1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 #include <linux/io_uring.h> 66 #include <linux/syscall_user_dispatch.h> 67 #include <linux/coredump.h> 68 #include <linux/time_namespace.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 int ret; 204 unsigned int gup_flags = FOLL_FORCE; 205 206 #ifdef CONFIG_STACK_GROWSUP 207 if (write) { 208 ret = expand_downwards(bprm->vma, pos); 209 if (ret < 0) 210 return NULL; 211 } 212 #endif 213 214 if (write) 215 gup_flags |= FOLL_WRITE; 216 217 /* 218 * We are doing an exec(). 'current' is the process 219 * doing the exec and bprm->mm is the new process's mm. 220 */ 221 mmap_read_lock(bprm->mm); 222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 223 &page, NULL, NULL); 224 mmap_read_unlock(bprm->mm); 225 if (ret <= 0) 226 return NULL; 227 228 if (write) 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 230 231 return page; 232 } 233 234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = vm_area_alloc(mm); 256 if (!vma) 257 return -ENOMEM; 258 vma_set_anonymous(vma); 259 260 if (mmap_write_lock_killable(mm)) { 261 err = -EINTR; 262 goto err_free; 263 } 264 265 /* 266 * Place the stack at the largest stack address the architecture 267 * supports. Later, we'll move this to an appropriate place. We don't 268 * use STACK_TOP because that can depend on attributes which aren't 269 * configured yet. 270 */ 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 272 vma->vm_end = STACK_TOP_MAX; 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 276 277 err = insert_vm_struct(mm, vma); 278 if (err) 279 goto err; 280 281 mm->stack_vm = mm->total_vm = 1; 282 mmap_write_unlock(mm); 283 bprm->p = vma->vm_end - sizeof(void *); 284 return 0; 285 err: 286 mmap_write_unlock(mm); 287 err_free: 288 bprm->vma = NULL; 289 vm_area_free(vma); 290 return err; 291 } 292 293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 294 { 295 return len <= MAX_ARG_STRLEN; 296 } 297 298 #else 299 300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 301 { 302 } 303 304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 int write) 306 { 307 struct page *page; 308 309 page = bprm->page[pos / PAGE_SIZE]; 310 if (!page && write) { 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 312 if (!page) 313 return NULL; 314 bprm->page[pos / PAGE_SIZE] = page; 315 } 316 317 return page; 318 } 319 320 static void put_arg_page(struct page *page) 321 { 322 } 323 324 static void free_arg_page(struct linux_binprm *bprm, int i) 325 { 326 if (bprm->page[i]) { 327 __free_page(bprm->page[i]); 328 bprm->page[i] = NULL; 329 } 330 } 331 332 static void free_arg_pages(struct linux_binprm *bprm) 333 { 334 int i; 335 336 for (i = 0; i < MAX_ARG_PAGES; i++) 337 free_arg_page(bprm, i); 338 } 339 340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 341 struct page *page) 342 { 343 } 344 345 static int __bprm_mm_init(struct linux_binprm *bprm) 346 { 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 348 return 0; 349 } 350 351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 352 { 353 return len <= bprm->p; 354 } 355 356 #endif /* CONFIG_MMU */ 357 358 /* 359 * Create a new mm_struct and populate it with a temporary stack 360 * vm_area_struct. We don't have enough context at this point to set the stack 361 * flags, permissions, and offset, so we use temporary values. We'll update 362 * them later in setup_arg_pages(). 363 */ 364 static int bprm_mm_init(struct linux_binprm *bprm) 365 { 366 int err; 367 struct mm_struct *mm = NULL; 368 369 bprm->mm = mm = mm_alloc(); 370 err = -ENOMEM; 371 if (!mm) 372 goto err; 373 374 /* Save current stack limit for all calculations made during exec. */ 375 task_lock(current->group_leader); 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 377 task_unlock(current->group_leader); 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ 430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 456 static int count_strings_kernel(const char *const *argv) 457 { 458 int i; 459 460 if (!argv) 461 return 0; 462 463 for (i = 0; argv[i]; ++i) { 464 if (i >= MAX_ARG_STRINGS) 465 return -E2BIG; 466 if (fatal_signal_pending(current)) 467 return -ERESTARTNOHAND; 468 cond_resched(); 469 } 470 return i; 471 } 472 473 static int bprm_stack_limits(struct linux_binprm *bprm) 474 { 475 unsigned long limit, ptr_size; 476 477 /* 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 479 * (whichever is smaller) for the argv+env strings. 480 * This ensures that: 481 * - the remaining binfmt code will not run out of stack space, 482 * - the program will have a reasonable amount of stack left 483 * to work from. 484 */ 485 limit = _STK_LIM / 4 * 3; 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 487 /* 488 * We've historically supported up to 32 pages (ARG_MAX) 489 * of argument strings even with small stacks 490 */ 491 limit = max_t(unsigned long, limit, ARG_MAX); 492 /* 493 * We must account for the size of all the argv and envp pointers to 494 * the argv and envp strings, since they will also take up space in 495 * the stack. They aren't stored until much later when we can't 496 * signal to the parent that the child has run out of stack space. 497 * Instead, calculate it here so it's possible to fail gracefully. 498 * 499 * In the case of argc = 0, make sure there is space for adding a 500 * empty string (which will bump argc to 1), to ensure confused 501 * userspace programs don't start processing from argv[1], thinking 502 * argc can never be 0, to keep them from walking envp by accident. 503 * See do_execveat_common(). 504 */ 505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 506 if (limit <= ptr_size) 507 return -E2BIG; 508 limit -= ptr_size; 509 510 bprm->argmin = bprm->p - limit; 511 return 0; 512 } 513 514 /* 515 * 'copy_strings()' copies argument/environment strings from the old 516 * processes's memory to the new process's stack. The call to get_user_pages() 517 * ensures the destination page is created and not swapped out. 518 */ 519 static int copy_strings(int argc, struct user_arg_ptr argv, 520 struct linux_binprm *bprm) 521 { 522 struct page *kmapped_page = NULL; 523 char *kaddr = NULL; 524 unsigned long kpos = 0; 525 int ret; 526 527 while (argc-- > 0) { 528 const char __user *str; 529 int len; 530 unsigned long pos; 531 532 ret = -EFAULT; 533 str = get_user_arg_ptr(argv, argc); 534 if (IS_ERR(str)) 535 goto out; 536 537 len = strnlen_user(str, MAX_ARG_STRLEN); 538 if (!len) 539 goto out; 540 541 ret = -E2BIG; 542 if (!valid_arg_len(bprm, len)) 543 goto out; 544 545 /* We're going to work our way backwards. */ 546 pos = bprm->p; 547 str += len; 548 bprm->p -= len; 549 #ifdef CONFIG_MMU 550 if (bprm->p < bprm->argmin) 551 goto out; 552 #endif 553 554 while (len > 0) { 555 int offset, bytes_to_copy; 556 557 if (fatal_signal_pending(current)) { 558 ret = -ERESTARTNOHAND; 559 goto out; 560 } 561 cond_resched(); 562 563 offset = pos % PAGE_SIZE; 564 if (offset == 0) 565 offset = PAGE_SIZE; 566 567 bytes_to_copy = offset; 568 if (bytes_to_copy > len) 569 bytes_to_copy = len; 570 571 offset -= bytes_to_copy; 572 pos -= bytes_to_copy; 573 str -= bytes_to_copy; 574 len -= bytes_to_copy; 575 576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 577 struct page *page; 578 579 page = get_arg_page(bprm, pos, 1); 580 if (!page) { 581 ret = -E2BIG; 582 goto out; 583 } 584 585 if (kmapped_page) { 586 flush_dcache_page(kmapped_page); 587 kunmap(kmapped_page); 588 put_arg_page(kmapped_page); 589 } 590 kmapped_page = page; 591 kaddr = kmap(kmapped_page); 592 kpos = pos & PAGE_MASK; 593 flush_arg_page(bprm, kpos, kmapped_page); 594 } 595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 596 ret = -EFAULT; 597 goto out; 598 } 599 } 600 } 601 ret = 0; 602 out: 603 if (kmapped_page) { 604 flush_dcache_page(kmapped_page); 605 kunmap(kmapped_page); 606 put_arg_page(kmapped_page); 607 } 608 return ret; 609 } 610 611 /* 612 * Copy and argument/environment string from the kernel to the processes stack. 613 */ 614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 615 { 616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 617 unsigned long pos = bprm->p; 618 619 if (len == 0) 620 return -EFAULT; 621 if (!valid_arg_len(bprm, len)) 622 return -E2BIG; 623 624 /* We're going to work our way backwards. */ 625 arg += len; 626 bprm->p -= len; 627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 628 return -E2BIG; 629 630 while (len > 0) { 631 unsigned int bytes_to_copy = min_t(unsigned int, len, 632 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 633 struct page *page; 634 635 pos -= bytes_to_copy; 636 arg -= bytes_to_copy; 637 len -= bytes_to_copy; 638 639 page = get_arg_page(bprm, pos, 1); 640 if (!page) 641 return -E2BIG; 642 flush_arg_page(bprm, pos & PAGE_MASK, page); 643 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 644 put_arg_page(page); 645 } 646 647 return 0; 648 } 649 EXPORT_SYMBOL(copy_string_kernel); 650 651 static int copy_strings_kernel(int argc, const char *const *argv, 652 struct linux_binprm *bprm) 653 { 654 while (argc-- > 0) { 655 int ret = copy_string_kernel(argv[argc], bprm); 656 if (ret < 0) 657 return ret; 658 if (fatal_signal_pending(current)) 659 return -ERESTARTNOHAND; 660 cond_resched(); 661 } 662 return 0; 663 } 664 665 #ifdef CONFIG_MMU 666 667 /* 668 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 669 * the binfmt code determines where the new stack should reside, we shift it to 670 * its final location. The process proceeds as follows: 671 * 672 * 1) Use shift to calculate the new vma endpoints. 673 * 2) Extend vma to cover both the old and new ranges. This ensures the 674 * arguments passed to subsequent functions are consistent. 675 * 3) Move vma's page tables to the new range. 676 * 4) Free up any cleared pgd range. 677 * 5) Shrink the vma to cover only the new range. 678 */ 679 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 680 { 681 struct mm_struct *mm = vma->vm_mm; 682 unsigned long old_start = vma->vm_start; 683 unsigned long old_end = vma->vm_end; 684 unsigned long length = old_end - old_start; 685 unsigned long new_start = old_start - shift; 686 unsigned long new_end = old_end - shift; 687 struct mmu_gather tlb; 688 689 BUG_ON(new_start > new_end); 690 691 /* 692 * ensure there are no vmas between where we want to go 693 * and where we are 694 */ 695 if (vma != find_vma(mm, new_start)) 696 return -EFAULT; 697 698 /* 699 * cover the whole range: [new_start, old_end) 700 */ 701 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 702 return -ENOMEM; 703 704 /* 705 * move the page tables downwards, on failure we rely on 706 * process cleanup to remove whatever mess we made. 707 */ 708 if (length != move_page_tables(vma, old_start, 709 vma, new_start, length, false)) 710 return -ENOMEM; 711 712 lru_add_drain(); 713 tlb_gather_mmu(&tlb, mm); 714 if (new_end > old_start) { 715 /* 716 * when the old and new regions overlap clear from new_end. 717 */ 718 free_pgd_range(&tlb, new_end, old_end, new_end, 719 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 720 } else { 721 /* 722 * otherwise, clean from old_start; this is done to not touch 723 * the address space in [new_end, old_start) some architectures 724 * have constraints on va-space that make this illegal (IA64) - 725 * for the others its just a little faster. 726 */ 727 free_pgd_range(&tlb, old_start, old_end, new_end, 728 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 729 } 730 tlb_finish_mmu(&tlb); 731 732 /* 733 * Shrink the vma to just the new range. Always succeeds. 734 */ 735 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 736 737 return 0; 738 } 739 740 /* 741 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 742 * the stack is optionally relocated, and some extra space is added. 743 */ 744 int setup_arg_pages(struct linux_binprm *bprm, 745 unsigned long stack_top, 746 int executable_stack) 747 { 748 unsigned long ret; 749 unsigned long stack_shift; 750 struct mm_struct *mm = current->mm; 751 struct vm_area_struct *vma = bprm->vma; 752 struct vm_area_struct *prev = NULL; 753 unsigned long vm_flags; 754 unsigned long stack_base; 755 unsigned long stack_size; 756 unsigned long stack_expand; 757 unsigned long rlim_stack; 758 struct mmu_gather tlb; 759 760 #ifdef CONFIG_STACK_GROWSUP 761 /* Limit stack size */ 762 stack_base = bprm->rlim_stack.rlim_max; 763 764 stack_base = calc_max_stack_size(stack_base); 765 766 /* Add space for stack randomization. */ 767 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 768 769 /* Make sure we didn't let the argument array grow too large. */ 770 if (vma->vm_end - vma->vm_start > stack_base) 771 return -ENOMEM; 772 773 stack_base = PAGE_ALIGN(stack_top - stack_base); 774 775 stack_shift = vma->vm_start - stack_base; 776 mm->arg_start = bprm->p - stack_shift; 777 bprm->p = vma->vm_end - stack_shift; 778 #else 779 stack_top = arch_align_stack(stack_top); 780 stack_top = PAGE_ALIGN(stack_top); 781 782 if (unlikely(stack_top < mmap_min_addr) || 783 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 784 return -ENOMEM; 785 786 stack_shift = vma->vm_end - stack_top; 787 788 bprm->p -= stack_shift; 789 mm->arg_start = bprm->p; 790 #endif 791 792 if (bprm->loader) 793 bprm->loader -= stack_shift; 794 bprm->exec -= stack_shift; 795 796 if (mmap_write_lock_killable(mm)) 797 return -EINTR; 798 799 vm_flags = VM_STACK_FLAGS; 800 801 /* 802 * Adjust stack execute permissions; explicitly enable for 803 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 804 * (arch default) otherwise. 805 */ 806 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 807 vm_flags |= VM_EXEC; 808 else if (executable_stack == EXSTACK_DISABLE_X) 809 vm_flags &= ~VM_EXEC; 810 vm_flags |= mm->def_flags; 811 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 812 813 tlb_gather_mmu(&tlb, mm); 814 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 815 vm_flags); 816 tlb_finish_mmu(&tlb); 817 818 if (ret) 819 goto out_unlock; 820 BUG_ON(prev != vma); 821 822 if (unlikely(vm_flags & VM_EXEC)) { 823 pr_warn_once("process '%pD4' started with executable stack\n", 824 bprm->file); 825 } 826 827 /* Move stack pages down in memory. */ 828 if (stack_shift) { 829 ret = shift_arg_pages(vma, stack_shift); 830 if (ret) 831 goto out_unlock; 832 } 833 834 /* mprotect_fixup is overkill to remove the temporary stack flags */ 835 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 836 837 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 838 stack_size = vma->vm_end - vma->vm_start; 839 /* 840 * Align this down to a page boundary as expand_stack 841 * will align it up. 842 */ 843 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 844 #ifdef CONFIG_STACK_GROWSUP 845 if (stack_size + stack_expand > rlim_stack) 846 stack_base = vma->vm_start + rlim_stack; 847 else 848 stack_base = vma->vm_end + stack_expand; 849 #else 850 if (stack_size + stack_expand > rlim_stack) 851 stack_base = vma->vm_end - rlim_stack; 852 else 853 stack_base = vma->vm_start - stack_expand; 854 #endif 855 current->mm->start_stack = bprm->p; 856 ret = expand_stack(vma, stack_base); 857 if (ret) 858 ret = -EFAULT; 859 860 out_unlock: 861 mmap_write_unlock(mm); 862 return ret; 863 } 864 EXPORT_SYMBOL(setup_arg_pages); 865 866 #else 867 868 /* 869 * Transfer the program arguments and environment from the holding pages 870 * onto the stack. The provided stack pointer is adjusted accordingly. 871 */ 872 int transfer_args_to_stack(struct linux_binprm *bprm, 873 unsigned long *sp_location) 874 { 875 unsigned long index, stop, sp; 876 int ret = 0; 877 878 stop = bprm->p >> PAGE_SHIFT; 879 sp = *sp_location; 880 881 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 882 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 883 char *src = kmap(bprm->page[index]) + offset; 884 sp -= PAGE_SIZE - offset; 885 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 886 ret = -EFAULT; 887 kunmap(bprm->page[index]); 888 if (ret) 889 goto out; 890 } 891 892 *sp_location = sp; 893 894 out: 895 return ret; 896 } 897 EXPORT_SYMBOL(transfer_args_to_stack); 898 899 #endif /* CONFIG_MMU */ 900 901 static struct file *do_open_execat(int fd, struct filename *name, int flags) 902 { 903 struct file *file; 904 int err; 905 struct open_flags open_exec_flags = { 906 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 907 .acc_mode = MAY_EXEC, 908 .intent = LOOKUP_OPEN, 909 .lookup_flags = LOOKUP_FOLLOW, 910 }; 911 912 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 913 return ERR_PTR(-EINVAL); 914 if (flags & AT_SYMLINK_NOFOLLOW) 915 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 916 if (flags & AT_EMPTY_PATH) 917 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 918 919 file = do_filp_open(fd, name, &open_exec_flags); 920 if (IS_ERR(file)) 921 goto out; 922 923 /* 924 * may_open() has already checked for this, so it should be 925 * impossible to trip now. But we need to be extra cautious 926 * and check again at the very end too. 927 */ 928 err = -EACCES; 929 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 930 path_noexec(&file->f_path))) 931 goto exit; 932 933 err = deny_write_access(file); 934 if (err) 935 goto exit; 936 937 if (name->name[0] != '\0') 938 fsnotify_open(file); 939 940 out: 941 return file; 942 943 exit: 944 fput(file); 945 return ERR_PTR(err); 946 } 947 948 struct file *open_exec(const char *name) 949 { 950 struct filename *filename = getname_kernel(name); 951 struct file *f = ERR_CAST(filename); 952 953 if (!IS_ERR(filename)) { 954 f = do_open_execat(AT_FDCWD, filename, 0); 955 putname(filename); 956 } 957 return f; 958 } 959 EXPORT_SYMBOL(open_exec); 960 961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 962 defined(CONFIG_BINFMT_ELF_FDPIC) 963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 964 { 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 966 if (res > 0) 967 flush_icache_user_range(addr, addr + len); 968 return res; 969 } 970 EXPORT_SYMBOL(read_code); 971 #endif 972 973 /* 974 * Maps the mm_struct mm into the current task struct. 975 * On success, this function returns with exec_update_lock 976 * held for writing. 977 */ 978 static int exec_mmap(struct mm_struct *mm) 979 { 980 struct task_struct *tsk; 981 struct mm_struct *old_mm, *active_mm; 982 bool vfork; 983 int ret; 984 985 /* Notify parent that we're no longer interested in the old VM */ 986 tsk = current; 987 vfork = !!tsk->vfork_done; 988 old_mm = current->mm; 989 exec_mm_release(tsk, old_mm); 990 if (old_mm) 991 sync_mm_rss(old_mm); 992 993 ret = down_write_killable(&tsk->signal->exec_update_lock); 994 if (ret) 995 return ret; 996 997 if (old_mm) { 998 /* 999 * If there is a pending fatal signal perhaps a signal 1000 * whose default action is to create a coredump get 1001 * out and die instead of going through with the exec. 1002 */ 1003 ret = mmap_read_lock_killable(old_mm); 1004 if (ret) { 1005 up_write(&tsk->signal->exec_update_lock); 1006 return ret; 1007 } 1008 } 1009 1010 task_lock(tsk); 1011 membarrier_exec_mmap(mm); 1012 1013 local_irq_disable(); 1014 active_mm = tsk->active_mm; 1015 tsk->active_mm = mm; 1016 tsk->mm = mm; 1017 /* 1018 * This prevents preemption while active_mm is being loaded and 1019 * it and mm are being updated, which could cause problems for 1020 * lazy tlb mm refcounting when these are updated by context 1021 * switches. Not all architectures can handle irqs off over 1022 * activate_mm yet. 1023 */ 1024 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1025 local_irq_enable(); 1026 activate_mm(active_mm, mm); 1027 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1028 local_irq_enable(); 1029 tsk->mm->vmacache_seqnum = 0; 1030 vmacache_flush(tsk); 1031 task_unlock(tsk); 1032 1033 if (vfork) 1034 timens_on_fork(tsk->nsproxy, tsk); 1035 1036 if (old_mm) { 1037 mmap_read_unlock(old_mm); 1038 BUG_ON(active_mm != old_mm); 1039 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1040 mm_update_next_owner(old_mm); 1041 mmput(old_mm); 1042 return 0; 1043 } 1044 mmdrop(active_mm); 1045 return 0; 1046 } 1047 1048 static int de_thread(struct task_struct *tsk) 1049 { 1050 struct signal_struct *sig = tsk->signal; 1051 struct sighand_struct *oldsighand = tsk->sighand; 1052 spinlock_t *lock = &oldsighand->siglock; 1053 1054 if (thread_group_empty(tsk)) 1055 goto no_thread_group; 1056 1057 /* 1058 * Kill all other threads in the thread group. 1059 */ 1060 spin_lock_irq(lock); 1061 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1062 /* 1063 * Another group action in progress, just 1064 * return so that the signal is processed. 1065 */ 1066 spin_unlock_irq(lock); 1067 return -EAGAIN; 1068 } 1069 1070 sig->group_exec_task = tsk; 1071 sig->notify_count = zap_other_threads(tsk); 1072 if (!thread_group_leader(tsk)) 1073 sig->notify_count--; 1074 1075 while (sig->notify_count) { 1076 __set_current_state(TASK_KILLABLE); 1077 spin_unlock_irq(lock); 1078 schedule(); 1079 if (__fatal_signal_pending(tsk)) 1080 goto killed; 1081 spin_lock_irq(lock); 1082 } 1083 spin_unlock_irq(lock); 1084 1085 /* 1086 * At this point all other threads have exited, all we have to 1087 * do is to wait for the thread group leader to become inactive, 1088 * and to assume its PID: 1089 */ 1090 if (!thread_group_leader(tsk)) { 1091 struct task_struct *leader = tsk->group_leader; 1092 1093 for (;;) { 1094 cgroup_threadgroup_change_begin(tsk); 1095 write_lock_irq(&tasklist_lock); 1096 /* 1097 * Do this under tasklist_lock to ensure that 1098 * exit_notify() can't miss ->group_exec_task 1099 */ 1100 sig->notify_count = -1; 1101 if (likely(leader->exit_state)) 1102 break; 1103 __set_current_state(TASK_KILLABLE); 1104 write_unlock_irq(&tasklist_lock); 1105 cgroup_threadgroup_change_end(tsk); 1106 schedule(); 1107 if (__fatal_signal_pending(tsk)) 1108 goto killed; 1109 } 1110 1111 /* 1112 * The only record we have of the real-time age of a 1113 * process, regardless of execs it's done, is start_time. 1114 * All the past CPU time is accumulated in signal_struct 1115 * from sister threads now dead. But in this non-leader 1116 * exec, nothing survives from the original leader thread, 1117 * whose birth marks the true age of this process now. 1118 * When we take on its identity by switching to its PID, we 1119 * also take its birthdate (always earlier than our own). 1120 */ 1121 tsk->start_time = leader->start_time; 1122 tsk->start_boottime = leader->start_boottime; 1123 1124 BUG_ON(!same_thread_group(leader, tsk)); 1125 /* 1126 * An exec() starts a new thread group with the 1127 * TGID of the previous thread group. Rehash the 1128 * two threads with a switched PID, and release 1129 * the former thread group leader: 1130 */ 1131 1132 /* Become a process group leader with the old leader's pid. 1133 * The old leader becomes a thread of the this thread group. 1134 */ 1135 exchange_tids(tsk, leader); 1136 transfer_pid(leader, tsk, PIDTYPE_TGID); 1137 transfer_pid(leader, tsk, PIDTYPE_PGID); 1138 transfer_pid(leader, tsk, PIDTYPE_SID); 1139 1140 list_replace_rcu(&leader->tasks, &tsk->tasks); 1141 list_replace_init(&leader->sibling, &tsk->sibling); 1142 1143 tsk->group_leader = tsk; 1144 leader->group_leader = tsk; 1145 1146 tsk->exit_signal = SIGCHLD; 1147 leader->exit_signal = -1; 1148 1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1150 leader->exit_state = EXIT_DEAD; 1151 1152 /* 1153 * We are going to release_task()->ptrace_unlink() silently, 1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1155 * the tracer won't block again waiting for this thread. 1156 */ 1157 if (unlikely(leader->ptrace)) 1158 __wake_up_parent(leader, leader->parent); 1159 write_unlock_irq(&tasklist_lock); 1160 cgroup_threadgroup_change_end(tsk); 1161 1162 release_task(leader); 1163 } 1164 1165 sig->group_exec_task = NULL; 1166 sig->notify_count = 0; 1167 1168 no_thread_group: 1169 /* we have changed execution domain */ 1170 tsk->exit_signal = SIGCHLD; 1171 1172 BUG_ON(!thread_group_leader(tsk)); 1173 return 0; 1174 1175 killed: 1176 /* protects against exit_notify() and __exit_signal() */ 1177 read_lock(&tasklist_lock); 1178 sig->group_exec_task = NULL; 1179 sig->notify_count = 0; 1180 read_unlock(&tasklist_lock); 1181 return -EAGAIN; 1182 } 1183 1184 1185 /* 1186 * This function makes sure the current process has its own signal table, 1187 * so that flush_signal_handlers can later reset the handlers without 1188 * disturbing other processes. (Other processes might share the signal 1189 * table via the CLONE_SIGHAND option to clone().) 1190 */ 1191 static int unshare_sighand(struct task_struct *me) 1192 { 1193 struct sighand_struct *oldsighand = me->sighand; 1194 1195 if (refcount_read(&oldsighand->count) != 1) { 1196 struct sighand_struct *newsighand; 1197 /* 1198 * This ->sighand is shared with the CLONE_SIGHAND 1199 * but not CLONE_THREAD task, switch to the new one. 1200 */ 1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1202 if (!newsighand) 1203 return -ENOMEM; 1204 1205 refcount_set(&newsighand->count, 1); 1206 memcpy(newsighand->action, oldsighand->action, 1207 sizeof(newsighand->action)); 1208 1209 write_lock_irq(&tasklist_lock); 1210 spin_lock(&oldsighand->siglock); 1211 rcu_assign_pointer(me->sighand, newsighand); 1212 spin_unlock(&oldsighand->siglock); 1213 write_unlock_irq(&tasklist_lock); 1214 1215 __cleanup_sighand(oldsighand); 1216 } 1217 return 0; 1218 } 1219 1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1221 { 1222 task_lock(tsk); 1223 /* Always NUL terminated and zero-padded */ 1224 strscpy_pad(buf, tsk->comm, buf_size); 1225 task_unlock(tsk); 1226 return buf; 1227 } 1228 EXPORT_SYMBOL_GPL(__get_task_comm); 1229 1230 /* 1231 * These functions flushes out all traces of the currently running executable 1232 * so that a new one can be started 1233 */ 1234 1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1236 { 1237 task_lock(tsk); 1238 trace_task_rename(tsk, buf); 1239 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1240 task_unlock(tsk); 1241 perf_event_comm(tsk, exec); 1242 } 1243 1244 /* 1245 * Calling this is the point of no return. None of the failures will be 1246 * seen by userspace since either the process is already taking a fatal 1247 * signal (via de_thread() or coredump), or will have SEGV raised 1248 * (after exec_mmap()) by search_binary_handler (see below). 1249 */ 1250 int begin_new_exec(struct linux_binprm * bprm) 1251 { 1252 struct task_struct *me = current; 1253 int retval; 1254 1255 /* Once we are committed compute the creds */ 1256 retval = bprm_creds_from_file(bprm); 1257 if (retval) 1258 return retval; 1259 1260 /* 1261 * Ensure all future errors are fatal. 1262 */ 1263 bprm->point_of_no_return = true; 1264 1265 /* 1266 * Make this the only thread in the thread group. 1267 */ 1268 retval = de_thread(me); 1269 if (retval) 1270 goto out; 1271 1272 /* 1273 * Cancel any io_uring activity across execve 1274 */ 1275 io_uring_task_cancel(); 1276 1277 /* Ensure the files table is not shared. */ 1278 retval = unshare_files(); 1279 if (retval) 1280 goto out; 1281 1282 /* 1283 * Must be called _before_ exec_mmap() as bprm->mm is 1284 * not visible until then. This also enables the update 1285 * to be lockless. 1286 */ 1287 retval = set_mm_exe_file(bprm->mm, bprm->file); 1288 if (retval) 1289 goto out; 1290 1291 /* If the binary is not readable then enforce mm->dumpable=0 */ 1292 would_dump(bprm, bprm->file); 1293 if (bprm->have_execfd) 1294 would_dump(bprm, bprm->executable); 1295 1296 /* 1297 * Release all of the old mmap stuff 1298 */ 1299 acct_arg_size(bprm, 0); 1300 retval = exec_mmap(bprm->mm); 1301 if (retval) 1302 goto out; 1303 1304 bprm->mm = NULL; 1305 1306 #ifdef CONFIG_POSIX_TIMERS 1307 spin_lock_irq(&me->sighand->siglock); 1308 posix_cpu_timers_exit(me); 1309 spin_unlock_irq(&me->sighand->siglock); 1310 exit_itimers(me); 1311 flush_itimer_signals(); 1312 #endif 1313 1314 /* 1315 * Make the signal table private. 1316 */ 1317 retval = unshare_sighand(me); 1318 if (retval) 1319 goto out_unlock; 1320 1321 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1322 PF_NOFREEZE | PF_NO_SETAFFINITY); 1323 flush_thread(); 1324 me->personality &= ~bprm->per_clear; 1325 1326 clear_syscall_work_syscall_user_dispatch(me); 1327 1328 /* 1329 * We have to apply CLOEXEC before we change whether the process is 1330 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1331 * trying to access the should-be-closed file descriptors of a process 1332 * undergoing exec(2). 1333 */ 1334 do_close_on_exec(me->files); 1335 1336 if (bprm->secureexec) { 1337 /* Make sure parent cannot signal privileged process. */ 1338 me->pdeath_signal = 0; 1339 1340 /* 1341 * For secureexec, reset the stack limit to sane default to 1342 * avoid bad behavior from the prior rlimits. This has to 1343 * happen before arch_pick_mmap_layout(), which examines 1344 * RLIMIT_STACK, but after the point of no return to avoid 1345 * needing to clean up the change on failure. 1346 */ 1347 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1348 bprm->rlim_stack.rlim_cur = _STK_LIM; 1349 } 1350 1351 me->sas_ss_sp = me->sas_ss_size = 0; 1352 1353 /* 1354 * Figure out dumpability. Note that this checking only of current 1355 * is wrong, but userspace depends on it. This should be testing 1356 * bprm->secureexec instead. 1357 */ 1358 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1359 !(uid_eq(current_euid(), current_uid()) && 1360 gid_eq(current_egid(), current_gid()))) 1361 set_dumpable(current->mm, suid_dumpable); 1362 else 1363 set_dumpable(current->mm, SUID_DUMP_USER); 1364 1365 perf_event_exec(); 1366 __set_task_comm(me, kbasename(bprm->filename), true); 1367 1368 /* An exec changes our domain. We are no longer part of the thread 1369 group */ 1370 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1371 flush_signal_handlers(me, 0); 1372 1373 retval = set_cred_ucounts(bprm->cred); 1374 if (retval < 0) 1375 goto out_unlock; 1376 1377 /* 1378 * install the new credentials for this executable 1379 */ 1380 security_bprm_committing_creds(bprm); 1381 1382 commit_creds(bprm->cred); 1383 bprm->cred = NULL; 1384 1385 /* 1386 * Disable monitoring for regular users 1387 * when executing setuid binaries. Must 1388 * wait until new credentials are committed 1389 * by commit_creds() above 1390 */ 1391 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1392 perf_event_exit_task(me); 1393 /* 1394 * cred_guard_mutex must be held at least to this point to prevent 1395 * ptrace_attach() from altering our determination of the task's 1396 * credentials; any time after this it may be unlocked. 1397 */ 1398 security_bprm_committed_creds(bprm); 1399 1400 /* Pass the opened binary to the interpreter. */ 1401 if (bprm->have_execfd) { 1402 retval = get_unused_fd_flags(0); 1403 if (retval < 0) 1404 goto out_unlock; 1405 fd_install(retval, bprm->executable); 1406 bprm->executable = NULL; 1407 bprm->execfd = retval; 1408 } 1409 return 0; 1410 1411 out_unlock: 1412 up_write(&me->signal->exec_update_lock); 1413 out: 1414 return retval; 1415 } 1416 EXPORT_SYMBOL(begin_new_exec); 1417 1418 void would_dump(struct linux_binprm *bprm, struct file *file) 1419 { 1420 struct inode *inode = file_inode(file); 1421 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1422 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1423 struct user_namespace *old, *user_ns; 1424 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1425 1426 /* Ensure mm->user_ns contains the executable */ 1427 user_ns = old = bprm->mm->user_ns; 1428 while ((user_ns != &init_user_ns) && 1429 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1430 user_ns = user_ns->parent; 1431 1432 if (old != user_ns) { 1433 bprm->mm->user_ns = get_user_ns(user_ns); 1434 put_user_ns(old); 1435 } 1436 } 1437 } 1438 EXPORT_SYMBOL(would_dump); 1439 1440 void setup_new_exec(struct linux_binprm * bprm) 1441 { 1442 /* Setup things that can depend upon the personality */ 1443 struct task_struct *me = current; 1444 1445 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1446 1447 arch_setup_new_exec(); 1448 1449 /* Set the new mm task size. We have to do that late because it may 1450 * depend on TIF_32BIT which is only updated in flush_thread() on 1451 * some architectures like powerpc 1452 */ 1453 me->mm->task_size = TASK_SIZE; 1454 up_write(&me->signal->exec_update_lock); 1455 mutex_unlock(&me->signal->cred_guard_mutex); 1456 } 1457 EXPORT_SYMBOL(setup_new_exec); 1458 1459 /* Runs immediately before start_thread() takes over. */ 1460 void finalize_exec(struct linux_binprm *bprm) 1461 { 1462 /* Store any stack rlimit changes before starting thread. */ 1463 task_lock(current->group_leader); 1464 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1465 task_unlock(current->group_leader); 1466 } 1467 EXPORT_SYMBOL(finalize_exec); 1468 1469 /* 1470 * Prepare credentials and lock ->cred_guard_mutex. 1471 * setup_new_exec() commits the new creds and drops the lock. 1472 * Or, if exec fails before, free_bprm() should release ->cred 1473 * and unlock. 1474 */ 1475 static int prepare_bprm_creds(struct linux_binprm *bprm) 1476 { 1477 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1478 return -ERESTARTNOINTR; 1479 1480 bprm->cred = prepare_exec_creds(); 1481 if (likely(bprm->cred)) 1482 return 0; 1483 1484 mutex_unlock(¤t->signal->cred_guard_mutex); 1485 return -ENOMEM; 1486 } 1487 1488 static void free_bprm(struct linux_binprm *bprm) 1489 { 1490 if (bprm->mm) { 1491 acct_arg_size(bprm, 0); 1492 mmput(bprm->mm); 1493 } 1494 free_arg_pages(bprm); 1495 if (bprm->cred) { 1496 mutex_unlock(¤t->signal->cred_guard_mutex); 1497 abort_creds(bprm->cred); 1498 } 1499 if (bprm->file) { 1500 allow_write_access(bprm->file); 1501 fput(bprm->file); 1502 } 1503 if (bprm->executable) 1504 fput(bprm->executable); 1505 /* If a binfmt changed the interp, free it. */ 1506 if (bprm->interp != bprm->filename) 1507 kfree(bprm->interp); 1508 kfree(bprm->fdpath); 1509 kfree(bprm); 1510 } 1511 1512 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1513 { 1514 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1515 int retval = -ENOMEM; 1516 if (!bprm) 1517 goto out; 1518 1519 if (fd == AT_FDCWD || filename->name[0] == '/') { 1520 bprm->filename = filename->name; 1521 } else { 1522 if (filename->name[0] == '\0') 1523 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1524 else 1525 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1526 fd, filename->name); 1527 if (!bprm->fdpath) 1528 goto out_free; 1529 1530 bprm->filename = bprm->fdpath; 1531 } 1532 bprm->interp = bprm->filename; 1533 1534 retval = bprm_mm_init(bprm); 1535 if (retval) 1536 goto out_free; 1537 return bprm; 1538 1539 out_free: 1540 free_bprm(bprm); 1541 out: 1542 return ERR_PTR(retval); 1543 } 1544 1545 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1546 { 1547 /* If a binfmt changed the interp, free it first. */ 1548 if (bprm->interp != bprm->filename) 1549 kfree(bprm->interp); 1550 bprm->interp = kstrdup(interp, GFP_KERNEL); 1551 if (!bprm->interp) 1552 return -ENOMEM; 1553 return 0; 1554 } 1555 EXPORT_SYMBOL(bprm_change_interp); 1556 1557 /* 1558 * determine how safe it is to execute the proposed program 1559 * - the caller must hold ->cred_guard_mutex to protect against 1560 * PTRACE_ATTACH or seccomp thread-sync 1561 */ 1562 static void check_unsafe_exec(struct linux_binprm *bprm) 1563 { 1564 struct task_struct *p = current, *t; 1565 unsigned n_fs; 1566 1567 if (p->ptrace) 1568 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1569 1570 /* 1571 * This isn't strictly necessary, but it makes it harder for LSMs to 1572 * mess up. 1573 */ 1574 if (task_no_new_privs(current)) 1575 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1576 1577 t = p; 1578 n_fs = 1; 1579 spin_lock(&p->fs->lock); 1580 rcu_read_lock(); 1581 while_each_thread(p, t) { 1582 if (t->fs == p->fs) 1583 n_fs++; 1584 } 1585 rcu_read_unlock(); 1586 1587 if (p->fs->users > n_fs) 1588 bprm->unsafe |= LSM_UNSAFE_SHARE; 1589 else 1590 p->fs->in_exec = 1; 1591 spin_unlock(&p->fs->lock); 1592 } 1593 1594 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1595 { 1596 /* Handle suid and sgid on files */ 1597 struct user_namespace *mnt_userns; 1598 struct inode *inode; 1599 unsigned int mode; 1600 kuid_t uid; 1601 kgid_t gid; 1602 1603 if (!mnt_may_suid(file->f_path.mnt)) 1604 return; 1605 1606 if (task_no_new_privs(current)) 1607 return; 1608 1609 inode = file->f_path.dentry->d_inode; 1610 mode = READ_ONCE(inode->i_mode); 1611 if (!(mode & (S_ISUID|S_ISGID))) 1612 return; 1613 1614 mnt_userns = file_mnt_user_ns(file); 1615 1616 /* Be careful if suid/sgid is set */ 1617 inode_lock(inode); 1618 1619 /* reload atomically mode/uid/gid now that lock held */ 1620 mode = inode->i_mode; 1621 uid = i_uid_into_mnt(mnt_userns, inode); 1622 gid = i_gid_into_mnt(mnt_userns, inode); 1623 inode_unlock(inode); 1624 1625 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1626 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1627 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1628 return; 1629 1630 if (mode & S_ISUID) { 1631 bprm->per_clear |= PER_CLEAR_ON_SETID; 1632 bprm->cred->euid = uid; 1633 } 1634 1635 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1636 bprm->per_clear |= PER_CLEAR_ON_SETID; 1637 bprm->cred->egid = gid; 1638 } 1639 } 1640 1641 /* 1642 * Compute brpm->cred based upon the final binary. 1643 */ 1644 static int bprm_creds_from_file(struct linux_binprm *bprm) 1645 { 1646 /* Compute creds based on which file? */ 1647 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1648 1649 bprm_fill_uid(bprm, file); 1650 return security_bprm_creds_from_file(bprm, file); 1651 } 1652 1653 /* 1654 * Fill the binprm structure from the inode. 1655 * Read the first BINPRM_BUF_SIZE bytes 1656 * 1657 * This may be called multiple times for binary chains (scripts for example). 1658 */ 1659 static int prepare_binprm(struct linux_binprm *bprm) 1660 { 1661 loff_t pos = 0; 1662 1663 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1664 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1665 } 1666 1667 /* 1668 * Arguments are '\0' separated strings found at the location bprm->p 1669 * points to; chop off the first by relocating brpm->p to right after 1670 * the first '\0' encountered. 1671 */ 1672 int remove_arg_zero(struct linux_binprm *bprm) 1673 { 1674 int ret = 0; 1675 unsigned long offset; 1676 char *kaddr; 1677 struct page *page; 1678 1679 if (!bprm->argc) 1680 return 0; 1681 1682 do { 1683 offset = bprm->p & ~PAGE_MASK; 1684 page = get_arg_page(bprm, bprm->p, 0); 1685 if (!page) { 1686 ret = -EFAULT; 1687 goto out; 1688 } 1689 kaddr = kmap_atomic(page); 1690 1691 for (; offset < PAGE_SIZE && kaddr[offset]; 1692 offset++, bprm->p++) 1693 ; 1694 1695 kunmap_atomic(kaddr); 1696 put_arg_page(page); 1697 } while (offset == PAGE_SIZE); 1698 1699 bprm->p++; 1700 bprm->argc--; 1701 ret = 0; 1702 1703 out: 1704 return ret; 1705 } 1706 EXPORT_SYMBOL(remove_arg_zero); 1707 1708 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1709 /* 1710 * cycle the list of binary formats handler, until one recognizes the image 1711 */ 1712 static int search_binary_handler(struct linux_binprm *bprm) 1713 { 1714 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1715 struct linux_binfmt *fmt; 1716 int retval; 1717 1718 retval = prepare_binprm(bprm); 1719 if (retval < 0) 1720 return retval; 1721 1722 retval = security_bprm_check(bprm); 1723 if (retval) 1724 return retval; 1725 1726 retval = -ENOENT; 1727 retry: 1728 read_lock(&binfmt_lock); 1729 list_for_each_entry(fmt, &formats, lh) { 1730 if (!try_module_get(fmt->module)) 1731 continue; 1732 read_unlock(&binfmt_lock); 1733 1734 retval = fmt->load_binary(bprm); 1735 1736 read_lock(&binfmt_lock); 1737 put_binfmt(fmt); 1738 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1739 read_unlock(&binfmt_lock); 1740 return retval; 1741 } 1742 } 1743 read_unlock(&binfmt_lock); 1744 1745 if (need_retry) { 1746 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1747 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1748 return retval; 1749 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1750 return retval; 1751 need_retry = false; 1752 goto retry; 1753 } 1754 1755 return retval; 1756 } 1757 1758 static int exec_binprm(struct linux_binprm *bprm) 1759 { 1760 pid_t old_pid, old_vpid; 1761 int ret, depth; 1762 1763 /* Need to fetch pid before load_binary changes it */ 1764 old_pid = current->pid; 1765 rcu_read_lock(); 1766 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1767 rcu_read_unlock(); 1768 1769 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1770 for (depth = 0;; depth++) { 1771 struct file *exec; 1772 if (depth > 5) 1773 return -ELOOP; 1774 1775 ret = search_binary_handler(bprm); 1776 if (ret < 0) 1777 return ret; 1778 if (!bprm->interpreter) 1779 break; 1780 1781 exec = bprm->file; 1782 bprm->file = bprm->interpreter; 1783 bprm->interpreter = NULL; 1784 1785 allow_write_access(exec); 1786 if (unlikely(bprm->have_execfd)) { 1787 if (bprm->executable) { 1788 fput(exec); 1789 return -ENOEXEC; 1790 } 1791 bprm->executable = exec; 1792 } else 1793 fput(exec); 1794 } 1795 1796 audit_bprm(bprm); 1797 trace_sched_process_exec(current, old_pid, bprm); 1798 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1799 proc_exec_connector(current); 1800 return 0; 1801 } 1802 1803 /* 1804 * sys_execve() executes a new program. 1805 */ 1806 static int bprm_execve(struct linux_binprm *bprm, 1807 int fd, struct filename *filename, int flags) 1808 { 1809 struct file *file; 1810 int retval; 1811 1812 retval = prepare_bprm_creds(bprm); 1813 if (retval) 1814 return retval; 1815 1816 check_unsafe_exec(bprm); 1817 current->in_execve = 1; 1818 1819 file = do_open_execat(fd, filename, flags); 1820 retval = PTR_ERR(file); 1821 if (IS_ERR(file)) 1822 goto out_unmark; 1823 1824 sched_exec(); 1825 1826 bprm->file = file; 1827 /* 1828 * Record that a name derived from an O_CLOEXEC fd will be 1829 * inaccessible after exec. This allows the code in exec to 1830 * choose to fail when the executable is not mmaped into the 1831 * interpreter and an open file descriptor is not passed to 1832 * the interpreter. This makes for a better user experience 1833 * than having the interpreter start and then immediately fail 1834 * when it finds the executable is inaccessible. 1835 */ 1836 if (bprm->fdpath && get_close_on_exec(fd)) 1837 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1838 1839 /* Set the unchanging part of bprm->cred */ 1840 retval = security_bprm_creds_for_exec(bprm); 1841 if (retval) 1842 goto out; 1843 1844 retval = exec_binprm(bprm); 1845 if (retval < 0) 1846 goto out; 1847 1848 /* execve succeeded */ 1849 current->fs->in_exec = 0; 1850 current->in_execve = 0; 1851 rseq_execve(current); 1852 acct_update_integrals(current); 1853 task_numa_free(current, false); 1854 return retval; 1855 1856 out: 1857 /* 1858 * If past the point of no return ensure the code never 1859 * returns to the userspace process. Use an existing fatal 1860 * signal if present otherwise terminate the process with 1861 * SIGSEGV. 1862 */ 1863 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1864 force_fatal_sig(SIGSEGV); 1865 1866 out_unmark: 1867 current->fs->in_exec = 0; 1868 current->in_execve = 0; 1869 1870 return retval; 1871 } 1872 1873 static int do_execveat_common(int fd, struct filename *filename, 1874 struct user_arg_ptr argv, 1875 struct user_arg_ptr envp, 1876 int flags) 1877 { 1878 struct linux_binprm *bprm; 1879 int retval; 1880 1881 if (IS_ERR(filename)) 1882 return PTR_ERR(filename); 1883 1884 /* 1885 * We move the actual failure in case of RLIMIT_NPROC excess from 1886 * set*uid() to execve() because too many poorly written programs 1887 * don't check setuid() return code. Here we additionally recheck 1888 * whether NPROC limit is still exceeded. 1889 */ 1890 if ((current->flags & PF_NPROC_EXCEEDED) && 1891 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1892 retval = -EAGAIN; 1893 goto out_ret; 1894 } 1895 1896 /* We're below the limit (still or again), so we don't want to make 1897 * further execve() calls fail. */ 1898 current->flags &= ~PF_NPROC_EXCEEDED; 1899 1900 bprm = alloc_bprm(fd, filename); 1901 if (IS_ERR(bprm)) { 1902 retval = PTR_ERR(bprm); 1903 goto out_ret; 1904 } 1905 1906 retval = count(argv, MAX_ARG_STRINGS); 1907 if (retval == 0) 1908 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1909 current->comm, bprm->filename); 1910 if (retval < 0) 1911 goto out_free; 1912 bprm->argc = retval; 1913 1914 retval = count(envp, MAX_ARG_STRINGS); 1915 if (retval < 0) 1916 goto out_free; 1917 bprm->envc = retval; 1918 1919 retval = bprm_stack_limits(bprm); 1920 if (retval < 0) 1921 goto out_free; 1922 1923 retval = copy_string_kernel(bprm->filename, bprm); 1924 if (retval < 0) 1925 goto out_free; 1926 bprm->exec = bprm->p; 1927 1928 retval = copy_strings(bprm->envc, envp, bprm); 1929 if (retval < 0) 1930 goto out_free; 1931 1932 retval = copy_strings(bprm->argc, argv, bprm); 1933 if (retval < 0) 1934 goto out_free; 1935 1936 /* 1937 * When argv is empty, add an empty string ("") as argv[0] to 1938 * ensure confused userspace programs that start processing 1939 * from argv[1] won't end up walking envp. See also 1940 * bprm_stack_limits(). 1941 */ 1942 if (bprm->argc == 0) { 1943 retval = copy_string_kernel("", bprm); 1944 if (retval < 0) 1945 goto out_free; 1946 bprm->argc = 1; 1947 } 1948 1949 retval = bprm_execve(bprm, fd, filename, flags); 1950 out_free: 1951 free_bprm(bprm); 1952 1953 out_ret: 1954 putname(filename); 1955 return retval; 1956 } 1957 1958 int kernel_execve(const char *kernel_filename, 1959 const char *const *argv, const char *const *envp) 1960 { 1961 struct filename *filename; 1962 struct linux_binprm *bprm; 1963 int fd = AT_FDCWD; 1964 int retval; 1965 1966 /* It is non-sense for kernel threads to call execve */ 1967 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1968 return -EINVAL; 1969 1970 filename = getname_kernel(kernel_filename); 1971 if (IS_ERR(filename)) 1972 return PTR_ERR(filename); 1973 1974 bprm = alloc_bprm(fd, filename); 1975 if (IS_ERR(bprm)) { 1976 retval = PTR_ERR(bprm); 1977 goto out_ret; 1978 } 1979 1980 retval = count_strings_kernel(argv); 1981 if (WARN_ON_ONCE(retval == 0)) 1982 retval = -EINVAL; 1983 if (retval < 0) 1984 goto out_free; 1985 bprm->argc = retval; 1986 1987 retval = count_strings_kernel(envp); 1988 if (retval < 0) 1989 goto out_free; 1990 bprm->envc = retval; 1991 1992 retval = bprm_stack_limits(bprm); 1993 if (retval < 0) 1994 goto out_free; 1995 1996 retval = copy_string_kernel(bprm->filename, bprm); 1997 if (retval < 0) 1998 goto out_free; 1999 bprm->exec = bprm->p; 2000 2001 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2002 if (retval < 0) 2003 goto out_free; 2004 2005 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2006 if (retval < 0) 2007 goto out_free; 2008 2009 retval = bprm_execve(bprm, fd, filename, 0); 2010 out_free: 2011 free_bprm(bprm); 2012 out_ret: 2013 putname(filename); 2014 return retval; 2015 } 2016 2017 static int do_execve(struct filename *filename, 2018 const char __user *const __user *__argv, 2019 const char __user *const __user *__envp) 2020 { 2021 struct user_arg_ptr argv = { .ptr.native = __argv }; 2022 struct user_arg_ptr envp = { .ptr.native = __envp }; 2023 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2024 } 2025 2026 static int do_execveat(int fd, struct filename *filename, 2027 const char __user *const __user *__argv, 2028 const char __user *const __user *__envp, 2029 int flags) 2030 { 2031 struct user_arg_ptr argv = { .ptr.native = __argv }; 2032 struct user_arg_ptr envp = { .ptr.native = __envp }; 2033 2034 return do_execveat_common(fd, filename, argv, envp, flags); 2035 } 2036 2037 #ifdef CONFIG_COMPAT 2038 static int compat_do_execve(struct filename *filename, 2039 const compat_uptr_t __user *__argv, 2040 const compat_uptr_t __user *__envp) 2041 { 2042 struct user_arg_ptr argv = { 2043 .is_compat = true, 2044 .ptr.compat = __argv, 2045 }; 2046 struct user_arg_ptr envp = { 2047 .is_compat = true, 2048 .ptr.compat = __envp, 2049 }; 2050 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2051 } 2052 2053 static int compat_do_execveat(int fd, struct filename *filename, 2054 const compat_uptr_t __user *__argv, 2055 const compat_uptr_t __user *__envp, 2056 int flags) 2057 { 2058 struct user_arg_ptr argv = { 2059 .is_compat = true, 2060 .ptr.compat = __argv, 2061 }; 2062 struct user_arg_ptr envp = { 2063 .is_compat = true, 2064 .ptr.compat = __envp, 2065 }; 2066 return do_execveat_common(fd, filename, argv, envp, flags); 2067 } 2068 #endif 2069 2070 void set_binfmt(struct linux_binfmt *new) 2071 { 2072 struct mm_struct *mm = current->mm; 2073 2074 if (mm->binfmt) 2075 module_put(mm->binfmt->module); 2076 2077 mm->binfmt = new; 2078 if (new) 2079 __module_get(new->module); 2080 } 2081 EXPORT_SYMBOL(set_binfmt); 2082 2083 /* 2084 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2085 */ 2086 void set_dumpable(struct mm_struct *mm, int value) 2087 { 2088 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2089 return; 2090 2091 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2092 } 2093 2094 SYSCALL_DEFINE3(execve, 2095 const char __user *, filename, 2096 const char __user *const __user *, argv, 2097 const char __user *const __user *, envp) 2098 { 2099 return do_execve(getname(filename), argv, envp); 2100 } 2101 2102 SYSCALL_DEFINE5(execveat, 2103 int, fd, const char __user *, filename, 2104 const char __user *const __user *, argv, 2105 const char __user *const __user *, envp, 2106 int, flags) 2107 { 2108 return do_execveat(fd, 2109 getname_uflags(filename, flags), 2110 argv, envp, flags); 2111 } 2112 2113 #ifdef CONFIG_COMPAT 2114 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2115 const compat_uptr_t __user *, argv, 2116 const compat_uptr_t __user *, envp) 2117 { 2118 return compat_do_execve(getname(filename), argv, envp); 2119 } 2120 2121 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2122 const char __user *, filename, 2123 const compat_uptr_t __user *, argv, 2124 const compat_uptr_t __user *, envp, 2125 int, flags) 2126 { 2127 return compat_do_execveat(fd, 2128 getname_uflags(filename, flags), 2129 argv, envp, flags); 2130 } 2131 #endif 2132 2133 #ifdef CONFIG_SYSCTL 2134 2135 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2136 void *buffer, size_t *lenp, loff_t *ppos) 2137 { 2138 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2139 2140 if (!error) 2141 validate_coredump_safety(); 2142 return error; 2143 } 2144 2145 static struct ctl_table fs_exec_sysctls[] = { 2146 { 2147 .procname = "suid_dumpable", 2148 .data = &suid_dumpable, 2149 .maxlen = sizeof(int), 2150 .mode = 0644, 2151 .proc_handler = proc_dointvec_minmax_coredump, 2152 .extra1 = SYSCTL_ZERO, 2153 .extra2 = SYSCTL_TWO, 2154 }, 2155 { } 2156 }; 2157 2158 static int __init init_fs_exec_sysctls(void) 2159 { 2160 register_sysctl_init("fs", fs_exec_sysctls); 2161 return 0; 2162 } 2163 2164 fs_initcall(init_fs_exec_sysctls); 2165 #endif /* CONFIG_SYSCTL */ 2166