval = PTR_ERR(file);
1352 	if (IS_ERR(file))
1353 		goto out_unmark;
1354 
1355 	sched_exec();
1356 
1357 	bprm->file = file;
1358 	bprm->filename = filename;
1359 	bprm->interp = filename;
1360 
1361 	retval = bprm_mm_init(bprm);
1362 	if (retval)
1363 		goto out_file;
1364 
1365 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1366 	if ((retval = bprm->argc) < 0)
1367 		goto out;
1368 
1369 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1370 	if ((retval = bprm->envc) < 0)
1371 		goto out;
1372 
1373 	retval = prepare_binprm(bprm);
1374 	if (retval < 0)
1375 		goto out;
1376 
1377 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1378 	if (retval < 0)
1379 		goto out;
1380 
1381 	bprm->exec = bprm->p;
1382 	retval = copy_strings(bprm->envc, envp, bprm);
1383 	if (retval < 0)
1384 		goto out;
1385 
1386 	retval = copy_strings(bprm->argc, argv, bprm);
1387 	if (retval < 0)
1388 		goto out;
1389 
1390 	current->flags &= ~PF_KTHREAD;
1391 	retval = search_binary_handler(bprm,regs);
1392 	if (retval < 0)
1393 		goto out;
1394 
1395 	/* execve succeeded */
1396 	current->fs->in_exec = 0;
1397 	current->in_execve = 0;
1398 	acct_update_integrals(current);
1399 	free_bprm(bprm);
1400 	if (displaced)
1401 		put_files_struct(displaced);
1402 	return retval;
1403 
1404 out:
1405 	if (bprm->mm)
1406 		mmput (bprm->mm);
1407 
1408 out_file:
1409 	if (bprm->file) {
1410 		allow_write_access(bprm->file);
1411 		fput(bprm->file);
1412 	}
1413 
1414 out_unmark:
1415 	if (clear_in_exec)
1416 		current->fs->in_exec = 0;
1417 	current->in_execve = 0;
1418 
1419 out_free:
1420 	free_bprm(bprm);
1421 
1422 out_files:
1423 	if (displaced)
1424 		reset_files_struct(displaced);
1425 out_ret:
1426 	return retval;
1427 }
1428 
1429 void set_binfmt(struct linux_binfmt *new)
1430 {
1431 	struct mm_struct *mm = current->mm;
1432 
1433 	if (mm->binfmt)
1434 		module_put(mm->binfmt->module);
1435 
1436 	mm->binfmt = new;
1437 	if (new)
1438 		__module_get(new->module);
1439 }
1440 
1441 EXPORT_SYMBOL(set_binfmt);
1442 
1443 /* format_corename will inspect the pattern parameter, and output a
1444  * name into corename, which must have space for at least
1445  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1446  */
1447 static int format_corename(char *corename, long signr)
1448 {
1449 	const struct cred *cred = current_cred();
1450 	const char *pat_ptr = core_pattern;
1451 	int ispipe = (*pat_ptr == '|');
1452 	char *out_ptr = corename;
1453 	char *const out_end = corename + CORENAME_MAX_SIZE;
1454 	int rc;
1455 	int pid_in_pattern = 0;
1456 
1457 	/* Repeat as long as we have more pattern to process and more output
1458 	   space */
1459 	while (*pat_ptr) {
1460 		if (*pat_ptr != '%') {
1461 			if (out_ptr == out_end)
1462 				goto out;
1463 			*out_ptr++ = *pat_ptr++;
1464 		} else {
1465 			switch (*++pat_ptr) {
1466 			case 0:
1467 				goto out;
1468 			/* Double percent, output one percent */
1469 			case '%':
1470 				if (out_ptr == out_end)
1471 					goto out;
1472 				*out_ptr++ = '%';
1473 				break;
1474 			/* pid */
1475 			case 'p':
1476 				pid_in_pattern = 1;
1477 				rc = snprintf(out_ptr, out_end - out_ptr,
1478 					      "%d", task_tgid_vnr(current));
1479 				if (rc > out_end - out_ptr)
1480 					goto out;
1481 				out_ptr += rc;
1482 				break;
1483 			/* uid */
1484 			case 'u':
1485 				rc = snprintf(out_ptr, out_end - out_ptr,
1486 					      "%d", cred->uid);
1487 				if (rc > out_end - out_ptr)
1488 					goto out;
1489 				out_ptr += rc;
1490 				break;
1491 			/* gid */
1492 			case 'g':
1493 				rc = snprintf(out_ptr, out_end - out_ptr,
1494 					      "%d", cred->gid);
1495 				if (rc > out_end - out_ptr)
1496 					goto out;
1497 				out_ptr += rc;
1498 				break;
1499 			/* signal that caused the coredump */
1500 			case 's':
1501 				rc = snprintf(out_ptr, out_end - out_ptr,
1502 					      "%ld", signr);
1503 				if (rc > out_end - out_ptr)
1504 					goto out;
1505 				out_ptr += rc;
1506 				break;
1507 			/* UNIX time of coredump */
1508 			case 't': {
1509 				struct timeval tv;
1510 				do_gettimeofday(&tv);
1511 				rc = snprintf(out_ptr, out_end - out_ptr,
1512 					      "%lu", tv.tv_sec);
1513 				if (rc > out_end - out_ptr)
1514 					goto out;
1515 				out_ptr += rc;
1516 				break;
1517 			}
1518 			/* hostname */
1519 			case 'h':
1520 				down_read(&uts_sem);
1521 				rc = snprintf(out_ptr, out_end - out_ptr,
1522 					      "%s", utsname()->nodename);
1523 				up_read(&uts_sem);
1524 				if (rc > out_end - out_ptr)
1525 					goto out;
1526 				out_ptr += rc;
1527 				break;
1528 			/* executable */
1529 			case 'e':
1530 				rc = snprintf(out_ptr, out_end - out_ptr,
1531 					      "%s", current->comm);
1532 				if (rc > out_end - out_ptr)
1533 					goto out;
1534 				out_ptr += rc;
1535 				break;
1536 			/* core limit size */
1537 			case 'c':
1538 				rc = snprintf(out_ptr, out_end - out_ptr,
1539 					      "%lu", rlimit(RLIMIT_CORE));
1540 				if (rc > out_end - out_ptr)
1541 					goto out;
1542 				out_ptr += rc;
1543 				break;
1544 			default:
1545 				break;
1546 			}
1547 			++pat_ptr;
1548 		}
1549 	}
1550 	/* Backward compatibility with core_uses_pid:
1551 	 *
1552 	 * If core_pattern does not include a %p (as is the default)
1553 	 * and core_uses_pid is set, then .%pid will be appended to
1554 	 * the filename. Do not do this for piped commands. */
1555 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1556 		rc = snprintf(out_ptr, out_end - out_ptr,
1557 			      ".%d", task_tgid_vnr(current));
1558 		if (rc > out_end - out_ptr)
1559 			goto out;
1560 		out_ptr += rc;
1561 	}
1562 out:
1563 	*out_ptr = 0;
1564 	return ispipe;
1565 }
1566 
1567 static int zap_process(struct task_struct *start, int exit_code)
1568 {
1569 	struct task_struct *t;
1570 	int nr = 0;
1571 
1572 	start->signal->flags = SIGNAL_GROUP_EXIT;
1573 	start->signal->group_exit_code = exit_code;
1574 	start->signal->group_stop_count = 0;
1575 
1576 	t = start;
1577 	do {
1578 		if (t != current && t->mm) {
1579 			sigaddset(&t->pending.signal, SIGKILL);
1580 			signal_wake_up(t, 1);
1581 			nr++;
1582 		}
1583 	} while_each_thread(start, t);
1584 
1585 	return nr;
1586 }
1587 
1588 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1589 				struct core_state *core_state, int exit_code)
1590 {
1591 	struct task_struct *g, *p;
1592 	unsigned long flags;
1593 	int nr = -EAGAIN;
1594 
1595 	spin_lock_irq(&tsk->sighand->siglock);
1596 	if (!signal_group_exit(tsk->signal)) {
1597 		mm->core_state = core_state;
1598 		nr = zap_process(tsk, exit_code);
1599 	}
1600 	spin_unlock_irq(&tsk->sighand->siglock);
1601 	if (unlikely(nr < 0))
1602 		return nr;
1603 
1604 	if (atomic_read(&mm->mm_users) == nr + 1)
1605 		goto done;
1606 	/*
1607 	 * We should find and kill all tasks which use this mm, and we should
1608 	 * count them correctly into ->nr_threads. We don't take tasklist
1609 	 * lock, but this is safe wrt:
1610 	 *
1611 	 * fork:
1612 	 *	None of sub-threads can fork after zap_process(leader). All
1613 	 *	processes which were created before this point should be
1614 	 *	visible to zap_threads() because copy_process() adds the new
1615 	 *	process to the tail of init_task.tasks list, and lock/unlock
1616 	 *	of ->siglock provides a memory barrier.
1617 	 *
1618 	 * do_exit:
1619 	 *	The caller holds mm->mmap_sem. This means that the task which
1620 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1621 	 *	its ->mm.
1622 	 *
1623 	 * de_thread:
1624 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1625 	 *	we must see either old or new leader, this does not matter.
1626 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1627 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1628 	 *	it can't fail.
1629 	 *
1630 	 *	Note also that "g" can be the old leader with ->mm == NULL
1631 	 *	and already unhashed and thus removed from ->thread_group.
1632 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1633 	 *	clear the ->next pointer, we will find the new leader via
1634 	 *	next_thread().
1635 	 */
1636 	rcu_read_lock();
1637 	for_each_process(g) {
1638 		if (g == tsk->group_leader)
1639 			continue;
1640 		if (g->flags & PF_KTHREAD)
1641 			continue;
1642 		p = g;
1643 		do {
1644 			if (p->mm) {
1645 				if (unlikely(p->mm == mm)) {
1646 					lock_task_sighand(p, &flags);
1647 					nr += zap_process(p, exit_code);
1648 					unlock_task_sighand(p, &flags);
1649 				}
1650 				break;
1651 			}
1652 		} while_each_thread(g, p);
1653 	}
1654 	rcu_read_unlock();
1655 done:
1656 	atomic_set(&core_state->nr_threads, nr);
1657 	return nr;
1658 }
1659 
1660 static int coredump_wait(int exit_code, struct core_state *core_state)
1661 {
1662 	struct task_struct *tsk = current;
1663 	struct mm_struct *mm = tsk->mm;
1664 	struct completion *vfork_done;
1665 	int core_waiters = -EBUSY;
1666 
1667 	init_completion(&core_state->startup);
1668 	core_state->dumper.task = tsk;
1669 	core_state->dumper.next = NULL;
1670 
1671 	down_write(&mm->mmap_sem);
1672 	if (!mm->core_state)
1673 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1674 	up_write(&mm->mmap_sem);
1675 
1676 	if (unlikely(core_waiters < 0))
1677 		goto fail;
1678 
1679 	/*
1680 	 * Make sure nobody is waiting for us to release the VM,
1681 	 * otherwise we can deadlock when we wait on each other
1682 	 */
1683 	vfork_done = tsk->vfork_done;
1684 	if (vfork_done) {
1685 		tsk->vfork_done = NULL;
1686 		complete(vfork_done);
1687 	}
1688 
1689 	if (core_waiters)
1690 		wait_for_completion(&core_state->startup);
1691 fail:
1692 	return core_waiters;
1693 }
1694 
1695 static void coredump_finish(struct mm_struct *mm)
1696 {
1697 	struct core_thread *curr, *next;
1698 	struct task_struct *task;
1699 
1700 	next = mm->core_state->dumper.next;
1701 	while ((curr = next) != NULL) {
1702 		next = curr->next;
1703 		task = curr->task;
1704 		/*
1705 		 * see exit_mm(), curr->task must not see
1706 		 * ->task == NULL before we read ->next.
1707 		 */
1708 		smp_mb();
1709 		curr->task = NULL;
1710 		wake_up_process(task);
1711 	}
1712 
1713 	mm->core_state = NULL;
1714 }
1715 
1716 /*
1717  * set_dumpable converts traditional three-value dumpable to two flags and
1718  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1719  * these bits are not changed atomically.  So get_dumpable can observe the
1720  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1721  * return either old dumpable or new one by paying attention to the order of
1722  * modifying the bits.
1723  *
1724  * dumpable |   mm->flags (binary)
1725  * old  new | initial interim  final
1726  * ---------+-----------------------
1727  *  0    1  |   00      01      01
1728  *  0    2  |   00      10(*)   11
1729  *  1    0  |   01      00      00
1730  *  1    2  |   01      11      11
1731  *  2    0  |   11      10(*)   00
1732  *  2    1  |   11      11      01
1733  *
1734  * (*) get_dumpable regards interim value of 10 as 11.
1735  */
1736 void set_dumpable(struct mm_struct *mm, int value)
1737 {
1738 	switch (value) {
1739 	case 0:
1740 		clear_bit(MMF_DUMPABLE, &mm->flags);
1741 		smp_wmb();
1742 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1743 		break;
1744 	case 1:
1745 		set_bit(MMF_DUMPABLE, &mm->flags);
1746 		smp_wmb();
1747 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1748 		break;
1749 	case 2:
1750 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1751 		smp_wmb();
1752 		set_bit(MMF_DUMPABLE, &mm->flags);
1753 		break;
1754 	}
1755 }
1756 
1757 static int __get_dumpable(unsigned long mm_flags)
1758 {
1759 	int ret;
1760 
1761 	ret = mm_flags & MMF_DUMPABLE_MASK;
1762 	return (ret >= 2) ? 2 : ret;
1763 }
1764 
1765 int get_dumpable(struct mm_struct *mm)
1766 {
1767 	return __get_dumpable(mm->flags);
1768 }
1769 
1770 static void wait_for_dump_helpers(struct file *file)
1771 {
1772 	struct pipe_inode_info *pipe;
1773 
1774 	pipe = file->f_path.dentry->d_inode->i_pipe;
1775 
1776 	pipe_lock(pipe);
1777 	pipe->readers++;
1778 	pipe->writers--;
1779 
1780 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1781 		wake_up_interruptible_sync(&pipe->wait);
1782 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1783 		pipe_wait(pipe);
1784 	}
1785 
1786 	pipe->readers--;
1787 	pipe->writers++;
1788 	pipe_unlock(pipe);
1789 
1790 }
1791 
1792 
1793 /*
1794  * uhm_pipe_setup
1795  * helper function to customize the process used
1796  * to collect the core in userspace.  Specifically
1797  * it sets up a pipe and installs it as fd 0 (stdin)
1798  * for the process.  Returns 0 on success, or
1799  * PTR_ERR on failure.
1800  * Note that it also sets the core limit to 1.  This
1801  * is a special value that we use to trap recursive
1802  * core dumps
1803  */
1804 static int umh_pipe_setup(struct subprocess_info *info)
1805 {
1806 	struct file *rp, *wp;
1807 	struct fdtable *fdt;
1808 	struct coredump_params *cp = (struct coredump_params *)info->data;
1809 	struct files_struct *cf = current->files;
1810 
1811 	wp = create_write_pipe(0);
1812 	if (IS_ERR(wp))
1813 		return PTR_ERR(wp);
1814 
1815 	rp = create_read_pipe(wp, 0);
1816 	if (IS_ERR(rp)) {
1817 		free_write_pipe(wp);
1818 		return PTR_ERR(rp);
1819 	}
1820 
1821 	cp->file = wp;
1822 
1823 	sys_close(0);
1824 	fd_install(0, rp);
1825 	spin_lock(&cf->file_lock);
1826 	fdt = files_fdtable(cf);
1827 	FD_SET(0, fdt->open_fds);
1828 	FD_CLR(0, fdt->close_on_exec);
1829 	spin_unlock(&cf->file_lock);
1830 
1831 	/* and disallow core files too */
1832 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1833 
1834 	return 0;
1835 }
1836 
1837 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1838 {
1839 	struct core_state core_state;
1840 	char corename[CORENAME_MAX_SIZE + 1];
1841 	struct mm_struct *mm = current->mm;
1842 	struct linux_binfmt * binfmt;
1843 	const struct cred *old_cred;
1844 	struct cred *cred;
1845 	int retval = 0;
1846 	int flag = 0;
1847 	int ispipe;
1848 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1849 	struct coredump_params cprm = {
1850 		.signr = signr,
1851 		.regs = regs,
1852 		.limit = rlimit(RLIMIT_CORE),
1853 		/*
1854 		 * We must use the same mm->flags while dumping core to avoid
1855 		 * inconsistency of bit flags, since this flag is not protected
1856 		 * by any locks.
1857 		 */
1858 		.mm_flags = mm->flags,
1859 	};
1860 
1861 	audit_core_dumps(signr);
1862 
1863 	binfmt = mm->binfmt;
1864 	if (!binfmt || !binfmt->core_dump)
1865 		goto fail;
1866 	if (!__get_dumpable(cprm.mm_flags))
1867 		goto fail;
1868 
1869 	cred = prepare_creds();
1870 	if (!cred)
1871 		goto fail;
1872 	/*
1873 	 *	We cannot trust fsuid as being the "true" uid of the
1874 	 *	process nor do we know its entire history. We only know it
1875 	 *	was tainted so we dump it as root in mode 2.
1876 	 */
1877 	if (__get_dumpable(cprm.mm_flags) == 2) {
1878 		/* Setuid core dump mode */
1879 		flag = O_EXCL;		/* Stop rewrite attacks */
1880 		cred->fsuid = 0;	/* Dump root private */
1881 	}
1882 
1883 	retval = coredump_wait(exit_code, &core_state);
1884 	if (retval < 0)
1885 		goto fail_creds;
1886 
1887 	old_cred = override_creds(cred);
1888 
1889 	/*
1890 	 * Clear any false indication of pending signals that might
1891 	 * be seen by the filesystem code called to write the core file.
1892 	 */
1893 	clear_thread_flag(TIF_SIGPENDING);
1894 
1895 	ispipe = format_corename(corename, signr);
1896 
1897  	if (ispipe) {
1898 		int dump_count;
1899 		char **helper_argv;
1900 
1901 		if (cprm.limit == 1) {
1902 			/*
1903 			 * Normally core limits are irrelevant to pipes, since
1904 			 * we're not writing to the file system, but we use
1905 			 * cprm.limit of 1 here as a speacial value. Any
1906 			 * non-1 limit gets set to RLIM_INFINITY below, but
1907 			 * a limit of 0 skips the dump.  This is a consistent
1908 			 * way to catch recursive crashes.  We can still crash
1909 			 * if the core_pattern binary sets RLIM_CORE =  !1
1910 			 * but it runs as root, and can do lots of stupid things
1911 			 * Note that we use task_tgid_vnr here to grab the pid
1912 			 * of the process group leader.  That way we get the
1913 			 * right pid if a thread in a multi-threaded
1914 			 * core_pattern process dies.
1915 			 */
1916 			printk(KERN_WARNING
1917 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
1918 				task_tgid_vnr(current), current->comm);
1919 			printk(KERN_WARNING "Aborting core\n");
1920 			goto fail_unlock;
1921 		}
1922 		cprm.limit = RLIM_INFINITY;
1923 
1924 		dump_count = atomic_inc_return(&core_dump_count);
1925 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1926 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1927 			       task_tgid_vnr(current), current->comm);
1928 			printk(KERN_WARNING "Skipping core dump\n");
1929 			goto fail_dropcount;
1930 		}
1931 
1932 		helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1933 		if (!helper_argv) {
1934 			printk(KERN_WARNING "%s failed to allocate memory\n",
1935 			       __func__);
1936 			goto fail_dropcount;
1937 		}
1938 
1939 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1940 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1941 					NULL, &cprm);
1942 		argv_free(helper_argv);
1943 		if (retval) {
1944  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1945 			       corename);
1946 			goto close_fail;
1947  		}
1948 	} else {
1949 		struct inode *inode;
1950 
1951 		if (cprm.limit < binfmt->min_coredump)
1952 			goto fail_unlock;
1953 
1954 		cprm.file = filp_open(corename,
1955 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1956 				 0600);
1957 		if (IS_ERR(cprm.file))
1958 			goto fail_unlock;
1959 
1960 		inode = cprm.file->f_path.dentry->d_inode;
1961 		if (inode->i_nlink > 1)
1962 			goto close_fail;
1963 		if (d_unhashed(cprm.file->f_path.dentry))
1964 			goto close_fail;
1965 		/*
1966 		 * AK: actually i see no reason to not allow this for named
1967 		 * pipes etc, but keep the previous behaviour for now.
1968 		 */
1969 		if (!S_ISREG(inode->i_mode))
1970 			goto close_fail;
1971 		/*
1972 		 * Dont allow local users get cute and trick others to coredump
1973 		 * into their pre-created files.
1974 		 */
1975 		if (inode->i_uid != current_fsuid())
1976 			goto close_fail;
1977 		if (!cprm.file->f_op || !cprm.file->f_op->write)
1978 			goto close_fail;
1979 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1980 			goto close_fail;
1981 	}
1982 
1983 	retval = binfmt->core_dump(&cprm);
1984 	if (retval)
1985 		current->signal->group_exit_code |= 0x80;
1986 
1987 	if (ispipe && core_pipe_limit)
1988 		wait_for_dump_helpers(cprm.file);
1989 close_fail:
1990 	if (cprm.file)
1991 		filp_close(cprm.file, NULL);
1992 fail_dropcount:
1993 	if (ispipe)
1994 		atomic_dec(&core_dump_count);
1995 fail_unlock:
1996 	coredump_finish(mm);
1997 	revert_creds(old_cred);
1998 fail_creds:
1999 	put_cred(cred);
2000 fail:
2001 	return;
2002 }
2003