1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include <asm/exec.h> 63 64 #include <trace/events/task.h> 65 #include "internal.h" 66 67 #include <trace/events/sched.h> 68 69 int core_uses_pid; 70 char core_pattern[CORENAME_MAX_SIZE] = "core"; 71 unsigned int core_pipe_limit; 72 int suid_dumpable = 0; 73 74 struct core_name { 75 char *corename; 76 int used, size; 77 }; 78 static atomic_t call_count = ATOMIC_INIT(1); 79 80 /* The maximal length of core_pattern is also specified in sysctl.c */ 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 BUG_ON(!fmt); 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 /* 111 * Note that a shared library must be both readable and executable due to 112 * security reasons. 113 * 114 * Also note that we take the address to load from from the file itself. 115 */ 116 SYSCALL_DEFINE1(uselib, const char __user *, library) 117 { 118 struct file *file; 119 char *tmp = getname(library); 120 int error = PTR_ERR(tmp); 121 static const struct open_flags uselib_flags = { 122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 123 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 124 .intent = LOOKUP_OPEN 125 }; 126 127 if (IS_ERR(tmp)) 128 goto out; 129 130 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 131 putname(tmp); 132 error = PTR_ERR(file); 133 if (IS_ERR(file)) 134 goto out; 135 136 error = -EINVAL; 137 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 138 goto exit; 139 140 error = -EACCES; 141 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 142 goto exit; 143 144 fsnotify_open(file); 145 146 error = -ENOEXEC; 147 if(file->f_op) { 148 struct linux_binfmt * fmt; 149 150 read_lock(&binfmt_lock); 151 list_for_each_entry(fmt, &formats, lh) { 152 if (!fmt->load_shlib) 153 continue; 154 if (!try_module_get(fmt->module)) 155 continue; 156 read_unlock(&binfmt_lock); 157 error = fmt->load_shlib(file); 158 read_lock(&binfmt_lock); 159 put_binfmt(fmt); 160 if (error != -ENOEXEC) 161 break; 162 } 163 read_unlock(&binfmt_lock); 164 } 165 exit: 166 fput(file); 167 out: 168 return error; 169 } 170 171 #ifdef CONFIG_MMU 172 /* 173 * The nascent bprm->mm is not visible until exec_mmap() but it can 174 * use a lot of memory, account these pages in current->mm temporary 175 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 176 * change the counter back via acct_arg_size(0). 177 */ 178 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 179 { 180 struct mm_struct *mm = current->mm; 181 long diff = (long)(pages - bprm->vma_pages); 182 183 if (!mm || !diff) 184 return; 185 186 bprm->vma_pages = pages; 187 add_mm_counter(mm, MM_ANONPAGES, diff); 188 } 189 190 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 191 int write) 192 { 193 struct page *page; 194 int ret; 195 196 #ifdef CONFIG_STACK_GROWSUP 197 if (write) { 198 ret = expand_downwards(bprm->vma, pos); 199 if (ret < 0) 200 return NULL; 201 } 202 #endif 203 ret = get_user_pages(current, bprm->mm, pos, 204 1, write, 1, &page, NULL); 205 if (ret <= 0) 206 return NULL; 207 208 if (write) { 209 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 210 struct rlimit *rlim; 211 212 acct_arg_size(bprm, size / PAGE_SIZE); 213 214 /* 215 * We've historically supported up to 32 pages (ARG_MAX) 216 * of argument strings even with small stacks 217 */ 218 if (size <= ARG_MAX) 219 return page; 220 221 /* 222 * Limit to 1/4-th the stack size for the argv+env strings. 223 * This ensures that: 224 * - the remaining binfmt code will not run out of stack space, 225 * - the program will have a reasonable amount of stack left 226 * to work from. 227 */ 228 rlim = current->signal->rlim; 229 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 230 put_page(page); 231 return NULL; 232 } 233 } 234 235 return page; 236 } 237 238 static void put_arg_page(struct page *page) 239 { 240 put_page(page); 241 } 242 243 static void free_arg_page(struct linux_binprm *bprm, int i) 244 { 245 } 246 247 static void free_arg_pages(struct linux_binprm *bprm) 248 { 249 } 250 251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 252 struct page *page) 253 { 254 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 255 } 256 257 static int __bprm_mm_init(struct linux_binprm *bprm) 258 { 259 int err; 260 struct vm_area_struct *vma = NULL; 261 struct mm_struct *mm = bprm->mm; 262 263 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 264 if (!vma) 265 return -ENOMEM; 266 267 down_write(&mm->mmap_sem); 268 vma->vm_mm = mm; 269 270 /* 271 * Place the stack at the largest stack address the architecture 272 * supports. Later, we'll move this to an appropriate place. We don't 273 * use STACK_TOP because that can depend on attributes which aren't 274 * configured yet. 275 */ 276 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 277 vma->vm_end = STACK_TOP_MAX; 278 vma->vm_start = vma->vm_end - PAGE_SIZE; 279 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 280 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 281 INIT_LIST_HEAD(&vma->anon_vma_chain); 282 283 err = insert_vm_struct(mm, vma); 284 if (err) 285 goto err; 286 287 mm->stack_vm = mm->total_vm = 1; 288 up_write(&mm->mmap_sem); 289 bprm->p = vma->vm_end - sizeof(void *); 290 return 0; 291 err: 292 up_write(&mm->mmap_sem); 293 bprm->vma = NULL; 294 kmem_cache_free(vm_area_cachep, vma); 295 return err; 296 } 297 298 static bool valid_arg_len(struct linux_binprm *bprm, long len) 299 { 300 return len <= MAX_ARG_STRLEN; 301 } 302 303 #else 304 305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 306 { 307 } 308 309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 310 int write) 311 { 312 struct page *page; 313 314 page = bprm->page[pos / PAGE_SIZE]; 315 if (!page && write) { 316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 317 if (!page) 318 return NULL; 319 bprm->page[pos / PAGE_SIZE] = page; 320 } 321 322 return page; 323 } 324 325 static void put_arg_page(struct page *page) 326 { 327 } 328 329 static void free_arg_page(struct linux_binprm *bprm, int i) 330 { 331 if (bprm->page[i]) { 332 __free_page(bprm->page[i]); 333 bprm->page[i] = NULL; 334 } 335 } 336 337 static void free_arg_pages(struct linux_binprm *bprm) 338 { 339 int i; 340 341 for (i = 0; i < MAX_ARG_PAGES; i++) 342 free_arg_page(bprm, i); 343 } 344 345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 346 struct page *page) 347 { 348 } 349 350 static int __bprm_mm_init(struct linux_binprm *bprm) 351 { 352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 353 return 0; 354 } 355 356 static bool valid_arg_len(struct linux_binprm *bprm, long len) 357 { 358 return len <= bprm->p; 359 } 360 361 #endif /* CONFIG_MMU */ 362 363 /* 364 * Create a new mm_struct and populate it with a temporary stack 365 * vm_area_struct. We don't have enough context at this point to set the stack 366 * flags, permissions, and offset, so we use temporary values. We'll update 367 * them later in setup_arg_pages(). 368 */ 369 int bprm_mm_init(struct linux_binprm *bprm) 370 { 371 int err; 372 struct mm_struct *mm = NULL; 373 374 bprm->mm = mm = mm_alloc(); 375 err = -ENOMEM; 376 if (!mm) 377 goto err; 378 379 err = init_new_context(current, mm); 380 if (err) 381 goto err; 382 383 err = __bprm_mm_init(bprm); 384 if (err) 385 goto err; 386 387 return 0; 388 389 err: 390 if (mm) { 391 bprm->mm = NULL; 392 mmdrop(mm); 393 } 394 395 return err; 396 } 397 398 struct user_arg_ptr { 399 #ifdef CONFIG_COMPAT 400 bool is_compat; 401 #endif 402 union { 403 const char __user *const __user *native; 404 #ifdef CONFIG_COMPAT 405 compat_uptr_t __user *compat; 406 #endif 407 } ptr; 408 }; 409 410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 411 { 412 const char __user *native; 413 414 #ifdef CONFIG_COMPAT 415 if (unlikely(argv.is_compat)) { 416 compat_uptr_t compat; 417 418 if (get_user(compat, argv.ptr.compat + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return compat_ptr(compat); 422 } 423 #endif 424 425 if (get_user(native, argv.ptr.native + nr)) 426 return ERR_PTR(-EFAULT); 427 428 return native; 429 } 430 431 /* 432 * count() counts the number of strings in array ARGV. 433 */ 434 static int count(struct user_arg_ptr argv, int max) 435 { 436 int i = 0; 437 438 if (argv.ptr.native != NULL) { 439 for (;;) { 440 const char __user *p = get_user_arg_ptr(argv, i); 441 442 if (!p) 443 break; 444 445 if (IS_ERR(p)) 446 return -EFAULT; 447 448 if (i++ >= max) 449 return -E2BIG; 450 451 if (fatal_signal_pending(current)) 452 return -ERESTARTNOHAND; 453 cond_resched(); 454 } 455 } 456 return i; 457 } 458 459 /* 460 * 'copy_strings()' copies argument/environment strings from the old 461 * processes's memory to the new process's stack. The call to get_user_pages() 462 * ensures the destination page is created and not swapped out. 463 */ 464 static int copy_strings(int argc, struct user_arg_ptr argv, 465 struct linux_binprm *bprm) 466 { 467 struct page *kmapped_page = NULL; 468 char *kaddr = NULL; 469 unsigned long kpos = 0; 470 int ret; 471 472 while (argc-- > 0) { 473 const char __user *str; 474 int len; 475 unsigned long pos; 476 477 ret = -EFAULT; 478 str = get_user_arg_ptr(argv, argc); 479 if (IS_ERR(str)) 480 goto out; 481 482 len = strnlen_user(str, MAX_ARG_STRLEN); 483 if (!len) 484 goto out; 485 486 ret = -E2BIG; 487 if (!valid_arg_len(bprm, len)) 488 goto out; 489 490 /* We're going to work our way backwords. */ 491 pos = bprm->p; 492 str += len; 493 bprm->p -= len; 494 495 while (len > 0) { 496 int offset, bytes_to_copy; 497 498 if (fatal_signal_pending(current)) { 499 ret = -ERESTARTNOHAND; 500 goto out; 501 } 502 cond_resched(); 503 504 offset = pos % PAGE_SIZE; 505 if (offset == 0) 506 offset = PAGE_SIZE; 507 508 bytes_to_copy = offset; 509 if (bytes_to_copy > len) 510 bytes_to_copy = len; 511 512 offset -= bytes_to_copy; 513 pos -= bytes_to_copy; 514 str -= bytes_to_copy; 515 len -= bytes_to_copy; 516 517 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 518 struct page *page; 519 520 page = get_arg_page(bprm, pos, 1); 521 if (!page) { 522 ret = -E2BIG; 523 goto out; 524 } 525 526 if (kmapped_page) { 527 flush_kernel_dcache_page(kmapped_page); 528 kunmap(kmapped_page); 529 put_arg_page(kmapped_page); 530 } 531 kmapped_page = page; 532 kaddr = kmap(kmapped_page); 533 kpos = pos & PAGE_MASK; 534 flush_arg_page(bprm, kpos, kmapped_page); 535 } 536 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 537 ret = -EFAULT; 538 goto out; 539 } 540 } 541 } 542 ret = 0; 543 out: 544 if (kmapped_page) { 545 flush_kernel_dcache_page(kmapped_page); 546 kunmap(kmapped_page); 547 put_arg_page(kmapped_page); 548 } 549 return ret; 550 } 551 552 /* 553 * Like copy_strings, but get argv and its values from kernel memory. 554 */ 555 int copy_strings_kernel(int argc, const char *const *__argv, 556 struct linux_binprm *bprm) 557 { 558 int r; 559 mm_segment_t oldfs = get_fs(); 560 struct user_arg_ptr argv = { 561 .ptr.native = (const char __user *const __user *)__argv, 562 }; 563 564 set_fs(KERNEL_DS); 565 r = copy_strings(argc, argv, bprm); 566 set_fs(oldfs); 567 568 return r; 569 } 570 EXPORT_SYMBOL(copy_strings_kernel); 571 572 #ifdef CONFIG_MMU 573 574 /* 575 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 576 * the binfmt code determines where the new stack should reside, we shift it to 577 * its final location. The process proceeds as follows: 578 * 579 * 1) Use shift to calculate the new vma endpoints. 580 * 2) Extend vma to cover both the old and new ranges. This ensures the 581 * arguments passed to subsequent functions are consistent. 582 * 3) Move vma's page tables to the new range. 583 * 4) Free up any cleared pgd range. 584 * 5) Shrink the vma to cover only the new range. 585 */ 586 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 587 { 588 struct mm_struct *mm = vma->vm_mm; 589 unsigned long old_start = vma->vm_start; 590 unsigned long old_end = vma->vm_end; 591 unsigned long length = old_end - old_start; 592 unsigned long new_start = old_start - shift; 593 unsigned long new_end = old_end - shift; 594 struct mmu_gather tlb; 595 596 BUG_ON(new_start > new_end); 597 598 /* 599 * ensure there are no vmas between where we want to go 600 * and where we are 601 */ 602 if (vma != find_vma(mm, new_start)) 603 return -EFAULT; 604 605 /* 606 * cover the whole range: [new_start, old_end) 607 */ 608 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 609 return -ENOMEM; 610 611 /* 612 * move the page tables downwards, on failure we rely on 613 * process cleanup to remove whatever mess we made. 614 */ 615 if (length != move_page_tables(vma, old_start, 616 vma, new_start, length)) 617 return -ENOMEM; 618 619 lru_add_drain(); 620 tlb_gather_mmu(&tlb, mm, 0); 621 if (new_end > old_start) { 622 /* 623 * when the old and new regions overlap clear from new_end. 624 */ 625 free_pgd_range(&tlb, new_end, old_end, new_end, 626 vma->vm_next ? vma->vm_next->vm_start : 0); 627 } else { 628 /* 629 * otherwise, clean from old_start; this is done to not touch 630 * the address space in [new_end, old_start) some architectures 631 * have constraints on va-space that make this illegal (IA64) - 632 * for the others its just a little faster. 633 */ 634 free_pgd_range(&tlb, old_start, old_end, new_end, 635 vma->vm_next ? vma->vm_next->vm_start : 0); 636 } 637 tlb_finish_mmu(&tlb, new_end, old_end); 638 639 /* 640 * Shrink the vma to just the new range. Always succeeds. 641 */ 642 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 643 644 return 0; 645 } 646 647 /* 648 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 649 * the stack is optionally relocated, and some extra space is added. 650 */ 651 int setup_arg_pages(struct linux_binprm *bprm, 652 unsigned long stack_top, 653 int executable_stack) 654 { 655 unsigned long ret; 656 unsigned long stack_shift; 657 struct mm_struct *mm = current->mm; 658 struct vm_area_struct *vma = bprm->vma; 659 struct vm_area_struct *prev = NULL; 660 unsigned long vm_flags; 661 unsigned long stack_base; 662 unsigned long stack_size; 663 unsigned long stack_expand; 664 unsigned long rlim_stack; 665 666 #ifdef CONFIG_STACK_GROWSUP 667 /* Limit stack size to 1GB */ 668 stack_base = rlimit_max(RLIMIT_STACK); 669 if (stack_base > (1 << 30)) 670 stack_base = 1 << 30; 671 672 /* Make sure we didn't let the argument array grow too large. */ 673 if (vma->vm_end - vma->vm_start > stack_base) 674 return -ENOMEM; 675 676 stack_base = PAGE_ALIGN(stack_top - stack_base); 677 678 stack_shift = vma->vm_start - stack_base; 679 mm->arg_start = bprm->p - stack_shift; 680 bprm->p = vma->vm_end - stack_shift; 681 #else 682 stack_top = arch_align_stack(stack_top); 683 stack_top = PAGE_ALIGN(stack_top); 684 685 if (unlikely(stack_top < mmap_min_addr) || 686 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 687 return -ENOMEM; 688 689 stack_shift = vma->vm_end - stack_top; 690 691 bprm->p -= stack_shift; 692 mm->arg_start = bprm->p; 693 #endif 694 695 if (bprm->loader) 696 bprm->loader -= stack_shift; 697 bprm->exec -= stack_shift; 698 699 down_write(&mm->mmap_sem); 700 vm_flags = VM_STACK_FLAGS; 701 702 /* 703 * Adjust stack execute permissions; explicitly enable for 704 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 705 * (arch default) otherwise. 706 */ 707 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 708 vm_flags |= VM_EXEC; 709 else if (executable_stack == EXSTACK_DISABLE_X) 710 vm_flags &= ~VM_EXEC; 711 vm_flags |= mm->def_flags; 712 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 713 714 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 715 vm_flags); 716 if (ret) 717 goto out_unlock; 718 BUG_ON(prev != vma); 719 720 /* Move stack pages down in memory. */ 721 if (stack_shift) { 722 ret = shift_arg_pages(vma, stack_shift); 723 if (ret) 724 goto out_unlock; 725 } 726 727 /* mprotect_fixup is overkill to remove the temporary stack flags */ 728 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 729 730 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 731 stack_size = vma->vm_end - vma->vm_start; 732 /* 733 * Align this down to a page boundary as expand_stack 734 * will align it up. 735 */ 736 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 737 #ifdef CONFIG_STACK_GROWSUP 738 if (stack_size + stack_expand > rlim_stack) 739 stack_base = vma->vm_start + rlim_stack; 740 else 741 stack_base = vma->vm_end + stack_expand; 742 #else 743 if (stack_size + stack_expand > rlim_stack) 744 stack_base = vma->vm_end - rlim_stack; 745 else 746 stack_base = vma->vm_start - stack_expand; 747 #endif 748 current->mm->start_stack = bprm->p; 749 ret = expand_stack(vma, stack_base); 750 if (ret) 751 ret = -EFAULT; 752 753 out_unlock: 754 up_write(&mm->mmap_sem); 755 return ret; 756 } 757 EXPORT_SYMBOL(setup_arg_pages); 758 759 #endif /* CONFIG_MMU */ 760 761 struct file *open_exec(const char *name) 762 { 763 struct file *file; 764 int err; 765 static const struct open_flags open_exec_flags = { 766 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 767 .acc_mode = MAY_EXEC | MAY_OPEN, 768 .intent = LOOKUP_OPEN 769 }; 770 771 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 772 if (IS_ERR(file)) 773 goto out; 774 775 err = -EACCES; 776 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 777 goto exit; 778 779 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 780 goto exit; 781 782 fsnotify_open(file); 783 784 err = deny_write_access(file); 785 if (err) 786 goto exit; 787 788 out: 789 return file; 790 791 exit: 792 fput(file); 793 return ERR_PTR(err); 794 } 795 EXPORT_SYMBOL(open_exec); 796 797 int kernel_read(struct file *file, loff_t offset, 798 char *addr, unsigned long count) 799 { 800 mm_segment_t old_fs; 801 loff_t pos = offset; 802 int result; 803 804 old_fs = get_fs(); 805 set_fs(get_ds()); 806 /* The cast to a user pointer is valid due to the set_fs() */ 807 result = vfs_read(file, (void __user *)addr, count, &pos); 808 set_fs(old_fs); 809 return result; 810 } 811 812 EXPORT_SYMBOL(kernel_read); 813 814 static int exec_mmap(struct mm_struct *mm) 815 { 816 struct task_struct *tsk; 817 struct mm_struct * old_mm, *active_mm; 818 819 /* Notify parent that we're no longer interested in the old VM */ 820 tsk = current; 821 old_mm = current->mm; 822 mm_release(tsk, old_mm); 823 824 if (old_mm) { 825 sync_mm_rss(old_mm); 826 /* 827 * Make sure that if there is a core dump in progress 828 * for the old mm, we get out and die instead of going 829 * through with the exec. We must hold mmap_sem around 830 * checking core_state and changing tsk->mm. 831 */ 832 down_read(&old_mm->mmap_sem); 833 if (unlikely(old_mm->core_state)) { 834 up_read(&old_mm->mmap_sem); 835 return -EINTR; 836 } 837 } 838 task_lock(tsk); 839 active_mm = tsk->active_mm; 840 tsk->mm = mm; 841 tsk->active_mm = mm; 842 activate_mm(active_mm, mm); 843 task_unlock(tsk); 844 arch_pick_mmap_layout(mm); 845 if (old_mm) { 846 up_read(&old_mm->mmap_sem); 847 BUG_ON(active_mm != old_mm); 848 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 849 mm_update_next_owner(old_mm); 850 mmput(old_mm); 851 return 0; 852 } 853 mmdrop(active_mm); 854 return 0; 855 } 856 857 /* 858 * This function makes sure the current process has its own signal table, 859 * so that flush_signal_handlers can later reset the handlers without 860 * disturbing other processes. (Other processes might share the signal 861 * table via the CLONE_SIGHAND option to clone().) 862 */ 863 static int de_thread(struct task_struct *tsk) 864 { 865 struct signal_struct *sig = tsk->signal; 866 struct sighand_struct *oldsighand = tsk->sighand; 867 spinlock_t *lock = &oldsighand->siglock; 868 869 if (thread_group_empty(tsk)) 870 goto no_thread_group; 871 872 /* 873 * Kill all other threads in the thread group. 874 */ 875 spin_lock_irq(lock); 876 if (signal_group_exit(sig)) { 877 /* 878 * Another group action in progress, just 879 * return so that the signal is processed. 880 */ 881 spin_unlock_irq(lock); 882 return -EAGAIN; 883 } 884 885 sig->group_exit_task = tsk; 886 sig->notify_count = zap_other_threads(tsk); 887 if (!thread_group_leader(tsk)) 888 sig->notify_count--; 889 890 while (sig->notify_count) { 891 __set_current_state(TASK_UNINTERRUPTIBLE); 892 spin_unlock_irq(lock); 893 schedule(); 894 spin_lock_irq(lock); 895 } 896 spin_unlock_irq(lock); 897 898 /* 899 * At this point all other threads have exited, all we have to 900 * do is to wait for the thread group leader to become inactive, 901 * and to assume its PID: 902 */ 903 if (!thread_group_leader(tsk)) { 904 struct task_struct *leader = tsk->group_leader; 905 906 sig->notify_count = -1; /* for exit_notify() */ 907 for (;;) { 908 write_lock_irq(&tasklist_lock); 909 if (likely(leader->exit_state)) 910 break; 911 __set_current_state(TASK_UNINTERRUPTIBLE); 912 write_unlock_irq(&tasklist_lock); 913 schedule(); 914 } 915 916 /* 917 * The only record we have of the real-time age of a 918 * process, regardless of execs it's done, is start_time. 919 * All the past CPU time is accumulated in signal_struct 920 * from sister threads now dead. But in this non-leader 921 * exec, nothing survives from the original leader thread, 922 * whose birth marks the true age of this process now. 923 * When we take on its identity by switching to its PID, we 924 * also take its birthdate (always earlier than our own). 925 */ 926 tsk->start_time = leader->start_time; 927 928 BUG_ON(!same_thread_group(leader, tsk)); 929 BUG_ON(has_group_leader_pid(tsk)); 930 /* 931 * An exec() starts a new thread group with the 932 * TGID of the previous thread group. Rehash the 933 * two threads with a switched PID, and release 934 * the former thread group leader: 935 */ 936 937 /* Become a process group leader with the old leader's pid. 938 * The old leader becomes a thread of the this thread group. 939 * Note: The old leader also uses this pid until release_task 940 * is called. Odd but simple and correct. 941 */ 942 detach_pid(tsk, PIDTYPE_PID); 943 tsk->pid = leader->pid; 944 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 945 transfer_pid(leader, tsk, PIDTYPE_PGID); 946 transfer_pid(leader, tsk, PIDTYPE_SID); 947 948 list_replace_rcu(&leader->tasks, &tsk->tasks); 949 list_replace_init(&leader->sibling, &tsk->sibling); 950 951 tsk->group_leader = tsk; 952 leader->group_leader = tsk; 953 954 tsk->exit_signal = SIGCHLD; 955 leader->exit_signal = -1; 956 957 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 958 leader->exit_state = EXIT_DEAD; 959 960 /* 961 * We are going to release_task()->ptrace_unlink() silently, 962 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 963 * the tracer wont't block again waiting for this thread. 964 */ 965 if (unlikely(leader->ptrace)) 966 __wake_up_parent(leader, leader->parent); 967 write_unlock_irq(&tasklist_lock); 968 969 release_task(leader); 970 } 971 972 sig->group_exit_task = NULL; 973 sig->notify_count = 0; 974 975 no_thread_group: 976 /* we have changed execution domain */ 977 tsk->exit_signal = SIGCHLD; 978 979 exit_itimers(sig); 980 flush_itimer_signals(); 981 982 if (atomic_read(&oldsighand->count) != 1) { 983 struct sighand_struct *newsighand; 984 /* 985 * This ->sighand is shared with the CLONE_SIGHAND 986 * but not CLONE_THREAD task, switch to the new one. 987 */ 988 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 989 if (!newsighand) 990 return -ENOMEM; 991 992 atomic_set(&newsighand->count, 1); 993 memcpy(newsighand->action, oldsighand->action, 994 sizeof(newsighand->action)); 995 996 write_lock_irq(&tasklist_lock); 997 spin_lock(&oldsighand->siglock); 998 rcu_assign_pointer(tsk->sighand, newsighand); 999 spin_unlock(&oldsighand->siglock); 1000 write_unlock_irq(&tasklist_lock); 1001 1002 __cleanup_sighand(oldsighand); 1003 } 1004 1005 BUG_ON(!thread_group_leader(tsk)); 1006 return 0; 1007 } 1008 1009 /* 1010 * These functions flushes out all traces of the currently running executable 1011 * so that a new one can be started 1012 */ 1013 static void flush_old_files(struct files_struct * files) 1014 { 1015 long j = -1; 1016 struct fdtable *fdt; 1017 1018 spin_lock(&files->file_lock); 1019 for (;;) { 1020 unsigned long set, i; 1021 1022 j++; 1023 i = j * BITS_PER_LONG; 1024 fdt = files_fdtable(files); 1025 if (i >= fdt->max_fds) 1026 break; 1027 set = fdt->close_on_exec[j]; 1028 if (!set) 1029 continue; 1030 fdt->close_on_exec[j] = 0; 1031 spin_unlock(&files->file_lock); 1032 for ( ; set ; i++,set >>= 1) { 1033 if (set & 1) { 1034 sys_close(i); 1035 } 1036 } 1037 spin_lock(&files->file_lock); 1038 1039 } 1040 spin_unlock(&files->file_lock); 1041 } 1042 1043 char *get_task_comm(char *buf, struct task_struct *tsk) 1044 { 1045 /* buf must be at least sizeof(tsk->comm) in size */ 1046 task_lock(tsk); 1047 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1048 task_unlock(tsk); 1049 return buf; 1050 } 1051 EXPORT_SYMBOL_GPL(get_task_comm); 1052 1053 void set_task_comm(struct task_struct *tsk, char *buf) 1054 { 1055 task_lock(tsk); 1056 1057 trace_task_rename(tsk, buf); 1058 1059 /* 1060 * Threads may access current->comm without holding 1061 * the task lock, so write the string carefully. 1062 * Readers without a lock may see incomplete new 1063 * names but are safe from non-terminating string reads. 1064 */ 1065 memset(tsk->comm, 0, TASK_COMM_LEN); 1066 wmb(); 1067 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1068 task_unlock(tsk); 1069 perf_event_comm(tsk); 1070 } 1071 1072 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len) 1073 { 1074 int i, ch; 1075 1076 /* Copies the binary name from after last slash */ 1077 for (i = 0; (ch = *(fn++)) != '\0';) { 1078 if (ch == '/') 1079 i = 0; /* overwrite what we wrote */ 1080 else 1081 if (i < len - 1) 1082 tcomm[i++] = ch; 1083 } 1084 tcomm[i] = '\0'; 1085 } 1086 1087 int flush_old_exec(struct linux_binprm * bprm) 1088 { 1089 int retval; 1090 1091 /* 1092 * Make sure we have a private signal table and that 1093 * we are unassociated from the previous thread group. 1094 */ 1095 retval = de_thread(current); 1096 if (retval) 1097 goto out; 1098 1099 set_mm_exe_file(bprm->mm, bprm->file); 1100 1101 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm)); 1102 /* 1103 * Release all of the old mmap stuff 1104 */ 1105 acct_arg_size(bprm, 0); 1106 retval = exec_mmap(bprm->mm); 1107 if (retval) 1108 goto out; 1109 1110 bprm->mm = NULL; /* We're using it now */ 1111 1112 set_fs(USER_DS); 1113 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD); 1114 flush_thread(); 1115 current->personality &= ~bprm->per_clear; 1116 1117 return 0; 1118 1119 out: 1120 return retval; 1121 } 1122 EXPORT_SYMBOL(flush_old_exec); 1123 1124 void would_dump(struct linux_binprm *bprm, struct file *file) 1125 { 1126 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0) 1127 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1128 } 1129 EXPORT_SYMBOL(would_dump); 1130 1131 void setup_new_exec(struct linux_binprm * bprm) 1132 { 1133 arch_pick_mmap_layout(current->mm); 1134 1135 /* This is the point of no return */ 1136 current->sas_ss_sp = current->sas_ss_size = 0; 1137 1138 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1139 set_dumpable(current->mm, 1); 1140 else 1141 set_dumpable(current->mm, suid_dumpable); 1142 1143 set_task_comm(current, bprm->tcomm); 1144 1145 /* Set the new mm task size. We have to do that late because it may 1146 * depend on TIF_32BIT which is only updated in flush_thread() on 1147 * some architectures like powerpc 1148 */ 1149 current->mm->task_size = TASK_SIZE; 1150 1151 /* install the new credentials */ 1152 if (!uid_eq(bprm->cred->uid, current_euid()) || 1153 !gid_eq(bprm->cred->gid, current_egid())) { 1154 current->pdeath_signal = 0; 1155 } else { 1156 would_dump(bprm, bprm->file); 1157 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1158 set_dumpable(current->mm, suid_dumpable); 1159 } 1160 1161 /* 1162 * Flush performance counters when crossing a 1163 * security domain: 1164 */ 1165 if (!get_dumpable(current->mm)) 1166 perf_event_exit_task(current); 1167 1168 /* An exec changes our domain. We are no longer part of the thread 1169 group */ 1170 1171 current->self_exec_id++; 1172 1173 flush_signal_handlers(current, 0); 1174 flush_old_files(current->files); 1175 } 1176 EXPORT_SYMBOL(setup_new_exec); 1177 1178 /* 1179 * Prepare credentials and lock ->cred_guard_mutex. 1180 * install_exec_creds() commits the new creds and drops the lock. 1181 * Or, if exec fails before, free_bprm() should release ->cred and 1182 * and unlock. 1183 */ 1184 int prepare_bprm_creds(struct linux_binprm *bprm) 1185 { 1186 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1187 return -ERESTARTNOINTR; 1188 1189 bprm->cred = prepare_exec_creds(); 1190 if (likely(bprm->cred)) 1191 return 0; 1192 1193 mutex_unlock(¤t->signal->cred_guard_mutex); 1194 return -ENOMEM; 1195 } 1196 1197 void free_bprm(struct linux_binprm *bprm) 1198 { 1199 free_arg_pages(bprm); 1200 if (bprm->cred) { 1201 mutex_unlock(¤t->signal->cred_guard_mutex); 1202 abort_creds(bprm->cred); 1203 } 1204 kfree(bprm); 1205 } 1206 1207 /* 1208 * install the new credentials for this executable 1209 */ 1210 void install_exec_creds(struct linux_binprm *bprm) 1211 { 1212 security_bprm_committing_creds(bprm); 1213 1214 commit_creds(bprm->cred); 1215 bprm->cred = NULL; 1216 /* 1217 * cred_guard_mutex must be held at least to this point to prevent 1218 * ptrace_attach() from altering our determination of the task's 1219 * credentials; any time after this it may be unlocked. 1220 */ 1221 security_bprm_committed_creds(bprm); 1222 mutex_unlock(¤t->signal->cred_guard_mutex); 1223 } 1224 EXPORT_SYMBOL(install_exec_creds); 1225 1226 /* 1227 * determine how safe it is to execute the proposed program 1228 * - the caller must hold ->cred_guard_mutex to protect against 1229 * PTRACE_ATTACH 1230 */ 1231 static int check_unsafe_exec(struct linux_binprm *bprm) 1232 { 1233 struct task_struct *p = current, *t; 1234 unsigned n_fs; 1235 int res = 0; 1236 1237 if (p->ptrace) { 1238 if (p->ptrace & PT_PTRACE_CAP) 1239 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1240 else 1241 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1242 } 1243 1244 /* 1245 * This isn't strictly necessary, but it makes it harder for LSMs to 1246 * mess up. 1247 */ 1248 if (current->no_new_privs) 1249 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1250 1251 n_fs = 1; 1252 spin_lock(&p->fs->lock); 1253 rcu_read_lock(); 1254 for (t = next_thread(p); t != p; t = next_thread(t)) { 1255 if (t->fs == p->fs) 1256 n_fs++; 1257 } 1258 rcu_read_unlock(); 1259 1260 if (p->fs->users > n_fs) { 1261 bprm->unsafe |= LSM_UNSAFE_SHARE; 1262 } else { 1263 res = -EAGAIN; 1264 if (!p->fs->in_exec) { 1265 p->fs->in_exec = 1; 1266 res = 1; 1267 } 1268 } 1269 spin_unlock(&p->fs->lock); 1270 1271 return res; 1272 } 1273 1274 /* 1275 * Fill the binprm structure from the inode. 1276 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1277 * 1278 * This may be called multiple times for binary chains (scripts for example). 1279 */ 1280 int prepare_binprm(struct linux_binprm *bprm) 1281 { 1282 umode_t mode; 1283 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1284 int retval; 1285 1286 mode = inode->i_mode; 1287 if (bprm->file->f_op == NULL) 1288 return -EACCES; 1289 1290 /* clear any previous set[ug]id data from a previous binary */ 1291 bprm->cred->euid = current_euid(); 1292 bprm->cred->egid = current_egid(); 1293 1294 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1295 !current->no_new_privs) { 1296 /* Set-uid? */ 1297 if (mode & S_ISUID) { 1298 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid)) 1299 return -EPERM; 1300 bprm->per_clear |= PER_CLEAR_ON_SETID; 1301 bprm->cred->euid = inode->i_uid; 1302 1303 } 1304 1305 /* Set-gid? */ 1306 /* 1307 * If setgid is set but no group execute bit then this 1308 * is a candidate for mandatory locking, not a setgid 1309 * executable. 1310 */ 1311 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1312 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) 1313 return -EPERM; 1314 bprm->per_clear |= PER_CLEAR_ON_SETID; 1315 bprm->cred->egid = inode->i_gid; 1316 } 1317 } 1318 1319 /* fill in binprm security blob */ 1320 retval = security_bprm_set_creds(bprm); 1321 if (retval) 1322 return retval; 1323 bprm->cred_prepared = 1; 1324 1325 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1326 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1327 } 1328 1329 EXPORT_SYMBOL(prepare_binprm); 1330 1331 /* 1332 * Arguments are '\0' separated strings found at the location bprm->p 1333 * points to; chop off the first by relocating brpm->p to right after 1334 * the first '\0' encountered. 1335 */ 1336 int remove_arg_zero(struct linux_binprm *bprm) 1337 { 1338 int ret = 0; 1339 unsigned long offset; 1340 char *kaddr; 1341 struct page *page; 1342 1343 if (!bprm->argc) 1344 return 0; 1345 1346 do { 1347 offset = bprm->p & ~PAGE_MASK; 1348 page = get_arg_page(bprm, bprm->p, 0); 1349 if (!page) { 1350 ret = -EFAULT; 1351 goto out; 1352 } 1353 kaddr = kmap_atomic(page); 1354 1355 for (; offset < PAGE_SIZE && kaddr[offset]; 1356 offset++, bprm->p++) 1357 ; 1358 1359 kunmap_atomic(kaddr); 1360 put_arg_page(page); 1361 1362 if (offset == PAGE_SIZE) 1363 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1364 } while (offset == PAGE_SIZE); 1365 1366 bprm->p++; 1367 bprm->argc--; 1368 ret = 0; 1369 1370 out: 1371 return ret; 1372 } 1373 EXPORT_SYMBOL(remove_arg_zero); 1374 1375 /* 1376 * cycle the list of binary formats handler, until one recognizes the image 1377 */ 1378 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1379 { 1380 unsigned int depth = bprm->recursion_depth; 1381 int try,retval; 1382 struct linux_binfmt *fmt; 1383 pid_t old_pid, old_vpid; 1384 1385 retval = security_bprm_check(bprm); 1386 if (retval) 1387 return retval; 1388 1389 retval = audit_bprm(bprm); 1390 if (retval) 1391 return retval; 1392 1393 /* Need to fetch pid before load_binary changes it */ 1394 old_pid = current->pid; 1395 rcu_read_lock(); 1396 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1397 rcu_read_unlock(); 1398 1399 retval = -ENOENT; 1400 for (try=0; try<2; try++) { 1401 read_lock(&binfmt_lock); 1402 list_for_each_entry(fmt, &formats, lh) { 1403 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1404 if (!fn) 1405 continue; 1406 if (!try_module_get(fmt->module)) 1407 continue; 1408 read_unlock(&binfmt_lock); 1409 retval = fn(bprm, regs); 1410 /* 1411 * Restore the depth counter to its starting value 1412 * in this call, so we don't have to rely on every 1413 * load_binary function to restore it on return. 1414 */ 1415 bprm->recursion_depth = depth; 1416 if (retval >= 0) { 1417 if (depth == 0) { 1418 trace_sched_process_exec(current, old_pid, bprm); 1419 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1420 } 1421 put_binfmt(fmt); 1422 allow_write_access(bprm->file); 1423 if (bprm->file) 1424 fput(bprm->file); 1425 bprm->file = NULL; 1426 current->did_exec = 1; 1427 proc_exec_connector(current); 1428 return retval; 1429 } 1430 read_lock(&binfmt_lock); 1431 put_binfmt(fmt); 1432 if (retval != -ENOEXEC || bprm->mm == NULL) 1433 break; 1434 if (!bprm->file) { 1435 read_unlock(&binfmt_lock); 1436 return retval; 1437 } 1438 } 1439 read_unlock(&binfmt_lock); 1440 #ifdef CONFIG_MODULES 1441 if (retval != -ENOEXEC || bprm->mm == NULL) { 1442 break; 1443 } else { 1444 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1445 if (printable(bprm->buf[0]) && 1446 printable(bprm->buf[1]) && 1447 printable(bprm->buf[2]) && 1448 printable(bprm->buf[3])) 1449 break; /* -ENOEXEC */ 1450 if (try) 1451 break; /* -ENOEXEC */ 1452 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1453 } 1454 #else 1455 break; 1456 #endif 1457 } 1458 return retval; 1459 } 1460 1461 EXPORT_SYMBOL(search_binary_handler); 1462 1463 /* 1464 * sys_execve() executes a new program. 1465 */ 1466 static int do_execve_common(const char *filename, 1467 struct user_arg_ptr argv, 1468 struct user_arg_ptr envp, 1469 struct pt_regs *regs) 1470 { 1471 struct linux_binprm *bprm; 1472 struct file *file; 1473 struct files_struct *displaced; 1474 bool clear_in_exec; 1475 int retval; 1476 const struct cred *cred = current_cred(); 1477 1478 /* 1479 * We move the actual failure in case of RLIMIT_NPROC excess from 1480 * set*uid() to execve() because too many poorly written programs 1481 * don't check setuid() return code. Here we additionally recheck 1482 * whether NPROC limit is still exceeded. 1483 */ 1484 if ((current->flags & PF_NPROC_EXCEEDED) && 1485 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) { 1486 retval = -EAGAIN; 1487 goto out_ret; 1488 } 1489 1490 /* We're below the limit (still or again), so we don't want to make 1491 * further execve() calls fail. */ 1492 current->flags &= ~PF_NPROC_EXCEEDED; 1493 1494 retval = unshare_files(&displaced); 1495 if (retval) 1496 goto out_ret; 1497 1498 retval = -ENOMEM; 1499 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1500 if (!bprm) 1501 goto out_files; 1502 1503 retval = prepare_bprm_creds(bprm); 1504 if (retval) 1505 goto out_free; 1506 1507 retval = check_unsafe_exec(bprm); 1508 if (retval < 0) 1509 goto out_free; 1510 clear_in_exec = retval; 1511 current->in_execve = 1; 1512 1513 file = open_exec(filename); 1514 retval = PTR_ERR(file); 1515 if (IS_ERR(file)) 1516 goto out_unmark; 1517 1518 sched_exec(); 1519 1520 bprm->file = file; 1521 bprm->filename = filename; 1522 bprm->interp = filename; 1523 1524 retval = bprm_mm_init(bprm); 1525 if (retval) 1526 goto out_file; 1527 1528 bprm->argc = count(argv, MAX_ARG_STRINGS); 1529 if ((retval = bprm->argc) < 0) 1530 goto out; 1531 1532 bprm->envc = count(envp, MAX_ARG_STRINGS); 1533 if ((retval = bprm->envc) < 0) 1534 goto out; 1535 1536 retval = prepare_binprm(bprm); 1537 if (retval < 0) 1538 goto out; 1539 1540 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1541 if (retval < 0) 1542 goto out; 1543 1544 bprm->exec = bprm->p; 1545 retval = copy_strings(bprm->envc, envp, bprm); 1546 if (retval < 0) 1547 goto out; 1548 1549 retval = copy_strings(bprm->argc, argv, bprm); 1550 if (retval < 0) 1551 goto out; 1552 1553 retval = search_binary_handler(bprm,regs); 1554 if (retval < 0) 1555 goto out; 1556 1557 /* execve succeeded */ 1558 current->fs->in_exec = 0; 1559 current->in_execve = 0; 1560 acct_update_integrals(current); 1561 free_bprm(bprm); 1562 if (displaced) 1563 put_files_struct(displaced); 1564 return retval; 1565 1566 out: 1567 if (bprm->mm) { 1568 acct_arg_size(bprm, 0); 1569 mmput(bprm->mm); 1570 } 1571 1572 out_file: 1573 if (bprm->file) { 1574 allow_write_access(bprm->file); 1575 fput(bprm->file); 1576 } 1577 1578 out_unmark: 1579 if (clear_in_exec) 1580 current->fs->in_exec = 0; 1581 current->in_execve = 0; 1582 1583 out_free: 1584 free_bprm(bprm); 1585 1586 out_files: 1587 if (displaced) 1588 reset_files_struct(displaced); 1589 out_ret: 1590 return retval; 1591 } 1592 1593 int do_execve(const char *filename, 1594 const char __user *const __user *__argv, 1595 const char __user *const __user *__envp, 1596 struct pt_regs *regs) 1597 { 1598 struct user_arg_ptr argv = { .ptr.native = __argv }; 1599 struct user_arg_ptr envp = { .ptr.native = __envp }; 1600 return do_execve_common(filename, argv, envp, regs); 1601 } 1602 1603 #ifdef CONFIG_COMPAT 1604 int compat_do_execve(char *filename, 1605 compat_uptr_t __user *__argv, 1606 compat_uptr_t __user *__envp, 1607 struct pt_regs *regs) 1608 { 1609 struct user_arg_ptr argv = { 1610 .is_compat = true, 1611 .ptr.compat = __argv, 1612 }; 1613 struct user_arg_ptr envp = { 1614 .is_compat = true, 1615 .ptr.compat = __envp, 1616 }; 1617 return do_execve_common(filename, argv, envp, regs); 1618 } 1619 #endif 1620 1621 void set_binfmt(struct linux_binfmt *new) 1622 { 1623 struct mm_struct *mm = current->mm; 1624 1625 if (mm->binfmt) 1626 module_put(mm->binfmt->module); 1627 1628 mm->binfmt = new; 1629 if (new) 1630 __module_get(new->module); 1631 } 1632 1633 EXPORT_SYMBOL(set_binfmt); 1634 1635 static int expand_corename(struct core_name *cn) 1636 { 1637 char *old_corename = cn->corename; 1638 1639 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1640 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1641 1642 if (!cn->corename) { 1643 kfree(old_corename); 1644 return -ENOMEM; 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1651 { 1652 char *cur; 1653 int need; 1654 int ret; 1655 va_list arg; 1656 1657 va_start(arg, fmt); 1658 need = vsnprintf(NULL, 0, fmt, arg); 1659 va_end(arg); 1660 1661 if (likely(need < cn->size - cn->used - 1)) 1662 goto out_printf; 1663 1664 ret = expand_corename(cn); 1665 if (ret) 1666 goto expand_fail; 1667 1668 out_printf: 1669 cur = cn->corename + cn->used; 1670 va_start(arg, fmt); 1671 vsnprintf(cur, need + 1, fmt, arg); 1672 va_end(arg); 1673 cn->used += need; 1674 return 0; 1675 1676 expand_fail: 1677 return ret; 1678 } 1679 1680 static void cn_escape(char *str) 1681 { 1682 for (; *str; str++) 1683 if (*str == '/') 1684 *str = '!'; 1685 } 1686 1687 static int cn_print_exe_file(struct core_name *cn) 1688 { 1689 struct file *exe_file; 1690 char *pathbuf, *path; 1691 int ret; 1692 1693 exe_file = get_mm_exe_file(current->mm); 1694 if (!exe_file) { 1695 char *commstart = cn->corename + cn->used; 1696 ret = cn_printf(cn, "%s (path unknown)", current->comm); 1697 cn_escape(commstart); 1698 return ret; 1699 } 1700 1701 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); 1702 if (!pathbuf) { 1703 ret = -ENOMEM; 1704 goto put_exe_file; 1705 } 1706 1707 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX); 1708 if (IS_ERR(path)) { 1709 ret = PTR_ERR(path); 1710 goto free_buf; 1711 } 1712 1713 cn_escape(path); 1714 1715 ret = cn_printf(cn, "%s", path); 1716 1717 free_buf: 1718 kfree(pathbuf); 1719 put_exe_file: 1720 fput(exe_file); 1721 return ret; 1722 } 1723 1724 /* format_corename will inspect the pattern parameter, and output a 1725 * name into corename, which must have space for at least 1726 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1727 */ 1728 static int format_corename(struct core_name *cn, long signr) 1729 { 1730 const struct cred *cred = current_cred(); 1731 const char *pat_ptr = core_pattern; 1732 int ispipe = (*pat_ptr == '|'); 1733 int pid_in_pattern = 0; 1734 int err = 0; 1735 1736 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1737 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1738 cn->used = 0; 1739 1740 if (!cn->corename) 1741 return -ENOMEM; 1742 1743 /* Repeat as long as we have more pattern to process and more output 1744 space */ 1745 while (*pat_ptr) { 1746 if (*pat_ptr != '%') { 1747 if (*pat_ptr == 0) 1748 goto out; 1749 err = cn_printf(cn, "%c", *pat_ptr++); 1750 } else { 1751 switch (*++pat_ptr) { 1752 /* single % at the end, drop that */ 1753 case 0: 1754 goto out; 1755 /* Double percent, output one percent */ 1756 case '%': 1757 err = cn_printf(cn, "%c", '%'); 1758 break; 1759 /* pid */ 1760 case 'p': 1761 pid_in_pattern = 1; 1762 err = cn_printf(cn, "%d", 1763 task_tgid_vnr(current)); 1764 break; 1765 /* uid */ 1766 case 'u': 1767 err = cn_printf(cn, "%d", cred->uid); 1768 break; 1769 /* gid */ 1770 case 'g': 1771 err = cn_printf(cn, "%d", cred->gid); 1772 break; 1773 /* signal that caused the coredump */ 1774 case 's': 1775 err = cn_printf(cn, "%ld", signr); 1776 break; 1777 /* UNIX time of coredump */ 1778 case 't': { 1779 struct timeval tv; 1780 do_gettimeofday(&tv); 1781 err = cn_printf(cn, "%lu", tv.tv_sec); 1782 break; 1783 } 1784 /* hostname */ 1785 case 'h': { 1786 char *namestart = cn->corename + cn->used; 1787 down_read(&uts_sem); 1788 err = cn_printf(cn, "%s", 1789 utsname()->nodename); 1790 up_read(&uts_sem); 1791 cn_escape(namestart); 1792 break; 1793 } 1794 /* executable */ 1795 case 'e': { 1796 char *commstart = cn->corename + cn->used; 1797 err = cn_printf(cn, "%s", current->comm); 1798 cn_escape(commstart); 1799 break; 1800 } 1801 case 'E': 1802 err = cn_print_exe_file(cn); 1803 break; 1804 /* core limit size */ 1805 case 'c': 1806 err = cn_printf(cn, "%lu", 1807 rlimit(RLIMIT_CORE)); 1808 break; 1809 default: 1810 break; 1811 } 1812 ++pat_ptr; 1813 } 1814 1815 if (err) 1816 return err; 1817 } 1818 1819 /* Backward compatibility with core_uses_pid: 1820 * 1821 * If core_pattern does not include a %p (as is the default) 1822 * and core_uses_pid is set, then .%pid will be appended to 1823 * the filename. Do not do this for piped commands. */ 1824 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1825 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1826 if (err) 1827 return err; 1828 } 1829 out: 1830 return ispipe; 1831 } 1832 1833 static int zap_process(struct task_struct *start, int exit_code) 1834 { 1835 struct task_struct *t; 1836 int nr = 0; 1837 1838 start->signal->flags = SIGNAL_GROUP_EXIT; 1839 start->signal->group_exit_code = exit_code; 1840 start->signal->group_stop_count = 0; 1841 1842 t = start; 1843 do { 1844 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1845 if (t != current && t->mm) { 1846 sigaddset(&t->pending.signal, SIGKILL); 1847 signal_wake_up(t, 1); 1848 nr++; 1849 } 1850 } while_each_thread(start, t); 1851 1852 return nr; 1853 } 1854 1855 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1856 struct core_state *core_state, int exit_code) 1857 { 1858 struct task_struct *g, *p; 1859 unsigned long flags; 1860 int nr = -EAGAIN; 1861 1862 spin_lock_irq(&tsk->sighand->siglock); 1863 if (!signal_group_exit(tsk->signal)) { 1864 mm->core_state = core_state; 1865 nr = zap_process(tsk, exit_code); 1866 } 1867 spin_unlock_irq(&tsk->sighand->siglock); 1868 if (unlikely(nr < 0)) 1869 return nr; 1870 1871 if (atomic_read(&mm->mm_users) == nr + 1) 1872 goto done; 1873 /* 1874 * We should find and kill all tasks which use this mm, and we should 1875 * count them correctly into ->nr_threads. We don't take tasklist 1876 * lock, but this is safe wrt: 1877 * 1878 * fork: 1879 * None of sub-threads can fork after zap_process(leader). All 1880 * processes which were created before this point should be 1881 * visible to zap_threads() because copy_process() adds the new 1882 * process to the tail of init_task.tasks list, and lock/unlock 1883 * of ->siglock provides a memory barrier. 1884 * 1885 * do_exit: 1886 * The caller holds mm->mmap_sem. This means that the task which 1887 * uses this mm can't pass exit_mm(), so it can't exit or clear 1888 * its ->mm. 1889 * 1890 * de_thread: 1891 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1892 * we must see either old or new leader, this does not matter. 1893 * However, it can change p->sighand, so lock_task_sighand(p) 1894 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1895 * it can't fail. 1896 * 1897 * Note also that "g" can be the old leader with ->mm == NULL 1898 * and already unhashed and thus removed from ->thread_group. 1899 * This is OK, __unhash_process()->list_del_rcu() does not 1900 * clear the ->next pointer, we will find the new leader via 1901 * next_thread(). 1902 */ 1903 rcu_read_lock(); 1904 for_each_process(g) { 1905 if (g == tsk->group_leader) 1906 continue; 1907 if (g->flags & PF_KTHREAD) 1908 continue; 1909 p = g; 1910 do { 1911 if (p->mm) { 1912 if (unlikely(p->mm == mm)) { 1913 lock_task_sighand(p, &flags); 1914 nr += zap_process(p, exit_code); 1915 unlock_task_sighand(p, &flags); 1916 } 1917 break; 1918 } 1919 } while_each_thread(g, p); 1920 } 1921 rcu_read_unlock(); 1922 done: 1923 atomic_set(&core_state->nr_threads, nr); 1924 return nr; 1925 } 1926 1927 static int coredump_wait(int exit_code, struct core_state *core_state) 1928 { 1929 struct task_struct *tsk = current; 1930 struct mm_struct *mm = tsk->mm; 1931 int core_waiters = -EBUSY; 1932 1933 init_completion(&core_state->startup); 1934 core_state->dumper.task = tsk; 1935 core_state->dumper.next = NULL; 1936 1937 down_write(&mm->mmap_sem); 1938 if (!mm->core_state) 1939 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1940 up_write(&mm->mmap_sem); 1941 1942 if (core_waiters > 0) { 1943 struct core_thread *ptr; 1944 1945 wait_for_completion(&core_state->startup); 1946 /* 1947 * Wait for all the threads to become inactive, so that 1948 * all the thread context (extended register state, like 1949 * fpu etc) gets copied to the memory. 1950 */ 1951 ptr = core_state->dumper.next; 1952 while (ptr != NULL) { 1953 wait_task_inactive(ptr->task, 0); 1954 ptr = ptr->next; 1955 } 1956 } 1957 1958 return core_waiters; 1959 } 1960 1961 static void coredump_finish(struct mm_struct *mm) 1962 { 1963 struct core_thread *curr, *next; 1964 struct task_struct *task; 1965 1966 next = mm->core_state->dumper.next; 1967 while ((curr = next) != NULL) { 1968 next = curr->next; 1969 task = curr->task; 1970 /* 1971 * see exit_mm(), curr->task must not see 1972 * ->task == NULL before we read ->next. 1973 */ 1974 smp_mb(); 1975 curr->task = NULL; 1976 wake_up_process(task); 1977 } 1978 1979 mm->core_state = NULL; 1980 } 1981 1982 /* 1983 * set_dumpable converts traditional three-value dumpable to two flags and 1984 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1985 * these bits are not changed atomically. So get_dumpable can observe the 1986 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1987 * return either old dumpable or new one by paying attention to the order of 1988 * modifying the bits. 1989 * 1990 * dumpable | mm->flags (binary) 1991 * old new | initial interim final 1992 * ---------+----------------------- 1993 * 0 1 | 00 01 01 1994 * 0 2 | 00 10(*) 11 1995 * 1 0 | 01 00 00 1996 * 1 2 | 01 11 11 1997 * 2 0 | 11 10(*) 00 1998 * 2 1 | 11 11 01 1999 * 2000 * (*) get_dumpable regards interim value of 10 as 11. 2001 */ 2002 void set_dumpable(struct mm_struct *mm, int value) 2003 { 2004 switch (value) { 2005 case SUID_DUMPABLE_DISABLED: 2006 clear_bit(MMF_DUMPABLE, &mm->flags); 2007 smp_wmb(); 2008 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 2009 break; 2010 case SUID_DUMPABLE_ENABLED: 2011 set_bit(MMF_DUMPABLE, &mm->flags); 2012 smp_wmb(); 2013 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 2014 break; 2015 case SUID_DUMPABLE_SAFE: 2016 set_bit(MMF_DUMP_SECURELY, &mm->flags); 2017 smp_wmb(); 2018 set_bit(MMF_DUMPABLE, &mm->flags); 2019 break; 2020 } 2021 } 2022 2023 static int __get_dumpable(unsigned long mm_flags) 2024 { 2025 int ret; 2026 2027 ret = mm_flags & MMF_DUMPABLE_MASK; 2028 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret; 2029 } 2030 2031 int get_dumpable(struct mm_struct *mm) 2032 { 2033 return __get_dumpable(mm->flags); 2034 } 2035 2036 static void wait_for_dump_helpers(struct file *file) 2037 { 2038 struct pipe_inode_info *pipe; 2039 2040 pipe = file->f_path.dentry->d_inode->i_pipe; 2041 2042 pipe_lock(pipe); 2043 pipe->readers++; 2044 pipe->writers--; 2045 2046 while ((pipe->readers > 1) && (!signal_pending(current))) { 2047 wake_up_interruptible_sync(&pipe->wait); 2048 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 2049 pipe_wait(pipe); 2050 } 2051 2052 pipe->readers--; 2053 pipe->writers++; 2054 pipe_unlock(pipe); 2055 2056 } 2057 2058 2059 /* 2060 * umh_pipe_setup 2061 * helper function to customize the process used 2062 * to collect the core in userspace. Specifically 2063 * it sets up a pipe and installs it as fd 0 (stdin) 2064 * for the process. Returns 0 on success, or 2065 * PTR_ERR on failure. 2066 * Note that it also sets the core limit to 1. This 2067 * is a special value that we use to trap recursive 2068 * core dumps 2069 */ 2070 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 2071 { 2072 struct file *files[2]; 2073 struct fdtable *fdt; 2074 struct coredump_params *cp = (struct coredump_params *)info->data; 2075 struct files_struct *cf = current->files; 2076 int err = create_pipe_files(files, 0); 2077 if (err) 2078 return err; 2079 2080 cp->file = files[1]; 2081 2082 sys_close(0); 2083 fd_install(0, files[0]); 2084 spin_lock(&cf->file_lock); 2085 fdt = files_fdtable(cf); 2086 __set_open_fd(0, fdt); 2087 __clear_close_on_exec(0, fdt); 2088 spin_unlock(&cf->file_lock); 2089 2090 /* and disallow core files too */ 2091 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 2092 2093 return 0; 2094 } 2095 2096 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 2097 { 2098 struct core_state core_state; 2099 struct core_name cn; 2100 struct mm_struct *mm = current->mm; 2101 struct linux_binfmt * binfmt; 2102 const struct cred *old_cred; 2103 struct cred *cred; 2104 int retval = 0; 2105 int flag = 0; 2106 int ispipe; 2107 bool need_nonrelative = false; 2108 static atomic_t core_dump_count = ATOMIC_INIT(0); 2109 struct coredump_params cprm = { 2110 .signr = signr, 2111 .regs = regs, 2112 .limit = rlimit(RLIMIT_CORE), 2113 /* 2114 * We must use the same mm->flags while dumping core to avoid 2115 * inconsistency of bit flags, since this flag is not protected 2116 * by any locks. 2117 */ 2118 .mm_flags = mm->flags, 2119 }; 2120 2121 audit_core_dumps(signr); 2122 2123 binfmt = mm->binfmt; 2124 if (!binfmt || !binfmt->core_dump) 2125 goto fail; 2126 if (!__get_dumpable(cprm.mm_flags)) 2127 goto fail; 2128 2129 cred = prepare_creds(); 2130 if (!cred) 2131 goto fail; 2132 /* 2133 * We cannot trust fsuid as being the "true" uid of the process 2134 * nor do we know its entire history. We only know it was tainted 2135 * so we dump it as root in mode 2, and only into a controlled 2136 * environment (pipe handler or fully qualified path). 2137 */ 2138 if (__get_dumpable(cprm.mm_flags) == SUID_DUMPABLE_SAFE) { 2139 /* Setuid core dump mode */ 2140 flag = O_EXCL; /* Stop rewrite attacks */ 2141 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 2142 need_nonrelative = true; 2143 } 2144 2145 retval = coredump_wait(exit_code, &core_state); 2146 if (retval < 0) 2147 goto fail_creds; 2148 2149 old_cred = override_creds(cred); 2150 2151 /* 2152 * Clear any false indication of pending signals that might 2153 * be seen by the filesystem code called to write the core file. 2154 */ 2155 clear_thread_flag(TIF_SIGPENDING); 2156 2157 ispipe = format_corename(&cn, signr); 2158 2159 if (ispipe) { 2160 int dump_count; 2161 char **helper_argv; 2162 2163 if (ispipe < 0) { 2164 printk(KERN_WARNING "format_corename failed\n"); 2165 printk(KERN_WARNING "Aborting core\n"); 2166 goto fail_corename; 2167 } 2168 2169 if (cprm.limit == 1) { 2170 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 2171 * 2172 * Normally core limits are irrelevant to pipes, since 2173 * we're not writing to the file system, but we use 2174 * cprm.limit of 1 here as a speacial value, this is a 2175 * consistent way to catch recursive crashes. 2176 * We can still crash if the core_pattern binary sets 2177 * RLIM_CORE = !1, but it runs as root, and can do 2178 * lots of stupid things. 2179 * 2180 * Note that we use task_tgid_vnr here to grab the pid 2181 * of the process group leader. That way we get the 2182 * right pid if a thread in a multi-threaded 2183 * core_pattern process dies. 2184 */ 2185 printk(KERN_WARNING 2186 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2187 task_tgid_vnr(current), current->comm); 2188 printk(KERN_WARNING "Aborting core\n"); 2189 goto fail_unlock; 2190 } 2191 cprm.limit = RLIM_INFINITY; 2192 2193 dump_count = atomic_inc_return(&core_dump_count); 2194 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2195 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2196 task_tgid_vnr(current), current->comm); 2197 printk(KERN_WARNING "Skipping core dump\n"); 2198 goto fail_dropcount; 2199 } 2200 2201 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2202 if (!helper_argv) { 2203 printk(KERN_WARNING "%s failed to allocate memory\n", 2204 __func__); 2205 goto fail_dropcount; 2206 } 2207 2208 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2209 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2210 NULL, &cprm); 2211 argv_free(helper_argv); 2212 if (retval) { 2213 printk(KERN_INFO "Core dump to %s pipe failed\n", 2214 cn.corename); 2215 goto close_fail; 2216 } 2217 } else { 2218 struct inode *inode; 2219 2220 if (cprm.limit < binfmt->min_coredump) 2221 goto fail_unlock; 2222 2223 if (need_nonrelative && cn.corename[0] != '/') { 2224 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 2225 "to fully qualified path!\n", 2226 task_tgid_vnr(current), current->comm); 2227 printk(KERN_WARNING "Skipping core dump\n"); 2228 goto fail_unlock; 2229 } 2230 2231 cprm.file = filp_open(cn.corename, 2232 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2233 0600); 2234 if (IS_ERR(cprm.file)) 2235 goto fail_unlock; 2236 2237 inode = cprm.file->f_path.dentry->d_inode; 2238 if (inode->i_nlink > 1) 2239 goto close_fail; 2240 if (d_unhashed(cprm.file->f_path.dentry)) 2241 goto close_fail; 2242 /* 2243 * AK: actually i see no reason to not allow this for named 2244 * pipes etc, but keep the previous behaviour for now. 2245 */ 2246 if (!S_ISREG(inode->i_mode)) 2247 goto close_fail; 2248 /* 2249 * Dont allow local users get cute and trick others to coredump 2250 * into their pre-created files. 2251 */ 2252 if (!uid_eq(inode->i_uid, current_fsuid())) 2253 goto close_fail; 2254 if (!cprm.file->f_op || !cprm.file->f_op->write) 2255 goto close_fail; 2256 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2257 goto close_fail; 2258 } 2259 2260 retval = binfmt->core_dump(&cprm); 2261 if (retval) 2262 current->signal->group_exit_code |= 0x80; 2263 2264 if (ispipe && core_pipe_limit) 2265 wait_for_dump_helpers(cprm.file); 2266 close_fail: 2267 if (cprm.file) 2268 filp_close(cprm.file, NULL); 2269 fail_dropcount: 2270 if (ispipe) 2271 atomic_dec(&core_dump_count); 2272 fail_unlock: 2273 kfree(cn.corename); 2274 fail_corename: 2275 coredump_finish(mm); 2276 revert_creds(old_cred); 2277 fail_creds: 2278 put_cred(cred); 2279 fail: 2280 return; 2281 } 2282 2283 /* 2284 * Core dumping helper functions. These are the only things you should 2285 * do on a core-file: use only these functions to write out all the 2286 * necessary info. 2287 */ 2288 int dump_write(struct file *file, const void *addr, int nr) 2289 { 2290 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2291 } 2292 EXPORT_SYMBOL(dump_write); 2293 2294 int dump_seek(struct file *file, loff_t off) 2295 { 2296 int ret = 1; 2297 2298 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2299 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2300 return 0; 2301 } else { 2302 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2303 2304 if (!buf) 2305 return 0; 2306 while (off > 0) { 2307 unsigned long n = off; 2308 2309 if (n > PAGE_SIZE) 2310 n = PAGE_SIZE; 2311 if (!dump_write(file, buf, n)) { 2312 ret = 0; 2313 break; 2314 } 2315 off -= n; 2316 } 2317 free_page((unsigned long)buf); 2318 } 2319 return ret; 2320 } 2321 EXPORT_SYMBOL(dump_seek); 2322