xref: /linux/fs/exec.c (revision c41b20e721ea4f6f20f66a66e7f0c3c97a2ca9c2)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	if (!fmt)
77 		return -EINVAL;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct file *file;
110 	char *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 
113 	if (IS_ERR(tmp))
114 		goto out;
115 
116 	file = do_filp_open(AT_FDCWD, tmp,
117 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 				MAY_READ | MAY_EXEC | MAY_OPEN);
119 	putname(tmp);
120 	error = PTR_ERR(file);
121 	if (IS_ERR(file))
122 		goto out;
123 
124 	error = -EINVAL;
125 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 		goto exit;
127 
128 	error = -EACCES;
129 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 		goto exit;
131 
132 	fsnotify_open(file->f_path.dentry);
133 
134 	error = -ENOEXEC;
135 	if(file->f_op) {
136 		struct linux_binfmt * fmt;
137 
138 		read_lock(&binfmt_lock);
139 		list_for_each_entry(fmt, &formats, lh) {
140 			if (!fmt->load_shlib)
141 				continue;
142 			if (!try_module_get(fmt->module))
143 				continue;
144 			read_unlock(&binfmt_lock);
145 			error = fmt->load_shlib(file);
146 			read_lock(&binfmt_lock);
147 			put_binfmt(fmt);
148 			if (error != -ENOEXEC)
149 				break;
150 		}
151 		read_unlock(&binfmt_lock);
152 	}
153 exit:
154 	fput(file);
155 out:
156   	return error;
157 }
158 
159 #ifdef CONFIG_MMU
160 
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 		int write)
163 {
164 	struct page *page;
165 	int ret;
166 
167 #ifdef CONFIG_STACK_GROWSUP
168 	if (write) {
169 		ret = expand_stack_downwards(bprm->vma, pos);
170 		if (ret < 0)
171 			return NULL;
172 	}
173 #endif
174 	ret = get_user_pages(current, bprm->mm, pos,
175 			1, write, 1, &page, NULL);
176 	if (ret <= 0)
177 		return NULL;
178 
179 	if (write) {
180 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 		struct rlimit *rlim;
182 
183 		/*
184 		 * We've historically supported up to 32 pages (ARG_MAX)
185 		 * of argument strings even with small stacks
186 		 */
187 		if (size <= ARG_MAX)
188 			return page;
189 
190 		/*
191 		 * Limit to 1/4-th the stack size for the argv+env strings.
192 		 * This ensures that:
193 		 *  - the remaining binfmt code will not run out of stack space,
194 		 *  - the program will have a reasonable amount of stack left
195 		 *    to work from.
196 		 */
197 		rlim = current->signal->rlim;
198 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
199 			put_page(page);
200 			return NULL;
201 		}
202 	}
203 
204 	return page;
205 }
206 
207 static void put_arg_page(struct page *page)
208 {
209 	put_page(page);
210 }
211 
212 static void free_arg_page(struct linux_binprm *bprm, int i)
213 {
214 }
215 
216 static void free_arg_pages(struct linux_binprm *bprm)
217 {
218 }
219 
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 		struct page *page)
222 {
223 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224 }
225 
226 static int __bprm_mm_init(struct linux_binprm *bprm)
227 {
228 	int err;
229 	struct vm_area_struct *vma = NULL;
230 	struct mm_struct *mm = bprm->mm;
231 
232 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 	if (!vma)
234 		return -ENOMEM;
235 
236 	down_write(&mm->mmap_sem);
237 	vma->vm_mm = mm;
238 
239 	/*
240 	 * Place the stack at the largest stack address the architecture
241 	 * supports. Later, we'll move this to an appropriate place. We don't
242 	 * use STACK_TOP because that can depend on attributes which aren't
243 	 * configured yet.
244 	 */
245 	vma->vm_end = STACK_TOP_MAX;
246 	vma->vm_start = vma->vm_end - PAGE_SIZE;
247 	vma->vm_flags = VM_STACK_FLAGS;
248 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 	err = insert_vm_struct(mm, vma);
250 	if (err)
251 		goto err;
252 
253 	mm->stack_vm = mm->total_vm = 1;
254 	up_write(&mm->mmap_sem);
255 	bprm->p = vma->vm_end - sizeof(void *);
256 	return 0;
257 err:
258 	up_write(&mm->mmap_sem);
259 	bprm->vma = NULL;
260 	kmem_cache_free(vm_area_cachep, vma);
261 	return err;
262 }
263 
264 static bool valid_arg_len(struct linux_binprm *bprm, long len)
265 {
266 	return len <= MAX_ARG_STRLEN;
267 }
268 
269 #else
270 
271 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
272 		int write)
273 {
274 	struct page *page;
275 
276 	page = bprm->page[pos / PAGE_SIZE];
277 	if (!page && write) {
278 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
279 		if (!page)
280 			return NULL;
281 		bprm->page[pos / PAGE_SIZE] = page;
282 	}
283 
284 	return page;
285 }
286 
287 static void put_arg_page(struct page *page)
288 {
289 }
290 
291 static void free_arg_page(struct linux_binprm *bprm, int i)
292 {
293 	if (bprm->page[i]) {
294 		__free_page(bprm->page[i]);
295 		bprm->page[i] = NULL;
296 	}
297 }
298 
299 static void free_arg_pages(struct linux_binprm *bprm)
300 {
301 	int i;
302 
303 	for (i = 0; i < MAX_ARG_PAGES; i++)
304 		free_arg_page(bprm, i);
305 }
306 
307 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
308 		struct page *page)
309 {
310 }
311 
312 static int __bprm_mm_init(struct linux_binprm *bprm)
313 {
314 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
315 	return 0;
316 }
317 
318 static bool valid_arg_len(struct linux_binprm *bprm, long len)
319 {
320 	return len <= bprm->p;
321 }
322 
323 #endif /* CONFIG_MMU */
324 
325 /*
326  * Create a new mm_struct and populate it with a temporary stack
327  * vm_area_struct.  We don't have enough context at this point to set the stack
328  * flags, permissions, and offset, so we use temporary values.  We'll update
329  * them later in setup_arg_pages().
330  */
331 int bprm_mm_init(struct linux_binprm *bprm)
332 {
333 	int err;
334 	struct mm_struct *mm = NULL;
335 
336 	bprm->mm = mm = mm_alloc();
337 	err = -ENOMEM;
338 	if (!mm)
339 		goto err;
340 
341 	err = init_new_context(current, mm);
342 	if (err)
343 		goto err;
344 
345 	err = __bprm_mm_init(bprm);
346 	if (err)
347 		goto err;
348 
349 	return 0;
350 
351 err:
352 	if (mm) {
353 		bprm->mm = NULL;
354 		mmdrop(mm);
355 	}
356 
357 	return err;
358 }
359 
360 /*
361  * count() counts the number of strings in array ARGV.
362  */
363 static int count(char __user * __user * argv, int max)
364 {
365 	int i = 0;
366 
367 	if (argv != NULL) {
368 		for (;;) {
369 			char __user * p;
370 
371 			if (get_user(p, argv))
372 				return -EFAULT;
373 			if (!p)
374 				break;
375 			argv++;
376 			if (i++ >= max)
377 				return -E2BIG;
378 			cond_resched();
379 		}
380 	}
381 	return i;
382 }
383 
384 /*
385  * 'copy_strings()' copies argument/environment strings from the old
386  * processes's memory to the new process's stack.  The call to get_user_pages()
387  * ensures the destination page is created and not swapped out.
388  */
389 static int copy_strings(int argc, char __user * __user * argv,
390 			struct linux_binprm *bprm)
391 {
392 	struct page *kmapped_page = NULL;
393 	char *kaddr = NULL;
394 	unsigned long kpos = 0;
395 	int ret;
396 
397 	while (argc-- > 0) {
398 		char __user *str;
399 		int len;
400 		unsigned long pos;
401 
402 		if (get_user(str, argv+argc) ||
403 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
404 			ret = -EFAULT;
405 			goto out;
406 		}
407 
408 		if (!valid_arg_len(bprm, len)) {
409 			ret = -E2BIG;
410 			goto out;
411 		}
412 
413 		/* We're going to work our way backwords. */
414 		pos = bprm->p;
415 		str += len;
416 		bprm->p -= len;
417 
418 		while (len > 0) {
419 			int offset, bytes_to_copy;
420 
421 			offset = pos % PAGE_SIZE;
422 			if (offset == 0)
423 				offset = PAGE_SIZE;
424 
425 			bytes_to_copy = offset;
426 			if (bytes_to_copy > len)
427 				bytes_to_copy = len;
428 
429 			offset -= bytes_to_copy;
430 			pos -= bytes_to_copy;
431 			str -= bytes_to_copy;
432 			len -= bytes_to_copy;
433 
434 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
435 				struct page *page;
436 
437 				page = get_arg_page(bprm, pos, 1);
438 				if (!page) {
439 					ret = -E2BIG;
440 					goto out;
441 				}
442 
443 				if (kmapped_page) {
444 					flush_kernel_dcache_page(kmapped_page);
445 					kunmap(kmapped_page);
446 					put_arg_page(kmapped_page);
447 				}
448 				kmapped_page = page;
449 				kaddr = kmap(kmapped_page);
450 				kpos = pos & PAGE_MASK;
451 				flush_arg_page(bprm, kpos, kmapped_page);
452 			}
453 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
454 				ret = -EFAULT;
455 				goto out;
456 			}
457 		}
458 	}
459 	ret = 0;
460 out:
461 	if (kmapped_page) {
462 		flush_kernel_dcache_page(kmapped_page);
463 		kunmap(kmapped_page);
464 		put_arg_page(kmapped_page);
465 	}
466 	return ret;
467 }
468 
469 /*
470  * Like copy_strings, but get argv and its values from kernel memory.
471  */
472 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
473 {
474 	int r;
475 	mm_segment_t oldfs = get_fs();
476 	set_fs(KERNEL_DS);
477 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
478 	set_fs(oldfs);
479 	return r;
480 }
481 EXPORT_SYMBOL(copy_strings_kernel);
482 
483 #ifdef CONFIG_MMU
484 
485 /*
486  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
487  * the binfmt code determines where the new stack should reside, we shift it to
488  * its final location.  The process proceeds as follows:
489  *
490  * 1) Use shift to calculate the new vma endpoints.
491  * 2) Extend vma to cover both the old and new ranges.  This ensures the
492  *    arguments passed to subsequent functions are consistent.
493  * 3) Move vma's page tables to the new range.
494  * 4) Free up any cleared pgd range.
495  * 5) Shrink the vma to cover only the new range.
496  */
497 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
498 {
499 	struct mm_struct *mm = vma->vm_mm;
500 	unsigned long old_start = vma->vm_start;
501 	unsigned long old_end = vma->vm_end;
502 	unsigned long length = old_end - old_start;
503 	unsigned long new_start = old_start - shift;
504 	unsigned long new_end = old_end - shift;
505 	struct mmu_gather *tlb;
506 
507 	BUG_ON(new_start > new_end);
508 
509 	/*
510 	 * ensure there are no vmas between where we want to go
511 	 * and where we are
512 	 */
513 	if (vma != find_vma(mm, new_start))
514 		return -EFAULT;
515 
516 	/*
517 	 * cover the whole range: [new_start, old_end)
518 	 */
519 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
520 
521 	/*
522 	 * move the page tables downwards, on failure we rely on
523 	 * process cleanup to remove whatever mess we made.
524 	 */
525 	if (length != move_page_tables(vma, old_start,
526 				       vma, new_start, length))
527 		return -ENOMEM;
528 
529 	lru_add_drain();
530 	tlb = tlb_gather_mmu(mm, 0);
531 	if (new_end > old_start) {
532 		/*
533 		 * when the old and new regions overlap clear from new_end.
534 		 */
535 		free_pgd_range(tlb, new_end, old_end, new_end,
536 			vma->vm_next ? vma->vm_next->vm_start : 0);
537 	} else {
538 		/*
539 		 * otherwise, clean from old_start; this is done to not touch
540 		 * the address space in [new_end, old_start) some architectures
541 		 * have constraints on va-space that make this illegal (IA64) -
542 		 * for the others its just a little faster.
543 		 */
544 		free_pgd_range(tlb, old_start, old_end, new_end,
545 			vma->vm_next ? vma->vm_next->vm_start : 0);
546 	}
547 	tlb_finish_mmu(tlb, new_end, old_end);
548 
549 	/*
550 	 * shrink the vma to just the new range.
551 	 */
552 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
553 
554 	return 0;
555 }
556 
557 #define EXTRA_STACK_VM_PAGES	20	/* random */
558 
559 /*
560  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561  * the stack is optionally relocated, and some extra space is added.
562  */
563 int setup_arg_pages(struct linux_binprm *bprm,
564 		    unsigned long stack_top,
565 		    int executable_stack)
566 {
567 	unsigned long ret;
568 	unsigned long stack_shift;
569 	struct mm_struct *mm = current->mm;
570 	struct vm_area_struct *vma = bprm->vma;
571 	struct vm_area_struct *prev = NULL;
572 	unsigned long vm_flags;
573 	unsigned long stack_base;
574 
575 #ifdef CONFIG_STACK_GROWSUP
576 	/* Limit stack size to 1GB */
577 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
578 	if (stack_base > (1 << 30))
579 		stack_base = 1 << 30;
580 
581 	/* Make sure we didn't let the argument array grow too large. */
582 	if (vma->vm_end - vma->vm_start > stack_base)
583 		return -ENOMEM;
584 
585 	stack_base = PAGE_ALIGN(stack_top - stack_base);
586 
587 	stack_shift = vma->vm_start - stack_base;
588 	mm->arg_start = bprm->p - stack_shift;
589 	bprm->p = vma->vm_end - stack_shift;
590 #else
591 	stack_top = arch_align_stack(stack_top);
592 	stack_top = PAGE_ALIGN(stack_top);
593 	stack_shift = vma->vm_end - stack_top;
594 
595 	bprm->p -= stack_shift;
596 	mm->arg_start = bprm->p;
597 #endif
598 
599 	if (bprm->loader)
600 		bprm->loader -= stack_shift;
601 	bprm->exec -= stack_shift;
602 
603 	down_write(&mm->mmap_sem);
604 	vm_flags = VM_STACK_FLAGS;
605 
606 	/*
607 	 * Adjust stack execute permissions; explicitly enable for
608 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
609 	 * (arch default) otherwise.
610 	 */
611 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
612 		vm_flags |= VM_EXEC;
613 	else if (executable_stack == EXSTACK_DISABLE_X)
614 		vm_flags &= ~VM_EXEC;
615 	vm_flags |= mm->def_flags;
616 
617 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
618 			vm_flags);
619 	if (ret)
620 		goto out_unlock;
621 	BUG_ON(prev != vma);
622 
623 	/* Move stack pages down in memory. */
624 	if (stack_shift) {
625 		ret = shift_arg_pages(vma, stack_shift);
626 		if (ret)
627 			goto out_unlock;
628 	}
629 
630 #ifdef CONFIG_STACK_GROWSUP
631 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
632 #else
633 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
634 #endif
635 	ret = expand_stack(vma, stack_base);
636 	if (ret)
637 		ret = -EFAULT;
638 
639 out_unlock:
640 	up_write(&mm->mmap_sem);
641 	return ret;
642 }
643 EXPORT_SYMBOL(setup_arg_pages);
644 
645 #endif /* CONFIG_MMU */
646 
647 struct file *open_exec(const char *name)
648 {
649 	struct file *file;
650 	int err;
651 
652 	file = do_filp_open(AT_FDCWD, name,
653 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
654 				MAY_EXEC | MAY_OPEN);
655 	if (IS_ERR(file))
656 		goto out;
657 
658 	err = -EACCES;
659 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
660 		goto exit;
661 
662 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
663 		goto exit;
664 
665 	fsnotify_open(file->f_path.dentry);
666 
667 	err = deny_write_access(file);
668 	if (err)
669 		goto exit;
670 
671 out:
672 	return file;
673 
674 exit:
675 	fput(file);
676 	return ERR_PTR(err);
677 }
678 EXPORT_SYMBOL(open_exec);
679 
680 int kernel_read(struct file *file, loff_t offset,
681 		char *addr, unsigned long count)
682 {
683 	mm_segment_t old_fs;
684 	loff_t pos = offset;
685 	int result;
686 
687 	old_fs = get_fs();
688 	set_fs(get_ds());
689 	/* The cast to a user pointer is valid due to the set_fs() */
690 	result = vfs_read(file, (void __user *)addr, count, &pos);
691 	set_fs(old_fs);
692 	return result;
693 }
694 
695 EXPORT_SYMBOL(kernel_read);
696 
697 static int exec_mmap(struct mm_struct *mm)
698 {
699 	struct task_struct *tsk;
700 	struct mm_struct * old_mm, *active_mm;
701 
702 	/* Notify parent that we're no longer interested in the old VM */
703 	tsk = current;
704 	old_mm = current->mm;
705 	mm_release(tsk, old_mm);
706 
707 	if (old_mm) {
708 		/*
709 		 * Make sure that if there is a core dump in progress
710 		 * for the old mm, we get out and die instead of going
711 		 * through with the exec.  We must hold mmap_sem around
712 		 * checking core_state and changing tsk->mm.
713 		 */
714 		down_read(&old_mm->mmap_sem);
715 		if (unlikely(old_mm->core_state)) {
716 			up_read(&old_mm->mmap_sem);
717 			return -EINTR;
718 		}
719 	}
720 	task_lock(tsk);
721 	active_mm = tsk->active_mm;
722 	tsk->mm = mm;
723 	tsk->active_mm = mm;
724 	activate_mm(active_mm, mm);
725 	task_unlock(tsk);
726 	arch_pick_mmap_layout(mm);
727 	if (old_mm) {
728 		up_read(&old_mm->mmap_sem);
729 		BUG_ON(active_mm != old_mm);
730 		mm_update_next_owner(old_mm);
731 		mmput(old_mm);
732 		return 0;
733 	}
734 	mmdrop(active_mm);
735 	return 0;
736 }
737 
738 /*
739  * This function makes sure the current process has its own signal table,
740  * so that flush_signal_handlers can later reset the handlers without
741  * disturbing other processes.  (Other processes might share the signal
742  * table via the CLONE_SIGHAND option to clone().)
743  */
744 static int de_thread(struct task_struct *tsk)
745 {
746 	struct signal_struct *sig = tsk->signal;
747 	struct sighand_struct *oldsighand = tsk->sighand;
748 	spinlock_t *lock = &oldsighand->siglock;
749 	int count;
750 
751 	if (thread_group_empty(tsk))
752 		goto no_thread_group;
753 
754 	/*
755 	 * Kill all other threads in the thread group.
756 	 */
757 	spin_lock_irq(lock);
758 	if (signal_group_exit(sig)) {
759 		/*
760 		 * Another group action in progress, just
761 		 * return so that the signal is processed.
762 		 */
763 		spin_unlock_irq(lock);
764 		return -EAGAIN;
765 	}
766 	sig->group_exit_task = tsk;
767 	zap_other_threads(tsk);
768 
769 	/* Account for the thread group leader hanging around: */
770 	count = thread_group_leader(tsk) ? 1 : 2;
771 	sig->notify_count = count;
772 	while (atomic_read(&sig->count) > count) {
773 		__set_current_state(TASK_UNINTERRUPTIBLE);
774 		spin_unlock_irq(lock);
775 		schedule();
776 		spin_lock_irq(lock);
777 	}
778 	spin_unlock_irq(lock);
779 
780 	/*
781 	 * At this point all other threads have exited, all we have to
782 	 * do is to wait for the thread group leader to become inactive,
783 	 * and to assume its PID:
784 	 */
785 	if (!thread_group_leader(tsk)) {
786 		struct task_struct *leader = tsk->group_leader;
787 
788 		sig->notify_count = -1;	/* for exit_notify() */
789 		for (;;) {
790 			write_lock_irq(&tasklist_lock);
791 			if (likely(leader->exit_state))
792 				break;
793 			__set_current_state(TASK_UNINTERRUPTIBLE);
794 			write_unlock_irq(&tasklist_lock);
795 			schedule();
796 		}
797 
798 		/*
799 		 * The only record we have of the real-time age of a
800 		 * process, regardless of execs it's done, is start_time.
801 		 * All the past CPU time is accumulated in signal_struct
802 		 * from sister threads now dead.  But in this non-leader
803 		 * exec, nothing survives from the original leader thread,
804 		 * whose birth marks the true age of this process now.
805 		 * When we take on its identity by switching to its PID, we
806 		 * also take its birthdate (always earlier than our own).
807 		 */
808 		tsk->start_time = leader->start_time;
809 
810 		BUG_ON(!same_thread_group(leader, tsk));
811 		BUG_ON(has_group_leader_pid(tsk));
812 		/*
813 		 * An exec() starts a new thread group with the
814 		 * TGID of the previous thread group. Rehash the
815 		 * two threads with a switched PID, and release
816 		 * the former thread group leader:
817 		 */
818 
819 		/* Become a process group leader with the old leader's pid.
820 		 * The old leader becomes a thread of the this thread group.
821 		 * Note: The old leader also uses this pid until release_task
822 		 *       is called.  Odd but simple and correct.
823 		 */
824 		detach_pid(tsk, PIDTYPE_PID);
825 		tsk->pid = leader->pid;
826 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
827 		transfer_pid(leader, tsk, PIDTYPE_PGID);
828 		transfer_pid(leader, tsk, PIDTYPE_SID);
829 
830 		list_replace_rcu(&leader->tasks, &tsk->tasks);
831 		list_replace_init(&leader->sibling, &tsk->sibling);
832 
833 		tsk->group_leader = tsk;
834 		leader->group_leader = tsk;
835 
836 		tsk->exit_signal = SIGCHLD;
837 
838 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
839 		leader->exit_state = EXIT_DEAD;
840 		write_unlock_irq(&tasklist_lock);
841 
842 		release_task(leader);
843 	}
844 
845 	sig->group_exit_task = NULL;
846 	sig->notify_count = 0;
847 
848 no_thread_group:
849 	if (current->mm)
850 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
851 
852 	exit_itimers(sig);
853 	flush_itimer_signals();
854 
855 	if (atomic_read(&oldsighand->count) != 1) {
856 		struct sighand_struct *newsighand;
857 		/*
858 		 * This ->sighand is shared with the CLONE_SIGHAND
859 		 * but not CLONE_THREAD task, switch to the new one.
860 		 */
861 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
862 		if (!newsighand)
863 			return -ENOMEM;
864 
865 		atomic_set(&newsighand->count, 1);
866 		memcpy(newsighand->action, oldsighand->action,
867 		       sizeof(newsighand->action));
868 
869 		write_lock_irq(&tasklist_lock);
870 		spin_lock(&oldsighand->siglock);
871 		rcu_assign_pointer(tsk->sighand, newsighand);
872 		spin_unlock(&oldsighand->siglock);
873 		write_unlock_irq(&tasklist_lock);
874 
875 		__cleanup_sighand(oldsighand);
876 	}
877 
878 	BUG_ON(!thread_group_leader(tsk));
879 	return 0;
880 }
881 
882 /*
883  * These functions flushes out all traces of the currently running executable
884  * so that a new one can be started
885  */
886 static void flush_old_files(struct files_struct * files)
887 {
888 	long j = -1;
889 	struct fdtable *fdt;
890 
891 	spin_lock(&files->file_lock);
892 	for (;;) {
893 		unsigned long set, i;
894 
895 		j++;
896 		i = j * __NFDBITS;
897 		fdt = files_fdtable(files);
898 		if (i >= fdt->max_fds)
899 			break;
900 		set = fdt->close_on_exec->fds_bits[j];
901 		if (!set)
902 			continue;
903 		fdt->close_on_exec->fds_bits[j] = 0;
904 		spin_unlock(&files->file_lock);
905 		for ( ; set ; i++,set >>= 1) {
906 			if (set & 1) {
907 				sys_close(i);
908 			}
909 		}
910 		spin_lock(&files->file_lock);
911 
912 	}
913 	spin_unlock(&files->file_lock);
914 }
915 
916 char *get_task_comm(char *buf, struct task_struct *tsk)
917 {
918 	/* buf must be at least sizeof(tsk->comm) in size */
919 	task_lock(tsk);
920 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
921 	task_unlock(tsk);
922 	return buf;
923 }
924 
925 void set_task_comm(struct task_struct *tsk, char *buf)
926 {
927 	task_lock(tsk);
928 
929 	/*
930 	 * Threads may access current->comm without holding
931 	 * the task lock, so write the string carefully.
932 	 * Readers without a lock may see incomplete new
933 	 * names but are safe from non-terminating string reads.
934 	 */
935 	memset(tsk->comm, 0, TASK_COMM_LEN);
936 	wmb();
937 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
938 	task_unlock(tsk);
939 	perf_event_comm(tsk);
940 }
941 
942 int flush_old_exec(struct linux_binprm * bprm)
943 {
944 	int retval;
945 
946 	/*
947 	 * Make sure we have a private signal table and that
948 	 * we are unassociated from the previous thread group.
949 	 */
950 	retval = de_thread(current);
951 	if (retval)
952 		goto out;
953 
954 	set_mm_exe_file(bprm->mm, bprm->file);
955 
956 	/*
957 	 * Release all of the old mmap stuff
958 	 */
959 	retval = exec_mmap(bprm->mm);
960 	if (retval)
961 		goto out;
962 
963 	bprm->mm = NULL;		/* We're using it now */
964 
965 	current->flags &= ~PF_RANDOMIZE;
966 	flush_thread();
967 	current->personality &= ~bprm->per_clear;
968 
969 	return 0;
970 
971 out:
972 	return retval;
973 }
974 EXPORT_SYMBOL(flush_old_exec);
975 
976 void setup_new_exec(struct linux_binprm * bprm)
977 {
978 	int i, ch;
979 	char * name;
980 	char tcomm[sizeof(current->comm)];
981 
982 	arch_pick_mmap_layout(current->mm);
983 
984 	/* This is the point of no return */
985 	current->sas_ss_sp = current->sas_ss_size = 0;
986 
987 	if (current_euid() == current_uid() && current_egid() == current_gid())
988 		set_dumpable(current->mm, 1);
989 	else
990 		set_dumpable(current->mm, suid_dumpable);
991 
992 	name = bprm->filename;
993 
994 	/* Copies the binary name from after last slash */
995 	for (i=0; (ch = *(name++)) != '\0';) {
996 		if (ch == '/')
997 			i = 0; /* overwrite what we wrote */
998 		else
999 			if (i < (sizeof(tcomm) - 1))
1000 				tcomm[i++] = ch;
1001 	}
1002 	tcomm[i] = '\0';
1003 	set_task_comm(current, tcomm);
1004 
1005 	/* Set the new mm task size. We have to do that late because it may
1006 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1007 	 * some architectures like powerpc
1008 	 */
1009 	current->mm->task_size = TASK_SIZE;
1010 
1011 	/* install the new credentials */
1012 	if (bprm->cred->uid != current_euid() ||
1013 	    bprm->cred->gid != current_egid()) {
1014 		current->pdeath_signal = 0;
1015 	} else if (file_permission(bprm->file, MAY_READ) ||
1016 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1017 		set_dumpable(current->mm, suid_dumpable);
1018 	}
1019 
1020 	/*
1021 	 * Flush performance counters when crossing a
1022 	 * security domain:
1023 	 */
1024 	if (!get_dumpable(current->mm))
1025 		perf_event_exit_task(current);
1026 
1027 	/* An exec changes our domain. We are no longer part of the thread
1028 	   group */
1029 
1030 	current->self_exec_id++;
1031 
1032 	flush_signal_handlers(current, 0);
1033 	flush_old_files(current->files);
1034 }
1035 EXPORT_SYMBOL(setup_new_exec);
1036 
1037 /*
1038  * Prepare credentials and lock ->cred_guard_mutex.
1039  * install_exec_creds() commits the new creds and drops the lock.
1040  * Or, if exec fails before, free_bprm() should release ->cred and
1041  * and unlock.
1042  */
1043 int prepare_bprm_creds(struct linux_binprm *bprm)
1044 {
1045 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1046 		return -ERESTARTNOINTR;
1047 
1048 	bprm->cred = prepare_exec_creds();
1049 	if (likely(bprm->cred))
1050 		return 0;
1051 
1052 	mutex_unlock(&current->cred_guard_mutex);
1053 	return -ENOMEM;
1054 }
1055 
1056 void free_bprm(struct linux_binprm *bprm)
1057 {
1058 	free_arg_pages(bprm);
1059 	if (bprm->cred) {
1060 		mutex_unlock(&current->cred_guard_mutex);
1061 		abort_creds(bprm->cred);
1062 	}
1063 	kfree(bprm);
1064 }
1065 
1066 /*
1067  * install the new credentials for this executable
1068  */
1069 void install_exec_creds(struct linux_binprm *bprm)
1070 {
1071 	security_bprm_committing_creds(bprm);
1072 
1073 	commit_creds(bprm->cred);
1074 	bprm->cred = NULL;
1075 	/*
1076 	 * cred_guard_mutex must be held at least to this point to prevent
1077 	 * ptrace_attach() from altering our determination of the task's
1078 	 * credentials; any time after this it may be unlocked.
1079 	 */
1080 	security_bprm_committed_creds(bprm);
1081 	mutex_unlock(&current->cred_guard_mutex);
1082 }
1083 EXPORT_SYMBOL(install_exec_creds);
1084 
1085 /*
1086  * determine how safe it is to execute the proposed program
1087  * - the caller must hold current->cred_guard_mutex to protect against
1088  *   PTRACE_ATTACH
1089  */
1090 int check_unsafe_exec(struct linux_binprm *bprm)
1091 {
1092 	struct task_struct *p = current, *t;
1093 	unsigned n_fs;
1094 	int res = 0;
1095 
1096 	bprm->unsafe = tracehook_unsafe_exec(p);
1097 
1098 	n_fs = 1;
1099 	write_lock(&p->fs->lock);
1100 	rcu_read_lock();
1101 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1102 		if (t->fs == p->fs)
1103 			n_fs++;
1104 	}
1105 	rcu_read_unlock();
1106 
1107 	if (p->fs->users > n_fs) {
1108 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1109 	} else {
1110 		res = -EAGAIN;
1111 		if (!p->fs->in_exec) {
1112 			p->fs->in_exec = 1;
1113 			res = 1;
1114 		}
1115 	}
1116 	write_unlock(&p->fs->lock);
1117 
1118 	return res;
1119 }
1120 
1121 /*
1122  * Fill the binprm structure from the inode.
1123  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1124  *
1125  * This may be called multiple times for binary chains (scripts for example).
1126  */
1127 int prepare_binprm(struct linux_binprm *bprm)
1128 {
1129 	umode_t mode;
1130 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1131 	int retval;
1132 
1133 	mode = inode->i_mode;
1134 	if (bprm->file->f_op == NULL)
1135 		return -EACCES;
1136 
1137 	/* clear any previous set[ug]id data from a previous binary */
1138 	bprm->cred->euid = current_euid();
1139 	bprm->cred->egid = current_egid();
1140 
1141 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1142 		/* Set-uid? */
1143 		if (mode & S_ISUID) {
1144 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1145 			bprm->cred->euid = inode->i_uid;
1146 		}
1147 
1148 		/* Set-gid? */
1149 		/*
1150 		 * If setgid is set but no group execute bit then this
1151 		 * is a candidate for mandatory locking, not a setgid
1152 		 * executable.
1153 		 */
1154 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1155 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1156 			bprm->cred->egid = inode->i_gid;
1157 		}
1158 	}
1159 
1160 	/* fill in binprm security blob */
1161 	retval = security_bprm_set_creds(bprm);
1162 	if (retval)
1163 		return retval;
1164 	bprm->cred_prepared = 1;
1165 
1166 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1167 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1168 }
1169 
1170 EXPORT_SYMBOL(prepare_binprm);
1171 
1172 /*
1173  * Arguments are '\0' separated strings found at the location bprm->p
1174  * points to; chop off the first by relocating brpm->p to right after
1175  * the first '\0' encountered.
1176  */
1177 int remove_arg_zero(struct linux_binprm *bprm)
1178 {
1179 	int ret = 0;
1180 	unsigned long offset;
1181 	char *kaddr;
1182 	struct page *page;
1183 
1184 	if (!bprm->argc)
1185 		return 0;
1186 
1187 	do {
1188 		offset = bprm->p & ~PAGE_MASK;
1189 		page = get_arg_page(bprm, bprm->p, 0);
1190 		if (!page) {
1191 			ret = -EFAULT;
1192 			goto out;
1193 		}
1194 		kaddr = kmap_atomic(page, KM_USER0);
1195 
1196 		for (; offset < PAGE_SIZE && kaddr[offset];
1197 				offset++, bprm->p++)
1198 			;
1199 
1200 		kunmap_atomic(kaddr, KM_USER0);
1201 		put_arg_page(page);
1202 
1203 		if (offset == PAGE_SIZE)
1204 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1205 	} while (offset == PAGE_SIZE);
1206 
1207 	bprm->p++;
1208 	bprm->argc--;
1209 	ret = 0;
1210 
1211 out:
1212 	return ret;
1213 }
1214 EXPORT_SYMBOL(remove_arg_zero);
1215 
1216 /*
1217  * cycle the list of binary formats handler, until one recognizes the image
1218  */
1219 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1220 {
1221 	unsigned int depth = bprm->recursion_depth;
1222 	int try,retval;
1223 	struct linux_binfmt *fmt;
1224 
1225 	retval = security_bprm_check(bprm);
1226 	if (retval)
1227 		return retval;
1228 
1229 	/* kernel module loader fixup */
1230 	/* so we don't try to load run modprobe in kernel space. */
1231 	set_fs(USER_DS);
1232 
1233 	retval = audit_bprm(bprm);
1234 	if (retval)
1235 		return retval;
1236 
1237 	retval = -ENOENT;
1238 	for (try=0; try<2; try++) {
1239 		read_lock(&binfmt_lock);
1240 		list_for_each_entry(fmt, &formats, lh) {
1241 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1242 			if (!fn)
1243 				continue;
1244 			if (!try_module_get(fmt->module))
1245 				continue;
1246 			read_unlock(&binfmt_lock);
1247 			retval = fn(bprm, regs);
1248 			/*
1249 			 * Restore the depth counter to its starting value
1250 			 * in this call, so we don't have to rely on every
1251 			 * load_binary function to restore it on return.
1252 			 */
1253 			bprm->recursion_depth = depth;
1254 			if (retval >= 0) {
1255 				if (depth == 0)
1256 					tracehook_report_exec(fmt, bprm, regs);
1257 				put_binfmt(fmt);
1258 				allow_write_access(bprm->file);
1259 				if (bprm->file)
1260 					fput(bprm->file);
1261 				bprm->file = NULL;
1262 				current->did_exec = 1;
1263 				proc_exec_connector(current);
1264 				return retval;
1265 			}
1266 			read_lock(&binfmt_lock);
1267 			put_binfmt(fmt);
1268 			if (retval != -ENOEXEC || bprm->mm == NULL)
1269 				break;
1270 			if (!bprm->file) {
1271 				read_unlock(&binfmt_lock);
1272 				return retval;
1273 			}
1274 		}
1275 		read_unlock(&binfmt_lock);
1276 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1277 			break;
1278 #ifdef CONFIG_MODULES
1279 		} else {
1280 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1281 			if (printable(bprm->buf[0]) &&
1282 			    printable(bprm->buf[1]) &&
1283 			    printable(bprm->buf[2]) &&
1284 			    printable(bprm->buf[3]))
1285 				break; /* -ENOEXEC */
1286 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1287 #endif
1288 		}
1289 	}
1290 	return retval;
1291 }
1292 
1293 EXPORT_SYMBOL(search_binary_handler);
1294 
1295 /*
1296  * sys_execve() executes a new program.
1297  */
1298 int do_execve(char * filename,
1299 	char __user *__user *argv,
1300 	char __user *__user *envp,
1301 	struct pt_regs * regs)
1302 {
1303 	struct linux_binprm *bprm;
1304 	struct file *file;
1305 	struct files_struct *displaced;
1306 	bool clear_in_exec;
1307 	int retval;
1308 
1309 	retval = unshare_files(&displaced);
1310 	if (retval)
1311 		goto out_ret;
1312 
1313 	retval = -ENOMEM;
1314 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1315 	if (!bprm)
1316 		goto out_files;
1317 
1318 	retval = prepare_bprm_creds(bprm);
1319 	if (retval)
1320 		goto out_free;
1321 
1322 	retval = check_unsafe_exec(bprm);
1323 	if (retval < 0)
1324 		goto out_free;
1325 	clear_in_exec = retval;
1326 	current->in_execve = 1;
1327 
1328 	file = open_exec(filename);
1329 	retval = PTR_ERR(file);
1330 	if (IS_ERR(file))
1331 		goto out_unmark;
1332 
1333 	sched_exec();
1334 
1335 	bprm->file = file;
1336 	bprm->filename = filename;
1337 	bprm->interp = filename;
1338 
1339 	retval = bprm_mm_init(bprm);
1340 	if (retval)
1341 		goto out_file;
1342 
1343 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1344 	if ((retval = bprm->argc) < 0)
1345 		goto out;
1346 
1347 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1348 	if ((retval = bprm->envc) < 0)
1349 		goto out;
1350 
1351 	retval = prepare_binprm(bprm);
1352 	if (retval < 0)
1353 		goto out;
1354 
1355 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1356 	if (retval < 0)
1357 		goto out;
1358 
1359 	bprm->exec = bprm->p;
1360 	retval = copy_strings(bprm->envc, envp, bprm);
1361 	if (retval < 0)
1362 		goto out;
1363 
1364 	retval = copy_strings(bprm->argc, argv, bprm);
1365 	if (retval < 0)
1366 		goto out;
1367 
1368 	current->flags &= ~PF_KTHREAD;
1369 	retval = search_binary_handler(bprm,regs);
1370 	if (retval < 0)
1371 		goto out;
1372 
1373 	current->stack_start = current->mm->start_stack;
1374 
1375 	/* execve succeeded */
1376 	current->fs->in_exec = 0;
1377 	current->in_execve = 0;
1378 	acct_update_integrals(current);
1379 	free_bprm(bprm);
1380 	if (displaced)
1381 		put_files_struct(displaced);
1382 	return retval;
1383 
1384 out:
1385 	if (bprm->mm)
1386 		mmput (bprm->mm);
1387 
1388 out_file:
1389 	if (bprm->file) {
1390 		allow_write_access(bprm->file);
1391 		fput(bprm->file);
1392 	}
1393 
1394 out_unmark:
1395 	if (clear_in_exec)
1396 		current->fs->in_exec = 0;
1397 	current->in_execve = 0;
1398 
1399 out_free:
1400 	free_bprm(bprm);
1401 
1402 out_files:
1403 	if (displaced)
1404 		reset_files_struct(displaced);
1405 out_ret:
1406 	return retval;
1407 }
1408 
1409 void set_binfmt(struct linux_binfmt *new)
1410 {
1411 	struct mm_struct *mm = current->mm;
1412 
1413 	if (mm->binfmt)
1414 		module_put(mm->binfmt->module);
1415 
1416 	mm->binfmt = new;
1417 	if (new)
1418 		__module_get(new->module);
1419 }
1420 
1421 EXPORT_SYMBOL(set_binfmt);
1422 
1423 /* format_corename will inspect the pattern parameter, and output a
1424  * name into corename, which must have space for at least
1425  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1426  */
1427 static int format_corename(char *corename, long signr)
1428 {
1429 	const struct cred *cred = current_cred();
1430 	const char *pat_ptr = core_pattern;
1431 	int ispipe = (*pat_ptr == '|');
1432 	char *out_ptr = corename;
1433 	char *const out_end = corename + CORENAME_MAX_SIZE;
1434 	int rc;
1435 	int pid_in_pattern = 0;
1436 
1437 	/* Repeat as long as we have more pattern to process and more output
1438 	   space */
1439 	while (*pat_ptr) {
1440 		if (*pat_ptr != '%') {
1441 			if (out_ptr == out_end)
1442 				goto out;
1443 			*out_ptr++ = *pat_ptr++;
1444 		} else {
1445 			switch (*++pat_ptr) {
1446 			case 0:
1447 				goto out;
1448 			/* Double percent, output one percent */
1449 			case '%':
1450 				if (out_ptr == out_end)
1451 					goto out;
1452 				*out_ptr++ = '%';
1453 				break;
1454 			/* pid */
1455 			case 'p':
1456 				pid_in_pattern = 1;
1457 				rc = snprintf(out_ptr, out_end - out_ptr,
1458 					      "%d", task_tgid_vnr(current));
1459 				if (rc > out_end - out_ptr)
1460 					goto out;
1461 				out_ptr += rc;
1462 				break;
1463 			/* uid */
1464 			case 'u':
1465 				rc = snprintf(out_ptr, out_end - out_ptr,
1466 					      "%d", cred->uid);
1467 				if (rc > out_end - out_ptr)
1468 					goto out;
1469 				out_ptr += rc;
1470 				break;
1471 			/* gid */
1472 			case 'g':
1473 				rc = snprintf(out_ptr, out_end - out_ptr,
1474 					      "%d", cred->gid);
1475 				if (rc > out_end - out_ptr)
1476 					goto out;
1477 				out_ptr += rc;
1478 				break;
1479 			/* signal that caused the coredump */
1480 			case 's':
1481 				rc = snprintf(out_ptr, out_end - out_ptr,
1482 					      "%ld", signr);
1483 				if (rc > out_end - out_ptr)
1484 					goto out;
1485 				out_ptr += rc;
1486 				break;
1487 			/* UNIX time of coredump */
1488 			case 't': {
1489 				struct timeval tv;
1490 				do_gettimeofday(&tv);
1491 				rc = snprintf(out_ptr, out_end - out_ptr,
1492 					      "%lu", tv.tv_sec);
1493 				if (rc > out_end - out_ptr)
1494 					goto out;
1495 				out_ptr += rc;
1496 				break;
1497 			}
1498 			/* hostname */
1499 			case 'h':
1500 				down_read(&uts_sem);
1501 				rc = snprintf(out_ptr, out_end - out_ptr,
1502 					      "%s", utsname()->nodename);
1503 				up_read(&uts_sem);
1504 				if (rc > out_end - out_ptr)
1505 					goto out;
1506 				out_ptr += rc;
1507 				break;
1508 			/* executable */
1509 			case 'e':
1510 				rc = snprintf(out_ptr, out_end - out_ptr,
1511 					      "%s", current->comm);
1512 				if (rc > out_end - out_ptr)
1513 					goto out;
1514 				out_ptr += rc;
1515 				break;
1516 			/* core limit size */
1517 			case 'c':
1518 				rc = snprintf(out_ptr, out_end - out_ptr,
1519 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1520 				if (rc > out_end - out_ptr)
1521 					goto out;
1522 				out_ptr += rc;
1523 				break;
1524 			default:
1525 				break;
1526 			}
1527 			++pat_ptr;
1528 		}
1529 	}
1530 	/* Backward compatibility with core_uses_pid:
1531 	 *
1532 	 * If core_pattern does not include a %p (as is the default)
1533 	 * and core_uses_pid is set, then .%pid will be appended to
1534 	 * the filename. Do not do this for piped commands. */
1535 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1536 		rc = snprintf(out_ptr, out_end - out_ptr,
1537 			      ".%d", task_tgid_vnr(current));
1538 		if (rc > out_end - out_ptr)
1539 			goto out;
1540 		out_ptr += rc;
1541 	}
1542 out:
1543 	*out_ptr = 0;
1544 	return ispipe;
1545 }
1546 
1547 static int zap_process(struct task_struct *start)
1548 {
1549 	struct task_struct *t;
1550 	int nr = 0;
1551 
1552 	start->signal->flags = SIGNAL_GROUP_EXIT;
1553 	start->signal->group_stop_count = 0;
1554 
1555 	t = start;
1556 	do {
1557 		if (t != current && t->mm) {
1558 			sigaddset(&t->pending.signal, SIGKILL);
1559 			signal_wake_up(t, 1);
1560 			nr++;
1561 		}
1562 	} while_each_thread(start, t);
1563 
1564 	return nr;
1565 }
1566 
1567 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1568 				struct core_state *core_state, int exit_code)
1569 {
1570 	struct task_struct *g, *p;
1571 	unsigned long flags;
1572 	int nr = -EAGAIN;
1573 
1574 	spin_lock_irq(&tsk->sighand->siglock);
1575 	if (!signal_group_exit(tsk->signal)) {
1576 		mm->core_state = core_state;
1577 		tsk->signal->group_exit_code = exit_code;
1578 		nr = zap_process(tsk);
1579 	}
1580 	spin_unlock_irq(&tsk->sighand->siglock);
1581 	if (unlikely(nr < 0))
1582 		return nr;
1583 
1584 	if (atomic_read(&mm->mm_users) == nr + 1)
1585 		goto done;
1586 	/*
1587 	 * We should find and kill all tasks which use this mm, and we should
1588 	 * count them correctly into ->nr_threads. We don't take tasklist
1589 	 * lock, but this is safe wrt:
1590 	 *
1591 	 * fork:
1592 	 *	None of sub-threads can fork after zap_process(leader). All
1593 	 *	processes which were created before this point should be
1594 	 *	visible to zap_threads() because copy_process() adds the new
1595 	 *	process to the tail of init_task.tasks list, and lock/unlock
1596 	 *	of ->siglock provides a memory barrier.
1597 	 *
1598 	 * do_exit:
1599 	 *	The caller holds mm->mmap_sem. This means that the task which
1600 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1601 	 *	its ->mm.
1602 	 *
1603 	 * de_thread:
1604 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1605 	 *	we must see either old or new leader, this does not matter.
1606 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1607 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1608 	 *	it can't fail.
1609 	 *
1610 	 *	Note also that "g" can be the old leader with ->mm == NULL
1611 	 *	and already unhashed and thus removed from ->thread_group.
1612 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1613 	 *	clear the ->next pointer, we will find the new leader via
1614 	 *	next_thread().
1615 	 */
1616 	rcu_read_lock();
1617 	for_each_process(g) {
1618 		if (g == tsk->group_leader)
1619 			continue;
1620 		if (g->flags & PF_KTHREAD)
1621 			continue;
1622 		p = g;
1623 		do {
1624 			if (p->mm) {
1625 				if (unlikely(p->mm == mm)) {
1626 					lock_task_sighand(p, &flags);
1627 					nr += zap_process(p);
1628 					unlock_task_sighand(p, &flags);
1629 				}
1630 				break;
1631 			}
1632 		} while_each_thread(g, p);
1633 	}
1634 	rcu_read_unlock();
1635 done:
1636 	atomic_set(&core_state->nr_threads, nr);
1637 	return nr;
1638 }
1639 
1640 static int coredump_wait(int exit_code, struct core_state *core_state)
1641 {
1642 	struct task_struct *tsk = current;
1643 	struct mm_struct *mm = tsk->mm;
1644 	struct completion *vfork_done;
1645 	int core_waiters;
1646 
1647 	init_completion(&core_state->startup);
1648 	core_state->dumper.task = tsk;
1649 	core_state->dumper.next = NULL;
1650 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1651 	up_write(&mm->mmap_sem);
1652 
1653 	if (unlikely(core_waiters < 0))
1654 		goto fail;
1655 
1656 	/*
1657 	 * Make sure nobody is waiting for us to release the VM,
1658 	 * otherwise we can deadlock when we wait on each other
1659 	 */
1660 	vfork_done = tsk->vfork_done;
1661 	if (vfork_done) {
1662 		tsk->vfork_done = NULL;
1663 		complete(vfork_done);
1664 	}
1665 
1666 	if (core_waiters)
1667 		wait_for_completion(&core_state->startup);
1668 fail:
1669 	return core_waiters;
1670 }
1671 
1672 static void coredump_finish(struct mm_struct *mm)
1673 {
1674 	struct core_thread *curr, *next;
1675 	struct task_struct *task;
1676 
1677 	next = mm->core_state->dumper.next;
1678 	while ((curr = next) != NULL) {
1679 		next = curr->next;
1680 		task = curr->task;
1681 		/*
1682 		 * see exit_mm(), curr->task must not see
1683 		 * ->task == NULL before we read ->next.
1684 		 */
1685 		smp_mb();
1686 		curr->task = NULL;
1687 		wake_up_process(task);
1688 	}
1689 
1690 	mm->core_state = NULL;
1691 }
1692 
1693 /*
1694  * set_dumpable converts traditional three-value dumpable to two flags and
1695  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1696  * these bits are not changed atomically.  So get_dumpable can observe the
1697  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1698  * return either old dumpable or new one by paying attention to the order of
1699  * modifying the bits.
1700  *
1701  * dumpable |   mm->flags (binary)
1702  * old  new | initial interim  final
1703  * ---------+-----------------------
1704  *  0    1  |   00      01      01
1705  *  0    2  |   00      10(*)   11
1706  *  1    0  |   01      00      00
1707  *  1    2  |   01      11      11
1708  *  2    0  |   11      10(*)   00
1709  *  2    1  |   11      11      01
1710  *
1711  * (*) get_dumpable regards interim value of 10 as 11.
1712  */
1713 void set_dumpable(struct mm_struct *mm, int value)
1714 {
1715 	switch (value) {
1716 	case 0:
1717 		clear_bit(MMF_DUMPABLE, &mm->flags);
1718 		smp_wmb();
1719 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1720 		break;
1721 	case 1:
1722 		set_bit(MMF_DUMPABLE, &mm->flags);
1723 		smp_wmb();
1724 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1725 		break;
1726 	case 2:
1727 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1728 		smp_wmb();
1729 		set_bit(MMF_DUMPABLE, &mm->flags);
1730 		break;
1731 	}
1732 }
1733 
1734 int get_dumpable(struct mm_struct *mm)
1735 {
1736 	int ret;
1737 
1738 	ret = mm->flags & 0x3;
1739 	return (ret >= 2) ? 2 : ret;
1740 }
1741 
1742 static void wait_for_dump_helpers(struct file *file)
1743 {
1744 	struct pipe_inode_info *pipe;
1745 
1746 	pipe = file->f_path.dentry->d_inode->i_pipe;
1747 
1748 	pipe_lock(pipe);
1749 	pipe->readers++;
1750 	pipe->writers--;
1751 
1752 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1753 		wake_up_interruptible_sync(&pipe->wait);
1754 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1755 		pipe_wait(pipe);
1756 	}
1757 
1758 	pipe->readers--;
1759 	pipe->writers++;
1760 	pipe_unlock(pipe);
1761 
1762 }
1763 
1764 
1765 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1766 {
1767 	struct core_state core_state;
1768 	char corename[CORENAME_MAX_SIZE + 1];
1769 	struct mm_struct *mm = current->mm;
1770 	struct linux_binfmt * binfmt;
1771 	struct inode * inode;
1772 	const struct cred *old_cred;
1773 	struct cred *cred;
1774 	int retval = 0;
1775 	int flag = 0;
1776 	int ispipe = 0;
1777 	char **helper_argv = NULL;
1778 	int helper_argc = 0;
1779 	int dump_count = 0;
1780 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1781 	struct coredump_params cprm = {
1782 		.signr = signr,
1783 		.regs = regs,
1784 		.limit = current->signal->rlim[RLIMIT_CORE].rlim_cur,
1785 	};
1786 
1787 	audit_core_dumps(signr);
1788 
1789 	binfmt = mm->binfmt;
1790 	if (!binfmt || !binfmt->core_dump)
1791 		goto fail;
1792 
1793 	cred = prepare_creds();
1794 	if (!cred) {
1795 		retval = -ENOMEM;
1796 		goto fail;
1797 	}
1798 
1799 	down_write(&mm->mmap_sem);
1800 	/*
1801 	 * If another thread got here first, or we are not dumpable, bail out.
1802 	 */
1803 	if (mm->core_state || !get_dumpable(mm)) {
1804 		up_write(&mm->mmap_sem);
1805 		put_cred(cred);
1806 		goto fail;
1807 	}
1808 
1809 	/*
1810 	 *	We cannot trust fsuid as being the "true" uid of the
1811 	 *	process nor do we know its entire history. We only know it
1812 	 *	was tainted so we dump it as root in mode 2.
1813 	 */
1814 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1815 		flag = O_EXCL;		/* Stop rewrite attacks */
1816 		cred->fsuid = 0;	/* Dump root private */
1817 	}
1818 
1819 	retval = coredump_wait(exit_code, &core_state);
1820 	if (retval < 0) {
1821 		put_cred(cred);
1822 		goto fail;
1823 	}
1824 
1825 	old_cred = override_creds(cred);
1826 
1827 	/*
1828 	 * Clear any false indication of pending signals that might
1829 	 * be seen by the filesystem code called to write the core file.
1830 	 */
1831 	clear_thread_flag(TIF_SIGPENDING);
1832 
1833 	/*
1834 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1835 	 * uses lock_kernel()
1836 	 */
1837  	lock_kernel();
1838 	ispipe = format_corename(corename, signr);
1839 	unlock_kernel();
1840 
1841 	if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1842 		goto fail_unlock;
1843 
1844  	if (ispipe) {
1845 		if (cprm.limit == 0) {
1846 			/*
1847 			 * Normally core limits are irrelevant to pipes, since
1848 			 * we're not writing to the file system, but we use
1849 			 * cprm.limit of 0 here as a speacial value. Any
1850 			 * non-zero limit gets set to RLIM_INFINITY below, but
1851 			 * a limit of 0 skips the dump.  This is a consistent
1852 			 * way to catch recursive crashes.  We can still crash
1853 			 * if the core_pattern binary sets RLIM_CORE =  !0
1854 			 * but it runs as root, and can do lots of stupid things
1855 			 * Note that we use task_tgid_vnr here to grab the pid
1856 			 * of the process group leader.  That way we get the
1857 			 * right pid if a thread in a multi-threaded
1858 			 * core_pattern process dies.
1859 			 */
1860 			printk(KERN_WARNING
1861 				"Process %d(%s) has RLIMIT_CORE set to 0\n",
1862 				task_tgid_vnr(current), current->comm);
1863 			printk(KERN_WARNING "Aborting core\n");
1864 			goto fail_unlock;
1865 		}
1866 
1867 		dump_count = atomic_inc_return(&core_dump_count);
1868 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1869 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1870 			       task_tgid_vnr(current), current->comm);
1871 			printk(KERN_WARNING "Skipping core dump\n");
1872 			goto fail_dropcount;
1873 		}
1874 
1875 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1876 		if (!helper_argv) {
1877 			printk(KERN_WARNING "%s failed to allocate memory\n",
1878 			       __func__);
1879 			goto fail_dropcount;
1880 		}
1881 
1882 		cprm.limit = RLIM_INFINITY;
1883 
1884 		/* SIGPIPE can happen, but it's just never processed */
1885 		if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1886 				&cprm.file)) {
1887  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1888 			       corename);
1889 			goto fail_dropcount;
1890  		}
1891  	} else
1892 		cprm.file = filp_open(corename,
1893 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1894 				 0600);
1895 	if (IS_ERR(cprm.file))
1896 		goto fail_dropcount;
1897 	inode = cprm.file->f_path.dentry->d_inode;
1898 	if (inode->i_nlink > 1)
1899 		goto close_fail;	/* multiple links - don't dump */
1900 	if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1901 		goto close_fail;
1902 
1903 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1904 	   but keep the previous behaviour for now. */
1905 	if (!ispipe && !S_ISREG(inode->i_mode))
1906 		goto close_fail;
1907 	/*
1908 	 * Dont allow local users get cute and trick others to coredump
1909 	 * into their pre-created files:
1910 	 */
1911 	if (inode->i_uid != current_fsuid())
1912 		goto close_fail;
1913 	if (!cprm.file->f_op)
1914 		goto close_fail;
1915 	if (!cprm.file->f_op->write)
1916 		goto close_fail;
1917 	if (!ispipe &&
1918 	    do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1919 		goto close_fail;
1920 
1921 	retval = binfmt->core_dump(&cprm);
1922 
1923 	if (retval)
1924 		current->signal->group_exit_code |= 0x80;
1925 close_fail:
1926 	if (ispipe && core_pipe_limit)
1927 		wait_for_dump_helpers(cprm.file);
1928 	filp_close(cprm.file, NULL);
1929 fail_dropcount:
1930 	if (dump_count)
1931 		atomic_dec(&core_dump_count);
1932 fail_unlock:
1933 	if (helper_argv)
1934 		argv_free(helper_argv);
1935 
1936 	revert_creds(old_cred);
1937 	put_cred(cred);
1938 	coredump_finish(mm);
1939 fail:
1940 	return;
1941 }
1942