xref: /linux/fs/exec.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
70 
71 #include <trace/events/task.h>
72 #include "internal.h"
73 
74 #include <trace/events/sched.h>
75 
76 static int bprm_creds_from_file(struct linux_binprm *bprm);
77 
78 int suid_dumpable = 0;
79 
80 static LIST_HEAD(formats);
81 static DEFINE_RWLOCK(binfmt_lock);
82 
83 void __register_binfmt(struct linux_binfmt * fmt, int insert)
84 {
85 	BUG_ON(!fmt);
86 	if (WARN_ON(!fmt->load_binary))
87 		return;
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	fsnotify_open(file);
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176   	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	int ret;
204 	unsigned int gup_flags = FOLL_FORCE;
205 
206 #ifdef CONFIG_STACK_GROWSUP
207 	if (write) {
208 		ret = expand_downwards(bprm->vma, pos);
209 		if (ret < 0)
210 			return NULL;
211 	}
212 #endif
213 
214 	if (write)
215 		gup_flags |= FOLL_WRITE;
216 
217 	/*
218 	 * We are doing an exec().  'current' is the process
219 	 * doing the exec and bprm->mm is the new process's mm.
220 	 */
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	if (ret <= 0)
224 		return NULL;
225 
226 	if (write)
227 		acct_arg_size(bprm, vma_pages(bprm->vma));
228 
229 	return page;
230 }
231 
232 static void put_arg_page(struct page *page)
233 {
234 	put_page(page);
235 }
236 
237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240 
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 		struct page *page)
243 {
244 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246 
247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249 	int err;
250 	struct vm_area_struct *vma = NULL;
251 	struct mm_struct *mm = bprm->mm;
252 
253 	bprm->vma = vma = vm_area_alloc(mm);
254 	if (!vma)
255 		return -ENOMEM;
256 	vma_set_anonymous(vma);
257 
258 	if (mmap_write_lock_killable(mm)) {
259 		err = -EINTR;
260 		goto err_free;
261 	}
262 
263 	/*
264 	 * Place the stack at the largest stack address the architecture
265 	 * supports. Later, we'll move this to an appropriate place. We don't
266 	 * use STACK_TOP because that can depend on attributes which aren't
267 	 * configured yet.
268 	 */
269 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
270 	vma->vm_end = STACK_TOP_MAX;
271 	vma->vm_start = vma->vm_end - PAGE_SIZE;
272 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
273 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	mmap_write_unlock(mm);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	mmap_write_unlock(mm);
285 err_free:
286 	bprm->vma = NULL;
287 	vm_area_free(vma);
288 	return err;
289 }
290 
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293 	return len <= MAX_ARG_STRLEN;
294 }
295 
296 #else
297 
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301 
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 		int write)
304 {
305 	struct page *page;
306 
307 	page = bprm->page[pos / PAGE_SIZE];
308 	if (!page && write) {
309 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 		if (!page)
311 			return NULL;
312 		bprm->page[pos / PAGE_SIZE] = page;
313 	}
314 
315 	return page;
316 }
317 
318 static void put_arg_page(struct page *page)
319 {
320 }
321 
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324 	if (bprm->page[i]) {
325 		__free_page(bprm->page[i]);
326 		bprm->page[i] = NULL;
327 	}
328 }
329 
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332 	int i;
333 
334 	for (i = 0; i < MAX_ARG_PAGES; i++)
335 		free_arg_page(bprm, i);
336 }
337 
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 		struct page *page)
340 {
341 }
342 
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 	return 0;
347 }
348 
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351 	return len <= bprm->p;
352 }
353 
354 #endif /* CONFIG_MMU */
355 
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364 	int err;
365 	struct mm_struct *mm = NULL;
366 
367 	bprm->mm = mm = mm_alloc();
368 	err = -ENOMEM;
369 	if (!mm)
370 		goto err;
371 
372 	/* Save current stack limit for all calculations made during exec. */
373 	task_lock(current->group_leader);
374 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
375 	task_unlock(current->group_leader);
376 
377 	err = __bprm_mm_init(bprm);
378 	if (err)
379 		goto err;
380 
381 	return 0;
382 
383 err:
384 	if (mm) {
385 		bprm->mm = NULL;
386 		mmdrop(mm);
387 	}
388 
389 	return err;
390 }
391 
392 struct user_arg_ptr {
393 #ifdef CONFIG_COMPAT
394 	bool is_compat;
395 #endif
396 	union {
397 		const char __user *const __user *native;
398 #ifdef CONFIG_COMPAT
399 		const compat_uptr_t __user *compat;
400 #endif
401 	} ptr;
402 };
403 
404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
405 {
406 	const char __user *native;
407 
408 #ifdef CONFIG_COMPAT
409 	if (unlikely(argv.is_compat)) {
410 		compat_uptr_t compat;
411 
412 		if (get_user(compat, argv.ptr.compat + nr))
413 			return ERR_PTR(-EFAULT);
414 
415 		return compat_ptr(compat);
416 	}
417 #endif
418 
419 	if (get_user(native, argv.ptr.native + nr))
420 		return ERR_PTR(-EFAULT);
421 
422 	return native;
423 }
424 
425 /*
426  * count() counts the number of strings in array ARGV.
427  */
428 static int count(struct user_arg_ptr argv, int max)
429 {
430 	int i = 0;
431 
432 	if (argv.ptr.native != NULL) {
433 		for (;;) {
434 			const char __user *p = get_user_arg_ptr(argv, i);
435 
436 			if (!p)
437 				break;
438 
439 			if (IS_ERR(p))
440 				return -EFAULT;
441 
442 			if (i >= max)
443 				return -E2BIG;
444 			++i;
445 
446 			if (fatal_signal_pending(current))
447 				return -ERESTARTNOHAND;
448 			cond_resched();
449 		}
450 	}
451 	return i;
452 }
453 
454 static int count_strings_kernel(const char *const *argv)
455 {
456 	int i;
457 
458 	if (!argv)
459 		return 0;
460 
461 	for (i = 0; argv[i]; ++i) {
462 		if (i >= MAX_ARG_STRINGS)
463 			return -E2BIG;
464 		if (fatal_signal_pending(current))
465 			return -ERESTARTNOHAND;
466 		cond_resched();
467 	}
468 	return i;
469 }
470 
471 static int bprm_stack_limits(struct linux_binprm *bprm)
472 {
473 	unsigned long limit, ptr_size;
474 
475 	/*
476 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
477 	 * (whichever is smaller) for the argv+env strings.
478 	 * This ensures that:
479 	 *  - the remaining binfmt code will not run out of stack space,
480 	 *  - the program will have a reasonable amount of stack left
481 	 *    to work from.
482 	 */
483 	limit = _STK_LIM / 4 * 3;
484 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
485 	/*
486 	 * We've historically supported up to 32 pages (ARG_MAX)
487 	 * of argument strings even with small stacks
488 	 */
489 	limit = max_t(unsigned long, limit, ARG_MAX);
490 	/*
491 	 * We must account for the size of all the argv and envp pointers to
492 	 * the argv and envp strings, since they will also take up space in
493 	 * the stack. They aren't stored until much later when we can't
494 	 * signal to the parent that the child has run out of stack space.
495 	 * Instead, calculate it here so it's possible to fail gracefully.
496 	 */
497 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
498 	if (limit <= ptr_size)
499 		return -E2BIG;
500 	limit -= ptr_size;
501 
502 	bprm->argmin = bprm->p - limit;
503 	return 0;
504 }
505 
506 /*
507  * 'copy_strings()' copies argument/environment strings from the old
508  * processes's memory to the new process's stack.  The call to get_user_pages()
509  * ensures the destination page is created and not swapped out.
510  */
511 static int copy_strings(int argc, struct user_arg_ptr argv,
512 			struct linux_binprm *bprm)
513 {
514 	struct page *kmapped_page = NULL;
515 	char *kaddr = NULL;
516 	unsigned long kpos = 0;
517 	int ret;
518 
519 	while (argc-- > 0) {
520 		const char __user *str;
521 		int len;
522 		unsigned long pos;
523 
524 		ret = -EFAULT;
525 		str = get_user_arg_ptr(argv, argc);
526 		if (IS_ERR(str))
527 			goto out;
528 
529 		len = strnlen_user(str, MAX_ARG_STRLEN);
530 		if (!len)
531 			goto out;
532 
533 		ret = -E2BIG;
534 		if (!valid_arg_len(bprm, len))
535 			goto out;
536 
537 		/* We're going to work our way backwords. */
538 		pos = bprm->p;
539 		str += len;
540 		bprm->p -= len;
541 #ifdef CONFIG_MMU
542 		if (bprm->p < bprm->argmin)
543 			goto out;
544 #endif
545 
546 		while (len > 0) {
547 			int offset, bytes_to_copy;
548 
549 			if (fatal_signal_pending(current)) {
550 				ret = -ERESTARTNOHAND;
551 				goto out;
552 			}
553 			cond_resched();
554 
555 			offset = pos % PAGE_SIZE;
556 			if (offset == 0)
557 				offset = PAGE_SIZE;
558 
559 			bytes_to_copy = offset;
560 			if (bytes_to_copy > len)
561 				bytes_to_copy = len;
562 
563 			offset -= bytes_to_copy;
564 			pos -= bytes_to_copy;
565 			str -= bytes_to_copy;
566 			len -= bytes_to_copy;
567 
568 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
569 				struct page *page;
570 
571 				page = get_arg_page(bprm, pos, 1);
572 				if (!page) {
573 					ret = -E2BIG;
574 					goto out;
575 				}
576 
577 				if (kmapped_page) {
578 					flush_kernel_dcache_page(kmapped_page);
579 					kunmap(kmapped_page);
580 					put_arg_page(kmapped_page);
581 				}
582 				kmapped_page = page;
583 				kaddr = kmap(kmapped_page);
584 				kpos = pos & PAGE_MASK;
585 				flush_arg_page(bprm, kpos, kmapped_page);
586 			}
587 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
588 				ret = -EFAULT;
589 				goto out;
590 			}
591 		}
592 	}
593 	ret = 0;
594 out:
595 	if (kmapped_page) {
596 		flush_kernel_dcache_page(kmapped_page);
597 		kunmap(kmapped_page);
598 		put_arg_page(kmapped_page);
599 	}
600 	return ret;
601 }
602 
603 /*
604  * Copy and argument/environment string from the kernel to the processes stack.
605  */
606 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
607 {
608 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
609 	unsigned long pos = bprm->p;
610 
611 	if (len == 0)
612 		return -EFAULT;
613 	if (!valid_arg_len(bprm, len))
614 		return -E2BIG;
615 
616 	/* We're going to work our way backwards. */
617 	arg += len;
618 	bprm->p -= len;
619 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
620 		return -E2BIG;
621 
622 	while (len > 0) {
623 		unsigned int bytes_to_copy = min_t(unsigned int, len,
624 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
625 		struct page *page;
626 		char *kaddr;
627 
628 		pos -= bytes_to_copy;
629 		arg -= bytes_to_copy;
630 		len -= bytes_to_copy;
631 
632 		page = get_arg_page(bprm, pos, 1);
633 		if (!page)
634 			return -E2BIG;
635 		kaddr = kmap_atomic(page);
636 		flush_arg_page(bprm, pos & PAGE_MASK, page);
637 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
638 		flush_kernel_dcache_page(page);
639 		kunmap_atomic(kaddr);
640 		put_arg_page(page);
641 	}
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL(copy_string_kernel);
646 
647 static int copy_strings_kernel(int argc, const char *const *argv,
648 			       struct linux_binprm *bprm)
649 {
650 	while (argc-- > 0) {
651 		int ret = copy_string_kernel(argv[argc], bprm);
652 		if (ret < 0)
653 			return ret;
654 		if (fatal_signal_pending(current))
655 			return -ERESTARTNOHAND;
656 		cond_resched();
657 	}
658 	return 0;
659 }
660 
661 #ifdef CONFIG_MMU
662 
663 /*
664  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
665  * the binfmt code determines where the new stack should reside, we shift it to
666  * its final location.  The process proceeds as follows:
667  *
668  * 1) Use shift to calculate the new vma endpoints.
669  * 2) Extend vma to cover both the old and new ranges.  This ensures the
670  *    arguments passed to subsequent functions are consistent.
671  * 3) Move vma's page tables to the new range.
672  * 4) Free up any cleared pgd range.
673  * 5) Shrink the vma to cover only the new range.
674  */
675 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
676 {
677 	struct mm_struct *mm = vma->vm_mm;
678 	unsigned long old_start = vma->vm_start;
679 	unsigned long old_end = vma->vm_end;
680 	unsigned long length = old_end - old_start;
681 	unsigned long new_start = old_start - shift;
682 	unsigned long new_end = old_end - shift;
683 	struct mmu_gather tlb;
684 
685 	BUG_ON(new_start > new_end);
686 
687 	/*
688 	 * ensure there are no vmas between where we want to go
689 	 * and where we are
690 	 */
691 	if (vma != find_vma(mm, new_start))
692 		return -EFAULT;
693 
694 	/*
695 	 * cover the whole range: [new_start, old_end)
696 	 */
697 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
698 		return -ENOMEM;
699 
700 	/*
701 	 * move the page tables downwards, on failure we rely on
702 	 * process cleanup to remove whatever mess we made.
703 	 */
704 	if (length != move_page_tables(vma, old_start,
705 				       vma, new_start, length, false))
706 		return -ENOMEM;
707 
708 	lru_add_drain();
709 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
710 	if (new_end > old_start) {
711 		/*
712 		 * when the old and new regions overlap clear from new_end.
713 		 */
714 		free_pgd_range(&tlb, new_end, old_end, new_end,
715 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
716 	} else {
717 		/*
718 		 * otherwise, clean from old_start; this is done to not touch
719 		 * the address space in [new_end, old_start) some architectures
720 		 * have constraints on va-space that make this illegal (IA64) -
721 		 * for the others its just a little faster.
722 		 */
723 		free_pgd_range(&tlb, old_start, old_end, new_end,
724 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
725 	}
726 	tlb_finish_mmu(&tlb, old_start, old_end);
727 
728 	/*
729 	 * Shrink the vma to just the new range.  Always succeeds.
730 	 */
731 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
732 
733 	return 0;
734 }
735 
736 /*
737  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
738  * the stack is optionally relocated, and some extra space is added.
739  */
740 int setup_arg_pages(struct linux_binprm *bprm,
741 		    unsigned long stack_top,
742 		    int executable_stack)
743 {
744 	unsigned long ret;
745 	unsigned long stack_shift;
746 	struct mm_struct *mm = current->mm;
747 	struct vm_area_struct *vma = bprm->vma;
748 	struct vm_area_struct *prev = NULL;
749 	unsigned long vm_flags;
750 	unsigned long stack_base;
751 	unsigned long stack_size;
752 	unsigned long stack_expand;
753 	unsigned long rlim_stack;
754 
755 #ifdef CONFIG_STACK_GROWSUP
756 	/* Limit stack size */
757 	stack_base = bprm->rlim_stack.rlim_max;
758 	if (stack_base > STACK_SIZE_MAX)
759 		stack_base = STACK_SIZE_MAX;
760 
761 	/* Add space for stack randomization. */
762 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
763 
764 	/* Make sure we didn't let the argument array grow too large. */
765 	if (vma->vm_end - vma->vm_start > stack_base)
766 		return -ENOMEM;
767 
768 	stack_base = PAGE_ALIGN(stack_top - stack_base);
769 
770 	stack_shift = vma->vm_start - stack_base;
771 	mm->arg_start = bprm->p - stack_shift;
772 	bprm->p = vma->vm_end - stack_shift;
773 #else
774 	stack_top = arch_align_stack(stack_top);
775 	stack_top = PAGE_ALIGN(stack_top);
776 
777 	if (unlikely(stack_top < mmap_min_addr) ||
778 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
779 		return -ENOMEM;
780 
781 	stack_shift = vma->vm_end - stack_top;
782 
783 	bprm->p -= stack_shift;
784 	mm->arg_start = bprm->p;
785 #endif
786 
787 	if (bprm->loader)
788 		bprm->loader -= stack_shift;
789 	bprm->exec -= stack_shift;
790 
791 	if (mmap_write_lock_killable(mm))
792 		return -EINTR;
793 
794 	vm_flags = VM_STACK_FLAGS;
795 
796 	/*
797 	 * Adjust stack execute permissions; explicitly enable for
798 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
799 	 * (arch default) otherwise.
800 	 */
801 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
802 		vm_flags |= VM_EXEC;
803 	else if (executable_stack == EXSTACK_DISABLE_X)
804 		vm_flags &= ~VM_EXEC;
805 	vm_flags |= mm->def_flags;
806 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
807 
808 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
809 			vm_flags);
810 	if (ret)
811 		goto out_unlock;
812 	BUG_ON(prev != vma);
813 
814 	if (unlikely(vm_flags & VM_EXEC)) {
815 		pr_warn_once("process '%pD4' started with executable stack\n",
816 			     bprm->file);
817 	}
818 
819 	/* Move stack pages down in memory. */
820 	if (stack_shift) {
821 		ret = shift_arg_pages(vma, stack_shift);
822 		if (ret)
823 			goto out_unlock;
824 	}
825 
826 	/* mprotect_fixup is overkill to remove the temporary stack flags */
827 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
828 
829 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
830 	stack_size = vma->vm_end - vma->vm_start;
831 	/*
832 	 * Align this down to a page boundary as expand_stack
833 	 * will align it up.
834 	 */
835 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
836 #ifdef CONFIG_STACK_GROWSUP
837 	if (stack_size + stack_expand > rlim_stack)
838 		stack_base = vma->vm_start + rlim_stack;
839 	else
840 		stack_base = vma->vm_end + stack_expand;
841 #else
842 	if (stack_size + stack_expand > rlim_stack)
843 		stack_base = vma->vm_end - rlim_stack;
844 	else
845 		stack_base = vma->vm_start - stack_expand;
846 #endif
847 	current->mm->start_stack = bprm->p;
848 	ret = expand_stack(vma, stack_base);
849 	if (ret)
850 		ret = -EFAULT;
851 
852 out_unlock:
853 	mmap_write_unlock(mm);
854 	return ret;
855 }
856 EXPORT_SYMBOL(setup_arg_pages);
857 
858 #else
859 
860 /*
861  * Transfer the program arguments and environment from the holding pages
862  * onto the stack. The provided stack pointer is adjusted accordingly.
863  */
864 int transfer_args_to_stack(struct linux_binprm *bprm,
865 			   unsigned long *sp_location)
866 {
867 	unsigned long index, stop, sp;
868 	int ret = 0;
869 
870 	stop = bprm->p >> PAGE_SHIFT;
871 	sp = *sp_location;
872 
873 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
874 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
875 		char *src = kmap(bprm->page[index]) + offset;
876 		sp -= PAGE_SIZE - offset;
877 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
878 			ret = -EFAULT;
879 		kunmap(bprm->page[index]);
880 		if (ret)
881 			goto out;
882 	}
883 
884 	*sp_location = sp;
885 
886 out:
887 	return ret;
888 }
889 EXPORT_SYMBOL(transfer_args_to_stack);
890 
891 #endif /* CONFIG_MMU */
892 
893 static struct file *do_open_execat(int fd, struct filename *name, int flags)
894 {
895 	struct file *file;
896 	int err;
897 	struct open_flags open_exec_flags = {
898 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
899 		.acc_mode = MAY_EXEC,
900 		.intent = LOOKUP_OPEN,
901 		.lookup_flags = LOOKUP_FOLLOW,
902 	};
903 
904 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
905 		return ERR_PTR(-EINVAL);
906 	if (flags & AT_SYMLINK_NOFOLLOW)
907 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
908 	if (flags & AT_EMPTY_PATH)
909 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
910 
911 	file = do_filp_open(fd, name, &open_exec_flags);
912 	if (IS_ERR(file))
913 		goto out;
914 
915 	/*
916 	 * may_open() has already checked for this, so it should be
917 	 * impossible to trip now. But we need to be extra cautious
918 	 * and check again at the very end too.
919 	 */
920 	err = -EACCES;
921 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
922 			 path_noexec(&file->f_path)))
923 		goto exit;
924 
925 	err = deny_write_access(file);
926 	if (err)
927 		goto exit;
928 
929 	if (name->name[0] != '\0')
930 		fsnotify_open(file);
931 
932 out:
933 	return file;
934 
935 exit:
936 	fput(file);
937 	return ERR_PTR(err);
938 }
939 
940 struct file *open_exec(const char *name)
941 {
942 	struct filename *filename = getname_kernel(name);
943 	struct file *f = ERR_CAST(filename);
944 
945 	if (!IS_ERR(filename)) {
946 		f = do_open_execat(AT_FDCWD, filename, 0);
947 		putname(filename);
948 	}
949 	return f;
950 }
951 EXPORT_SYMBOL(open_exec);
952 
953 int kernel_read_file(struct file *file, void **buf, loff_t *size,
954 		     loff_t max_size, enum kernel_read_file_id id)
955 {
956 	loff_t i_size, pos;
957 	ssize_t bytes = 0;
958 	int ret;
959 
960 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
961 		return -EINVAL;
962 
963 	ret = deny_write_access(file);
964 	if (ret)
965 		return ret;
966 
967 	ret = security_kernel_read_file(file, id);
968 	if (ret)
969 		goto out;
970 
971 	i_size = i_size_read(file_inode(file));
972 	if (i_size <= 0) {
973 		ret = -EINVAL;
974 		goto out;
975 	}
976 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
977 		ret = -EFBIG;
978 		goto out;
979 	}
980 
981 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
982 		*buf = vmalloc(i_size);
983 	if (!*buf) {
984 		ret = -ENOMEM;
985 		goto out;
986 	}
987 
988 	pos = 0;
989 	while (pos < i_size) {
990 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
991 		if (bytes < 0) {
992 			ret = bytes;
993 			goto out_free;
994 		}
995 
996 		if (bytes == 0)
997 			break;
998 	}
999 
1000 	if (pos != i_size) {
1001 		ret = -EIO;
1002 		goto out_free;
1003 	}
1004 
1005 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
1006 	if (!ret)
1007 		*size = pos;
1008 
1009 out_free:
1010 	if (ret < 0) {
1011 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1012 			vfree(*buf);
1013 			*buf = NULL;
1014 		}
1015 	}
1016 
1017 out:
1018 	allow_write_access(file);
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(kernel_read_file);
1022 
1023 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1024 			       loff_t max_size, enum kernel_read_file_id id)
1025 {
1026 	struct file *file;
1027 	int ret;
1028 
1029 	if (!path || !*path)
1030 		return -EINVAL;
1031 
1032 	file = filp_open(path, O_RDONLY, 0);
1033 	if (IS_ERR(file))
1034 		return PTR_ERR(file);
1035 
1036 	ret = kernel_read_file(file, buf, size, max_size, id);
1037 	fput(file);
1038 	return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1041 
1042 int kernel_read_file_from_path_initns(const char *path, void **buf,
1043 				      loff_t *size, loff_t max_size,
1044 				      enum kernel_read_file_id id)
1045 {
1046 	struct file *file;
1047 	struct path root;
1048 	int ret;
1049 
1050 	if (!path || !*path)
1051 		return -EINVAL;
1052 
1053 	task_lock(&init_task);
1054 	get_fs_root(init_task.fs, &root);
1055 	task_unlock(&init_task);
1056 
1057 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1058 	path_put(&root);
1059 	if (IS_ERR(file))
1060 		return PTR_ERR(file);
1061 
1062 	ret = kernel_read_file(file, buf, size, max_size, id);
1063 	fput(file);
1064 	return ret;
1065 }
1066 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1067 
1068 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1069 			     enum kernel_read_file_id id)
1070 {
1071 	struct fd f = fdget(fd);
1072 	int ret = -EBADF;
1073 
1074 	if (!f.file)
1075 		goto out;
1076 
1077 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1078 out:
1079 	fdput(f);
1080 	return ret;
1081 }
1082 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1083 
1084 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1085     defined(CONFIG_BINFMT_ELF_FDPIC)
1086 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1087 {
1088 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1089 	if (res > 0)
1090 		flush_icache_user_range(addr, addr + len);
1091 	return res;
1092 }
1093 EXPORT_SYMBOL(read_code);
1094 #endif
1095 
1096 /*
1097  * Maps the mm_struct mm into the current task struct.
1098  * On success, this function returns with the mutex
1099  * exec_update_mutex locked.
1100  */
1101 static int exec_mmap(struct mm_struct *mm)
1102 {
1103 	struct task_struct *tsk;
1104 	struct mm_struct *old_mm, *active_mm;
1105 	int ret;
1106 
1107 	/* Notify parent that we're no longer interested in the old VM */
1108 	tsk = current;
1109 	old_mm = current->mm;
1110 	exec_mm_release(tsk, old_mm);
1111 	if (old_mm)
1112 		sync_mm_rss(old_mm);
1113 
1114 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1115 	if (ret)
1116 		return ret;
1117 
1118 	if (old_mm) {
1119 		/*
1120 		 * Make sure that if there is a core dump in progress
1121 		 * for the old mm, we get out and die instead of going
1122 		 * through with the exec.  We must hold mmap_lock around
1123 		 * checking core_state and changing tsk->mm.
1124 		 */
1125 		mmap_read_lock(old_mm);
1126 		if (unlikely(old_mm->core_state)) {
1127 			mmap_read_unlock(old_mm);
1128 			mutex_unlock(&tsk->signal->exec_update_mutex);
1129 			return -EINTR;
1130 		}
1131 	}
1132 
1133 	task_lock(tsk);
1134 	active_mm = tsk->active_mm;
1135 	membarrier_exec_mmap(mm);
1136 	tsk->mm = mm;
1137 	tsk->active_mm = mm;
1138 	activate_mm(active_mm, mm);
1139 	tsk->mm->vmacache_seqnum = 0;
1140 	vmacache_flush(tsk);
1141 	task_unlock(tsk);
1142 	if (old_mm) {
1143 		mmap_read_unlock(old_mm);
1144 		BUG_ON(active_mm != old_mm);
1145 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1146 		mm_update_next_owner(old_mm);
1147 		mmput(old_mm);
1148 		return 0;
1149 	}
1150 	mmdrop(active_mm);
1151 	return 0;
1152 }
1153 
1154 static int de_thread(struct task_struct *tsk)
1155 {
1156 	struct signal_struct *sig = tsk->signal;
1157 	struct sighand_struct *oldsighand = tsk->sighand;
1158 	spinlock_t *lock = &oldsighand->siglock;
1159 
1160 	if (thread_group_empty(tsk))
1161 		goto no_thread_group;
1162 
1163 	/*
1164 	 * Kill all other threads in the thread group.
1165 	 */
1166 	spin_lock_irq(lock);
1167 	if (signal_group_exit(sig)) {
1168 		/*
1169 		 * Another group action in progress, just
1170 		 * return so that the signal is processed.
1171 		 */
1172 		spin_unlock_irq(lock);
1173 		return -EAGAIN;
1174 	}
1175 
1176 	sig->group_exit_task = tsk;
1177 	sig->notify_count = zap_other_threads(tsk);
1178 	if (!thread_group_leader(tsk))
1179 		sig->notify_count--;
1180 
1181 	while (sig->notify_count) {
1182 		__set_current_state(TASK_KILLABLE);
1183 		spin_unlock_irq(lock);
1184 		schedule();
1185 		if (__fatal_signal_pending(tsk))
1186 			goto killed;
1187 		spin_lock_irq(lock);
1188 	}
1189 	spin_unlock_irq(lock);
1190 
1191 	/*
1192 	 * At this point all other threads have exited, all we have to
1193 	 * do is to wait for the thread group leader to become inactive,
1194 	 * and to assume its PID:
1195 	 */
1196 	if (!thread_group_leader(tsk)) {
1197 		struct task_struct *leader = tsk->group_leader;
1198 
1199 		for (;;) {
1200 			cgroup_threadgroup_change_begin(tsk);
1201 			write_lock_irq(&tasklist_lock);
1202 			/*
1203 			 * Do this under tasklist_lock to ensure that
1204 			 * exit_notify() can't miss ->group_exit_task
1205 			 */
1206 			sig->notify_count = -1;
1207 			if (likely(leader->exit_state))
1208 				break;
1209 			__set_current_state(TASK_KILLABLE);
1210 			write_unlock_irq(&tasklist_lock);
1211 			cgroup_threadgroup_change_end(tsk);
1212 			schedule();
1213 			if (__fatal_signal_pending(tsk))
1214 				goto killed;
1215 		}
1216 
1217 		/*
1218 		 * The only record we have of the real-time age of a
1219 		 * process, regardless of execs it's done, is start_time.
1220 		 * All the past CPU time is accumulated in signal_struct
1221 		 * from sister threads now dead.  But in this non-leader
1222 		 * exec, nothing survives from the original leader thread,
1223 		 * whose birth marks the true age of this process now.
1224 		 * When we take on its identity by switching to its PID, we
1225 		 * also take its birthdate (always earlier than our own).
1226 		 */
1227 		tsk->start_time = leader->start_time;
1228 		tsk->start_boottime = leader->start_boottime;
1229 
1230 		BUG_ON(!same_thread_group(leader, tsk));
1231 		/*
1232 		 * An exec() starts a new thread group with the
1233 		 * TGID of the previous thread group. Rehash the
1234 		 * two threads with a switched PID, and release
1235 		 * the former thread group leader:
1236 		 */
1237 
1238 		/* Become a process group leader with the old leader's pid.
1239 		 * The old leader becomes a thread of the this thread group.
1240 		 */
1241 		exchange_tids(tsk, leader);
1242 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1243 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1244 		transfer_pid(leader, tsk, PIDTYPE_SID);
1245 
1246 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1247 		list_replace_init(&leader->sibling, &tsk->sibling);
1248 
1249 		tsk->group_leader = tsk;
1250 		leader->group_leader = tsk;
1251 
1252 		tsk->exit_signal = SIGCHLD;
1253 		leader->exit_signal = -1;
1254 
1255 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1256 		leader->exit_state = EXIT_DEAD;
1257 
1258 		/*
1259 		 * We are going to release_task()->ptrace_unlink() silently,
1260 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1261 		 * the tracer wont't block again waiting for this thread.
1262 		 */
1263 		if (unlikely(leader->ptrace))
1264 			__wake_up_parent(leader, leader->parent);
1265 		write_unlock_irq(&tasklist_lock);
1266 		cgroup_threadgroup_change_end(tsk);
1267 
1268 		release_task(leader);
1269 	}
1270 
1271 	sig->group_exit_task = NULL;
1272 	sig->notify_count = 0;
1273 
1274 no_thread_group:
1275 	/* we have changed execution domain */
1276 	tsk->exit_signal = SIGCHLD;
1277 
1278 	BUG_ON(!thread_group_leader(tsk));
1279 	return 0;
1280 
1281 killed:
1282 	/* protects against exit_notify() and __exit_signal() */
1283 	read_lock(&tasklist_lock);
1284 	sig->group_exit_task = NULL;
1285 	sig->notify_count = 0;
1286 	read_unlock(&tasklist_lock);
1287 	return -EAGAIN;
1288 }
1289 
1290 
1291 /*
1292  * This function makes sure the current process has its own signal table,
1293  * so that flush_signal_handlers can later reset the handlers without
1294  * disturbing other processes.  (Other processes might share the signal
1295  * table via the CLONE_SIGHAND option to clone().)
1296  */
1297 static int unshare_sighand(struct task_struct *me)
1298 {
1299 	struct sighand_struct *oldsighand = me->sighand;
1300 
1301 	if (refcount_read(&oldsighand->count) != 1) {
1302 		struct sighand_struct *newsighand;
1303 		/*
1304 		 * This ->sighand is shared with the CLONE_SIGHAND
1305 		 * but not CLONE_THREAD task, switch to the new one.
1306 		 */
1307 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1308 		if (!newsighand)
1309 			return -ENOMEM;
1310 
1311 		refcount_set(&newsighand->count, 1);
1312 		memcpy(newsighand->action, oldsighand->action,
1313 		       sizeof(newsighand->action));
1314 
1315 		write_lock_irq(&tasklist_lock);
1316 		spin_lock(&oldsighand->siglock);
1317 		rcu_assign_pointer(me->sighand, newsighand);
1318 		spin_unlock(&oldsighand->siglock);
1319 		write_unlock_irq(&tasklist_lock);
1320 
1321 		__cleanup_sighand(oldsighand);
1322 	}
1323 	return 0;
1324 }
1325 
1326 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1327 {
1328 	task_lock(tsk);
1329 	strncpy(buf, tsk->comm, buf_size);
1330 	task_unlock(tsk);
1331 	return buf;
1332 }
1333 EXPORT_SYMBOL_GPL(__get_task_comm);
1334 
1335 /*
1336  * These functions flushes out all traces of the currently running executable
1337  * so that a new one can be started
1338  */
1339 
1340 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1341 {
1342 	task_lock(tsk);
1343 	trace_task_rename(tsk, buf);
1344 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1345 	task_unlock(tsk);
1346 	perf_event_comm(tsk, exec);
1347 }
1348 
1349 /*
1350  * Calling this is the point of no return. None of the failures will be
1351  * seen by userspace since either the process is already taking a fatal
1352  * signal (via de_thread() or coredump), or will have SEGV raised
1353  * (after exec_mmap()) by search_binary_handler (see below).
1354  */
1355 int begin_new_exec(struct linux_binprm * bprm)
1356 {
1357 	struct task_struct *me = current;
1358 	int retval;
1359 
1360 	/* Once we are committed compute the creds */
1361 	retval = bprm_creds_from_file(bprm);
1362 	if (retval)
1363 		return retval;
1364 
1365 	/*
1366 	 * Ensure all future errors are fatal.
1367 	 */
1368 	bprm->point_of_no_return = true;
1369 
1370 	/*
1371 	 * Make this the only thread in the thread group.
1372 	 */
1373 	retval = de_thread(me);
1374 	if (retval)
1375 		goto out;
1376 
1377 	/*
1378 	 * Must be called _before_ exec_mmap() as bprm->mm is
1379 	 * not visibile until then. This also enables the update
1380 	 * to be lockless.
1381 	 */
1382 	set_mm_exe_file(bprm->mm, bprm->file);
1383 
1384 	/* If the binary is not readable then enforce mm->dumpable=0 */
1385 	would_dump(bprm, bprm->file);
1386 	if (bprm->have_execfd)
1387 		would_dump(bprm, bprm->executable);
1388 
1389 	/*
1390 	 * Release all of the old mmap stuff
1391 	 */
1392 	acct_arg_size(bprm, 0);
1393 	retval = exec_mmap(bprm->mm);
1394 	if (retval)
1395 		goto out;
1396 
1397 	bprm->mm = NULL;
1398 
1399 #ifdef CONFIG_POSIX_TIMERS
1400 	exit_itimers(me->signal);
1401 	flush_itimer_signals();
1402 #endif
1403 
1404 	/*
1405 	 * Make the signal table private.
1406 	 */
1407 	retval = unshare_sighand(me);
1408 	if (retval)
1409 		goto out_unlock;
1410 
1411 	/*
1412 	 * Ensure that the uaccess routines can actually operate on userspace
1413 	 * pointers:
1414 	 */
1415 	force_uaccess_begin();
1416 
1417 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1418 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1419 	flush_thread();
1420 	me->personality &= ~bprm->per_clear;
1421 
1422 	/*
1423 	 * We have to apply CLOEXEC before we change whether the process is
1424 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1425 	 * trying to access the should-be-closed file descriptors of a process
1426 	 * undergoing exec(2).
1427 	 */
1428 	do_close_on_exec(me->files);
1429 
1430 	if (bprm->secureexec) {
1431 		/* Make sure parent cannot signal privileged process. */
1432 		me->pdeath_signal = 0;
1433 
1434 		/*
1435 		 * For secureexec, reset the stack limit to sane default to
1436 		 * avoid bad behavior from the prior rlimits. This has to
1437 		 * happen before arch_pick_mmap_layout(), which examines
1438 		 * RLIMIT_STACK, but after the point of no return to avoid
1439 		 * needing to clean up the change on failure.
1440 		 */
1441 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1442 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1443 	}
1444 
1445 	me->sas_ss_sp = me->sas_ss_size = 0;
1446 
1447 	/*
1448 	 * Figure out dumpability. Note that this checking only of current
1449 	 * is wrong, but userspace depends on it. This should be testing
1450 	 * bprm->secureexec instead.
1451 	 */
1452 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1453 	    !(uid_eq(current_euid(), current_uid()) &&
1454 	      gid_eq(current_egid(), current_gid())))
1455 		set_dumpable(current->mm, suid_dumpable);
1456 	else
1457 		set_dumpable(current->mm, SUID_DUMP_USER);
1458 
1459 	perf_event_exec();
1460 	__set_task_comm(me, kbasename(bprm->filename), true);
1461 
1462 	/* An exec changes our domain. We are no longer part of the thread
1463 	   group */
1464 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1465 	flush_signal_handlers(me, 0);
1466 
1467 	/*
1468 	 * install the new credentials for this executable
1469 	 */
1470 	security_bprm_committing_creds(bprm);
1471 
1472 	commit_creds(bprm->cred);
1473 	bprm->cred = NULL;
1474 
1475 	/*
1476 	 * Disable monitoring for regular users
1477 	 * when executing setuid binaries. Must
1478 	 * wait until new credentials are committed
1479 	 * by commit_creds() above
1480 	 */
1481 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1482 		perf_event_exit_task(me);
1483 	/*
1484 	 * cred_guard_mutex must be held at least to this point to prevent
1485 	 * ptrace_attach() from altering our determination of the task's
1486 	 * credentials; any time after this it may be unlocked.
1487 	 */
1488 	security_bprm_committed_creds(bprm);
1489 
1490 	/* Pass the opened binary to the interpreter. */
1491 	if (bprm->have_execfd) {
1492 		retval = get_unused_fd_flags(0);
1493 		if (retval < 0)
1494 			goto out_unlock;
1495 		fd_install(retval, bprm->executable);
1496 		bprm->executable = NULL;
1497 		bprm->execfd = retval;
1498 	}
1499 	return 0;
1500 
1501 out_unlock:
1502 	mutex_unlock(&me->signal->exec_update_mutex);
1503 out:
1504 	return retval;
1505 }
1506 EXPORT_SYMBOL(begin_new_exec);
1507 
1508 void would_dump(struct linux_binprm *bprm, struct file *file)
1509 {
1510 	struct inode *inode = file_inode(file);
1511 	if (inode_permission(inode, MAY_READ) < 0) {
1512 		struct user_namespace *old, *user_ns;
1513 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1514 
1515 		/* Ensure mm->user_ns contains the executable */
1516 		user_ns = old = bprm->mm->user_ns;
1517 		while ((user_ns != &init_user_ns) &&
1518 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1519 			user_ns = user_ns->parent;
1520 
1521 		if (old != user_ns) {
1522 			bprm->mm->user_ns = get_user_ns(user_ns);
1523 			put_user_ns(old);
1524 		}
1525 	}
1526 }
1527 EXPORT_SYMBOL(would_dump);
1528 
1529 void setup_new_exec(struct linux_binprm * bprm)
1530 {
1531 	/* Setup things that can depend upon the personality */
1532 	struct task_struct *me = current;
1533 
1534 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1535 
1536 	arch_setup_new_exec();
1537 
1538 	/* Set the new mm task size. We have to do that late because it may
1539 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1540 	 * some architectures like powerpc
1541 	 */
1542 	me->mm->task_size = TASK_SIZE;
1543 	mutex_unlock(&me->signal->exec_update_mutex);
1544 	mutex_unlock(&me->signal->cred_guard_mutex);
1545 }
1546 EXPORT_SYMBOL(setup_new_exec);
1547 
1548 /* Runs immediately before start_thread() takes over. */
1549 void finalize_exec(struct linux_binprm *bprm)
1550 {
1551 	/* Store any stack rlimit changes before starting thread. */
1552 	task_lock(current->group_leader);
1553 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1554 	task_unlock(current->group_leader);
1555 }
1556 EXPORT_SYMBOL(finalize_exec);
1557 
1558 /*
1559  * Prepare credentials and lock ->cred_guard_mutex.
1560  * setup_new_exec() commits the new creds and drops the lock.
1561  * Or, if exec fails before, free_bprm() should release ->cred and
1562  * and unlock.
1563  */
1564 static int prepare_bprm_creds(struct linux_binprm *bprm)
1565 {
1566 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1567 		return -ERESTARTNOINTR;
1568 
1569 	bprm->cred = prepare_exec_creds();
1570 	if (likely(bprm->cred))
1571 		return 0;
1572 
1573 	mutex_unlock(&current->signal->cred_guard_mutex);
1574 	return -ENOMEM;
1575 }
1576 
1577 static void free_bprm(struct linux_binprm *bprm)
1578 {
1579 	if (bprm->mm) {
1580 		acct_arg_size(bprm, 0);
1581 		mmput(bprm->mm);
1582 	}
1583 	free_arg_pages(bprm);
1584 	if (bprm->cred) {
1585 		mutex_unlock(&current->signal->cred_guard_mutex);
1586 		abort_creds(bprm->cred);
1587 	}
1588 	if (bprm->file) {
1589 		allow_write_access(bprm->file);
1590 		fput(bprm->file);
1591 	}
1592 	if (bprm->executable)
1593 		fput(bprm->executable);
1594 	/* If a binfmt changed the interp, free it. */
1595 	if (bprm->interp != bprm->filename)
1596 		kfree(bprm->interp);
1597 	kfree(bprm->fdpath);
1598 	kfree(bprm);
1599 }
1600 
1601 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1602 {
1603 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1604 	int retval = -ENOMEM;
1605 	if (!bprm)
1606 		goto out;
1607 
1608 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1609 		bprm->filename = filename->name;
1610 	} else {
1611 		if (filename->name[0] == '\0')
1612 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1613 		else
1614 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1615 						  fd, filename->name);
1616 		if (!bprm->fdpath)
1617 			goto out_free;
1618 
1619 		bprm->filename = bprm->fdpath;
1620 	}
1621 	bprm->interp = bprm->filename;
1622 
1623 	retval = bprm_mm_init(bprm);
1624 	if (retval)
1625 		goto out_free;
1626 	return bprm;
1627 
1628 out_free:
1629 	free_bprm(bprm);
1630 out:
1631 	return ERR_PTR(retval);
1632 }
1633 
1634 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1635 {
1636 	/* If a binfmt changed the interp, free it first. */
1637 	if (bprm->interp != bprm->filename)
1638 		kfree(bprm->interp);
1639 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1640 	if (!bprm->interp)
1641 		return -ENOMEM;
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL(bprm_change_interp);
1645 
1646 /*
1647  * determine how safe it is to execute the proposed program
1648  * - the caller must hold ->cred_guard_mutex to protect against
1649  *   PTRACE_ATTACH or seccomp thread-sync
1650  */
1651 static void check_unsafe_exec(struct linux_binprm *bprm)
1652 {
1653 	struct task_struct *p = current, *t;
1654 	unsigned n_fs;
1655 
1656 	if (p->ptrace)
1657 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1658 
1659 	/*
1660 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1661 	 * mess up.
1662 	 */
1663 	if (task_no_new_privs(current))
1664 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1665 
1666 	t = p;
1667 	n_fs = 1;
1668 	spin_lock(&p->fs->lock);
1669 	rcu_read_lock();
1670 	while_each_thread(p, t) {
1671 		if (t->fs == p->fs)
1672 			n_fs++;
1673 	}
1674 	rcu_read_unlock();
1675 
1676 	if (p->fs->users > n_fs)
1677 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1678 	else
1679 		p->fs->in_exec = 1;
1680 	spin_unlock(&p->fs->lock);
1681 }
1682 
1683 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1684 {
1685 	/* Handle suid and sgid on files */
1686 	struct inode *inode;
1687 	unsigned int mode;
1688 	kuid_t uid;
1689 	kgid_t gid;
1690 
1691 	if (!mnt_may_suid(file->f_path.mnt))
1692 		return;
1693 
1694 	if (task_no_new_privs(current))
1695 		return;
1696 
1697 	inode = file->f_path.dentry->d_inode;
1698 	mode = READ_ONCE(inode->i_mode);
1699 	if (!(mode & (S_ISUID|S_ISGID)))
1700 		return;
1701 
1702 	/* Be careful if suid/sgid is set */
1703 	inode_lock(inode);
1704 
1705 	/* reload atomically mode/uid/gid now that lock held */
1706 	mode = inode->i_mode;
1707 	uid = inode->i_uid;
1708 	gid = inode->i_gid;
1709 	inode_unlock(inode);
1710 
1711 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1712 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1713 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1714 		return;
1715 
1716 	if (mode & S_ISUID) {
1717 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1718 		bprm->cred->euid = uid;
1719 	}
1720 
1721 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1722 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1723 		bprm->cred->egid = gid;
1724 	}
1725 }
1726 
1727 /*
1728  * Compute brpm->cred based upon the final binary.
1729  */
1730 static int bprm_creds_from_file(struct linux_binprm *bprm)
1731 {
1732 	/* Compute creds based on which file? */
1733 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1734 
1735 	bprm_fill_uid(bprm, file);
1736 	return security_bprm_creds_from_file(bprm, file);
1737 }
1738 
1739 /*
1740  * Fill the binprm structure from the inode.
1741  * Read the first BINPRM_BUF_SIZE bytes
1742  *
1743  * This may be called multiple times for binary chains (scripts for example).
1744  */
1745 static int prepare_binprm(struct linux_binprm *bprm)
1746 {
1747 	loff_t pos = 0;
1748 
1749 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1750 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1751 }
1752 
1753 /*
1754  * Arguments are '\0' separated strings found at the location bprm->p
1755  * points to; chop off the first by relocating brpm->p to right after
1756  * the first '\0' encountered.
1757  */
1758 int remove_arg_zero(struct linux_binprm *bprm)
1759 {
1760 	int ret = 0;
1761 	unsigned long offset;
1762 	char *kaddr;
1763 	struct page *page;
1764 
1765 	if (!bprm->argc)
1766 		return 0;
1767 
1768 	do {
1769 		offset = bprm->p & ~PAGE_MASK;
1770 		page = get_arg_page(bprm, bprm->p, 0);
1771 		if (!page) {
1772 			ret = -EFAULT;
1773 			goto out;
1774 		}
1775 		kaddr = kmap_atomic(page);
1776 
1777 		for (; offset < PAGE_SIZE && kaddr[offset];
1778 				offset++, bprm->p++)
1779 			;
1780 
1781 		kunmap_atomic(kaddr);
1782 		put_arg_page(page);
1783 	} while (offset == PAGE_SIZE);
1784 
1785 	bprm->p++;
1786 	bprm->argc--;
1787 	ret = 0;
1788 
1789 out:
1790 	return ret;
1791 }
1792 EXPORT_SYMBOL(remove_arg_zero);
1793 
1794 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1795 /*
1796  * cycle the list of binary formats handler, until one recognizes the image
1797  */
1798 static int search_binary_handler(struct linux_binprm *bprm)
1799 {
1800 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1801 	struct linux_binfmt *fmt;
1802 	int retval;
1803 
1804 	retval = prepare_binprm(bprm);
1805 	if (retval < 0)
1806 		return retval;
1807 
1808 	retval = security_bprm_check(bprm);
1809 	if (retval)
1810 		return retval;
1811 
1812 	retval = -ENOENT;
1813  retry:
1814 	read_lock(&binfmt_lock);
1815 	list_for_each_entry(fmt, &formats, lh) {
1816 		if (!try_module_get(fmt->module))
1817 			continue;
1818 		read_unlock(&binfmt_lock);
1819 
1820 		retval = fmt->load_binary(bprm);
1821 
1822 		read_lock(&binfmt_lock);
1823 		put_binfmt(fmt);
1824 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1825 			read_unlock(&binfmt_lock);
1826 			return retval;
1827 		}
1828 	}
1829 	read_unlock(&binfmt_lock);
1830 
1831 	if (need_retry) {
1832 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1833 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1834 			return retval;
1835 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1836 			return retval;
1837 		need_retry = false;
1838 		goto retry;
1839 	}
1840 
1841 	return retval;
1842 }
1843 
1844 static int exec_binprm(struct linux_binprm *bprm)
1845 {
1846 	pid_t old_pid, old_vpid;
1847 	int ret, depth;
1848 
1849 	/* Need to fetch pid before load_binary changes it */
1850 	old_pid = current->pid;
1851 	rcu_read_lock();
1852 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1853 	rcu_read_unlock();
1854 
1855 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1856 	for (depth = 0;; depth++) {
1857 		struct file *exec;
1858 		if (depth > 5)
1859 			return -ELOOP;
1860 
1861 		ret = search_binary_handler(bprm);
1862 		if (ret < 0)
1863 			return ret;
1864 		if (!bprm->interpreter)
1865 			break;
1866 
1867 		exec = bprm->file;
1868 		bprm->file = bprm->interpreter;
1869 		bprm->interpreter = NULL;
1870 
1871 		allow_write_access(exec);
1872 		if (unlikely(bprm->have_execfd)) {
1873 			if (bprm->executable) {
1874 				fput(exec);
1875 				return -ENOEXEC;
1876 			}
1877 			bprm->executable = exec;
1878 		} else
1879 			fput(exec);
1880 	}
1881 
1882 	audit_bprm(bprm);
1883 	trace_sched_process_exec(current, old_pid, bprm);
1884 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1885 	proc_exec_connector(current);
1886 	return 0;
1887 }
1888 
1889 /*
1890  * sys_execve() executes a new program.
1891  */
1892 static int bprm_execve(struct linux_binprm *bprm,
1893 		       int fd, struct filename *filename, int flags)
1894 {
1895 	struct file *file;
1896 	struct files_struct *displaced;
1897 	int retval;
1898 
1899 	/*
1900 	 * Cancel any io_uring activity across execve
1901 	 */
1902 	io_uring_task_cancel();
1903 
1904 	retval = unshare_files(&displaced);
1905 	if (retval)
1906 		return retval;
1907 
1908 	retval = prepare_bprm_creds(bprm);
1909 	if (retval)
1910 		goto out_files;
1911 
1912 	check_unsafe_exec(bprm);
1913 	current->in_execve = 1;
1914 
1915 	file = do_open_execat(fd, filename, flags);
1916 	retval = PTR_ERR(file);
1917 	if (IS_ERR(file))
1918 		goto out_unmark;
1919 
1920 	sched_exec();
1921 
1922 	bprm->file = file;
1923 	/*
1924 	 * Record that a name derived from an O_CLOEXEC fd will be
1925 	 * inaccessible after exec. Relies on having exclusive access to
1926 	 * current->files (due to unshare_files above).
1927 	 */
1928 	if (bprm->fdpath &&
1929 	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1930 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1931 
1932 	/* Set the unchanging part of bprm->cred */
1933 	retval = security_bprm_creds_for_exec(bprm);
1934 	if (retval)
1935 		goto out;
1936 
1937 	retval = exec_binprm(bprm);
1938 	if (retval < 0)
1939 		goto out;
1940 
1941 	/* execve succeeded */
1942 	current->fs->in_exec = 0;
1943 	current->in_execve = 0;
1944 	rseq_execve(current);
1945 	acct_update_integrals(current);
1946 	task_numa_free(current, false);
1947 	if (displaced)
1948 		put_files_struct(displaced);
1949 	return retval;
1950 
1951 out:
1952 	/*
1953 	 * If past the point of no return ensure the the code never
1954 	 * returns to the userspace process.  Use an existing fatal
1955 	 * signal if present otherwise terminate the process with
1956 	 * SIGSEGV.
1957 	 */
1958 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1959 		force_sigsegv(SIGSEGV);
1960 
1961 out_unmark:
1962 	current->fs->in_exec = 0;
1963 	current->in_execve = 0;
1964 
1965 out_files:
1966 	if (displaced)
1967 		reset_files_struct(displaced);
1968 
1969 	return retval;
1970 }
1971 
1972 static int do_execveat_common(int fd, struct filename *filename,
1973 			      struct user_arg_ptr argv,
1974 			      struct user_arg_ptr envp,
1975 			      int flags)
1976 {
1977 	struct linux_binprm *bprm;
1978 	int retval;
1979 
1980 	if (IS_ERR(filename))
1981 		return PTR_ERR(filename);
1982 
1983 	/*
1984 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1985 	 * set*uid() to execve() because too many poorly written programs
1986 	 * don't check setuid() return code.  Here we additionally recheck
1987 	 * whether NPROC limit is still exceeded.
1988 	 */
1989 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1990 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1991 		retval = -EAGAIN;
1992 		goto out_ret;
1993 	}
1994 
1995 	/* We're below the limit (still or again), so we don't want to make
1996 	 * further execve() calls fail. */
1997 	current->flags &= ~PF_NPROC_EXCEEDED;
1998 
1999 	bprm = alloc_bprm(fd, filename);
2000 	if (IS_ERR(bprm)) {
2001 		retval = PTR_ERR(bprm);
2002 		goto out_ret;
2003 	}
2004 
2005 	retval = count(argv, MAX_ARG_STRINGS);
2006 	if (retval < 0)
2007 		goto out_free;
2008 	bprm->argc = retval;
2009 
2010 	retval = count(envp, MAX_ARG_STRINGS);
2011 	if (retval < 0)
2012 		goto out_free;
2013 	bprm->envc = retval;
2014 
2015 	retval = bprm_stack_limits(bprm);
2016 	if (retval < 0)
2017 		goto out_free;
2018 
2019 	retval = copy_string_kernel(bprm->filename, bprm);
2020 	if (retval < 0)
2021 		goto out_free;
2022 	bprm->exec = bprm->p;
2023 
2024 	retval = copy_strings(bprm->envc, envp, bprm);
2025 	if (retval < 0)
2026 		goto out_free;
2027 
2028 	retval = copy_strings(bprm->argc, argv, bprm);
2029 	if (retval < 0)
2030 		goto out_free;
2031 
2032 	retval = bprm_execve(bprm, fd, filename, flags);
2033 out_free:
2034 	free_bprm(bprm);
2035 
2036 out_ret:
2037 	putname(filename);
2038 	return retval;
2039 }
2040 
2041 int kernel_execve(const char *kernel_filename,
2042 		  const char *const *argv, const char *const *envp)
2043 {
2044 	struct filename *filename;
2045 	struct linux_binprm *bprm;
2046 	int fd = AT_FDCWD;
2047 	int retval;
2048 
2049 	filename = getname_kernel(kernel_filename);
2050 	if (IS_ERR(filename))
2051 		return PTR_ERR(filename);
2052 
2053 	bprm = alloc_bprm(fd, filename);
2054 	if (IS_ERR(bprm)) {
2055 		retval = PTR_ERR(bprm);
2056 		goto out_ret;
2057 	}
2058 
2059 	retval = count_strings_kernel(argv);
2060 	if (retval < 0)
2061 		goto out_free;
2062 	bprm->argc = retval;
2063 
2064 	retval = count_strings_kernel(envp);
2065 	if (retval < 0)
2066 		goto out_free;
2067 	bprm->envc = retval;
2068 
2069 	retval = bprm_stack_limits(bprm);
2070 	if (retval < 0)
2071 		goto out_free;
2072 
2073 	retval = copy_string_kernel(bprm->filename, bprm);
2074 	if (retval < 0)
2075 		goto out_free;
2076 	bprm->exec = bprm->p;
2077 
2078 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2079 	if (retval < 0)
2080 		goto out_free;
2081 
2082 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2083 	if (retval < 0)
2084 		goto out_free;
2085 
2086 	retval = bprm_execve(bprm, fd, filename, 0);
2087 out_free:
2088 	free_bprm(bprm);
2089 out_ret:
2090 	putname(filename);
2091 	return retval;
2092 }
2093 
2094 static int do_execve(struct filename *filename,
2095 	const char __user *const __user *__argv,
2096 	const char __user *const __user *__envp)
2097 {
2098 	struct user_arg_ptr argv = { .ptr.native = __argv };
2099 	struct user_arg_ptr envp = { .ptr.native = __envp };
2100 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2101 }
2102 
2103 static int do_execveat(int fd, struct filename *filename,
2104 		const char __user *const __user *__argv,
2105 		const char __user *const __user *__envp,
2106 		int flags)
2107 {
2108 	struct user_arg_ptr argv = { .ptr.native = __argv };
2109 	struct user_arg_ptr envp = { .ptr.native = __envp };
2110 
2111 	return do_execveat_common(fd, filename, argv, envp, flags);
2112 }
2113 
2114 #ifdef CONFIG_COMPAT
2115 static int compat_do_execve(struct filename *filename,
2116 	const compat_uptr_t __user *__argv,
2117 	const compat_uptr_t __user *__envp)
2118 {
2119 	struct user_arg_ptr argv = {
2120 		.is_compat = true,
2121 		.ptr.compat = __argv,
2122 	};
2123 	struct user_arg_ptr envp = {
2124 		.is_compat = true,
2125 		.ptr.compat = __envp,
2126 	};
2127 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2128 }
2129 
2130 static int compat_do_execveat(int fd, struct filename *filename,
2131 			      const compat_uptr_t __user *__argv,
2132 			      const compat_uptr_t __user *__envp,
2133 			      int flags)
2134 {
2135 	struct user_arg_ptr argv = {
2136 		.is_compat = true,
2137 		.ptr.compat = __argv,
2138 	};
2139 	struct user_arg_ptr envp = {
2140 		.is_compat = true,
2141 		.ptr.compat = __envp,
2142 	};
2143 	return do_execveat_common(fd, filename, argv, envp, flags);
2144 }
2145 #endif
2146 
2147 void set_binfmt(struct linux_binfmt *new)
2148 {
2149 	struct mm_struct *mm = current->mm;
2150 
2151 	if (mm->binfmt)
2152 		module_put(mm->binfmt->module);
2153 
2154 	mm->binfmt = new;
2155 	if (new)
2156 		__module_get(new->module);
2157 }
2158 EXPORT_SYMBOL(set_binfmt);
2159 
2160 /*
2161  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2162  */
2163 void set_dumpable(struct mm_struct *mm, int value)
2164 {
2165 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2166 		return;
2167 
2168 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2169 }
2170 
2171 SYSCALL_DEFINE3(execve,
2172 		const char __user *, filename,
2173 		const char __user *const __user *, argv,
2174 		const char __user *const __user *, envp)
2175 {
2176 	return do_execve(getname(filename), argv, envp);
2177 }
2178 
2179 SYSCALL_DEFINE5(execveat,
2180 		int, fd, const char __user *, filename,
2181 		const char __user *const __user *, argv,
2182 		const char __user *const __user *, envp,
2183 		int, flags)
2184 {
2185 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2186 
2187 	return do_execveat(fd,
2188 			   getname_flags(filename, lookup_flags, NULL),
2189 			   argv, envp, flags);
2190 }
2191 
2192 #ifdef CONFIG_COMPAT
2193 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2194 	const compat_uptr_t __user *, argv,
2195 	const compat_uptr_t __user *, envp)
2196 {
2197 	return compat_do_execve(getname(filename), argv, envp);
2198 }
2199 
2200 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2201 		       const char __user *, filename,
2202 		       const compat_uptr_t __user *, argv,
2203 		       const compat_uptr_t __user *, envp,
2204 		       int,  flags)
2205 {
2206 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2207 
2208 	return compat_do_execveat(fd,
2209 				  getname_flags(filename, lookup_flags, NULL),
2210 				  argv, envp, flags);
2211 }
2212 #endif
2213