1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 #include <linux/io_uring.h> 66 #include <linux/syscall_user_dispatch.h> 67 #include <linux/coredump.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/mmu_context.h> 71 #include <asm/tlb.h> 72 73 #include <trace/events/task.h> 74 #include "internal.h" 75 76 #include <trace/events/sched.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = FOLL_FORCE; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 mmap_read_lock(bprm->mm); 221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 222 &page, NULL, NULL); 223 mmap_read_unlock(bprm->mm); 224 if (ret <= 0) 225 return NULL; 226 227 if (write) 228 acct_arg_size(bprm, vma_pages(bprm->vma)); 229 230 return page; 231 } 232 233 static void put_arg_page(struct page *page) 234 { 235 put_page(page); 236 } 237 238 static void free_arg_pages(struct linux_binprm *bprm) 239 { 240 } 241 242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 243 struct page *page) 244 { 245 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 246 } 247 248 static int __bprm_mm_init(struct linux_binprm *bprm) 249 { 250 int err; 251 struct vm_area_struct *vma = NULL; 252 struct mm_struct *mm = bprm->mm; 253 254 bprm->vma = vma = vm_area_alloc(mm); 255 if (!vma) 256 return -ENOMEM; 257 vma_set_anonymous(vma); 258 259 if (mmap_write_lock_killable(mm)) { 260 err = -EINTR; 261 goto err_free; 262 } 263 264 /* 265 * Place the stack at the largest stack address the architecture 266 * supports. Later, we'll move this to an appropriate place. We don't 267 * use STACK_TOP because that can depend on attributes which aren't 268 * configured yet. 269 */ 270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 271 vma->vm_end = STACK_TOP_MAX; 272 vma->vm_start = vma->vm_end - PAGE_SIZE; 273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 275 276 err = insert_vm_struct(mm, vma); 277 if (err) 278 goto err; 279 280 mm->stack_vm = mm->total_vm = 1; 281 mmap_write_unlock(mm); 282 bprm->p = vma->vm_end - sizeof(void *); 283 return 0; 284 err: 285 mmap_write_unlock(mm); 286 err_free: 287 bprm->vma = NULL; 288 vm_area_free(vma); 289 return err; 290 } 291 292 static bool valid_arg_len(struct linux_binprm *bprm, long len) 293 { 294 return len <= MAX_ARG_STRLEN; 295 } 296 297 #else 298 299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 300 { 301 } 302 303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 304 int write) 305 { 306 struct page *page; 307 308 page = bprm->page[pos / PAGE_SIZE]; 309 if (!page && write) { 310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 311 if (!page) 312 return NULL; 313 bprm->page[pos / PAGE_SIZE] = page; 314 } 315 316 return page; 317 } 318 319 static void put_arg_page(struct page *page) 320 { 321 } 322 323 static void free_arg_page(struct linux_binprm *bprm, int i) 324 { 325 if (bprm->page[i]) { 326 __free_page(bprm->page[i]); 327 bprm->page[i] = NULL; 328 } 329 } 330 331 static void free_arg_pages(struct linux_binprm *bprm) 332 { 333 int i; 334 335 for (i = 0; i < MAX_ARG_PAGES; i++) 336 free_arg_page(bprm, i); 337 } 338 339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 340 struct page *page) 341 { 342 } 343 344 static int __bprm_mm_init(struct linux_binprm *bprm) 345 { 346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 347 return 0; 348 } 349 350 static bool valid_arg_len(struct linux_binprm *bprm, long len) 351 { 352 return len <= bprm->p; 353 } 354 355 #endif /* CONFIG_MMU */ 356 357 /* 358 * Create a new mm_struct and populate it with a temporary stack 359 * vm_area_struct. We don't have enough context at this point to set the stack 360 * flags, permissions, and offset, so we use temporary values. We'll update 361 * them later in setup_arg_pages(). 362 */ 363 static int bprm_mm_init(struct linux_binprm *bprm) 364 { 365 int err; 366 struct mm_struct *mm = NULL; 367 368 bprm->mm = mm = mm_alloc(); 369 err = -ENOMEM; 370 if (!mm) 371 goto err; 372 373 /* Save current stack limit for all calculations made during exec. */ 374 task_lock(current->group_leader); 375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 376 task_unlock(current->group_leader); 377 378 err = __bprm_mm_init(bprm); 379 if (err) 380 goto err; 381 382 return 0; 383 384 err: 385 if (mm) { 386 bprm->mm = NULL; 387 mmdrop(mm); 388 } 389 390 return err; 391 } 392 393 struct user_arg_ptr { 394 #ifdef CONFIG_COMPAT 395 bool is_compat; 396 #endif 397 union { 398 const char __user *const __user *native; 399 #ifdef CONFIG_COMPAT 400 const compat_uptr_t __user *compat; 401 #endif 402 } ptr; 403 }; 404 405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 406 { 407 const char __user *native; 408 409 #ifdef CONFIG_COMPAT 410 if (unlikely(argv.is_compat)) { 411 compat_uptr_t compat; 412 413 if (get_user(compat, argv.ptr.compat + nr)) 414 return ERR_PTR(-EFAULT); 415 416 return compat_ptr(compat); 417 } 418 #endif 419 420 if (get_user(native, argv.ptr.native + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return native; 424 } 425 426 /* 427 * count() counts the number of strings in array ARGV. 428 */ 429 static int count(struct user_arg_ptr argv, int max) 430 { 431 int i = 0; 432 433 if (argv.ptr.native != NULL) { 434 for (;;) { 435 const char __user *p = get_user_arg_ptr(argv, i); 436 437 if (!p) 438 break; 439 440 if (IS_ERR(p)) 441 return -EFAULT; 442 443 if (i >= max) 444 return -E2BIG; 445 ++i; 446 447 if (fatal_signal_pending(current)) 448 return -ERESTARTNOHAND; 449 cond_resched(); 450 } 451 } 452 return i; 453 } 454 455 static int count_strings_kernel(const char *const *argv) 456 { 457 int i; 458 459 if (!argv) 460 return 0; 461 462 for (i = 0; argv[i]; ++i) { 463 if (i >= MAX_ARG_STRINGS) 464 return -E2BIG; 465 if (fatal_signal_pending(current)) 466 return -ERESTARTNOHAND; 467 cond_resched(); 468 } 469 return i; 470 } 471 472 static int bprm_stack_limits(struct linux_binprm *bprm) 473 { 474 unsigned long limit, ptr_size; 475 476 /* 477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 478 * (whichever is smaller) for the argv+env strings. 479 * This ensures that: 480 * - the remaining binfmt code will not run out of stack space, 481 * - the program will have a reasonable amount of stack left 482 * to work from. 483 */ 484 limit = _STK_LIM / 4 * 3; 485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 486 /* 487 * We've historically supported up to 32 pages (ARG_MAX) 488 * of argument strings even with small stacks 489 */ 490 limit = max_t(unsigned long, limit, ARG_MAX); 491 /* 492 * We must account for the size of all the argv and envp pointers to 493 * the argv and envp strings, since they will also take up space in 494 * the stack. They aren't stored until much later when we can't 495 * signal to the parent that the child has run out of stack space. 496 * Instead, calculate it here so it's possible to fail gracefully. 497 * 498 * In the case of argc = 0, make sure there is space for adding a 499 * empty string (which will bump argc to 1), to ensure confused 500 * userspace programs don't start processing from argv[1], thinking 501 * argc can never be 0, to keep them from walking envp by accident. 502 * See do_execveat_common(). 503 */ 504 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 505 if (limit <= ptr_size) 506 return -E2BIG; 507 limit -= ptr_size; 508 509 bprm->argmin = bprm->p - limit; 510 return 0; 511 } 512 513 /* 514 * 'copy_strings()' copies argument/environment strings from the old 515 * processes's memory to the new process's stack. The call to get_user_pages() 516 * ensures the destination page is created and not swapped out. 517 */ 518 static int copy_strings(int argc, struct user_arg_ptr argv, 519 struct linux_binprm *bprm) 520 { 521 struct page *kmapped_page = NULL; 522 char *kaddr = NULL; 523 unsigned long kpos = 0; 524 int ret; 525 526 while (argc-- > 0) { 527 const char __user *str; 528 int len; 529 unsigned long pos; 530 531 ret = -EFAULT; 532 str = get_user_arg_ptr(argv, argc); 533 if (IS_ERR(str)) 534 goto out; 535 536 len = strnlen_user(str, MAX_ARG_STRLEN); 537 if (!len) 538 goto out; 539 540 ret = -E2BIG; 541 if (!valid_arg_len(bprm, len)) 542 goto out; 543 544 /* We're going to work our way backwards. */ 545 pos = bprm->p; 546 str += len; 547 bprm->p -= len; 548 #ifdef CONFIG_MMU 549 if (bprm->p < bprm->argmin) 550 goto out; 551 #endif 552 553 while (len > 0) { 554 int offset, bytes_to_copy; 555 556 if (fatal_signal_pending(current)) { 557 ret = -ERESTARTNOHAND; 558 goto out; 559 } 560 cond_resched(); 561 562 offset = pos % PAGE_SIZE; 563 if (offset == 0) 564 offset = PAGE_SIZE; 565 566 bytes_to_copy = offset; 567 if (bytes_to_copy > len) 568 bytes_to_copy = len; 569 570 offset -= bytes_to_copy; 571 pos -= bytes_to_copy; 572 str -= bytes_to_copy; 573 len -= bytes_to_copy; 574 575 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 576 struct page *page; 577 578 page = get_arg_page(bprm, pos, 1); 579 if (!page) { 580 ret = -E2BIG; 581 goto out; 582 } 583 584 if (kmapped_page) { 585 flush_dcache_page(kmapped_page); 586 kunmap_local(kaddr); 587 put_arg_page(kmapped_page); 588 } 589 kmapped_page = page; 590 kaddr = kmap_local_page(kmapped_page); 591 kpos = pos & PAGE_MASK; 592 flush_arg_page(bprm, kpos, kmapped_page); 593 } 594 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 595 ret = -EFAULT; 596 goto out; 597 } 598 } 599 } 600 ret = 0; 601 out: 602 if (kmapped_page) { 603 flush_dcache_page(kmapped_page); 604 kunmap_local(kaddr); 605 put_arg_page(kmapped_page); 606 } 607 return ret; 608 } 609 610 /* 611 * Copy and argument/environment string from the kernel to the processes stack. 612 */ 613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 614 { 615 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 616 unsigned long pos = bprm->p; 617 618 if (len == 0) 619 return -EFAULT; 620 if (!valid_arg_len(bprm, len)) 621 return -E2BIG; 622 623 /* We're going to work our way backwards. */ 624 arg += len; 625 bprm->p -= len; 626 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 627 return -E2BIG; 628 629 while (len > 0) { 630 unsigned int bytes_to_copy = min_t(unsigned int, len, 631 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 632 struct page *page; 633 634 pos -= bytes_to_copy; 635 arg -= bytes_to_copy; 636 len -= bytes_to_copy; 637 638 page = get_arg_page(bprm, pos, 1); 639 if (!page) 640 return -E2BIG; 641 flush_arg_page(bprm, pos & PAGE_MASK, page); 642 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 643 put_arg_page(page); 644 } 645 646 return 0; 647 } 648 EXPORT_SYMBOL(copy_string_kernel); 649 650 static int copy_strings_kernel(int argc, const char *const *argv, 651 struct linux_binprm *bprm) 652 { 653 while (argc-- > 0) { 654 int ret = copy_string_kernel(argv[argc], bprm); 655 if (ret < 0) 656 return ret; 657 if (fatal_signal_pending(current)) 658 return -ERESTARTNOHAND; 659 cond_resched(); 660 } 661 return 0; 662 } 663 664 #ifdef CONFIG_MMU 665 666 /* 667 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 668 * the binfmt code determines where the new stack should reside, we shift it to 669 * its final location. The process proceeds as follows: 670 * 671 * 1) Use shift to calculate the new vma endpoints. 672 * 2) Extend vma to cover both the old and new ranges. This ensures the 673 * arguments passed to subsequent functions are consistent. 674 * 3) Move vma's page tables to the new range. 675 * 4) Free up any cleared pgd range. 676 * 5) Shrink the vma to cover only the new range. 677 */ 678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 679 { 680 struct mm_struct *mm = vma->vm_mm; 681 unsigned long old_start = vma->vm_start; 682 unsigned long old_end = vma->vm_end; 683 unsigned long length = old_end - old_start; 684 unsigned long new_start = old_start - shift; 685 unsigned long new_end = old_end - shift; 686 struct mmu_gather tlb; 687 688 BUG_ON(new_start > new_end); 689 690 /* 691 * ensure there are no vmas between where we want to go 692 * and where we are 693 */ 694 if (vma != find_vma(mm, new_start)) 695 return -EFAULT; 696 697 /* 698 * cover the whole range: [new_start, old_end) 699 */ 700 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 701 return -ENOMEM; 702 703 /* 704 * move the page tables downwards, on failure we rely on 705 * process cleanup to remove whatever mess we made. 706 */ 707 if (length != move_page_tables(vma, old_start, 708 vma, new_start, length, false)) 709 return -ENOMEM; 710 711 lru_add_drain(); 712 tlb_gather_mmu(&tlb, mm); 713 if (new_end > old_start) { 714 /* 715 * when the old and new regions overlap clear from new_end. 716 */ 717 free_pgd_range(&tlb, new_end, old_end, new_end, 718 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 719 } else { 720 /* 721 * otherwise, clean from old_start; this is done to not touch 722 * the address space in [new_end, old_start) some architectures 723 * have constraints on va-space that make this illegal (IA64) - 724 * for the others its just a little faster. 725 */ 726 free_pgd_range(&tlb, old_start, old_end, new_end, 727 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 728 } 729 tlb_finish_mmu(&tlb); 730 731 /* 732 * Shrink the vma to just the new range. Always succeeds. 733 */ 734 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 735 736 return 0; 737 } 738 739 /* 740 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 741 * the stack is optionally relocated, and some extra space is added. 742 */ 743 int setup_arg_pages(struct linux_binprm *bprm, 744 unsigned long stack_top, 745 int executable_stack) 746 { 747 unsigned long ret; 748 unsigned long stack_shift; 749 struct mm_struct *mm = current->mm; 750 struct vm_area_struct *vma = bprm->vma; 751 struct vm_area_struct *prev = NULL; 752 unsigned long vm_flags; 753 unsigned long stack_base; 754 unsigned long stack_size; 755 unsigned long stack_expand; 756 unsigned long rlim_stack; 757 struct mmu_gather tlb; 758 759 #ifdef CONFIG_STACK_GROWSUP 760 /* Limit stack size */ 761 stack_base = bprm->rlim_stack.rlim_max; 762 763 stack_base = calc_max_stack_size(stack_base); 764 765 /* Add space for stack randomization. */ 766 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 767 768 /* Make sure we didn't let the argument array grow too large. */ 769 if (vma->vm_end - vma->vm_start > stack_base) 770 return -ENOMEM; 771 772 stack_base = PAGE_ALIGN(stack_top - stack_base); 773 774 stack_shift = vma->vm_start - stack_base; 775 mm->arg_start = bprm->p - stack_shift; 776 bprm->p = vma->vm_end - stack_shift; 777 #else 778 stack_top = arch_align_stack(stack_top); 779 stack_top = PAGE_ALIGN(stack_top); 780 781 if (unlikely(stack_top < mmap_min_addr) || 782 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 783 return -ENOMEM; 784 785 stack_shift = vma->vm_end - stack_top; 786 787 bprm->p -= stack_shift; 788 mm->arg_start = bprm->p; 789 #endif 790 791 if (bprm->loader) 792 bprm->loader -= stack_shift; 793 bprm->exec -= stack_shift; 794 795 if (mmap_write_lock_killable(mm)) 796 return -EINTR; 797 798 vm_flags = VM_STACK_FLAGS; 799 800 /* 801 * Adjust stack execute permissions; explicitly enable for 802 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 803 * (arch default) otherwise. 804 */ 805 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 806 vm_flags |= VM_EXEC; 807 else if (executable_stack == EXSTACK_DISABLE_X) 808 vm_flags &= ~VM_EXEC; 809 vm_flags |= mm->def_flags; 810 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 811 812 tlb_gather_mmu(&tlb, mm); 813 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 814 vm_flags); 815 tlb_finish_mmu(&tlb); 816 817 if (ret) 818 goto out_unlock; 819 BUG_ON(prev != vma); 820 821 if (unlikely(vm_flags & VM_EXEC)) { 822 pr_warn_once("process '%pD4' started with executable stack\n", 823 bprm->file); 824 } 825 826 /* Move stack pages down in memory. */ 827 if (stack_shift) { 828 ret = shift_arg_pages(vma, stack_shift); 829 if (ret) 830 goto out_unlock; 831 } 832 833 /* mprotect_fixup is overkill to remove the temporary stack flags */ 834 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 835 836 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 837 stack_size = vma->vm_end - vma->vm_start; 838 /* 839 * Align this down to a page boundary as expand_stack 840 * will align it up. 841 */ 842 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 843 #ifdef CONFIG_STACK_GROWSUP 844 if (stack_size + stack_expand > rlim_stack) 845 stack_base = vma->vm_start + rlim_stack; 846 else 847 stack_base = vma->vm_end + stack_expand; 848 #else 849 if (stack_size + stack_expand > rlim_stack) 850 stack_base = vma->vm_end - rlim_stack; 851 else 852 stack_base = vma->vm_start - stack_expand; 853 #endif 854 current->mm->start_stack = bprm->p; 855 ret = expand_stack(vma, stack_base); 856 if (ret) 857 ret = -EFAULT; 858 859 out_unlock: 860 mmap_write_unlock(mm); 861 return ret; 862 } 863 EXPORT_SYMBOL(setup_arg_pages); 864 865 #else 866 867 /* 868 * Transfer the program arguments and environment from the holding pages 869 * onto the stack. The provided stack pointer is adjusted accordingly. 870 */ 871 int transfer_args_to_stack(struct linux_binprm *bprm, 872 unsigned long *sp_location) 873 { 874 unsigned long index, stop, sp; 875 int ret = 0; 876 877 stop = bprm->p >> PAGE_SHIFT; 878 sp = *sp_location; 879 880 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 881 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 882 char *src = kmap_local_page(bprm->page[index]) + offset; 883 sp -= PAGE_SIZE - offset; 884 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 885 ret = -EFAULT; 886 kunmap_local(src); 887 if (ret) 888 goto out; 889 } 890 891 *sp_location = sp; 892 893 out: 894 return ret; 895 } 896 EXPORT_SYMBOL(transfer_args_to_stack); 897 898 #endif /* CONFIG_MMU */ 899 900 static struct file *do_open_execat(int fd, struct filename *name, int flags) 901 { 902 struct file *file; 903 int err; 904 struct open_flags open_exec_flags = { 905 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 906 .acc_mode = MAY_EXEC, 907 .intent = LOOKUP_OPEN, 908 .lookup_flags = LOOKUP_FOLLOW, 909 }; 910 911 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 912 return ERR_PTR(-EINVAL); 913 if (flags & AT_SYMLINK_NOFOLLOW) 914 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 915 if (flags & AT_EMPTY_PATH) 916 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 917 918 file = do_filp_open(fd, name, &open_exec_flags); 919 if (IS_ERR(file)) 920 goto out; 921 922 /* 923 * may_open() has already checked for this, so it should be 924 * impossible to trip now. But we need to be extra cautious 925 * and check again at the very end too. 926 */ 927 err = -EACCES; 928 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 929 path_noexec(&file->f_path))) 930 goto exit; 931 932 err = deny_write_access(file); 933 if (err) 934 goto exit; 935 936 if (name->name[0] != '\0') 937 fsnotify_open(file); 938 939 out: 940 return file; 941 942 exit: 943 fput(file); 944 return ERR_PTR(err); 945 } 946 947 struct file *open_exec(const char *name) 948 { 949 struct filename *filename = getname_kernel(name); 950 struct file *f = ERR_CAST(filename); 951 952 if (!IS_ERR(filename)) { 953 f = do_open_execat(AT_FDCWD, filename, 0); 954 putname(filename); 955 } 956 return f; 957 } 958 EXPORT_SYMBOL(open_exec); 959 960 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 961 defined(CONFIG_BINFMT_ELF_FDPIC) 962 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 963 { 964 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 965 if (res > 0) 966 flush_icache_user_range(addr, addr + len); 967 return res; 968 } 969 EXPORT_SYMBOL(read_code); 970 #endif 971 972 /* 973 * Maps the mm_struct mm into the current task struct. 974 * On success, this function returns with exec_update_lock 975 * held for writing. 976 */ 977 static int exec_mmap(struct mm_struct *mm) 978 { 979 struct task_struct *tsk; 980 struct mm_struct *old_mm, *active_mm; 981 int ret; 982 983 /* Notify parent that we're no longer interested in the old VM */ 984 tsk = current; 985 old_mm = current->mm; 986 exec_mm_release(tsk, old_mm); 987 if (old_mm) 988 sync_mm_rss(old_mm); 989 990 ret = down_write_killable(&tsk->signal->exec_update_lock); 991 if (ret) 992 return ret; 993 994 if (old_mm) { 995 /* 996 * If there is a pending fatal signal perhaps a signal 997 * whose default action is to create a coredump get 998 * out and die instead of going through with the exec. 999 */ 1000 ret = mmap_read_lock_killable(old_mm); 1001 if (ret) { 1002 up_write(&tsk->signal->exec_update_lock); 1003 return ret; 1004 } 1005 } 1006 1007 task_lock(tsk); 1008 membarrier_exec_mmap(mm); 1009 1010 local_irq_disable(); 1011 active_mm = tsk->active_mm; 1012 tsk->active_mm = mm; 1013 tsk->mm = mm; 1014 /* 1015 * This prevents preemption while active_mm is being loaded and 1016 * it and mm are being updated, which could cause problems for 1017 * lazy tlb mm refcounting when these are updated by context 1018 * switches. Not all architectures can handle irqs off over 1019 * activate_mm yet. 1020 */ 1021 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1022 local_irq_enable(); 1023 activate_mm(active_mm, mm); 1024 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1025 local_irq_enable(); 1026 tsk->mm->vmacache_seqnum = 0; 1027 vmacache_flush(tsk); 1028 task_unlock(tsk); 1029 if (old_mm) { 1030 mmap_read_unlock(old_mm); 1031 BUG_ON(active_mm != old_mm); 1032 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1033 mm_update_next_owner(old_mm); 1034 mmput(old_mm); 1035 return 0; 1036 } 1037 mmdrop(active_mm); 1038 return 0; 1039 } 1040 1041 static int de_thread(struct task_struct *tsk) 1042 { 1043 struct signal_struct *sig = tsk->signal; 1044 struct sighand_struct *oldsighand = tsk->sighand; 1045 spinlock_t *lock = &oldsighand->siglock; 1046 1047 if (thread_group_empty(tsk)) 1048 goto no_thread_group; 1049 1050 /* 1051 * Kill all other threads in the thread group. 1052 */ 1053 spin_lock_irq(lock); 1054 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1055 /* 1056 * Another group action in progress, just 1057 * return so that the signal is processed. 1058 */ 1059 spin_unlock_irq(lock); 1060 return -EAGAIN; 1061 } 1062 1063 sig->group_exec_task = tsk; 1064 sig->notify_count = zap_other_threads(tsk); 1065 if (!thread_group_leader(tsk)) 1066 sig->notify_count--; 1067 1068 while (sig->notify_count) { 1069 __set_current_state(TASK_KILLABLE); 1070 spin_unlock_irq(lock); 1071 schedule(); 1072 if (__fatal_signal_pending(tsk)) 1073 goto killed; 1074 spin_lock_irq(lock); 1075 } 1076 spin_unlock_irq(lock); 1077 1078 /* 1079 * At this point all other threads have exited, all we have to 1080 * do is to wait for the thread group leader to become inactive, 1081 * and to assume its PID: 1082 */ 1083 if (!thread_group_leader(tsk)) { 1084 struct task_struct *leader = tsk->group_leader; 1085 1086 for (;;) { 1087 cgroup_threadgroup_change_begin(tsk); 1088 write_lock_irq(&tasklist_lock); 1089 /* 1090 * Do this under tasklist_lock to ensure that 1091 * exit_notify() can't miss ->group_exec_task 1092 */ 1093 sig->notify_count = -1; 1094 if (likely(leader->exit_state)) 1095 break; 1096 __set_current_state(TASK_KILLABLE); 1097 write_unlock_irq(&tasklist_lock); 1098 cgroup_threadgroup_change_end(tsk); 1099 schedule(); 1100 if (__fatal_signal_pending(tsk)) 1101 goto killed; 1102 } 1103 1104 /* 1105 * The only record we have of the real-time age of a 1106 * process, regardless of execs it's done, is start_time. 1107 * All the past CPU time is accumulated in signal_struct 1108 * from sister threads now dead. But in this non-leader 1109 * exec, nothing survives from the original leader thread, 1110 * whose birth marks the true age of this process now. 1111 * When we take on its identity by switching to its PID, we 1112 * also take its birthdate (always earlier than our own). 1113 */ 1114 tsk->start_time = leader->start_time; 1115 tsk->start_boottime = leader->start_boottime; 1116 1117 BUG_ON(!same_thread_group(leader, tsk)); 1118 /* 1119 * An exec() starts a new thread group with the 1120 * TGID of the previous thread group. Rehash the 1121 * two threads with a switched PID, and release 1122 * the former thread group leader: 1123 */ 1124 1125 /* Become a process group leader with the old leader's pid. 1126 * The old leader becomes a thread of the this thread group. 1127 */ 1128 exchange_tids(tsk, leader); 1129 transfer_pid(leader, tsk, PIDTYPE_TGID); 1130 transfer_pid(leader, tsk, PIDTYPE_PGID); 1131 transfer_pid(leader, tsk, PIDTYPE_SID); 1132 1133 list_replace_rcu(&leader->tasks, &tsk->tasks); 1134 list_replace_init(&leader->sibling, &tsk->sibling); 1135 1136 tsk->group_leader = tsk; 1137 leader->group_leader = tsk; 1138 1139 tsk->exit_signal = SIGCHLD; 1140 leader->exit_signal = -1; 1141 1142 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1143 leader->exit_state = EXIT_DEAD; 1144 1145 /* 1146 * We are going to release_task()->ptrace_unlink() silently, 1147 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1148 * the tracer won't block again waiting for this thread. 1149 */ 1150 if (unlikely(leader->ptrace)) 1151 __wake_up_parent(leader, leader->parent); 1152 write_unlock_irq(&tasklist_lock); 1153 cgroup_threadgroup_change_end(tsk); 1154 1155 release_task(leader); 1156 } 1157 1158 sig->group_exec_task = NULL; 1159 sig->notify_count = 0; 1160 1161 no_thread_group: 1162 /* we have changed execution domain */ 1163 tsk->exit_signal = SIGCHLD; 1164 1165 BUG_ON(!thread_group_leader(tsk)); 1166 return 0; 1167 1168 killed: 1169 /* protects against exit_notify() and __exit_signal() */ 1170 read_lock(&tasklist_lock); 1171 sig->group_exec_task = NULL; 1172 sig->notify_count = 0; 1173 read_unlock(&tasklist_lock); 1174 return -EAGAIN; 1175 } 1176 1177 1178 /* 1179 * This function makes sure the current process has its own signal table, 1180 * so that flush_signal_handlers can later reset the handlers without 1181 * disturbing other processes. (Other processes might share the signal 1182 * table via the CLONE_SIGHAND option to clone().) 1183 */ 1184 static int unshare_sighand(struct task_struct *me) 1185 { 1186 struct sighand_struct *oldsighand = me->sighand; 1187 1188 if (refcount_read(&oldsighand->count) != 1) { 1189 struct sighand_struct *newsighand; 1190 /* 1191 * This ->sighand is shared with the CLONE_SIGHAND 1192 * but not CLONE_THREAD task, switch to the new one. 1193 */ 1194 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1195 if (!newsighand) 1196 return -ENOMEM; 1197 1198 refcount_set(&newsighand->count, 1); 1199 memcpy(newsighand->action, oldsighand->action, 1200 sizeof(newsighand->action)); 1201 1202 write_lock_irq(&tasklist_lock); 1203 spin_lock(&oldsighand->siglock); 1204 rcu_assign_pointer(me->sighand, newsighand); 1205 spin_unlock(&oldsighand->siglock); 1206 write_unlock_irq(&tasklist_lock); 1207 1208 __cleanup_sighand(oldsighand); 1209 } 1210 return 0; 1211 } 1212 1213 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1214 { 1215 task_lock(tsk); 1216 /* Always NUL terminated and zero-padded */ 1217 strscpy_pad(buf, tsk->comm, buf_size); 1218 task_unlock(tsk); 1219 return buf; 1220 } 1221 EXPORT_SYMBOL_GPL(__get_task_comm); 1222 1223 /* 1224 * These functions flushes out all traces of the currently running executable 1225 * so that a new one can be started 1226 */ 1227 1228 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1229 { 1230 task_lock(tsk); 1231 trace_task_rename(tsk, buf); 1232 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1233 task_unlock(tsk); 1234 perf_event_comm(tsk, exec); 1235 } 1236 1237 /* 1238 * Calling this is the point of no return. None of the failures will be 1239 * seen by userspace since either the process is already taking a fatal 1240 * signal (via de_thread() or coredump), or will have SEGV raised 1241 * (after exec_mmap()) by search_binary_handler (see below). 1242 */ 1243 int begin_new_exec(struct linux_binprm * bprm) 1244 { 1245 struct task_struct *me = current; 1246 int retval; 1247 1248 /* Once we are committed compute the creds */ 1249 retval = bprm_creds_from_file(bprm); 1250 if (retval) 1251 return retval; 1252 1253 /* 1254 * Ensure all future errors are fatal. 1255 */ 1256 bprm->point_of_no_return = true; 1257 1258 /* 1259 * Make this the only thread in the thread group. 1260 */ 1261 retval = de_thread(me); 1262 if (retval) 1263 goto out; 1264 1265 /* 1266 * Cancel any io_uring activity across execve 1267 */ 1268 io_uring_task_cancel(); 1269 1270 /* Ensure the files table is not shared. */ 1271 retval = unshare_files(); 1272 if (retval) 1273 goto out; 1274 1275 /* 1276 * Must be called _before_ exec_mmap() as bprm->mm is 1277 * not visible until then. This also enables the update 1278 * to be lockless. 1279 */ 1280 retval = set_mm_exe_file(bprm->mm, bprm->file); 1281 if (retval) 1282 goto out; 1283 1284 /* If the binary is not readable then enforce mm->dumpable=0 */ 1285 would_dump(bprm, bprm->file); 1286 if (bprm->have_execfd) 1287 would_dump(bprm, bprm->executable); 1288 1289 /* 1290 * Release all of the old mmap stuff 1291 */ 1292 acct_arg_size(bprm, 0); 1293 retval = exec_mmap(bprm->mm); 1294 if (retval) 1295 goto out; 1296 1297 bprm->mm = NULL; 1298 1299 #ifdef CONFIG_POSIX_TIMERS 1300 spin_lock_irq(&me->sighand->siglock); 1301 posix_cpu_timers_exit(me); 1302 spin_unlock_irq(&me->sighand->siglock); 1303 exit_itimers(me); 1304 flush_itimer_signals(); 1305 #endif 1306 1307 /* 1308 * Make the signal table private. 1309 */ 1310 retval = unshare_sighand(me); 1311 if (retval) 1312 goto out_unlock; 1313 1314 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1315 PF_NOFREEZE | PF_NO_SETAFFINITY); 1316 flush_thread(); 1317 me->personality &= ~bprm->per_clear; 1318 1319 clear_syscall_work_syscall_user_dispatch(me); 1320 1321 /* 1322 * We have to apply CLOEXEC before we change whether the process is 1323 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1324 * trying to access the should-be-closed file descriptors of a process 1325 * undergoing exec(2). 1326 */ 1327 do_close_on_exec(me->files); 1328 1329 if (bprm->secureexec) { 1330 /* Make sure parent cannot signal privileged process. */ 1331 me->pdeath_signal = 0; 1332 1333 /* 1334 * For secureexec, reset the stack limit to sane default to 1335 * avoid bad behavior from the prior rlimits. This has to 1336 * happen before arch_pick_mmap_layout(), which examines 1337 * RLIMIT_STACK, but after the point of no return to avoid 1338 * needing to clean up the change on failure. 1339 */ 1340 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1341 bprm->rlim_stack.rlim_cur = _STK_LIM; 1342 } 1343 1344 me->sas_ss_sp = me->sas_ss_size = 0; 1345 1346 /* 1347 * Figure out dumpability. Note that this checking only of current 1348 * is wrong, but userspace depends on it. This should be testing 1349 * bprm->secureexec instead. 1350 */ 1351 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1352 !(uid_eq(current_euid(), current_uid()) && 1353 gid_eq(current_egid(), current_gid()))) 1354 set_dumpable(current->mm, suid_dumpable); 1355 else 1356 set_dumpable(current->mm, SUID_DUMP_USER); 1357 1358 perf_event_exec(); 1359 __set_task_comm(me, kbasename(bprm->filename), true); 1360 1361 /* An exec changes our domain. We are no longer part of the thread 1362 group */ 1363 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1364 flush_signal_handlers(me, 0); 1365 1366 retval = set_cred_ucounts(bprm->cred); 1367 if (retval < 0) 1368 goto out_unlock; 1369 1370 /* 1371 * install the new credentials for this executable 1372 */ 1373 security_bprm_committing_creds(bprm); 1374 1375 commit_creds(bprm->cred); 1376 bprm->cred = NULL; 1377 1378 /* 1379 * Disable monitoring for regular users 1380 * when executing setuid binaries. Must 1381 * wait until new credentials are committed 1382 * by commit_creds() above 1383 */ 1384 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1385 perf_event_exit_task(me); 1386 /* 1387 * cred_guard_mutex must be held at least to this point to prevent 1388 * ptrace_attach() from altering our determination of the task's 1389 * credentials; any time after this it may be unlocked. 1390 */ 1391 security_bprm_committed_creds(bprm); 1392 1393 /* Pass the opened binary to the interpreter. */ 1394 if (bprm->have_execfd) { 1395 retval = get_unused_fd_flags(0); 1396 if (retval < 0) 1397 goto out_unlock; 1398 fd_install(retval, bprm->executable); 1399 bprm->executable = NULL; 1400 bprm->execfd = retval; 1401 } 1402 return 0; 1403 1404 out_unlock: 1405 up_write(&me->signal->exec_update_lock); 1406 out: 1407 return retval; 1408 } 1409 EXPORT_SYMBOL(begin_new_exec); 1410 1411 void would_dump(struct linux_binprm *bprm, struct file *file) 1412 { 1413 struct inode *inode = file_inode(file); 1414 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1415 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1416 struct user_namespace *old, *user_ns; 1417 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1418 1419 /* Ensure mm->user_ns contains the executable */ 1420 user_ns = old = bprm->mm->user_ns; 1421 while ((user_ns != &init_user_ns) && 1422 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1423 user_ns = user_ns->parent; 1424 1425 if (old != user_ns) { 1426 bprm->mm->user_ns = get_user_ns(user_ns); 1427 put_user_ns(old); 1428 } 1429 } 1430 } 1431 EXPORT_SYMBOL(would_dump); 1432 1433 void setup_new_exec(struct linux_binprm * bprm) 1434 { 1435 /* Setup things that can depend upon the personality */ 1436 struct task_struct *me = current; 1437 1438 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1439 1440 arch_setup_new_exec(); 1441 1442 /* Set the new mm task size. We have to do that late because it may 1443 * depend on TIF_32BIT which is only updated in flush_thread() on 1444 * some architectures like powerpc 1445 */ 1446 me->mm->task_size = TASK_SIZE; 1447 up_write(&me->signal->exec_update_lock); 1448 mutex_unlock(&me->signal->cred_guard_mutex); 1449 } 1450 EXPORT_SYMBOL(setup_new_exec); 1451 1452 /* Runs immediately before start_thread() takes over. */ 1453 void finalize_exec(struct linux_binprm *bprm) 1454 { 1455 /* Store any stack rlimit changes before starting thread. */ 1456 task_lock(current->group_leader); 1457 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1458 task_unlock(current->group_leader); 1459 } 1460 EXPORT_SYMBOL(finalize_exec); 1461 1462 /* 1463 * Prepare credentials and lock ->cred_guard_mutex. 1464 * setup_new_exec() commits the new creds and drops the lock. 1465 * Or, if exec fails before, free_bprm() should release ->cred 1466 * and unlock. 1467 */ 1468 static int prepare_bprm_creds(struct linux_binprm *bprm) 1469 { 1470 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1471 return -ERESTARTNOINTR; 1472 1473 bprm->cred = prepare_exec_creds(); 1474 if (likely(bprm->cred)) 1475 return 0; 1476 1477 mutex_unlock(¤t->signal->cred_guard_mutex); 1478 return -ENOMEM; 1479 } 1480 1481 static void free_bprm(struct linux_binprm *bprm) 1482 { 1483 if (bprm->mm) { 1484 acct_arg_size(bprm, 0); 1485 mmput(bprm->mm); 1486 } 1487 free_arg_pages(bprm); 1488 if (bprm->cred) { 1489 mutex_unlock(¤t->signal->cred_guard_mutex); 1490 abort_creds(bprm->cred); 1491 } 1492 if (bprm->file) { 1493 allow_write_access(bprm->file); 1494 fput(bprm->file); 1495 } 1496 if (bprm->executable) 1497 fput(bprm->executable); 1498 /* If a binfmt changed the interp, free it. */ 1499 if (bprm->interp != bprm->filename) 1500 kfree(bprm->interp); 1501 kfree(bprm->fdpath); 1502 kfree(bprm); 1503 } 1504 1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1506 { 1507 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1508 int retval = -ENOMEM; 1509 if (!bprm) 1510 goto out; 1511 1512 if (fd == AT_FDCWD || filename->name[0] == '/') { 1513 bprm->filename = filename->name; 1514 } else { 1515 if (filename->name[0] == '\0') 1516 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1517 else 1518 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1519 fd, filename->name); 1520 if (!bprm->fdpath) 1521 goto out_free; 1522 1523 bprm->filename = bprm->fdpath; 1524 } 1525 bprm->interp = bprm->filename; 1526 1527 retval = bprm_mm_init(bprm); 1528 if (retval) 1529 goto out_free; 1530 return bprm; 1531 1532 out_free: 1533 free_bprm(bprm); 1534 out: 1535 return ERR_PTR(retval); 1536 } 1537 1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1539 { 1540 /* If a binfmt changed the interp, free it first. */ 1541 if (bprm->interp != bprm->filename) 1542 kfree(bprm->interp); 1543 bprm->interp = kstrdup(interp, GFP_KERNEL); 1544 if (!bprm->interp) 1545 return -ENOMEM; 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(bprm_change_interp); 1549 1550 /* 1551 * determine how safe it is to execute the proposed program 1552 * - the caller must hold ->cred_guard_mutex to protect against 1553 * PTRACE_ATTACH or seccomp thread-sync 1554 */ 1555 static void check_unsafe_exec(struct linux_binprm *bprm) 1556 { 1557 struct task_struct *p = current, *t; 1558 unsigned n_fs; 1559 1560 if (p->ptrace) 1561 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1562 1563 /* 1564 * This isn't strictly necessary, but it makes it harder for LSMs to 1565 * mess up. 1566 */ 1567 if (task_no_new_privs(current)) 1568 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1569 1570 t = p; 1571 n_fs = 1; 1572 spin_lock(&p->fs->lock); 1573 rcu_read_lock(); 1574 while_each_thread(p, t) { 1575 if (t->fs == p->fs) 1576 n_fs++; 1577 } 1578 rcu_read_unlock(); 1579 1580 if (p->fs->users > n_fs) 1581 bprm->unsafe |= LSM_UNSAFE_SHARE; 1582 else 1583 p->fs->in_exec = 1; 1584 spin_unlock(&p->fs->lock); 1585 } 1586 1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1588 { 1589 /* Handle suid and sgid on files */ 1590 struct user_namespace *mnt_userns; 1591 struct inode *inode; 1592 unsigned int mode; 1593 kuid_t uid; 1594 kgid_t gid; 1595 1596 if (!mnt_may_suid(file->f_path.mnt)) 1597 return; 1598 1599 if (task_no_new_privs(current)) 1600 return; 1601 1602 inode = file->f_path.dentry->d_inode; 1603 mode = READ_ONCE(inode->i_mode); 1604 if (!(mode & (S_ISUID|S_ISGID))) 1605 return; 1606 1607 mnt_userns = file_mnt_user_ns(file); 1608 1609 /* Be careful if suid/sgid is set */ 1610 inode_lock(inode); 1611 1612 /* reload atomically mode/uid/gid now that lock held */ 1613 mode = inode->i_mode; 1614 uid = i_uid_into_mnt(mnt_userns, inode); 1615 gid = i_gid_into_mnt(mnt_userns, inode); 1616 inode_unlock(inode); 1617 1618 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1619 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1620 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1621 return; 1622 1623 if (mode & S_ISUID) { 1624 bprm->per_clear |= PER_CLEAR_ON_SETID; 1625 bprm->cred->euid = uid; 1626 } 1627 1628 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1629 bprm->per_clear |= PER_CLEAR_ON_SETID; 1630 bprm->cred->egid = gid; 1631 } 1632 } 1633 1634 /* 1635 * Compute brpm->cred based upon the final binary. 1636 */ 1637 static int bprm_creds_from_file(struct linux_binprm *bprm) 1638 { 1639 /* Compute creds based on which file? */ 1640 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1641 1642 bprm_fill_uid(bprm, file); 1643 return security_bprm_creds_from_file(bprm, file); 1644 } 1645 1646 /* 1647 * Fill the binprm structure from the inode. 1648 * Read the first BINPRM_BUF_SIZE bytes 1649 * 1650 * This may be called multiple times for binary chains (scripts for example). 1651 */ 1652 static int prepare_binprm(struct linux_binprm *bprm) 1653 { 1654 loff_t pos = 0; 1655 1656 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1657 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1658 } 1659 1660 /* 1661 * Arguments are '\0' separated strings found at the location bprm->p 1662 * points to; chop off the first by relocating brpm->p to right after 1663 * the first '\0' encountered. 1664 */ 1665 int remove_arg_zero(struct linux_binprm *bprm) 1666 { 1667 int ret = 0; 1668 unsigned long offset; 1669 char *kaddr; 1670 struct page *page; 1671 1672 if (!bprm->argc) 1673 return 0; 1674 1675 do { 1676 offset = bprm->p & ~PAGE_MASK; 1677 page = get_arg_page(bprm, bprm->p, 0); 1678 if (!page) { 1679 ret = -EFAULT; 1680 goto out; 1681 } 1682 kaddr = kmap_local_page(page); 1683 1684 for (; offset < PAGE_SIZE && kaddr[offset]; 1685 offset++, bprm->p++) 1686 ; 1687 1688 kunmap_local(kaddr); 1689 put_arg_page(page); 1690 } while (offset == PAGE_SIZE); 1691 1692 bprm->p++; 1693 bprm->argc--; 1694 ret = 0; 1695 1696 out: 1697 return ret; 1698 } 1699 EXPORT_SYMBOL(remove_arg_zero); 1700 1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1702 /* 1703 * cycle the list of binary formats handler, until one recognizes the image 1704 */ 1705 static int search_binary_handler(struct linux_binprm *bprm) 1706 { 1707 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1708 struct linux_binfmt *fmt; 1709 int retval; 1710 1711 retval = prepare_binprm(bprm); 1712 if (retval < 0) 1713 return retval; 1714 1715 retval = security_bprm_check(bprm); 1716 if (retval) 1717 return retval; 1718 1719 retval = -ENOENT; 1720 retry: 1721 read_lock(&binfmt_lock); 1722 list_for_each_entry(fmt, &formats, lh) { 1723 if (!try_module_get(fmt->module)) 1724 continue; 1725 read_unlock(&binfmt_lock); 1726 1727 retval = fmt->load_binary(bprm); 1728 1729 read_lock(&binfmt_lock); 1730 put_binfmt(fmt); 1731 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1732 read_unlock(&binfmt_lock); 1733 return retval; 1734 } 1735 } 1736 read_unlock(&binfmt_lock); 1737 1738 if (need_retry) { 1739 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1740 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1741 return retval; 1742 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1743 return retval; 1744 need_retry = false; 1745 goto retry; 1746 } 1747 1748 return retval; 1749 } 1750 1751 static int exec_binprm(struct linux_binprm *bprm) 1752 { 1753 pid_t old_pid, old_vpid; 1754 int ret, depth; 1755 1756 /* Need to fetch pid before load_binary changes it */ 1757 old_pid = current->pid; 1758 rcu_read_lock(); 1759 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1760 rcu_read_unlock(); 1761 1762 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1763 for (depth = 0;; depth++) { 1764 struct file *exec; 1765 if (depth > 5) 1766 return -ELOOP; 1767 1768 ret = search_binary_handler(bprm); 1769 if (ret < 0) 1770 return ret; 1771 if (!bprm->interpreter) 1772 break; 1773 1774 exec = bprm->file; 1775 bprm->file = bprm->interpreter; 1776 bprm->interpreter = NULL; 1777 1778 allow_write_access(exec); 1779 if (unlikely(bprm->have_execfd)) { 1780 if (bprm->executable) { 1781 fput(exec); 1782 return -ENOEXEC; 1783 } 1784 bprm->executable = exec; 1785 } else 1786 fput(exec); 1787 } 1788 1789 audit_bprm(bprm); 1790 trace_sched_process_exec(current, old_pid, bprm); 1791 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1792 proc_exec_connector(current); 1793 return 0; 1794 } 1795 1796 /* 1797 * sys_execve() executes a new program. 1798 */ 1799 static int bprm_execve(struct linux_binprm *bprm, 1800 int fd, struct filename *filename, int flags) 1801 { 1802 struct file *file; 1803 int retval; 1804 1805 retval = prepare_bprm_creds(bprm); 1806 if (retval) 1807 return retval; 1808 1809 check_unsafe_exec(bprm); 1810 current->in_execve = 1; 1811 1812 file = do_open_execat(fd, filename, flags); 1813 retval = PTR_ERR(file); 1814 if (IS_ERR(file)) 1815 goto out_unmark; 1816 1817 sched_exec(); 1818 1819 bprm->file = file; 1820 /* 1821 * Record that a name derived from an O_CLOEXEC fd will be 1822 * inaccessible after exec. This allows the code in exec to 1823 * choose to fail when the executable is not mmaped into the 1824 * interpreter and an open file descriptor is not passed to 1825 * the interpreter. This makes for a better user experience 1826 * than having the interpreter start and then immediately fail 1827 * when it finds the executable is inaccessible. 1828 */ 1829 if (bprm->fdpath && get_close_on_exec(fd)) 1830 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1831 1832 /* Set the unchanging part of bprm->cred */ 1833 retval = security_bprm_creds_for_exec(bprm); 1834 if (retval) 1835 goto out; 1836 1837 retval = exec_binprm(bprm); 1838 if (retval < 0) 1839 goto out; 1840 1841 /* execve succeeded */ 1842 current->fs->in_exec = 0; 1843 current->in_execve = 0; 1844 rseq_execve(current); 1845 acct_update_integrals(current); 1846 task_numa_free(current, false); 1847 return retval; 1848 1849 out: 1850 /* 1851 * If past the point of no return ensure the code never 1852 * returns to the userspace process. Use an existing fatal 1853 * signal if present otherwise terminate the process with 1854 * SIGSEGV. 1855 */ 1856 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1857 force_fatal_sig(SIGSEGV); 1858 1859 out_unmark: 1860 current->fs->in_exec = 0; 1861 current->in_execve = 0; 1862 1863 return retval; 1864 } 1865 1866 static int do_execveat_common(int fd, struct filename *filename, 1867 struct user_arg_ptr argv, 1868 struct user_arg_ptr envp, 1869 int flags) 1870 { 1871 struct linux_binprm *bprm; 1872 int retval; 1873 1874 if (IS_ERR(filename)) 1875 return PTR_ERR(filename); 1876 1877 /* 1878 * We move the actual failure in case of RLIMIT_NPROC excess from 1879 * set*uid() to execve() because too many poorly written programs 1880 * don't check setuid() return code. Here we additionally recheck 1881 * whether NPROC limit is still exceeded. 1882 */ 1883 if ((current->flags & PF_NPROC_EXCEEDED) && 1884 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1885 retval = -EAGAIN; 1886 goto out_ret; 1887 } 1888 1889 /* We're below the limit (still or again), so we don't want to make 1890 * further execve() calls fail. */ 1891 current->flags &= ~PF_NPROC_EXCEEDED; 1892 1893 bprm = alloc_bprm(fd, filename); 1894 if (IS_ERR(bprm)) { 1895 retval = PTR_ERR(bprm); 1896 goto out_ret; 1897 } 1898 1899 retval = count(argv, MAX_ARG_STRINGS); 1900 if (retval == 0) 1901 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1902 current->comm, bprm->filename); 1903 if (retval < 0) 1904 goto out_free; 1905 bprm->argc = retval; 1906 1907 retval = count(envp, MAX_ARG_STRINGS); 1908 if (retval < 0) 1909 goto out_free; 1910 bprm->envc = retval; 1911 1912 retval = bprm_stack_limits(bprm); 1913 if (retval < 0) 1914 goto out_free; 1915 1916 retval = copy_string_kernel(bprm->filename, bprm); 1917 if (retval < 0) 1918 goto out_free; 1919 bprm->exec = bprm->p; 1920 1921 retval = copy_strings(bprm->envc, envp, bprm); 1922 if (retval < 0) 1923 goto out_free; 1924 1925 retval = copy_strings(bprm->argc, argv, bprm); 1926 if (retval < 0) 1927 goto out_free; 1928 1929 /* 1930 * When argv is empty, add an empty string ("") as argv[0] to 1931 * ensure confused userspace programs that start processing 1932 * from argv[1] won't end up walking envp. See also 1933 * bprm_stack_limits(). 1934 */ 1935 if (bprm->argc == 0) { 1936 retval = copy_string_kernel("", bprm); 1937 if (retval < 0) 1938 goto out_free; 1939 bprm->argc = 1; 1940 } 1941 1942 retval = bprm_execve(bprm, fd, filename, flags); 1943 out_free: 1944 free_bprm(bprm); 1945 1946 out_ret: 1947 putname(filename); 1948 return retval; 1949 } 1950 1951 int kernel_execve(const char *kernel_filename, 1952 const char *const *argv, const char *const *envp) 1953 { 1954 struct filename *filename; 1955 struct linux_binprm *bprm; 1956 int fd = AT_FDCWD; 1957 int retval; 1958 1959 /* It is non-sense for kernel threads to call execve */ 1960 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1961 return -EINVAL; 1962 1963 filename = getname_kernel(kernel_filename); 1964 if (IS_ERR(filename)) 1965 return PTR_ERR(filename); 1966 1967 bprm = alloc_bprm(fd, filename); 1968 if (IS_ERR(bprm)) { 1969 retval = PTR_ERR(bprm); 1970 goto out_ret; 1971 } 1972 1973 retval = count_strings_kernel(argv); 1974 if (WARN_ON_ONCE(retval == 0)) 1975 retval = -EINVAL; 1976 if (retval < 0) 1977 goto out_free; 1978 bprm->argc = retval; 1979 1980 retval = count_strings_kernel(envp); 1981 if (retval < 0) 1982 goto out_free; 1983 bprm->envc = retval; 1984 1985 retval = bprm_stack_limits(bprm); 1986 if (retval < 0) 1987 goto out_free; 1988 1989 retval = copy_string_kernel(bprm->filename, bprm); 1990 if (retval < 0) 1991 goto out_free; 1992 bprm->exec = bprm->p; 1993 1994 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1995 if (retval < 0) 1996 goto out_free; 1997 1998 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1999 if (retval < 0) 2000 goto out_free; 2001 2002 retval = bprm_execve(bprm, fd, filename, 0); 2003 out_free: 2004 free_bprm(bprm); 2005 out_ret: 2006 putname(filename); 2007 return retval; 2008 } 2009 2010 static int do_execve(struct filename *filename, 2011 const char __user *const __user *__argv, 2012 const char __user *const __user *__envp) 2013 { 2014 struct user_arg_ptr argv = { .ptr.native = __argv }; 2015 struct user_arg_ptr envp = { .ptr.native = __envp }; 2016 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2017 } 2018 2019 static int do_execveat(int fd, struct filename *filename, 2020 const char __user *const __user *__argv, 2021 const char __user *const __user *__envp, 2022 int flags) 2023 { 2024 struct user_arg_ptr argv = { .ptr.native = __argv }; 2025 struct user_arg_ptr envp = { .ptr.native = __envp }; 2026 2027 return do_execveat_common(fd, filename, argv, envp, flags); 2028 } 2029 2030 #ifdef CONFIG_COMPAT 2031 static int compat_do_execve(struct filename *filename, 2032 const compat_uptr_t __user *__argv, 2033 const compat_uptr_t __user *__envp) 2034 { 2035 struct user_arg_ptr argv = { 2036 .is_compat = true, 2037 .ptr.compat = __argv, 2038 }; 2039 struct user_arg_ptr envp = { 2040 .is_compat = true, 2041 .ptr.compat = __envp, 2042 }; 2043 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2044 } 2045 2046 static int compat_do_execveat(int fd, struct filename *filename, 2047 const compat_uptr_t __user *__argv, 2048 const compat_uptr_t __user *__envp, 2049 int flags) 2050 { 2051 struct user_arg_ptr argv = { 2052 .is_compat = true, 2053 .ptr.compat = __argv, 2054 }; 2055 struct user_arg_ptr envp = { 2056 .is_compat = true, 2057 .ptr.compat = __envp, 2058 }; 2059 return do_execveat_common(fd, filename, argv, envp, flags); 2060 } 2061 #endif 2062 2063 void set_binfmt(struct linux_binfmt *new) 2064 { 2065 struct mm_struct *mm = current->mm; 2066 2067 if (mm->binfmt) 2068 module_put(mm->binfmt->module); 2069 2070 mm->binfmt = new; 2071 if (new) 2072 __module_get(new->module); 2073 } 2074 EXPORT_SYMBOL(set_binfmt); 2075 2076 /* 2077 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2078 */ 2079 void set_dumpable(struct mm_struct *mm, int value) 2080 { 2081 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2082 return; 2083 2084 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2085 } 2086 2087 SYSCALL_DEFINE3(execve, 2088 const char __user *, filename, 2089 const char __user *const __user *, argv, 2090 const char __user *const __user *, envp) 2091 { 2092 return do_execve(getname(filename), argv, envp); 2093 } 2094 2095 SYSCALL_DEFINE5(execveat, 2096 int, fd, const char __user *, filename, 2097 const char __user *const __user *, argv, 2098 const char __user *const __user *, envp, 2099 int, flags) 2100 { 2101 return do_execveat(fd, 2102 getname_uflags(filename, flags), 2103 argv, envp, flags); 2104 } 2105 2106 #ifdef CONFIG_COMPAT 2107 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2108 const compat_uptr_t __user *, argv, 2109 const compat_uptr_t __user *, envp) 2110 { 2111 return compat_do_execve(getname(filename), argv, envp); 2112 } 2113 2114 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2115 const char __user *, filename, 2116 const compat_uptr_t __user *, argv, 2117 const compat_uptr_t __user *, envp, 2118 int, flags) 2119 { 2120 return compat_do_execveat(fd, 2121 getname_uflags(filename, flags), 2122 argv, envp, flags); 2123 } 2124 #endif 2125 2126 #ifdef CONFIG_SYSCTL 2127 2128 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2129 void *buffer, size_t *lenp, loff_t *ppos) 2130 { 2131 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2132 2133 if (!error) 2134 validate_coredump_safety(); 2135 return error; 2136 } 2137 2138 static struct ctl_table fs_exec_sysctls[] = { 2139 { 2140 .procname = "suid_dumpable", 2141 .data = &suid_dumpable, 2142 .maxlen = sizeof(int), 2143 .mode = 0644, 2144 .proc_handler = proc_dointvec_minmax_coredump, 2145 .extra1 = SYSCTL_ZERO, 2146 .extra2 = SYSCTL_TWO, 2147 }, 2148 { } 2149 }; 2150 2151 static int __init init_fs_exec_sysctls(void) 2152 { 2153 register_sysctl_init("fs", fs_exec_sysctls); 2154 return 0; 2155 } 2156 2157 fs_initcall(init_fs_exec_sysctls); 2158 #endif /* CONFIG_SYSCTL */ 2159