1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 struct core_name { 70 char *corename; 71 int used, size; 72 }; 73 static atomic_t call_count = ATOMIC_INIT(1); 74 75 /* The maximal length of core_pattern is also specified in sysctl.c */ 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 int __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 if (!fmt) 83 return -EINVAL; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 return 0; 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 /* 108 * Note that a shared library must be both readable and executable due to 109 * security reasons. 110 * 111 * Also note that we take the address to load from from the file itself. 112 */ 113 SYSCALL_DEFINE1(uselib, const char __user *, library) 114 { 115 struct file *file; 116 char *tmp = getname(library); 117 int error = PTR_ERR(tmp); 118 119 if (IS_ERR(tmp)) 120 goto out; 121 122 file = do_filp_open(AT_FDCWD, tmp, 123 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 124 MAY_READ | MAY_EXEC | MAY_OPEN); 125 putname(tmp); 126 error = PTR_ERR(file); 127 if (IS_ERR(file)) 128 goto out; 129 130 error = -EINVAL; 131 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 132 goto exit; 133 134 error = -EACCES; 135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 136 goto exit; 137 138 fsnotify_open(file); 139 140 error = -ENOEXEC; 141 if(file->f_op) { 142 struct linux_binfmt * fmt; 143 144 read_lock(&binfmt_lock); 145 list_for_each_entry(fmt, &formats, lh) { 146 if (!fmt->load_shlib) 147 continue; 148 if (!try_module_get(fmt->module)) 149 continue; 150 read_unlock(&binfmt_lock); 151 error = fmt->load_shlib(file); 152 read_lock(&binfmt_lock); 153 put_binfmt(fmt); 154 if (error != -ENOEXEC) 155 break; 156 } 157 read_unlock(&binfmt_lock); 158 } 159 exit: 160 fput(file); 161 out: 162 return error; 163 } 164 165 #ifdef CONFIG_MMU 166 167 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 168 int write) 169 { 170 struct page *page; 171 int ret; 172 173 #ifdef CONFIG_STACK_GROWSUP 174 if (write) { 175 ret = expand_stack_downwards(bprm->vma, pos); 176 if (ret < 0) 177 return NULL; 178 } 179 #endif 180 ret = get_user_pages(current, bprm->mm, pos, 181 1, write, 1, &page, NULL); 182 if (ret <= 0) 183 return NULL; 184 185 if (write) { 186 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 187 struct rlimit *rlim; 188 189 /* 190 * We've historically supported up to 32 pages (ARG_MAX) 191 * of argument strings even with small stacks 192 */ 193 if (size <= ARG_MAX) 194 return page; 195 196 /* 197 * Limit to 1/4-th the stack size for the argv+env strings. 198 * This ensures that: 199 * - the remaining binfmt code will not run out of stack space, 200 * - the program will have a reasonable amount of stack left 201 * to work from. 202 */ 203 rlim = current->signal->rlim; 204 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 205 put_page(page); 206 return NULL; 207 } 208 } 209 210 return page; 211 } 212 213 static void put_arg_page(struct page *page) 214 { 215 put_page(page); 216 } 217 218 static void free_arg_page(struct linux_binprm *bprm, int i) 219 { 220 } 221 222 static void free_arg_pages(struct linux_binprm *bprm) 223 { 224 } 225 226 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 227 struct page *page) 228 { 229 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 230 } 231 232 static int __bprm_mm_init(struct linux_binprm *bprm) 233 { 234 int err; 235 struct vm_area_struct *vma = NULL; 236 struct mm_struct *mm = bprm->mm; 237 238 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 239 if (!vma) 240 return -ENOMEM; 241 242 down_write(&mm->mmap_sem); 243 vma->vm_mm = mm; 244 245 /* 246 * Place the stack at the largest stack address the architecture 247 * supports. Later, we'll move this to an appropriate place. We don't 248 * use STACK_TOP because that can depend on attributes which aren't 249 * configured yet. 250 */ 251 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 252 vma->vm_end = STACK_TOP_MAX; 253 vma->vm_start = vma->vm_end - PAGE_SIZE; 254 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 255 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 256 INIT_LIST_HEAD(&vma->anon_vma_chain); 257 err = insert_vm_struct(mm, vma); 258 if (err) 259 goto err; 260 261 mm->stack_vm = mm->total_vm = 1; 262 up_write(&mm->mmap_sem); 263 bprm->p = vma->vm_end - sizeof(void *); 264 return 0; 265 err: 266 up_write(&mm->mmap_sem); 267 bprm->vma = NULL; 268 kmem_cache_free(vm_area_cachep, vma); 269 return err; 270 } 271 272 static bool valid_arg_len(struct linux_binprm *bprm, long len) 273 { 274 return len <= MAX_ARG_STRLEN; 275 } 276 277 #else 278 279 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 280 int write) 281 { 282 struct page *page; 283 284 page = bprm->page[pos / PAGE_SIZE]; 285 if (!page && write) { 286 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 287 if (!page) 288 return NULL; 289 bprm->page[pos / PAGE_SIZE] = page; 290 } 291 292 return page; 293 } 294 295 static void put_arg_page(struct page *page) 296 { 297 } 298 299 static void free_arg_page(struct linux_binprm *bprm, int i) 300 { 301 if (bprm->page[i]) { 302 __free_page(bprm->page[i]); 303 bprm->page[i] = NULL; 304 } 305 } 306 307 static void free_arg_pages(struct linux_binprm *bprm) 308 { 309 int i; 310 311 for (i = 0; i < MAX_ARG_PAGES; i++) 312 free_arg_page(bprm, i); 313 } 314 315 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 316 struct page *page) 317 { 318 } 319 320 static int __bprm_mm_init(struct linux_binprm *bprm) 321 { 322 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 323 return 0; 324 } 325 326 static bool valid_arg_len(struct linux_binprm *bprm, long len) 327 { 328 return len <= bprm->p; 329 } 330 331 #endif /* CONFIG_MMU */ 332 333 /* 334 * Create a new mm_struct and populate it with a temporary stack 335 * vm_area_struct. We don't have enough context at this point to set the stack 336 * flags, permissions, and offset, so we use temporary values. We'll update 337 * them later in setup_arg_pages(). 338 */ 339 int bprm_mm_init(struct linux_binprm *bprm) 340 { 341 int err; 342 struct mm_struct *mm = NULL; 343 344 bprm->mm = mm = mm_alloc(); 345 err = -ENOMEM; 346 if (!mm) 347 goto err; 348 349 err = init_new_context(current, mm); 350 if (err) 351 goto err; 352 353 err = __bprm_mm_init(bprm); 354 if (err) 355 goto err; 356 357 return 0; 358 359 err: 360 if (mm) { 361 bprm->mm = NULL; 362 mmdrop(mm); 363 } 364 365 return err; 366 } 367 368 /* 369 * count() counts the number of strings in array ARGV. 370 */ 371 static int count(const char __user * const __user * argv, int max) 372 { 373 int i = 0; 374 375 if (argv != NULL) { 376 for (;;) { 377 const char __user * p; 378 379 if (get_user(p, argv)) 380 return -EFAULT; 381 if (!p) 382 break; 383 argv++; 384 if (i++ >= max) 385 return -E2BIG; 386 387 if (fatal_signal_pending(current)) 388 return -ERESTARTNOHAND; 389 cond_resched(); 390 } 391 } 392 return i; 393 } 394 395 /* 396 * 'copy_strings()' copies argument/environment strings from the old 397 * processes's memory to the new process's stack. The call to get_user_pages() 398 * ensures the destination page is created and not swapped out. 399 */ 400 static int copy_strings(int argc, const char __user *const __user *argv, 401 struct linux_binprm *bprm) 402 { 403 struct page *kmapped_page = NULL; 404 char *kaddr = NULL; 405 unsigned long kpos = 0; 406 int ret; 407 408 while (argc-- > 0) { 409 const char __user *str; 410 int len; 411 unsigned long pos; 412 413 if (get_user(str, argv+argc) || 414 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 415 ret = -EFAULT; 416 goto out; 417 } 418 419 if (!valid_arg_len(bprm, len)) { 420 ret = -E2BIG; 421 goto out; 422 } 423 424 /* We're going to work our way backwords. */ 425 pos = bprm->p; 426 str += len; 427 bprm->p -= len; 428 429 while (len > 0) { 430 int offset, bytes_to_copy; 431 432 if (fatal_signal_pending(current)) { 433 ret = -ERESTARTNOHAND; 434 goto out; 435 } 436 cond_resched(); 437 438 offset = pos % PAGE_SIZE; 439 if (offset == 0) 440 offset = PAGE_SIZE; 441 442 bytes_to_copy = offset; 443 if (bytes_to_copy > len) 444 bytes_to_copy = len; 445 446 offset -= bytes_to_copy; 447 pos -= bytes_to_copy; 448 str -= bytes_to_copy; 449 len -= bytes_to_copy; 450 451 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 452 struct page *page; 453 454 page = get_arg_page(bprm, pos, 1); 455 if (!page) { 456 ret = -E2BIG; 457 goto out; 458 } 459 460 if (kmapped_page) { 461 flush_kernel_dcache_page(kmapped_page); 462 kunmap(kmapped_page); 463 put_arg_page(kmapped_page); 464 } 465 kmapped_page = page; 466 kaddr = kmap(kmapped_page); 467 kpos = pos & PAGE_MASK; 468 flush_arg_page(bprm, kpos, kmapped_page); 469 } 470 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 471 ret = -EFAULT; 472 goto out; 473 } 474 } 475 } 476 ret = 0; 477 out: 478 if (kmapped_page) { 479 flush_kernel_dcache_page(kmapped_page); 480 kunmap(kmapped_page); 481 put_arg_page(kmapped_page); 482 } 483 return ret; 484 } 485 486 /* 487 * Like copy_strings, but get argv and its values from kernel memory. 488 */ 489 int copy_strings_kernel(int argc, const char *const *argv, 490 struct linux_binprm *bprm) 491 { 492 int r; 493 mm_segment_t oldfs = get_fs(); 494 set_fs(KERNEL_DS); 495 r = copy_strings(argc, (const char __user *const __user *)argv, bprm); 496 set_fs(oldfs); 497 return r; 498 } 499 EXPORT_SYMBOL(copy_strings_kernel); 500 501 #ifdef CONFIG_MMU 502 503 /* 504 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 505 * the binfmt code determines where the new stack should reside, we shift it to 506 * its final location. The process proceeds as follows: 507 * 508 * 1) Use shift to calculate the new vma endpoints. 509 * 2) Extend vma to cover both the old and new ranges. This ensures the 510 * arguments passed to subsequent functions are consistent. 511 * 3) Move vma's page tables to the new range. 512 * 4) Free up any cleared pgd range. 513 * 5) Shrink the vma to cover only the new range. 514 */ 515 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 516 { 517 struct mm_struct *mm = vma->vm_mm; 518 unsigned long old_start = vma->vm_start; 519 unsigned long old_end = vma->vm_end; 520 unsigned long length = old_end - old_start; 521 unsigned long new_start = old_start - shift; 522 unsigned long new_end = old_end - shift; 523 struct mmu_gather *tlb; 524 525 BUG_ON(new_start > new_end); 526 527 /* 528 * ensure there are no vmas between where we want to go 529 * and where we are 530 */ 531 if (vma != find_vma(mm, new_start)) 532 return -EFAULT; 533 534 /* 535 * cover the whole range: [new_start, old_end) 536 */ 537 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 538 return -ENOMEM; 539 540 /* 541 * move the page tables downwards, on failure we rely on 542 * process cleanup to remove whatever mess we made. 543 */ 544 if (length != move_page_tables(vma, old_start, 545 vma, new_start, length)) 546 return -ENOMEM; 547 548 lru_add_drain(); 549 tlb = tlb_gather_mmu(mm, 0); 550 if (new_end > old_start) { 551 /* 552 * when the old and new regions overlap clear from new_end. 553 */ 554 free_pgd_range(tlb, new_end, old_end, new_end, 555 vma->vm_next ? vma->vm_next->vm_start : 0); 556 } else { 557 /* 558 * otherwise, clean from old_start; this is done to not touch 559 * the address space in [new_end, old_start) some architectures 560 * have constraints on va-space that make this illegal (IA64) - 561 * for the others its just a little faster. 562 */ 563 free_pgd_range(tlb, old_start, old_end, new_end, 564 vma->vm_next ? vma->vm_next->vm_start : 0); 565 } 566 tlb_finish_mmu(tlb, new_end, old_end); 567 568 /* 569 * Shrink the vma to just the new range. Always succeeds. 570 */ 571 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 572 573 return 0; 574 } 575 576 /* 577 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 578 * the stack is optionally relocated, and some extra space is added. 579 */ 580 int setup_arg_pages(struct linux_binprm *bprm, 581 unsigned long stack_top, 582 int executable_stack) 583 { 584 unsigned long ret; 585 unsigned long stack_shift; 586 struct mm_struct *mm = current->mm; 587 struct vm_area_struct *vma = bprm->vma; 588 struct vm_area_struct *prev = NULL; 589 unsigned long vm_flags; 590 unsigned long stack_base; 591 unsigned long stack_size; 592 unsigned long stack_expand; 593 unsigned long rlim_stack; 594 595 #ifdef CONFIG_STACK_GROWSUP 596 /* Limit stack size to 1GB */ 597 stack_base = rlimit_max(RLIMIT_STACK); 598 if (stack_base > (1 << 30)) 599 stack_base = 1 << 30; 600 601 /* Make sure we didn't let the argument array grow too large. */ 602 if (vma->vm_end - vma->vm_start > stack_base) 603 return -ENOMEM; 604 605 stack_base = PAGE_ALIGN(stack_top - stack_base); 606 607 stack_shift = vma->vm_start - stack_base; 608 mm->arg_start = bprm->p - stack_shift; 609 bprm->p = vma->vm_end - stack_shift; 610 #else 611 stack_top = arch_align_stack(stack_top); 612 stack_top = PAGE_ALIGN(stack_top); 613 614 if (unlikely(stack_top < mmap_min_addr) || 615 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 616 return -ENOMEM; 617 618 stack_shift = vma->vm_end - stack_top; 619 620 bprm->p -= stack_shift; 621 mm->arg_start = bprm->p; 622 #endif 623 624 if (bprm->loader) 625 bprm->loader -= stack_shift; 626 bprm->exec -= stack_shift; 627 628 down_write(&mm->mmap_sem); 629 vm_flags = VM_STACK_FLAGS; 630 631 /* 632 * Adjust stack execute permissions; explicitly enable for 633 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 634 * (arch default) otherwise. 635 */ 636 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 637 vm_flags |= VM_EXEC; 638 else if (executable_stack == EXSTACK_DISABLE_X) 639 vm_flags &= ~VM_EXEC; 640 vm_flags |= mm->def_flags; 641 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 642 643 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 644 vm_flags); 645 if (ret) 646 goto out_unlock; 647 BUG_ON(prev != vma); 648 649 /* Move stack pages down in memory. */ 650 if (stack_shift) { 651 ret = shift_arg_pages(vma, stack_shift); 652 if (ret) 653 goto out_unlock; 654 } 655 656 /* mprotect_fixup is overkill to remove the temporary stack flags */ 657 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 658 659 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 660 stack_size = vma->vm_end - vma->vm_start; 661 /* 662 * Align this down to a page boundary as expand_stack 663 * will align it up. 664 */ 665 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 666 #ifdef CONFIG_STACK_GROWSUP 667 if (stack_size + stack_expand > rlim_stack) 668 stack_base = vma->vm_start + rlim_stack; 669 else 670 stack_base = vma->vm_end + stack_expand; 671 #else 672 if (stack_size + stack_expand > rlim_stack) 673 stack_base = vma->vm_end - rlim_stack; 674 else 675 stack_base = vma->vm_start - stack_expand; 676 #endif 677 current->mm->start_stack = bprm->p; 678 ret = expand_stack(vma, stack_base); 679 if (ret) 680 ret = -EFAULT; 681 682 out_unlock: 683 up_write(&mm->mmap_sem); 684 return ret; 685 } 686 EXPORT_SYMBOL(setup_arg_pages); 687 688 #endif /* CONFIG_MMU */ 689 690 struct file *open_exec(const char *name) 691 { 692 struct file *file; 693 int err; 694 695 file = do_filp_open(AT_FDCWD, name, 696 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 697 MAY_EXEC | MAY_OPEN); 698 if (IS_ERR(file)) 699 goto out; 700 701 err = -EACCES; 702 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 703 goto exit; 704 705 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 706 goto exit; 707 708 fsnotify_open(file); 709 710 err = deny_write_access(file); 711 if (err) 712 goto exit; 713 714 out: 715 return file; 716 717 exit: 718 fput(file); 719 return ERR_PTR(err); 720 } 721 EXPORT_SYMBOL(open_exec); 722 723 int kernel_read(struct file *file, loff_t offset, 724 char *addr, unsigned long count) 725 { 726 mm_segment_t old_fs; 727 loff_t pos = offset; 728 int result; 729 730 old_fs = get_fs(); 731 set_fs(get_ds()); 732 /* The cast to a user pointer is valid due to the set_fs() */ 733 result = vfs_read(file, (void __user *)addr, count, &pos); 734 set_fs(old_fs); 735 return result; 736 } 737 738 EXPORT_SYMBOL(kernel_read); 739 740 static int exec_mmap(struct mm_struct *mm) 741 { 742 struct task_struct *tsk; 743 struct mm_struct * old_mm, *active_mm; 744 745 /* Notify parent that we're no longer interested in the old VM */ 746 tsk = current; 747 old_mm = current->mm; 748 sync_mm_rss(tsk, old_mm); 749 mm_release(tsk, old_mm); 750 751 if (old_mm) { 752 /* 753 * Make sure that if there is a core dump in progress 754 * for the old mm, we get out and die instead of going 755 * through with the exec. We must hold mmap_sem around 756 * checking core_state and changing tsk->mm. 757 */ 758 down_read(&old_mm->mmap_sem); 759 if (unlikely(old_mm->core_state)) { 760 up_read(&old_mm->mmap_sem); 761 return -EINTR; 762 } 763 } 764 task_lock(tsk); 765 active_mm = tsk->active_mm; 766 tsk->mm = mm; 767 tsk->active_mm = mm; 768 activate_mm(active_mm, mm); 769 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 770 atomic_dec(&old_mm->oom_disable_count); 771 atomic_inc(&tsk->mm->oom_disable_count); 772 } 773 task_unlock(tsk); 774 arch_pick_mmap_layout(mm); 775 if (old_mm) { 776 up_read(&old_mm->mmap_sem); 777 BUG_ON(active_mm != old_mm); 778 mm_update_next_owner(old_mm); 779 mmput(old_mm); 780 return 0; 781 } 782 mmdrop(active_mm); 783 return 0; 784 } 785 786 /* 787 * This function makes sure the current process has its own signal table, 788 * so that flush_signal_handlers can later reset the handlers without 789 * disturbing other processes. (Other processes might share the signal 790 * table via the CLONE_SIGHAND option to clone().) 791 */ 792 static int de_thread(struct task_struct *tsk) 793 { 794 struct signal_struct *sig = tsk->signal; 795 struct sighand_struct *oldsighand = tsk->sighand; 796 spinlock_t *lock = &oldsighand->siglock; 797 798 if (thread_group_empty(tsk)) 799 goto no_thread_group; 800 801 /* 802 * Kill all other threads in the thread group. 803 */ 804 spin_lock_irq(lock); 805 if (signal_group_exit(sig)) { 806 /* 807 * Another group action in progress, just 808 * return so that the signal is processed. 809 */ 810 spin_unlock_irq(lock); 811 return -EAGAIN; 812 } 813 814 sig->group_exit_task = tsk; 815 sig->notify_count = zap_other_threads(tsk); 816 if (!thread_group_leader(tsk)) 817 sig->notify_count--; 818 819 while (sig->notify_count) { 820 __set_current_state(TASK_UNINTERRUPTIBLE); 821 spin_unlock_irq(lock); 822 schedule(); 823 spin_lock_irq(lock); 824 } 825 spin_unlock_irq(lock); 826 827 /* 828 * At this point all other threads have exited, all we have to 829 * do is to wait for the thread group leader to become inactive, 830 * and to assume its PID: 831 */ 832 if (!thread_group_leader(tsk)) { 833 struct task_struct *leader = tsk->group_leader; 834 835 sig->notify_count = -1; /* for exit_notify() */ 836 for (;;) { 837 write_lock_irq(&tasklist_lock); 838 if (likely(leader->exit_state)) 839 break; 840 __set_current_state(TASK_UNINTERRUPTIBLE); 841 write_unlock_irq(&tasklist_lock); 842 schedule(); 843 } 844 845 /* 846 * The only record we have of the real-time age of a 847 * process, regardless of execs it's done, is start_time. 848 * All the past CPU time is accumulated in signal_struct 849 * from sister threads now dead. But in this non-leader 850 * exec, nothing survives from the original leader thread, 851 * whose birth marks the true age of this process now. 852 * When we take on its identity by switching to its PID, we 853 * also take its birthdate (always earlier than our own). 854 */ 855 tsk->start_time = leader->start_time; 856 857 BUG_ON(!same_thread_group(leader, tsk)); 858 BUG_ON(has_group_leader_pid(tsk)); 859 /* 860 * An exec() starts a new thread group with the 861 * TGID of the previous thread group. Rehash the 862 * two threads with a switched PID, and release 863 * the former thread group leader: 864 */ 865 866 /* Become a process group leader with the old leader's pid. 867 * The old leader becomes a thread of the this thread group. 868 * Note: The old leader also uses this pid until release_task 869 * is called. Odd but simple and correct. 870 */ 871 detach_pid(tsk, PIDTYPE_PID); 872 tsk->pid = leader->pid; 873 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 874 transfer_pid(leader, tsk, PIDTYPE_PGID); 875 transfer_pid(leader, tsk, PIDTYPE_SID); 876 877 list_replace_rcu(&leader->tasks, &tsk->tasks); 878 list_replace_init(&leader->sibling, &tsk->sibling); 879 880 tsk->group_leader = tsk; 881 leader->group_leader = tsk; 882 883 tsk->exit_signal = SIGCHLD; 884 885 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 886 leader->exit_state = EXIT_DEAD; 887 write_unlock_irq(&tasklist_lock); 888 889 release_task(leader); 890 } 891 892 sig->group_exit_task = NULL; 893 sig->notify_count = 0; 894 895 no_thread_group: 896 if (current->mm) 897 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 898 899 exit_itimers(sig); 900 flush_itimer_signals(); 901 902 if (atomic_read(&oldsighand->count) != 1) { 903 struct sighand_struct *newsighand; 904 /* 905 * This ->sighand is shared with the CLONE_SIGHAND 906 * but not CLONE_THREAD task, switch to the new one. 907 */ 908 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 909 if (!newsighand) 910 return -ENOMEM; 911 912 atomic_set(&newsighand->count, 1); 913 memcpy(newsighand->action, oldsighand->action, 914 sizeof(newsighand->action)); 915 916 write_lock_irq(&tasklist_lock); 917 spin_lock(&oldsighand->siglock); 918 rcu_assign_pointer(tsk->sighand, newsighand); 919 spin_unlock(&oldsighand->siglock); 920 write_unlock_irq(&tasklist_lock); 921 922 __cleanup_sighand(oldsighand); 923 } 924 925 BUG_ON(!thread_group_leader(tsk)); 926 return 0; 927 } 928 929 /* 930 * These functions flushes out all traces of the currently running executable 931 * so that a new one can be started 932 */ 933 static void flush_old_files(struct files_struct * files) 934 { 935 long j = -1; 936 struct fdtable *fdt; 937 938 spin_lock(&files->file_lock); 939 for (;;) { 940 unsigned long set, i; 941 942 j++; 943 i = j * __NFDBITS; 944 fdt = files_fdtable(files); 945 if (i >= fdt->max_fds) 946 break; 947 set = fdt->close_on_exec->fds_bits[j]; 948 if (!set) 949 continue; 950 fdt->close_on_exec->fds_bits[j] = 0; 951 spin_unlock(&files->file_lock); 952 for ( ; set ; i++,set >>= 1) { 953 if (set & 1) { 954 sys_close(i); 955 } 956 } 957 spin_lock(&files->file_lock); 958 959 } 960 spin_unlock(&files->file_lock); 961 } 962 963 char *get_task_comm(char *buf, struct task_struct *tsk) 964 { 965 /* buf must be at least sizeof(tsk->comm) in size */ 966 task_lock(tsk); 967 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 968 task_unlock(tsk); 969 return buf; 970 } 971 972 void set_task_comm(struct task_struct *tsk, char *buf) 973 { 974 task_lock(tsk); 975 976 /* 977 * Threads may access current->comm without holding 978 * the task lock, so write the string carefully. 979 * Readers without a lock may see incomplete new 980 * names but are safe from non-terminating string reads. 981 */ 982 memset(tsk->comm, 0, TASK_COMM_LEN); 983 wmb(); 984 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 985 task_unlock(tsk); 986 perf_event_comm(tsk); 987 } 988 989 int flush_old_exec(struct linux_binprm * bprm) 990 { 991 int retval; 992 993 /* 994 * Make sure we have a private signal table and that 995 * we are unassociated from the previous thread group. 996 */ 997 retval = de_thread(current); 998 if (retval) 999 goto out; 1000 1001 set_mm_exe_file(bprm->mm, bprm->file); 1002 1003 /* 1004 * Release all of the old mmap stuff 1005 */ 1006 retval = exec_mmap(bprm->mm); 1007 if (retval) 1008 goto out; 1009 1010 bprm->mm = NULL; /* We're using it now */ 1011 1012 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1013 flush_thread(); 1014 current->personality &= ~bprm->per_clear; 1015 1016 return 0; 1017 1018 out: 1019 return retval; 1020 } 1021 EXPORT_SYMBOL(flush_old_exec); 1022 1023 void setup_new_exec(struct linux_binprm * bprm) 1024 { 1025 int i, ch; 1026 const char *name; 1027 char tcomm[sizeof(current->comm)]; 1028 1029 arch_pick_mmap_layout(current->mm); 1030 1031 /* This is the point of no return */ 1032 current->sas_ss_sp = current->sas_ss_size = 0; 1033 1034 if (current_euid() == current_uid() && current_egid() == current_gid()) 1035 set_dumpable(current->mm, 1); 1036 else 1037 set_dumpable(current->mm, suid_dumpable); 1038 1039 name = bprm->filename; 1040 1041 /* Copies the binary name from after last slash */ 1042 for (i=0; (ch = *(name++)) != '\0';) { 1043 if (ch == '/') 1044 i = 0; /* overwrite what we wrote */ 1045 else 1046 if (i < (sizeof(tcomm) - 1)) 1047 tcomm[i++] = ch; 1048 } 1049 tcomm[i] = '\0'; 1050 set_task_comm(current, tcomm); 1051 1052 /* Set the new mm task size. We have to do that late because it may 1053 * depend on TIF_32BIT which is only updated in flush_thread() on 1054 * some architectures like powerpc 1055 */ 1056 current->mm->task_size = TASK_SIZE; 1057 1058 /* install the new credentials */ 1059 if (bprm->cred->uid != current_euid() || 1060 bprm->cred->gid != current_egid()) { 1061 current->pdeath_signal = 0; 1062 } else if (file_permission(bprm->file, MAY_READ) || 1063 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1064 set_dumpable(current->mm, suid_dumpable); 1065 } 1066 1067 /* 1068 * Flush performance counters when crossing a 1069 * security domain: 1070 */ 1071 if (!get_dumpable(current->mm)) 1072 perf_event_exit_task(current); 1073 1074 /* An exec changes our domain. We are no longer part of the thread 1075 group */ 1076 1077 current->self_exec_id++; 1078 1079 flush_signal_handlers(current, 0); 1080 flush_old_files(current->files); 1081 } 1082 EXPORT_SYMBOL(setup_new_exec); 1083 1084 /* 1085 * Prepare credentials and lock ->cred_guard_mutex. 1086 * install_exec_creds() commits the new creds and drops the lock. 1087 * Or, if exec fails before, free_bprm() should release ->cred and 1088 * and unlock. 1089 */ 1090 int prepare_bprm_creds(struct linux_binprm *bprm) 1091 { 1092 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1093 return -ERESTARTNOINTR; 1094 1095 bprm->cred = prepare_exec_creds(); 1096 if (likely(bprm->cred)) 1097 return 0; 1098 1099 mutex_unlock(¤t->signal->cred_guard_mutex); 1100 return -ENOMEM; 1101 } 1102 1103 void free_bprm(struct linux_binprm *bprm) 1104 { 1105 free_arg_pages(bprm); 1106 if (bprm->cred) { 1107 mutex_unlock(¤t->signal->cred_guard_mutex); 1108 abort_creds(bprm->cred); 1109 } 1110 kfree(bprm); 1111 } 1112 1113 /* 1114 * install the new credentials for this executable 1115 */ 1116 void install_exec_creds(struct linux_binprm *bprm) 1117 { 1118 security_bprm_committing_creds(bprm); 1119 1120 commit_creds(bprm->cred); 1121 bprm->cred = NULL; 1122 /* 1123 * cred_guard_mutex must be held at least to this point to prevent 1124 * ptrace_attach() from altering our determination of the task's 1125 * credentials; any time after this it may be unlocked. 1126 */ 1127 security_bprm_committed_creds(bprm); 1128 mutex_unlock(¤t->signal->cred_guard_mutex); 1129 } 1130 EXPORT_SYMBOL(install_exec_creds); 1131 1132 /* 1133 * determine how safe it is to execute the proposed program 1134 * - the caller must hold ->cred_guard_mutex to protect against 1135 * PTRACE_ATTACH 1136 */ 1137 int check_unsafe_exec(struct linux_binprm *bprm) 1138 { 1139 struct task_struct *p = current, *t; 1140 unsigned n_fs; 1141 int res = 0; 1142 1143 bprm->unsafe = tracehook_unsafe_exec(p); 1144 1145 n_fs = 1; 1146 spin_lock(&p->fs->lock); 1147 rcu_read_lock(); 1148 for (t = next_thread(p); t != p; t = next_thread(t)) { 1149 if (t->fs == p->fs) 1150 n_fs++; 1151 } 1152 rcu_read_unlock(); 1153 1154 if (p->fs->users > n_fs) { 1155 bprm->unsafe |= LSM_UNSAFE_SHARE; 1156 } else { 1157 res = -EAGAIN; 1158 if (!p->fs->in_exec) { 1159 p->fs->in_exec = 1; 1160 res = 1; 1161 } 1162 } 1163 spin_unlock(&p->fs->lock); 1164 1165 return res; 1166 } 1167 1168 /* 1169 * Fill the binprm structure from the inode. 1170 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1171 * 1172 * This may be called multiple times for binary chains (scripts for example). 1173 */ 1174 int prepare_binprm(struct linux_binprm *bprm) 1175 { 1176 umode_t mode; 1177 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1178 int retval; 1179 1180 mode = inode->i_mode; 1181 if (bprm->file->f_op == NULL) 1182 return -EACCES; 1183 1184 /* clear any previous set[ug]id data from a previous binary */ 1185 bprm->cred->euid = current_euid(); 1186 bprm->cred->egid = current_egid(); 1187 1188 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1189 /* Set-uid? */ 1190 if (mode & S_ISUID) { 1191 bprm->per_clear |= PER_CLEAR_ON_SETID; 1192 bprm->cred->euid = inode->i_uid; 1193 } 1194 1195 /* Set-gid? */ 1196 /* 1197 * If setgid is set but no group execute bit then this 1198 * is a candidate for mandatory locking, not a setgid 1199 * executable. 1200 */ 1201 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1202 bprm->per_clear |= PER_CLEAR_ON_SETID; 1203 bprm->cred->egid = inode->i_gid; 1204 } 1205 } 1206 1207 /* fill in binprm security blob */ 1208 retval = security_bprm_set_creds(bprm); 1209 if (retval) 1210 return retval; 1211 bprm->cred_prepared = 1; 1212 1213 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1214 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1215 } 1216 1217 EXPORT_SYMBOL(prepare_binprm); 1218 1219 /* 1220 * Arguments are '\0' separated strings found at the location bprm->p 1221 * points to; chop off the first by relocating brpm->p to right after 1222 * the first '\0' encountered. 1223 */ 1224 int remove_arg_zero(struct linux_binprm *bprm) 1225 { 1226 int ret = 0; 1227 unsigned long offset; 1228 char *kaddr; 1229 struct page *page; 1230 1231 if (!bprm->argc) 1232 return 0; 1233 1234 do { 1235 offset = bprm->p & ~PAGE_MASK; 1236 page = get_arg_page(bprm, bprm->p, 0); 1237 if (!page) { 1238 ret = -EFAULT; 1239 goto out; 1240 } 1241 kaddr = kmap_atomic(page, KM_USER0); 1242 1243 for (; offset < PAGE_SIZE && kaddr[offset]; 1244 offset++, bprm->p++) 1245 ; 1246 1247 kunmap_atomic(kaddr, KM_USER0); 1248 put_arg_page(page); 1249 1250 if (offset == PAGE_SIZE) 1251 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1252 } while (offset == PAGE_SIZE); 1253 1254 bprm->p++; 1255 bprm->argc--; 1256 ret = 0; 1257 1258 out: 1259 return ret; 1260 } 1261 EXPORT_SYMBOL(remove_arg_zero); 1262 1263 /* 1264 * cycle the list of binary formats handler, until one recognizes the image 1265 */ 1266 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1267 { 1268 unsigned int depth = bprm->recursion_depth; 1269 int try,retval; 1270 struct linux_binfmt *fmt; 1271 1272 retval = security_bprm_check(bprm); 1273 if (retval) 1274 return retval; 1275 1276 /* kernel module loader fixup */ 1277 /* so we don't try to load run modprobe in kernel space. */ 1278 set_fs(USER_DS); 1279 1280 retval = audit_bprm(bprm); 1281 if (retval) 1282 return retval; 1283 1284 retval = -ENOENT; 1285 for (try=0; try<2; try++) { 1286 read_lock(&binfmt_lock); 1287 list_for_each_entry(fmt, &formats, lh) { 1288 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1289 if (!fn) 1290 continue; 1291 if (!try_module_get(fmt->module)) 1292 continue; 1293 read_unlock(&binfmt_lock); 1294 retval = fn(bprm, regs); 1295 /* 1296 * Restore the depth counter to its starting value 1297 * in this call, so we don't have to rely on every 1298 * load_binary function to restore it on return. 1299 */ 1300 bprm->recursion_depth = depth; 1301 if (retval >= 0) { 1302 if (depth == 0) 1303 tracehook_report_exec(fmt, bprm, regs); 1304 put_binfmt(fmt); 1305 allow_write_access(bprm->file); 1306 if (bprm->file) 1307 fput(bprm->file); 1308 bprm->file = NULL; 1309 current->did_exec = 1; 1310 proc_exec_connector(current); 1311 return retval; 1312 } 1313 read_lock(&binfmt_lock); 1314 put_binfmt(fmt); 1315 if (retval != -ENOEXEC || bprm->mm == NULL) 1316 break; 1317 if (!bprm->file) { 1318 read_unlock(&binfmt_lock); 1319 return retval; 1320 } 1321 } 1322 read_unlock(&binfmt_lock); 1323 if (retval != -ENOEXEC || bprm->mm == NULL) { 1324 break; 1325 #ifdef CONFIG_MODULES 1326 } else { 1327 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1328 if (printable(bprm->buf[0]) && 1329 printable(bprm->buf[1]) && 1330 printable(bprm->buf[2]) && 1331 printable(bprm->buf[3])) 1332 break; /* -ENOEXEC */ 1333 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1334 #endif 1335 } 1336 } 1337 return retval; 1338 } 1339 1340 EXPORT_SYMBOL(search_binary_handler); 1341 1342 /* 1343 * sys_execve() executes a new program. 1344 */ 1345 int do_execve(const char * filename, 1346 const char __user *const __user *argv, 1347 const char __user *const __user *envp, 1348 struct pt_regs * regs) 1349 { 1350 struct linux_binprm *bprm; 1351 struct file *file; 1352 struct files_struct *displaced; 1353 bool clear_in_exec; 1354 int retval; 1355 1356 retval = unshare_files(&displaced); 1357 if (retval) 1358 goto out_ret; 1359 1360 retval = -ENOMEM; 1361 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1362 if (!bprm) 1363 goto out_files; 1364 1365 retval = prepare_bprm_creds(bprm); 1366 if (retval) 1367 goto out_free; 1368 1369 retval = check_unsafe_exec(bprm); 1370 if (retval < 0) 1371 goto out_free; 1372 clear_in_exec = retval; 1373 current->in_execve = 1; 1374 1375 file = open_exec(filename); 1376 retval = PTR_ERR(file); 1377 if (IS_ERR(file)) 1378 goto out_unmark; 1379 1380 sched_exec(); 1381 1382 bprm->file = file; 1383 bprm->filename = filename; 1384 bprm->interp = filename; 1385 1386 retval = bprm_mm_init(bprm); 1387 if (retval) 1388 goto out_file; 1389 1390 bprm->argc = count(argv, MAX_ARG_STRINGS); 1391 if ((retval = bprm->argc) < 0) 1392 goto out; 1393 1394 bprm->envc = count(envp, MAX_ARG_STRINGS); 1395 if ((retval = bprm->envc) < 0) 1396 goto out; 1397 1398 retval = prepare_binprm(bprm); 1399 if (retval < 0) 1400 goto out; 1401 1402 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1403 if (retval < 0) 1404 goto out; 1405 1406 bprm->exec = bprm->p; 1407 retval = copy_strings(bprm->envc, envp, bprm); 1408 if (retval < 0) 1409 goto out; 1410 1411 retval = copy_strings(bprm->argc, argv, bprm); 1412 if (retval < 0) 1413 goto out; 1414 1415 retval = search_binary_handler(bprm,regs); 1416 if (retval < 0) 1417 goto out; 1418 1419 /* execve succeeded */ 1420 current->fs->in_exec = 0; 1421 current->in_execve = 0; 1422 acct_update_integrals(current); 1423 free_bprm(bprm); 1424 if (displaced) 1425 put_files_struct(displaced); 1426 return retval; 1427 1428 out: 1429 if (bprm->mm) 1430 mmput (bprm->mm); 1431 1432 out_file: 1433 if (bprm->file) { 1434 allow_write_access(bprm->file); 1435 fput(bprm->file); 1436 } 1437 1438 out_unmark: 1439 if (clear_in_exec) 1440 current->fs->in_exec = 0; 1441 current->in_execve = 0; 1442 1443 out_free: 1444 free_bprm(bprm); 1445 1446 out_files: 1447 if (displaced) 1448 reset_files_struct(displaced); 1449 out_ret: 1450 return retval; 1451 } 1452 1453 void set_binfmt(struct linux_binfmt *new) 1454 { 1455 struct mm_struct *mm = current->mm; 1456 1457 if (mm->binfmt) 1458 module_put(mm->binfmt->module); 1459 1460 mm->binfmt = new; 1461 if (new) 1462 __module_get(new->module); 1463 } 1464 1465 EXPORT_SYMBOL(set_binfmt); 1466 1467 static int expand_corename(struct core_name *cn) 1468 { 1469 char *old_corename = cn->corename; 1470 1471 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1472 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1473 1474 if (!cn->corename) { 1475 kfree(old_corename); 1476 return -ENOMEM; 1477 } 1478 1479 return 0; 1480 } 1481 1482 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1483 { 1484 char *cur; 1485 int need; 1486 int ret; 1487 va_list arg; 1488 1489 va_start(arg, fmt); 1490 need = vsnprintf(NULL, 0, fmt, arg); 1491 va_end(arg); 1492 1493 if (likely(need < cn->size - cn->used - 1)) 1494 goto out_printf; 1495 1496 ret = expand_corename(cn); 1497 if (ret) 1498 goto expand_fail; 1499 1500 out_printf: 1501 cur = cn->corename + cn->used; 1502 va_start(arg, fmt); 1503 vsnprintf(cur, need + 1, fmt, arg); 1504 va_end(arg); 1505 cn->used += need; 1506 return 0; 1507 1508 expand_fail: 1509 return ret; 1510 } 1511 1512 /* format_corename will inspect the pattern parameter, and output a 1513 * name into corename, which must have space for at least 1514 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1515 */ 1516 static int format_corename(struct core_name *cn, long signr) 1517 { 1518 const struct cred *cred = current_cred(); 1519 const char *pat_ptr = core_pattern; 1520 int ispipe = (*pat_ptr == '|'); 1521 int pid_in_pattern = 0; 1522 int err = 0; 1523 1524 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1525 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1526 cn->used = 0; 1527 1528 if (!cn->corename) 1529 return -ENOMEM; 1530 1531 /* Repeat as long as we have more pattern to process and more output 1532 space */ 1533 while (*pat_ptr) { 1534 if (*pat_ptr != '%') { 1535 if (*pat_ptr == 0) 1536 goto out; 1537 err = cn_printf(cn, "%c", *pat_ptr++); 1538 } else { 1539 switch (*++pat_ptr) { 1540 /* single % at the end, drop that */ 1541 case 0: 1542 goto out; 1543 /* Double percent, output one percent */ 1544 case '%': 1545 err = cn_printf(cn, "%c", '%'); 1546 break; 1547 /* pid */ 1548 case 'p': 1549 pid_in_pattern = 1; 1550 err = cn_printf(cn, "%d", 1551 task_tgid_vnr(current)); 1552 break; 1553 /* uid */ 1554 case 'u': 1555 err = cn_printf(cn, "%d", cred->uid); 1556 break; 1557 /* gid */ 1558 case 'g': 1559 err = cn_printf(cn, "%d", cred->gid); 1560 break; 1561 /* signal that caused the coredump */ 1562 case 's': 1563 err = cn_printf(cn, "%ld", signr); 1564 break; 1565 /* UNIX time of coredump */ 1566 case 't': { 1567 struct timeval tv; 1568 do_gettimeofday(&tv); 1569 err = cn_printf(cn, "%lu", tv.tv_sec); 1570 break; 1571 } 1572 /* hostname */ 1573 case 'h': 1574 down_read(&uts_sem); 1575 err = cn_printf(cn, "%s", 1576 utsname()->nodename); 1577 up_read(&uts_sem); 1578 break; 1579 /* executable */ 1580 case 'e': 1581 err = cn_printf(cn, "%s", current->comm); 1582 break; 1583 /* core limit size */ 1584 case 'c': 1585 err = cn_printf(cn, "%lu", 1586 rlimit(RLIMIT_CORE)); 1587 break; 1588 default: 1589 break; 1590 } 1591 ++pat_ptr; 1592 } 1593 1594 if (err) 1595 return err; 1596 } 1597 1598 /* Backward compatibility with core_uses_pid: 1599 * 1600 * If core_pattern does not include a %p (as is the default) 1601 * and core_uses_pid is set, then .%pid will be appended to 1602 * the filename. Do not do this for piped commands. */ 1603 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1604 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1605 if (err) 1606 return err; 1607 } 1608 out: 1609 return ispipe; 1610 } 1611 1612 static int zap_process(struct task_struct *start, int exit_code) 1613 { 1614 struct task_struct *t; 1615 int nr = 0; 1616 1617 start->signal->flags = SIGNAL_GROUP_EXIT; 1618 start->signal->group_exit_code = exit_code; 1619 start->signal->group_stop_count = 0; 1620 1621 t = start; 1622 do { 1623 if (t != current && t->mm) { 1624 sigaddset(&t->pending.signal, SIGKILL); 1625 signal_wake_up(t, 1); 1626 nr++; 1627 } 1628 } while_each_thread(start, t); 1629 1630 return nr; 1631 } 1632 1633 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1634 struct core_state *core_state, int exit_code) 1635 { 1636 struct task_struct *g, *p; 1637 unsigned long flags; 1638 int nr = -EAGAIN; 1639 1640 spin_lock_irq(&tsk->sighand->siglock); 1641 if (!signal_group_exit(tsk->signal)) { 1642 mm->core_state = core_state; 1643 nr = zap_process(tsk, exit_code); 1644 } 1645 spin_unlock_irq(&tsk->sighand->siglock); 1646 if (unlikely(nr < 0)) 1647 return nr; 1648 1649 if (atomic_read(&mm->mm_users) == nr + 1) 1650 goto done; 1651 /* 1652 * We should find and kill all tasks which use this mm, and we should 1653 * count them correctly into ->nr_threads. We don't take tasklist 1654 * lock, but this is safe wrt: 1655 * 1656 * fork: 1657 * None of sub-threads can fork after zap_process(leader). All 1658 * processes which were created before this point should be 1659 * visible to zap_threads() because copy_process() adds the new 1660 * process to the tail of init_task.tasks list, and lock/unlock 1661 * of ->siglock provides a memory barrier. 1662 * 1663 * do_exit: 1664 * The caller holds mm->mmap_sem. This means that the task which 1665 * uses this mm can't pass exit_mm(), so it can't exit or clear 1666 * its ->mm. 1667 * 1668 * de_thread: 1669 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1670 * we must see either old or new leader, this does not matter. 1671 * However, it can change p->sighand, so lock_task_sighand(p) 1672 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1673 * it can't fail. 1674 * 1675 * Note also that "g" can be the old leader with ->mm == NULL 1676 * and already unhashed and thus removed from ->thread_group. 1677 * This is OK, __unhash_process()->list_del_rcu() does not 1678 * clear the ->next pointer, we will find the new leader via 1679 * next_thread(). 1680 */ 1681 rcu_read_lock(); 1682 for_each_process(g) { 1683 if (g == tsk->group_leader) 1684 continue; 1685 if (g->flags & PF_KTHREAD) 1686 continue; 1687 p = g; 1688 do { 1689 if (p->mm) { 1690 if (unlikely(p->mm == mm)) { 1691 lock_task_sighand(p, &flags); 1692 nr += zap_process(p, exit_code); 1693 unlock_task_sighand(p, &flags); 1694 } 1695 break; 1696 } 1697 } while_each_thread(g, p); 1698 } 1699 rcu_read_unlock(); 1700 done: 1701 atomic_set(&core_state->nr_threads, nr); 1702 return nr; 1703 } 1704 1705 static int coredump_wait(int exit_code, struct core_state *core_state) 1706 { 1707 struct task_struct *tsk = current; 1708 struct mm_struct *mm = tsk->mm; 1709 struct completion *vfork_done; 1710 int core_waiters = -EBUSY; 1711 1712 init_completion(&core_state->startup); 1713 core_state->dumper.task = tsk; 1714 core_state->dumper.next = NULL; 1715 1716 down_write(&mm->mmap_sem); 1717 if (!mm->core_state) 1718 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1719 up_write(&mm->mmap_sem); 1720 1721 if (unlikely(core_waiters < 0)) 1722 goto fail; 1723 1724 /* 1725 * Make sure nobody is waiting for us to release the VM, 1726 * otherwise we can deadlock when we wait on each other 1727 */ 1728 vfork_done = tsk->vfork_done; 1729 if (vfork_done) { 1730 tsk->vfork_done = NULL; 1731 complete(vfork_done); 1732 } 1733 1734 if (core_waiters) 1735 wait_for_completion(&core_state->startup); 1736 fail: 1737 return core_waiters; 1738 } 1739 1740 static void coredump_finish(struct mm_struct *mm) 1741 { 1742 struct core_thread *curr, *next; 1743 struct task_struct *task; 1744 1745 next = mm->core_state->dumper.next; 1746 while ((curr = next) != NULL) { 1747 next = curr->next; 1748 task = curr->task; 1749 /* 1750 * see exit_mm(), curr->task must not see 1751 * ->task == NULL before we read ->next. 1752 */ 1753 smp_mb(); 1754 curr->task = NULL; 1755 wake_up_process(task); 1756 } 1757 1758 mm->core_state = NULL; 1759 } 1760 1761 /* 1762 * set_dumpable converts traditional three-value dumpable to two flags and 1763 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1764 * these bits are not changed atomically. So get_dumpable can observe the 1765 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1766 * return either old dumpable or new one by paying attention to the order of 1767 * modifying the bits. 1768 * 1769 * dumpable | mm->flags (binary) 1770 * old new | initial interim final 1771 * ---------+----------------------- 1772 * 0 1 | 00 01 01 1773 * 0 2 | 00 10(*) 11 1774 * 1 0 | 01 00 00 1775 * 1 2 | 01 11 11 1776 * 2 0 | 11 10(*) 00 1777 * 2 1 | 11 11 01 1778 * 1779 * (*) get_dumpable regards interim value of 10 as 11. 1780 */ 1781 void set_dumpable(struct mm_struct *mm, int value) 1782 { 1783 switch (value) { 1784 case 0: 1785 clear_bit(MMF_DUMPABLE, &mm->flags); 1786 smp_wmb(); 1787 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1788 break; 1789 case 1: 1790 set_bit(MMF_DUMPABLE, &mm->flags); 1791 smp_wmb(); 1792 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1793 break; 1794 case 2: 1795 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1796 smp_wmb(); 1797 set_bit(MMF_DUMPABLE, &mm->flags); 1798 break; 1799 } 1800 } 1801 1802 static int __get_dumpable(unsigned long mm_flags) 1803 { 1804 int ret; 1805 1806 ret = mm_flags & MMF_DUMPABLE_MASK; 1807 return (ret >= 2) ? 2 : ret; 1808 } 1809 1810 int get_dumpable(struct mm_struct *mm) 1811 { 1812 return __get_dumpable(mm->flags); 1813 } 1814 1815 static void wait_for_dump_helpers(struct file *file) 1816 { 1817 struct pipe_inode_info *pipe; 1818 1819 pipe = file->f_path.dentry->d_inode->i_pipe; 1820 1821 pipe_lock(pipe); 1822 pipe->readers++; 1823 pipe->writers--; 1824 1825 while ((pipe->readers > 1) && (!signal_pending(current))) { 1826 wake_up_interruptible_sync(&pipe->wait); 1827 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1828 pipe_wait(pipe); 1829 } 1830 1831 pipe->readers--; 1832 pipe->writers++; 1833 pipe_unlock(pipe); 1834 1835 } 1836 1837 1838 /* 1839 * uhm_pipe_setup 1840 * helper function to customize the process used 1841 * to collect the core in userspace. Specifically 1842 * it sets up a pipe and installs it as fd 0 (stdin) 1843 * for the process. Returns 0 on success, or 1844 * PTR_ERR on failure. 1845 * Note that it also sets the core limit to 1. This 1846 * is a special value that we use to trap recursive 1847 * core dumps 1848 */ 1849 static int umh_pipe_setup(struct subprocess_info *info) 1850 { 1851 struct file *rp, *wp; 1852 struct fdtable *fdt; 1853 struct coredump_params *cp = (struct coredump_params *)info->data; 1854 struct files_struct *cf = current->files; 1855 1856 wp = create_write_pipe(0); 1857 if (IS_ERR(wp)) 1858 return PTR_ERR(wp); 1859 1860 rp = create_read_pipe(wp, 0); 1861 if (IS_ERR(rp)) { 1862 free_write_pipe(wp); 1863 return PTR_ERR(rp); 1864 } 1865 1866 cp->file = wp; 1867 1868 sys_close(0); 1869 fd_install(0, rp); 1870 spin_lock(&cf->file_lock); 1871 fdt = files_fdtable(cf); 1872 FD_SET(0, fdt->open_fds); 1873 FD_CLR(0, fdt->close_on_exec); 1874 spin_unlock(&cf->file_lock); 1875 1876 /* and disallow core files too */ 1877 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1878 1879 return 0; 1880 } 1881 1882 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1883 { 1884 struct core_state core_state; 1885 struct core_name cn; 1886 struct mm_struct *mm = current->mm; 1887 struct linux_binfmt * binfmt; 1888 const struct cred *old_cred; 1889 struct cred *cred; 1890 int retval = 0; 1891 int flag = 0; 1892 int ispipe; 1893 static atomic_t core_dump_count = ATOMIC_INIT(0); 1894 struct coredump_params cprm = { 1895 .signr = signr, 1896 .regs = regs, 1897 .limit = rlimit(RLIMIT_CORE), 1898 /* 1899 * We must use the same mm->flags while dumping core to avoid 1900 * inconsistency of bit flags, since this flag is not protected 1901 * by any locks. 1902 */ 1903 .mm_flags = mm->flags, 1904 }; 1905 1906 audit_core_dumps(signr); 1907 1908 binfmt = mm->binfmt; 1909 if (!binfmt || !binfmt->core_dump) 1910 goto fail; 1911 if (!__get_dumpable(cprm.mm_flags)) 1912 goto fail; 1913 1914 cred = prepare_creds(); 1915 if (!cred) 1916 goto fail; 1917 /* 1918 * We cannot trust fsuid as being the "true" uid of the 1919 * process nor do we know its entire history. We only know it 1920 * was tainted so we dump it as root in mode 2. 1921 */ 1922 if (__get_dumpable(cprm.mm_flags) == 2) { 1923 /* Setuid core dump mode */ 1924 flag = O_EXCL; /* Stop rewrite attacks */ 1925 cred->fsuid = 0; /* Dump root private */ 1926 } 1927 1928 retval = coredump_wait(exit_code, &core_state); 1929 if (retval < 0) 1930 goto fail_creds; 1931 1932 old_cred = override_creds(cred); 1933 1934 /* 1935 * Clear any false indication of pending signals that might 1936 * be seen by the filesystem code called to write the core file. 1937 */ 1938 clear_thread_flag(TIF_SIGPENDING); 1939 1940 ispipe = format_corename(&cn, signr); 1941 1942 if (ispipe == -ENOMEM) { 1943 printk(KERN_WARNING "format_corename failed\n"); 1944 printk(KERN_WARNING "Aborting core\n"); 1945 goto fail_corename; 1946 } 1947 1948 if (ispipe) { 1949 int dump_count; 1950 char **helper_argv; 1951 1952 if (cprm.limit == 1) { 1953 /* 1954 * Normally core limits are irrelevant to pipes, since 1955 * we're not writing to the file system, but we use 1956 * cprm.limit of 1 here as a speacial value. Any 1957 * non-1 limit gets set to RLIM_INFINITY below, but 1958 * a limit of 0 skips the dump. This is a consistent 1959 * way to catch recursive crashes. We can still crash 1960 * if the core_pattern binary sets RLIM_CORE = !1 1961 * but it runs as root, and can do lots of stupid things 1962 * Note that we use task_tgid_vnr here to grab the pid 1963 * of the process group leader. That way we get the 1964 * right pid if a thread in a multi-threaded 1965 * core_pattern process dies. 1966 */ 1967 printk(KERN_WARNING 1968 "Process %d(%s) has RLIMIT_CORE set to 1\n", 1969 task_tgid_vnr(current), current->comm); 1970 printk(KERN_WARNING "Aborting core\n"); 1971 goto fail_unlock; 1972 } 1973 cprm.limit = RLIM_INFINITY; 1974 1975 dump_count = atomic_inc_return(&core_dump_count); 1976 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 1977 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 1978 task_tgid_vnr(current), current->comm); 1979 printk(KERN_WARNING "Skipping core dump\n"); 1980 goto fail_dropcount; 1981 } 1982 1983 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 1984 if (!helper_argv) { 1985 printk(KERN_WARNING "%s failed to allocate memory\n", 1986 __func__); 1987 goto fail_dropcount; 1988 } 1989 1990 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 1991 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 1992 NULL, &cprm); 1993 argv_free(helper_argv); 1994 if (retval) { 1995 printk(KERN_INFO "Core dump to %s pipe failed\n", 1996 cn.corename); 1997 goto close_fail; 1998 } 1999 } else { 2000 struct inode *inode; 2001 2002 if (cprm.limit < binfmt->min_coredump) 2003 goto fail_unlock; 2004 2005 cprm.file = filp_open(cn.corename, 2006 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2007 0600); 2008 if (IS_ERR(cprm.file)) 2009 goto fail_unlock; 2010 2011 inode = cprm.file->f_path.dentry->d_inode; 2012 if (inode->i_nlink > 1) 2013 goto close_fail; 2014 if (d_unhashed(cprm.file->f_path.dentry)) 2015 goto close_fail; 2016 /* 2017 * AK: actually i see no reason to not allow this for named 2018 * pipes etc, but keep the previous behaviour for now. 2019 */ 2020 if (!S_ISREG(inode->i_mode)) 2021 goto close_fail; 2022 /* 2023 * Dont allow local users get cute and trick others to coredump 2024 * into their pre-created files. 2025 */ 2026 if (inode->i_uid != current_fsuid()) 2027 goto close_fail; 2028 if (!cprm.file->f_op || !cprm.file->f_op->write) 2029 goto close_fail; 2030 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2031 goto close_fail; 2032 } 2033 2034 retval = binfmt->core_dump(&cprm); 2035 if (retval) 2036 current->signal->group_exit_code |= 0x80; 2037 2038 if (ispipe && core_pipe_limit) 2039 wait_for_dump_helpers(cprm.file); 2040 close_fail: 2041 if (cprm.file) 2042 filp_close(cprm.file, NULL); 2043 fail_dropcount: 2044 if (ispipe) 2045 atomic_dec(&core_dump_count); 2046 fail_unlock: 2047 kfree(cn.corename); 2048 fail_corename: 2049 coredump_finish(mm); 2050 revert_creds(old_cred); 2051 fail_creds: 2052 put_cred(cred); 2053 fail: 2054 return; 2055 } 2056 2057 /* 2058 * Core dumping helper functions. These are the only things you should 2059 * do on a core-file: use only these functions to write out all the 2060 * necessary info. 2061 */ 2062 int dump_write(struct file *file, const void *addr, int nr) 2063 { 2064 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2065 } 2066 EXPORT_SYMBOL(dump_write); 2067 2068 int dump_seek(struct file *file, loff_t off) 2069 { 2070 int ret = 1; 2071 2072 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2073 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2074 return 0; 2075 } else { 2076 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2077 2078 if (!buf) 2079 return 0; 2080 while (off > 0) { 2081 unsigned long n = off; 2082 2083 if (n > PAGE_SIZE) 2084 n = PAGE_SIZE; 2085 if (!dump_write(file, buf, n)) { 2086 ret = 0; 2087 break; 2088 } 2089 off -= n; 2090 } 2091 free_page((unsigned long)buf); 2092 } 2093 return ret; 2094 } 2095 EXPORT_SYMBOL(dump_seek); 2096