xref: /linux/fs/exec.c (revision c3b999cad7ec39a5487b20e8b6e737d2ab0c5393)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * Check do_open_execat() for an explanation.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152 	    path_noexec(&file->f_path))
153 		goto exit;
154 
155 	error = -ENOEXEC;
156 
157 	read_lock(&binfmt_lock);
158 	list_for_each_entry(fmt, &formats, lh) {
159 		if (!fmt->load_shlib)
160 			continue;
161 		if (!try_module_get(fmt->module))
162 			continue;
163 		read_unlock(&binfmt_lock);
164 		error = fmt->load_shlib(file);
165 		read_lock(&binfmt_lock);
166 		put_binfmt(fmt);
167 		if (error != -ENOEXEC)
168 			break;
169 	}
170 	read_unlock(&binfmt_lock);
171 exit:
172 	fput(file);
173 out:
174 	return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 	struct mm_struct *mm = current->mm;
188 	long diff = (long)(pages - bprm->vma_pages);
189 
190 	if (!mm || !diff)
191 		return;
192 
193 	bprm->vma_pages = pages;
194 	add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 		int write)
199 {
200 	struct page *page;
201 	struct vm_area_struct *vma = bprm->vma;
202 	struct mm_struct *mm = bprm->mm;
203 	int ret;
204 
205 	/*
206 	 * Avoid relying on expanding the stack down in GUP (which
207 	 * does not work for STACK_GROWSUP anyway), and just do it
208 	 * ahead of time.
209 	 */
210 	if (!mmap_read_lock_maybe_expand(mm, vma, pos, write))
211 		return NULL;
212 
213 	/*
214 	 * We are doing an exec().  'current' is the process
215 	 * doing the exec and 'mm' is the new process's mm.
216 	 */
217 	ret = get_user_pages_remote(mm, pos, 1,
218 			write ? FOLL_WRITE : 0,
219 			&page, NULL);
220 	mmap_read_unlock(mm);
221 	if (ret <= 0)
222 		return NULL;
223 
224 	if (write)
225 		acct_arg_size(bprm, vma_pages(vma));
226 
227 	return page;
228 }
229 
230 static void put_arg_page(struct page *page)
231 {
232 	put_page(page);
233 }
234 
235 static void free_arg_pages(struct linux_binprm *bprm)
236 {
237 }
238 
239 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
240 		struct page *page)
241 {
242 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
243 }
244 
245 static int __bprm_mm_init(struct linux_binprm *bprm)
246 {
247 	int err;
248 	struct vm_area_struct *vma = NULL;
249 	struct mm_struct *mm = bprm->mm;
250 
251 	bprm->vma = vma = vm_area_alloc(mm);
252 	if (!vma)
253 		return -ENOMEM;
254 	vma_set_anonymous(vma);
255 
256 	if (mmap_write_lock_killable(mm)) {
257 		err = -EINTR;
258 		goto err_free;
259 	}
260 
261 	/*
262 	 * Need to be called with mmap write lock
263 	 * held, to avoid race with ksmd.
264 	 */
265 	err = ksm_execve(mm);
266 	if (err)
267 		goto err_ksm;
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 
281 	err = insert_vm_struct(mm, vma);
282 	if (err)
283 		goto err;
284 
285 	mm->stack_vm = mm->total_vm = 1;
286 	mmap_write_unlock(mm);
287 	bprm->p = vma->vm_end - sizeof(void *);
288 	return 0;
289 err:
290 	ksm_exit(mm);
291 err_ksm:
292 	mmap_write_unlock(mm);
293 err_free:
294 	bprm->vma = NULL;
295 	vm_area_free(vma);
296 	return err;
297 }
298 
299 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 {
301 	return len <= MAX_ARG_STRLEN;
302 }
303 
304 #else
305 
306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
307 {
308 }
309 
310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
311 		int write)
312 {
313 	struct page *page;
314 
315 	page = bprm->page[pos / PAGE_SIZE];
316 	if (!page && write) {
317 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 		if (!page)
319 			return NULL;
320 		bprm->page[pos / PAGE_SIZE] = page;
321 	}
322 
323 	return page;
324 }
325 
326 static void put_arg_page(struct page *page)
327 {
328 }
329 
330 static void free_arg_page(struct linux_binprm *bprm, int i)
331 {
332 	if (bprm->page[i]) {
333 		__free_page(bprm->page[i]);
334 		bprm->page[i] = NULL;
335 	}
336 }
337 
338 static void free_arg_pages(struct linux_binprm *bprm)
339 {
340 	int i;
341 
342 	for (i = 0; i < MAX_ARG_PAGES; i++)
343 		free_arg_page(bprm, i);
344 }
345 
346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 		struct page *page)
348 {
349 }
350 
351 static int __bprm_mm_init(struct linux_binprm *bprm)
352 {
353 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354 	return 0;
355 }
356 
357 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 {
359 	return len <= bprm->p;
360 }
361 
362 #endif /* CONFIG_MMU */
363 
364 /*
365  * Create a new mm_struct and populate it with a temporary stack
366  * vm_area_struct.  We don't have enough context at this point to set the stack
367  * flags, permissions, and offset, so we use temporary values.  We'll update
368  * them later in setup_arg_pages().
369  */
370 static int bprm_mm_init(struct linux_binprm *bprm)
371 {
372 	int err;
373 	struct mm_struct *mm = NULL;
374 
375 	bprm->mm = mm = mm_alloc();
376 	err = -ENOMEM;
377 	if (!mm)
378 		goto err;
379 
380 	/* Save current stack limit for all calculations made during exec. */
381 	task_lock(current->group_leader);
382 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
383 	task_unlock(current->group_leader);
384 
385 	err = __bprm_mm_init(bprm);
386 	if (err)
387 		goto err;
388 
389 	return 0;
390 
391 err:
392 	if (mm) {
393 		bprm->mm = NULL;
394 		mmdrop(mm);
395 	}
396 
397 	return err;
398 }
399 
400 struct user_arg_ptr {
401 #ifdef CONFIG_COMPAT
402 	bool is_compat;
403 #endif
404 	union {
405 		const char __user *const __user *native;
406 #ifdef CONFIG_COMPAT
407 		const compat_uptr_t __user *compat;
408 #endif
409 	} ptr;
410 };
411 
412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
413 {
414 	const char __user *native;
415 
416 #ifdef CONFIG_COMPAT
417 	if (unlikely(argv.is_compat)) {
418 		compat_uptr_t compat;
419 
420 		if (get_user(compat, argv.ptr.compat + nr))
421 			return ERR_PTR(-EFAULT);
422 
423 		return compat_ptr(compat);
424 	}
425 #endif
426 
427 	if (get_user(native, argv.ptr.native + nr))
428 		return ERR_PTR(-EFAULT);
429 
430 	return native;
431 }
432 
433 /*
434  * count() counts the number of strings in array ARGV.
435  */
436 static int count(struct user_arg_ptr argv, int max)
437 {
438 	int i = 0;
439 
440 	if (argv.ptr.native != NULL) {
441 		for (;;) {
442 			const char __user *p = get_user_arg_ptr(argv, i);
443 
444 			if (!p)
445 				break;
446 
447 			if (IS_ERR(p))
448 				return -EFAULT;
449 
450 			if (i >= max)
451 				return -E2BIG;
452 			++i;
453 
454 			if (fatal_signal_pending(current))
455 				return -ERESTARTNOHAND;
456 			cond_resched();
457 		}
458 	}
459 	return i;
460 }
461 
462 static int count_strings_kernel(const char *const *argv)
463 {
464 	int i;
465 
466 	if (!argv)
467 		return 0;
468 
469 	for (i = 0; argv[i]; ++i) {
470 		if (i >= MAX_ARG_STRINGS)
471 			return -E2BIG;
472 		if (fatal_signal_pending(current))
473 			return -ERESTARTNOHAND;
474 		cond_resched();
475 	}
476 	return i;
477 }
478 
479 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
480 				       unsigned long limit)
481 {
482 #ifdef CONFIG_MMU
483 	/* Avoid a pathological bprm->p. */
484 	if (bprm->p < limit)
485 		return -E2BIG;
486 	bprm->argmin = bprm->p - limit;
487 #endif
488 	return 0;
489 }
490 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
491 {
492 #ifdef CONFIG_MMU
493 	return bprm->p < bprm->argmin;
494 #else
495 	return false;
496 #endif
497 }
498 
499 /*
500  * Calculate bprm->argmin from:
501  * - _STK_LIM
502  * - ARG_MAX
503  * - bprm->rlim_stack.rlim_cur
504  * - bprm->argc
505  * - bprm->envc
506  * - bprm->p
507  */
508 static int bprm_stack_limits(struct linux_binprm *bprm)
509 {
510 	unsigned long limit, ptr_size;
511 
512 	/*
513 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
514 	 * (whichever is smaller) for the argv+env strings.
515 	 * This ensures that:
516 	 *  - the remaining binfmt code will not run out of stack space,
517 	 *  - the program will have a reasonable amount of stack left
518 	 *    to work from.
519 	 */
520 	limit = _STK_LIM / 4 * 3;
521 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
522 	/*
523 	 * We've historically supported up to 32 pages (ARG_MAX)
524 	 * of argument strings even with small stacks
525 	 */
526 	limit = max_t(unsigned long, limit, ARG_MAX);
527 	/* Reject totally pathological counts. */
528 	if (bprm->argc < 0 || bprm->envc < 0)
529 		return -E2BIG;
530 	/*
531 	 * We must account for the size of all the argv and envp pointers to
532 	 * the argv and envp strings, since they will also take up space in
533 	 * the stack. They aren't stored until much later when we can't
534 	 * signal to the parent that the child has run out of stack space.
535 	 * Instead, calculate it here so it's possible to fail gracefully.
536 	 *
537 	 * In the case of argc = 0, make sure there is space for adding a
538 	 * empty string (which will bump argc to 1), to ensure confused
539 	 * userspace programs don't start processing from argv[1], thinking
540 	 * argc can never be 0, to keep them from walking envp by accident.
541 	 * See do_execveat_common().
542 	 */
543 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
544 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
545 		return -E2BIG;
546 	if (limit <= ptr_size)
547 		return -E2BIG;
548 	limit -= ptr_size;
549 
550 	return bprm_set_stack_limit(bprm, limit);
551 }
552 
553 /*
554  * 'copy_strings()' copies argument/environment strings from the old
555  * processes's memory to the new process's stack.  The call to get_user_pages()
556  * ensures the destination page is created and not swapped out.
557  */
558 static int copy_strings(int argc, struct user_arg_ptr argv,
559 			struct linux_binprm *bprm)
560 {
561 	struct page *kmapped_page = NULL;
562 	char *kaddr = NULL;
563 	unsigned long kpos = 0;
564 	int ret;
565 
566 	while (argc-- > 0) {
567 		const char __user *str;
568 		int len;
569 		unsigned long pos;
570 
571 		ret = -EFAULT;
572 		str = get_user_arg_ptr(argv, argc);
573 		if (IS_ERR(str))
574 			goto out;
575 
576 		len = strnlen_user(str, MAX_ARG_STRLEN);
577 		if (!len)
578 			goto out;
579 
580 		ret = -E2BIG;
581 		if (!valid_arg_len(bprm, len))
582 			goto out;
583 
584 		/* We're going to work our way backwards. */
585 		pos = bprm->p;
586 		str += len;
587 		bprm->p -= len;
588 		if (bprm_hit_stack_limit(bprm))
589 			goto out;
590 
591 		while (len > 0) {
592 			int offset, bytes_to_copy;
593 
594 			if (fatal_signal_pending(current)) {
595 				ret = -ERESTARTNOHAND;
596 				goto out;
597 			}
598 			cond_resched();
599 
600 			offset = pos % PAGE_SIZE;
601 			if (offset == 0)
602 				offset = PAGE_SIZE;
603 
604 			bytes_to_copy = offset;
605 			if (bytes_to_copy > len)
606 				bytes_to_copy = len;
607 
608 			offset -= bytes_to_copy;
609 			pos -= bytes_to_copy;
610 			str -= bytes_to_copy;
611 			len -= bytes_to_copy;
612 
613 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
614 				struct page *page;
615 
616 				page = get_arg_page(bprm, pos, 1);
617 				if (!page) {
618 					ret = -E2BIG;
619 					goto out;
620 				}
621 
622 				if (kmapped_page) {
623 					flush_dcache_page(kmapped_page);
624 					kunmap_local(kaddr);
625 					put_arg_page(kmapped_page);
626 				}
627 				kmapped_page = page;
628 				kaddr = kmap_local_page(kmapped_page);
629 				kpos = pos & PAGE_MASK;
630 				flush_arg_page(bprm, kpos, kmapped_page);
631 			}
632 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
633 				ret = -EFAULT;
634 				goto out;
635 			}
636 		}
637 	}
638 	ret = 0;
639 out:
640 	if (kmapped_page) {
641 		flush_dcache_page(kmapped_page);
642 		kunmap_local(kaddr);
643 		put_arg_page(kmapped_page);
644 	}
645 	return ret;
646 }
647 
648 /*
649  * Copy and argument/environment string from the kernel to the processes stack.
650  */
651 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
652 {
653 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
654 	unsigned long pos = bprm->p;
655 
656 	if (len == 0)
657 		return -EFAULT;
658 	if (!valid_arg_len(bprm, len))
659 		return -E2BIG;
660 
661 	/* We're going to work our way backwards. */
662 	arg += len;
663 	bprm->p -= len;
664 	if (bprm_hit_stack_limit(bprm))
665 		return -E2BIG;
666 
667 	while (len > 0) {
668 		unsigned int bytes_to_copy = min_t(unsigned int, len,
669 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
670 		struct page *page;
671 
672 		pos -= bytes_to_copy;
673 		arg -= bytes_to_copy;
674 		len -= bytes_to_copy;
675 
676 		page = get_arg_page(bprm, pos, 1);
677 		if (!page)
678 			return -E2BIG;
679 		flush_arg_page(bprm, pos & PAGE_MASK, page);
680 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
681 		put_arg_page(page);
682 	}
683 
684 	return 0;
685 }
686 EXPORT_SYMBOL(copy_string_kernel);
687 
688 static int copy_strings_kernel(int argc, const char *const *argv,
689 			       struct linux_binprm *bprm)
690 {
691 	while (argc-- > 0) {
692 		int ret = copy_string_kernel(argv[argc], bprm);
693 		if (ret < 0)
694 			return ret;
695 		if (fatal_signal_pending(current))
696 			return -ERESTARTNOHAND;
697 		cond_resched();
698 	}
699 	return 0;
700 }
701 
702 #ifdef CONFIG_MMU
703 
704 /*
705  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
706  * the stack is optionally relocated, and some extra space is added.
707  */
708 int setup_arg_pages(struct linux_binprm *bprm,
709 		    unsigned long stack_top,
710 		    int executable_stack)
711 {
712 	unsigned long ret;
713 	unsigned long stack_shift;
714 	struct mm_struct *mm = current->mm;
715 	struct vm_area_struct *vma = bprm->vma;
716 	struct vm_area_struct *prev = NULL;
717 	unsigned long vm_flags;
718 	unsigned long stack_base;
719 	unsigned long stack_size;
720 	unsigned long stack_expand;
721 	unsigned long rlim_stack;
722 	struct mmu_gather tlb;
723 	struct vma_iterator vmi;
724 
725 #ifdef CONFIG_STACK_GROWSUP
726 	/* Limit stack size */
727 	stack_base = bprm->rlim_stack.rlim_max;
728 
729 	stack_base = calc_max_stack_size(stack_base);
730 
731 	/* Add space for stack randomization. */
732 	if (current->flags & PF_RANDOMIZE)
733 		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
734 
735 	/* Make sure we didn't let the argument array grow too large. */
736 	if (vma->vm_end - vma->vm_start > stack_base)
737 		return -ENOMEM;
738 
739 	stack_base = PAGE_ALIGN(stack_top - stack_base);
740 
741 	stack_shift = vma->vm_start - stack_base;
742 	mm->arg_start = bprm->p - stack_shift;
743 	bprm->p = vma->vm_end - stack_shift;
744 #else
745 	stack_top = arch_align_stack(stack_top);
746 	stack_top = PAGE_ALIGN(stack_top);
747 
748 	if (unlikely(stack_top < mmap_min_addr) ||
749 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
750 		return -ENOMEM;
751 
752 	stack_shift = vma->vm_end - stack_top;
753 
754 	bprm->p -= stack_shift;
755 	mm->arg_start = bprm->p;
756 #endif
757 
758 	if (bprm->loader)
759 		bprm->loader -= stack_shift;
760 	bprm->exec -= stack_shift;
761 
762 	if (mmap_write_lock_killable(mm))
763 		return -EINTR;
764 
765 	vm_flags = VM_STACK_FLAGS;
766 
767 	/*
768 	 * Adjust stack execute permissions; explicitly enable for
769 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
770 	 * (arch default) otherwise.
771 	 */
772 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
773 		vm_flags |= VM_EXEC;
774 	else if (executable_stack == EXSTACK_DISABLE_X)
775 		vm_flags &= ~VM_EXEC;
776 	vm_flags |= mm->def_flags;
777 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
778 
779 	vma_iter_init(&vmi, mm, vma->vm_start);
780 
781 	tlb_gather_mmu(&tlb, mm);
782 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
783 			vm_flags);
784 	tlb_finish_mmu(&tlb);
785 
786 	if (ret)
787 		goto out_unlock;
788 	BUG_ON(prev != vma);
789 
790 	if (unlikely(vm_flags & VM_EXEC)) {
791 		pr_warn_once("process '%pD4' started with executable stack\n",
792 			     bprm->file);
793 	}
794 
795 	/* Move stack pages down in memory. */
796 	if (stack_shift) {
797 		/*
798 		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
799 		 * the binfmt code determines where the new stack should reside, we shift it to
800 		 * its final location.
801 		 */
802 		ret = relocate_vma_down(vma, stack_shift);
803 		if (ret)
804 			goto out_unlock;
805 	}
806 
807 	/* mprotect_fixup is overkill to remove the temporary stack flags */
808 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
809 
810 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
811 	stack_size = vma->vm_end - vma->vm_start;
812 	/*
813 	 * Align this down to a page boundary as expand_stack
814 	 * will align it up.
815 	 */
816 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
817 
818 	stack_expand = min(rlim_stack, stack_size + stack_expand);
819 
820 #ifdef CONFIG_STACK_GROWSUP
821 	stack_base = vma->vm_start + stack_expand;
822 #else
823 	stack_base = vma->vm_end - stack_expand;
824 #endif
825 	current->mm->start_stack = bprm->p;
826 	ret = expand_stack_locked(vma, stack_base);
827 	if (ret)
828 		ret = -EFAULT;
829 
830 out_unlock:
831 	mmap_write_unlock(mm);
832 	return ret;
833 }
834 EXPORT_SYMBOL(setup_arg_pages);
835 
836 #else
837 
838 /*
839  * Transfer the program arguments and environment from the holding pages
840  * onto the stack. The provided stack pointer is adjusted accordingly.
841  */
842 int transfer_args_to_stack(struct linux_binprm *bprm,
843 			   unsigned long *sp_location)
844 {
845 	unsigned long index, stop, sp;
846 	int ret = 0;
847 
848 	stop = bprm->p >> PAGE_SHIFT;
849 	sp = *sp_location;
850 
851 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
852 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
853 		char *src = kmap_local_page(bprm->page[index]) + offset;
854 		sp -= PAGE_SIZE - offset;
855 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
856 			ret = -EFAULT;
857 		kunmap_local(src);
858 		if (ret)
859 			goto out;
860 	}
861 
862 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
863 	*sp_location = sp;
864 
865 out:
866 	return ret;
867 }
868 EXPORT_SYMBOL(transfer_args_to_stack);
869 
870 #endif /* CONFIG_MMU */
871 
872 /*
873  * On success, caller must call do_close_execat() on the returned
874  * struct file to close it.
875  */
876 static struct file *do_open_execat(int fd, struct filename *name, int flags)
877 {
878 	int err;
879 	struct file *file __free(fput) = NULL;
880 	struct open_flags open_exec_flags = {
881 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
882 		.acc_mode = MAY_EXEC,
883 		.intent = LOOKUP_OPEN,
884 		.lookup_flags = LOOKUP_FOLLOW,
885 	};
886 
887 	if ((flags &
888 	     ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0)
889 		return ERR_PTR(-EINVAL);
890 	if (flags & AT_SYMLINK_NOFOLLOW)
891 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
892 	if (flags & AT_EMPTY_PATH)
893 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
894 
895 	file = do_filp_open(fd, name, &open_exec_flags);
896 	if (IS_ERR(file))
897 		return file;
898 
899 	/*
900 	 * In the past the regular type check was here. It moved to may_open() in
901 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
902 	 * an invariant that all non-regular files error out before we get here.
903 	 */
904 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
905 	    path_noexec(&file->f_path))
906 		return ERR_PTR(-EACCES);
907 
908 	err = exe_file_deny_write_access(file);
909 	if (err)
910 		return ERR_PTR(err);
911 
912 	return no_free_ptr(file);
913 }
914 
915 /**
916  * open_exec - Open a path name for execution
917  *
918  * @name: path name to open with the intent of executing it.
919  *
920  * Returns ERR_PTR on failure or allocated struct file on success.
921  *
922  * As this is a wrapper for the internal do_open_execat(), callers
923  * must call exe_file_allow_write_access() before fput() on release. Also see
924  * do_close_execat().
925  */
926 struct file *open_exec(const char *name)
927 {
928 	struct filename *filename = getname_kernel(name);
929 	struct file *f = ERR_CAST(filename);
930 
931 	if (!IS_ERR(filename)) {
932 		f = do_open_execat(AT_FDCWD, filename, 0);
933 		putname(filename);
934 	}
935 	return f;
936 }
937 EXPORT_SYMBOL(open_exec);
938 
939 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
940 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
941 {
942 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
943 	if (res > 0)
944 		flush_icache_user_range(addr, addr + len);
945 	return res;
946 }
947 EXPORT_SYMBOL(read_code);
948 #endif
949 
950 /*
951  * Maps the mm_struct mm into the current task struct.
952  * On success, this function returns with exec_update_lock
953  * held for writing.
954  */
955 static int exec_mmap(struct mm_struct *mm)
956 {
957 	struct task_struct *tsk;
958 	struct mm_struct *old_mm, *active_mm;
959 	int ret;
960 
961 	/* Notify parent that we're no longer interested in the old VM */
962 	tsk = current;
963 	old_mm = current->mm;
964 	exec_mm_release(tsk, old_mm);
965 
966 	ret = down_write_killable(&tsk->signal->exec_update_lock);
967 	if (ret)
968 		return ret;
969 
970 	if (old_mm) {
971 		/*
972 		 * If there is a pending fatal signal perhaps a signal
973 		 * whose default action is to create a coredump get
974 		 * out and die instead of going through with the exec.
975 		 */
976 		ret = mmap_read_lock_killable(old_mm);
977 		if (ret) {
978 			up_write(&tsk->signal->exec_update_lock);
979 			return ret;
980 		}
981 	}
982 
983 	task_lock(tsk);
984 	membarrier_exec_mmap(mm);
985 
986 	local_irq_disable();
987 	active_mm = tsk->active_mm;
988 	tsk->active_mm = mm;
989 	tsk->mm = mm;
990 	mm_init_cid(mm, tsk);
991 	/*
992 	 * This prevents preemption while active_mm is being loaded and
993 	 * it and mm are being updated, which could cause problems for
994 	 * lazy tlb mm refcounting when these are updated by context
995 	 * switches. Not all architectures can handle irqs off over
996 	 * activate_mm yet.
997 	 */
998 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
999 		local_irq_enable();
1000 	activate_mm(active_mm, mm);
1001 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1002 		local_irq_enable();
1003 	lru_gen_add_mm(mm);
1004 	task_unlock(tsk);
1005 	lru_gen_use_mm(mm);
1006 	if (old_mm) {
1007 		mmap_read_unlock(old_mm);
1008 		BUG_ON(active_mm != old_mm);
1009 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1010 		mm_update_next_owner(old_mm);
1011 		mmput(old_mm);
1012 		return 0;
1013 	}
1014 	mmdrop_lazy_tlb(active_mm);
1015 	return 0;
1016 }
1017 
1018 static int de_thread(struct task_struct *tsk)
1019 {
1020 	struct signal_struct *sig = tsk->signal;
1021 	struct sighand_struct *oldsighand = tsk->sighand;
1022 	spinlock_t *lock = &oldsighand->siglock;
1023 
1024 	if (thread_group_empty(tsk))
1025 		goto no_thread_group;
1026 
1027 	/*
1028 	 * Kill all other threads in the thread group.
1029 	 */
1030 	spin_lock_irq(lock);
1031 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1032 		/*
1033 		 * Another group action in progress, just
1034 		 * return so that the signal is processed.
1035 		 */
1036 		spin_unlock_irq(lock);
1037 		return -EAGAIN;
1038 	}
1039 
1040 	sig->group_exec_task = tsk;
1041 	sig->notify_count = zap_other_threads(tsk);
1042 	if (!thread_group_leader(tsk))
1043 		sig->notify_count--;
1044 
1045 	while (sig->notify_count) {
1046 		__set_current_state(TASK_KILLABLE);
1047 		spin_unlock_irq(lock);
1048 		schedule();
1049 		if (__fatal_signal_pending(tsk))
1050 			goto killed;
1051 		spin_lock_irq(lock);
1052 	}
1053 	spin_unlock_irq(lock);
1054 
1055 	/*
1056 	 * At this point all other threads have exited, all we have to
1057 	 * do is to wait for the thread group leader to become inactive,
1058 	 * and to assume its PID:
1059 	 */
1060 	if (!thread_group_leader(tsk)) {
1061 		struct task_struct *leader = tsk->group_leader;
1062 
1063 		for (;;) {
1064 			cgroup_threadgroup_change_begin(tsk);
1065 			write_lock_irq(&tasklist_lock);
1066 			/*
1067 			 * Do this under tasklist_lock to ensure that
1068 			 * exit_notify() can't miss ->group_exec_task
1069 			 */
1070 			sig->notify_count = -1;
1071 			if (likely(leader->exit_state))
1072 				break;
1073 			__set_current_state(TASK_KILLABLE);
1074 			write_unlock_irq(&tasklist_lock);
1075 			cgroup_threadgroup_change_end(tsk);
1076 			schedule();
1077 			if (__fatal_signal_pending(tsk))
1078 				goto killed;
1079 		}
1080 
1081 		/*
1082 		 * The only record we have of the real-time age of a
1083 		 * process, regardless of execs it's done, is start_time.
1084 		 * All the past CPU time is accumulated in signal_struct
1085 		 * from sister threads now dead.  But in this non-leader
1086 		 * exec, nothing survives from the original leader thread,
1087 		 * whose birth marks the true age of this process now.
1088 		 * When we take on its identity by switching to its PID, we
1089 		 * also take its birthdate (always earlier than our own).
1090 		 */
1091 		tsk->start_time = leader->start_time;
1092 		tsk->start_boottime = leader->start_boottime;
1093 
1094 		BUG_ON(!same_thread_group(leader, tsk));
1095 		/*
1096 		 * An exec() starts a new thread group with the
1097 		 * TGID of the previous thread group. Rehash the
1098 		 * two threads with a switched PID, and release
1099 		 * the former thread group leader:
1100 		 */
1101 
1102 		/* Become a process group leader with the old leader's pid.
1103 		 * The old leader becomes a thread of the this thread group.
1104 		 */
1105 		exchange_tids(tsk, leader);
1106 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1107 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1108 		transfer_pid(leader, tsk, PIDTYPE_SID);
1109 
1110 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1111 		list_replace_init(&leader->sibling, &tsk->sibling);
1112 
1113 		tsk->group_leader = tsk;
1114 		leader->group_leader = tsk;
1115 
1116 		tsk->exit_signal = SIGCHLD;
1117 		leader->exit_signal = -1;
1118 
1119 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1120 		leader->exit_state = EXIT_DEAD;
1121 		/*
1122 		 * We are going to release_task()->ptrace_unlink() silently,
1123 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1124 		 * the tracer won't block again waiting for this thread.
1125 		 */
1126 		if (unlikely(leader->ptrace))
1127 			__wake_up_parent(leader, leader->parent);
1128 		write_unlock_irq(&tasklist_lock);
1129 		cgroup_threadgroup_change_end(tsk);
1130 
1131 		release_task(leader);
1132 	}
1133 
1134 	sig->group_exec_task = NULL;
1135 	sig->notify_count = 0;
1136 
1137 no_thread_group:
1138 	/* we have changed execution domain */
1139 	tsk->exit_signal = SIGCHLD;
1140 
1141 	BUG_ON(!thread_group_leader(tsk));
1142 	return 0;
1143 
1144 killed:
1145 	/* protects against exit_notify() and __exit_signal() */
1146 	read_lock(&tasklist_lock);
1147 	sig->group_exec_task = NULL;
1148 	sig->notify_count = 0;
1149 	read_unlock(&tasklist_lock);
1150 	return -EAGAIN;
1151 }
1152 
1153 
1154 /*
1155  * This function makes sure the current process has its own signal table,
1156  * so that flush_signal_handlers can later reset the handlers without
1157  * disturbing other processes.  (Other processes might share the signal
1158  * table via the CLONE_SIGHAND option to clone().)
1159  */
1160 static int unshare_sighand(struct task_struct *me)
1161 {
1162 	struct sighand_struct *oldsighand = me->sighand;
1163 
1164 	if (refcount_read(&oldsighand->count) != 1) {
1165 		struct sighand_struct *newsighand;
1166 		/*
1167 		 * This ->sighand is shared with the CLONE_SIGHAND
1168 		 * but not CLONE_THREAD task, switch to the new one.
1169 		 */
1170 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1171 		if (!newsighand)
1172 			return -ENOMEM;
1173 
1174 		refcount_set(&newsighand->count, 1);
1175 
1176 		write_lock_irq(&tasklist_lock);
1177 		spin_lock(&oldsighand->siglock);
1178 		memcpy(newsighand->action, oldsighand->action,
1179 		       sizeof(newsighand->action));
1180 		rcu_assign_pointer(me->sighand, newsighand);
1181 		spin_unlock(&oldsighand->siglock);
1182 		write_unlock_irq(&tasklist_lock);
1183 
1184 		__cleanup_sighand(oldsighand);
1185 	}
1186 	return 0;
1187 }
1188 
1189 /*
1190  * This is unlocked -- the string will always be NUL-terminated, but
1191  * may show overlapping contents if racing concurrent reads.
1192  */
1193 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1194 {
1195 	size_t len = min(strlen(buf), sizeof(tsk->comm) - 1);
1196 
1197 	trace_task_rename(tsk, buf);
1198 	memcpy(tsk->comm, buf, len);
1199 	memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len);
1200 	perf_event_comm(tsk, exec);
1201 }
1202 
1203 /*
1204  * Calling this is the point of no return. None of the failures will be
1205  * seen by userspace since either the process is already taking a fatal
1206  * signal (via de_thread() or coredump), or will have SEGV raised
1207  * (after exec_mmap()) by search_binary_handler (see below).
1208  */
1209 int begin_new_exec(struct linux_binprm * bprm)
1210 {
1211 	struct task_struct *me = current;
1212 	int retval;
1213 
1214 	/* Once we are committed compute the creds */
1215 	retval = bprm_creds_from_file(bprm);
1216 	if (retval)
1217 		return retval;
1218 
1219 	/*
1220 	 * This tracepoint marks the point before flushing the old exec where
1221 	 * the current task is still unchanged, but errors are fatal (point of
1222 	 * no return). The later "sched_process_exec" tracepoint is called after
1223 	 * the current task has successfully switched to the new exec.
1224 	 */
1225 	trace_sched_prepare_exec(current, bprm);
1226 
1227 	/*
1228 	 * Ensure all future errors are fatal.
1229 	 */
1230 	bprm->point_of_no_return = true;
1231 
1232 	/*
1233 	 * Make this the only thread in the thread group.
1234 	 */
1235 	retval = de_thread(me);
1236 	if (retval)
1237 		goto out;
1238 
1239 	/*
1240 	 * Cancel any io_uring activity across execve
1241 	 */
1242 	io_uring_task_cancel();
1243 
1244 	/* Ensure the files table is not shared. */
1245 	retval = unshare_files();
1246 	if (retval)
1247 		goto out;
1248 
1249 	/*
1250 	 * Must be called _before_ exec_mmap() as bprm->mm is
1251 	 * not visible until then. Doing it here also ensures
1252 	 * we don't race against replace_mm_exe_file().
1253 	 */
1254 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1255 	if (retval)
1256 		goto out;
1257 
1258 	/* If the binary is not readable then enforce mm->dumpable=0 */
1259 	would_dump(bprm, bprm->file);
1260 	if (bprm->have_execfd)
1261 		would_dump(bprm, bprm->executable);
1262 
1263 	/*
1264 	 * Release all of the old mmap stuff
1265 	 */
1266 	acct_arg_size(bprm, 0);
1267 	retval = exec_mmap(bprm->mm);
1268 	if (retval)
1269 		goto out;
1270 
1271 	bprm->mm = NULL;
1272 
1273 	retval = exec_task_namespaces();
1274 	if (retval)
1275 		goto out_unlock;
1276 
1277 #ifdef CONFIG_POSIX_TIMERS
1278 	spin_lock_irq(&me->sighand->siglock);
1279 	posix_cpu_timers_exit(me);
1280 	spin_unlock_irq(&me->sighand->siglock);
1281 	exit_itimers(me);
1282 	flush_itimer_signals();
1283 #endif
1284 
1285 	/*
1286 	 * Make the signal table private.
1287 	 */
1288 	retval = unshare_sighand(me);
1289 	if (retval)
1290 		goto out_unlock;
1291 
1292 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1293 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1294 	flush_thread();
1295 	me->personality &= ~bprm->per_clear;
1296 
1297 	clear_syscall_work_syscall_user_dispatch(me);
1298 
1299 	/*
1300 	 * We have to apply CLOEXEC before we change whether the process is
1301 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1302 	 * trying to access the should-be-closed file descriptors of a process
1303 	 * undergoing exec(2).
1304 	 */
1305 	do_close_on_exec(me->files);
1306 
1307 	if (bprm->secureexec) {
1308 		/* Make sure parent cannot signal privileged process. */
1309 		me->pdeath_signal = 0;
1310 
1311 		/*
1312 		 * For secureexec, reset the stack limit to sane default to
1313 		 * avoid bad behavior from the prior rlimits. This has to
1314 		 * happen before arch_pick_mmap_layout(), which examines
1315 		 * RLIMIT_STACK, but after the point of no return to avoid
1316 		 * needing to clean up the change on failure.
1317 		 */
1318 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1319 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1320 	}
1321 
1322 	me->sas_ss_sp = me->sas_ss_size = 0;
1323 
1324 	/*
1325 	 * Figure out dumpability. Note that this checking only of current
1326 	 * is wrong, but userspace depends on it. This should be testing
1327 	 * bprm->secureexec instead.
1328 	 */
1329 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1330 	    !(uid_eq(current_euid(), current_uid()) &&
1331 	      gid_eq(current_egid(), current_gid())))
1332 		set_dumpable(current->mm, suid_dumpable);
1333 	else
1334 		set_dumpable(current->mm, SUID_DUMP_USER);
1335 
1336 	perf_event_exec();
1337 
1338 	/*
1339 	 * If the original filename was empty, alloc_bprm() made up a path
1340 	 * that will probably not be useful to admins running ps or similar.
1341 	 * Let's fix it up to be something reasonable.
1342 	 */
1343 	if (bprm->comm_from_dentry) {
1344 		/*
1345 		 * Hold RCU lock to keep the name from being freed behind our back.
1346 		 * Use acquire semantics to make sure the terminating NUL from
1347 		 * __d_alloc() is seen.
1348 		 *
1349 		 * Note, we're deliberately sloppy here. We don't need to care about
1350 		 * detecting a concurrent rename and just want a terminated name.
1351 		 */
1352 		rcu_read_lock();
1353 		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1354 				true);
1355 		rcu_read_unlock();
1356 	} else {
1357 		__set_task_comm(me, kbasename(bprm->filename), true);
1358 	}
1359 
1360 	/* An exec changes our domain. We are no longer part of the thread
1361 	   group */
1362 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1363 	flush_signal_handlers(me, 0);
1364 
1365 	retval = set_cred_ucounts(bprm->cred);
1366 	if (retval < 0)
1367 		goto out_unlock;
1368 
1369 	/*
1370 	 * install the new credentials for this executable
1371 	 */
1372 	security_bprm_committing_creds(bprm);
1373 
1374 	commit_creds(bprm->cred);
1375 	bprm->cred = NULL;
1376 
1377 	/*
1378 	 * Disable monitoring for regular users
1379 	 * when executing setuid binaries. Must
1380 	 * wait until new credentials are committed
1381 	 * by commit_creds() above
1382 	 */
1383 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1384 		perf_event_exit_task(me);
1385 	/*
1386 	 * cred_guard_mutex must be held at least to this point to prevent
1387 	 * ptrace_attach() from altering our determination of the task's
1388 	 * credentials; any time after this it may be unlocked.
1389 	 */
1390 	security_bprm_committed_creds(bprm);
1391 
1392 	/* Pass the opened binary to the interpreter. */
1393 	if (bprm->have_execfd) {
1394 		retval = get_unused_fd_flags(0);
1395 		if (retval < 0)
1396 			goto out_unlock;
1397 		fd_install(retval, bprm->executable);
1398 		bprm->executable = NULL;
1399 		bprm->execfd = retval;
1400 	}
1401 	return 0;
1402 
1403 out_unlock:
1404 	up_write(&me->signal->exec_update_lock);
1405 	if (!bprm->cred)
1406 		mutex_unlock(&me->signal->cred_guard_mutex);
1407 
1408 out:
1409 	return retval;
1410 }
1411 EXPORT_SYMBOL(begin_new_exec);
1412 
1413 void would_dump(struct linux_binprm *bprm, struct file *file)
1414 {
1415 	struct inode *inode = file_inode(file);
1416 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1417 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1418 		struct user_namespace *old, *user_ns;
1419 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1420 
1421 		/* Ensure mm->user_ns contains the executable */
1422 		user_ns = old = bprm->mm->user_ns;
1423 		while ((user_ns != &init_user_ns) &&
1424 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1425 			user_ns = user_ns->parent;
1426 
1427 		if (old != user_ns) {
1428 			bprm->mm->user_ns = get_user_ns(user_ns);
1429 			put_user_ns(old);
1430 		}
1431 	}
1432 }
1433 EXPORT_SYMBOL(would_dump);
1434 
1435 void setup_new_exec(struct linux_binprm * bprm)
1436 {
1437 	/* Setup things that can depend upon the personality */
1438 	struct task_struct *me = current;
1439 
1440 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1441 
1442 	arch_setup_new_exec();
1443 
1444 	/* Set the new mm task size. We have to do that late because it may
1445 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1446 	 * some architectures like powerpc
1447 	 */
1448 	me->mm->task_size = TASK_SIZE;
1449 	up_write(&me->signal->exec_update_lock);
1450 	mutex_unlock(&me->signal->cred_guard_mutex);
1451 }
1452 EXPORT_SYMBOL(setup_new_exec);
1453 
1454 /* Runs immediately before start_thread() takes over. */
1455 void finalize_exec(struct linux_binprm *bprm)
1456 {
1457 	/* Store any stack rlimit changes before starting thread. */
1458 	task_lock(current->group_leader);
1459 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1460 	task_unlock(current->group_leader);
1461 }
1462 EXPORT_SYMBOL(finalize_exec);
1463 
1464 /*
1465  * Prepare credentials and lock ->cred_guard_mutex.
1466  * setup_new_exec() commits the new creds and drops the lock.
1467  * Or, if exec fails before, free_bprm() should release ->cred
1468  * and unlock.
1469  */
1470 static int prepare_bprm_creds(struct linux_binprm *bprm)
1471 {
1472 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1473 		return -ERESTARTNOINTR;
1474 
1475 	bprm->cred = prepare_exec_creds();
1476 	if (likely(bprm->cred))
1477 		return 0;
1478 
1479 	mutex_unlock(&current->signal->cred_guard_mutex);
1480 	return -ENOMEM;
1481 }
1482 
1483 /* Matches do_open_execat() */
1484 static void do_close_execat(struct file *file)
1485 {
1486 	if (!file)
1487 		return;
1488 	exe_file_allow_write_access(file);
1489 	fput(file);
1490 }
1491 
1492 static void free_bprm(struct linux_binprm *bprm)
1493 {
1494 	if (bprm->mm) {
1495 		acct_arg_size(bprm, 0);
1496 		mmput(bprm->mm);
1497 	}
1498 	free_arg_pages(bprm);
1499 	if (bprm->cred) {
1500 		mutex_unlock(&current->signal->cred_guard_mutex);
1501 		abort_creds(bprm->cred);
1502 	}
1503 	do_close_execat(bprm->file);
1504 	if (bprm->executable)
1505 		fput(bprm->executable);
1506 	/* If a binfmt changed the interp, free it. */
1507 	if (bprm->interp != bprm->filename)
1508 		kfree(bprm->interp);
1509 	kfree(bprm->fdpath);
1510 	kfree(bprm);
1511 }
1512 
1513 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1514 {
1515 	struct linux_binprm *bprm;
1516 	struct file *file;
1517 	int retval = -ENOMEM;
1518 
1519 	file = do_open_execat(fd, filename, flags);
1520 	if (IS_ERR(file))
1521 		return ERR_CAST(file);
1522 
1523 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1524 	if (!bprm) {
1525 		do_close_execat(file);
1526 		return ERR_PTR(-ENOMEM);
1527 	}
1528 
1529 	bprm->file = file;
1530 
1531 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1532 		bprm->filename = filename->name;
1533 	} else {
1534 		if (filename->name[0] == '\0') {
1535 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1536 			bprm->comm_from_dentry = 1;
1537 		} else {
1538 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1539 						  fd, filename->name);
1540 		}
1541 		if (!bprm->fdpath)
1542 			goto out_free;
1543 
1544 		/*
1545 		 * Record that a name derived from an O_CLOEXEC fd will be
1546 		 * inaccessible after exec.  This allows the code in exec to
1547 		 * choose to fail when the executable is not mmaped into the
1548 		 * interpreter and an open file descriptor is not passed to
1549 		 * the interpreter.  This makes for a better user experience
1550 		 * than having the interpreter start and then immediately fail
1551 		 * when it finds the executable is inaccessible.
1552 		 */
1553 		if (get_close_on_exec(fd))
1554 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1555 
1556 		bprm->filename = bprm->fdpath;
1557 	}
1558 	bprm->interp = bprm->filename;
1559 
1560 	/*
1561 	 * At this point, security_file_open() has already been called (with
1562 	 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will
1563 	 * stop just after the security_bprm_creds_for_exec() call in
1564 	 * bprm_execve().  Indeed, the kernel should not try to parse the
1565 	 * content of the file with exec_binprm() nor change the calling
1566 	 * thread, which means that the following security functions will not
1567 	 * be called:
1568 	 * - security_bprm_check()
1569 	 * - security_bprm_creds_from_file()
1570 	 * - security_bprm_committing_creds()
1571 	 * - security_bprm_committed_creds()
1572 	 */
1573 	bprm->is_check = !!(flags & AT_EXECVE_CHECK);
1574 
1575 	retval = bprm_mm_init(bprm);
1576 	if (!retval)
1577 		return bprm;
1578 
1579 out_free:
1580 	free_bprm(bprm);
1581 	return ERR_PTR(retval);
1582 }
1583 
1584 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1585 {
1586 	/* If a binfmt changed the interp, free it first. */
1587 	if (bprm->interp != bprm->filename)
1588 		kfree(bprm->interp);
1589 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1590 	if (!bprm->interp)
1591 		return -ENOMEM;
1592 	return 0;
1593 }
1594 EXPORT_SYMBOL(bprm_change_interp);
1595 
1596 /*
1597  * determine how safe it is to execute the proposed program
1598  * - the caller must hold ->cred_guard_mutex to protect against
1599  *   PTRACE_ATTACH or seccomp thread-sync
1600  */
1601 static void check_unsafe_exec(struct linux_binprm *bprm)
1602 {
1603 	struct task_struct *p = current, *t;
1604 	unsigned n_fs;
1605 
1606 	if (p->ptrace)
1607 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1608 
1609 	/*
1610 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1611 	 * mess up.
1612 	 */
1613 	if (task_no_new_privs(current))
1614 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1615 
1616 	/*
1617 	 * If another task is sharing our fs, we cannot safely
1618 	 * suid exec because the differently privileged task
1619 	 * will be able to manipulate the current directory, etc.
1620 	 * It would be nice to force an unshare instead...
1621 	 */
1622 	n_fs = 1;
1623 	spin_lock(&p->fs->lock);
1624 	rcu_read_lock();
1625 	for_other_threads(p, t) {
1626 		if (t->fs == p->fs)
1627 			n_fs++;
1628 	}
1629 	rcu_read_unlock();
1630 
1631 	/* "users" and "in_exec" locked for copy_fs() */
1632 	if (p->fs->users > n_fs)
1633 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1634 	else
1635 		p->fs->in_exec = 1;
1636 	spin_unlock(&p->fs->lock);
1637 }
1638 
1639 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1640 {
1641 	/* Handle suid and sgid on files */
1642 	struct mnt_idmap *idmap;
1643 	struct inode *inode = file_inode(file);
1644 	unsigned int mode;
1645 	vfsuid_t vfsuid;
1646 	vfsgid_t vfsgid;
1647 	int err;
1648 
1649 	if (!mnt_may_suid(file->f_path.mnt))
1650 		return;
1651 
1652 	if (task_no_new_privs(current))
1653 		return;
1654 
1655 	mode = READ_ONCE(inode->i_mode);
1656 	if (!(mode & (S_ISUID|S_ISGID)))
1657 		return;
1658 
1659 	idmap = file_mnt_idmap(file);
1660 
1661 	/* Be careful if suid/sgid is set */
1662 	inode_lock(inode);
1663 
1664 	/* Atomically reload and check mode/uid/gid now that lock held. */
1665 	mode = inode->i_mode;
1666 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1667 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1668 	err = inode_permission(idmap, inode, MAY_EXEC);
1669 	inode_unlock(inode);
1670 
1671 	/* Did the exec bit vanish out from under us? Give up. */
1672 	if (err)
1673 		return;
1674 
1675 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1676 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1677 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1678 		return;
1679 
1680 	if (mode & S_ISUID) {
1681 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1682 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1683 	}
1684 
1685 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1686 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1687 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1688 	}
1689 }
1690 
1691 /*
1692  * Compute brpm->cred based upon the final binary.
1693  */
1694 static int bprm_creds_from_file(struct linux_binprm *bprm)
1695 {
1696 	/* Compute creds based on which file? */
1697 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1698 
1699 	bprm_fill_uid(bprm, file);
1700 	return security_bprm_creds_from_file(bprm, file);
1701 }
1702 
1703 /*
1704  * Fill the binprm structure from the inode.
1705  * Read the first BINPRM_BUF_SIZE bytes
1706  *
1707  * This may be called multiple times for binary chains (scripts for example).
1708  */
1709 static int prepare_binprm(struct linux_binprm *bprm)
1710 {
1711 	loff_t pos = 0;
1712 
1713 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1714 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1715 }
1716 
1717 /*
1718  * Arguments are '\0' separated strings found at the location bprm->p
1719  * points to; chop off the first by relocating brpm->p to right after
1720  * the first '\0' encountered.
1721  */
1722 int remove_arg_zero(struct linux_binprm *bprm)
1723 {
1724 	unsigned long offset;
1725 	char *kaddr;
1726 	struct page *page;
1727 
1728 	if (!bprm->argc)
1729 		return 0;
1730 
1731 	do {
1732 		offset = bprm->p & ~PAGE_MASK;
1733 		page = get_arg_page(bprm, bprm->p, 0);
1734 		if (!page)
1735 			return -EFAULT;
1736 		kaddr = kmap_local_page(page);
1737 
1738 		for (; offset < PAGE_SIZE && kaddr[offset];
1739 				offset++, bprm->p++)
1740 			;
1741 
1742 		kunmap_local(kaddr);
1743 		put_arg_page(page);
1744 	} while (offset == PAGE_SIZE);
1745 
1746 	bprm->p++;
1747 	bprm->argc--;
1748 
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL(remove_arg_zero);
1752 
1753 /*
1754  * cycle the list of binary formats handler, until one recognizes the image
1755  */
1756 static int search_binary_handler(struct linux_binprm *bprm)
1757 {
1758 	struct linux_binfmt *fmt;
1759 	int retval;
1760 
1761 	retval = prepare_binprm(bprm);
1762 	if (retval < 0)
1763 		return retval;
1764 
1765 	retval = security_bprm_check(bprm);
1766 	if (retval)
1767 		return retval;
1768 
1769 	read_lock(&binfmt_lock);
1770 	list_for_each_entry(fmt, &formats, lh) {
1771 		if (!try_module_get(fmt->module))
1772 			continue;
1773 		read_unlock(&binfmt_lock);
1774 
1775 		retval = fmt->load_binary(bprm);
1776 
1777 		read_lock(&binfmt_lock);
1778 		put_binfmt(fmt);
1779 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1780 			read_unlock(&binfmt_lock);
1781 			return retval;
1782 		}
1783 	}
1784 	read_unlock(&binfmt_lock);
1785 
1786 	return -ENOEXEC;
1787 }
1788 
1789 /* binfmt handlers will call back into begin_new_exec() on success. */
1790 static int exec_binprm(struct linux_binprm *bprm)
1791 {
1792 	pid_t old_pid, old_vpid;
1793 	int ret, depth;
1794 
1795 	/* Need to fetch pid before load_binary changes it */
1796 	old_pid = current->pid;
1797 	rcu_read_lock();
1798 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1799 	rcu_read_unlock();
1800 
1801 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1802 	for (depth = 0;; depth++) {
1803 		struct file *exec;
1804 		if (depth > 5)
1805 			return -ELOOP;
1806 
1807 		ret = search_binary_handler(bprm);
1808 		if (ret < 0)
1809 			return ret;
1810 		if (!bprm->interpreter)
1811 			break;
1812 
1813 		exec = bprm->file;
1814 		bprm->file = bprm->interpreter;
1815 		bprm->interpreter = NULL;
1816 
1817 		exe_file_allow_write_access(exec);
1818 		if (unlikely(bprm->have_execfd)) {
1819 			if (bprm->executable) {
1820 				fput(exec);
1821 				return -ENOEXEC;
1822 			}
1823 			bprm->executable = exec;
1824 		} else
1825 			fput(exec);
1826 	}
1827 
1828 	audit_bprm(bprm);
1829 	trace_sched_process_exec(current, old_pid, bprm);
1830 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1831 	proc_exec_connector(current);
1832 	return 0;
1833 }
1834 
1835 static int bprm_execve(struct linux_binprm *bprm)
1836 {
1837 	int retval;
1838 
1839 	retval = prepare_bprm_creds(bprm);
1840 	if (retval)
1841 		return retval;
1842 
1843 	/*
1844 	 * Check for unsafe execution states before exec_binprm(), which
1845 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1846 	 * where setuid-ness is evaluated.
1847 	 */
1848 	check_unsafe_exec(bprm);
1849 	current->in_execve = 1;
1850 	sched_mm_cid_before_execve(current);
1851 
1852 	sched_exec();
1853 
1854 	/* Set the unchanging part of bprm->cred */
1855 	retval = security_bprm_creds_for_exec(bprm);
1856 	if (retval || bprm->is_check)
1857 		goto out;
1858 
1859 	retval = exec_binprm(bprm);
1860 	if (retval < 0)
1861 		goto out;
1862 
1863 	sched_mm_cid_after_execve(current);
1864 	/* execve succeeded */
1865 	current->fs->in_exec = 0;
1866 	current->in_execve = 0;
1867 	rseq_execve(current);
1868 	user_events_execve(current);
1869 	acct_update_integrals(current);
1870 	task_numa_free(current, false);
1871 	return retval;
1872 
1873 out:
1874 	/*
1875 	 * If past the point of no return ensure the code never
1876 	 * returns to the userspace process.  Use an existing fatal
1877 	 * signal if present otherwise terminate the process with
1878 	 * SIGSEGV.
1879 	 */
1880 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1881 		force_fatal_sig(SIGSEGV);
1882 
1883 	sched_mm_cid_after_execve(current);
1884 	current->fs->in_exec = 0;
1885 	current->in_execve = 0;
1886 
1887 	return retval;
1888 }
1889 
1890 static int do_execveat_common(int fd, struct filename *filename,
1891 			      struct user_arg_ptr argv,
1892 			      struct user_arg_ptr envp,
1893 			      int flags)
1894 {
1895 	struct linux_binprm *bprm;
1896 	int retval;
1897 
1898 	if (IS_ERR(filename))
1899 		return PTR_ERR(filename);
1900 
1901 	/*
1902 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1903 	 * set*uid() to execve() because too many poorly written programs
1904 	 * don't check setuid() return code.  Here we additionally recheck
1905 	 * whether NPROC limit is still exceeded.
1906 	 */
1907 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1908 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1909 		retval = -EAGAIN;
1910 		goto out_ret;
1911 	}
1912 
1913 	/* We're below the limit (still or again), so we don't want to make
1914 	 * further execve() calls fail. */
1915 	current->flags &= ~PF_NPROC_EXCEEDED;
1916 
1917 	bprm = alloc_bprm(fd, filename, flags);
1918 	if (IS_ERR(bprm)) {
1919 		retval = PTR_ERR(bprm);
1920 		goto out_ret;
1921 	}
1922 
1923 	retval = count(argv, MAX_ARG_STRINGS);
1924 	if (retval < 0)
1925 		goto out_free;
1926 	bprm->argc = retval;
1927 
1928 	retval = count(envp, MAX_ARG_STRINGS);
1929 	if (retval < 0)
1930 		goto out_free;
1931 	bprm->envc = retval;
1932 
1933 	retval = bprm_stack_limits(bprm);
1934 	if (retval < 0)
1935 		goto out_free;
1936 
1937 	retval = copy_string_kernel(bprm->filename, bprm);
1938 	if (retval < 0)
1939 		goto out_free;
1940 	bprm->exec = bprm->p;
1941 
1942 	retval = copy_strings(bprm->envc, envp, bprm);
1943 	if (retval < 0)
1944 		goto out_free;
1945 
1946 	retval = copy_strings(bprm->argc, argv, bprm);
1947 	if (retval < 0)
1948 		goto out_free;
1949 
1950 	/*
1951 	 * When argv is empty, add an empty string ("") as argv[0] to
1952 	 * ensure confused userspace programs that start processing
1953 	 * from argv[1] won't end up walking envp. See also
1954 	 * bprm_stack_limits().
1955 	 */
1956 	if (bprm->argc == 0) {
1957 		retval = copy_string_kernel("", bprm);
1958 		if (retval < 0)
1959 			goto out_free;
1960 		bprm->argc = 1;
1961 
1962 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1963 			     current->comm, bprm->filename);
1964 	}
1965 
1966 	retval = bprm_execve(bprm);
1967 out_free:
1968 	free_bprm(bprm);
1969 
1970 out_ret:
1971 	putname(filename);
1972 	return retval;
1973 }
1974 
1975 int kernel_execve(const char *kernel_filename,
1976 		  const char *const *argv, const char *const *envp)
1977 {
1978 	struct filename *filename;
1979 	struct linux_binprm *bprm;
1980 	int fd = AT_FDCWD;
1981 	int retval;
1982 
1983 	/* It is non-sense for kernel threads to call execve */
1984 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1985 		return -EINVAL;
1986 
1987 	filename = getname_kernel(kernel_filename);
1988 	if (IS_ERR(filename))
1989 		return PTR_ERR(filename);
1990 
1991 	bprm = alloc_bprm(fd, filename, 0);
1992 	if (IS_ERR(bprm)) {
1993 		retval = PTR_ERR(bprm);
1994 		goto out_ret;
1995 	}
1996 
1997 	retval = count_strings_kernel(argv);
1998 	if (WARN_ON_ONCE(retval == 0))
1999 		retval = -EINVAL;
2000 	if (retval < 0)
2001 		goto out_free;
2002 	bprm->argc = retval;
2003 
2004 	retval = count_strings_kernel(envp);
2005 	if (retval < 0)
2006 		goto out_free;
2007 	bprm->envc = retval;
2008 
2009 	retval = bprm_stack_limits(bprm);
2010 	if (retval < 0)
2011 		goto out_free;
2012 
2013 	retval = copy_string_kernel(bprm->filename, bprm);
2014 	if (retval < 0)
2015 		goto out_free;
2016 	bprm->exec = bprm->p;
2017 
2018 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2019 	if (retval < 0)
2020 		goto out_free;
2021 
2022 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2023 	if (retval < 0)
2024 		goto out_free;
2025 
2026 	retval = bprm_execve(bprm);
2027 out_free:
2028 	free_bprm(bprm);
2029 out_ret:
2030 	putname(filename);
2031 	return retval;
2032 }
2033 
2034 static int do_execve(struct filename *filename,
2035 	const char __user *const __user *__argv,
2036 	const char __user *const __user *__envp)
2037 {
2038 	struct user_arg_ptr argv = { .ptr.native = __argv };
2039 	struct user_arg_ptr envp = { .ptr.native = __envp };
2040 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2041 }
2042 
2043 static int do_execveat(int fd, struct filename *filename,
2044 		const char __user *const __user *__argv,
2045 		const char __user *const __user *__envp,
2046 		int flags)
2047 {
2048 	struct user_arg_ptr argv = { .ptr.native = __argv };
2049 	struct user_arg_ptr envp = { .ptr.native = __envp };
2050 
2051 	return do_execveat_common(fd, filename, argv, envp, flags);
2052 }
2053 
2054 #ifdef CONFIG_COMPAT
2055 static int compat_do_execve(struct filename *filename,
2056 	const compat_uptr_t __user *__argv,
2057 	const compat_uptr_t __user *__envp)
2058 {
2059 	struct user_arg_ptr argv = {
2060 		.is_compat = true,
2061 		.ptr.compat = __argv,
2062 	};
2063 	struct user_arg_ptr envp = {
2064 		.is_compat = true,
2065 		.ptr.compat = __envp,
2066 	};
2067 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2068 }
2069 
2070 static int compat_do_execveat(int fd, struct filename *filename,
2071 			      const compat_uptr_t __user *__argv,
2072 			      const compat_uptr_t __user *__envp,
2073 			      int flags)
2074 {
2075 	struct user_arg_ptr argv = {
2076 		.is_compat = true,
2077 		.ptr.compat = __argv,
2078 	};
2079 	struct user_arg_ptr envp = {
2080 		.is_compat = true,
2081 		.ptr.compat = __envp,
2082 	};
2083 	return do_execveat_common(fd, filename, argv, envp, flags);
2084 }
2085 #endif
2086 
2087 void set_binfmt(struct linux_binfmt *new)
2088 {
2089 	struct mm_struct *mm = current->mm;
2090 
2091 	if (mm->binfmt)
2092 		module_put(mm->binfmt->module);
2093 
2094 	mm->binfmt = new;
2095 	if (new)
2096 		__module_get(new->module);
2097 }
2098 EXPORT_SYMBOL(set_binfmt);
2099 
2100 /*
2101  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2102  */
2103 void set_dumpable(struct mm_struct *mm, int value)
2104 {
2105 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2106 		return;
2107 
2108 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2109 }
2110 
2111 SYSCALL_DEFINE3(execve,
2112 		const char __user *, filename,
2113 		const char __user *const __user *, argv,
2114 		const char __user *const __user *, envp)
2115 {
2116 	return do_execve(getname(filename), argv, envp);
2117 }
2118 
2119 SYSCALL_DEFINE5(execveat,
2120 		int, fd, const char __user *, filename,
2121 		const char __user *const __user *, argv,
2122 		const char __user *const __user *, envp,
2123 		int, flags)
2124 {
2125 	return do_execveat(fd,
2126 			   getname_uflags(filename, flags),
2127 			   argv, envp, flags);
2128 }
2129 
2130 #ifdef CONFIG_COMPAT
2131 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2132 	const compat_uptr_t __user *, argv,
2133 	const compat_uptr_t __user *, envp)
2134 {
2135 	return compat_do_execve(getname(filename), argv, envp);
2136 }
2137 
2138 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2139 		       const char __user *, filename,
2140 		       const compat_uptr_t __user *, argv,
2141 		       const compat_uptr_t __user *, envp,
2142 		       int,  flags)
2143 {
2144 	return compat_do_execveat(fd,
2145 				  getname_uflags(filename, flags),
2146 				  argv, envp, flags);
2147 }
2148 #endif
2149 
2150 #ifdef CONFIG_SYSCTL
2151 
2152 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2153 		void *buffer, size_t *lenp, loff_t *ppos)
2154 {
2155 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2156 
2157 	if (!error)
2158 		validate_coredump_safety();
2159 	return error;
2160 }
2161 
2162 static const struct ctl_table fs_exec_sysctls[] = {
2163 	{
2164 		.procname	= "suid_dumpable",
2165 		.data		= &suid_dumpable,
2166 		.maxlen		= sizeof(int),
2167 		.mode		= 0644,
2168 		.proc_handler	= proc_dointvec_minmax_coredump,
2169 		.extra1		= SYSCTL_ZERO,
2170 		.extra2		= SYSCTL_TWO,
2171 	},
2172 };
2173 
2174 static int __init init_fs_exec_sysctls(void)
2175 {
2176 	register_sysctl_init("fs", fs_exec_sysctls);
2177 	return 0;
2178 }
2179 
2180 fs_initcall(init_fs_exec_sysctls);
2181 #endif /* CONFIG_SYSCTL */
2182 
2183 #ifdef CONFIG_EXEC_KUNIT_TEST
2184 #include "tests/exec_kunit.c"
2185 #endif
2186