xref: /linux/fs/exec.c (revision c452d49849d48bd37ae97fc2bc92c6435707c35f)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/exec.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * #!-checking implemented by tytso.
10   */
11  /*
12   * Demand-loading implemented 01.12.91 - no need to read anything but
13   * the header into memory. The inode of the executable is put into
14   * "current->executable", and page faults do the actual loading. Clean.
15   *
16   * Once more I can proudly say that linux stood up to being changed: it
17   * was less than 2 hours work to get demand-loading completely implemented.
18   *
19   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20   * current->executable is only used by the procfs.  This allows a dispatch
21   * table to check for several different types  of binary formats.  We keep
22   * trying until we recognize the file or we run out of supported binary
23   * formats.
24   */
25  
26  #include <linux/kernel_read_file.h>
27  #include <linux/slab.h>
28  #include <linux/file.h>
29  #include <linux/fdtable.h>
30  #include <linux/mm.h>
31  #include <linux/vmacache.h>
32  #include <linux/stat.h>
33  #include <linux/fcntl.h>
34  #include <linux/swap.h>
35  #include <linux/string.h>
36  #include <linux/init.h>
37  #include <linux/sched/mm.h>
38  #include <linux/sched/coredump.h>
39  #include <linux/sched/signal.h>
40  #include <linux/sched/numa_balancing.h>
41  #include <linux/sched/task.h>
42  #include <linux/pagemap.h>
43  #include <linux/perf_event.h>
44  #include <linux/highmem.h>
45  #include <linux/spinlock.h>
46  #include <linux/key.h>
47  #include <linux/personality.h>
48  #include <linux/binfmts.h>
49  #include <linux/utsname.h>
50  #include <linux/pid_namespace.h>
51  #include <linux/module.h>
52  #include <linux/namei.h>
53  #include <linux/mount.h>
54  #include <linux/security.h>
55  #include <linux/syscalls.h>
56  #include <linux/tsacct_kern.h>
57  #include <linux/cn_proc.h>
58  #include <linux/audit.h>
59  #include <linux/kmod.h>
60  #include <linux/fsnotify.h>
61  #include <linux/fs_struct.h>
62  #include <linux/oom.h>
63  #include <linux/compat.h>
64  #include <linux/vmalloc.h>
65  #include <linux/io_uring.h>
66  #include <linux/syscall_user_dispatch.h>
67  #include <linux/coredump.h>
68  
69  #include <linux/uaccess.h>
70  #include <asm/mmu_context.h>
71  #include <asm/tlb.h>
72  
73  #include <trace/events/task.h>
74  #include "internal.h"
75  
76  #include <trace/events/sched.h>
77  
78  static int bprm_creds_from_file(struct linux_binprm *bprm);
79  
80  int suid_dumpable = 0;
81  
82  static LIST_HEAD(formats);
83  static DEFINE_RWLOCK(binfmt_lock);
84  
85  void __register_binfmt(struct linux_binfmt * fmt, int insert)
86  {
87  	write_lock(&binfmt_lock);
88  	insert ? list_add(&fmt->lh, &formats) :
89  		 list_add_tail(&fmt->lh, &formats);
90  	write_unlock(&binfmt_lock);
91  }
92  
93  EXPORT_SYMBOL(__register_binfmt);
94  
95  void unregister_binfmt(struct linux_binfmt * fmt)
96  {
97  	write_lock(&binfmt_lock);
98  	list_del(&fmt->lh);
99  	write_unlock(&binfmt_lock);
100  }
101  
102  EXPORT_SYMBOL(unregister_binfmt);
103  
104  static inline void put_binfmt(struct linux_binfmt * fmt)
105  {
106  	module_put(fmt->module);
107  }
108  
109  bool path_noexec(const struct path *path)
110  {
111  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113  }
114  
115  #ifdef CONFIG_USELIB
116  /*
117   * Note that a shared library must be both readable and executable due to
118   * security reasons.
119   *
120   * Also note that we take the address to load from the file itself.
121   */
122  SYSCALL_DEFINE1(uselib, const char __user *, library)
123  {
124  	struct linux_binfmt *fmt;
125  	struct file *file;
126  	struct filename *tmp = getname(library);
127  	int error = PTR_ERR(tmp);
128  	static const struct open_flags uselib_flags = {
129  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130  		.acc_mode = MAY_READ | MAY_EXEC,
131  		.intent = LOOKUP_OPEN,
132  		.lookup_flags = LOOKUP_FOLLOW,
133  	};
134  
135  	if (IS_ERR(tmp))
136  		goto out;
137  
138  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139  	putname(tmp);
140  	error = PTR_ERR(file);
141  	if (IS_ERR(file))
142  		goto out;
143  
144  	/*
145  	 * may_open() has already checked for this, so it should be
146  	 * impossible to trip now. But we need to be extra cautious
147  	 * and check again at the very end too.
148  	 */
149  	error = -EACCES;
150  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151  			 path_noexec(&file->f_path)))
152  		goto exit;
153  
154  	fsnotify_open(file);
155  
156  	error = -ENOEXEC;
157  
158  	read_lock(&binfmt_lock);
159  	list_for_each_entry(fmt, &formats, lh) {
160  		if (!fmt->load_shlib)
161  			continue;
162  		if (!try_module_get(fmt->module))
163  			continue;
164  		read_unlock(&binfmt_lock);
165  		error = fmt->load_shlib(file);
166  		read_lock(&binfmt_lock);
167  		put_binfmt(fmt);
168  		if (error != -ENOEXEC)
169  			break;
170  	}
171  	read_unlock(&binfmt_lock);
172  exit:
173  	fput(file);
174  out:
175    	return error;
176  }
177  #endif /* #ifdef CONFIG_USELIB */
178  
179  #ifdef CONFIG_MMU
180  /*
181   * The nascent bprm->mm is not visible until exec_mmap() but it can
182   * use a lot of memory, account these pages in current->mm temporary
183   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184   * change the counter back via acct_arg_size(0).
185   */
186  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187  {
188  	struct mm_struct *mm = current->mm;
189  	long diff = (long)(pages - bprm->vma_pages);
190  
191  	if (!mm || !diff)
192  		return;
193  
194  	bprm->vma_pages = pages;
195  	add_mm_counter(mm, MM_ANONPAGES, diff);
196  }
197  
198  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199  		int write)
200  {
201  	struct page *page;
202  	int ret;
203  	unsigned int gup_flags = FOLL_FORCE;
204  
205  #ifdef CONFIG_STACK_GROWSUP
206  	if (write) {
207  		ret = expand_downwards(bprm->vma, pos);
208  		if (ret < 0)
209  			return NULL;
210  	}
211  #endif
212  
213  	if (write)
214  		gup_flags |= FOLL_WRITE;
215  
216  	/*
217  	 * We are doing an exec().  'current' is the process
218  	 * doing the exec and bprm->mm is the new process's mm.
219  	 */
220  	mmap_read_lock(bprm->mm);
221  	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222  			&page, NULL, NULL);
223  	mmap_read_unlock(bprm->mm);
224  	if (ret <= 0)
225  		return NULL;
226  
227  	if (write)
228  		acct_arg_size(bprm, vma_pages(bprm->vma));
229  
230  	return page;
231  }
232  
233  static void put_arg_page(struct page *page)
234  {
235  	put_page(page);
236  }
237  
238  static void free_arg_pages(struct linux_binprm *bprm)
239  {
240  }
241  
242  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243  		struct page *page)
244  {
245  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246  }
247  
248  static int __bprm_mm_init(struct linux_binprm *bprm)
249  {
250  	int err;
251  	struct vm_area_struct *vma = NULL;
252  	struct mm_struct *mm = bprm->mm;
253  
254  	bprm->vma = vma = vm_area_alloc(mm);
255  	if (!vma)
256  		return -ENOMEM;
257  	vma_set_anonymous(vma);
258  
259  	if (mmap_write_lock_killable(mm)) {
260  		err = -EINTR;
261  		goto err_free;
262  	}
263  
264  	/*
265  	 * Place the stack at the largest stack address the architecture
266  	 * supports. Later, we'll move this to an appropriate place. We don't
267  	 * use STACK_TOP because that can depend on attributes which aren't
268  	 * configured yet.
269  	 */
270  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271  	vma->vm_end = STACK_TOP_MAX;
272  	vma->vm_start = vma->vm_end - PAGE_SIZE;
273  	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275  
276  	err = insert_vm_struct(mm, vma);
277  	if (err)
278  		goto err;
279  
280  	mm->stack_vm = mm->total_vm = 1;
281  	mmap_write_unlock(mm);
282  	bprm->p = vma->vm_end - sizeof(void *);
283  	return 0;
284  err:
285  	mmap_write_unlock(mm);
286  err_free:
287  	bprm->vma = NULL;
288  	vm_area_free(vma);
289  	return err;
290  }
291  
292  static bool valid_arg_len(struct linux_binprm *bprm, long len)
293  {
294  	return len <= MAX_ARG_STRLEN;
295  }
296  
297  #else
298  
299  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300  {
301  }
302  
303  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304  		int write)
305  {
306  	struct page *page;
307  
308  	page = bprm->page[pos / PAGE_SIZE];
309  	if (!page && write) {
310  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311  		if (!page)
312  			return NULL;
313  		bprm->page[pos / PAGE_SIZE] = page;
314  	}
315  
316  	return page;
317  }
318  
319  static void put_arg_page(struct page *page)
320  {
321  }
322  
323  static void free_arg_page(struct linux_binprm *bprm, int i)
324  {
325  	if (bprm->page[i]) {
326  		__free_page(bprm->page[i]);
327  		bprm->page[i] = NULL;
328  	}
329  }
330  
331  static void free_arg_pages(struct linux_binprm *bprm)
332  {
333  	int i;
334  
335  	for (i = 0; i < MAX_ARG_PAGES; i++)
336  		free_arg_page(bprm, i);
337  }
338  
339  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340  		struct page *page)
341  {
342  }
343  
344  static int __bprm_mm_init(struct linux_binprm *bprm)
345  {
346  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347  	return 0;
348  }
349  
350  static bool valid_arg_len(struct linux_binprm *bprm, long len)
351  {
352  	return len <= bprm->p;
353  }
354  
355  #endif /* CONFIG_MMU */
356  
357  /*
358   * Create a new mm_struct and populate it with a temporary stack
359   * vm_area_struct.  We don't have enough context at this point to set the stack
360   * flags, permissions, and offset, so we use temporary values.  We'll update
361   * them later in setup_arg_pages().
362   */
363  static int bprm_mm_init(struct linux_binprm *bprm)
364  {
365  	int err;
366  	struct mm_struct *mm = NULL;
367  
368  	bprm->mm = mm = mm_alloc();
369  	err = -ENOMEM;
370  	if (!mm)
371  		goto err;
372  
373  	/* Save current stack limit for all calculations made during exec. */
374  	task_lock(current->group_leader);
375  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376  	task_unlock(current->group_leader);
377  
378  	err = __bprm_mm_init(bprm);
379  	if (err)
380  		goto err;
381  
382  	return 0;
383  
384  err:
385  	if (mm) {
386  		bprm->mm = NULL;
387  		mmdrop(mm);
388  	}
389  
390  	return err;
391  }
392  
393  struct user_arg_ptr {
394  #ifdef CONFIG_COMPAT
395  	bool is_compat;
396  #endif
397  	union {
398  		const char __user *const __user *native;
399  #ifdef CONFIG_COMPAT
400  		const compat_uptr_t __user *compat;
401  #endif
402  	} ptr;
403  };
404  
405  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406  {
407  	const char __user *native;
408  
409  #ifdef CONFIG_COMPAT
410  	if (unlikely(argv.is_compat)) {
411  		compat_uptr_t compat;
412  
413  		if (get_user(compat, argv.ptr.compat + nr))
414  			return ERR_PTR(-EFAULT);
415  
416  		return compat_ptr(compat);
417  	}
418  #endif
419  
420  	if (get_user(native, argv.ptr.native + nr))
421  		return ERR_PTR(-EFAULT);
422  
423  	return native;
424  }
425  
426  /*
427   * count() counts the number of strings in array ARGV.
428   */
429  static int count(struct user_arg_ptr argv, int max)
430  {
431  	int i = 0;
432  
433  	if (argv.ptr.native != NULL) {
434  		for (;;) {
435  			const char __user *p = get_user_arg_ptr(argv, i);
436  
437  			if (!p)
438  				break;
439  
440  			if (IS_ERR(p))
441  				return -EFAULT;
442  
443  			if (i >= max)
444  				return -E2BIG;
445  			++i;
446  
447  			if (fatal_signal_pending(current))
448  				return -ERESTARTNOHAND;
449  			cond_resched();
450  		}
451  	}
452  	return i;
453  }
454  
455  static int count_strings_kernel(const char *const *argv)
456  {
457  	int i;
458  
459  	if (!argv)
460  		return 0;
461  
462  	for (i = 0; argv[i]; ++i) {
463  		if (i >= MAX_ARG_STRINGS)
464  			return -E2BIG;
465  		if (fatal_signal_pending(current))
466  			return -ERESTARTNOHAND;
467  		cond_resched();
468  	}
469  	return i;
470  }
471  
472  static int bprm_stack_limits(struct linux_binprm *bprm)
473  {
474  	unsigned long limit, ptr_size;
475  
476  	/*
477  	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478  	 * (whichever is smaller) for the argv+env strings.
479  	 * This ensures that:
480  	 *  - the remaining binfmt code will not run out of stack space,
481  	 *  - the program will have a reasonable amount of stack left
482  	 *    to work from.
483  	 */
484  	limit = _STK_LIM / 4 * 3;
485  	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486  	/*
487  	 * We've historically supported up to 32 pages (ARG_MAX)
488  	 * of argument strings even with small stacks
489  	 */
490  	limit = max_t(unsigned long, limit, ARG_MAX);
491  	/*
492  	 * We must account for the size of all the argv and envp pointers to
493  	 * the argv and envp strings, since they will also take up space in
494  	 * the stack. They aren't stored until much later when we can't
495  	 * signal to the parent that the child has run out of stack space.
496  	 * Instead, calculate it here so it's possible to fail gracefully.
497  	 *
498  	 * In the case of argc = 0, make sure there is space for adding a
499  	 * empty string (which will bump argc to 1), to ensure confused
500  	 * userspace programs don't start processing from argv[1], thinking
501  	 * argc can never be 0, to keep them from walking envp by accident.
502  	 * See do_execveat_common().
503  	 */
504  	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505  	if (limit <= ptr_size)
506  		return -E2BIG;
507  	limit -= ptr_size;
508  
509  	bprm->argmin = bprm->p - limit;
510  	return 0;
511  }
512  
513  /*
514   * 'copy_strings()' copies argument/environment strings from the old
515   * processes's memory to the new process's stack.  The call to get_user_pages()
516   * ensures the destination page is created and not swapped out.
517   */
518  static int copy_strings(int argc, struct user_arg_ptr argv,
519  			struct linux_binprm *bprm)
520  {
521  	struct page *kmapped_page = NULL;
522  	char *kaddr = NULL;
523  	unsigned long kpos = 0;
524  	int ret;
525  
526  	while (argc-- > 0) {
527  		const char __user *str;
528  		int len;
529  		unsigned long pos;
530  
531  		ret = -EFAULT;
532  		str = get_user_arg_ptr(argv, argc);
533  		if (IS_ERR(str))
534  			goto out;
535  
536  		len = strnlen_user(str, MAX_ARG_STRLEN);
537  		if (!len)
538  			goto out;
539  
540  		ret = -E2BIG;
541  		if (!valid_arg_len(bprm, len))
542  			goto out;
543  
544  		/* We're going to work our way backwards. */
545  		pos = bprm->p;
546  		str += len;
547  		bprm->p -= len;
548  #ifdef CONFIG_MMU
549  		if (bprm->p < bprm->argmin)
550  			goto out;
551  #endif
552  
553  		while (len > 0) {
554  			int offset, bytes_to_copy;
555  
556  			if (fatal_signal_pending(current)) {
557  				ret = -ERESTARTNOHAND;
558  				goto out;
559  			}
560  			cond_resched();
561  
562  			offset = pos % PAGE_SIZE;
563  			if (offset == 0)
564  				offset = PAGE_SIZE;
565  
566  			bytes_to_copy = offset;
567  			if (bytes_to_copy > len)
568  				bytes_to_copy = len;
569  
570  			offset -= bytes_to_copy;
571  			pos -= bytes_to_copy;
572  			str -= bytes_to_copy;
573  			len -= bytes_to_copy;
574  
575  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576  				struct page *page;
577  
578  				page = get_arg_page(bprm, pos, 1);
579  				if (!page) {
580  					ret = -E2BIG;
581  					goto out;
582  				}
583  
584  				if (kmapped_page) {
585  					flush_dcache_page(kmapped_page);
586  					kunmap(kmapped_page);
587  					put_arg_page(kmapped_page);
588  				}
589  				kmapped_page = page;
590  				kaddr = kmap(kmapped_page);
591  				kpos = pos & PAGE_MASK;
592  				flush_arg_page(bprm, kpos, kmapped_page);
593  			}
594  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595  				ret = -EFAULT;
596  				goto out;
597  			}
598  		}
599  	}
600  	ret = 0;
601  out:
602  	if (kmapped_page) {
603  		flush_dcache_page(kmapped_page);
604  		kunmap(kmapped_page);
605  		put_arg_page(kmapped_page);
606  	}
607  	return ret;
608  }
609  
610  /*
611   * Copy and argument/environment string from the kernel to the processes stack.
612   */
613  int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614  {
615  	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616  	unsigned long pos = bprm->p;
617  
618  	if (len == 0)
619  		return -EFAULT;
620  	if (!valid_arg_len(bprm, len))
621  		return -E2BIG;
622  
623  	/* We're going to work our way backwards. */
624  	arg += len;
625  	bprm->p -= len;
626  	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627  		return -E2BIG;
628  
629  	while (len > 0) {
630  		unsigned int bytes_to_copy = min_t(unsigned int, len,
631  				min_not_zero(offset_in_page(pos), PAGE_SIZE));
632  		struct page *page;
633  		char *kaddr;
634  
635  		pos -= bytes_to_copy;
636  		arg -= bytes_to_copy;
637  		len -= bytes_to_copy;
638  
639  		page = get_arg_page(bprm, pos, 1);
640  		if (!page)
641  			return -E2BIG;
642  		kaddr = kmap_atomic(page);
643  		flush_arg_page(bprm, pos & PAGE_MASK, page);
644  		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
645  		flush_dcache_page(page);
646  		kunmap_atomic(kaddr);
647  		put_arg_page(page);
648  	}
649  
650  	return 0;
651  }
652  EXPORT_SYMBOL(copy_string_kernel);
653  
654  static int copy_strings_kernel(int argc, const char *const *argv,
655  			       struct linux_binprm *bprm)
656  {
657  	while (argc-- > 0) {
658  		int ret = copy_string_kernel(argv[argc], bprm);
659  		if (ret < 0)
660  			return ret;
661  		if (fatal_signal_pending(current))
662  			return -ERESTARTNOHAND;
663  		cond_resched();
664  	}
665  	return 0;
666  }
667  
668  #ifdef CONFIG_MMU
669  
670  /*
671   * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
672   * the binfmt code determines where the new stack should reside, we shift it to
673   * its final location.  The process proceeds as follows:
674   *
675   * 1) Use shift to calculate the new vma endpoints.
676   * 2) Extend vma to cover both the old and new ranges.  This ensures the
677   *    arguments passed to subsequent functions are consistent.
678   * 3) Move vma's page tables to the new range.
679   * 4) Free up any cleared pgd range.
680   * 5) Shrink the vma to cover only the new range.
681   */
682  static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683  {
684  	struct mm_struct *mm = vma->vm_mm;
685  	unsigned long old_start = vma->vm_start;
686  	unsigned long old_end = vma->vm_end;
687  	unsigned long length = old_end - old_start;
688  	unsigned long new_start = old_start - shift;
689  	unsigned long new_end = old_end - shift;
690  	struct mmu_gather tlb;
691  
692  	BUG_ON(new_start > new_end);
693  
694  	/*
695  	 * ensure there are no vmas between where we want to go
696  	 * and where we are
697  	 */
698  	if (vma != find_vma(mm, new_start))
699  		return -EFAULT;
700  
701  	/*
702  	 * cover the whole range: [new_start, old_end)
703  	 */
704  	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
705  		return -ENOMEM;
706  
707  	/*
708  	 * move the page tables downwards, on failure we rely on
709  	 * process cleanup to remove whatever mess we made.
710  	 */
711  	if (length != move_page_tables(vma, old_start,
712  				       vma, new_start, length, false))
713  		return -ENOMEM;
714  
715  	lru_add_drain();
716  	tlb_gather_mmu(&tlb, mm);
717  	if (new_end > old_start) {
718  		/*
719  		 * when the old and new regions overlap clear from new_end.
720  		 */
721  		free_pgd_range(&tlb, new_end, old_end, new_end,
722  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
723  	} else {
724  		/*
725  		 * otherwise, clean from old_start; this is done to not touch
726  		 * the address space in [new_end, old_start) some architectures
727  		 * have constraints on va-space that make this illegal (IA64) -
728  		 * for the others its just a little faster.
729  		 */
730  		free_pgd_range(&tlb, old_start, old_end, new_end,
731  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
732  	}
733  	tlb_finish_mmu(&tlb);
734  
735  	/*
736  	 * Shrink the vma to just the new range.  Always succeeds.
737  	 */
738  	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739  
740  	return 0;
741  }
742  
743  /*
744   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745   * the stack is optionally relocated, and some extra space is added.
746   */
747  int setup_arg_pages(struct linux_binprm *bprm,
748  		    unsigned long stack_top,
749  		    int executable_stack)
750  {
751  	unsigned long ret;
752  	unsigned long stack_shift;
753  	struct mm_struct *mm = current->mm;
754  	struct vm_area_struct *vma = bprm->vma;
755  	struct vm_area_struct *prev = NULL;
756  	unsigned long vm_flags;
757  	unsigned long stack_base;
758  	unsigned long stack_size;
759  	unsigned long stack_expand;
760  	unsigned long rlim_stack;
761  	struct mmu_gather tlb;
762  
763  #ifdef CONFIG_STACK_GROWSUP
764  	/* Limit stack size */
765  	stack_base = bprm->rlim_stack.rlim_max;
766  
767  	stack_base = calc_max_stack_size(stack_base);
768  
769  	/* Add space for stack randomization. */
770  	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771  
772  	/* Make sure we didn't let the argument array grow too large. */
773  	if (vma->vm_end - vma->vm_start > stack_base)
774  		return -ENOMEM;
775  
776  	stack_base = PAGE_ALIGN(stack_top - stack_base);
777  
778  	stack_shift = vma->vm_start - stack_base;
779  	mm->arg_start = bprm->p - stack_shift;
780  	bprm->p = vma->vm_end - stack_shift;
781  #else
782  	stack_top = arch_align_stack(stack_top);
783  	stack_top = PAGE_ALIGN(stack_top);
784  
785  	if (unlikely(stack_top < mmap_min_addr) ||
786  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787  		return -ENOMEM;
788  
789  	stack_shift = vma->vm_end - stack_top;
790  
791  	bprm->p -= stack_shift;
792  	mm->arg_start = bprm->p;
793  #endif
794  
795  	if (bprm->loader)
796  		bprm->loader -= stack_shift;
797  	bprm->exec -= stack_shift;
798  
799  	if (mmap_write_lock_killable(mm))
800  		return -EINTR;
801  
802  	vm_flags = VM_STACK_FLAGS;
803  
804  	/*
805  	 * Adjust stack execute permissions; explicitly enable for
806  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807  	 * (arch default) otherwise.
808  	 */
809  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810  		vm_flags |= VM_EXEC;
811  	else if (executable_stack == EXSTACK_DISABLE_X)
812  		vm_flags &= ~VM_EXEC;
813  	vm_flags |= mm->def_flags;
814  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815  
816  	tlb_gather_mmu(&tlb, mm);
817  	ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
818  			vm_flags);
819  	tlb_finish_mmu(&tlb);
820  
821  	if (ret)
822  		goto out_unlock;
823  	BUG_ON(prev != vma);
824  
825  	if (unlikely(vm_flags & VM_EXEC)) {
826  		pr_warn_once("process '%pD4' started with executable stack\n",
827  			     bprm->file);
828  	}
829  
830  	/* Move stack pages down in memory. */
831  	if (stack_shift) {
832  		ret = shift_arg_pages(vma, stack_shift);
833  		if (ret)
834  			goto out_unlock;
835  	}
836  
837  	/* mprotect_fixup is overkill to remove the temporary stack flags */
838  	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
839  
840  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
841  	stack_size = vma->vm_end - vma->vm_start;
842  	/*
843  	 * Align this down to a page boundary as expand_stack
844  	 * will align it up.
845  	 */
846  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
847  #ifdef CONFIG_STACK_GROWSUP
848  	if (stack_size + stack_expand > rlim_stack)
849  		stack_base = vma->vm_start + rlim_stack;
850  	else
851  		stack_base = vma->vm_end + stack_expand;
852  #else
853  	if (stack_size + stack_expand > rlim_stack)
854  		stack_base = vma->vm_end - rlim_stack;
855  	else
856  		stack_base = vma->vm_start - stack_expand;
857  #endif
858  	current->mm->start_stack = bprm->p;
859  	ret = expand_stack(vma, stack_base);
860  	if (ret)
861  		ret = -EFAULT;
862  
863  out_unlock:
864  	mmap_write_unlock(mm);
865  	return ret;
866  }
867  EXPORT_SYMBOL(setup_arg_pages);
868  
869  #else
870  
871  /*
872   * Transfer the program arguments and environment from the holding pages
873   * onto the stack. The provided stack pointer is adjusted accordingly.
874   */
875  int transfer_args_to_stack(struct linux_binprm *bprm,
876  			   unsigned long *sp_location)
877  {
878  	unsigned long index, stop, sp;
879  	int ret = 0;
880  
881  	stop = bprm->p >> PAGE_SHIFT;
882  	sp = *sp_location;
883  
884  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
885  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
886  		char *src = kmap(bprm->page[index]) + offset;
887  		sp -= PAGE_SIZE - offset;
888  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
889  			ret = -EFAULT;
890  		kunmap(bprm->page[index]);
891  		if (ret)
892  			goto out;
893  	}
894  
895  	*sp_location = sp;
896  
897  out:
898  	return ret;
899  }
900  EXPORT_SYMBOL(transfer_args_to_stack);
901  
902  #endif /* CONFIG_MMU */
903  
904  static struct file *do_open_execat(int fd, struct filename *name, int flags)
905  {
906  	struct file *file;
907  	int err;
908  	struct open_flags open_exec_flags = {
909  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
910  		.acc_mode = MAY_EXEC,
911  		.intent = LOOKUP_OPEN,
912  		.lookup_flags = LOOKUP_FOLLOW,
913  	};
914  
915  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
916  		return ERR_PTR(-EINVAL);
917  	if (flags & AT_SYMLINK_NOFOLLOW)
918  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
919  	if (flags & AT_EMPTY_PATH)
920  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
921  
922  	file = do_filp_open(fd, name, &open_exec_flags);
923  	if (IS_ERR(file))
924  		goto out;
925  
926  	/*
927  	 * may_open() has already checked for this, so it should be
928  	 * impossible to trip now. But we need to be extra cautious
929  	 * and check again at the very end too.
930  	 */
931  	err = -EACCES;
932  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
933  			 path_noexec(&file->f_path)))
934  		goto exit;
935  
936  	err = deny_write_access(file);
937  	if (err)
938  		goto exit;
939  
940  	if (name->name[0] != '\0')
941  		fsnotify_open(file);
942  
943  out:
944  	return file;
945  
946  exit:
947  	fput(file);
948  	return ERR_PTR(err);
949  }
950  
951  struct file *open_exec(const char *name)
952  {
953  	struct filename *filename = getname_kernel(name);
954  	struct file *f = ERR_CAST(filename);
955  
956  	if (!IS_ERR(filename)) {
957  		f = do_open_execat(AT_FDCWD, filename, 0);
958  		putname(filename);
959  	}
960  	return f;
961  }
962  EXPORT_SYMBOL(open_exec);
963  
964  #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
965      defined(CONFIG_BINFMT_ELF_FDPIC)
966  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
967  {
968  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
969  	if (res > 0)
970  		flush_icache_user_range(addr, addr + len);
971  	return res;
972  }
973  EXPORT_SYMBOL(read_code);
974  #endif
975  
976  /*
977   * Maps the mm_struct mm into the current task struct.
978   * On success, this function returns with exec_update_lock
979   * held for writing.
980   */
981  static int exec_mmap(struct mm_struct *mm)
982  {
983  	struct task_struct *tsk;
984  	struct mm_struct *old_mm, *active_mm;
985  	int ret;
986  
987  	/* Notify parent that we're no longer interested in the old VM */
988  	tsk = current;
989  	old_mm = current->mm;
990  	exec_mm_release(tsk, old_mm);
991  	if (old_mm)
992  		sync_mm_rss(old_mm);
993  
994  	ret = down_write_killable(&tsk->signal->exec_update_lock);
995  	if (ret)
996  		return ret;
997  
998  	if (old_mm) {
999  		/*
1000  		 * If there is a pending fatal signal perhaps a signal
1001  		 * whose default action is to create a coredump get
1002  		 * out and die instead of going through with the exec.
1003  		 */
1004  		ret = mmap_read_lock_killable(old_mm);
1005  		if (ret) {
1006  			up_write(&tsk->signal->exec_update_lock);
1007  			return ret;
1008  		}
1009  	}
1010  
1011  	task_lock(tsk);
1012  	membarrier_exec_mmap(mm);
1013  
1014  	local_irq_disable();
1015  	active_mm = tsk->active_mm;
1016  	tsk->active_mm = mm;
1017  	tsk->mm = mm;
1018  	/*
1019  	 * This prevents preemption while active_mm is being loaded and
1020  	 * it and mm are being updated, which could cause problems for
1021  	 * lazy tlb mm refcounting when these are updated by context
1022  	 * switches. Not all architectures can handle irqs off over
1023  	 * activate_mm yet.
1024  	 */
1025  	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026  		local_irq_enable();
1027  	activate_mm(active_mm, mm);
1028  	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029  		local_irq_enable();
1030  	tsk->mm->vmacache_seqnum = 0;
1031  	vmacache_flush(tsk);
1032  	task_unlock(tsk);
1033  	if (old_mm) {
1034  		mmap_read_unlock(old_mm);
1035  		BUG_ON(active_mm != old_mm);
1036  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1037  		mm_update_next_owner(old_mm);
1038  		mmput(old_mm);
1039  		return 0;
1040  	}
1041  	mmdrop(active_mm);
1042  	return 0;
1043  }
1044  
1045  static int de_thread(struct task_struct *tsk)
1046  {
1047  	struct signal_struct *sig = tsk->signal;
1048  	struct sighand_struct *oldsighand = tsk->sighand;
1049  	spinlock_t *lock = &oldsighand->siglock;
1050  
1051  	if (thread_group_empty(tsk))
1052  		goto no_thread_group;
1053  
1054  	/*
1055  	 * Kill all other threads in the thread group.
1056  	 */
1057  	spin_lock_irq(lock);
1058  	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1059  		/*
1060  		 * Another group action in progress, just
1061  		 * return so that the signal is processed.
1062  		 */
1063  		spin_unlock_irq(lock);
1064  		return -EAGAIN;
1065  	}
1066  
1067  	sig->group_exec_task = tsk;
1068  	sig->notify_count = zap_other_threads(tsk);
1069  	if (!thread_group_leader(tsk))
1070  		sig->notify_count--;
1071  
1072  	while (sig->notify_count) {
1073  		__set_current_state(TASK_KILLABLE);
1074  		spin_unlock_irq(lock);
1075  		schedule();
1076  		if (__fatal_signal_pending(tsk))
1077  			goto killed;
1078  		spin_lock_irq(lock);
1079  	}
1080  	spin_unlock_irq(lock);
1081  
1082  	/*
1083  	 * At this point all other threads have exited, all we have to
1084  	 * do is to wait for the thread group leader to become inactive,
1085  	 * and to assume its PID:
1086  	 */
1087  	if (!thread_group_leader(tsk)) {
1088  		struct task_struct *leader = tsk->group_leader;
1089  
1090  		for (;;) {
1091  			cgroup_threadgroup_change_begin(tsk);
1092  			write_lock_irq(&tasklist_lock);
1093  			/*
1094  			 * Do this under tasklist_lock to ensure that
1095  			 * exit_notify() can't miss ->group_exec_task
1096  			 */
1097  			sig->notify_count = -1;
1098  			if (likely(leader->exit_state))
1099  				break;
1100  			__set_current_state(TASK_KILLABLE);
1101  			write_unlock_irq(&tasklist_lock);
1102  			cgroup_threadgroup_change_end(tsk);
1103  			schedule();
1104  			if (__fatal_signal_pending(tsk))
1105  				goto killed;
1106  		}
1107  
1108  		/*
1109  		 * The only record we have of the real-time age of a
1110  		 * process, regardless of execs it's done, is start_time.
1111  		 * All the past CPU time is accumulated in signal_struct
1112  		 * from sister threads now dead.  But in this non-leader
1113  		 * exec, nothing survives from the original leader thread,
1114  		 * whose birth marks the true age of this process now.
1115  		 * When we take on its identity by switching to its PID, we
1116  		 * also take its birthdate (always earlier than our own).
1117  		 */
1118  		tsk->start_time = leader->start_time;
1119  		tsk->start_boottime = leader->start_boottime;
1120  
1121  		BUG_ON(!same_thread_group(leader, tsk));
1122  		/*
1123  		 * An exec() starts a new thread group with the
1124  		 * TGID of the previous thread group. Rehash the
1125  		 * two threads with a switched PID, and release
1126  		 * the former thread group leader:
1127  		 */
1128  
1129  		/* Become a process group leader with the old leader's pid.
1130  		 * The old leader becomes a thread of the this thread group.
1131  		 */
1132  		exchange_tids(tsk, leader);
1133  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1134  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1135  		transfer_pid(leader, tsk, PIDTYPE_SID);
1136  
1137  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1138  		list_replace_init(&leader->sibling, &tsk->sibling);
1139  
1140  		tsk->group_leader = tsk;
1141  		leader->group_leader = tsk;
1142  
1143  		tsk->exit_signal = SIGCHLD;
1144  		leader->exit_signal = -1;
1145  
1146  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1147  		leader->exit_state = EXIT_DEAD;
1148  
1149  		/*
1150  		 * We are going to release_task()->ptrace_unlink() silently,
1151  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1152  		 * the tracer wont't block again waiting for this thread.
1153  		 */
1154  		if (unlikely(leader->ptrace))
1155  			__wake_up_parent(leader, leader->parent);
1156  		write_unlock_irq(&tasklist_lock);
1157  		cgroup_threadgroup_change_end(tsk);
1158  
1159  		release_task(leader);
1160  	}
1161  
1162  	sig->group_exec_task = NULL;
1163  	sig->notify_count = 0;
1164  
1165  no_thread_group:
1166  	/* we have changed execution domain */
1167  	tsk->exit_signal = SIGCHLD;
1168  
1169  	BUG_ON(!thread_group_leader(tsk));
1170  	return 0;
1171  
1172  killed:
1173  	/* protects against exit_notify() and __exit_signal() */
1174  	read_lock(&tasklist_lock);
1175  	sig->group_exec_task = NULL;
1176  	sig->notify_count = 0;
1177  	read_unlock(&tasklist_lock);
1178  	return -EAGAIN;
1179  }
1180  
1181  
1182  /*
1183   * This function makes sure the current process has its own signal table,
1184   * so that flush_signal_handlers can later reset the handlers without
1185   * disturbing other processes.  (Other processes might share the signal
1186   * table via the CLONE_SIGHAND option to clone().)
1187   */
1188  static int unshare_sighand(struct task_struct *me)
1189  {
1190  	struct sighand_struct *oldsighand = me->sighand;
1191  
1192  	if (refcount_read(&oldsighand->count) != 1) {
1193  		struct sighand_struct *newsighand;
1194  		/*
1195  		 * This ->sighand is shared with the CLONE_SIGHAND
1196  		 * but not CLONE_THREAD task, switch to the new one.
1197  		 */
1198  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199  		if (!newsighand)
1200  			return -ENOMEM;
1201  
1202  		refcount_set(&newsighand->count, 1);
1203  		memcpy(newsighand->action, oldsighand->action,
1204  		       sizeof(newsighand->action));
1205  
1206  		write_lock_irq(&tasklist_lock);
1207  		spin_lock(&oldsighand->siglock);
1208  		rcu_assign_pointer(me->sighand, newsighand);
1209  		spin_unlock(&oldsighand->siglock);
1210  		write_unlock_irq(&tasklist_lock);
1211  
1212  		__cleanup_sighand(oldsighand);
1213  	}
1214  	return 0;
1215  }
1216  
1217  char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1218  {
1219  	task_lock(tsk);
1220  	/* Always NUL terminated and zero-padded */
1221  	strscpy_pad(buf, tsk->comm, buf_size);
1222  	task_unlock(tsk);
1223  	return buf;
1224  }
1225  EXPORT_SYMBOL_GPL(__get_task_comm);
1226  
1227  /*
1228   * These functions flushes out all traces of the currently running executable
1229   * so that a new one can be started
1230   */
1231  
1232  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233  {
1234  	task_lock(tsk);
1235  	trace_task_rename(tsk, buf);
1236  	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1237  	task_unlock(tsk);
1238  	perf_event_comm(tsk, exec);
1239  }
1240  
1241  /*
1242   * Calling this is the point of no return. None of the failures will be
1243   * seen by userspace since either the process is already taking a fatal
1244   * signal (via de_thread() or coredump), or will have SEGV raised
1245   * (after exec_mmap()) by search_binary_handler (see below).
1246   */
1247  int begin_new_exec(struct linux_binprm * bprm)
1248  {
1249  	struct task_struct *me = current;
1250  	int retval;
1251  
1252  	/* Once we are committed compute the creds */
1253  	retval = bprm_creds_from_file(bprm);
1254  	if (retval)
1255  		return retval;
1256  
1257  	/*
1258  	 * Ensure all future errors are fatal.
1259  	 */
1260  	bprm->point_of_no_return = true;
1261  
1262  	/*
1263  	 * Make this the only thread in the thread group.
1264  	 */
1265  	retval = de_thread(me);
1266  	if (retval)
1267  		goto out;
1268  
1269  	/*
1270  	 * Cancel any io_uring activity across execve
1271  	 */
1272  	io_uring_task_cancel();
1273  
1274  	/* Ensure the files table is not shared. */
1275  	retval = unshare_files();
1276  	if (retval)
1277  		goto out;
1278  
1279  	/*
1280  	 * Must be called _before_ exec_mmap() as bprm->mm is
1281  	 * not visible until then. This also enables the update
1282  	 * to be lockless.
1283  	 */
1284  	retval = set_mm_exe_file(bprm->mm, bprm->file);
1285  	if (retval)
1286  		goto out;
1287  
1288  	/* If the binary is not readable then enforce mm->dumpable=0 */
1289  	would_dump(bprm, bprm->file);
1290  	if (bprm->have_execfd)
1291  		would_dump(bprm, bprm->executable);
1292  
1293  	/*
1294  	 * Release all of the old mmap stuff
1295  	 */
1296  	acct_arg_size(bprm, 0);
1297  	retval = exec_mmap(bprm->mm);
1298  	if (retval)
1299  		goto out;
1300  
1301  	bprm->mm = NULL;
1302  
1303  #ifdef CONFIG_POSIX_TIMERS
1304  	exit_itimers(me->signal);
1305  	flush_itimer_signals();
1306  #endif
1307  
1308  	/*
1309  	 * Make the signal table private.
1310  	 */
1311  	retval = unshare_sighand(me);
1312  	if (retval)
1313  		goto out_unlock;
1314  
1315  	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1316  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1317  	flush_thread();
1318  	me->personality &= ~bprm->per_clear;
1319  
1320  	clear_syscall_work_syscall_user_dispatch(me);
1321  
1322  	/*
1323  	 * We have to apply CLOEXEC before we change whether the process is
1324  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1325  	 * trying to access the should-be-closed file descriptors of a process
1326  	 * undergoing exec(2).
1327  	 */
1328  	do_close_on_exec(me->files);
1329  
1330  	if (bprm->secureexec) {
1331  		/* Make sure parent cannot signal privileged process. */
1332  		me->pdeath_signal = 0;
1333  
1334  		/*
1335  		 * For secureexec, reset the stack limit to sane default to
1336  		 * avoid bad behavior from the prior rlimits. This has to
1337  		 * happen before arch_pick_mmap_layout(), which examines
1338  		 * RLIMIT_STACK, but after the point of no return to avoid
1339  		 * needing to clean up the change on failure.
1340  		 */
1341  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1342  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1343  	}
1344  
1345  	me->sas_ss_sp = me->sas_ss_size = 0;
1346  
1347  	/*
1348  	 * Figure out dumpability. Note that this checking only of current
1349  	 * is wrong, but userspace depends on it. This should be testing
1350  	 * bprm->secureexec instead.
1351  	 */
1352  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1353  	    !(uid_eq(current_euid(), current_uid()) &&
1354  	      gid_eq(current_egid(), current_gid())))
1355  		set_dumpable(current->mm, suid_dumpable);
1356  	else
1357  		set_dumpable(current->mm, SUID_DUMP_USER);
1358  
1359  	perf_event_exec();
1360  	__set_task_comm(me, kbasename(bprm->filename), true);
1361  
1362  	/* An exec changes our domain. We are no longer part of the thread
1363  	   group */
1364  	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1365  	flush_signal_handlers(me, 0);
1366  
1367  	retval = set_cred_ucounts(bprm->cred);
1368  	if (retval < 0)
1369  		goto out_unlock;
1370  
1371  	/*
1372  	 * install the new credentials for this executable
1373  	 */
1374  	security_bprm_committing_creds(bprm);
1375  
1376  	commit_creds(bprm->cred);
1377  	bprm->cred = NULL;
1378  
1379  	/*
1380  	 * Disable monitoring for regular users
1381  	 * when executing setuid binaries. Must
1382  	 * wait until new credentials are committed
1383  	 * by commit_creds() above
1384  	 */
1385  	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1386  		perf_event_exit_task(me);
1387  	/*
1388  	 * cred_guard_mutex must be held at least to this point to prevent
1389  	 * ptrace_attach() from altering our determination of the task's
1390  	 * credentials; any time after this it may be unlocked.
1391  	 */
1392  	security_bprm_committed_creds(bprm);
1393  
1394  	/* Pass the opened binary to the interpreter. */
1395  	if (bprm->have_execfd) {
1396  		retval = get_unused_fd_flags(0);
1397  		if (retval < 0)
1398  			goto out_unlock;
1399  		fd_install(retval, bprm->executable);
1400  		bprm->executable = NULL;
1401  		bprm->execfd = retval;
1402  	}
1403  	return 0;
1404  
1405  out_unlock:
1406  	up_write(&me->signal->exec_update_lock);
1407  out:
1408  	return retval;
1409  }
1410  EXPORT_SYMBOL(begin_new_exec);
1411  
1412  void would_dump(struct linux_binprm *bprm, struct file *file)
1413  {
1414  	struct inode *inode = file_inode(file);
1415  	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1416  	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1417  		struct user_namespace *old, *user_ns;
1418  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1419  
1420  		/* Ensure mm->user_ns contains the executable */
1421  		user_ns = old = bprm->mm->user_ns;
1422  		while ((user_ns != &init_user_ns) &&
1423  		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1424  			user_ns = user_ns->parent;
1425  
1426  		if (old != user_ns) {
1427  			bprm->mm->user_ns = get_user_ns(user_ns);
1428  			put_user_ns(old);
1429  		}
1430  	}
1431  }
1432  EXPORT_SYMBOL(would_dump);
1433  
1434  void setup_new_exec(struct linux_binprm * bprm)
1435  {
1436  	/* Setup things that can depend upon the personality */
1437  	struct task_struct *me = current;
1438  
1439  	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1440  
1441  	arch_setup_new_exec();
1442  
1443  	/* Set the new mm task size. We have to do that late because it may
1444  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1445  	 * some architectures like powerpc
1446  	 */
1447  	me->mm->task_size = TASK_SIZE;
1448  	up_write(&me->signal->exec_update_lock);
1449  	mutex_unlock(&me->signal->cred_guard_mutex);
1450  }
1451  EXPORT_SYMBOL(setup_new_exec);
1452  
1453  /* Runs immediately before start_thread() takes over. */
1454  void finalize_exec(struct linux_binprm *bprm)
1455  {
1456  	/* Store any stack rlimit changes before starting thread. */
1457  	task_lock(current->group_leader);
1458  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1459  	task_unlock(current->group_leader);
1460  }
1461  EXPORT_SYMBOL(finalize_exec);
1462  
1463  /*
1464   * Prepare credentials and lock ->cred_guard_mutex.
1465   * setup_new_exec() commits the new creds and drops the lock.
1466   * Or, if exec fails before, free_bprm() should release ->cred
1467   * and unlock.
1468   */
1469  static int prepare_bprm_creds(struct linux_binprm *bprm)
1470  {
1471  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1472  		return -ERESTARTNOINTR;
1473  
1474  	bprm->cred = prepare_exec_creds();
1475  	if (likely(bprm->cred))
1476  		return 0;
1477  
1478  	mutex_unlock(&current->signal->cred_guard_mutex);
1479  	return -ENOMEM;
1480  }
1481  
1482  static void free_bprm(struct linux_binprm *bprm)
1483  {
1484  	if (bprm->mm) {
1485  		acct_arg_size(bprm, 0);
1486  		mmput(bprm->mm);
1487  	}
1488  	free_arg_pages(bprm);
1489  	if (bprm->cred) {
1490  		mutex_unlock(&current->signal->cred_guard_mutex);
1491  		abort_creds(bprm->cred);
1492  	}
1493  	if (bprm->file) {
1494  		allow_write_access(bprm->file);
1495  		fput(bprm->file);
1496  	}
1497  	if (bprm->executable)
1498  		fput(bprm->executable);
1499  	/* If a binfmt changed the interp, free it. */
1500  	if (bprm->interp != bprm->filename)
1501  		kfree(bprm->interp);
1502  	kfree(bprm->fdpath);
1503  	kfree(bprm);
1504  }
1505  
1506  static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1507  {
1508  	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1509  	int retval = -ENOMEM;
1510  	if (!bprm)
1511  		goto out;
1512  
1513  	if (fd == AT_FDCWD || filename->name[0] == '/') {
1514  		bprm->filename = filename->name;
1515  	} else {
1516  		if (filename->name[0] == '\0')
1517  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1518  		else
1519  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1520  						  fd, filename->name);
1521  		if (!bprm->fdpath)
1522  			goto out_free;
1523  
1524  		bprm->filename = bprm->fdpath;
1525  	}
1526  	bprm->interp = bprm->filename;
1527  
1528  	retval = bprm_mm_init(bprm);
1529  	if (retval)
1530  		goto out_free;
1531  	return bprm;
1532  
1533  out_free:
1534  	free_bprm(bprm);
1535  out:
1536  	return ERR_PTR(retval);
1537  }
1538  
1539  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1540  {
1541  	/* If a binfmt changed the interp, free it first. */
1542  	if (bprm->interp != bprm->filename)
1543  		kfree(bprm->interp);
1544  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1545  	if (!bprm->interp)
1546  		return -ENOMEM;
1547  	return 0;
1548  }
1549  EXPORT_SYMBOL(bprm_change_interp);
1550  
1551  /*
1552   * determine how safe it is to execute the proposed program
1553   * - the caller must hold ->cred_guard_mutex to protect against
1554   *   PTRACE_ATTACH or seccomp thread-sync
1555   */
1556  static void check_unsafe_exec(struct linux_binprm *bprm)
1557  {
1558  	struct task_struct *p = current, *t;
1559  	unsigned n_fs;
1560  
1561  	if (p->ptrace)
1562  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1563  
1564  	/*
1565  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1566  	 * mess up.
1567  	 */
1568  	if (task_no_new_privs(current))
1569  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1570  
1571  	t = p;
1572  	n_fs = 1;
1573  	spin_lock(&p->fs->lock);
1574  	rcu_read_lock();
1575  	while_each_thread(p, t) {
1576  		if (t->fs == p->fs)
1577  			n_fs++;
1578  	}
1579  	rcu_read_unlock();
1580  
1581  	if (p->fs->users > n_fs)
1582  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1583  	else
1584  		p->fs->in_exec = 1;
1585  	spin_unlock(&p->fs->lock);
1586  }
1587  
1588  static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1589  {
1590  	/* Handle suid and sgid on files */
1591  	struct user_namespace *mnt_userns;
1592  	struct inode *inode;
1593  	unsigned int mode;
1594  	kuid_t uid;
1595  	kgid_t gid;
1596  
1597  	if (!mnt_may_suid(file->f_path.mnt))
1598  		return;
1599  
1600  	if (task_no_new_privs(current))
1601  		return;
1602  
1603  	inode = file->f_path.dentry->d_inode;
1604  	mode = READ_ONCE(inode->i_mode);
1605  	if (!(mode & (S_ISUID|S_ISGID)))
1606  		return;
1607  
1608  	mnt_userns = file_mnt_user_ns(file);
1609  
1610  	/* Be careful if suid/sgid is set */
1611  	inode_lock(inode);
1612  
1613  	/* reload atomically mode/uid/gid now that lock held */
1614  	mode = inode->i_mode;
1615  	uid = i_uid_into_mnt(mnt_userns, inode);
1616  	gid = i_gid_into_mnt(mnt_userns, inode);
1617  	inode_unlock(inode);
1618  
1619  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1620  	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1621  		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1622  		return;
1623  
1624  	if (mode & S_ISUID) {
1625  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1626  		bprm->cred->euid = uid;
1627  	}
1628  
1629  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1630  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1631  		bprm->cred->egid = gid;
1632  	}
1633  }
1634  
1635  /*
1636   * Compute brpm->cred based upon the final binary.
1637   */
1638  static int bprm_creds_from_file(struct linux_binprm *bprm)
1639  {
1640  	/* Compute creds based on which file? */
1641  	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1642  
1643  	bprm_fill_uid(bprm, file);
1644  	return security_bprm_creds_from_file(bprm, file);
1645  }
1646  
1647  /*
1648   * Fill the binprm structure from the inode.
1649   * Read the first BINPRM_BUF_SIZE bytes
1650   *
1651   * This may be called multiple times for binary chains (scripts for example).
1652   */
1653  static int prepare_binprm(struct linux_binprm *bprm)
1654  {
1655  	loff_t pos = 0;
1656  
1657  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1658  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1659  }
1660  
1661  /*
1662   * Arguments are '\0' separated strings found at the location bprm->p
1663   * points to; chop off the first by relocating brpm->p to right after
1664   * the first '\0' encountered.
1665   */
1666  int remove_arg_zero(struct linux_binprm *bprm)
1667  {
1668  	int ret = 0;
1669  	unsigned long offset;
1670  	char *kaddr;
1671  	struct page *page;
1672  
1673  	if (!bprm->argc)
1674  		return 0;
1675  
1676  	do {
1677  		offset = bprm->p & ~PAGE_MASK;
1678  		page = get_arg_page(bprm, bprm->p, 0);
1679  		if (!page) {
1680  			ret = -EFAULT;
1681  			goto out;
1682  		}
1683  		kaddr = kmap_atomic(page);
1684  
1685  		for (; offset < PAGE_SIZE && kaddr[offset];
1686  				offset++, bprm->p++)
1687  			;
1688  
1689  		kunmap_atomic(kaddr);
1690  		put_arg_page(page);
1691  	} while (offset == PAGE_SIZE);
1692  
1693  	bprm->p++;
1694  	bprm->argc--;
1695  	ret = 0;
1696  
1697  out:
1698  	return ret;
1699  }
1700  EXPORT_SYMBOL(remove_arg_zero);
1701  
1702  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1703  /*
1704   * cycle the list of binary formats handler, until one recognizes the image
1705   */
1706  static int search_binary_handler(struct linux_binprm *bprm)
1707  {
1708  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1709  	struct linux_binfmt *fmt;
1710  	int retval;
1711  
1712  	retval = prepare_binprm(bprm);
1713  	if (retval < 0)
1714  		return retval;
1715  
1716  	retval = security_bprm_check(bprm);
1717  	if (retval)
1718  		return retval;
1719  
1720  	retval = -ENOENT;
1721   retry:
1722  	read_lock(&binfmt_lock);
1723  	list_for_each_entry(fmt, &formats, lh) {
1724  		if (!try_module_get(fmt->module))
1725  			continue;
1726  		read_unlock(&binfmt_lock);
1727  
1728  		retval = fmt->load_binary(bprm);
1729  
1730  		read_lock(&binfmt_lock);
1731  		put_binfmt(fmt);
1732  		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1733  			read_unlock(&binfmt_lock);
1734  			return retval;
1735  		}
1736  	}
1737  	read_unlock(&binfmt_lock);
1738  
1739  	if (need_retry) {
1740  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1741  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1742  			return retval;
1743  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1744  			return retval;
1745  		need_retry = false;
1746  		goto retry;
1747  	}
1748  
1749  	return retval;
1750  }
1751  
1752  static int exec_binprm(struct linux_binprm *bprm)
1753  {
1754  	pid_t old_pid, old_vpid;
1755  	int ret, depth;
1756  
1757  	/* Need to fetch pid before load_binary changes it */
1758  	old_pid = current->pid;
1759  	rcu_read_lock();
1760  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1761  	rcu_read_unlock();
1762  
1763  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1764  	for (depth = 0;; depth++) {
1765  		struct file *exec;
1766  		if (depth > 5)
1767  			return -ELOOP;
1768  
1769  		ret = search_binary_handler(bprm);
1770  		if (ret < 0)
1771  			return ret;
1772  		if (!bprm->interpreter)
1773  			break;
1774  
1775  		exec = bprm->file;
1776  		bprm->file = bprm->interpreter;
1777  		bprm->interpreter = NULL;
1778  
1779  		allow_write_access(exec);
1780  		if (unlikely(bprm->have_execfd)) {
1781  			if (bprm->executable) {
1782  				fput(exec);
1783  				return -ENOEXEC;
1784  			}
1785  			bprm->executable = exec;
1786  		} else
1787  			fput(exec);
1788  	}
1789  
1790  	audit_bprm(bprm);
1791  	trace_sched_process_exec(current, old_pid, bprm);
1792  	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1793  	proc_exec_connector(current);
1794  	return 0;
1795  }
1796  
1797  /*
1798   * sys_execve() executes a new program.
1799   */
1800  static int bprm_execve(struct linux_binprm *bprm,
1801  		       int fd, struct filename *filename, int flags)
1802  {
1803  	struct file *file;
1804  	int retval;
1805  
1806  	retval = prepare_bprm_creds(bprm);
1807  	if (retval)
1808  		return retval;
1809  
1810  	check_unsafe_exec(bprm);
1811  	current->in_execve = 1;
1812  
1813  	file = do_open_execat(fd, filename, flags);
1814  	retval = PTR_ERR(file);
1815  	if (IS_ERR(file))
1816  		goto out_unmark;
1817  
1818  	sched_exec();
1819  
1820  	bprm->file = file;
1821  	/*
1822  	 * Record that a name derived from an O_CLOEXEC fd will be
1823  	 * inaccessible after exec.  This allows the code in exec to
1824  	 * choose to fail when the executable is not mmaped into the
1825  	 * interpreter and an open file descriptor is not passed to
1826  	 * the interpreter.  This makes for a better user experience
1827  	 * than having the interpreter start and then immediately fail
1828  	 * when it finds the executable is inaccessible.
1829  	 */
1830  	if (bprm->fdpath && get_close_on_exec(fd))
1831  		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1832  
1833  	/* Set the unchanging part of bprm->cred */
1834  	retval = security_bprm_creds_for_exec(bprm);
1835  	if (retval)
1836  		goto out;
1837  
1838  	retval = exec_binprm(bprm);
1839  	if (retval < 0)
1840  		goto out;
1841  
1842  	/* execve succeeded */
1843  	current->fs->in_exec = 0;
1844  	current->in_execve = 0;
1845  	rseq_execve(current);
1846  	acct_update_integrals(current);
1847  	task_numa_free(current, false);
1848  	return retval;
1849  
1850  out:
1851  	/*
1852  	 * If past the point of no return ensure the code never
1853  	 * returns to the userspace process.  Use an existing fatal
1854  	 * signal if present otherwise terminate the process with
1855  	 * SIGSEGV.
1856  	 */
1857  	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1858  		force_fatal_sig(SIGSEGV);
1859  
1860  out_unmark:
1861  	current->fs->in_exec = 0;
1862  	current->in_execve = 0;
1863  
1864  	return retval;
1865  }
1866  
1867  static int do_execveat_common(int fd, struct filename *filename,
1868  			      struct user_arg_ptr argv,
1869  			      struct user_arg_ptr envp,
1870  			      int flags)
1871  {
1872  	struct linux_binprm *bprm;
1873  	int retval;
1874  
1875  	if (IS_ERR(filename))
1876  		return PTR_ERR(filename);
1877  
1878  	/*
1879  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1880  	 * set*uid() to execve() because too many poorly written programs
1881  	 * don't check setuid() return code.  Here we additionally recheck
1882  	 * whether NPROC limit is still exceeded.
1883  	 */
1884  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1885  	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1886  		retval = -EAGAIN;
1887  		goto out_ret;
1888  	}
1889  
1890  	/* We're below the limit (still or again), so we don't want to make
1891  	 * further execve() calls fail. */
1892  	current->flags &= ~PF_NPROC_EXCEEDED;
1893  
1894  	bprm = alloc_bprm(fd, filename);
1895  	if (IS_ERR(bprm)) {
1896  		retval = PTR_ERR(bprm);
1897  		goto out_ret;
1898  	}
1899  
1900  	retval = count(argv, MAX_ARG_STRINGS);
1901  	if (retval == 0)
1902  		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1903  			     current->comm, bprm->filename);
1904  	if (retval < 0)
1905  		goto out_free;
1906  	bprm->argc = retval;
1907  
1908  	retval = count(envp, MAX_ARG_STRINGS);
1909  	if (retval < 0)
1910  		goto out_free;
1911  	bprm->envc = retval;
1912  
1913  	retval = bprm_stack_limits(bprm);
1914  	if (retval < 0)
1915  		goto out_free;
1916  
1917  	retval = copy_string_kernel(bprm->filename, bprm);
1918  	if (retval < 0)
1919  		goto out_free;
1920  	bprm->exec = bprm->p;
1921  
1922  	retval = copy_strings(bprm->envc, envp, bprm);
1923  	if (retval < 0)
1924  		goto out_free;
1925  
1926  	retval = copy_strings(bprm->argc, argv, bprm);
1927  	if (retval < 0)
1928  		goto out_free;
1929  
1930  	/*
1931  	 * When argv is empty, add an empty string ("") as argv[0] to
1932  	 * ensure confused userspace programs that start processing
1933  	 * from argv[1] won't end up walking envp. See also
1934  	 * bprm_stack_limits().
1935  	 */
1936  	if (bprm->argc == 0) {
1937  		retval = copy_string_kernel("", bprm);
1938  		if (retval < 0)
1939  			goto out_free;
1940  		bprm->argc = 1;
1941  	}
1942  
1943  	retval = bprm_execve(bprm, fd, filename, flags);
1944  out_free:
1945  	free_bprm(bprm);
1946  
1947  out_ret:
1948  	putname(filename);
1949  	return retval;
1950  }
1951  
1952  int kernel_execve(const char *kernel_filename,
1953  		  const char *const *argv, const char *const *envp)
1954  {
1955  	struct filename *filename;
1956  	struct linux_binprm *bprm;
1957  	int fd = AT_FDCWD;
1958  	int retval;
1959  
1960  	/* It is non-sense for kernel threads to call execve */
1961  	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1962  		return -EINVAL;
1963  
1964  	filename = getname_kernel(kernel_filename);
1965  	if (IS_ERR(filename))
1966  		return PTR_ERR(filename);
1967  
1968  	bprm = alloc_bprm(fd, filename);
1969  	if (IS_ERR(bprm)) {
1970  		retval = PTR_ERR(bprm);
1971  		goto out_ret;
1972  	}
1973  
1974  	retval = count_strings_kernel(argv);
1975  	if (WARN_ON_ONCE(retval == 0))
1976  		retval = -EINVAL;
1977  	if (retval < 0)
1978  		goto out_free;
1979  	bprm->argc = retval;
1980  
1981  	retval = count_strings_kernel(envp);
1982  	if (retval < 0)
1983  		goto out_free;
1984  	bprm->envc = retval;
1985  
1986  	retval = bprm_stack_limits(bprm);
1987  	if (retval < 0)
1988  		goto out_free;
1989  
1990  	retval = copy_string_kernel(bprm->filename, bprm);
1991  	if (retval < 0)
1992  		goto out_free;
1993  	bprm->exec = bprm->p;
1994  
1995  	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1996  	if (retval < 0)
1997  		goto out_free;
1998  
1999  	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2000  	if (retval < 0)
2001  		goto out_free;
2002  
2003  	retval = bprm_execve(bprm, fd, filename, 0);
2004  out_free:
2005  	free_bprm(bprm);
2006  out_ret:
2007  	putname(filename);
2008  	return retval;
2009  }
2010  
2011  static int do_execve(struct filename *filename,
2012  	const char __user *const __user *__argv,
2013  	const char __user *const __user *__envp)
2014  {
2015  	struct user_arg_ptr argv = { .ptr.native = __argv };
2016  	struct user_arg_ptr envp = { .ptr.native = __envp };
2017  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2018  }
2019  
2020  static int do_execveat(int fd, struct filename *filename,
2021  		const char __user *const __user *__argv,
2022  		const char __user *const __user *__envp,
2023  		int flags)
2024  {
2025  	struct user_arg_ptr argv = { .ptr.native = __argv };
2026  	struct user_arg_ptr envp = { .ptr.native = __envp };
2027  
2028  	return do_execveat_common(fd, filename, argv, envp, flags);
2029  }
2030  
2031  #ifdef CONFIG_COMPAT
2032  static int compat_do_execve(struct filename *filename,
2033  	const compat_uptr_t __user *__argv,
2034  	const compat_uptr_t __user *__envp)
2035  {
2036  	struct user_arg_ptr argv = {
2037  		.is_compat = true,
2038  		.ptr.compat = __argv,
2039  	};
2040  	struct user_arg_ptr envp = {
2041  		.is_compat = true,
2042  		.ptr.compat = __envp,
2043  	};
2044  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2045  }
2046  
2047  static int compat_do_execveat(int fd, struct filename *filename,
2048  			      const compat_uptr_t __user *__argv,
2049  			      const compat_uptr_t __user *__envp,
2050  			      int flags)
2051  {
2052  	struct user_arg_ptr argv = {
2053  		.is_compat = true,
2054  		.ptr.compat = __argv,
2055  	};
2056  	struct user_arg_ptr envp = {
2057  		.is_compat = true,
2058  		.ptr.compat = __envp,
2059  	};
2060  	return do_execveat_common(fd, filename, argv, envp, flags);
2061  }
2062  #endif
2063  
2064  void set_binfmt(struct linux_binfmt *new)
2065  {
2066  	struct mm_struct *mm = current->mm;
2067  
2068  	if (mm->binfmt)
2069  		module_put(mm->binfmt->module);
2070  
2071  	mm->binfmt = new;
2072  	if (new)
2073  		__module_get(new->module);
2074  }
2075  EXPORT_SYMBOL(set_binfmt);
2076  
2077  /*
2078   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2079   */
2080  void set_dumpable(struct mm_struct *mm, int value)
2081  {
2082  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2083  		return;
2084  
2085  	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2086  }
2087  
2088  SYSCALL_DEFINE3(execve,
2089  		const char __user *, filename,
2090  		const char __user *const __user *, argv,
2091  		const char __user *const __user *, envp)
2092  {
2093  	return do_execve(getname(filename), argv, envp);
2094  }
2095  
2096  SYSCALL_DEFINE5(execveat,
2097  		int, fd, const char __user *, filename,
2098  		const char __user *const __user *, argv,
2099  		const char __user *const __user *, envp,
2100  		int, flags)
2101  {
2102  	return do_execveat(fd,
2103  			   getname_uflags(filename, flags),
2104  			   argv, envp, flags);
2105  }
2106  
2107  #ifdef CONFIG_COMPAT
2108  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2109  	const compat_uptr_t __user *, argv,
2110  	const compat_uptr_t __user *, envp)
2111  {
2112  	return compat_do_execve(getname(filename), argv, envp);
2113  }
2114  
2115  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2116  		       const char __user *, filename,
2117  		       const compat_uptr_t __user *, argv,
2118  		       const compat_uptr_t __user *, envp,
2119  		       int,  flags)
2120  {
2121  	return compat_do_execveat(fd,
2122  				  getname_uflags(filename, flags),
2123  				  argv, envp, flags);
2124  }
2125  #endif
2126  
2127  #ifdef CONFIG_SYSCTL
2128  
2129  static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2130  		void *buffer, size_t *lenp, loff_t *ppos)
2131  {
2132  	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2133  
2134  	if (!error)
2135  		validate_coredump_safety();
2136  	return error;
2137  }
2138  
2139  static struct ctl_table fs_exec_sysctls[] = {
2140  	{
2141  		.procname	= "suid_dumpable",
2142  		.data		= &suid_dumpable,
2143  		.maxlen		= sizeof(int),
2144  		.mode		= 0644,
2145  		.proc_handler	= proc_dointvec_minmax_coredump,
2146  		.extra1		= SYSCTL_ZERO,
2147  		.extra2		= SYSCTL_TWO,
2148  	},
2149  	{ }
2150  };
2151  
2152  static int __init init_fs_exec_sysctls(void)
2153  {
2154  	register_sysctl_init("fs", fs_exec_sysctls);
2155  	return 0;
2156  }
2157  
2158  fs_initcall(init_fs_exec_sysctls);
2159  #endif /* CONFIG_SYSCTL */
2160