xref: /linux/fs/exec.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 struct core_name {
70 	char *corename;
71 	int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74 
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	if (!fmt)
83 		return -EINVAL;
84 	write_lock(&binfmt_lock);
85 	insert ? list_add(&fmt->lh, &formats) :
86 		 list_add_tail(&fmt->lh, &formats);
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115 	struct file *file;
116 	char *tmp = getname(library);
117 	int error = PTR_ERR(tmp);
118 
119 	if (IS_ERR(tmp))
120 		goto out;
121 
122 	file = do_filp_open(AT_FDCWD, tmp,
123 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
124 				MAY_READ | MAY_EXEC | MAY_OPEN);
125 	putname(tmp);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -EINVAL;
131 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
132 		goto exit;
133 
134 	error = -EACCES;
135 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 		goto exit;
137 
138 	fsnotify_open(file);
139 
140 	error = -ENOEXEC;
141 	if(file->f_op) {
142 		struct linux_binfmt * fmt;
143 
144 		read_lock(&binfmt_lock);
145 		list_for_each_entry(fmt, &formats, lh) {
146 			if (!fmt->load_shlib)
147 				continue;
148 			if (!try_module_get(fmt->module))
149 				continue;
150 			read_unlock(&binfmt_lock);
151 			error = fmt->load_shlib(file);
152 			read_lock(&binfmt_lock);
153 			put_binfmt(fmt);
154 			if (error != -ENOEXEC)
155 				break;
156 		}
157 		read_unlock(&binfmt_lock);
158 	}
159 exit:
160 	fput(file);
161 out:
162   	return error;
163 }
164 
165 #ifdef CONFIG_MMU
166 
167 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
168 		int write)
169 {
170 	struct page *page;
171 	int ret;
172 
173 #ifdef CONFIG_STACK_GROWSUP
174 	if (write) {
175 		ret = expand_stack_downwards(bprm->vma, pos);
176 		if (ret < 0)
177 			return NULL;
178 	}
179 #endif
180 	ret = get_user_pages(current, bprm->mm, pos,
181 			1, write, 1, &page, NULL);
182 	if (ret <= 0)
183 		return NULL;
184 
185 	if (write) {
186 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
187 		struct rlimit *rlim;
188 
189 		/*
190 		 * We've historically supported up to 32 pages (ARG_MAX)
191 		 * of argument strings even with small stacks
192 		 */
193 		if (size <= ARG_MAX)
194 			return page;
195 
196 		/*
197 		 * Limit to 1/4-th the stack size for the argv+env strings.
198 		 * This ensures that:
199 		 *  - the remaining binfmt code will not run out of stack space,
200 		 *  - the program will have a reasonable amount of stack left
201 		 *    to work from.
202 		 */
203 		rlim = current->signal->rlim;
204 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
205 			put_page(page);
206 			return NULL;
207 		}
208 	}
209 
210 	return page;
211 }
212 
213 static void put_arg_page(struct page *page)
214 {
215 	put_page(page);
216 }
217 
218 static void free_arg_page(struct linux_binprm *bprm, int i)
219 {
220 }
221 
222 static void free_arg_pages(struct linux_binprm *bprm)
223 {
224 }
225 
226 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
227 		struct page *page)
228 {
229 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
230 }
231 
232 static int __bprm_mm_init(struct linux_binprm *bprm)
233 {
234 	int err;
235 	struct vm_area_struct *vma = NULL;
236 	struct mm_struct *mm = bprm->mm;
237 
238 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
239 	if (!vma)
240 		return -ENOMEM;
241 
242 	down_write(&mm->mmap_sem);
243 	vma->vm_mm = mm;
244 
245 	/*
246 	 * Place the stack at the largest stack address the architecture
247 	 * supports. Later, we'll move this to an appropriate place. We don't
248 	 * use STACK_TOP because that can depend on attributes which aren't
249 	 * configured yet.
250 	 */
251 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
252 	vma->vm_end = STACK_TOP_MAX;
253 	vma->vm_start = vma->vm_end - PAGE_SIZE;
254 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
255 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
256 	INIT_LIST_HEAD(&vma->anon_vma_chain);
257 	err = insert_vm_struct(mm, vma);
258 	if (err)
259 		goto err;
260 
261 	mm->stack_vm = mm->total_vm = 1;
262 	up_write(&mm->mmap_sem);
263 	bprm->p = vma->vm_end - sizeof(void *);
264 	return 0;
265 err:
266 	up_write(&mm->mmap_sem);
267 	bprm->vma = NULL;
268 	kmem_cache_free(vm_area_cachep, vma);
269 	return err;
270 }
271 
272 static bool valid_arg_len(struct linux_binprm *bprm, long len)
273 {
274 	return len <= MAX_ARG_STRLEN;
275 }
276 
277 #else
278 
279 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
280 		int write)
281 {
282 	struct page *page;
283 
284 	page = bprm->page[pos / PAGE_SIZE];
285 	if (!page && write) {
286 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
287 		if (!page)
288 			return NULL;
289 		bprm->page[pos / PAGE_SIZE] = page;
290 	}
291 
292 	return page;
293 }
294 
295 static void put_arg_page(struct page *page)
296 {
297 }
298 
299 static void free_arg_page(struct linux_binprm *bprm, int i)
300 {
301 	if (bprm->page[i]) {
302 		__free_page(bprm->page[i]);
303 		bprm->page[i] = NULL;
304 	}
305 }
306 
307 static void free_arg_pages(struct linux_binprm *bprm)
308 {
309 	int i;
310 
311 	for (i = 0; i < MAX_ARG_PAGES; i++)
312 		free_arg_page(bprm, i);
313 }
314 
315 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
316 		struct page *page)
317 {
318 }
319 
320 static int __bprm_mm_init(struct linux_binprm *bprm)
321 {
322 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
323 	return 0;
324 }
325 
326 static bool valid_arg_len(struct linux_binprm *bprm, long len)
327 {
328 	return len <= bprm->p;
329 }
330 
331 #endif /* CONFIG_MMU */
332 
333 /*
334  * Create a new mm_struct and populate it with a temporary stack
335  * vm_area_struct.  We don't have enough context at this point to set the stack
336  * flags, permissions, and offset, so we use temporary values.  We'll update
337  * them later in setup_arg_pages().
338  */
339 int bprm_mm_init(struct linux_binprm *bprm)
340 {
341 	int err;
342 	struct mm_struct *mm = NULL;
343 
344 	bprm->mm = mm = mm_alloc();
345 	err = -ENOMEM;
346 	if (!mm)
347 		goto err;
348 
349 	err = init_new_context(current, mm);
350 	if (err)
351 		goto err;
352 
353 	err = __bprm_mm_init(bprm);
354 	if (err)
355 		goto err;
356 
357 	return 0;
358 
359 err:
360 	if (mm) {
361 		bprm->mm = NULL;
362 		mmdrop(mm);
363 	}
364 
365 	return err;
366 }
367 
368 /*
369  * count() counts the number of strings in array ARGV.
370  */
371 static int count(const char __user * const __user * argv, int max)
372 {
373 	int i = 0;
374 
375 	if (argv != NULL) {
376 		for (;;) {
377 			const char __user * p;
378 
379 			if (get_user(p, argv))
380 				return -EFAULT;
381 			if (!p)
382 				break;
383 			argv++;
384 			if (i++ >= max)
385 				return -E2BIG;
386 
387 			if (fatal_signal_pending(current))
388 				return -ERESTARTNOHAND;
389 			cond_resched();
390 		}
391 	}
392 	return i;
393 }
394 
395 /*
396  * 'copy_strings()' copies argument/environment strings from the old
397  * processes's memory to the new process's stack.  The call to get_user_pages()
398  * ensures the destination page is created and not swapped out.
399  */
400 static int copy_strings(int argc, const char __user *const __user *argv,
401 			struct linux_binprm *bprm)
402 {
403 	struct page *kmapped_page = NULL;
404 	char *kaddr = NULL;
405 	unsigned long kpos = 0;
406 	int ret;
407 
408 	while (argc-- > 0) {
409 		const char __user *str;
410 		int len;
411 		unsigned long pos;
412 
413 		if (get_user(str, argv+argc) ||
414 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
415 			ret = -EFAULT;
416 			goto out;
417 		}
418 
419 		if (!valid_arg_len(bprm, len)) {
420 			ret = -E2BIG;
421 			goto out;
422 		}
423 
424 		/* We're going to work our way backwords. */
425 		pos = bprm->p;
426 		str += len;
427 		bprm->p -= len;
428 
429 		while (len > 0) {
430 			int offset, bytes_to_copy;
431 
432 			if (fatal_signal_pending(current)) {
433 				ret = -ERESTARTNOHAND;
434 				goto out;
435 			}
436 			cond_resched();
437 
438 			offset = pos % PAGE_SIZE;
439 			if (offset == 0)
440 				offset = PAGE_SIZE;
441 
442 			bytes_to_copy = offset;
443 			if (bytes_to_copy > len)
444 				bytes_to_copy = len;
445 
446 			offset -= bytes_to_copy;
447 			pos -= bytes_to_copy;
448 			str -= bytes_to_copy;
449 			len -= bytes_to_copy;
450 
451 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
452 				struct page *page;
453 
454 				page = get_arg_page(bprm, pos, 1);
455 				if (!page) {
456 					ret = -E2BIG;
457 					goto out;
458 				}
459 
460 				if (kmapped_page) {
461 					flush_kernel_dcache_page(kmapped_page);
462 					kunmap(kmapped_page);
463 					put_arg_page(kmapped_page);
464 				}
465 				kmapped_page = page;
466 				kaddr = kmap(kmapped_page);
467 				kpos = pos & PAGE_MASK;
468 				flush_arg_page(bprm, kpos, kmapped_page);
469 			}
470 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
471 				ret = -EFAULT;
472 				goto out;
473 			}
474 		}
475 	}
476 	ret = 0;
477 out:
478 	if (kmapped_page) {
479 		flush_kernel_dcache_page(kmapped_page);
480 		kunmap(kmapped_page);
481 		put_arg_page(kmapped_page);
482 	}
483 	return ret;
484 }
485 
486 /*
487  * Like copy_strings, but get argv and its values from kernel memory.
488  */
489 int copy_strings_kernel(int argc, const char *const *argv,
490 			struct linux_binprm *bprm)
491 {
492 	int r;
493 	mm_segment_t oldfs = get_fs();
494 	set_fs(KERNEL_DS);
495 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
496 	set_fs(oldfs);
497 	return r;
498 }
499 EXPORT_SYMBOL(copy_strings_kernel);
500 
501 #ifdef CONFIG_MMU
502 
503 /*
504  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
505  * the binfmt code determines where the new stack should reside, we shift it to
506  * its final location.  The process proceeds as follows:
507  *
508  * 1) Use shift to calculate the new vma endpoints.
509  * 2) Extend vma to cover both the old and new ranges.  This ensures the
510  *    arguments passed to subsequent functions are consistent.
511  * 3) Move vma's page tables to the new range.
512  * 4) Free up any cleared pgd range.
513  * 5) Shrink the vma to cover only the new range.
514  */
515 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
516 {
517 	struct mm_struct *mm = vma->vm_mm;
518 	unsigned long old_start = vma->vm_start;
519 	unsigned long old_end = vma->vm_end;
520 	unsigned long length = old_end - old_start;
521 	unsigned long new_start = old_start - shift;
522 	unsigned long new_end = old_end - shift;
523 	struct mmu_gather *tlb;
524 
525 	BUG_ON(new_start > new_end);
526 
527 	/*
528 	 * ensure there are no vmas between where we want to go
529 	 * and where we are
530 	 */
531 	if (vma != find_vma(mm, new_start))
532 		return -EFAULT;
533 
534 	/*
535 	 * cover the whole range: [new_start, old_end)
536 	 */
537 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
538 		return -ENOMEM;
539 
540 	/*
541 	 * move the page tables downwards, on failure we rely on
542 	 * process cleanup to remove whatever mess we made.
543 	 */
544 	if (length != move_page_tables(vma, old_start,
545 				       vma, new_start, length))
546 		return -ENOMEM;
547 
548 	lru_add_drain();
549 	tlb = tlb_gather_mmu(mm, 0);
550 	if (new_end > old_start) {
551 		/*
552 		 * when the old and new regions overlap clear from new_end.
553 		 */
554 		free_pgd_range(tlb, new_end, old_end, new_end,
555 			vma->vm_next ? vma->vm_next->vm_start : 0);
556 	} else {
557 		/*
558 		 * otherwise, clean from old_start; this is done to not touch
559 		 * the address space in [new_end, old_start) some architectures
560 		 * have constraints on va-space that make this illegal (IA64) -
561 		 * for the others its just a little faster.
562 		 */
563 		free_pgd_range(tlb, old_start, old_end, new_end,
564 			vma->vm_next ? vma->vm_next->vm_start : 0);
565 	}
566 	tlb_finish_mmu(tlb, new_end, old_end);
567 
568 	/*
569 	 * Shrink the vma to just the new range.  Always succeeds.
570 	 */
571 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
572 
573 	return 0;
574 }
575 
576 /*
577  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
578  * the stack is optionally relocated, and some extra space is added.
579  */
580 int setup_arg_pages(struct linux_binprm *bprm,
581 		    unsigned long stack_top,
582 		    int executable_stack)
583 {
584 	unsigned long ret;
585 	unsigned long stack_shift;
586 	struct mm_struct *mm = current->mm;
587 	struct vm_area_struct *vma = bprm->vma;
588 	struct vm_area_struct *prev = NULL;
589 	unsigned long vm_flags;
590 	unsigned long stack_base;
591 	unsigned long stack_size;
592 	unsigned long stack_expand;
593 	unsigned long rlim_stack;
594 
595 #ifdef CONFIG_STACK_GROWSUP
596 	/* Limit stack size to 1GB */
597 	stack_base = rlimit_max(RLIMIT_STACK);
598 	if (stack_base > (1 << 30))
599 		stack_base = 1 << 30;
600 
601 	/* Make sure we didn't let the argument array grow too large. */
602 	if (vma->vm_end - vma->vm_start > stack_base)
603 		return -ENOMEM;
604 
605 	stack_base = PAGE_ALIGN(stack_top - stack_base);
606 
607 	stack_shift = vma->vm_start - stack_base;
608 	mm->arg_start = bprm->p - stack_shift;
609 	bprm->p = vma->vm_end - stack_shift;
610 #else
611 	stack_top = arch_align_stack(stack_top);
612 	stack_top = PAGE_ALIGN(stack_top);
613 
614 	if (unlikely(stack_top < mmap_min_addr) ||
615 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
616 		return -ENOMEM;
617 
618 	stack_shift = vma->vm_end - stack_top;
619 
620 	bprm->p -= stack_shift;
621 	mm->arg_start = bprm->p;
622 #endif
623 
624 	if (bprm->loader)
625 		bprm->loader -= stack_shift;
626 	bprm->exec -= stack_shift;
627 
628 	down_write(&mm->mmap_sem);
629 	vm_flags = VM_STACK_FLAGS;
630 
631 	/*
632 	 * Adjust stack execute permissions; explicitly enable for
633 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
634 	 * (arch default) otherwise.
635 	 */
636 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
637 		vm_flags |= VM_EXEC;
638 	else if (executable_stack == EXSTACK_DISABLE_X)
639 		vm_flags &= ~VM_EXEC;
640 	vm_flags |= mm->def_flags;
641 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
642 
643 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
644 			vm_flags);
645 	if (ret)
646 		goto out_unlock;
647 	BUG_ON(prev != vma);
648 
649 	/* Move stack pages down in memory. */
650 	if (stack_shift) {
651 		ret = shift_arg_pages(vma, stack_shift);
652 		if (ret)
653 			goto out_unlock;
654 	}
655 
656 	/* mprotect_fixup is overkill to remove the temporary stack flags */
657 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
658 
659 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
660 	stack_size = vma->vm_end - vma->vm_start;
661 	/*
662 	 * Align this down to a page boundary as expand_stack
663 	 * will align it up.
664 	 */
665 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
666 #ifdef CONFIG_STACK_GROWSUP
667 	if (stack_size + stack_expand > rlim_stack)
668 		stack_base = vma->vm_start + rlim_stack;
669 	else
670 		stack_base = vma->vm_end + stack_expand;
671 #else
672 	if (stack_size + stack_expand > rlim_stack)
673 		stack_base = vma->vm_end - rlim_stack;
674 	else
675 		stack_base = vma->vm_start - stack_expand;
676 #endif
677 	current->mm->start_stack = bprm->p;
678 	ret = expand_stack(vma, stack_base);
679 	if (ret)
680 		ret = -EFAULT;
681 
682 out_unlock:
683 	up_write(&mm->mmap_sem);
684 	return ret;
685 }
686 EXPORT_SYMBOL(setup_arg_pages);
687 
688 #endif /* CONFIG_MMU */
689 
690 struct file *open_exec(const char *name)
691 {
692 	struct file *file;
693 	int err;
694 
695 	file = do_filp_open(AT_FDCWD, name,
696 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
697 				MAY_EXEC | MAY_OPEN);
698 	if (IS_ERR(file))
699 		goto out;
700 
701 	err = -EACCES;
702 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
703 		goto exit;
704 
705 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
706 		goto exit;
707 
708 	fsnotify_open(file);
709 
710 	err = deny_write_access(file);
711 	if (err)
712 		goto exit;
713 
714 out:
715 	return file;
716 
717 exit:
718 	fput(file);
719 	return ERR_PTR(err);
720 }
721 EXPORT_SYMBOL(open_exec);
722 
723 int kernel_read(struct file *file, loff_t offset,
724 		char *addr, unsigned long count)
725 {
726 	mm_segment_t old_fs;
727 	loff_t pos = offset;
728 	int result;
729 
730 	old_fs = get_fs();
731 	set_fs(get_ds());
732 	/* The cast to a user pointer is valid due to the set_fs() */
733 	result = vfs_read(file, (void __user *)addr, count, &pos);
734 	set_fs(old_fs);
735 	return result;
736 }
737 
738 EXPORT_SYMBOL(kernel_read);
739 
740 static int exec_mmap(struct mm_struct *mm)
741 {
742 	struct task_struct *tsk;
743 	struct mm_struct * old_mm, *active_mm;
744 
745 	/* Notify parent that we're no longer interested in the old VM */
746 	tsk = current;
747 	old_mm = current->mm;
748 	sync_mm_rss(tsk, old_mm);
749 	mm_release(tsk, old_mm);
750 
751 	if (old_mm) {
752 		/*
753 		 * Make sure that if there is a core dump in progress
754 		 * for the old mm, we get out and die instead of going
755 		 * through with the exec.  We must hold mmap_sem around
756 		 * checking core_state and changing tsk->mm.
757 		 */
758 		down_read(&old_mm->mmap_sem);
759 		if (unlikely(old_mm->core_state)) {
760 			up_read(&old_mm->mmap_sem);
761 			return -EINTR;
762 		}
763 	}
764 	task_lock(tsk);
765 	active_mm = tsk->active_mm;
766 	tsk->mm = mm;
767 	tsk->active_mm = mm;
768 	activate_mm(active_mm, mm);
769 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
770 		atomic_dec(&old_mm->oom_disable_count);
771 		atomic_inc(&tsk->mm->oom_disable_count);
772 	}
773 	task_unlock(tsk);
774 	arch_pick_mmap_layout(mm);
775 	if (old_mm) {
776 		up_read(&old_mm->mmap_sem);
777 		BUG_ON(active_mm != old_mm);
778 		mm_update_next_owner(old_mm);
779 		mmput(old_mm);
780 		return 0;
781 	}
782 	mmdrop(active_mm);
783 	return 0;
784 }
785 
786 /*
787  * This function makes sure the current process has its own signal table,
788  * so that flush_signal_handlers can later reset the handlers without
789  * disturbing other processes.  (Other processes might share the signal
790  * table via the CLONE_SIGHAND option to clone().)
791  */
792 static int de_thread(struct task_struct *tsk)
793 {
794 	struct signal_struct *sig = tsk->signal;
795 	struct sighand_struct *oldsighand = tsk->sighand;
796 	spinlock_t *lock = &oldsighand->siglock;
797 
798 	if (thread_group_empty(tsk))
799 		goto no_thread_group;
800 
801 	/*
802 	 * Kill all other threads in the thread group.
803 	 */
804 	spin_lock_irq(lock);
805 	if (signal_group_exit(sig)) {
806 		/*
807 		 * Another group action in progress, just
808 		 * return so that the signal is processed.
809 		 */
810 		spin_unlock_irq(lock);
811 		return -EAGAIN;
812 	}
813 
814 	sig->group_exit_task = tsk;
815 	sig->notify_count = zap_other_threads(tsk);
816 	if (!thread_group_leader(tsk))
817 		sig->notify_count--;
818 
819 	while (sig->notify_count) {
820 		__set_current_state(TASK_UNINTERRUPTIBLE);
821 		spin_unlock_irq(lock);
822 		schedule();
823 		spin_lock_irq(lock);
824 	}
825 	spin_unlock_irq(lock);
826 
827 	/*
828 	 * At this point all other threads have exited, all we have to
829 	 * do is to wait for the thread group leader to become inactive,
830 	 * and to assume its PID:
831 	 */
832 	if (!thread_group_leader(tsk)) {
833 		struct task_struct *leader = tsk->group_leader;
834 
835 		sig->notify_count = -1;	/* for exit_notify() */
836 		for (;;) {
837 			write_lock_irq(&tasklist_lock);
838 			if (likely(leader->exit_state))
839 				break;
840 			__set_current_state(TASK_UNINTERRUPTIBLE);
841 			write_unlock_irq(&tasklist_lock);
842 			schedule();
843 		}
844 
845 		/*
846 		 * The only record we have of the real-time age of a
847 		 * process, regardless of execs it's done, is start_time.
848 		 * All the past CPU time is accumulated in signal_struct
849 		 * from sister threads now dead.  But in this non-leader
850 		 * exec, nothing survives from the original leader thread,
851 		 * whose birth marks the true age of this process now.
852 		 * When we take on its identity by switching to its PID, we
853 		 * also take its birthdate (always earlier than our own).
854 		 */
855 		tsk->start_time = leader->start_time;
856 
857 		BUG_ON(!same_thread_group(leader, tsk));
858 		BUG_ON(has_group_leader_pid(tsk));
859 		/*
860 		 * An exec() starts a new thread group with the
861 		 * TGID of the previous thread group. Rehash the
862 		 * two threads with a switched PID, and release
863 		 * the former thread group leader:
864 		 */
865 
866 		/* Become a process group leader with the old leader's pid.
867 		 * The old leader becomes a thread of the this thread group.
868 		 * Note: The old leader also uses this pid until release_task
869 		 *       is called.  Odd but simple and correct.
870 		 */
871 		detach_pid(tsk, PIDTYPE_PID);
872 		tsk->pid = leader->pid;
873 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
874 		transfer_pid(leader, tsk, PIDTYPE_PGID);
875 		transfer_pid(leader, tsk, PIDTYPE_SID);
876 
877 		list_replace_rcu(&leader->tasks, &tsk->tasks);
878 		list_replace_init(&leader->sibling, &tsk->sibling);
879 
880 		tsk->group_leader = tsk;
881 		leader->group_leader = tsk;
882 
883 		tsk->exit_signal = SIGCHLD;
884 
885 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
886 		leader->exit_state = EXIT_DEAD;
887 		write_unlock_irq(&tasklist_lock);
888 
889 		release_task(leader);
890 	}
891 
892 	sig->group_exit_task = NULL;
893 	sig->notify_count = 0;
894 
895 no_thread_group:
896 	if (current->mm)
897 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
898 
899 	exit_itimers(sig);
900 	flush_itimer_signals();
901 
902 	if (atomic_read(&oldsighand->count) != 1) {
903 		struct sighand_struct *newsighand;
904 		/*
905 		 * This ->sighand is shared with the CLONE_SIGHAND
906 		 * but not CLONE_THREAD task, switch to the new one.
907 		 */
908 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
909 		if (!newsighand)
910 			return -ENOMEM;
911 
912 		atomic_set(&newsighand->count, 1);
913 		memcpy(newsighand->action, oldsighand->action,
914 		       sizeof(newsighand->action));
915 
916 		write_lock_irq(&tasklist_lock);
917 		spin_lock(&oldsighand->siglock);
918 		rcu_assign_pointer(tsk->sighand, newsighand);
919 		spin_unlock(&oldsighand->siglock);
920 		write_unlock_irq(&tasklist_lock);
921 
922 		__cleanup_sighand(oldsighand);
923 	}
924 
925 	BUG_ON(!thread_group_leader(tsk));
926 	return 0;
927 }
928 
929 /*
930  * These functions flushes out all traces of the currently running executable
931  * so that a new one can be started
932  */
933 static void flush_old_files(struct files_struct * files)
934 {
935 	long j = -1;
936 	struct fdtable *fdt;
937 
938 	spin_lock(&files->file_lock);
939 	for (;;) {
940 		unsigned long set, i;
941 
942 		j++;
943 		i = j * __NFDBITS;
944 		fdt = files_fdtable(files);
945 		if (i >= fdt->max_fds)
946 			break;
947 		set = fdt->close_on_exec->fds_bits[j];
948 		if (!set)
949 			continue;
950 		fdt->close_on_exec->fds_bits[j] = 0;
951 		spin_unlock(&files->file_lock);
952 		for ( ; set ; i++,set >>= 1) {
953 			if (set & 1) {
954 				sys_close(i);
955 			}
956 		}
957 		spin_lock(&files->file_lock);
958 
959 	}
960 	spin_unlock(&files->file_lock);
961 }
962 
963 char *get_task_comm(char *buf, struct task_struct *tsk)
964 {
965 	/* buf must be at least sizeof(tsk->comm) in size */
966 	task_lock(tsk);
967 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
968 	task_unlock(tsk);
969 	return buf;
970 }
971 
972 void set_task_comm(struct task_struct *tsk, char *buf)
973 {
974 	task_lock(tsk);
975 
976 	/*
977 	 * Threads may access current->comm without holding
978 	 * the task lock, so write the string carefully.
979 	 * Readers without a lock may see incomplete new
980 	 * names but are safe from non-terminating string reads.
981 	 */
982 	memset(tsk->comm, 0, TASK_COMM_LEN);
983 	wmb();
984 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
985 	task_unlock(tsk);
986 	perf_event_comm(tsk);
987 }
988 
989 int flush_old_exec(struct linux_binprm * bprm)
990 {
991 	int retval;
992 
993 	/*
994 	 * Make sure we have a private signal table and that
995 	 * we are unassociated from the previous thread group.
996 	 */
997 	retval = de_thread(current);
998 	if (retval)
999 		goto out;
1000 
1001 	set_mm_exe_file(bprm->mm, bprm->file);
1002 
1003 	/*
1004 	 * Release all of the old mmap stuff
1005 	 */
1006 	retval = exec_mmap(bprm->mm);
1007 	if (retval)
1008 		goto out;
1009 
1010 	bprm->mm = NULL;		/* We're using it now */
1011 
1012 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1013 	flush_thread();
1014 	current->personality &= ~bprm->per_clear;
1015 
1016 	return 0;
1017 
1018 out:
1019 	return retval;
1020 }
1021 EXPORT_SYMBOL(flush_old_exec);
1022 
1023 void setup_new_exec(struct linux_binprm * bprm)
1024 {
1025 	int i, ch;
1026 	const char *name;
1027 	char tcomm[sizeof(current->comm)];
1028 
1029 	arch_pick_mmap_layout(current->mm);
1030 
1031 	/* This is the point of no return */
1032 	current->sas_ss_sp = current->sas_ss_size = 0;
1033 
1034 	if (current_euid() == current_uid() && current_egid() == current_gid())
1035 		set_dumpable(current->mm, 1);
1036 	else
1037 		set_dumpable(current->mm, suid_dumpable);
1038 
1039 	name = bprm->filename;
1040 
1041 	/* Copies the binary name from after last slash */
1042 	for (i=0; (ch = *(name++)) != '\0';) {
1043 		if (ch == '/')
1044 			i = 0; /* overwrite what we wrote */
1045 		else
1046 			if (i < (sizeof(tcomm) - 1))
1047 				tcomm[i++] = ch;
1048 	}
1049 	tcomm[i] = '\0';
1050 	set_task_comm(current, tcomm);
1051 
1052 	/* Set the new mm task size. We have to do that late because it may
1053 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1054 	 * some architectures like powerpc
1055 	 */
1056 	current->mm->task_size = TASK_SIZE;
1057 
1058 	/* install the new credentials */
1059 	if (bprm->cred->uid != current_euid() ||
1060 	    bprm->cred->gid != current_egid()) {
1061 		current->pdeath_signal = 0;
1062 	} else if (file_permission(bprm->file, MAY_READ) ||
1063 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1064 		set_dumpable(current->mm, suid_dumpable);
1065 	}
1066 
1067 	/*
1068 	 * Flush performance counters when crossing a
1069 	 * security domain:
1070 	 */
1071 	if (!get_dumpable(current->mm))
1072 		perf_event_exit_task(current);
1073 
1074 	/* An exec changes our domain. We are no longer part of the thread
1075 	   group */
1076 
1077 	current->self_exec_id++;
1078 
1079 	flush_signal_handlers(current, 0);
1080 	flush_old_files(current->files);
1081 }
1082 EXPORT_SYMBOL(setup_new_exec);
1083 
1084 /*
1085  * Prepare credentials and lock ->cred_guard_mutex.
1086  * install_exec_creds() commits the new creds and drops the lock.
1087  * Or, if exec fails before, free_bprm() should release ->cred and
1088  * and unlock.
1089  */
1090 int prepare_bprm_creds(struct linux_binprm *bprm)
1091 {
1092 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1093 		return -ERESTARTNOINTR;
1094 
1095 	bprm->cred = prepare_exec_creds();
1096 	if (likely(bprm->cred))
1097 		return 0;
1098 
1099 	mutex_unlock(&current->signal->cred_guard_mutex);
1100 	return -ENOMEM;
1101 }
1102 
1103 void free_bprm(struct linux_binprm *bprm)
1104 {
1105 	free_arg_pages(bprm);
1106 	if (bprm->cred) {
1107 		mutex_unlock(&current->signal->cred_guard_mutex);
1108 		abort_creds(bprm->cred);
1109 	}
1110 	kfree(bprm);
1111 }
1112 
1113 /*
1114  * install the new credentials for this executable
1115  */
1116 void install_exec_creds(struct linux_binprm *bprm)
1117 {
1118 	security_bprm_committing_creds(bprm);
1119 
1120 	commit_creds(bprm->cred);
1121 	bprm->cred = NULL;
1122 	/*
1123 	 * cred_guard_mutex must be held at least to this point to prevent
1124 	 * ptrace_attach() from altering our determination of the task's
1125 	 * credentials; any time after this it may be unlocked.
1126 	 */
1127 	security_bprm_committed_creds(bprm);
1128 	mutex_unlock(&current->signal->cred_guard_mutex);
1129 }
1130 EXPORT_SYMBOL(install_exec_creds);
1131 
1132 /*
1133  * determine how safe it is to execute the proposed program
1134  * - the caller must hold ->cred_guard_mutex to protect against
1135  *   PTRACE_ATTACH
1136  */
1137 int check_unsafe_exec(struct linux_binprm *bprm)
1138 {
1139 	struct task_struct *p = current, *t;
1140 	unsigned n_fs;
1141 	int res = 0;
1142 
1143 	bprm->unsafe = tracehook_unsafe_exec(p);
1144 
1145 	n_fs = 1;
1146 	spin_lock(&p->fs->lock);
1147 	rcu_read_lock();
1148 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1149 		if (t->fs == p->fs)
1150 			n_fs++;
1151 	}
1152 	rcu_read_unlock();
1153 
1154 	if (p->fs->users > n_fs) {
1155 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1156 	} else {
1157 		res = -EAGAIN;
1158 		if (!p->fs->in_exec) {
1159 			p->fs->in_exec = 1;
1160 			res = 1;
1161 		}
1162 	}
1163 	spin_unlock(&p->fs->lock);
1164 
1165 	return res;
1166 }
1167 
1168 /*
1169  * Fill the binprm structure from the inode.
1170  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1171  *
1172  * This may be called multiple times for binary chains (scripts for example).
1173  */
1174 int prepare_binprm(struct linux_binprm *bprm)
1175 {
1176 	umode_t mode;
1177 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1178 	int retval;
1179 
1180 	mode = inode->i_mode;
1181 	if (bprm->file->f_op == NULL)
1182 		return -EACCES;
1183 
1184 	/* clear any previous set[ug]id data from a previous binary */
1185 	bprm->cred->euid = current_euid();
1186 	bprm->cred->egid = current_egid();
1187 
1188 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1189 		/* Set-uid? */
1190 		if (mode & S_ISUID) {
1191 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1192 			bprm->cred->euid = inode->i_uid;
1193 		}
1194 
1195 		/* Set-gid? */
1196 		/*
1197 		 * If setgid is set but no group execute bit then this
1198 		 * is a candidate for mandatory locking, not a setgid
1199 		 * executable.
1200 		 */
1201 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1202 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1203 			bprm->cred->egid = inode->i_gid;
1204 		}
1205 	}
1206 
1207 	/* fill in binprm security blob */
1208 	retval = security_bprm_set_creds(bprm);
1209 	if (retval)
1210 		return retval;
1211 	bprm->cred_prepared = 1;
1212 
1213 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1214 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1215 }
1216 
1217 EXPORT_SYMBOL(prepare_binprm);
1218 
1219 /*
1220  * Arguments are '\0' separated strings found at the location bprm->p
1221  * points to; chop off the first by relocating brpm->p to right after
1222  * the first '\0' encountered.
1223  */
1224 int remove_arg_zero(struct linux_binprm *bprm)
1225 {
1226 	int ret = 0;
1227 	unsigned long offset;
1228 	char *kaddr;
1229 	struct page *page;
1230 
1231 	if (!bprm->argc)
1232 		return 0;
1233 
1234 	do {
1235 		offset = bprm->p & ~PAGE_MASK;
1236 		page = get_arg_page(bprm, bprm->p, 0);
1237 		if (!page) {
1238 			ret = -EFAULT;
1239 			goto out;
1240 		}
1241 		kaddr = kmap_atomic(page, KM_USER0);
1242 
1243 		for (; offset < PAGE_SIZE && kaddr[offset];
1244 				offset++, bprm->p++)
1245 			;
1246 
1247 		kunmap_atomic(kaddr, KM_USER0);
1248 		put_arg_page(page);
1249 
1250 		if (offset == PAGE_SIZE)
1251 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1252 	} while (offset == PAGE_SIZE);
1253 
1254 	bprm->p++;
1255 	bprm->argc--;
1256 	ret = 0;
1257 
1258 out:
1259 	return ret;
1260 }
1261 EXPORT_SYMBOL(remove_arg_zero);
1262 
1263 /*
1264  * cycle the list of binary formats handler, until one recognizes the image
1265  */
1266 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1267 {
1268 	unsigned int depth = bprm->recursion_depth;
1269 	int try,retval;
1270 	struct linux_binfmt *fmt;
1271 
1272 	retval = security_bprm_check(bprm);
1273 	if (retval)
1274 		return retval;
1275 
1276 	/* kernel module loader fixup */
1277 	/* so we don't try to load run modprobe in kernel space. */
1278 	set_fs(USER_DS);
1279 
1280 	retval = audit_bprm(bprm);
1281 	if (retval)
1282 		return retval;
1283 
1284 	retval = -ENOENT;
1285 	for (try=0; try<2; try++) {
1286 		read_lock(&binfmt_lock);
1287 		list_for_each_entry(fmt, &formats, lh) {
1288 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1289 			if (!fn)
1290 				continue;
1291 			if (!try_module_get(fmt->module))
1292 				continue;
1293 			read_unlock(&binfmt_lock);
1294 			retval = fn(bprm, regs);
1295 			/*
1296 			 * Restore the depth counter to its starting value
1297 			 * in this call, so we don't have to rely on every
1298 			 * load_binary function to restore it on return.
1299 			 */
1300 			bprm->recursion_depth = depth;
1301 			if (retval >= 0) {
1302 				if (depth == 0)
1303 					tracehook_report_exec(fmt, bprm, regs);
1304 				put_binfmt(fmt);
1305 				allow_write_access(bprm->file);
1306 				if (bprm->file)
1307 					fput(bprm->file);
1308 				bprm->file = NULL;
1309 				current->did_exec = 1;
1310 				proc_exec_connector(current);
1311 				return retval;
1312 			}
1313 			read_lock(&binfmt_lock);
1314 			put_binfmt(fmt);
1315 			if (retval != -ENOEXEC || bprm->mm == NULL)
1316 				break;
1317 			if (!bprm->file) {
1318 				read_unlock(&binfmt_lock);
1319 				return retval;
1320 			}
1321 		}
1322 		read_unlock(&binfmt_lock);
1323 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1324 			break;
1325 #ifdef CONFIG_MODULES
1326 		} else {
1327 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1328 			if (printable(bprm->buf[0]) &&
1329 			    printable(bprm->buf[1]) &&
1330 			    printable(bprm->buf[2]) &&
1331 			    printable(bprm->buf[3]))
1332 				break; /* -ENOEXEC */
1333 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1334 #endif
1335 		}
1336 	}
1337 	return retval;
1338 }
1339 
1340 EXPORT_SYMBOL(search_binary_handler);
1341 
1342 /*
1343  * sys_execve() executes a new program.
1344  */
1345 int do_execve(const char * filename,
1346 	const char __user *const __user *argv,
1347 	const char __user *const __user *envp,
1348 	struct pt_regs * regs)
1349 {
1350 	struct linux_binprm *bprm;
1351 	struct file *file;
1352 	struct files_struct *displaced;
1353 	bool clear_in_exec;
1354 	int retval;
1355 
1356 	retval = unshare_files(&displaced);
1357 	if (retval)
1358 		goto out_ret;
1359 
1360 	retval = -ENOMEM;
1361 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1362 	if (!bprm)
1363 		goto out_files;
1364 
1365 	retval = prepare_bprm_creds(bprm);
1366 	if (retval)
1367 		goto out_free;
1368 
1369 	retval = check_unsafe_exec(bprm);
1370 	if (retval < 0)
1371 		goto out_free;
1372 	clear_in_exec = retval;
1373 	current->in_execve = 1;
1374 
1375 	file = open_exec(filename);
1376 	retval = PTR_ERR(file);
1377 	if (IS_ERR(file))
1378 		goto out_unmark;
1379 
1380 	sched_exec();
1381 
1382 	bprm->file = file;
1383 	bprm->filename = filename;
1384 	bprm->interp = filename;
1385 
1386 	retval = bprm_mm_init(bprm);
1387 	if (retval)
1388 		goto out_file;
1389 
1390 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1391 	if ((retval = bprm->argc) < 0)
1392 		goto out;
1393 
1394 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1395 	if ((retval = bprm->envc) < 0)
1396 		goto out;
1397 
1398 	retval = prepare_binprm(bprm);
1399 	if (retval < 0)
1400 		goto out;
1401 
1402 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1403 	if (retval < 0)
1404 		goto out;
1405 
1406 	bprm->exec = bprm->p;
1407 	retval = copy_strings(bprm->envc, envp, bprm);
1408 	if (retval < 0)
1409 		goto out;
1410 
1411 	retval = copy_strings(bprm->argc, argv, bprm);
1412 	if (retval < 0)
1413 		goto out;
1414 
1415 	retval = search_binary_handler(bprm,regs);
1416 	if (retval < 0)
1417 		goto out;
1418 
1419 	/* execve succeeded */
1420 	current->fs->in_exec = 0;
1421 	current->in_execve = 0;
1422 	acct_update_integrals(current);
1423 	free_bprm(bprm);
1424 	if (displaced)
1425 		put_files_struct(displaced);
1426 	return retval;
1427 
1428 out:
1429 	if (bprm->mm)
1430 		mmput (bprm->mm);
1431 
1432 out_file:
1433 	if (bprm->file) {
1434 		allow_write_access(bprm->file);
1435 		fput(bprm->file);
1436 	}
1437 
1438 out_unmark:
1439 	if (clear_in_exec)
1440 		current->fs->in_exec = 0;
1441 	current->in_execve = 0;
1442 
1443 out_free:
1444 	free_bprm(bprm);
1445 
1446 out_files:
1447 	if (displaced)
1448 		reset_files_struct(displaced);
1449 out_ret:
1450 	return retval;
1451 }
1452 
1453 void set_binfmt(struct linux_binfmt *new)
1454 {
1455 	struct mm_struct *mm = current->mm;
1456 
1457 	if (mm->binfmt)
1458 		module_put(mm->binfmt->module);
1459 
1460 	mm->binfmt = new;
1461 	if (new)
1462 		__module_get(new->module);
1463 }
1464 
1465 EXPORT_SYMBOL(set_binfmt);
1466 
1467 static int expand_corename(struct core_name *cn)
1468 {
1469 	char *old_corename = cn->corename;
1470 
1471 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1472 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1473 
1474 	if (!cn->corename) {
1475 		kfree(old_corename);
1476 		return -ENOMEM;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1483 {
1484 	char *cur;
1485 	int need;
1486 	int ret;
1487 	va_list arg;
1488 
1489 	va_start(arg, fmt);
1490 	need = vsnprintf(NULL, 0, fmt, arg);
1491 	va_end(arg);
1492 
1493 	if (likely(need < cn->size - cn->used - 1))
1494 		goto out_printf;
1495 
1496 	ret = expand_corename(cn);
1497 	if (ret)
1498 		goto expand_fail;
1499 
1500 out_printf:
1501 	cur = cn->corename + cn->used;
1502 	va_start(arg, fmt);
1503 	vsnprintf(cur, need + 1, fmt, arg);
1504 	va_end(arg);
1505 	cn->used += need;
1506 	return 0;
1507 
1508 expand_fail:
1509 	return ret;
1510 }
1511 
1512 /* format_corename will inspect the pattern parameter, and output a
1513  * name into corename, which must have space for at least
1514  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1515  */
1516 static int format_corename(struct core_name *cn, long signr)
1517 {
1518 	const struct cred *cred = current_cred();
1519 	const char *pat_ptr = core_pattern;
1520 	int ispipe = (*pat_ptr == '|');
1521 	int pid_in_pattern = 0;
1522 	int err = 0;
1523 
1524 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1525 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1526 	cn->used = 0;
1527 
1528 	if (!cn->corename)
1529 		return -ENOMEM;
1530 
1531 	/* Repeat as long as we have more pattern to process and more output
1532 	   space */
1533 	while (*pat_ptr) {
1534 		if (*pat_ptr != '%') {
1535 			if (*pat_ptr == 0)
1536 				goto out;
1537 			err = cn_printf(cn, "%c", *pat_ptr++);
1538 		} else {
1539 			switch (*++pat_ptr) {
1540 			/* single % at the end, drop that */
1541 			case 0:
1542 				goto out;
1543 			/* Double percent, output one percent */
1544 			case '%':
1545 				err = cn_printf(cn, "%c", '%');
1546 				break;
1547 			/* pid */
1548 			case 'p':
1549 				pid_in_pattern = 1;
1550 				err = cn_printf(cn, "%d",
1551 					      task_tgid_vnr(current));
1552 				break;
1553 			/* uid */
1554 			case 'u':
1555 				err = cn_printf(cn, "%d", cred->uid);
1556 				break;
1557 			/* gid */
1558 			case 'g':
1559 				err = cn_printf(cn, "%d", cred->gid);
1560 				break;
1561 			/* signal that caused the coredump */
1562 			case 's':
1563 				err = cn_printf(cn, "%ld", signr);
1564 				break;
1565 			/* UNIX time of coredump */
1566 			case 't': {
1567 				struct timeval tv;
1568 				do_gettimeofday(&tv);
1569 				err = cn_printf(cn, "%lu", tv.tv_sec);
1570 				break;
1571 			}
1572 			/* hostname */
1573 			case 'h':
1574 				down_read(&uts_sem);
1575 				err = cn_printf(cn, "%s",
1576 					      utsname()->nodename);
1577 				up_read(&uts_sem);
1578 				break;
1579 			/* executable */
1580 			case 'e':
1581 				err = cn_printf(cn, "%s", current->comm);
1582 				break;
1583 			/* core limit size */
1584 			case 'c':
1585 				err = cn_printf(cn, "%lu",
1586 					      rlimit(RLIMIT_CORE));
1587 				break;
1588 			default:
1589 				break;
1590 			}
1591 			++pat_ptr;
1592 		}
1593 
1594 		if (err)
1595 			return err;
1596 	}
1597 
1598 	/* Backward compatibility with core_uses_pid:
1599 	 *
1600 	 * If core_pattern does not include a %p (as is the default)
1601 	 * and core_uses_pid is set, then .%pid will be appended to
1602 	 * the filename. Do not do this for piped commands. */
1603 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1604 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1605 		if (err)
1606 			return err;
1607 	}
1608 out:
1609 	return ispipe;
1610 }
1611 
1612 static int zap_process(struct task_struct *start, int exit_code)
1613 {
1614 	struct task_struct *t;
1615 	int nr = 0;
1616 
1617 	start->signal->flags = SIGNAL_GROUP_EXIT;
1618 	start->signal->group_exit_code = exit_code;
1619 	start->signal->group_stop_count = 0;
1620 
1621 	t = start;
1622 	do {
1623 		if (t != current && t->mm) {
1624 			sigaddset(&t->pending.signal, SIGKILL);
1625 			signal_wake_up(t, 1);
1626 			nr++;
1627 		}
1628 	} while_each_thread(start, t);
1629 
1630 	return nr;
1631 }
1632 
1633 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1634 				struct core_state *core_state, int exit_code)
1635 {
1636 	struct task_struct *g, *p;
1637 	unsigned long flags;
1638 	int nr = -EAGAIN;
1639 
1640 	spin_lock_irq(&tsk->sighand->siglock);
1641 	if (!signal_group_exit(tsk->signal)) {
1642 		mm->core_state = core_state;
1643 		nr = zap_process(tsk, exit_code);
1644 	}
1645 	spin_unlock_irq(&tsk->sighand->siglock);
1646 	if (unlikely(nr < 0))
1647 		return nr;
1648 
1649 	if (atomic_read(&mm->mm_users) == nr + 1)
1650 		goto done;
1651 	/*
1652 	 * We should find and kill all tasks which use this mm, and we should
1653 	 * count them correctly into ->nr_threads. We don't take tasklist
1654 	 * lock, but this is safe wrt:
1655 	 *
1656 	 * fork:
1657 	 *	None of sub-threads can fork after zap_process(leader). All
1658 	 *	processes which were created before this point should be
1659 	 *	visible to zap_threads() because copy_process() adds the new
1660 	 *	process to the tail of init_task.tasks list, and lock/unlock
1661 	 *	of ->siglock provides a memory barrier.
1662 	 *
1663 	 * do_exit:
1664 	 *	The caller holds mm->mmap_sem. This means that the task which
1665 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1666 	 *	its ->mm.
1667 	 *
1668 	 * de_thread:
1669 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1670 	 *	we must see either old or new leader, this does not matter.
1671 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1672 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1673 	 *	it can't fail.
1674 	 *
1675 	 *	Note also that "g" can be the old leader with ->mm == NULL
1676 	 *	and already unhashed and thus removed from ->thread_group.
1677 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1678 	 *	clear the ->next pointer, we will find the new leader via
1679 	 *	next_thread().
1680 	 */
1681 	rcu_read_lock();
1682 	for_each_process(g) {
1683 		if (g == tsk->group_leader)
1684 			continue;
1685 		if (g->flags & PF_KTHREAD)
1686 			continue;
1687 		p = g;
1688 		do {
1689 			if (p->mm) {
1690 				if (unlikely(p->mm == mm)) {
1691 					lock_task_sighand(p, &flags);
1692 					nr += zap_process(p, exit_code);
1693 					unlock_task_sighand(p, &flags);
1694 				}
1695 				break;
1696 			}
1697 		} while_each_thread(g, p);
1698 	}
1699 	rcu_read_unlock();
1700 done:
1701 	atomic_set(&core_state->nr_threads, nr);
1702 	return nr;
1703 }
1704 
1705 static int coredump_wait(int exit_code, struct core_state *core_state)
1706 {
1707 	struct task_struct *tsk = current;
1708 	struct mm_struct *mm = tsk->mm;
1709 	struct completion *vfork_done;
1710 	int core_waiters = -EBUSY;
1711 
1712 	init_completion(&core_state->startup);
1713 	core_state->dumper.task = tsk;
1714 	core_state->dumper.next = NULL;
1715 
1716 	down_write(&mm->mmap_sem);
1717 	if (!mm->core_state)
1718 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1719 	up_write(&mm->mmap_sem);
1720 
1721 	if (unlikely(core_waiters < 0))
1722 		goto fail;
1723 
1724 	/*
1725 	 * Make sure nobody is waiting for us to release the VM,
1726 	 * otherwise we can deadlock when we wait on each other
1727 	 */
1728 	vfork_done = tsk->vfork_done;
1729 	if (vfork_done) {
1730 		tsk->vfork_done = NULL;
1731 		complete(vfork_done);
1732 	}
1733 
1734 	if (core_waiters)
1735 		wait_for_completion(&core_state->startup);
1736 fail:
1737 	return core_waiters;
1738 }
1739 
1740 static void coredump_finish(struct mm_struct *mm)
1741 {
1742 	struct core_thread *curr, *next;
1743 	struct task_struct *task;
1744 
1745 	next = mm->core_state->dumper.next;
1746 	while ((curr = next) != NULL) {
1747 		next = curr->next;
1748 		task = curr->task;
1749 		/*
1750 		 * see exit_mm(), curr->task must not see
1751 		 * ->task == NULL before we read ->next.
1752 		 */
1753 		smp_mb();
1754 		curr->task = NULL;
1755 		wake_up_process(task);
1756 	}
1757 
1758 	mm->core_state = NULL;
1759 }
1760 
1761 /*
1762  * set_dumpable converts traditional three-value dumpable to two flags and
1763  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1764  * these bits are not changed atomically.  So get_dumpable can observe the
1765  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1766  * return either old dumpable or new one by paying attention to the order of
1767  * modifying the bits.
1768  *
1769  * dumpable |   mm->flags (binary)
1770  * old  new | initial interim  final
1771  * ---------+-----------------------
1772  *  0    1  |   00      01      01
1773  *  0    2  |   00      10(*)   11
1774  *  1    0  |   01      00      00
1775  *  1    2  |   01      11      11
1776  *  2    0  |   11      10(*)   00
1777  *  2    1  |   11      11      01
1778  *
1779  * (*) get_dumpable regards interim value of 10 as 11.
1780  */
1781 void set_dumpable(struct mm_struct *mm, int value)
1782 {
1783 	switch (value) {
1784 	case 0:
1785 		clear_bit(MMF_DUMPABLE, &mm->flags);
1786 		smp_wmb();
1787 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1788 		break;
1789 	case 1:
1790 		set_bit(MMF_DUMPABLE, &mm->flags);
1791 		smp_wmb();
1792 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1793 		break;
1794 	case 2:
1795 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1796 		smp_wmb();
1797 		set_bit(MMF_DUMPABLE, &mm->flags);
1798 		break;
1799 	}
1800 }
1801 
1802 static int __get_dumpable(unsigned long mm_flags)
1803 {
1804 	int ret;
1805 
1806 	ret = mm_flags & MMF_DUMPABLE_MASK;
1807 	return (ret >= 2) ? 2 : ret;
1808 }
1809 
1810 int get_dumpable(struct mm_struct *mm)
1811 {
1812 	return __get_dumpable(mm->flags);
1813 }
1814 
1815 static void wait_for_dump_helpers(struct file *file)
1816 {
1817 	struct pipe_inode_info *pipe;
1818 
1819 	pipe = file->f_path.dentry->d_inode->i_pipe;
1820 
1821 	pipe_lock(pipe);
1822 	pipe->readers++;
1823 	pipe->writers--;
1824 
1825 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1826 		wake_up_interruptible_sync(&pipe->wait);
1827 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1828 		pipe_wait(pipe);
1829 	}
1830 
1831 	pipe->readers--;
1832 	pipe->writers++;
1833 	pipe_unlock(pipe);
1834 
1835 }
1836 
1837 
1838 /*
1839  * uhm_pipe_setup
1840  * helper function to customize the process used
1841  * to collect the core in userspace.  Specifically
1842  * it sets up a pipe and installs it as fd 0 (stdin)
1843  * for the process.  Returns 0 on success, or
1844  * PTR_ERR on failure.
1845  * Note that it also sets the core limit to 1.  This
1846  * is a special value that we use to trap recursive
1847  * core dumps
1848  */
1849 static int umh_pipe_setup(struct subprocess_info *info)
1850 {
1851 	struct file *rp, *wp;
1852 	struct fdtable *fdt;
1853 	struct coredump_params *cp = (struct coredump_params *)info->data;
1854 	struct files_struct *cf = current->files;
1855 
1856 	wp = create_write_pipe(0);
1857 	if (IS_ERR(wp))
1858 		return PTR_ERR(wp);
1859 
1860 	rp = create_read_pipe(wp, 0);
1861 	if (IS_ERR(rp)) {
1862 		free_write_pipe(wp);
1863 		return PTR_ERR(rp);
1864 	}
1865 
1866 	cp->file = wp;
1867 
1868 	sys_close(0);
1869 	fd_install(0, rp);
1870 	spin_lock(&cf->file_lock);
1871 	fdt = files_fdtable(cf);
1872 	FD_SET(0, fdt->open_fds);
1873 	FD_CLR(0, fdt->close_on_exec);
1874 	spin_unlock(&cf->file_lock);
1875 
1876 	/* and disallow core files too */
1877 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1878 
1879 	return 0;
1880 }
1881 
1882 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1883 {
1884 	struct core_state core_state;
1885 	struct core_name cn;
1886 	struct mm_struct *mm = current->mm;
1887 	struct linux_binfmt * binfmt;
1888 	const struct cred *old_cred;
1889 	struct cred *cred;
1890 	int retval = 0;
1891 	int flag = 0;
1892 	int ispipe;
1893 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1894 	struct coredump_params cprm = {
1895 		.signr = signr,
1896 		.regs = regs,
1897 		.limit = rlimit(RLIMIT_CORE),
1898 		/*
1899 		 * We must use the same mm->flags while dumping core to avoid
1900 		 * inconsistency of bit flags, since this flag is not protected
1901 		 * by any locks.
1902 		 */
1903 		.mm_flags = mm->flags,
1904 	};
1905 
1906 	audit_core_dumps(signr);
1907 
1908 	binfmt = mm->binfmt;
1909 	if (!binfmt || !binfmt->core_dump)
1910 		goto fail;
1911 	if (!__get_dumpable(cprm.mm_flags))
1912 		goto fail;
1913 
1914 	cred = prepare_creds();
1915 	if (!cred)
1916 		goto fail;
1917 	/*
1918 	 *	We cannot trust fsuid as being the "true" uid of the
1919 	 *	process nor do we know its entire history. We only know it
1920 	 *	was tainted so we dump it as root in mode 2.
1921 	 */
1922 	if (__get_dumpable(cprm.mm_flags) == 2) {
1923 		/* Setuid core dump mode */
1924 		flag = O_EXCL;		/* Stop rewrite attacks */
1925 		cred->fsuid = 0;	/* Dump root private */
1926 	}
1927 
1928 	retval = coredump_wait(exit_code, &core_state);
1929 	if (retval < 0)
1930 		goto fail_creds;
1931 
1932 	old_cred = override_creds(cred);
1933 
1934 	/*
1935 	 * Clear any false indication of pending signals that might
1936 	 * be seen by the filesystem code called to write the core file.
1937 	 */
1938 	clear_thread_flag(TIF_SIGPENDING);
1939 
1940 	ispipe = format_corename(&cn, signr);
1941 
1942 	if (ispipe == -ENOMEM) {
1943 		printk(KERN_WARNING "format_corename failed\n");
1944 		printk(KERN_WARNING "Aborting core\n");
1945 		goto fail_corename;
1946 	}
1947 
1948  	if (ispipe) {
1949 		int dump_count;
1950 		char **helper_argv;
1951 
1952 		if (cprm.limit == 1) {
1953 			/*
1954 			 * Normally core limits are irrelevant to pipes, since
1955 			 * we're not writing to the file system, but we use
1956 			 * cprm.limit of 1 here as a speacial value. Any
1957 			 * non-1 limit gets set to RLIM_INFINITY below, but
1958 			 * a limit of 0 skips the dump.  This is a consistent
1959 			 * way to catch recursive crashes.  We can still crash
1960 			 * if the core_pattern binary sets RLIM_CORE =  !1
1961 			 * but it runs as root, and can do lots of stupid things
1962 			 * Note that we use task_tgid_vnr here to grab the pid
1963 			 * of the process group leader.  That way we get the
1964 			 * right pid if a thread in a multi-threaded
1965 			 * core_pattern process dies.
1966 			 */
1967 			printk(KERN_WARNING
1968 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
1969 				task_tgid_vnr(current), current->comm);
1970 			printk(KERN_WARNING "Aborting core\n");
1971 			goto fail_unlock;
1972 		}
1973 		cprm.limit = RLIM_INFINITY;
1974 
1975 		dump_count = atomic_inc_return(&core_dump_count);
1976 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1977 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1978 			       task_tgid_vnr(current), current->comm);
1979 			printk(KERN_WARNING "Skipping core dump\n");
1980 			goto fail_dropcount;
1981 		}
1982 
1983 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
1984 		if (!helper_argv) {
1985 			printk(KERN_WARNING "%s failed to allocate memory\n",
1986 			       __func__);
1987 			goto fail_dropcount;
1988 		}
1989 
1990 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1991 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1992 					NULL, &cprm);
1993 		argv_free(helper_argv);
1994 		if (retval) {
1995  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1996 			       cn.corename);
1997 			goto close_fail;
1998  		}
1999 	} else {
2000 		struct inode *inode;
2001 
2002 		if (cprm.limit < binfmt->min_coredump)
2003 			goto fail_unlock;
2004 
2005 		cprm.file = filp_open(cn.corename,
2006 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2007 				 0600);
2008 		if (IS_ERR(cprm.file))
2009 			goto fail_unlock;
2010 
2011 		inode = cprm.file->f_path.dentry->d_inode;
2012 		if (inode->i_nlink > 1)
2013 			goto close_fail;
2014 		if (d_unhashed(cprm.file->f_path.dentry))
2015 			goto close_fail;
2016 		/*
2017 		 * AK: actually i see no reason to not allow this for named
2018 		 * pipes etc, but keep the previous behaviour for now.
2019 		 */
2020 		if (!S_ISREG(inode->i_mode))
2021 			goto close_fail;
2022 		/*
2023 		 * Dont allow local users get cute and trick others to coredump
2024 		 * into their pre-created files.
2025 		 */
2026 		if (inode->i_uid != current_fsuid())
2027 			goto close_fail;
2028 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2029 			goto close_fail;
2030 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2031 			goto close_fail;
2032 	}
2033 
2034 	retval = binfmt->core_dump(&cprm);
2035 	if (retval)
2036 		current->signal->group_exit_code |= 0x80;
2037 
2038 	if (ispipe && core_pipe_limit)
2039 		wait_for_dump_helpers(cprm.file);
2040 close_fail:
2041 	if (cprm.file)
2042 		filp_close(cprm.file, NULL);
2043 fail_dropcount:
2044 	if (ispipe)
2045 		atomic_dec(&core_dump_count);
2046 fail_unlock:
2047 	kfree(cn.corename);
2048 fail_corename:
2049 	coredump_finish(mm);
2050 	revert_creds(old_cred);
2051 fail_creds:
2052 	put_cred(cred);
2053 fail:
2054 	return;
2055 }
2056 
2057 /*
2058  * Core dumping helper functions.  These are the only things you should
2059  * do on a core-file: use only these functions to write out all the
2060  * necessary info.
2061  */
2062 int dump_write(struct file *file, const void *addr, int nr)
2063 {
2064 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2065 }
2066 EXPORT_SYMBOL(dump_write);
2067 
2068 int dump_seek(struct file *file, loff_t off)
2069 {
2070 	int ret = 1;
2071 
2072 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2073 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2074 			return 0;
2075 	} else {
2076 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2077 
2078 		if (!buf)
2079 			return 0;
2080 		while (off > 0) {
2081 			unsigned long n = off;
2082 
2083 			if (n > PAGE_SIZE)
2084 				n = PAGE_SIZE;
2085 			if (!dump_write(file, buf, n)) {
2086 				ret = 0;
2087 				break;
2088 			}
2089 			off -= n;
2090 		}
2091 		free_page((unsigned long)buf);
2092 	}
2093 	return ret;
2094 }
2095 EXPORT_SYMBOL(dump_seek);
2096