xref: /linux/fs/exec.c (revision cfbf1eecd70db9a7a49c42a0613c00f7a2a86dfb)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int register_binfmt(struct linux_binfmt * fmt)
73 {
74 	if (!fmt)
75 		return -EINVAL;
76 	write_lock(&binfmt_lock);
77 	list_add(&fmt->lh, &formats);
78 	write_unlock(&binfmt_lock);
79 	return 0;
80 }
81 
82 EXPORT_SYMBOL(register_binfmt);
83 
84 void unregister_binfmt(struct linux_binfmt * fmt)
85 {
86 	write_lock(&binfmt_lock);
87 	list_del(&fmt->lh);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(unregister_binfmt);
92 
93 static inline void put_binfmt(struct linux_binfmt * fmt)
94 {
95 	module_put(fmt->module);
96 }
97 
98 /*
99  * Note that a shared library must be both readable and executable due to
100  * security reasons.
101  *
102  * Also note that we take the address to load from from the file itself.
103  */
104 SYSCALL_DEFINE1(uselib, const char __user *, library)
105 {
106 	struct file *file;
107 	struct nameidata nd;
108 	char *tmp = getname(library);
109 	int error = PTR_ERR(tmp);
110 
111 	if (!IS_ERR(tmp)) {
112 		error = path_lookup_open(AT_FDCWD, tmp,
113 					 LOOKUP_FOLLOW, &nd,
114 					 FMODE_READ|FMODE_EXEC);
115 		putname(tmp);
116 	}
117 	if (error)
118 		goto out;
119 
120 	error = -EINVAL;
121 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
122 		goto exit;
123 
124 	error = -EACCES;
125 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
126 		goto exit;
127 
128 	error = inode_permission(nd.path.dentry->d_inode,
129 				 MAY_READ | MAY_EXEC | MAY_OPEN);
130 	if (error)
131 		goto exit;
132 	error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
133 	if (error)
134 		goto exit;
135 
136 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
137 	error = PTR_ERR(file);
138 	if (IS_ERR(file))
139 		goto out;
140 
141 	fsnotify_open(file->f_path.dentry);
142 
143 	error = -ENOEXEC;
144 	if(file->f_op) {
145 		struct linux_binfmt * fmt;
146 
147 		read_lock(&binfmt_lock);
148 		list_for_each_entry(fmt, &formats, lh) {
149 			if (!fmt->load_shlib)
150 				continue;
151 			if (!try_module_get(fmt->module))
152 				continue;
153 			read_unlock(&binfmt_lock);
154 			error = fmt->load_shlib(file);
155 			read_lock(&binfmt_lock);
156 			put_binfmt(fmt);
157 			if (error != -ENOEXEC)
158 				break;
159 		}
160 		read_unlock(&binfmt_lock);
161 	}
162 	fput(file);
163 out:
164   	return error;
165 exit:
166 	release_open_intent(&nd);
167 	path_put(&nd.path);
168 	goto out;
169 }
170 
171 #ifdef CONFIG_MMU
172 
173 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
174 		int write)
175 {
176 	struct page *page;
177 	int ret;
178 
179 #ifdef CONFIG_STACK_GROWSUP
180 	if (write) {
181 		ret = expand_stack_downwards(bprm->vma, pos);
182 		if (ret < 0)
183 			return NULL;
184 	}
185 #endif
186 	ret = get_user_pages(current, bprm->mm, pos,
187 			1, write, 1, &page, NULL);
188 	if (ret <= 0)
189 		return NULL;
190 
191 	if (write) {
192 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
193 		struct rlimit *rlim;
194 
195 		/*
196 		 * We've historically supported up to 32 pages (ARG_MAX)
197 		 * of argument strings even with small stacks
198 		 */
199 		if (size <= ARG_MAX)
200 			return page;
201 
202 		/*
203 		 * Limit to 1/4-th the stack size for the argv+env strings.
204 		 * This ensures that:
205 		 *  - the remaining binfmt code will not run out of stack space,
206 		 *  - the program will have a reasonable amount of stack left
207 		 *    to work from.
208 		 */
209 		rlim = current->signal->rlim;
210 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
211 			put_page(page);
212 			return NULL;
213 		}
214 	}
215 
216 	return page;
217 }
218 
219 static void put_arg_page(struct page *page)
220 {
221 	put_page(page);
222 }
223 
224 static void free_arg_page(struct linux_binprm *bprm, int i)
225 {
226 }
227 
228 static void free_arg_pages(struct linux_binprm *bprm)
229 {
230 }
231 
232 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
233 		struct page *page)
234 {
235 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
236 }
237 
238 static int __bprm_mm_init(struct linux_binprm *bprm)
239 {
240 	int err;
241 	struct vm_area_struct *vma = NULL;
242 	struct mm_struct *mm = bprm->mm;
243 
244 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
245 	if (!vma)
246 		return -ENOMEM;
247 
248 	down_write(&mm->mmap_sem);
249 	vma->vm_mm = mm;
250 
251 	/*
252 	 * Place the stack at the largest stack address the architecture
253 	 * supports. Later, we'll move this to an appropriate place. We don't
254 	 * use STACK_TOP because that can depend on attributes which aren't
255 	 * configured yet.
256 	 */
257 	vma->vm_end = STACK_TOP_MAX;
258 	vma->vm_start = vma->vm_end - PAGE_SIZE;
259 	vma->vm_flags = VM_STACK_FLAGS;
260 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
261 	err = insert_vm_struct(mm, vma);
262 	if (err)
263 		goto err;
264 
265 	mm->stack_vm = mm->total_vm = 1;
266 	up_write(&mm->mmap_sem);
267 	bprm->p = vma->vm_end - sizeof(void *);
268 	return 0;
269 err:
270 	up_write(&mm->mmap_sem);
271 	bprm->vma = NULL;
272 	kmem_cache_free(vm_area_cachep, vma);
273 	return err;
274 }
275 
276 static bool valid_arg_len(struct linux_binprm *bprm, long len)
277 {
278 	return len <= MAX_ARG_STRLEN;
279 }
280 
281 #else
282 
283 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
284 		int write)
285 {
286 	struct page *page;
287 
288 	page = bprm->page[pos / PAGE_SIZE];
289 	if (!page && write) {
290 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
291 		if (!page)
292 			return NULL;
293 		bprm->page[pos / PAGE_SIZE] = page;
294 	}
295 
296 	return page;
297 }
298 
299 static void put_arg_page(struct page *page)
300 {
301 }
302 
303 static void free_arg_page(struct linux_binprm *bprm, int i)
304 {
305 	if (bprm->page[i]) {
306 		__free_page(bprm->page[i]);
307 		bprm->page[i] = NULL;
308 	}
309 }
310 
311 static void free_arg_pages(struct linux_binprm *bprm)
312 {
313 	int i;
314 
315 	for (i = 0; i < MAX_ARG_PAGES; i++)
316 		free_arg_page(bprm, i);
317 }
318 
319 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
320 		struct page *page)
321 {
322 }
323 
324 static int __bprm_mm_init(struct linux_binprm *bprm)
325 {
326 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
327 	return 0;
328 }
329 
330 static bool valid_arg_len(struct linux_binprm *bprm, long len)
331 {
332 	return len <= bprm->p;
333 }
334 
335 #endif /* CONFIG_MMU */
336 
337 /*
338  * Create a new mm_struct and populate it with a temporary stack
339  * vm_area_struct.  We don't have enough context at this point to set the stack
340  * flags, permissions, and offset, so we use temporary values.  We'll update
341  * them later in setup_arg_pages().
342  */
343 int bprm_mm_init(struct linux_binprm *bprm)
344 {
345 	int err;
346 	struct mm_struct *mm = NULL;
347 
348 	bprm->mm = mm = mm_alloc();
349 	err = -ENOMEM;
350 	if (!mm)
351 		goto err;
352 
353 	err = init_new_context(current, mm);
354 	if (err)
355 		goto err;
356 
357 	err = __bprm_mm_init(bprm);
358 	if (err)
359 		goto err;
360 
361 	return 0;
362 
363 err:
364 	if (mm) {
365 		bprm->mm = NULL;
366 		mmdrop(mm);
367 	}
368 
369 	return err;
370 }
371 
372 /*
373  * count() counts the number of strings in array ARGV.
374  */
375 static int count(char __user * __user * argv, int max)
376 {
377 	int i = 0;
378 
379 	if (argv != NULL) {
380 		for (;;) {
381 			char __user * p;
382 
383 			if (get_user(p, argv))
384 				return -EFAULT;
385 			if (!p)
386 				break;
387 			argv++;
388 			if (i++ >= max)
389 				return -E2BIG;
390 			cond_resched();
391 		}
392 	}
393 	return i;
394 }
395 
396 /*
397  * 'copy_strings()' copies argument/environment strings from the old
398  * processes's memory to the new process's stack.  The call to get_user_pages()
399  * ensures the destination page is created and not swapped out.
400  */
401 static int copy_strings(int argc, char __user * __user * argv,
402 			struct linux_binprm *bprm)
403 {
404 	struct page *kmapped_page = NULL;
405 	char *kaddr = NULL;
406 	unsigned long kpos = 0;
407 	int ret;
408 
409 	while (argc-- > 0) {
410 		char __user *str;
411 		int len;
412 		unsigned long pos;
413 
414 		if (get_user(str, argv+argc) ||
415 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
416 			ret = -EFAULT;
417 			goto out;
418 		}
419 
420 		if (!valid_arg_len(bprm, len)) {
421 			ret = -E2BIG;
422 			goto out;
423 		}
424 
425 		/* We're going to work our way backwords. */
426 		pos = bprm->p;
427 		str += len;
428 		bprm->p -= len;
429 
430 		while (len > 0) {
431 			int offset, bytes_to_copy;
432 
433 			offset = pos % PAGE_SIZE;
434 			if (offset == 0)
435 				offset = PAGE_SIZE;
436 
437 			bytes_to_copy = offset;
438 			if (bytes_to_copy > len)
439 				bytes_to_copy = len;
440 
441 			offset -= bytes_to_copy;
442 			pos -= bytes_to_copy;
443 			str -= bytes_to_copy;
444 			len -= bytes_to_copy;
445 
446 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
447 				struct page *page;
448 
449 				page = get_arg_page(bprm, pos, 1);
450 				if (!page) {
451 					ret = -E2BIG;
452 					goto out;
453 				}
454 
455 				if (kmapped_page) {
456 					flush_kernel_dcache_page(kmapped_page);
457 					kunmap(kmapped_page);
458 					put_arg_page(kmapped_page);
459 				}
460 				kmapped_page = page;
461 				kaddr = kmap(kmapped_page);
462 				kpos = pos & PAGE_MASK;
463 				flush_arg_page(bprm, kpos, kmapped_page);
464 			}
465 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
466 				ret = -EFAULT;
467 				goto out;
468 			}
469 		}
470 	}
471 	ret = 0;
472 out:
473 	if (kmapped_page) {
474 		flush_kernel_dcache_page(kmapped_page);
475 		kunmap(kmapped_page);
476 		put_arg_page(kmapped_page);
477 	}
478 	return ret;
479 }
480 
481 /*
482  * Like copy_strings, but get argv and its values from kernel memory.
483  */
484 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
485 {
486 	int r;
487 	mm_segment_t oldfs = get_fs();
488 	set_fs(KERNEL_DS);
489 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
490 	set_fs(oldfs);
491 	return r;
492 }
493 EXPORT_SYMBOL(copy_strings_kernel);
494 
495 #ifdef CONFIG_MMU
496 
497 /*
498  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
499  * the binfmt code determines where the new stack should reside, we shift it to
500  * its final location.  The process proceeds as follows:
501  *
502  * 1) Use shift to calculate the new vma endpoints.
503  * 2) Extend vma to cover both the old and new ranges.  This ensures the
504  *    arguments passed to subsequent functions are consistent.
505  * 3) Move vma's page tables to the new range.
506  * 4) Free up any cleared pgd range.
507  * 5) Shrink the vma to cover only the new range.
508  */
509 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
510 {
511 	struct mm_struct *mm = vma->vm_mm;
512 	unsigned long old_start = vma->vm_start;
513 	unsigned long old_end = vma->vm_end;
514 	unsigned long length = old_end - old_start;
515 	unsigned long new_start = old_start - shift;
516 	unsigned long new_end = old_end - shift;
517 	struct mmu_gather *tlb;
518 
519 	BUG_ON(new_start > new_end);
520 
521 	/*
522 	 * ensure there are no vmas between where we want to go
523 	 * and where we are
524 	 */
525 	if (vma != find_vma(mm, new_start))
526 		return -EFAULT;
527 
528 	/*
529 	 * cover the whole range: [new_start, old_end)
530 	 */
531 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
532 
533 	/*
534 	 * move the page tables downwards, on failure we rely on
535 	 * process cleanup to remove whatever mess we made.
536 	 */
537 	if (length != move_page_tables(vma, old_start,
538 				       vma, new_start, length))
539 		return -ENOMEM;
540 
541 	lru_add_drain();
542 	tlb = tlb_gather_mmu(mm, 0);
543 	if (new_end > old_start) {
544 		/*
545 		 * when the old and new regions overlap clear from new_end.
546 		 */
547 		free_pgd_range(tlb, new_end, old_end, new_end,
548 			vma->vm_next ? vma->vm_next->vm_start : 0);
549 	} else {
550 		/*
551 		 * otherwise, clean from old_start; this is done to not touch
552 		 * the address space in [new_end, old_start) some architectures
553 		 * have constraints on va-space that make this illegal (IA64) -
554 		 * for the others its just a little faster.
555 		 */
556 		free_pgd_range(tlb, old_start, old_end, new_end,
557 			vma->vm_next ? vma->vm_next->vm_start : 0);
558 	}
559 	tlb_finish_mmu(tlb, new_end, old_end);
560 
561 	/*
562 	 * shrink the vma to just the new range.
563 	 */
564 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
565 
566 	return 0;
567 }
568 
569 #define EXTRA_STACK_VM_PAGES	20	/* random */
570 
571 /*
572  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
573  * the stack is optionally relocated, and some extra space is added.
574  */
575 int setup_arg_pages(struct linux_binprm *bprm,
576 		    unsigned long stack_top,
577 		    int executable_stack)
578 {
579 	unsigned long ret;
580 	unsigned long stack_shift;
581 	struct mm_struct *mm = current->mm;
582 	struct vm_area_struct *vma = bprm->vma;
583 	struct vm_area_struct *prev = NULL;
584 	unsigned long vm_flags;
585 	unsigned long stack_base;
586 
587 #ifdef CONFIG_STACK_GROWSUP
588 	/* Limit stack size to 1GB */
589 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
590 	if (stack_base > (1 << 30))
591 		stack_base = 1 << 30;
592 
593 	/* Make sure we didn't let the argument array grow too large. */
594 	if (vma->vm_end - vma->vm_start > stack_base)
595 		return -ENOMEM;
596 
597 	stack_base = PAGE_ALIGN(stack_top - stack_base);
598 
599 	stack_shift = vma->vm_start - stack_base;
600 	mm->arg_start = bprm->p - stack_shift;
601 	bprm->p = vma->vm_end - stack_shift;
602 #else
603 	stack_top = arch_align_stack(stack_top);
604 	stack_top = PAGE_ALIGN(stack_top);
605 	stack_shift = vma->vm_end - stack_top;
606 
607 	bprm->p -= stack_shift;
608 	mm->arg_start = bprm->p;
609 #endif
610 
611 	if (bprm->loader)
612 		bprm->loader -= stack_shift;
613 	bprm->exec -= stack_shift;
614 
615 	down_write(&mm->mmap_sem);
616 	vm_flags = VM_STACK_FLAGS;
617 
618 	/*
619 	 * Adjust stack execute permissions; explicitly enable for
620 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
621 	 * (arch default) otherwise.
622 	 */
623 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
624 		vm_flags |= VM_EXEC;
625 	else if (executable_stack == EXSTACK_DISABLE_X)
626 		vm_flags &= ~VM_EXEC;
627 	vm_flags |= mm->def_flags;
628 
629 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
630 			vm_flags);
631 	if (ret)
632 		goto out_unlock;
633 	BUG_ON(prev != vma);
634 
635 	/* Move stack pages down in memory. */
636 	if (stack_shift) {
637 		ret = shift_arg_pages(vma, stack_shift);
638 		if (ret) {
639 			up_write(&mm->mmap_sem);
640 			return ret;
641 		}
642 	}
643 
644 #ifdef CONFIG_STACK_GROWSUP
645 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
646 #else
647 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
648 #endif
649 	ret = expand_stack(vma, stack_base);
650 	if (ret)
651 		ret = -EFAULT;
652 
653 out_unlock:
654 	up_write(&mm->mmap_sem);
655 	return 0;
656 }
657 EXPORT_SYMBOL(setup_arg_pages);
658 
659 #endif /* CONFIG_MMU */
660 
661 struct file *open_exec(const char *name)
662 {
663 	struct nameidata nd;
664 	struct file *file;
665 	int err;
666 
667 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
668 				FMODE_READ|FMODE_EXEC);
669 	if (err)
670 		goto out;
671 
672 	err = -EACCES;
673 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
674 		goto out_path_put;
675 
676 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
677 		goto out_path_put;
678 
679 	err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
680 	if (err)
681 		goto out_path_put;
682 	err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
683 	if (err)
684 		goto out_path_put;
685 
686 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
687 	if (IS_ERR(file))
688 		return file;
689 
690 	fsnotify_open(file->f_path.dentry);
691 
692 	err = deny_write_access(file);
693 	if (err) {
694 		fput(file);
695 		goto out;
696 	}
697 
698 	return file;
699 
700  out_path_put:
701 	release_open_intent(&nd);
702 	path_put(&nd.path);
703  out:
704 	return ERR_PTR(err);
705 }
706 EXPORT_SYMBOL(open_exec);
707 
708 int kernel_read(struct file *file, unsigned long offset,
709 	char *addr, unsigned long count)
710 {
711 	mm_segment_t old_fs;
712 	loff_t pos = offset;
713 	int result;
714 
715 	old_fs = get_fs();
716 	set_fs(get_ds());
717 	/* The cast to a user pointer is valid due to the set_fs() */
718 	result = vfs_read(file, (void __user *)addr, count, &pos);
719 	set_fs(old_fs);
720 	return result;
721 }
722 
723 EXPORT_SYMBOL(kernel_read);
724 
725 static int exec_mmap(struct mm_struct *mm)
726 {
727 	struct task_struct *tsk;
728 	struct mm_struct * old_mm, *active_mm;
729 
730 	/* Notify parent that we're no longer interested in the old VM */
731 	tsk = current;
732 	old_mm = current->mm;
733 	mm_release(tsk, old_mm);
734 
735 	if (old_mm) {
736 		/*
737 		 * Make sure that if there is a core dump in progress
738 		 * for the old mm, we get out and die instead of going
739 		 * through with the exec.  We must hold mmap_sem around
740 		 * checking core_state and changing tsk->mm.
741 		 */
742 		down_read(&old_mm->mmap_sem);
743 		if (unlikely(old_mm->core_state)) {
744 			up_read(&old_mm->mmap_sem);
745 			return -EINTR;
746 		}
747 	}
748 	task_lock(tsk);
749 	active_mm = tsk->active_mm;
750 	tsk->mm = mm;
751 	tsk->active_mm = mm;
752 	activate_mm(active_mm, mm);
753 	task_unlock(tsk);
754 	arch_pick_mmap_layout(mm);
755 	if (old_mm) {
756 		up_read(&old_mm->mmap_sem);
757 		BUG_ON(active_mm != old_mm);
758 		mm_update_next_owner(old_mm);
759 		mmput(old_mm);
760 		return 0;
761 	}
762 	mmdrop(active_mm);
763 	return 0;
764 }
765 
766 /*
767  * This function makes sure the current process has its own signal table,
768  * so that flush_signal_handlers can later reset the handlers without
769  * disturbing other processes.  (Other processes might share the signal
770  * table via the CLONE_SIGHAND option to clone().)
771  */
772 static int de_thread(struct task_struct *tsk)
773 {
774 	struct signal_struct *sig = tsk->signal;
775 	struct sighand_struct *oldsighand = tsk->sighand;
776 	spinlock_t *lock = &oldsighand->siglock;
777 	int count;
778 
779 	if (thread_group_empty(tsk))
780 		goto no_thread_group;
781 
782 	/*
783 	 * Kill all other threads in the thread group.
784 	 */
785 	spin_lock_irq(lock);
786 	if (signal_group_exit(sig)) {
787 		/*
788 		 * Another group action in progress, just
789 		 * return so that the signal is processed.
790 		 */
791 		spin_unlock_irq(lock);
792 		return -EAGAIN;
793 	}
794 	sig->group_exit_task = tsk;
795 	zap_other_threads(tsk);
796 
797 	/* Account for the thread group leader hanging around: */
798 	count = thread_group_leader(tsk) ? 1 : 2;
799 	sig->notify_count = count;
800 	while (atomic_read(&sig->count) > count) {
801 		__set_current_state(TASK_UNINTERRUPTIBLE);
802 		spin_unlock_irq(lock);
803 		schedule();
804 		spin_lock_irq(lock);
805 	}
806 	spin_unlock_irq(lock);
807 
808 	/*
809 	 * At this point all other threads have exited, all we have to
810 	 * do is to wait for the thread group leader to become inactive,
811 	 * and to assume its PID:
812 	 */
813 	if (!thread_group_leader(tsk)) {
814 		struct task_struct *leader = tsk->group_leader;
815 
816 		sig->notify_count = -1;	/* for exit_notify() */
817 		for (;;) {
818 			write_lock_irq(&tasklist_lock);
819 			if (likely(leader->exit_state))
820 				break;
821 			__set_current_state(TASK_UNINTERRUPTIBLE);
822 			write_unlock_irq(&tasklist_lock);
823 			schedule();
824 		}
825 
826 		/*
827 		 * The only record we have of the real-time age of a
828 		 * process, regardless of execs it's done, is start_time.
829 		 * All the past CPU time is accumulated in signal_struct
830 		 * from sister threads now dead.  But in this non-leader
831 		 * exec, nothing survives from the original leader thread,
832 		 * whose birth marks the true age of this process now.
833 		 * When we take on its identity by switching to its PID, we
834 		 * also take its birthdate (always earlier than our own).
835 		 */
836 		tsk->start_time = leader->start_time;
837 
838 		BUG_ON(!same_thread_group(leader, tsk));
839 		BUG_ON(has_group_leader_pid(tsk));
840 		/*
841 		 * An exec() starts a new thread group with the
842 		 * TGID of the previous thread group. Rehash the
843 		 * two threads with a switched PID, and release
844 		 * the former thread group leader:
845 		 */
846 
847 		/* Become a process group leader with the old leader's pid.
848 		 * The old leader becomes a thread of the this thread group.
849 		 * Note: The old leader also uses this pid until release_task
850 		 *       is called.  Odd but simple and correct.
851 		 */
852 		detach_pid(tsk, PIDTYPE_PID);
853 		tsk->pid = leader->pid;
854 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
855 		transfer_pid(leader, tsk, PIDTYPE_PGID);
856 		transfer_pid(leader, tsk, PIDTYPE_SID);
857 		list_replace_rcu(&leader->tasks, &tsk->tasks);
858 
859 		tsk->group_leader = tsk;
860 		leader->group_leader = tsk;
861 
862 		tsk->exit_signal = SIGCHLD;
863 
864 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865 		leader->exit_state = EXIT_DEAD;
866 		write_unlock_irq(&tasklist_lock);
867 
868 		release_task(leader);
869 	}
870 
871 	sig->group_exit_task = NULL;
872 	sig->notify_count = 0;
873 
874 no_thread_group:
875 	exit_itimers(sig);
876 	flush_itimer_signals();
877 
878 	if (atomic_read(&oldsighand->count) != 1) {
879 		struct sighand_struct *newsighand;
880 		/*
881 		 * This ->sighand is shared with the CLONE_SIGHAND
882 		 * but not CLONE_THREAD task, switch to the new one.
883 		 */
884 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
885 		if (!newsighand)
886 			return -ENOMEM;
887 
888 		atomic_set(&newsighand->count, 1);
889 		memcpy(newsighand->action, oldsighand->action,
890 		       sizeof(newsighand->action));
891 
892 		write_lock_irq(&tasklist_lock);
893 		spin_lock(&oldsighand->siglock);
894 		rcu_assign_pointer(tsk->sighand, newsighand);
895 		spin_unlock(&oldsighand->siglock);
896 		write_unlock_irq(&tasklist_lock);
897 
898 		__cleanup_sighand(oldsighand);
899 	}
900 
901 	BUG_ON(!thread_group_leader(tsk));
902 	return 0;
903 }
904 
905 /*
906  * These functions flushes out all traces of the currently running executable
907  * so that a new one can be started
908  */
909 static void flush_old_files(struct files_struct * files)
910 {
911 	long j = -1;
912 	struct fdtable *fdt;
913 
914 	spin_lock(&files->file_lock);
915 	for (;;) {
916 		unsigned long set, i;
917 
918 		j++;
919 		i = j * __NFDBITS;
920 		fdt = files_fdtable(files);
921 		if (i >= fdt->max_fds)
922 			break;
923 		set = fdt->close_on_exec->fds_bits[j];
924 		if (!set)
925 			continue;
926 		fdt->close_on_exec->fds_bits[j] = 0;
927 		spin_unlock(&files->file_lock);
928 		for ( ; set ; i++,set >>= 1) {
929 			if (set & 1) {
930 				sys_close(i);
931 			}
932 		}
933 		spin_lock(&files->file_lock);
934 
935 	}
936 	spin_unlock(&files->file_lock);
937 }
938 
939 char *get_task_comm(char *buf, struct task_struct *tsk)
940 {
941 	/* buf must be at least sizeof(tsk->comm) in size */
942 	task_lock(tsk);
943 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
944 	task_unlock(tsk);
945 	return buf;
946 }
947 
948 void set_task_comm(struct task_struct *tsk, char *buf)
949 {
950 	task_lock(tsk);
951 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
952 	task_unlock(tsk);
953 }
954 
955 int flush_old_exec(struct linux_binprm * bprm)
956 {
957 	char * name;
958 	int i, ch, retval;
959 	char tcomm[sizeof(current->comm)];
960 
961 	/*
962 	 * Make sure we have a private signal table and that
963 	 * we are unassociated from the previous thread group.
964 	 */
965 	retval = de_thread(current);
966 	if (retval)
967 		goto out;
968 
969 	set_mm_exe_file(bprm->mm, bprm->file);
970 
971 	/*
972 	 * Release all of the old mmap stuff
973 	 */
974 	retval = exec_mmap(bprm->mm);
975 	if (retval)
976 		goto out;
977 
978 	bprm->mm = NULL;		/* We're using it now */
979 
980 	/* This is the point of no return */
981 	current->sas_ss_sp = current->sas_ss_size = 0;
982 
983 	if (current_euid() == current_uid() && current_egid() == current_gid())
984 		set_dumpable(current->mm, 1);
985 	else
986 		set_dumpable(current->mm, suid_dumpable);
987 
988 	name = bprm->filename;
989 
990 	/* Copies the binary name from after last slash */
991 	for (i=0; (ch = *(name++)) != '\0';) {
992 		if (ch == '/')
993 			i = 0; /* overwrite what we wrote */
994 		else
995 			if (i < (sizeof(tcomm) - 1))
996 				tcomm[i++] = ch;
997 	}
998 	tcomm[i] = '\0';
999 	set_task_comm(current, tcomm);
1000 
1001 	current->flags &= ~PF_RANDOMIZE;
1002 	flush_thread();
1003 
1004 	/* Set the new mm task size. We have to do that late because it may
1005 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1006 	 * some architectures like powerpc
1007 	 */
1008 	current->mm->task_size = TASK_SIZE;
1009 
1010 	/* install the new credentials */
1011 	if (bprm->cred->uid != current_euid() ||
1012 	    bprm->cred->gid != current_egid()) {
1013 		current->pdeath_signal = 0;
1014 	} else if (file_permission(bprm->file, MAY_READ) ||
1015 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1016 		set_dumpable(current->mm, suid_dumpable);
1017 	}
1018 
1019 	current->personality &= ~bprm->per_clear;
1020 
1021 	/* An exec changes our domain. We are no longer part of the thread
1022 	   group */
1023 
1024 	current->self_exec_id++;
1025 
1026 	flush_signal_handlers(current, 0);
1027 	flush_old_files(current->files);
1028 
1029 	return 0;
1030 
1031 out:
1032 	return retval;
1033 }
1034 
1035 EXPORT_SYMBOL(flush_old_exec);
1036 
1037 /*
1038  * install the new credentials for this executable
1039  */
1040 void install_exec_creds(struct linux_binprm *bprm)
1041 {
1042 	security_bprm_committing_creds(bprm);
1043 
1044 	commit_creds(bprm->cred);
1045 	bprm->cred = NULL;
1046 
1047 	/* cred_exec_mutex must be held at least to this point to prevent
1048 	 * ptrace_attach() from altering our determination of the task's
1049 	 * credentials; any time after this it may be unlocked */
1050 
1051 	security_bprm_committed_creds(bprm);
1052 }
1053 EXPORT_SYMBOL(install_exec_creds);
1054 
1055 /*
1056  * determine how safe it is to execute the proposed program
1057  * - the caller must hold current->cred_exec_mutex to protect against
1058  *   PTRACE_ATTACH
1059  */
1060 int check_unsafe_exec(struct linux_binprm *bprm)
1061 {
1062 	struct task_struct *p = current, *t;
1063 	unsigned long flags;
1064 	unsigned n_fs;
1065 	int res = 0;
1066 
1067 	bprm->unsafe = tracehook_unsafe_exec(p);
1068 
1069 	n_fs = 1;
1070 	write_lock(&p->fs->lock);
1071 	lock_task_sighand(p, &flags);
1072 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1073 		if (t->fs == p->fs)
1074 			n_fs++;
1075 	}
1076 
1077 	if (p->fs->users > n_fs) {
1078 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1079 	} else {
1080 		if (p->fs->in_exec)
1081 			res = -EAGAIN;
1082 		p->fs->in_exec = 1;
1083 	}
1084 
1085 	unlock_task_sighand(p, &flags);
1086 	write_unlock(&p->fs->lock);
1087 
1088 	return res;
1089 }
1090 
1091 /*
1092  * Fill the binprm structure from the inode.
1093  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1094  *
1095  * This may be called multiple times for binary chains (scripts for example).
1096  */
1097 int prepare_binprm(struct linux_binprm *bprm)
1098 {
1099 	umode_t mode;
1100 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1101 	int retval;
1102 
1103 	mode = inode->i_mode;
1104 	if (bprm->file->f_op == NULL)
1105 		return -EACCES;
1106 
1107 	/* clear any previous set[ug]id data from a previous binary */
1108 	bprm->cred->euid = current_euid();
1109 	bprm->cred->egid = current_egid();
1110 
1111 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1112 		/* Set-uid? */
1113 		if (mode & S_ISUID) {
1114 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1115 			bprm->cred->euid = inode->i_uid;
1116 		}
1117 
1118 		/* Set-gid? */
1119 		/*
1120 		 * If setgid is set but no group execute bit then this
1121 		 * is a candidate for mandatory locking, not a setgid
1122 		 * executable.
1123 		 */
1124 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1125 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1126 			bprm->cred->egid = inode->i_gid;
1127 		}
1128 	}
1129 
1130 	/* fill in binprm security blob */
1131 	retval = security_bprm_set_creds(bprm);
1132 	if (retval)
1133 		return retval;
1134 	bprm->cred_prepared = 1;
1135 
1136 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1137 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1138 }
1139 
1140 EXPORT_SYMBOL(prepare_binprm);
1141 
1142 /*
1143  * Arguments are '\0' separated strings found at the location bprm->p
1144  * points to; chop off the first by relocating brpm->p to right after
1145  * the first '\0' encountered.
1146  */
1147 int remove_arg_zero(struct linux_binprm *bprm)
1148 {
1149 	int ret = 0;
1150 	unsigned long offset;
1151 	char *kaddr;
1152 	struct page *page;
1153 
1154 	if (!bprm->argc)
1155 		return 0;
1156 
1157 	do {
1158 		offset = bprm->p & ~PAGE_MASK;
1159 		page = get_arg_page(bprm, bprm->p, 0);
1160 		if (!page) {
1161 			ret = -EFAULT;
1162 			goto out;
1163 		}
1164 		kaddr = kmap_atomic(page, KM_USER0);
1165 
1166 		for (; offset < PAGE_SIZE && kaddr[offset];
1167 				offset++, bprm->p++)
1168 			;
1169 
1170 		kunmap_atomic(kaddr, KM_USER0);
1171 		put_arg_page(page);
1172 
1173 		if (offset == PAGE_SIZE)
1174 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1175 	} while (offset == PAGE_SIZE);
1176 
1177 	bprm->p++;
1178 	bprm->argc--;
1179 	ret = 0;
1180 
1181 out:
1182 	return ret;
1183 }
1184 EXPORT_SYMBOL(remove_arg_zero);
1185 
1186 /*
1187  * cycle the list of binary formats handler, until one recognizes the image
1188  */
1189 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1190 {
1191 	unsigned int depth = bprm->recursion_depth;
1192 	int try,retval;
1193 	struct linux_binfmt *fmt;
1194 
1195 	retval = security_bprm_check(bprm);
1196 	if (retval)
1197 		return retval;
1198 	retval = ima_bprm_check(bprm);
1199 	if (retval)
1200 		return retval;
1201 
1202 	/* kernel module loader fixup */
1203 	/* so we don't try to load run modprobe in kernel space. */
1204 	set_fs(USER_DS);
1205 
1206 	retval = audit_bprm(bprm);
1207 	if (retval)
1208 		return retval;
1209 
1210 	retval = -ENOENT;
1211 	for (try=0; try<2; try++) {
1212 		read_lock(&binfmt_lock);
1213 		list_for_each_entry(fmt, &formats, lh) {
1214 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1215 			if (!fn)
1216 				continue;
1217 			if (!try_module_get(fmt->module))
1218 				continue;
1219 			read_unlock(&binfmt_lock);
1220 			retval = fn(bprm, regs);
1221 			/*
1222 			 * Restore the depth counter to its starting value
1223 			 * in this call, so we don't have to rely on every
1224 			 * load_binary function to restore it on return.
1225 			 */
1226 			bprm->recursion_depth = depth;
1227 			if (retval >= 0) {
1228 				if (depth == 0)
1229 					tracehook_report_exec(fmt, bprm, regs);
1230 				put_binfmt(fmt);
1231 				allow_write_access(bprm->file);
1232 				if (bprm->file)
1233 					fput(bprm->file);
1234 				bprm->file = NULL;
1235 				current->did_exec = 1;
1236 				proc_exec_connector(current);
1237 				return retval;
1238 			}
1239 			read_lock(&binfmt_lock);
1240 			put_binfmt(fmt);
1241 			if (retval != -ENOEXEC || bprm->mm == NULL)
1242 				break;
1243 			if (!bprm->file) {
1244 				read_unlock(&binfmt_lock);
1245 				return retval;
1246 			}
1247 		}
1248 		read_unlock(&binfmt_lock);
1249 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1250 			break;
1251 #ifdef CONFIG_MODULES
1252 		} else {
1253 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1254 			if (printable(bprm->buf[0]) &&
1255 			    printable(bprm->buf[1]) &&
1256 			    printable(bprm->buf[2]) &&
1257 			    printable(bprm->buf[3]))
1258 				break; /* -ENOEXEC */
1259 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1260 #endif
1261 		}
1262 	}
1263 	return retval;
1264 }
1265 
1266 EXPORT_SYMBOL(search_binary_handler);
1267 
1268 void free_bprm(struct linux_binprm *bprm)
1269 {
1270 	free_arg_pages(bprm);
1271 	if (bprm->cred)
1272 		abort_creds(bprm->cred);
1273 	kfree(bprm);
1274 }
1275 
1276 /*
1277  * sys_execve() executes a new program.
1278  */
1279 int do_execve(char * filename,
1280 	char __user *__user *argv,
1281 	char __user *__user *envp,
1282 	struct pt_regs * regs)
1283 {
1284 	struct linux_binprm *bprm;
1285 	struct file *file;
1286 	struct files_struct *displaced;
1287 	int retval;
1288 
1289 	retval = unshare_files(&displaced);
1290 	if (retval)
1291 		goto out_ret;
1292 
1293 	retval = -ENOMEM;
1294 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1295 	if (!bprm)
1296 		goto out_files;
1297 
1298 	retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1299 	if (retval < 0)
1300 		goto out_free;
1301 	current->in_execve = 1;
1302 
1303 	retval = -ENOMEM;
1304 	bprm->cred = prepare_exec_creds();
1305 	if (!bprm->cred)
1306 		goto out_unlock;
1307 
1308 	retval = check_unsafe_exec(bprm);
1309 	if (retval)
1310 		goto out_unlock;
1311 
1312 	file = open_exec(filename);
1313 	retval = PTR_ERR(file);
1314 	if (IS_ERR(file))
1315 		goto out_unmark;
1316 
1317 	sched_exec();
1318 
1319 	bprm->file = file;
1320 	bprm->filename = filename;
1321 	bprm->interp = filename;
1322 
1323 	retval = bprm_mm_init(bprm);
1324 	if (retval)
1325 		goto out_file;
1326 
1327 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1328 	if ((retval = bprm->argc) < 0)
1329 		goto out;
1330 
1331 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1332 	if ((retval = bprm->envc) < 0)
1333 		goto out;
1334 
1335 	retval = prepare_binprm(bprm);
1336 	if (retval < 0)
1337 		goto out;
1338 
1339 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1340 	if (retval < 0)
1341 		goto out;
1342 
1343 	bprm->exec = bprm->p;
1344 	retval = copy_strings(bprm->envc, envp, bprm);
1345 	if (retval < 0)
1346 		goto out;
1347 
1348 	retval = copy_strings(bprm->argc, argv, bprm);
1349 	if (retval < 0)
1350 		goto out;
1351 
1352 	current->flags &= ~PF_KTHREAD;
1353 	retval = search_binary_handler(bprm,regs);
1354 	if (retval < 0)
1355 		goto out;
1356 
1357 	/* execve succeeded */
1358 	write_lock(&current->fs->lock);
1359 	current->fs->in_exec = 0;
1360 	write_unlock(&current->fs->lock);
1361 	current->in_execve = 0;
1362 	mutex_unlock(&current->cred_exec_mutex);
1363 	acct_update_integrals(current);
1364 	free_bprm(bprm);
1365 	if (displaced)
1366 		put_files_struct(displaced);
1367 	return retval;
1368 
1369 out:
1370 	if (bprm->mm)
1371 		mmput (bprm->mm);
1372 
1373 out_file:
1374 	if (bprm->file) {
1375 		allow_write_access(bprm->file);
1376 		fput(bprm->file);
1377 	}
1378 
1379 out_unmark:
1380 	write_lock(&current->fs->lock);
1381 	current->fs->in_exec = 0;
1382 	write_unlock(&current->fs->lock);
1383 
1384 out_unlock:
1385 	current->in_execve = 0;
1386 	mutex_unlock(&current->cred_exec_mutex);
1387 
1388 out_free:
1389 	free_bprm(bprm);
1390 
1391 out_files:
1392 	if (displaced)
1393 		reset_files_struct(displaced);
1394 out_ret:
1395 	return retval;
1396 }
1397 
1398 int set_binfmt(struct linux_binfmt *new)
1399 {
1400 	struct linux_binfmt *old = current->binfmt;
1401 
1402 	if (new) {
1403 		if (!try_module_get(new->module))
1404 			return -1;
1405 	}
1406 	current->binfmt = new;
1407 	if (old)
1408 		module_put(old->module);
1409 	return 0;
1410 }
1411 
1412 EXPORT_SYMBOL(set_binfmt);
1413 
1414 /* format_corename will inspect the pattern parameter, and output a
1415  * name into corename, which must have space for at least
1416  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1417  */
1418 static int format_corename(char *corename, long signr)
1419 {
1420 	const struct cred *cred = current_cred();
1421 	const char *pat_ptr = core_pattern;
1422 	int ispipe = (*pat_ptr == '|');
1423 	char *out_ptr = corename;
1424 	char *const out_end = corename + CORENAME_MAX_SIZE;
1425 	int rc;
1426 	int pid_in_pattern = 0;
1427 
1428 	/* Repeat as long as we have more pattern to process and more output
1429 	   space */
1430 	while (*pat_ptr) {
1431 		if (*pat_ptr != '%') {
1432 			if (out_ptr == out_end)
1433 				goto out;
1434 			*out_ptr++ = *pat_ptr++;
1435 		} else {
1436 			switch (*++pat_ptr) {
1437 			case 0:
1438 				goto out;
1439 			/* Double percent, output one percent */
1440 			case '%':
1441 				if (out_ptr == out_end)
1442 					goto out;
1443 				*out_ptr++ = '%';
1444 				break;
1445 			/* pid */
1446 			case 'p':
1447 				pid_in_pattern = 1;
1448 				rc = snprintf(out_ptr, out_end - out_ptr,
1449 					      "%d", task_tgid_vnr(current));
1450 				if (rc > out_end - out_ptr)
1451 					goto out;
1452 				out_ptr += rc;
1453 				break;
1454 			/* uid */
1455 			case 'u':
1456 				rc = snprintf(out_ptr, out_end - out_ptr,
1457 					      "%d", cred->uid);
1458 				if (rc > out_end - out_ptr)
1459 					goto out;
1460 				out_ptr += rc;
1461 				break;
1462 			/* gid */
1463 			case 'g':
1464 				rc = snprintf(out_ptr, out_end - out_ptr,
1465 					      "%d", cred->gid);
1466 				if (rc > out_end - out_ptr)
1467 					goto out;
1468 				out_ptr += rc;
1469 				break;
1470 			/* signal that caused the coredump */
1471 			case 's':
1472 				rc = snprintf(out_ptr, out_end - out_ptr,
1473 					      "%ld", signr);
1474 				if (rc > out_end - out_ptr)
1475 					goto out;
1476 				out_ptr += rc;
1477 				break;
1478 			/* UNIX time of coredump */
1479 			case 't': {
1480 				struct timeval tv;
1481 				do_gettimeofday(&tv);
1482 				rc = snprintf(out_ptr, out_end - out_ptr,
1483 					      "%lu", tv.tv_sec);
1484 				if (rc > out_end - out_ptr)
1485 					goto out;
1486 				out_ptr += rc;
1487 				break;
1488 			}
1489 			/* hostname */
1490 			case 'h':
1491 				down_read(&uts_sem);
1492 				rc = snprintf(out_ptr, out_end - out_ptr,
1493 					      "%s", utsname()->nodename);
1494 				up_read(&uts_sem);
1495 				if (rc > out_end - out_ptr)
1496 					goto out;
1497 				out_ptr += rc;
1498 				break;
1499 			/* executable */
1500 			case 'e':
1501 				rc = snprintf(out_ptr, out_end - out_ptr,
1502 					      "%s", current->comm);
1503 				if (rc > out_end - out_ptr)
1504 					goto out;
1505 				out_ptr += rc;
1506 				break;
1507 			/* core limit size */
1508 			case 'c':
1509 				rc = snprintf(out_ptr, out_end - out_ptr,
1510 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1511 				if (rc > out_end - out_ptr)
1512 					goto out;
1513 				out_ptr += rc;
1514 				break;
1515 			default:
1516 				break;
1517 			}
1518 			++pat_ptr;
1519 		}
1520 	}
1521 	/* Backward compatibility with core_uses_pid:
1522 	 *
1523 	 * If core_pattern does not include a %p (as is the default)
1524 	 * and core_uses_pid is set, then .%pid will be appended to
1525 	 * the filename. Do not do this for piped commands. */
1526 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1527 		rc = snprintf(out_ptr, out_end - out_ptr,
1528 			      ".%d", task_tgid_vnr(current));
1529 		if (rc > out_end - out_ptr)
1530 			goto out;
1531 		out_ptr += rc;
1532 	}
1533 out:
1534 	*out_ptr = 0;
1535 	return ispipe;
1536 }
1537 
1538 static int zap_process(struct task_struct *start)
1539 {
1540 	struct task_struct *t;
1541 	int nr = 0;
1542 
1543 	start->signal->flags = SIGNAL_GROUP_EXIT;
1544 	start->signal->group_stop_count = 0;
1545 
1546 	t = start;
1547 	do {
1548 		if (t != current && t->mm) {
1549 			sigaddset(&t->pending.signal, SIGKILL);
1550 			signal_wake_up(t, 1);
1551 			nr++;
1552 		}
1553 	} while_each_thread(start, t);
1554 
1555 	return nr;
1556 }
1557 
1558 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1559 				struct core_state *core_state, int exit_code)
1560 {
1561 	struct task_struct *g, *p;
1562 	unsigned long flags;
1563 	int nr = -EAGAIN;
1564 
1565 	spin_lock_irq(&tsk->sighand->siglock);
1566 	if (!signal_group_exit(tsk->signal)) {
1567 		mm->core_state = core_state;
1568 		tsk->signal->group_exit_code = exit_code;
1569 		nr = zap_process(tsk);
1570 	}
1571 	spin_unlock_irq(&tsk->sighand->siglock);
1572 	if (unlikely(nr < 0))
1573 		return nr;
1574 
1575 	if (atomic_read(&mm->mm_users) == nr + 1)
1576 		goto done;
1577 	/*
1578 	 * We should find and kill all tasks which use this mm, and we should
1579 	 * count them correctly into ->nr_threads. We don't take tasklist
1580 	 * lock, but this is safe wrt:
1581 	 *
1582 	 * fork:
1583 	 *	None of sub-threads can fork after zap_process(leader). All
1584 	 *	processes which were created before this point should be
1585 	 *	visible to zap_threads() because copy_process() adds the new
1586 	 *	process to the tail of init_task.tasks list, and lock/unlock
1587 	 *	of ->siglock provides a memory barrier.
1588 	 *
1589 	 * do_exit:
1590 	 *	The caller holds mm->mmap_sem. This means that the task which
1591 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1592 	 *	its ->mm.
1593 	 *
1594 	 * de_thread:
1595 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1596 	 *	we must see either old or new leader, this does not matter.
1597 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1598 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1599 	 *	it can't fail.
1600 	 *
1601 	 *	Note also that "g" can be the old leader with ->mm == NULL
1602 	 *	and already unhashed and thus removed from ->thread_group.
1603 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1604 	 *	clear the ->next pointer, we will find the new leader via
1605 	 *	next_thread().
1606 	 */
1607 	rcu_read_lock();
1608 	for_each_process(g) {
1609 		if (g == tsk->group_leader)
1610 			continue;
1611 		if (g->flags & PF_KTHREAD)
1612 			continue;
1613 		p = g;
1614 		do {
1615 			if (p->mm) {
1616 				if (unlikely(p->mm == mm)) {
1617 					lock_task_sighand(p, &flags);
1618 					nr += zap_process(p);
1619 					unlock_task_sighand(p, &flags);
1620 				}
1621 				break;
1622 			}
1623 		} while_each_thread(g, p);
1624 	}
1625 	rcu_read_unlock();
1626 done:
1627 	atomic_set(&core_state->nr_threads, nr);
1628 	return nr;
1629 }
1630 
1631 static int coredump_wait(int exit_code, struct core_state *core_state)
1632 {
1633 	struct task_struct *tsk = current;
1634 	struct mm_struct *mm = tsk->mm;
1635 	struct completion *vfork_done;
1636 	int core_waiters;
1637 
1638 	init_completion(&core_state->startup);
1639 	core_state->dumper.task = tsk;
1640 	core_state->dumper.next = NULL;
1641 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1642 	up_write(&mm->mmap_sem);
1643 
1644 	if (unlikely(core_waiters < 0))
1645 		goto fail;
1646 
1647 	/*
1648 	 * Make sure nobody is waiting for us to release the VM,
1649 	 * otherwise we can deadlock when we wait on each other
1650 	 */
1651 	vfork_done = tsk->vfork_done;
1652 	if (vfork_done) {
1653 		tsk->vfork_done = NULL;
1654 		complete(vfork_done);
1655 	}
1656 
1657 	if (core_waiters)
1658 		wait_for_completion(&core_state->startup);
1659 fail:
1660 	return core_waiters;
1661 }
1662 
1663 static void coredump_finish(struct mm_struct *mm)
1664 {
1665 	struct core_thread *curr, *next;
1666 	struct task_struct *task;
1667 
1668 	next = mm->core_state->dumper.next;
1669 	while ((curr = next) != NULL) {
1670 		next = curr->next;
1671 		task = curr->task;
1672 		/*
1673 		 * see exit_mm(), curr->task must not see
1674 		 * ->task == NULL before we read ->next.
1675 		 */
1676 		smp_mb();
1677 		curr->task = NULL;
1678 		wake_up_process(task);
1679 	}
1680 
1681 	mm->core_state = NULL;
1682 }
1683 
1684 /*
1685  * set_dumpable converts traditional three-value dumpable to two flags and
1686  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1687  * these bits are not changed atomically.  So get_dumpable can observe the
1688  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1689  * return either old dumpable or new one by paying attention to the order of
1690  * modifying the bits.
1691  *
1692  * dumpable |   mm->flags (binary)
1693  * old  new | initial interim  final
1694  * ---------+-----------------------
1695  *  0    1  |   00      01      01
1696  *  0    2  |   00      10(*)   11
1697  *  1    0  |   01      00      00
1698  *  1    2  |   01      11      11
1699  *  2    0  |   11      10(*)   00
1700  *  2    1  |   11      11      01
1701  *
1702  * (*) get_dumpable regards interim value of 10 as 11.
1703  */
1704 void set_dumpable(struct mm_struct *mm, int value)
1705 {
1706 	switch (value) {
1707 	case 0:
1708 		clear_bit(MMF_DUMPABLE, &mm->flags);
1709 		smp_wmb();
1710 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1711 		break;
1712 	case 1:
1713 		set_bit(MMF_DUMPABLE, &mm->flags);
1714 		smp_wmb();
1715 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1716 		break;
1717 	case 2:
1718 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1719 		smp_wmb();
1720 		set_bit(MMF_DUMPABLE, &mm->flags);
1721 		break;
1722 	}
1723 }
1724 
1725 int get_dumpable(struct mm_struct *mm)
1726 {
1727 	int ret;
1728 
1729 	ret = mm->flags & 0x3;
1730 	return (ret >= 2) ? 2 : ret;
1731 }
1732 
1733 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1734 {
1735 	struct core_state core_state;
1736 	char corename[CORENAME_MAX_SIZE + 1];
1737 	struct mm_struct *mm = current->mm;
1738 	struct linux_binfmt * binfmt;
1739 	struct inode * inode;
1740 	struct file * file;
1741 	const struct cred *old_cred;
1742 	struct cred *cred;
1743 	int retval = 0;
1744 	int flag = 0;
1745 	int ispipe = 0;
1746 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1747 	char **helper_argv = NULL;
1748 	int helper_argc = 0;
1749 	char *delimit;
1750 
1751 	audit_core_dumps(signr);
1752 
1753 	binfmt = current->binfmt;
1754 	if (!binfmt || !binfmt->core_dump)
1755 		goto fail;
1756 
1757 	cred = prepare_creds();
1758 	if (!cred) {
1759 		retval = -ENOMEM;
1760 		goto fail;
1761 	}
1762 
1763 	down_write(&mm->mmap_sem);
1764 	/*
1765 	 * If another thread got here first, or we are not dumpable, bail out.
1766 	 */
1767 	if (mm->core_state || !get_dumpable(mm)) {
1768 		up_write(&mm->mmap_sem);
1769 		put_cred(cred);
1770 		goto fail;
1771 	}
1772 
1773 	/*
1774 	 *	We cannot trust fsuid as being the "true" uid of the
1775 	 *	process nor do we know its entire history. We only know it
1776 	 *	was tainted so we dump it as root in mode 2.
1777 	 */
1778 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1779 		flag = O_EXCL;		/* Stop rewrite attacks */
1780 		cred->fsuid = 0;	/* Dump root private */
1781 	}
1782 
1783 	retval = coredump_wait(exit_code, &core_state);
1784 	if (retval < 0) {
1785 		put_cred(cred);
1786 		goto fail;
1787 	}
1788 
1789 	old_cred = override_creds(cred);
1790 
1791 	/*
1792 	 * Clear any false indication of pending signals that might
1793 	 * be seen by the filesystem code called to write the core file.
1794 	 */
1795 	clear_thread_flag(TIF_SIGPENDING);
1796 
1797 	/*
1798 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1799 	 * uses lock_kernel()
1800 	 */
1801  	lock_kernel();
1802 	ispipe = format_corename(corename, signr);
1803 	unlock_kernel();
1804 	/*
1805 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1806 	 * to a pipe.  Since we're not writing directly to the filesystem
1807 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1808 	 * created unless the pipe reader choses to write out the core file
1809 	 * at which point file size limits and permissions will be imposed
1810 	 * as it does with any other process
1811 	 */
1812 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1813 		goto fail_unlock;
1814 
1815  	if (ispipe) {
1816 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1817 		if (!helper_argv) {
1818 			printk(KERN_WARNING "%s failed to allocate memory\n",
1819 			       __func__);
1820 			goto fail_unlock;
1821 		}
1822 		/* Terminate the string before the first option */
1823 		delimit = strchr(corename, ' ');
1824 		if (delimit)
1825 			*delimit = '\0';
1826 		delimit = strrchr(helper_argv[0], '/');
1827 		if (delimit)
1828 			delimit++;
1829 		else
1830 			delimit = helper_argv[0];
1831 		if (!strcmp(delimit, current->comm)) {
1832 			printk(KERN_NOTICE "Recursive core dump detected, "
1833 					"aborting\n");
1834 			goto fail_unlock;
1835 		}
1836 
1837 		core_limit = RLIM_INFINITY;
1838 
1839 		/* SIGPIPE can happen, but it's just never processed */
1840  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1841 				&file)) {
1842  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1843 			       corename);
1844  			goto fail_unlock;
1845  		}
1846  	} else
1847  		file = filp_open(corename,
1848 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1849 				 0600);
1850 	if (IS_ERR(file))
1851 		goto fail_unlock;
1852 	inode = file->f_path.dentry->d_inode;
1853 	if (inode->i_nlink > 1)
1854 		goto close_fail;	/* multiple links - don't dump */
1855 	if (!ispipe && d_unhashed(file->f_path.dentry))
1856 		goto close_fail;
1857 
1858 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1859 	   but keep the previous behaviour for now. */
1860 	if (!ispipe && !S_ISREG(inode->i_mode))
1861 		goto close_fail;
1862 	/*
1863 	 * Dont allow local users get cute and trick others to coredump
1864 	 * into their pre-created files:
1865 	 */
1866 	if (inode->i_uid != current_fsuid())
1867 		goto close_fail;
1868 	if (!file->f_op)
1869 		goto close_fail;
1870 	if (!file->f_op->write)
1871 		goto close_fail;
1872 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1873 		goto close_fail;
1874 
1875 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1876 
1877 	if (retval)
1878 		current->signal->group_exit_code |= 0x80;
1879 close_fail:
1880 	filp_close(file, NULL);
1881 fail_unlock:
1882 	if (helper_argv)
1883 		argv_free(helper_argv);
1884 
1885 	revert_creds(old_cred);
1886 	put_cred(cred);
1887 	coredump_finish(mm);
1888 fail:
1889 	return;
1890 }
1891