xref: /linux/fs/exec.c (revision bd49666974a12f39eb9c74044e0b1753efcd94c4)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int register_binfmt(struct linux_binfmt * fmt)
73 {
74 	if (!fmt)
75 		return -EINVAL;
76 	write_lock(&binfmt_lock);
77 	list_add(&fmt->lh, &formats);
78 	write_unlock(&binfmt_lock);
79 	return 0;
80 }
81 
82 EXPORT_SYMBOL(register_binfmt);
83 
84 void unregister_binfmt(struct linux_binfmt * fmt)
85 {
86 	write_lock(&binfmt_lock);
87 	list_del(&fmt->lh);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(unregister_binfmt);
92 
93 static inline void put_binfmt(struct linux_binfmt * fmt)
94 {
95 	module_put(fmt->module);
96 }
97 
98 /*
99  * Note that a shared library must be both readable and executable due to
100  * security reasons.
101  *
102  * Also note that we take the address to load from from the file itself.
103  */
104 asmlinkage long sys_uselib(const char __user * library)
105 {
106 	struct file * file;
107 	struct nameidata nd;
108 	int error;
109 
110 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 	if (error)
112 		goto out;
113 
114 	error = -EINVAL;
115 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
116 		goto exit;
117 
118 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 	if (error)
120 		goto exit;
121 
122 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
123 	error = PTR_ERR(file);
124 	if (IS_ERR(file))
125 		goto out;
126 
127 	error = -ENOEXEC;
128 	if(file->f_op) {
129 		struct linux_binfmt * fmt;
130 
131 		read_lock(&binfmt_lock);
132 		list_for_each_entry(fmt, &formats, lh) {
133 			if (!fmt->load_shlib)
134 				continue;
135 			if (!try_module_get(fmt->module))
136 				continue;
137 			read_unlock(&binfmt_lock);
138 			error = fmt->load_shlib(file);
139 			read_lock(&binfmt_lock);
140 			put_binfmt(fmt);
141 			if (error != -ENOEXEC)
142 				break;
143 		}
144 		read_unlock(&binfmt_lock);
145 	}
146 	fput(file);
147 out:
148   	return error;
149 exit:
150 	release_open_intent(&nd);
151 	path_put(&nd.path);
152 	goto out;
153 }
154 
155 #ifdef CONFIG_MMU
156 
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 		int write)
159 {
160 	struct page *page;
161 	int ret;
162 
163 #ifdef CONFIG_STACK_GROWSUP
164 	if (write) {
165 		ret = expand_stack_downwards(bprm->vma, pos);
166 		if (ret < 0)
167 			return NULL;
168 	}
169 #endif
170 	ret = get_user_pages(current, bprm->mm, pos,
171 			1, write, 1, &page, NULL);
172 	if (ret <= 0)
173 		return NULL;
174 
175 	if (write) {
176 		struct rlimit *rlim = current->signal->rlim;
177 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
178 
179 		/*
180 		 * Limit to 1/4-th the stack size for the argv+env strings.
181 		 * This ensures that:
182 		 *  - the remaining binfmt code will not run out of stack space,
183 		 *  - the program will have a reasonable amount of stack left
184 		 *    to work from.
185 		 */
186 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
187 			put_page(page);
188 			return NULL;
189 		}
190 	}
191 
192 	return page;
193 }
194 
195 static void put_arg_page(struct page *page)
196 {
197 	put_page(page);
198 }
199 
200 static void free_arg_page(struct linux_binprm *bprm, int i)
201 {
202 }
203 
204 static void free_arg_pages(struct linux_binprm *bprm)
205 {
206 }
207 
208 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
209 		struct page *page)
210 {
211 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
212 }
213 
214 static int __bprm_mm_init(struct linux_binprm *bprm)
215 {
216 	int err = -ENOMEM;
217 	struct vm_area_struct *vma = NULL;
218 	struct mm_struct *mm = bprm->mm;
219 
220 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
221 	if (!vma)
222 		goto err;
223 
224 	down_write(&mm->mmap_sem);
225 	vma->vm_mm = mm;
226 
227 	/*
228 	 * Place the stack at the largest stack address the architecture
229 	 * supports. Later, we'll move this to an appropriate place. We don't
230 	 * use STACK_TOP because that can depend on attributes which aren't
231 	 * configured yet.
232 	 */
233 	vma->vm_end = STACK_TOP_MAX;
234 	vma->vm_start = vma->vm_end - PAGE_SIZE;
235 
236 	vma->vm_flags = VM_STACK_FLAGS;
237 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
238 	err = insert_vm_struct(mm, vma);
239 	if (err) {
240 		up_write(&mm->mmap_sem);
241 		goto err;
242 	}
243 
244 	mm->stack_vm = mm->total_vm = 1;
245 	up_write(&mm->mmap_sem);
246 
247 	bprm->p = vma->vm_end - sizeof(void *);
248 
249 	return 0;
250 
251 err:
252 	if (vma) {
253 		bprm->vma = NULL;
254 		kmem_cache_free(vm_area_cachep, vma);
255 	}
256 
257 	return err;
258 }
259 
260 static bool valid_arg_len(struct linux_binprm *bprm, long len)
261 {
262 	return len <= MAX_ARG_STRLEN;
263 }
264 
265 #else
266 
267 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
268 		int write)
269 {
270 	struct page *page;
271 
272 	page = bprm->page[pos / PAGE_SIZE];
273 	if (!page && write) {
274 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
275 		if (!page)
276 			return NULL;
277 		bprm->page[pos / PAGE_SIZE] = page;
278 	}
279 
280 	return page;
281 }
282 
283 static void put_arg_page(struct page *page)
284 {
285 }
286 
287 static void free_arg_page(struct linux_binprm *bprm, int i)
288 {
289 	if (bprm->page[i]) {
290 		__free_page(bprm->page[i]);
291 		bprm->page[i] = NULL;
292 	}
293 }
294 
295 static void free_arg_pages(struct linux_binprm *bprm)
296 {
297 	int i;
298 
299 	for (i = 0; i < MAX_ARG_PAGES; i++)
300 		free_arg_page(bprm, i);
301 }
302 
303 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		struct page *page)
305 {
306 }
307 
308 static int __bprm_mm_init(struct linux_binprm *bprm)
309 {
310 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
311 	return 0;
312 }
313 
314 static bool valid_arg_len(struct linux_binprm *bprm, long len)
315 {
316 	return len <= bprm->p;
317 }
318 
319 #endif /* CONFIG_MMU */
320 
321 /*
322  * Create a new mm_struct and populate it with a temporary stack
323  * vm_area_struct.  We don't have enough context at this point to set the stack
324  * flags, permissions, and offset, so we use temporary values.  We'll update
325  * them later in setup_arg_pages().
326  */
327 int bprm_mm_init(struct linux_binprm *bprm)
328 {
329 	int err;
330 	struct mm_struct *mm = NULL;
331 
332 	bprm->mm = mm = mm_alloc();
333 	err = -ENOMEM;
334 	if (!mm)
335 		goto err;
336 
337 	err = init_new_context(current, mm);
338 	if (err)
339 		goto err;
340 
341 	err = __bprm_mm_init(bprm);
342 	if (err)
343 		goto err;
344 
345 	return 0;
346 
347 err:
348 	if (mm) {
349 		bprm->mm = NULL;
350 		mmdrop(mm);
351 	}
352 
353 	return err;
354 }
355 
356 /*
357  * count() counts the number of strings in array ARGV.
358  */
359 static int count(char __user * __user * argv, int max)
360 {
361 	int i = 0;
362 
363 	if (argv != NULL) {
364 		for (;;) {
365 			char __user * p;
366 
367 			if (get_user(p, argv))
368 				return -EFAULT;
369 			if (!p)
370 				break;
371 			argv++;
372 			if(++i > max)
373 				return -E2BIG;
374 			cond_resched();
375 		}
376 	}
377 	return i;
378 }
379 
380 /*
381  * 'copy_strings()' copies argument/environment strings from the old
382  * processes's memory to the new process's stack.  The call to get_user_pages()
383  * ensures the destination page is created and not swapped out.
384  */
385 static int copy_strings(int argc, char __user * __user * argv,
386 			struct linux_binprm *bprm)
387 {
388 	struct page *kmapped_page = NULL;
389 	char *kaddr = NULL;
390 	unsigned long kpos = 0;
391 	int ret;
392 
393 	while (argc-- > 0) {
394 		char __user *str;
395 		int len;
396 		unsigned long pos;
397 
398 		if (get_user(str, argv+argc) ||
399 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
400 			ret = -EFAULT;
401 			goto out;
402 		}
403 
404 		if (!valid_arg_len(bprm, len)) {
405 			ret = -E2BIG;
406 			goto out;
407 		}
408 
409 		/* We're going to work our way backwords. */
410 		pos = bprm->p;
411 		str += len;
412 		bprm->p -= len;
413 
414 		while (len > 0) {
415 			int offset, bytes_to_copy;
416 
417 			offset = pos % PAGE_SIZE;
418 			if (offset == 0)
419 				offset = PAGE_SIZE;
420 
421 			bytes_to_copy = offset;
422 			if (bytes_to_copy > len)
423 				bytes_to_copy = len;
424 
425 			offset -= bytes_to_copy;
426 			pos -= bytes_to_copy;
427 			str -= bytes_to_copy;
428 			len -= bytes_to_copy;
429 
430 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
431 				struct page *page;
432 
433 				page = get_arg_page(bprm, pos, 1);
434 				if (!page) {
435 					ret = -E2BIG;
436 					goto out;
437 				}
438 
439 				if (kmapped_page) {
440 					flush_kernel_dcache_page(kmapped_page);
441 					kunmap(kmapped_page);
442 					put_arg_page(kmapped_page);
443 				}
444 				kmapped_page = page;
445 				kaddr = kmap(kmapped_page);
446 				kpos = pos & PAGE_MASK;
447 				flush_arg_page(bprm, kpos, kmapped_page);
448 			}
449 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
450 				ret = -EFAULT;
451 				goto out;
452 			}
453 		}
454 	}
455 	ret = 0;
456 out:
457 	if (kmapped_page) {
458 		flush_kernel_dcache_page(kmapped_page);
459 		kunmap(kmapped_page);
460 		put_arg_page(kmapped_page);
461 	}
462 	return ret;
463 }
464 
465 /*
466  * Like copy_strings, but get argv and its values from kernel memory.
467  */
468 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
469 {
470 	int r;
471 	mm_segment_t oldfs = get_fs();
472 	set_fs(KERNEL_DS);
473 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
474 	set_fs(oldfs);
475 	return r;
476 }
477 EXPORT_SYMBOL(copy_strings_kernel);
478 
479 #ifdef CONFIG_MMU
480 
481 /*
482  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
483  * the binfmt code determines where the new stack should reside, we shift it to
484  * its final location.  The process proceeds as follows:
485  *
486  * 1) Use shift to calculate the new vma endpoints.
487  * 2) Extend vma to cover both the old and new ranges.  This ensures the
488  *    arguments passed to subsequent functions are consistent.
489  * 3) Move vma's page tables to the new range.
490  * 4) Free up any cleared pgd range.
491  * 5) Shrink the vma to cover only the new range.
492  */
493 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
494 {
495 	struct mm_struct *mm = vma->vm_mm;
496 	unsigned long old_start = vma->vm_start;
497 	unsigned long old_end = vma->vm_end;
498 	unsigned long length = old_end - old_start;
499 	unsigned long new_start = old_start - shift;
500 	unsigned long new_end = old_end - shift;
501 	struct mmu_gather *tlb;
502 
503 	BUG_ON(new_start > new_end);
504 
505 	/*
506 	 * ensure there are no vmas between where we want to go
507 	 * and where we are
508 	 */
509 	if (vma != find_vma(mm, new_start))
510 		return -EFAULT;
511 
512 	/*
513 	 * cover the whole range: [new_start, old_end)
514 	 */
515 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
516 
517 	/*
518 	 * move the page tables downwards, on failure we rely on
519 	 * process cleanup to remove whatever mess we made.
520 	 */
521 	if (length != move_page_tables(vma, old_start,
522 				       vma, new_start, length))
523 		return -ENOMEM;
524 
525 	lru_add_drain();
526 	tlb = tlb_gather_mmu(mm, 0);
527 	if (new_end > old_start) {
528 		/*
529 		 * when the old and new regions overlap clear from new_end.
530 		 */
531 		free_pgd_range(&tlb, new_end, old_end, new_end,
532 			vma->vm_next ? vma->vm_next->vm_start : 0);
533 	} else {
534 		/*
535 		 * otherwise, clean from old_start; this is done to not touch
536 		 * the address space in [new_end, old_start) some architectures
537 		 * have constraints on va-space that make this illegal (IA64) -
538 		 * for the others its just a little faster.
539 		 */
540 		free_pgd_range(&tlb, old_start, old_end, new_end,
541 			vma->vm_next ? vma->vm_next->vm_start : 0);
542 	}
543 	tlb_finish_mmu(tlb, new_end, old_end);
544 
545 	/*
546 	 * shrink the vma to just the new range.
547 	 */
548 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
549 
550 	return 0;
551 }
552 
553 #define EXTRA_STACK_VM_PAGES	20	/* random */
554 
555 /*
556  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
557  * the stack is optionally relocated, and some extra space is added.
558  */
559 int setup_arg_pages(struct linux_binprm *bprm,
560 		    unsigned long stack_top,
561 		    int executable_stack)
562 {
563 	unsigned long ret;
564 	unsigned long stack_shift;
565 	struct mm_struct *mm = current->mm;
566 	struct vm_area_struct *vma = bprm->vma;
567 	struct vm_area_struct *prev = NULL;
568 	unsigned long vm_flags;
569 	unsigned long stack_base;
570 
571 #ifdef CONFIG_STACK_GROWSUP
572 	/* Limit stack size to 1GB */
573 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
574 	if (stack_base > (1 << 30))
575 		stack_base = 1 << 30;
576 
577 	/* Make sure we didn't let the argument array grow too large. */
578 	if (vma->vm_end - vma->vm_start > stack_base)
579 		return -ENOMEM;
580 
581 	stack_base = PAGE_ALIGN(stack_top - stack_base);
582 
583 	stack_shift = vma->vm_start - stack_base;
584 	mm->arg_start = bprm->p - stack_shift;
585 	bprm->p = vma->vm_end - stack_shift;
586 #else
587 	stack_top = arch_align_stack(stack_top);
588 	stack_top = PAGE_ALIGN(stack_top);
589 	stack_shift = vma->vm_end - stack_top;
590 
591 	bprm->p -= stack_shift;
592 	mm->arg_start = bprm->p;
593 #endif
594 
595 	if (bprm->loader)
596 		bprm->loader -= stack_shift;
597 	bprm->exec -= stack_shift;
598 
599 	down_write(&mm->mmap_sem);
600 	vm_flags = vma->vm_flags;
601 
602 	/*
603 	 * Adjust stack execute permissions; explicitly enable for
604 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
605 	 * (arch default) otherwise.
606 	 */
607 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
608 		vm_flags |= VM_EXEC;
609 	else if (executable_stack == EXSTACK_DISABLE_X)
610 		vm_flags &= ~VM_EXEC;
611 	vm_flags |= mm->def_flags;
612 
613 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
614 			vm_flags);
615 	if (ret)
616 		goto out_unlock;
617 	BUG_ON(prev != vma);
618 
619 	/* Move stack pages down in memory. */
620 	if (stack_shift) {
621 		ret = shift_arg_pages(vma, stack_shift);
622 		if (ret) {
623 			up_write(&mm->mmap_sem);
624 			return ret;
625 		}
626 	}
627 
628 #ifdef CONFIG_STACK_GROWSUP
629 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
630 #else
631 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
632 #endif
633 	ret = expand_stack(vma, stack_base);
634 	if (ret)
635 		ret = -EFAULT;
636 
637 out_unlock:
638 	up_write(&mm->mmap_sem);
639 	return 0;
640 }
641 EXPORT_SYMBOL(setup_arg_pages);
642 
643 #endif /* CONFIG_MMU */
644 
645 struct file *open_exec(const char *name)
646 {
647 	struct nameidata nd;
648 	int err;
649 	struct file *file;
650 
651 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
652 	file = ERR_PTR(err);
653 
654 	if (!err) {
655 		struct inode *inode = nd.path.dentry->d_inode;
656 		file = ERR_PTR(-EACCES);
657 		if (S_ISREG(inode->i_mode)) {
658 			int err = vfs_permission(&nd, MAY_EXEC);
659 			file = ERR_PTR(err);
660 			if (!err) {
661 				file = nameidata_to_filp(&nd,
662 							O_RDONLY|O_LARGEFILE);
663 				if (!IS_ERR(file)) {
664 					err = deny_write_access(file);
665 					if (err) {
666 						fput(file);
667 						file = ERR_PTR(err);
668 					}
669 				}
670 out:
671 				return file;
672 			}
673 		}
674 		release_open_intent(&nd);
675 		path_put(&nd.path);
676 	}
677 	goto out;
678 }
679 
680 EXPORT_SYMBOL(open_exec);
681 
682 int kernel_read(struct file *file, unsigned long offset,
683 	char *addr, unsigned long count)
684 {
685 	mm_segment_t old_fs;
686 	loff_t pos = offset;
687 	int result;
688 
689 	old_fs = get_fs();
690 	set_fs(get_ds());
691 	/* The cast to a user pointer is valid due to the set_fs() */
692 	result = vfs_read(file, (void __user *)addr, count, &pos);
693 	set_fs(old_fs);
694 	return result;
695 }
696 
697 EXPORT_SYMBOL(kernel_read);
698 
699 static int exec_mmap(struct mm_struct *mm)
700 {
701 	struct task_struct *tsk;
702 	struct mm_struct * old_mm, *active_mm;
703 
704 	/* Notify parent that we're no longer interested in the old VM */
705 	tsk = current;
706 	old_mm = current->mm;
707 	mm_release(tsk, old_mm);
708 
709 	if (old_mm) {
710 		/*
711 		 * Make sure that if there is a core dump in progress
712 		 * for the old mm, we get out and die instead of going
713 		 * through with the exec.  We must hold mmap_sem around
714 		 * checking core_waiters and changing tsk->mm.  The
715 		 * core-inducing thread will increment core_waiters for
716 		 * each thread whose ->mm == old_mm.
717 		 */
718 		down_read(&old_mm->mmap_sem);
719 		if (unlikely(old_mm->core_waiters)) {
720 			up_read(&old_mm->mmap_sem);
721 			return -EINTR;
722 		}
723 	}
724 	task_lock(tsk);
725 	active_mm = tsk->active_mm;
726 	tsk->mm = mm;
727 	tsk->active_mm = mm;
728 	activate_mm(active_mm, mm);
729 	task_unlock(tsk);
730 	arch_pick_mmap_layout(mm);
731 	if (old_mm) {
732 		up_read(&old_mm->mmap_sem);
733 		BUG_ON(active_mm != old_mm);
734 		mmput(old_mm);
735 		return 0;
736 	}
737 	mmdrop(active_mm);
738 	return 0;
739 }
740 
741 /*
742  * This function makes sure the current process has its own signal table,
743  * so that flush_signal_handlers can later reset the handlers without
744  * disturbing other processes.  (Other processes might share the signal
745  * table via the CLONE_SIGHAND option to clone().)
746  */
747 static int de_thread(struct task_struct *tsk)
748 {
749 	struct signal_struct *sig = tsk->signal;
750 	struct sighand_struct *oldsighand = tsk->sighand;
751 	spinlock_t *lock = &oldsighand->siglock;
752 	struct task_struct *leader = NULL;
753 	int count;
754 
755 	if (thread_group_empty(tsk))
756 		goto no_thread_group;
757 
758 	/*
759 	 * Kill all other threads in the thread group.
760 	 * We must hold tasklist_lock to call zap_other_threads.
761 	 */
762 	read_lock(&tasklist_lock);
763 	spin_lock_irq(lock);
764 	if (signal_group_exit(sig)) {
765 		/*
766 		 * Another group action in progress, just
767 		 * return so that the signal is processed.
768 		 */
769 		spin_unlock_irq(lock);
770 		read_unlock(&tasklist_lock);
771 		return -EAGAIN;
772 	}
773 
774 	/*
775 	 * child_reaper ignores SIGKILL, change it now.
776 	 * Reparenting needs write_lock on tasklist_lock,
777 	 * so it is safe to do it under read_lock.
778 	 */
779 	if (unlikely(tsk->group_leader == task_child_reaper(tsk)))
780 		task_active_pid_ns(tsk)->child_reaper = tsk;
781 
782 	sig->group_exit_task = tsk;
783 	zap_other_threads(tsk);
784 	read_unlock(&tasklist_lock);
785 
786 	/* Account for the thread group leader hanging around: */
787 	count = thread_group_leader(tsk) ? 1 : 2;
788 	sig->notify_count = count;
789 	while (atomic_read(&sig->count) > count) {
790 		__set_current_state(TASK_UNINTERRUPTIBLE);
791 		spin_unlock_irq(lock);
792 		schedule();
793 		spin_lock_irq(lock);
794 	}
795 	spin_unlock_irq(lock);
796 
797 	/*
798 	 * At this point all other threads have exited, all we have to
799 	 * do is to wait for the thread group leader to become inactive,
800 	 * and to assume its PID:
801 	 */
802 	if (!thread_group_leader(tsk)) {
803 		leader = tsk->group_leader;
804 
805 		sig->notify_count = -1;
806 		for (;;) {
807 			write_lock_irq(&tasklist_lock);
808 			if (likely(leader->exit_state))
809 				break;
810 			__set_current_state(TASK_UNINTERRUPTIBLE);
811 			write_unlock_irq(&tasklist_lock);
812 			schedule();
813 		}
814 
815 		/*
816 		 * The only record we have of the real-time age of a
817 		 * process, regardless of execs it's done, is start_time.
818 		 * All the past CPU time is accumulated in signal_struct
819 		 * from sister threads now dead.  But in this non-leader
820 		 * exec, nothing survives from the original leader thread,
821 		 * whose birth marks the true age of this process now.
822 		 * When we take on its identity by switching to its PID, we
823 		 * also take its birthdate (always earlier than our own).
824 		 */
825 		tsk->start_time = leader->start_time;
826 
827 		BUG_ON(!same_thread_group(leader, tsk));
828 		BUG_ON(has_group_leader_pid(tsk));
829 		/*
830 		 * An exec() starts a new thread group with the
831 		 * TGID of the previous thread group. Rehash the
832 		 * two threads with a switched PID, and release
833 		 * the former thread group leader:
834 		 */
835 
836 		/* Become a process group leader with the old leader's pid.
837 		 * The old leader becomes a thread of the this thread group.
838 		 * Note: The old leader also uses this pid until release_task
839 		 *       is called.  Odd but simple and correct.
840 		 */
841 		detach_pid(tsk, PIDTYPE_PID);
842 		tsk->pid = leader->pid;
843 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
844 		transfer_pid(leader, tsk, PIDTYPE_PGID);
845 		transfer_pid(leader, tsk, PIDTYPE_SID);
846 		list_replace_rcu(&leader->tasks, &tsk->tasks);
847 
848 		tsk->group_leader = tsk;
849 		leader->group_leader = tsk;
850 
851 		tsk->exit_signal = SIGCHLD;
852 
853 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
854 		leader->exit_state = EXIT_DEAD;
855 
856 		write_unlock_irq(&tasklist_lock);
857 	}
858 
859 	sig->group_exit_task = NULL;
860 	sig->notify_count = 0;
861 
862 no_thread_group:
863 	exit_itimers(sig);
864 	if (leader)
865 		release_task(leader);
866 
867 	if (atomic_read(&oldsighand->count) != 1) {
868 		struct sighand_struct *newsighand;
869 		/*
870 		 * This ->sighand is shared with the CLONE_SIGHAND
871 		 * but not CLONE_THREAD task, switch to the new one.
872 		 */
873 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874 		if (!newsighand)
875 			return -ENOMEM;
876 
877 		atomic_set(&newsighand->count, 1);
878 		memcpy(newsighand->action, oldsighand->action,
879 		       sizeof(newsighand->action));
880 
881 		write_lock_irq(&tasklist_lock);
882 		spin_lock(&oldsighand->siglock);
883 		rcu_assign_pointer(tsk->sighand, newsighand);
884 		spin_unlock(&oldsighand->siglock);
885 		write_unlock_irq(&tasklist_lock);
886 
887 		__cleanup_sighand(oldsighand);
888 	}
889 
890 	BUG_ON(!thread_group_leader(tsk));
891 	return 0;
892 }
893 
894 /*
895  * These functions flushes out all traces of the currently running executable
896  * so that a new one can be started
897  */
898 static void flush_old_files(struct files_struct * files)
899 {
900 	long j = -1;
901 	struct fdtable *fdt;
902 
903 	spin_lock(&files->file_lock);
904 	for (;;) {
905 		unsigned long set, i;
906 
907 		j++;
908 		i = j * __NFDBITS;
909 		fdt = files_fdtable(files);
910 		if (i >= fdt->max_fds)
911 			break;
912 		set = fdt->close_on_exec->fds_bits[j];
913 		if (!set)
914 			continue;
915 		fdt->close_on_exec->fds_bits[j] = 0;
916 		spin_unlock(&files->file_lock);
917 		for ( ; set ; i++,set >>= 1) {
918 			if (set & 1) {
919 				sys_close(i);
920 			}
921 		}
922 		spin_lock(&files->file_lock);
923 
924 	}
925 	spin_unlock(&files->file_lock);
926 }
927 
928 char *get_task_comm(char *buf, struct task_struct *tsk)
929 {
930 	/* buf must be at least sizeof(tsk->comm) in size */
931 	task_lock(tsk);
932 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
933 	task_unlock(tsk);
934 	return buf;
935 }
936 
937 void set_task_comm(struct task_struct *tsk, char *buf)
938 {
939 	task_lock(tsk);
940 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941 	task_unlock(tsk);
942 }
943 
944 int flush_old_exec(struct linux_binprm * bprm)
945 {
946 	char * name;
947 	int i, ch, retval;
948 	struct files_struct *files;
949 	char tcomm[sizeof(current->comm)];
950 
951 	/*
952 	 * Make sure we have a private signal table and that
953 	 * we are unassociated from the previous thread group.
954 	 */
955 	retval = de_thread(current);
956 	if (retval)
957 		goto out;
958 
959 	/*
960 	 * Make sure we have private file handles. Ask the
961 	 * fork helper to do the work for us and the exit
962 	 * helper to do the cleanup of the old one.
963 	 */
964 	files = current->files;		/* refcounted so safe to hold */
965 	retval = unshare_files();
966 	if (retval)
967 		goto out;
968 	/*
969 	 * Release all of the old mmap stuff
970 	 */
971 	retval = exec_mmap(bprm->mm);
972 	if (retval)
973 		goto mmap_failed;
974 
975 	bprm->mm = NULL;		/* We're using it now */
976 
977 	/* This is the point of no return */
978 	put_files_struct(files);
979 
980 	current->sas_ss_sp = current->sas_ss_size = 0;
981 
982 	if (current->euid == current->uid && current->egid == current->gid)
983 		set_dumpable(current->mm, 1);
984 	else
985 		set_dumpable(current->mm, suid_dumpable);
986 
987 	name = bprm->filename;
988 
989 	/* Copies the binary name from after last slash */
990 	for (i=0; (ch = *(name++)) != '\0';) {
991 		if (ch == '/')
992 			i = 0; /* overwrite what we wrote */
993 		else
994 			if (i < (sizeof(tcomm) - 1))
995 				tcomm[i++] = ch;
996 	}
997 	tcomm[i] = '\0';
998 	set_task_comm(current, tcomm);
999 
1000 	current->flags &= ~PF_RANDOMIZE;
1001 	flush_thread();
1002 
1003 	/* Set the new mm task size. We have to do that late because it may
1004 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 	 * some architectures like powerpc
1006 	 */
1007 	current->mm->task_size = TASK_SIZE;
1008 
1009 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1010 		suid_keys(current);
1011 		set_dumpable(current->mm, suid_dumpable);
1012 		current->pdeath_signal = 0;
1013 	} else if (file_permission(bprm->file, MAY_READ) ||
1014 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1015 		suid_keys(current);
1016 		set_dumpable(current->mm, suid_dumpable);
1017 	}
1018 
1019 	/* An exec changes our domain. We are no longer part of the thread
1020 	   group */
1021 
1022 	current->self_exec_id++;
1023 
1024 	flush_signal_handlers(current, 0);
1025 	flush_old_files(current->files);
1026 
1027 	return 0;
1028 
1029 mmap_failed:
1030 	reset_files_struct(current, files);
1031 out:
1032 	return retval;
1033 }
1034 
1035 EXPORT_SYMBOL(flush_old_exec);
1036 
1037 /*
1038  * Fill the binprm structure from the inode.
1039  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1040  */
1041 int prepare_binprm(struct linux_binprm *bprm)
1042 {
1043 	int mode;
1044 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1045 	int retval;
1046 
1047 	mode = inode->i_mode;
1048 	if (bprm->file->f_op == NULL)
1049 		return -EACCES;
1050 
1051 	bprm->e_uid = current->euid;
1052 	bprm->e_gid = current->egid;
1053 
1054 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1055 		/* Set-uid? */
1056 		if (mode & S_ISUID) {
1057 			current->personality &= ~PER_CLEAR_ON_SETID;
1058 			bprm->e_uid = inode->i_uid;
1059 		}
1060 
1061 		/* Set-gid? */
1062 		/*
1063 		 * If setgid is set but no group execute bit then this
1064 		 * is a candidate for mandatory locking, not a setgid
1065 		 * executable.
1066 		 */
1067 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1068 			current->personality &= ~PER_CLEAR_ON_SETID;
1069 			bprm->e_gid = inode->i_gid;
1070 		}
1071 	}
1072 
1073 	/* fill in binprm security blob */
1074 	retval = security_bprm_set(bprm);
1075 	if (retval)
1076 		return retval;
1077 
1078 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1079 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1080 }
1081 
1082 EXPORT_SYMBOL(prepare_binprm);
1083 
1084 static int unsafe_exec(struct task_struct *p)
1085 {
1086 	int unsafe = 0;
1087 	if (p->ptrace & PT_PTRACED) {
1088 		if (p->ptrace & PT_PTRACE_CAP)
1089 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1090 		else
1091 			unsafe |= LSM_UNSAFE_PTRACE;
1092 	}
1093 	if (atomic_read(&p->fs->count) > 1 ||
1094 	    atomic_read(&p->files->count) > 1 ||
1095 	    atomic_read(&p->sighand->count) > 1)
1096 		unsafe |= LSM_UNSAFE_SHARE;
1097 
1098 	return unsafe;
1099 }
1100 
1101 void compute_creds(struct linux_binprm *bprm)
1102 {
1103 	int unsafe;
1104 
1105 	if (bprm->e_uid != current->uid) {
1106 		suid_keys(current);
1107 		current->pdeath_signal = 0;
1108 	}
1109 	exec_keys(current);
1110 
1111 	task_lock(current);
1112 	unsafe = unsafe_exec(current);
1113 	security_bprm_apply_creds(bprm, unsafe);
1114 	task_unlock(current);
1115 	security_bprm_post_apply_creds(bprm);
1116 }
1117 EXPORT_SYMBOL(compute_creds);
1118 
1119 /*
1120  * Arguments are '\0' separated strings found at the location bprm->p
1121  * points to; chop off the first by relocating brpm->p to right after
1122  * the first '\0' encountered.
1123  */
1124 int remove_arg_zero(struct linux_binprm *bprm)
1125 {
1126 	int ret = 0;
1127 	unsigned long offset;
1128 	char *kaddr;
1129 	struct page *page;
1130 
1131 	if (!bprm->argc)
1132 		return 0;
1133 
1134 	do {
1135 		offset = bprm->p & ~PAGE_MASK;
1136 		page = get_arg_page(bprm, bprm->p, 0);
1137 		if (!page) {
1138 			ret = -EFAULT;
1139 			goto out;
1140 		}
1141 		kaddr = kmap_atomic(page, KM_USER0);
1142 
1143 		for (; offset < PAGE_SIZE && kaddr[offset];
1144 				offset++, bprm->p++)
1145 			;
1146 
1147 		kunmap_atomic(kaddr, KM_USER0);
1148 		put_arg_page(page);
1149 
1150 		if (offset == PAGE_SIZE)
1151 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1152 	} while (offset == PAGE_SIZE);
1153 
1154 	bprm->p++;
1155 	bprm->argc--;
1156 	ret = 0;
1157 
1158 out:
1159 	return ret;
1160 }
1161 EXPORT_SYMBOL(remove_arg_zero);
1162 
1163 /*
1164  * cycle the list of binary formats handler, until one recognizes the image
1165  */
1166 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1167 {
1168 	int try,retval;
1169 	struct linux_binfmt *fmt;
1170 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1171 	/* handle /sbin/loader.. */
1172 	{
1173 	    struct exec * eh = (struct exec *) bprm->buf;
1174 
1175 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1176 		(eh->fh.f_flags & 0x3000) == 0x3000)
1177 	    {
1178 		struct file * file;
1179 		unsigned long loader;
1180 
1181 		allow_write_access(bprm->file);
1182 		fput(bprm->file);
1183 		bprm->file = NULL;
1184 
1185 		loader = bprm->vma->vm_end - sizeof(void *);
1186 
1187 		file = open_exec("/sbin/loader");
1188 		retval = PTR_ERR(file);
1189 		if (IS_ERR(file))
1190 			return retval;
1191 
1192 		/* Remember if the application is TASO.  */
1193 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1194 
1195 		bprm->file = file;
1196 		bprm->loader = loader;
1197 		retval = prepare_binprm(bprm);
1198 		if (retval<0)
1199 			return retval;
1200 		/* should call search_binary_handler recursively here,
1201 		   but it does not matter */
1202 	    }
1203 	}
1204 #endif
1205 	retval = security_bprm_check(bprm);
1206 	if (retval)
1207 		return retval;
1208 
1209 	/* kernel module loader fixup */
1210 	/* so we don't try to load run modprobe in kernel space. */
1211 	set_fs(USER_DS);
1212 
1213 	retval = audit_bprm(bprm);
1214 	if (retval)
1215 		return retval;
1216 
1217 	retval = -ENOENT;
1218 	for (try=0; try<2; try++) {
1219 		read_lock(&binfmt_lock);
1220 		list_for_each_entry(fmt, &formats, lh) {
1221 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1222 			if (!fn)
1223 				continue;
1224 			if (!try_module_get(fmt->module))
1225 				continue;
1226 			read_unlock(&binfmt_lock);
1227 			retval = fn(bprm, regs);
1228 			if (retval >= 0) {
1229 				put_binfmt(fmt);
1230 				allow_write_access(bprm->file);
1231 				if (bprm->file)
1232 					fput(bprm->file);
1233 				bprm->file = NULL;
1234 				current->did_exec = 1;
1235 				proc_exec_connector(current);
1236 				return retval;
1237 			}
1238 			read_lock(&binfmt_lock);
1239 			put_binfmt(fmt);
1240 			if (retval != -ENOEXEC || bprm->mm == NULL)
1241 				break;
1242 			if (!bprm->file) {
1243 				read_unlock(&binfmt_lock);
1244 				return retval;
1245 			}
1246 		}
1247 		read_unlock(&binfmt_lock);
1248 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1249 			break;
1250 #ifdef CONFIG_KMOD
1251 		}else{
1252 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1253 			if (printable(bprm->buf[0]) &&
1254 			    printable(bprm->buf[1]) &&
1255 			    printable(bprm->buf[2]) &&
1256 			    printable(bprm->buf[3]))
1257 				break; /* -ENOEXEC */
1258 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1259 #endif
1260 		}
1261 	}
1262 	return retval;
1263 }
1264 
1265 EXPORT_SYMBOL(search_binary_handler);
1266 
1267 /*
1268  * sys_execve() executes a new program.
1269  */
1270 int do_execve(char * filename,
1271 	char __user *__user *argv,
1272 	char __user *__user *envp,
1273 	struct pt_regs * regs)
1274 {
1275 	struct linux_binprm *bprm;
1276 	struct file *file;
1277 	unsigned long env_p;
1278 	int retval;
1279 
1280 	retval = -ENOMEM;
1281 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1282 	if (!bprm)
1283 		goto out_ret;
1284 
1285 	file = open_exec(filename);
1286 	retval = PTR_ERR(file);
1287 	if (IS_ERR(file))
1288 		goto out_kfree;
1289 
1290 	sched_exec();
1291 
1292 	bprm->file = file;
1293 	bprm->filename = filename;
1294 	bprm->interp = filename;
1295 
1296 	retval = bprm_mm_init(bprm);
1297 	if (retval)
1298 		goto out_file;
1299 
1300 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1301 	if ((retval = bprm->argc) < 0)
1302 		goto out_mm;
1303 
1304 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1305 	if ((retval = bprm->envc) < 0)
1306 		goto out_mm;
1307 
1308 	retval = security_bprm_alloc(bprm);
1309 	if (retval)
1310 		goto out;
1311 
1312 	retval = prepare_binprm(bprm);
1313 	if (retval < 0)
1314 		goto out;
1315 
1316 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1317 	if (retval < 0)
1318 		goto out;
1319 
1320 	bprm->exec = bprm->p;
1321 	retval = copy_strings(bprm->envc, envp, bprm);
1322 	if (retval < 0)
1323 		goto out;
1324 
1325 	env_p = bprm->p;
1326 	retval = copy_strings(bprm->argc, argv, bprm);
1327 	if (retval < 0)
1328 		goto out;
1329 	bprm->argv_len = env_p - bprm->p;
1330 
1331 	retval = search_binary_handler(bprm,regs);
1332 	if (retval >= 0) {
1333 		/* execve success */
1334 		free_arg_pages(bprm);
1335 		security_bprm_free(bprm);
1336 		acct_update_integrals(current);
1337 		kfree(bprm);
1338 		return retval;
1339 	}
1340 
1341 out:
1342 	free_arg_pages(bprm);
1343 	if (bprm->security)
1344 		security_bprm_free(bprm);
1345 
1346 out_mm:
1347 	if (bprm->mm)
1348 		mmput (bprm->mm);
1349 
1350 out_file:
1351 	if (bprm->file) {
1352 		allow_write_access(bprm->file);
1353 		fput(bprm->file);
1354 	}
1355 out_kfree:
1356 	kfree(bprm);
1357 
1358 out_ret:
1359 	return retval;
1360 }
1361 
1362 int set_binfmt(struct linux_binfmt *new)
1363 {
1364 	struct linux_binfmt *old = current->binfmt;
1365 
1366 	if (new) {
1367 		if (!try_module_get(new->module))
1368 			return -1;
1369 	}
1370 	current->binfmt = new;
1371 	if (old)
1372 		module_put(old->module);
1373 	return 0;
1374 }
1375 
1376 EXPORT_SYMBOL(set_binfmt);
1377 
1378 /* format_corename will inspect the pattern parameter, and output a
1379  * name into corename, which must have space for at least
1380  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1381  */
1382 static int format_corename(char *corename, const char *pattern, long signr)
1383 {
1384 	const char *pat_ptr = pattern;
1385 	char *out_ptr = corename;
1386 	char *const out_end = corename + CORENAME_MAX_SIZE;
1387 	int rc;
1388 	int pid_in_pattern = 0;
1389 	int ispipe = 0;
1390 
1391 	if (*pattern == '|')
1392 		ispipe = 1;
1393 
1394 	/* Repeat as long as we have more pattern to process and more output
1395 	   space */
1396 	while (*pat_ptr) {
1397 		if (*pat_ptr != '%') {
1398 			if (out_ptr == out_end)
1399 				goto out;
1400 			*out_ptr++ = *pat_ptr++;
1401 		} else {
1402 			switch (*++pat_ptr) {
1403 			case 0:
1404 				goto out;
1405 			/* Double percent, output one percent */
1406 			case '%':
1407 				if (out_ptr == out_end)
1408 					goto out;
1409 				*out_ptr++ = '%';
1410 				break;
1411 			/* pid */
1412 			case 'p':
1413 				pid_in_pattern = 1;
1414 				rc = snprintf(out_ptr, out_end - out_ptr,
1415 					      "%d", task_tgid_vnr(current));
1416 				if (rc > out_end - out_ptr)
1417 					goto out;
1418 				out_ptr += rc;
1419 				break;
1420 			/* uid */
1421 			case 'u':
1422 				rc = snprintf(out_ptr, out_end - out_ptr,
1423 					      "%d", current->uid);
1424 				if (rc > out_end - out_ptr)
1425 					goto out;
1426 				out_ptr += rc;
1427 				break;
1428 			/* gid */
1429 			case 'g':
1430 				rc = snprintf(out_ptr, out_end - out_ptr,
1431 					      "%d", current->gid);
1432 				if (rc > out_end - out_ptr)
1433 					goto out;
1434 				out_ptr += rc;
1435 				break;
1436 			/* signal that caused the coredump */
1437 			case 's':
1438 				rc = snprintf(out_ptr, out_end - out_ptr,
1439 					      "%ld", signr);
1440 				if (rc > out_end - out_ptr)
1441 					goto out;
1442 				out_ptr += rc;
1443 				break;
1444 			/* UNIX time of coredump */
1445 			case 't': {
1446 				struct timeval tv;
1447 				do_gettimeofday(&tv);
1448 				rc = snprintf(out_ptr, out_end - out_ptr,
1449 					      "%lu", tv.tv_sec);
1450 				if (rc > out_end - out_ptr)
1451 					goto out;
1452 				out_ptr += rc;
1453 				break;
1454 			}
1455 			/* hostname */
1456 			case 'h':
1457 				down_read(&uts_sem);
1458 				rc = snprintf(out_ptr, out_end - out_ptr,
1459 					      "%s", utsname()->nodename);
1460 				up_read(&uts_sem);
1461 				if (rc > out_end - out_ptr)
1462 					goto out;
1463 				out_ptr += rc;
1464 				break;
1465 			/* executable */
1466 			case 'e':
1467 				rc = snprintf(out_ptr, out_end - out_ptr,
1468 					      "%s", current->comm);
1469 				if (rc > out_end - out_ptr)
1470 					goto out;
1471 				out_ptr += rc;
1472 				break;
1473 			/* core limit size */
1474 			case 'c':
1475 				rc = snprintf(out_ptr, out_end - out_ptr,
1476 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1477 				if (rc > out_end - out_ptr)
1478 					goto out;
1479 				out_ptr += rc;
1480 				break;
1481 			default:
1482 				break;
1483 			}
1484 			++pat_ptr;
1485 		}
1486 	}
1487 	/* Backward compatibility with core_uses_pid:
1488 	 *
1489 	 * If core_pattern does not include a %p (as is the default)
1490 	 * and core_uses_pid is set, then .%pid will be appended to
1491 	 * the filename. Do not do this for piped commands. */
1492 	if (!ispipe && !pid_in_pattern
1493             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1494 		rc = snprintf(out_ptr, out_end - out_ptr,
1495 			      ".%d", task_tgid_vnr(current));
1496 		if (rc > out_end - out_ptr)
1497 			goto out;
1498 		out_ptr += rc;
1499 	}
1500 out:
1501 	*out_ptr = 0;
1502 	return ispipe;
1503 }
1504 
1505 static void zap_process(struct task_struct *start)
1506 {
1507 	struct task_struct *t;
1508 
1509 	start->signal->flags = SIGNAL_GROUP_EXIT;
1510 	start->signal->group_stop_count = 0;
1511 
1512 	t = start;
1513 	do {
1514 		if (t != current && t->mm) {
1515 			t->mm->core_waiters++;
1516 			sigaddset(&t->pending.signal, SIGKILL);
1517 			signal_wake_up(t, 1);
1518 		}
1519 	} while ((t = next_thread(t)) != start);
1520 }
1521 
1522 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1523 				int exit_code)
1524 {
1525 	struct task_struct *g, *p;
1526 	unsigned long flags;
1527 	int err = -EAGAIN;
1528 
1529 	spin_lock_irq(&tsk->sighand->siglock);
1530 	if (!signal_group_exit(tsk->signal)) {
1531 		tsk->signal->group_exit_code = exit_code;
1532 		zap_process(tsk);
1533 		err = 0;
1534 	}
1535 	spin_unlock_irq(&tsk->sighand->siglock);
1536 	if (err)
1537 		return err;
1538 
1539 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1540 		goto done;
1541 
1542 	rcu_read_lock();
1543 	for_each_process(g) {
1544 		if (g == tsk->group_leader)
1545 			continue;
1546 
1547 		p = g;
1548 		do {
1549 			if (p->mm) {
1550 				if (p->mm == mm) {
1551 					/*
1552 					 * p->sighand can't disappear, but
1553 					 * may be changed by de_thread()
1554 					 */
1555 					lock_task_sighand(p, &flags);
1556 					zap_process(p);
1557 					unlock_task_sighand(p, &flags);
1558 				}
1559 				break;
1560 			}
1561 		} while ((p = next_thread(p)) != g);
1562 	}
1563 	rcu_read_unlock();
1564 done:
1565 	return mm->core_waiters;
1566 }
1567 
1568 static int coredump_wait(int exit_code)
1569 {
1570 	struct task_struct *tsk = current;
1571 	struct mm_struct *mm = tsk->mm;
1572 	struct completion startup_done;
1573 	struct completion *vfork_done;
1574 	int core_waiters;
1575 
1576 	init_completion(&mm->core_done);
1577 	init_completion(&startup_done);
1578 	mm->core_startup_done = &startup_done;
1579 
1580 	core_waiters = zap_threads(tsk, mm, exit_code);
1581 	up_write(&mm->mmap_sem);
1582 
1583 	if (unlikely(core_waiters < 0))
1584 		goto fail;
1585 
1586 	/*
1587 	 * Make sure nobody is waiting for us to release the VM,
1588 	 * otherwise we can deadlock when we wait on each other
1589 	 */
1590 	vfork_done = tsk->vfork_done;
1591 	if (vfork_done) {
1592 		tsk->vfork_done = NULL;
1593 		complete(vfork_done);
1594 	}
1595 
1596 	if (core_waiters)
1597 		wait_for_completion(&startup_done);
1598 fail:
1599 	BUG_ON(mm->core_waiters);
1600 	return core_waiters;
1601 }
1602 
1603 /*
1604  * set_dumpable converts traditional three-value dumpable to two flags and
1605  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1606  * these bits are not changed atomically.  So get_dumpable can observe the
1607  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1608  * return either old dumpable or new one by paying attention to the order of
1609  * modifying the bits.
1610  *
1611  * dumpable |   mm->flags (binary)
1612  * old  new | initial interim  final
1613  * ---------+-----------------------
1614  *  0    1  |   00      01      01
1615  *  0    2  |   00      10(*)   11
1616  *  1    0  |   01      00      00
1617  *  1    2  |   01      11      11
1618  *  2    0  |   11      10(*)   00
1619  *  2    1  |   11      11      01
1620  *
1621  * (*) get_dumpable regards interim value of 10 as 11.
1622  */
1623 void set_dumpable(struct mm_struct *mm, int value)
1624 {
1625 	switch (value) {
1626 	case 0:
1627 		clear_bit(MMF_DUMPABLE, &mm->flags);
1628 		smp_wmb();
1629 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1630 		break;
1631 	case 1:
1632 		set_bit(MMF_DUMPABLE, &mm->flags);
1633 		smp_wmb();
1634 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1635 		break;
1636 	case 2:
1637 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1638 		smp_wmb();
1639 		set_bit(MMF_DUMPABLE, &mm->flags);
1640 		break;
1641 	}
1642 }
1643 
1644 int get_dumpable(struct mm_struct *mm)
1645 {
1646 	int ret;
1647 
1648 	ret = mm->flags & 0x3;
1649 	return (ret >= 2) ? 2 : ret;
1650 }
1651 
1652 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1653 {
1654 	char corename[CORENAME_MAX_SIZE + 1];
1655 	struct mm_struct *mm = current->mm;
1656 	struct linux_binfmt * binfmt;
1657 	struct inode * inode;
1658 	struct file * file;
1659 	int retval = 0;
1660 	int fsuid = current->fsuid;
1661 	int flag = 0;
1662 	int ispipe = 0;
1663 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1664 	char **helper_argv = NULL;
1665 	int helper_argc = 0;
1666 	char *delimit;
1667 
1668 	audit_core_dumps(signr);
1669 
1670 	binfmt = current->binfmt;
1671 	if (!binfmt || !binfmt->core_dump)
1672 		goto fail;
1673 	down_write(&mm->mmap_sem);
1674 	/*
1675 	 * If another thread got here first, or we are not dumpable, bail out.
1676 	 */
1677 	if (mm->core_waiters || !get_dumpable(mm)) {
1678 		up_write(&mm->mmap_sem);
1679 		goto fail;
1680 	}
1681 
1682 	/*
1683 	 *	We cannot trust fsuid as being the "true" uid of the
1684 	 *	process nor do we know its entire history. We only know it
1685 	 *	was tainted so we dump it as root in mode 2.
1686 	 */
1687 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1688 		flag = O_EXCL;		/* Stop rewrite attacks */
1689 		current->fsuid = 0;	/* Dump root private */
1690 	}
1691 
1692 	retval = coredump_wait(exit_code);
1693 	if (retval < 0)
1694 		goto fail;
1695 
1696 	/*
1697 	 * Clear any false indication of pending signals that might
1698 	 * be seen by the filesystem code called to write the core file.
1699 	 */
1700 	clear_thread_flag(TIF_SIGPENDING);
1701 
1702 	/*
1703 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1704 	 * uses lock_kernel()
1705 	 */
1706  	lock_kernel();
1707 	ispipe = format_corename(corename, core_pattern, signr);
1708 	unlock_kernel();
1709 	/*
1710 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1711 	 * to a pipe.  Since we're not writing directly to the filesystem
1712 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1713 	 * created unless the pipe reader choses to write out the core file
1714 	 * at which point file size limits and permissions will be imposed
1715 	 * as it does with any other process
1716 	 */
1717 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1718 		goto fail_unlock;
1719 
1720  	if (ispipe) {
1721 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1722 		/* Terminate the string before the first option */
1723 		delimit = strchr(corename, ' ');
1724 		if (delimit)
1725 			*delimit = '\0';
1726 		delimit = strrchr(helper_argv[0], '/');
1727 		if (delimit)
1728 			delimit++;
1729 		else
1730 			delimit = helper_argv[0];
1731 		if (!strcmp(delimit, current->comm)) {
1732 			printk(KERN_NOTICE "Recursive core dump detected, "
1733 					"aborting\n");
1734 			goto fail_unlock;
1735 		}
1736 
1737 		core_limit = RLIM_INFINITY;
1738 
1739 		/* SIGPIPE can happen, but it's just never processed */
1740  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1741 				&file)) {
1742  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1743 			       corename);
1744  			goto fail_unlock;
1745  		}
1746  	} else
1747  		file = filp_open(corename,
1748 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1749 				 0600);
1750 	if (IS_ERR(file))
1751 		goto fail_unlock;
1752 	inode = file->f_path.dentry->d_inode;
1753 	if (inode->i_nlink > 1)
1754 		goto close_fail;	/* multiple links - don't dump */
1755 	if (!ispipe && d_unhashed(file->f_path.dentry))
1756 		goto close_fail;
1757 
1758 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1759 	   but keep the previous behaviour for now. */
1760 	if (!ispipe && !S_ISREG(inode->i_mode))
1761 		goto close_fail;
1762 	/*
1763 	 * Dont allow local users get cute and trick others to coredump
1764 	 * into their pre-created files:
1765 	 */
1766 	if (inode->i_uid != current->fsuid)
1767 		goto close_fail;
1768 	if (!file->f_op)
1769 		goto close_fail;
1770 	if (!file->f_op->write)
1771 		goto close_fail;
1772 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1773 		goto close_fail;
1774 
1775 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1776 
1777 	if (retval)
1778 		current->signal->group_exit_code |= 0x80;
1779 close_fail:
1780 	filp_close(file, NULL);
1781 fail_unlock:
1782 	if (helper_argv)
1783 		argv_free(helper_argv);
1784 
1785 	current->fsuid = fsuid;
1786 	complete_all(&mm->core_done);
1787 fail:
1788 	return retval;
1789 }
1790