1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * Check do_open_execat() for an explanation. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 152 path_noexec(&file->f_path)) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * ahead of time. 209 */ 210 if (!mmap_read_lock_maybe_expand(mm, vma, pos, write)) 211 return NULL; 212 213 /* 214 * We are doing an exec(). 'current' is the process 215 * doing the exec and 'mm' is the new process's mm. 216 */ 217 ret = get_user_pages_remote(mm, pos, 1, 218 write ? FOLL_WRITE : 0, 219 &page, NULL); 220 mmap_read_unlock(mm); 221 if (ret <= 0) 222 return NULL; 223 224 if (write) 225 acct_arg_size(bprm, vma_pages(vma)); 226 227 return page; 228 } 229 230 static void put_arg_page(struct page *page) 231 { 232 put_page(page); 233 } 234 235 static void free_arg_pages(struct linux_binprm *bprm) 236 { 237 } 238 239 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 240 struct page *page) 241 { 242 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 243 } 244 245 static int __bprm_mm_init(struct linux_binprm *bprm) 246 { 247 int err; 248 struct vm_area_struct *vma = NULL; 249 struct mm_struct *mm = bprm->mm; 250 251 bprm->vma = vma = vm_area_alloc(mm); 252 if (!vma) 253 return -ENOMEM; 254 vma_set_anonymous(vma); 255 256 if (mmap_write_lock_killable(mm)) { 257 err = -EINTR; 258 goto err_free; 259 } 260 261 /* 262 * Need to be called with mmap write lock 263 * held, to avoid race with ksmd. 264 */ 265 err = ksm_execve(mm); 266 if (err) 267 goto err_ksm; 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 281 err = insert_vm_struct(mm, vma); 282 if (err) 283 goto err; 284 285 mm->stack_vm = mm->total_vm = 1; 286 mmap_write_unlock(mm); 287 bprm->p = vma->vm_end - sizeof(void *); 288 return 0; 289 err: 290 ksm_exit(mm); 291 err_ksm: 292 mmap_write_unlock(mm); 293 err_free: 294 bprm->vma = NULL; 295 vm_area_free(vma); 296 return err; 297 } 298 299 static bool valid_arg_len(struct linux_binprm *bprm, long len) 300 { 301 return len <= MAX_ARG_STRLEN; 302 } 303 304 #else 305 306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 307 { 308 } 309 310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 311 int write) 312 { 313 struct page *page; 314 315 page = bprm->page[pos / PAGE_SIZE]; 316 if (!page && write) { 317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 318 if (!page) 319 return NULL; 320 bprm->page[pos / PAGE_SIZE] = page; 321 } 322 323 return page; 324 } 325 326 static void put_arg_page(struct page *page) 327 { 328 } 329 330 static void free_arg_page(struct linux_binprm *bprm, int i) 331 { 332 if (bprm->page[i]) { 333 __free_page(bprm->page[i]); 334 bprm->page[i] = NULL; 335 } 336 } 337 338 static void free_arg_pages(struct linux_binprm *bprm) 339 { 340 int i; 341 342 for (i = 0; i < MAX_ARG_PAGES; i++) 343 free_arg_page(bprm, i); 344 } 345 346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 347 struct page *page) 348 { 349 } 350 351 static int __bprm_mm_init(struct linux_binprm *bprm) 352 { 353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 354 return 0; 355 } 356 357 static bool valid_arg_len(struct linux_binprm *bprm, long len) 358 { 359 return len <= bprm->p; 360 } 361 362 #endif /* CONFIG_MMU */ 363 364 /* 365 * Create a new mm_struct and populate it with a temporary stack 366 * vm_area_struct. We don't have enough context at this point to set the stack 367 * flags, permissions, and offset, so we use temporary values. We'll update 368 * them later in setup_arg_pages(). 369 */ 370 static int bprm_mm_init(struct linux_binprm *bprm) 371 { 372 int err; 373 struct mm_struct *mm = NULL; 374 375 bprm->mm = mm = mm_alloc(); 376 err = -ENOMEM; 377 if (!mm) 378 goto err; 379 380 /* Save current stack limit for all calculations made during exec. */ 381 task_lock(current->group_leader); 382 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 383 task_unlock(current->group_leader); 384 385 err = __bprm_mm_init(bprm); 386 if (err) 387 goto err; 388 389 return 0; 390 391 err: 392 if (mm) { 393 bprm->mm = NULL; 394 mmdrop(mm); 395 } 396 397 return err; 398 } 399 400 struct user_arg_ptr { 401 #ifdef CONFIG_COMPAT 402 bool is_compat; 403 #endif 404 union { 405 const char __user *const __user *native; 406 #ifdef CONFIG_COMPAT 407 const compat_uptr_t __user *compat; 408 #endif 409 } ptr; 410 }; 411 412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 413 { 414 const char __user *native; 415 416 #ifdef CONFIG_COMPAT 417 if (unlikely(argv.is_compat)) { 418 compat_uptr_t compat; 419 420 if (get_user(compat, argv.ptr.compat + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return compat_ptr(compat); 424 } 425 #endif 426 427 if (get_user(native, argv.ptr.native + nr)) 428 return ERR_PTR(-EFAULT); 429 430 return native; 431 } 432 433 /* 434 * count() counts the number of strings in array ARGV. 435 */ 436 static int count(struct user_arg_ptr argv, int max) 437 { 438 int i = 0; 439 440 if (argv.ptr.native != NULL) { 441 for (;;) { 442 const char __user *p = get_user_arg_ptr(argv, i); 443 444 if (!p) 445 break; 446 447 if (IS_ERR(p)) 448 return -EFAULT; 449 450 if (i >= max) 451 return -E2BIG; 452 ++i; 453 454 if (fatal_signal_pending(current)) 455 return -ERESTARTNOHAND; 456 cond_resched(); 457 } 458 } 459 return i; 460 } 461 462 static int count_strings_kernel(const char *const *argv) 463 { 464 int i; 465 466 if (!argv) 467 return 0; 468 469 for (i = 0; argv[i]; ++i) { 470 if (i >= MAX_ARG_STRINGS) 471 return -E2BIG; 472 if (fatal_signal_pending(current)) 473 return -ERESTARTNOHAND; 474 cond_resched(); 475 } 476 return i; 477 } 478 479 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 480 unsigned long limit) 481 { 482 #ifdef CONFIG_MMU 483 /* Avoid a pathological bprm->p. */ 484 if (bprm->p < limit) 485 return -E2BIG; 486 bprm->argmin = bprm->p - limit; 487 #endif 488 return 0; 489 } 490 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 491 { 492 #ifdef CONFIG_MMU 493 return bprm->p < bprm->argmin; 494 #else 495 return false; 496 #endif 497 } 498 499 /* 500 * Calculate bprm->argmin from: 501 * - _STK_LIM 502 * - ARG_MAX 503 * - bprm->rlim_stack.rlim_cur 504 * - bprm->argc 505 * - bprm->envc 506 * - bprm->p 507 */ 508 static int bprm_stack_limits(struct linux_binprm *bprm) 509 { 510 unsigned long limit, ptr_size; 511 512 /* 513 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 514 * (whichever is smaller) for the argv+env strings. 515 * This ensures that: 516 * - the remaining binfmt code will not run out of stack space, 517 * - the program will have a reasonable amount of stack left 518 * to work from. 519 */ 520 limit = _STK_LIM / 4 * 3; 521 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 522 /* 523 * We've historically supported up to 32 pages (ARG_MAX) 524 * of argument strings even with small stacks 525 */ 526 limit = max_t(unsigned long, limit, ARG_MAX); 527 /* Reject totally pathological counts. */ 528 if (bprm->argc < 0 || bprm->envc < 0) 529 return -E2BIG; 530 /* 531 * We must account for the size of all the argv and envp pointers to 532 * the argv and envp strings, since they will also take up space in 533 * the stack. They aren't stored until much later when we can't 534 * signal to the parent that the child has run out of stack space. 535 * Instead, calculate it here so it's possible to fail gracefully. 536 * 537 * In the case of argc = 0, make sure there is space for adding a 538 * empty string (which will bump argc to 1), to ensure confused 539 * userspace programs don't start processing from argv[1], thinking 540 * argc can never be 0, to keep them from walking envp by accident. 541 * See do_execveat_common(). 542 */ 543 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 544 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 545 return -E2BIG; 546 if (limit <= ptr_size) 547 return -E2BIG; 548 limit -= ptr_size; 549 550 return bprm_set_stack_limit(bprm, limit); 551 } 552 553 /* 554 * 'copy_strings()' copies argument/environment strings from the old 555 * processes's memory to the new process's stack. The call to get_user_pages() 556 * ensures the destination page is created and not swapped out. 557 */ 558 static int copy_strings(int argc, struct user_arg_ptr argv, 559 struct linux_binprm *bprm) 560 { 561 struct page *kmapped_page = NULL; 562 char *kaddr = NULL; 563 unsigned long kpos = 0; 564 int ret; 565 566 while (argc-- > 0) { 567 const char __user *str; 568 int len; 569 unsigned long pos; 570 571 ret = -EFAULT; 572 str = get_user_arg_ptr(argv, argc); 573 if (IS_ERR(str)) 574 goto out; 575 576 len = strnlen_user(str, MAX_ARG_STRLEN); 577 if (!len) 578 goto out; 579 580 ret = -E2BIG; 581 if (!valid_arg_len(bprm, len)) 582 goto out; 583 584 /* We're going to work our way backwards. */ 585 pos = bprm->p; 586 str += len; 587 bprm->p -= len; 588 if (bprm_hit_stack_limit(bprm)) 589 goto out; 590 591 while (len > 0) { 592 int offset, bytes_to_copy; 593 594 if (fatal_signal_pending(current)) { 595 ret = -ERESTARTNOHAND; 596 goto out; 597 } 598 cond_resched(); 599 600 offset = pos % PAGE_SIZE; 601 if (offset == 0) 602 offset = PAGE_SIZE; 603 604 bytes_to_copy = offset; 605 if (bytes_to_copy > len) 606 bytes_to_copy = len; 607 608 offset -= bytes_to_copy; 609 pos -= bytes_to_copy; 610 str -= bytes_to_copy; 611 len -= bytes_to_copy; 612 613 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 614 struct page *page; 615 616 page = get_arg_page(bprm, pos, 1); 617 if (!page) { 618 ret = -E2BIG; 619 goto out; 620 } 621 622 if (kmapped_page) { 623 flush_dcache_page(kmapped_page); 624 kunmap_local(kaddr); 625 put_arg_page(kmapped_page); 626 } 627 kmapped_page = page; 628 kaddr = kmap_local_page(kmapped_page); 629 kpos = pos & PAGE_MASK; 630 flush_arg_page(bprm, kpos, kmapped_page); 631 } 632 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 633 ret = -EFAULT; 634 goto out; 635 } 636 } 637 } 638 ret = 0; 639 out: 640 if (kmapped_page) { 641 flush_dcache_page(kmapped_page); 642 kunmap_local(kaddr); 643 put_arg_page(kmapped_page); 644 } 645 return ret; 646 } 647 648 /* 649 * Copy and argument/environment string from the kernel to the processes stack. 650 */ 651 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 652 { 653 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 654 unsigned long pos = bprm->p; 655 656 if (len == 0) 657 return -EFAULT; 658 if (!valid_arg_len(bprm, len)) 659 return -E2BIG; 660 661 /* We're going to work our way backwards. */ 662 arg += len; 663 bprm->p -= len; 664 if (bprm_hit_stack_limit(bprm)) 665 return -E2BIG; 666 667 while (len > 0) { 668 unsigned int bytes_to_copy = min_t(unsigned int, len, 669 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 670 struct page *page; 671 672 pos -= bytes_to_copy; 673 arg -= bytes_to_copy; 674 len -= bytes_to_copy; 675 676 page = get_arg_page(bprm, pos, 1); 677 if (!page) 678 return -E2BIG; 679 flush_arg_page(bprm, pos & PAGE_MASK, page); 680 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 681 put_arg_page(page); 682 } 683 684 return 0; 685 } 686 EXPORT_SYMBOL(copy_string_kernel); 687 688 static int copy_strings_kernel(int argc, const char *const *argv, 689 struct linux_binprm *bprm) 690 { 691 while (argc-- > 0) { 692 int ret = copy_string_kernel(argv[argc], bprm); 693 if (ret < 0) 694 return ret; 695 if (fatal_signal_pending(current)) 696 return -ERESTARTNOHAND; 697 cond_resched(); 698 } 699 return 0; 700 } 701 702 #ifdef CONFIG_MMU 703 704 /* 705 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 706 * the stack is optionally relocated, and some extra space is added. 707 */ 708 int setup_arg_pages(struct linux_binprm *bprm, 709 unsigned long stack_top, 710 int executable_stack) 711 { 712 unsigned long ret; 713 unsigned long stack_shift; 714 struct mm_struct *mm = current->mm; 715 struct vm_area_struct *vma = bprm->vma; 716 struct vm_area_struct *prev = NULL; 717 unsigned long vm_flags; 718 unsigned long stack_base; 719 unsigned long stack_size; 720 unsigned long stack_expand; 721 unsigned long rlim_stack; 722 struct mmu_gather tlb; 723 struct vma_iterator vmi; 724 725 #ifdef CONFIG_STACK_GROWSUP 726 /* Limit stack size */ 727 stack_base = bprm->rlim_stack.rlim_max; 728 729 stack_base = calc_max_stack_size(stack_base); 730 731 /* Add space for stack randomization. */ 732 if (current->flags & PF_RANDOMIZE) 733 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 734 735 /* Make sure we didn't let the argument array grow too large. */ 736 if (vma->vm_end - vma->vm_start > stack_base) 737 return -ENOMEM; 738 739 stack_base = PAGE_ALIGN(stack_top - stack_base); 740 741 stack_shift = vma->vm_start - stack_base; 742 mm->arg_start = bprm->p - stack_shift; 743 bprm->p = vma->vm_end - stack_shift; 744 #else 745 stack_top = arch_align_stack(stack_top); 746 stack_top = PAGE_ALIGN(stack_top); 747 748 if (unlikely(stack_top < mmap_min_addr) || 749 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 750 return -ENOMEM; 751 752 stack_shift = vma->vm_end - stack_top; 753 754 bprm->p -= stack_shift; 755 mm->arg_start = bprm->p; 756 #endif 757 758 if (bprm->loader) 759 bprm->loader -= stack_shift; 760 bprm->exec -= stack_shift; 761 762 if (mmap_write_lock_killable(mm)) 763 return -EINTR; 764 765 vm_flags = VM_STACK_FLAGS; 766 767 /* 768 * Adjust stack execute permissions; explicitly enable for 769 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 770 * (arch default) otherwise. 771 */ 772 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 773 vm_flags |= VM_EXEC; 774 else if (executable_stack == EXSTACK_DISABLE_X) 775 vm_flags &= ~VM_EXEC; 776 vm_flags |= mm->def_flags; 777 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 778 779 vma_iter_init(&vmi, mm, vma->vm_start); 780 781 tlb_gather_mmu(&tlb, mm); 782 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 783 vm_flags); 784 tlb_finish_mmu(&tlb); 785 786 if (ret) 787 goto out_unlock; 788 BUG_ON(prev != vma); 789 790 if (unlikely(vm_flags & VM_EXEC)) { 791 pr_warn_once("process '%pD4' started with executable stack\n", 792 bprm->file); 793 } 794 795 /* Move stack pages down in memory. */ 796 if (stack_shift) { 797 /* 798 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 799 * the binfmt code determines where the new stack should reside, we shift it to 800 * its final location. 801 */ 802 ret = relocate_vma_down(vma, stack_shift); 803 if (ret) 804 goto out_unlock; 805 } 806 807 /* mprotect_fixup is overkill to remove the temporary stack flags */ 808 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 809 810 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 811 stack_size = vma->vm_end - vma->vm_start; 812 /* 813 * Align this down to a page boundary as expand_stack 814 * will align it up. 815 */ 816 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 817 818 stack_expand = min(rlim_stack, stack_size + stack_expand); 819 820 #ifdef CONFIG_STACK_GROWSUP 821 stack_base = vma->vm_start + stack_expand; 822 #else 823 stack_base = vma->vm_end - stack_expand; 824 #endif 825 current->mm->start_stack = bprm->p; 826 ret = expand_stack_locked(vma, stack_base); 827 if (ret) 828 ret = -EFAULT; 829 830 out_unlock: 831 mmap_write_unlock(mm); 832 return ret; 833 } 834 EXPORT_SYMBOL(setup_arg_pages); 835 836 #else 837 838 /* 839 * Transfer the program arguments and environment from the holding pages 840 * onto the stack. The provided stack pointer is adjusted accordingly. 841 */ 842 int transfer_args_to_stack(struct linux_binprm *bprm, 843 unsigned long *sp_location) 844 { 845 unsigned long index, stop, sp; 846 int ret = 0; 847 848 stop = bprm->p >> PAGE_SHIFT; 849 sp = *sp_location; 850 851 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 852 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 853 char *src = kmap_local_page(bprm->page[index]) + offset; 854 sp -= PAGE_SIZE - offset; 855 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 856 ret = -EFAULT; 857 kunmap_local(src); 858 if (ret) 859 goto out; 860 } 861 862 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 863 *sp_location = sp; 864 865 out: 866 return ret; 867 } 868 EXPORT_SYMBOL(transfer_args_to_stack); 869 870 #endif /* CONFIG_MMU */ 871 872 /* 873 * On success, caller must call do_close_execat() on the returned 874 * struct file to close it. 875 */ 876 static struct file *do_open_execat(int fd, struct filename *name, int flags) 877 { 878 int err; 879 struct file *file __free(fput) = NULL; 880 struct open_flags open_exec_flags = { 881 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 882 .acc_mode = MAY_EXEC, 883 .intent = LOOKUP_OPEN, 884 .lookup_flags = LOOKUP_FOLLOW, 885 }; 886 887 if ((flags & 888 ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0) 889 return ERR_PTR(-EINVAL); 890 if (flags & AT_SYMLINK_NOFOLLOW) 891 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 892 if (flags & AT_EMPTY_PATH) 893 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 894 895 file = do_filp_open(fd, name, &open_exec_flags); 896 if (IS_ERR(file)) 897 return file; 898 899 /* 900 * In the past the regular type check was here. It moved to may_open() in 901 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 902 * an invariant that all non-regular files error out before we get here. 903 */ 904 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 905 path_noexec(&file->f_path)) 906 return ERR_PTR(-EACCES); 907 908 err = exe_file_deny_write_access(file); 909 if (err) 910 return ERR_PTR(err); 911 912 return no_free_ptr(file); 913 } 914 915 /** 916 * open_exec - Open a path name for execution 917 * 918 * @name: path name to open with the intent of executing it. 919 * 920 * Returns ERR_PTR on failure or allocated struct file on success. 921 * 922 * As this is a wrapper for the internal do_open_execat(), callers 923 * must call exe_file_allow_write_access() before fput() on release. Also see 924 * do_close_execat(). 925 */ 926 struct file *open_exec(const char *name) 927 { 928 struct filename *filename = getname_kernel(name); 929 struct file *f = ERR_CAST(filename); 930 931 if (!IS_ERR(filename)) { 932 f = do_open_execat(AT_FDCWD, filename, 0); 933 putname(filename); 934 } 935 return f; 936 } 937 EXPORT_SYMBOL(open_exec); 938 939 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 940 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 941 { 942 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 943 if (res > 0) 944 flush_icache_user_range(addr, addr + len); 945 return res; 946 } 947 EXPORT_SYMBOL(read_code); 948 #endif 949 950 /* 951 * Maps the mm_struct mm into the current task struct. 952 * On success, this function returns with exec_update_lock 953 * held for writing. 954 */ 955 static int exec_mmap(struct mm_struct *mm) 956 { 957 struct task_struct *tsk; 958 struct mm_struct *old_mm, *active_mm; 959 int ret; 960 961 /* Notify parent that we're no longer interested in the old VM */ 962 tsk = current; 963 old_mm = current->mm; 964 exec_mm_release(tsk, old_mm); 965 966 ret = down_write_killable(&tsk->signal->exec_update_lock); 967 if (ret) 968 return ret; 969 970 if (old_mm) { 971 /* 972 * If there is a pending fatal signal perhaps a signal 973 * whose default action is to create a coredump get 974 * out and die instead of going through with the exec. 975 */ 976 ret = mmap_read_lock_killable(old_mm); 977 if (ret) { 978 up_write(&tsk->signal->exec_update_lock); 979 return ret; 980 } 981 } 982 983 task_lock(tsk); 984 membarrier_exec_mmap(mm); 985 986 local_irq_disable(); 987 active_mm = tsk->active_mm; 988 tsk->active_mm = mm; 989 tsk->mm = mm; 990 mm_init_cid(mm, tsk); 991 /* 992 * This prevents preemption while active_mm is being loaded and 993 * it and mm are being updated, which could cause problems for 994 * lazy tlb mm refcounting when these are updated by context 995 * switches. Not all architectures can handle irqs off over 996 * activate_mm yet. 997 */ 998 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 999 local_irq_enable(); 1000 activate_mm(active_mm, mm); 1001 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1002 local_irq_enable(); 1003 lru_gen_add_mm(mm); 1004 task_unlock(tsk); 1005 lru_gen_use_mm(mm); 1006 if (old_mm) { 1007 mmap_read_unlock(old_mm); 1008 BUG_ON(active_mm != old_mm); 1009 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1010 mm_update_next_owner(old_mm); 1011 mmput(old_mm); 1012 return 0; 1013 } 1014 mmdrop_lazy_tlb(active_mm); 1015 return 0; 1016 } 1017 1018 static int de_thread(struct task_struct *tsk) 1019 { 1020 struct signal_struct *sig = tsk->signal; 1021 struct sighand_struct *oldsighand = tsk->sighand; 1022 spinlock_t *lock = &oldsighand->siglock; 1023 1024 if (thread_group_empty(tsk)) 1025 goto no_thread_group; 1026 1027 /* 1028 * Kill all other threads in the thread group. 1029 */ 1030 spin_lock_irq(lock); 1031 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1032 /* 1033 * Another group action in progress, just 1034 * return so that the signal is processed. 1035 */ 1036 spin_unlock_irq(lock); 1037 return -EAGAIN; 1038 } 1039 1040 sig->group_exec_task = tsk; 1041 sig->notify_count = zap_other_threads(tsk); 1042 if (!thread_group_leader(tsk)) 1043 sig->notify_count--; 1044 1045 while (sig->notify_count) { 1046 __set_current_state(TASK_KILLABLE); 1047 spin_unlock_irq(lock); 1048 schedule(); 1049 if (__fatal_signal_pending(tsk)) 1050 goto killed; 1051 spin_lock_irq(lock); 1052 } 1053 spin_unlock_irq(lock); 1054 1055 /* 1056 * At this point all other threads have exited, all we have to 1057 * do is to wait for the thread group leader to become inactive, 1058 * and to assume its PID: 1059 */ 1060 if (!thread_group_leader(tsk)) { 1061 struct task_struct *leader = tsk->group_leader; 1062 1063 for (;;) { 1064 cgroup_threadgroup_change_begin(tsk); 1065 write_lock_irq(&tasklist_lock); 1066 /* 1067 * Do this under tasklist_lock to ensure that 1068 * exit_notify() can't miss ->group_exec_task 1069 */ 1070 sig->notify_count = -1; 1071 if (likely(leader->exit_state)) 1072 break; 1073 __set_current_state(TASK_KILLABLE); 1074 write_unlock_irq(&tasklist_lock); 1075 cgroup_threadgroup_change_end(tsk); 1076 schedule(); 1077 if (__fatal_signal_pending(tsk)) 1078 goto killed; 1079 } 1080 1081 /* 1082 * The only record we have of the real-time age of a 1083 * process, regardless of execs it's done, is start_time. 1084 * All the past CPU time is accumulated in signal_struct 1085 * from sister threads now dead. But in this non-leader 1086 * exec, nothing survives from the original leader thread, 1087 * whose birth marks the true age of this process now. 1088 * When we take on its identity by switching to its PID, we 1089 * also take its birthdate (always earlier than our own). 1090 */ 1091 tsk->start_time = leader->start_time; 1092 tsk->start_boottime = leader->start_boottime; 1093 1094 BUG_ON(!same_thread_group(leader, tsk)); 1095 /* 1096 * An exec() starts a new thread group with the 1097 * TGID of the previous thread group. Rehash the 1098 * two threads with a switched PID, and release 1099 * the former thread group leader: 1100 */ 1101 1102 /* Become a process group leader with the old leader's pid. 1103 * The old leader becomes a thread of the this thread group. 1104 */ 1105 exchange_tids(tsk, leader); 1106 transfer_pid(leader, tsk, PIDTYPE_TGID); 1107 transfer_pid(leader, tsk, PIDTYPE_PGID); 1108 transfer_pid(leader, tsk, PIDTYPE_SID); 1109 1110 list_replace_rcu(&leader->tasks, &tsk->tasks); 1111 list_replace_init(&leader->sibling, &tsk->sibling); 1112 1113 tsk->group_leader = tsk; 1114 leader->group_leader = tsk; 1115 1116 tsk->exit_signal = SIGCHLD; 1117 leader->exit_signal = -1; 1118 1119 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1120 leader->exit_state = EXIT_DEAD; 1121 /* 1122 * We are going to release_task()->ptrace_unlink() silently, 1123 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1124 * the tracer won't block again waiting for this thread. 1125 */ 1126 if (unlikely(leader->ptrace)) 1127 __wake_up_parent(leader, leader->parent); 1128 write_unlock_irq(&tasklist_lock); 1129 cgroup_threadgroup_change_end(tsk); 1130 1131 release_task(leader); 1132 } 1133 1134 sig->group_exec_task = NULL; 1135 sig->notify_count = 0; 1136 1137 no_thread_group: 1138 /* we have changed execution domain */ 1139 tsk->exit_signal = SIGCHLD; 1140 1141 BUG_ON(!thread_group_leader(tsk)); 1142 return 0; 1143 1144 killed: 1145 /* protects against exit_notify() and __exit_signal() */ 1146 read_lock(&tasklist_lock); 1147 sig->group_exec_task = NULL; 1148 sig->notify_count = 0; 1149 read_unlock(&tasklist_lock); 1150 return -EAGAIN; 1151 } 1152 1153 1154 /* 1155 * This function makes sure the current process has its own signal table, 1156 * so that flush_signal_handlers can later reset the handlers without 1157 * disturbing other processes. (Other processes might share the signal 1158 * table via the CLONE_SIGHAND option to clone().) 1159 */ 1160 static int unshare_sighand(struct task_struct *me) 1161 { 1162 struct sighand_struct *oldsighand = me->sighand; 1163 1164 if (refcount_read(&oldsighand->count) != 1) { 1165 struct sighand_struct *newsighand; 1166 /* 1167 * This ->sighand is shared with the CLONE_SIGHAND 1168 * but not CLONE_THREAD task, switch to the new one. 1169 */ 1170 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1171 if (!newsighand) 1172 return -ENOMEM; 1173 1174 refcount_set(&newsighand->count, 1); 1175 1176 write_lock_irq(&tasklist_lock); 1177 spin_lock(&oldsighand->siglock); 1178 memcpy(newsighand->action, oldsighand->action, 1179 sizeof(newsighand->action)); 1180 rcu_assign_pointer(me->sighand, newsighand); 1181 spin_unlock(&oldsighand->siglock); 1182 write_unlock_irq(&tasklist_lock); 1183 1184 __cleanup_sighand(oldsighand); 1185 } 1186 return 0; 1187 } 1188 1189 /* 1190 * This is unlocked -- the string will always be NUL-terminated, but 1191 * may show overlapping contents if racing concurrent reads. 1192 */ 1193 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1194 { 1195 size_t len = min(strlen(buf), sizeof(tsk->comm) - 1); 1196 1197 trace_task_rename(tsk, buf); 1198 memcpy(tsk->comm, buf, len); 1199 memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len); 1200 perf_event_comm(tsk, exec); 1201 } 1202 1203 /* 1204 * Calling this is the point of no return. None of the failures will be 1205 * seen by userspace since either the process is already taking a fatal 1206 * signal (via de_thread() or coredump), or will have SEGV raised 1207 * (after exec_mmap()) by search_binary_handler (see below). 1208 */ 1209 int begin_new_exec(struct linux_binprm * bprm) 1210 { 1211 struct task_struct *me = current; 1212 int retval; 1213 1214 /* Once we are committed compute the creds */ 1215 retval = bprm_creds_from_file(bprm); 1216 if (retval) 1217 return retval; 1218 1219 /* 1220 * This tracepoint marks the point before flushing the old exec where 1221 * the current task is still unchanged, but errors are fatal (point of 1222 * no return). The later "sched_process_exec" tracepoint is called after 1223 * the current task has successfully switched to the new exec. 1224 */ 1225 trace_sched_prepare_exec(current, bprm); 1226 1227 /* 1228 * Ensure all future errors are fatal. 1229 */ 1230 bprm->point_of_no_return = true; 1231 1232 /* 1233 * Make this the only thread in the thread group. 1234 */ 1235 retval = de_thread(me); 1236 if (retval) 1237 goto out; 1238 1239 /* 1240 * Cancel any io_uring activity across execve 1241 */ 1242 io_uring_task_cancel(); 1243 1244 /* Ensure the files table is not shared. */ 1245 retval = unshare_files(); 1246 if (retval) 1247 goto out; 1248 1249 /* 1250 * Must be called _before_ exec_mmap() as bprm->mm is 1251 * not visible until then. Doing it here also ensures 1252 * we don't race against replace_mm_exe_file(). 1253 */ 1254 retval = set_mm_exe_file(bprm->mm, bprm->file); 1255 if (retval) 1256 goto out; 1257 1258 /* If the binary is not readable then enforce mm->dumpable=0 */ 1259 would_dump(bprm, bprm->file); 1260 if (bprm->have_execfd) 1261 would_dump(bprm, bprm->executable); 1262 1263 /* 1264 * Release all of the old mmap stuff 1265 */ 1266 acct_arg_size(bprm, 0); 1267 retval = exec_mmap(bprm->mm); 1268 if (retval) 1269 goto out; 1270 1271 bprm->mm = NULL; 1272 1273 retval = exec_task_namespaces(); 1274 if (retval) 1275 goto out_unlock; 1276 1277 #ifdef CONFIG_POSIX_TIMERS 1278 spin_lock_irq(&me->sighand->siglock); 1279 posix_cpu_timers_exit(me); 1280 spin_unlock_irq(&me->sighand->siglock); 1281 exit_itimers(me); 1282 flush_itimer_signals(); 1283 #endif 1284 1285 /* 1286 * Make the signal table private. 1287 */ 1288 retval = unshare_sighand(me); 1289 if (retval) 1290 goto out_unlock; 1291 1292 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1293 PF_NOFREEZE | PF_NO_SETAFFINITY); 1294 flush_thread(); 1295 me->personality &= ~bprm->per_clear; 1296 1297 clear_syscall_work_syscall_user_dispatch(me); 1298 1299 /* 1300 * We have to apply CLOEXEC before we change whether the process is 1301 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1302 * trying to access the should-be-closed file descriptors of a process 1303 * undergoing exec(2). 1304 */ 1305 do_close_on_exec(me->files); 1306 1307 if (bprm->secureexec) { 1308 /* Make sure parent cannot signal privileged process. */ 1309 me->pdeath_signal = 0; 1310 1311 /* 1312 * For secureexec, reset the stack limit to sane default to 1313 * avoid bad behavior from the prior rlimits. This has to 1314 * happen before arch_pick_mmap_layout(), which examines 1315 * RLIMIT_STACK, but after the point of no return to avoid 1316 * needing to clean up the change on failure. 1317 */ 1318 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1319 bprm->rlim_stack.rlim_cur = _STK_LIM; 1320 } 1321 1322 me->sas_ss_sp = me->sas_ss_size = 0; 1323 1324 /* 1325 * Figure out dumpability. Note that this checking only of current 1326 * is wrong, but userspace depends on it. This should be testing 1327 * bprm->secureexec instead. 1328 */ 1329 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1330 !(uid_eq(current_euid(), current_uid()) && 1331 gid_eq(current_egid(), current_gid()))) 1332 set_dumpable(current->mm, suid_dumpable); 1333 else 1334 set_dumpable(current->mm, SUID_DUMP_USER); 1335 1336 perf_event_exec(); 1337 1338 /* 1339 * If the original filename was empty, alloc_bprm() made up a path 1340 * that will probably not be useful to admins running ps or similar. 1341 * Let's fix it up to be something reasonable. 1342 */ 1343 if (bprm->comm_from_dentry) { 1344 /* 1345 * Hold RCU lock to keep the name from being freed behind our back. 1346 * Use acquire semantics to make sure the terminating NUL from 1347 * __d_alloc() is seen. 1348 * 1349 * Note, we're deliberately sloppy here. We don't need to care about 1350 * detecting a concurrent rename and just want a terminated name. 1351 */ 1352 rcu_read_lock(); 1353 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name), 1354 true); 1355 rcu_read_unlock(); 1356 } else { 1357 __set_task_comm(me, kbasename(bprm->filename), true); 1358 } 1359 1360 /* An exec changes our domain. We are no longer part of the thread 1361 group */ 1362 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1363 flush_signal_handlers(me, 0); 1364 1365 retval = set_cred_ucounts(bprm->cred); 1366 if (retval < 0) 1367 goto out_unlock; 1368 1369 /* 1370 * install the new credentials for this executable 1371 */ 1372 security_bprm_committing_creds(bprm); 1373 1374 commit_creds(bprm->cred); 1375 bprm->cred = NULL; 1376 1377 /* 1378 * Disable monitoring for regular users 1379 * when executing setuid binaries. Must 1380 * wait until new credentials are committed 1381 * by commit_creds() above 1382 */ 1383 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1384 perf_event_exit_task(me); 1385 /* 1386 * cred_guard_mutex must be held at least to this point to prevent 1387 * ptrace_attach() from altering our determination of the task's 1388 * credentials; any time after this it may be unlocked. 1389 */ 1390 security_bprm_committed_creds(bprm); 1391 1392 /* Pass the opened binary to the interpreter. */ 1393 if (bprm->have_execfd) { 1394 retval = get_unused_fd_flags(0); 1395 if (retval < 0) 1396 goto out_unlock; 1397 fd_install(retval, bprm->executable); 1398 bprm->executable = NULL; 1399 bprm->execfd = retval; 1400 } 1401 return 0; 1402 1403 out_unlock: 1404 up_write(&me->signal->exec_update_lock); 1405 if (!bprm->cred) 1406 mutex_unlock(&me->signal->cred_guard_mutex); 1407 1408 out: 1409 return retval; 1410 } 1411 EXPORT_SYMBOL(begin_new_exec); 1412 1413 void would_dump(struct linux_binprm *bprm, struct file *file) 1414 { 1415 struct inode *inode = file_inode(file); 1416 struct mnt_idmap *idmap = file_mnt_idmap(file); 1417 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1418 struct user_namespace *old, *user_ns; 1419 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1420 1421 /* Ensure mm->user_ns contains the executable */ 1422 user_ns = old = bprm->mm->user_ns; 1423 while ((user_ns != &init_user_ns) && 1424 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1425 user_ns = user_ns->parent; 1426 1427 if (old != user_ns) { 1428 bprm->mm->user_ns = get_user_ns(user_ns); 1429 put_user_ns(old); 1430 } 1431 } 1432 } 1433 EXPORT_SYMBOL(would_dump); 1434 1435 void setup_new_exec(struct linux_binprm * bprm) 1436 { 1437 /* Setup things that can depend upon the personality */ 1438 struct task_struct *me = current; 1439 1440 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1441 1442 arch_setup_new_exec(); 1443 1444 /* Set the new mm task size. We have to do that late because it may 1445 * depend on TIF_32BIT which is only updated in flush_thread() on 1446 * some architectures like powerpc 1447 */ 1448 me->mm->task_size = TASK_SIZE; 1449 up_write(&me->signal->exec_update_lock); 1450 mutex_unlock(&me->signal->cred_guard_mutex); 1451 } 1452 EXPORT_SYMBOL(setup_new_exec); 1453 1454 /* Runs immediately before start_thread() takes over. */ 1455 void finalize_exec(struct linux_binprm *bprm) 1456 { 1457 /* Store any stack rlimit changes before starting thread. */ 1458 task_lock(current->group_leader); 1459 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1460 task_unlock(current->group_leader); 1461 } 1462 EXPORT_SYMBOL(finalize_exec); 1463 1464 /* 1465 * Prepare credentials and lock ->cred_guard_mutex. 1466 * setup_new_exec() commits the new creds and drops the lock. 1467 * Or, if exec fails before, free_bprm() should release ->cred 1468 * and unlock. 1469 */ 1470 static int prepare_bprm_creds(struct linux_binprm *bprm) 1471 { 1472 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1473 return -ERESTARTNOINTR; 1474 1475 bprm->cred = prepare_exec_creds(); 1476 if (likely(bprm->cred)) 1477 return 0; 1478 1479 mutex_unlock(¤t->signal->cred_guard_mutex); 1480 return -ENOMEM; 1481 } 1482 1483 /* Matches do_open_execat() */ 1484 static void do_close_execat(struct file *file) 1485 { 1486 if (!file) 1487 return; 1488 exe_file_allow_write_access(file); 1489 fput(file); 1490 } 1491 1492 static void free_bprm(struct linux_binprm *bprm) 1493 { 1494 if (bprm->mm) { 1495 acct_arg_size(bprm, 0); 1496 mmput(bprm->mm); 1497 } 1498 free_arg_pages(bprm); 1499 if (bprm->cred) { 1500 mutex_unlock(¤t->signal->cred_guard_mutex); 1501 abort_creds(bprm->cred); 1502 } 1503 do_close_execat(bprm->file); 1504 if (bprm->executable) 1505 fput(bprm->executable); 1506 /* If a binfmt changed the interp, free it. */ 1507 if (bprm->interp != bprm->filename) 1508 kfree(bprm->interp); 1509 kfree(bprm->fdpath); 1510 kfree(bprm); 1511 } 1512 1513 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1514 { 1515 struct linux_binprm *bprm; 1516 struct file *file; 1517 int retval = -ENOMEM; 1518 1519 file = do_open_execat(fd, filename, flags); 1520 if (IS_ERR(file)) 1521 return ERR_CAST(file); 1522 1523 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1524 if (!bprm) { 1525 do_close_execat(file); 1526 return ERR_PTR(-ENOMEM); 1527 } 1528 1529 bprm->file = file; 1530 1531 if (fd == AT_FDCWD || filename->name[0] == '/') { 1532 bprm->filename = filename->name; 1533 } else { 1534 if (filename->name[0] == '\0') { 1535 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1536 bprm->comm_from_dentry = 1; 1537 } else { 1538 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1539 fd, filename->name); 1540 } 1541 if (!bprm->fdpath) 1542 goto out_free; 1543 1544 /* 1545 * Record that a name derived from an O_CLOEXEC fd will be 1546 * inaccessible after exec. This allows the code in exec to 1547 * choose to fail when the executable is not mmaped into the 1548 * interpreter and an open file descriptor is not passed to 1549 * the interpreter. This makes for a better user experience 1550 * than having the interpreter start and then immediately fail 1551 * when it finds the executable is inaccessible. 1552 */ 1553 if (get_close_on_exec(fd)) 1554 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1555 1556 bprm->filename = bprm->fdpath; 1557 } 1558 bprm->interp = bprm->filename; 1559 1560 /* 1561 * At this point, security_file_open() has already been called (with 1562 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will 1563 * stop just after the security_bprm_creds_for_exec() call in 1564 * bprm_execve(). Indeed, the kernel should not try to parse the 1565 * content of the file with exec_binprm() nor change the calling 1566 * thread, which means that the following security functions will not 1567 * be called: 1568 * - security_bprm_check() 1569 * - security_bprm_creds_from_file() 1570 * - security_bprm_committing_creds() 1571 * - security_bprm_committed_creds() 1572 */ 1573 bprm->is_check = !!(flags & AT_EXECVE_CHECK); 1574 1575 retval = bprm_mm_init(bprm); 1576 if (!retval) 1577 return bprm; 1578 1579 out_free: 1580 free_bprm(bprm); 1581 return ERR_PTR(retval); 1582 } 1583 1584 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1585 { 1586 /* If a binfmt changed the interp, free it first. */ 1587 if (bprm->interp != bprm->filename) 1588 kfree(bprm->interp); 1589 bprm->interp = kstrdup(interp, GFP_KERNEL); 1590 if (!bprm->interp) 1591 return -ENOMEM; 1592 return 0; 1593 } 1594 EXPORT_SYMBOL(bprm_change_interp); 1595 1596 /* 1597 * determine how safe it is to execute the proposed program 1598 * - the caller must hold ->cred_guard_mutex to protect against 1599 * PTRACE_ATTACH or seccomp thread-sync 1600 */ 1601 static void check_unsafe_exec(struct linux_binprm *bprm) 1602 { 1603 struct task_struct *p = current, *t; 1604 unsigned n_fs; 1605 1606 if (p->ptrace) 1607 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1608 1609 /* 1610 * This isn't strictly necessary, but it makes it harder for LSMs to 1611 * mess up. 1612 */ 1613 if (task_no_new_privs(current)) 1614 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1615 1616 /* 1617 * If another task is sharing our fs, we cannot safely 1618 * suid exec because the differently privileged task 1619 * will be able to manipulate the current directory, etc. 1620 * It would be nice to force an unshare instead... 1621 */ 1622 n_fs = 1; 1623 spin_lock(&p->fs->lock); 1624 rcu_read_lock(); 1625 for_other_threads(p, t) { 1626 if (t->fs == p->fs) 1627 n_fs++; 1628 } 1629 rcu_read_unlock(); 1630 1631 /* "users" and "in_exec" locked for copy_fs() */ 1632 if (p->fs->users > n_fs) 1633 bprm->unsafe |= LSM_UNSAFE_SHARE; 1634 else 1635 p->fs->in_exec = 1; 1636 spin_unlock(&p->fs->lock); 1637 } 1638 1639 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1640 { 1641 /* Handle suid and sgid on files */ 1642 struct mnt_idmap *idmap; 1643 struct inode *inode = file_inode(file); 1644 unsigned int mode; 1645 vfsuid_t vfsuid; 1646 vfsgid_t vfsgid; 1647 int err; 1648 1649 if (!mnt_may_suid(file->f_path.mnt)) 1650 return; 1651 1652 if (task_no_new_privs(current)) 1653 return; 1654 1655 mode = READ_ONCE(inode->i_mode); 1656 if (!(mode & (S_ISUID|S_ISGID))) 1657 return; 1658 1659 idmap = file_mnt_idmap(file); 1660 1661 /* Be careful if suid/sgid is set */ 1662 inode_lock(inode); 1663 1664 /* Atomically reload and check mode/uid/gid now that lock held. */ 1665 mode = inode->i_mode; 1666 vfsuid = i_uid_into_vfsuid(idmap, inode); 1667 vfsgid = i_gid_into_vfsgid(idmap, inode); 1668 err = inode_permission(idmap, inode, MAY_EXEC); 1669 inode_unlock(inode); 1670 1671 /* Did the exec bit vanish out from under us? Give up. */ 1672 if (err) 1673 return; 1674 1675 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1676 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1677 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1678 return; 1679 1680 if (mode & S_ISUID) { 1681 bprm->per_clear |= PER_CLEAR_ON_SETID; 1682 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1683 } 1684 1685 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1686 bprm->per_clear |= PER_CLEAR_ON_SETID; 1687 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1688 } 1689 } 1690 1691 /* 1692 * Compute brpm->cred based upon the final binary. 1693 */ 1694 static int bprm_creds_from_file(struct linux_binprm *bprm) 1695 { 1696 /* Compute creds based on which file? */ 1697 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1698 1699 bprm_fill_uid(bprm, file); 1700 return security_bprm_creds_from_file(bprm, file); 1701 } 1702 1703 /* 1704 * Fill the binprm structure from the inode. 1705 * Read the first BINPRM_BUF_SIZE bytes 1706 * 1707 * This may be called multiple times for binary chains (scripts for example). 1708 */ 1709 static int prepare_binprm(struct linux_binprm *bprm) 1710 { 1711 loff_t pos = 0; 1712 1713 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1714 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1715 } 1716 1717 /* 1718 * Arguments are '\0' separated strings found at the location bprm->p 1719 * points to; chop off the first by relocating brpm->p to right after 1720 * the first '\0' encountered. 1721 */ 1722 int remove_arg_zero(struct linux_binprm *bprm) 1723 { 1724 unsigned long offset; 1725 char *kaddr; 1726 struct page *page; 1727 1728 if (!bprm->argc) 1729 return 0; 1730 1731 do { 1732 offset = bprm->p & ~PAGE_MASK; 1733 page = get_arg_page(bprm, bprm->p, 0); 1734 if (!page) 1735 return -EFAULT; 1736 kaddr = kmap_local_page(page); 1737 1738 for (; offset < PAGE_SIZE && kaddr[offset]; 1739 offset++, bprm->p++) 1740 ; 1741 1742 kunmap_local(kaddr); 1743 put_arg_page(page); 1744 } while (offset == PAGE_SIZE); 1745 1746 bprm->p++; 1747 bprm->argc--; 1748 1749 return 0; 1750 } 1751 EXPORT_SYMBOL(remove_arg_zero); 1752 1753 /* 1754 * cycle the list of binary formats handler, until one recognizes the image 1755 */ 1756 static int search_binary_handler(struct linux_binprm *bprm) 1757 { 1758 struct linux_binfmt *fmt; 1759 int retval; 1760 1761 retval = prepare_binprm(bprm); 1762 if (retval < 0) 1763 return retval; 1764 1765 retval = security_bprm_check(bprm); 1766 if (retval) 1767 return retval; 1768 1769 read_lock(&binfmt_lock); 1770 list_for_each_entry(fmt, &formats, lh) { 1771 if (!try_module_get(fmt->module)) 1772 continue; 1773 read_unlock(&binfmt_lock); 1774 1775 retval = fmt->load_binary(bprm); 1776 1777 read_lock(&binfmt_lock); 1778 put_binfmt(fmt); 1779 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1780 read_unlock(&binfmt_lock); 1781 return retval; 1782 } 1783 } 1784 read_unlock(&binfmt_lock); 1785 1786 return -ENOEXEC; 1787 } 1788 1789 /* binfmt handlers will call back into begin_new_exec() on success. */ 1790 static int exec_binprm(struct linux_binprm *bprm) 1791 { 1792 pid_t old_pid, old_vpid; 1793 int ret, depth; 1794 1795 /* Need to fetch pid before load_binary changes it */ 1796 old_pid = current->pid; 1797 rcu_read_lock(); 1798 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1799 rcu_read_unlock(); 1800 1801 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1802 for (depth = 0;; depth++) { 1803 struct file *exec; 1804 if (depth > 5) 1805 return -ELOOP; 1806 1807 ret = search_binary_handler(bprm); 1808 if (ret < 0) 1809 return ret; 1810 if (!bprm->interpreter) 1811 break; 1812 1813 exec = bprm->file; 1814 bprm->file = bprm->interpreter; 1815 bprm->interpreter = NULL; 1816 1817 exe_file_allow_write_access(exec); 1818 if (unlikely(bprm->have_execfd)) { 1819 if (bprm->executable) { 1820 fput(exec); 1821 return -ENOEXEC; 1822 } 1823 bprm->executable = exec; 1824 } else 1825 fput(exec); 1826 } 1827 1828 audit_bprm(bprm); 1829 trace_sched_process_exec(current, old_pid, bprm); 1830 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1831 proc_exec_connector(current); 1832 return 0; 1833 } 1834 1835 static int bprm_execve(struct linux_binprm *bprm) 1836 { 1837 int retval; 1838 1839 retval = prepare_bprm_creds(bprm); 1840 if (retval) 1841 return retval; 1842 1843 /* 1844 * Check for unsafe execution states before exec_binprm(), which 1845 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1846 * where setuid-ness is evaluated. 1847 */ 1848 check_unsafe_exec(bprm); 1849 current->in_execve = 1; 1850 sched_mm_cid_before_execve(current); 1851 1852 sched_exec(); 1853 1854 /* Set the unchanging part of bprm->cred */ 1855 retval = security_bprm_creds_for_exec(bprm); 1856 if (retval || bprm->is_check) 1857 goto out; 1858 1859 retval = exec_binprm(bprm); 1860 if (retval < 0) 1861 goto out; 1862 1863 sched_mm_cid_after_execve(current); 1864 /* execve succeeded */ 1865 current->fs->in_exec = 0; 1866 current->in_execve = 0; 1867 rseq_execve(current); 1868 user_events_execve(current); 1869 acct_update_integrals(current); 1870 task_numa_free(current, false); 1871 return retval; 1872 1873 out: 1874 /* 1875 * If past the point of no return ensure the code never 1876 * returns to the userspace process. Use an existing fatal 1877 * signal if present otherwise terminate the process with 1878 * SIGSEGV. 1879 */ 1880 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1881 force_fatal_sig(SIGSEGV); 1882 1883 sched_mm_cid_after_execve(current); 1884 current->fs->in_exec = 0; 1885 current->in_execve = 0; 1886 1887 return retval; 1888 } 1889 1890 static int do_execveat_common(int fd, struct filename *filename, 1891 struct user_arg_ptr argv, 1892 struct user_arg_ptr envp, 1893 int flags) 1894 { 1895 struct linux_binprm *bprm; 1896 int retval; 1897 1898 if (IS_ERR(filename)) 1899 return PTR_ERR(filename); 1900 1901 /* 1902 * We move the actual failure in case of RLIMIT_NPROC excess from 1903 * set*uid() to execve() because too many poorly written programs 1904 * don't check setuid() return code. Here we additionally recheck 1905 * whether NPROC limit is still exceeded. 1906 */ 1907 if ((current->flags & PF_NPROC_EXCEEDED) && 1908 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1909 retval = -EAGAIN; 1910 goto out_ret; 1911 } 1912 1913 /* We're below the limit (still or again), so we don't want to make 1914 * further execve() calls fail. */ 1915 current->flags &= ~PF_NPROC_EXCEEDED; 1916 1917 bprm = alloc_bprm(fd, filename, flags); 1918 if (IS_ERR(bprm)) { 1919 retval = PTR_ERR(bprm); 1920 goto out_ret; 1921 } 1922 1923 retval = count(argv, MAX_ARG_STRINGS); 1924 if (retval < 0) 1925 goto out_free; 1926 bprm->argc = retval; 1927 1928 retval = count(envp, MAX_ARG_STRINGS); 1929 if (retval < 0) 1930 goto out_free; 1931 bprm->envc = retval; 1932 1933 retval = bprm_stack_limits(bprm); 1934 if (retval < 0) 1935 goto out_free; 1936 1937 retval = copy_string_kernel(bprm->filename, bprm); 1938 if (retval < 0) 1939 goto out_free; 1940 bprm->exec = bprm->p; 1941 1942 retval = copy_strings(bprm->envc, envp, bprm); 1943 if (retval < 0) 1944 goto out_free; 1945 1946 retval = copy_strings(bprm->argc, argv, bprm); 1947 if (retval < 0) 1948 goto out_free; 1949 1950 /* 1951 * When argv is empty, add an empty string ("") as argv[0] to 1952 * ensure confused userspace programs that start processing 1953 * from argv[1] won't end up walking envp. See also 1954 * bprm_stack_limits(). 1955 */ 1956 if (bprm->argc == 0) { 1957 retval = copy_string_kernel("", bprm); 1958 if (retval < 0) 1959 goto out_free; 1960 bprm->argc = 1; 1961 1962 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1963 current->comm, bprm->filename); 1964 } 1965 1966 retval = bprm_execve(bprm); 1967 out_free: 1968 free_bprm(bprm); 1969 1970 out_ret: 1971 putname(filename); 1972 return retval; 1973 } 1974 1975 int kernel_execve(const char *kernel_filename, 1976 const char *const *argv, const char *const *envp) 1977 { 1978 struct filename *filename; 1979 struct linux_binprm *bprm; 1980 int fd = AT_FDCWD; 1981 int retval; 1982 1983 /* It is non-sense for kernel threads to call execve */ 1984 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1985 return -EINVAL; 1986 1987 filename = getname_kernel(kernel_filename); 1988 if (IS_ERR(filename)) 1989 return PTR_ERR(filename); 1990 1991 bprm = alloc_bprm(fd, filename, 0); 1992 if (IS_ERR(bprm)) { 1993 retval = PTR_ERR(bprm); 1994 goto out_ret; 1995 } 1996 1997 retval = count_strings_kernel(argv); 1998 if (WARN_ON_ONCE(retval == 0)) 1999 retval = -EINVAL; 2000 if (retval < 0) 2001 goto out_free; 2002 bprm->argc = retval; 2003 2004 retval = count_strings_kernel(envp); 2005 if (retval < 0) 2006 goto out_free; 2007 bprm->envc = retval; 2008 2009 retval = bprm_stack_limits(bprm); 2010 if (retval < 0) 2011 goto out_free; 2012 2013 retval = copy_string_kernel(bprm->filename, bprm); 2014 if (retval < 0) 2015 goto out_free; 2016 bprm->exec = bprm->p; 2017 2018 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2019 if (retval < 0) 2020 goto out_free; 2021 2022 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2023 if (retval < 0) 2024 goto out_free; 2025 2026 retval = bprm_execve(bprm); 2027 out_free: 2028 free_bprm(bprm); 2029 out_ret: 2030 putname(filename); 2031 return retval; 2032 } 2033 2034 static int do_execve(struct filename *filename, 2035 const char __user *const __user *__argv, 2036 const char __user *const __user *__envp) 2037 { 2038 struct user_arg_ptr argv = { .ptr.native = __argv }; 2039 struct user_arg_ptr envp = { .ptr.native = __envp }; 2040 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2041 } 2042 2043 static int do_execveat(int fd, struct filename *filename, 2044 const char __user *const __user *__argv, 2045 const char __user *const __user *__envp, 2046 int flags) 2047 { 2048 struct user_arg_ptr argv = { .ptr.native = __argv }; 2049 struct user_arg_ptr envp = { .ptr.native = __envp }; 2050 2051 return do_execveat_common(fd, filename, argv, envp, flags); 2052 } 2053 2054 #ifdef CONFIG_COMPAT 2055 static int compat_do_execve(struct filename *filename, 2056 const compat_uptr_t __user *__argv, 2057 const compat_uptr_t __user *__envp) 2058 { 2059 struct user_arg_ptr argv = { 2060 .is_compat = true, 2061 .ptr.compat = __argv, 2062 }; 2063 struct user_arg_ptr envp = { 2064 .is_compat = true, 2065 .ptr.compat = __envp, 2066 }; 2067 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2068 } 2069 2070 static int compat_do_execveat(int fd, struct filename *filename, 2071 const compat_uptr_t __user *__argv, 2072 const compat_uptr_t __user *__envp, 2073 int flags) 2074 { 2075 struct user_arg_ptr argv = { 2076 .is_compat = true, 2077 .ptr.compat = __argv, 2078 }; 2079 struct user_arg_ptr envp = { 2080 .is_compat = true, 2081 .ptr.compat = __envp, 2082 }; 2083 return do_execveat_common(fd, filename, argv, envp, flags); 2084 } 2085 #endif 2086 2087 void set_binfmt(struct linux_binfmt *new) 2088 { 2089 struct mm_struct *mm = current->mm; 2090 2091 if (mm->binfmt) 2092 module_put(mm->binfmt->module); 2093 2094 mm->binfmt = new; 2095 if (new) 2096 __module_get(new->module); 2097 } 2098 EXPORT_SYMBOL(set_binfmt); 2099 2100 /* 2101 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2102 */ 2103 void set_dumpable(struct mm_struct *mm, int value) 2104 { 2105 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2106 return; 2107 2108 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2109 } 2110 2111 SYSCALL_DEFINE3(execve, 2112 const char __user *, filename, 2113 const char __user *const __user *, argv, 2114 const char __user *const __user *, envp) 2115 { 2116 return do_execve(getname(filename), argv, envp); 2117 } 2118 2119 SYSCALL_DEFINE5(execveat, 2120 int, fd, const char __user *, filename, 2121 const char __user *const __user *, argv, 2122 const char __user *const __user *, envp, 2123 int, flags) 2124 { 2125 return do_execveat(fd, 2126 getname_uflags(filename, flags), 2127 argv, envp, flags); 2128 } 2129 2130 #ifdef CONFIG_COMPAT 2131 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2132 const compat_uptr_t __user *, argv, 2133 const compat_uptr_t __user *, envp) 2134 { 2135 return compat_do_execve(getname(filename), argv, envp); 2136 } 2137 2138 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2139 const char __user *, filename, 2140 const compat_uptr_t __user *, argv, 2141 const compat_uptr_t __user *, envp, 2142 int, flags) 2143 { 2144 return compat_do_execveat(fd, 2145 getname_uflags(filename, flags), 2146 argv, envp, flags); 2147 } 2148 #endif 2149 2150 #ifdef CONFIG_SYSCTL 2151 2152 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2153 void *buffer, size_t *lenp, loff_t *ppos) 2154 { 2155 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2156 2157 if (!error) 2158 validate_coredump_safety(); 2159 return error; 2160 } 2161 2162 static const struct ctl_table fs_exec_sysctls[] = { 2163 { 2164 .procname = "suid_dumpable", 2165 .data = &suid_dumpable, 2166 .maxlen = sizeof(int), 2167 .mode = 0644, 2168 .proc_handler = proc_dointvec_minmax_coredump, 2169 .extra1 = SYSCTL_ZERO, 2170 .extra2 = SYSCTL_TWO, 2171 }, 2172 }; 2173 2174 static int __init init_fs_exec_sysctls(void) 2175 { 2176 register_sysctl_init("fs", fs_exec_sysctls); 2177 return 0; 2178 } 2179 2180 fs_initcall(init_fs_exec_sysctls); 2181 #endif /* CONFIG_SYSCTL */ 2182 2183 #ifdef CONFIG_EXEC_KUNIT_TEST 2184 #include "tests/exec_kunit.c" 2185 #endif 2186