1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 /* The maximal length of core_pattern is also specified in sysctl.c */ 68 69 static LIST_HEAD(formats); 70 static DEFINE_RWLOCK(binfmt_lock); 71 72 int register_binfmt(struct linux_binfmt * fmt) 73 { 74 if (!fmt) 75 return -EINVAL; 76 write_lock(&binfmt_lock); 77 list_add(&fmt->lh, &formats); 78 write_unlock(&binfmt_lock); 79 return 0; 80 } 81 82 EXPORT_SYMBOL(register_binfmt); 83 84 void unregister_binfmt(struct linux_binfmt * fmt) 85 { 86 write_lock(&binfmt_lock); 87 list_del(&fmt->lh); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(unregister_binfmt); 92 93 static inline void put_binfmt(struct linux_binfmt * fmt) 94 { 95 module_put(fmt->module); 96 } 97 98 /* 99 * Note that a shared library must be both readable and executable due to 100 * security reasons. 101 * 102 * Also note that we take the address to load from from the file itself. 103 */ 104 asmlinkage long sys_uselib(const char __user * library) 105 { 106 struct file * file; 107 struct nameidata nd; 108 int error; 109 110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 111 if (error) 112 goto out; 113 114 error = -EINVAL; 115 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 116 goto exit; 117 118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 119 if (error) 120 goto exit; 121 122 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 123 error = PTR_ERR(file); 124 if (IS_ERR(file)) 125 goto out; 126 127 error = -ENOEXEC; 128 if(file->f_op) { 129 struct linux_binfmt * fmt; 130 131 read_lock(&binfmt_lock); 132 list_for_each_entry(fmt, &formats, lh) { 133 if (!fmt->load_shlib) 134 continue; 135 if (!try_module_get(fmt->module)) 136 continue; 137 read_unlock(&binfmt_lock); 138 error = fmt->load_shlib(file); 139 read_lock(&binfmt_lock); 140 put_binfmt(fmt); 141 if (error != -ENOEXEC) 142 break; 143 } 144 read_unlock(&binfmt_lock); 145 } 146 fput(file); 147 out: 148 return error; 149 exit: 150 release_open_intent(&nd); 151 path_put(&nd.path); 152 goto out; 153 } 154 155 #ifdef CONFIG_MMU 156 157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 158 int write) 159 { 160 struct page *page; 161 int ret; 162 163 #ifdef CONFIG_STACK_GROWSUP 164 if (write) { 165 ret = expand_stack_downwards(bprm->vma, pos); 166 if (ret < 0) 167 return NULL; 168 } 169 #endif 170 ret = get_user_pages(current, bprm->mm, pos, 171 1, write, 1, &page, NULL); 172 if (ret <= 0) 173 return NULL; 174 175 if (write) { 176 struct rlimit *rlim = current->signal->rlim; 177 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 178 179 /* 180 * Limit to 1/4-th the stack size for the argv+env strings. 181 * This ensures that: 182 * - the remaining binfmt code will not run out of stack space, 183 * - the program will have a reasonable amount of stack left 184 * to work from. 185 */ 186 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 187 put_page(page); 188 return NULL; 189 } 190 } 191 192 return page; 193 } 194 195 static void put_arg_page(struct page *page) 196 { 197 put_page(page); 198 } 199 200 static void free_arg_page(struct linux_binprm *bprm, int i) 201 { 202 } 203 204 static void free_arg_pages(struct linux_binprm *bprm) 205 { 206 } 207 208 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 209 struct page *page) 210 { 211 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 212 } 213 214 static int __bprm_mm_init(struct linux_binprm *bprm) 215 { 216 int err = -ENOMEM; 217 struct vm_area_struct *vma = NULL; 218 struct mm_struct *mm = bprm->mm; 219 220 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 221 if (!vma) 222 goto err; 223 224 down_write(&mm->mmap_sem); 225 vma->vm_mm = mm; 226 227 /* 228 * Place the stack at the largest stack address the architecture 229 * supports. Later, we'll move this to an appropriate place. We don't 230 * use STACK_TOP because that can depend on attributes which aren't 231 * configured yet. 232 */ 233 vma->vm_end = STACK_TOP_MAX; 234 vma->vm_start = vma->vm_end - PAGE_SIZE; 235 236 vma->vm_flags = VM_STACK_FLAGS; 237 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 238 err = insert_vm_struct(mm, vma); 239 if (err) { 240 up_write(&mm->mmap_sem); 241 goto err; 242 } 243 244 mm->stack_vm = mm->total_vm = 1; 245 up_write(&mm->mmap_sem); 246 247 bprm->p = vma->vm_end - sizeof(void *); 248 249 return 0; 250 251 err: 252 if (vma) { 253 bprm->vma = NULL; 254 kmem_cache_free(vm_area_cachep, vma); 255 } 256 257 return err; 258 } 259 260 static bool valid_arg_len(struct linux_binprm *bprm, long len) 261 { 262 return len <= MAX_ARG_STRLEN; 263 } 264 265 #else 266 267 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 268 int write) 269 { 270 struct page *page; 271 272 page = bprm->page[pos / PAGE_SIZE]; 273 if (!page && write) { 274 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 275 if (!page) 276 return NULL; 277 bprm->page[pos / PAGE_SIZE] = page; 278 } 279 280 return page; 281 } 282 283 static void put_arg_page(struct page *page) 284 { 285 } 286 287 static void free_arg_page(struct linux_binprm *bprm, int i) 288 { 289 if (bprm->page[i]) { 290 __free_page(bprm->page[i]); 291 bprm->page[i] = NULL; 292 } 293 } 294 295 static void free_arg_pages(struct linux_binprm *bprm) 296 { 297 int i; 298 299 for (i = 0; i < MAX_ARG_PAGES; i++) 300 free_arg_page(bprm, i); 301 } 302 303 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 304 struct page *page) 305 { 306 } 307 308 static int __bprm_mm_init(struct linux_binprm *bprm) 309 { 310 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 311 return 0; 312 } 313 314 static bool valid_arg_len(struct linux_binprm *bprm, long len) 315 { 316 return len <= bprm->p; 317 } 318 319 #endif /* CONFIG_MMU */ 320 321 /* 322 * Create a new mm_struct and populate it with a temporary stack 323 * vm_area_struct. We don't have enough context at this point to set the stack 324 * flags, permissions, and offset, so we use temporary values. We'll update 325 * them later in setup_arg_pages(). 326 */ 327 int bprm_mm_init(struct linux_binprm *bprm) 328 { 329 int err; 330 struct mm_struct *mm = NULL; 331 332 bprm->mm = mm = mm_alloc(); 333 err = -ENOMEM; 334 if (!mm) 335 goto err; 336 337 err = init_new_context(current, mm); 338 if (err) 339 goto err; 340 341 err = __bprm_mm_init(bprm); 342 if (err) 343 goto err; 344 345 return 0; 346 347 err: 348 if (mm) { 349 bprm->mm = NULL; 350 mmdrop(mm); 351 } 352 353 return err; 354 } 355 356 /* 357 * count() counts the number of strings in array ARGV. 358 */ 359 static int count(char __user * __user * argv, int max) 360 { 361 int i = 0; 362 363 if (argv != NULL) { 364 for (;;) { 365 char __user * p; 366 367 if (get_user(p, argv)) 368 return -EFAULT; 369 if (!p) 370 break; 371 argv++; 372 if(++i > max) 373 return -E2BIG; 374 cond_resched(); 375 } 376 } 377 return i; 378 } 379 380 /* 381 * 'copy_strings()' copies argument/environment strings from the old 382 * processes's memory to the new process's stack. The call to get_user_pages() 383 * ensures the destination page is created and not swapped out. 384 */ 385 static int copy_strings(int argc, char __user * __user * argv, 386 struct linux_binprm *bprm) 387 { 388 struct page *kmapped_page = NULL; 389 char *kaddr = NULL; 390 unsigned long kpos = 0; 391 int ret; 392 393 while (argc-- > 0) { 394 char __user *str; 395 int len; 396 unsigned long pos; 397 398 if (get_user(str, argv+argc) || 399 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 400 ret = -EFAULT; 401 goto out; 402 } 403 404 if (!valid_arg_len(bprm, len)) { 405 ret = -E2BIG; 406 goto out; 407 } 408 409 /* We're going to work our way backwords. */ 410 pos = bprm->p; 411 str += len; 412 bprm->p -= len; 413 414 while (len > 0) { 415 int offset, bytes_to_copy; 416 417 offset = pos % PAGE_SIZE; 418 if (offset == 0) 419 offset = PAGE_SIZE; 420 421 bytes_to_copy = offset; 422 if (bytes_to_copy > len) 423 bytes_to_copy = len; 424 425 offset -= bytes_to_copy; 426 pos -= bytes_to_copy; 427 str -= bytes_to_copy; 428 len -= bytes_to_copy; 429 430 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 431 struct page *page; 432 433 page = get_arg_page(bprm, pos, 1); 434 if (!page) { 435 ret = -E2BIG; 436 goto out; 437 } 438 439 if (kmapped_page) { 440 flush_kernel_dcache_page(kmapped_page); 441 kunmap(kmapped_page); 442 put_arg_page(kmapped_page); 443 } 444 kmapped_page = page; 445 kaddr = kmap(kmapped_page); 446 kpos = pos & PAGE_MASK; 447 flush_arg_page(bprm, kpos, kmapped_page); 448 } 449 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 450 ret = -EFAULT; 451 goto out; 452 } 453 } 454 } 455 ret = 0; 456 out: 457 if (kmapped_page) { 458 flush_kernel_dcache_page(kmapped_page); 459 kunmap(kmapped_page); 460 put_arg_page(kmapped_page); 461 } 462 return ret; 463 } 464 465 /* 466 * Like copy_strings, but get argv and its values from kernel memory. 467 */ 468 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 469 { 470 int r; 471 mm_segment_t oldfs = get_fs(); 472 set_fs(KERNEL_DS); 473 r = copy_strings(argc, (char __user * __user *)argv, bprm); 474 set_fs(oldfs); 475 return r; 476 } 477 EXPORT_SYMBOL(copy_strings_kernel); 478 479 #ifdef CONFIG_MMU 480 481 /* 482 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 483 * the binfmt code determines where the new stack should reside, we shift it to 484 * its final location. The process proceeds as follows: 485 * 486 * 1) Use shift to calculate the new vma endpoints. 487 * 2) Extend vma to cover both the old and new ranges. This ensures the 488 * arguments passed to subsequent functions are consistent. 489 * 3) Move vma's page tables to the new range. 490 * 4) Free up any cleared pgd range. 491 * 5) Shrink the vma to cover only the new range. 492 */ 493 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 unsigned long old_start = vma->vm_start; 497 unsigned long old_end = vma->vm_end; 498 unsigned long length = old_end - old_start; 499 unsigned long new_start = old_start - shift; 500 unsigned long new_end = old_end - shift; 501 struct mmu_gather *tlb; 502 503 BUG_ON(new_start > new_end); 504 505 /* 506 * ensure there are no vmas between where we want to go 507 * and where we are 508 */ 509 if (vma != find_vma(mm, new_start)) 510 return -EFAULT; 511 512 /* 513 * cover the whole range: [new_start, old_end) 514 */ 515 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 516 517 /* 518 * move the page tables downwards, on failure we rely on 519 * process cleanup to remove whatever mess we made. 520 */ 521 if (length != move_page_tables(vma, old_start, 522 vma, new_start, length)) 523 return -ENOMEM; 524 525 lru_add_drain(); 526 tlb = tlb_gather_mmu(mm, 0); 527 if (new_end > old_start) { 528 /* 529 * when the old and new regions overlap clear from new_end. 530 */ 531 free_pgd_range(&tlb, new_end, old_end, new_end, 532 vma->vm_next ? vma->vm_next->vm_start : 0); 533 } else { 534 /* 535 * otherwise, clean from old_start; this is done to not touch 536 * the address space in [new_end, old_start) some architectures 537 * have constraints on va-space that make this illegal (IA64) - 538 * for the others its just a little faster. 539 */ 540 free_pgd_range(&tlb, old_start, old_end, new_end, 541 vma->vm_next ? vma->vm_next->vm_start : 0); 542 } 543 tlb_finish_mmu(tlb, new_end, old_end); 544 545 /* 546 * shrink the vma to just the new range. 547 */ 548 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 549 550 return 0; 551 } 552 553 #define EXTRA_STACK_VM_PAGES 20 /* random */ 554 555 /* 556 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 557 * the stack is optionally relocated, and some extra space is added. 558 */ 559 int setup_arg_pages(struct linux_binprm *bprm, 560 unsigned long stack_top, 561 int executable_stack) 562 { 563 unsigned long ret; 564 unsigned long stack_shift; 565 struct mm_struct *mm = current->mm; 566 struct vm_area_struct *vma = bprm->vma; 567 struct vm_area_struct *prev = NULL; 568 unsigned long vm_flags; 569 unsigned long stack_base; 570 571 #ifdef CONFIG_STACK_GROWSUP 572 /* Limit stack size to 1GB */ 573 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 574 if (stack_base > (1 << 30)) 575 stack_base = 1 << 30; 576 577 /* Make sure we didn't let the argument array grow too large. */ 578 if (vma->vm_end - vma->vm_start > stack_base) 579 return -ENOMEM; 580 581 stack_base = PAGE_ALIGN(stack_top - stack_base); 582 583 stack_shift = vma->vm_start - stack_base; 584 mm->arg_start = bprm->p - stack_shift; 585 bprm->p = vma->vm_end - stack_shift; 586 #else 587 stack_top = arch_align_stack(stack_top); 588 stack_top = PAGE_ALIGN(stack_top); 589 stack_shift = vma->vm_end - stack_top; 590 591 bprm->p -= stack_shift; 592 mm->arg_start = bprm->p; 593 #endif 594 595 if (bprm->loader) 596 bprm->loader -= stack_shift; 597 bprm->exec -= stack_shift; 598 599 down_write(&mm->mmap_sem); 600 vm_flags = vma->vm_flags; 601 602 /* 603 * Adjust stack execute permissions; explicitly enable for 604 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 605 * (arch default) otherwise. 606 */ 607 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 608 vm_flags |= VM_EXEC; 609 else if (executable_stack == EXSTACK_DISABLE_X) 610 vm_flags &= ~VM_EXEC; 611 vm_flags |= mm->def_flags; 612 613 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 614 vm_flags); 615 if (ret) 616 goto out_unlock; 617 BUG_ON(prev != vma); 618 619 /* Move stack pages down in memory. */ 620 if (stack_shift) { 621 ret = shift_arg_pages(vma, stack_shift); 622 if (ret) { 623 up_write(&mm->mmap_sem); 624 return ret; 625 } 626 } 627 628 #ifdef CONFIG_STACK_GROWSUP 629 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 630 #else 631 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 632 #endif 633 ret = expand_stack(vma, stack_base); 634 if (ret) 635 ret = -EFAULT; 636 637 out_unlock: 638 up_write(&mm->mmap_sem); 639 return 0; 640 } 641 EXPORT_SYMBOL(setup_arg_pages); 642 643 #endif /* CONFIG_MMU */ 644 645 struct file *open_exec(const char *name) 646 { 647 struct nameidata nd; 648 int err; 649 struct file *file; 650 651 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 652 file = ERR_PTR(err); 653 654 if (!err) { 655 struct inode *inode = nd.path.dentry->d_inode; 656 file = ERR_PTR(-EACCES); 657 if (S_ISREG(inode->i_mode)) { 658 int err = vfs_permission(&nd, MAY_EXEC); 659 file = ERR_PTR(err); 660 if (!err) { 661 file = nameidata_to_filp(&nd, 662 O_RDONLY|O_LARGEFILE); 663 if (!IS_ERR(file)) { 664 err = deny_write_access(file); 665 if (err) { 666 fput(file); 667 file = ERR_PTR(err); 668 } 669 } 670 out: 671 return file; 672 } 673 } 674 release_open_intent(&nd); 675 path_put(&nd.path); 676 } 677 goto out; 678 } 679 680 EXPORT_SYMBOL(open_exec); 681 682 int kernel_read(struct file *file, unsigned long offset, 683 char *addr, unsigned long count) 684 { 685 mm_segment_t old_fs; 686 loff_t pos = offset; 687 int result; 688 689 old_fs = get_fs(); 690 set_fs(get_ds()); 691 /* The cast to a user pointer is valid due to the set_fs() */ 692 result = vfs_read(file, (void __user *)addr, count, &pos); 693 set_fs(old_fs); 694 return result; 695 } 696 697 EXPORT_SYMBOL(kernel_read); 698 699 static int exec_mmap(struct mm_struct *mm) 700 { 701 struct task_struct *tsk; 702 struct mm_struct * old_mm, *active_mm; 703 704 /* Notify parent that we're no longer interested in the old VM */ 705 tsk = current; 706 old_mm = current->mm; 707 mm_release(tsk, old_mm); 708 709 if (old_mm) { 710 /* 711 * Make sure that if there is a core dump in progress 712 * for the old mm, we get out and die instead of going 713 * through with the exec. We must hold mmap_sem around 714 * checking core_waiters and changing tsk->mm. The 715 * core-inducing thread will increment core_waiters for 716 * each thread whose ->mm == old_mm. 717 */ 718 down_read(&old_mm->mmap_sem); 719 if (unlikely(old_mm->core_waiters)) { 720 up_read(&old_mm->mmap_sem); 721 return -EINTR; 722 } 723 } 724 task_lock(tsk); 725 active_mm = tsk->active_mm; 726 tsk->mm = mm; 727 tsk->active_mm = mm; 728 activate_mm(active_mm, mm); 729 task_unlock(tsk); 730 arch_pick_mmap_layout(mm); 731 if (old_mm) { 732 up_read(&old_mm->mmap_sem); 733 BUG_ON(active_mm != old_mm); 734 mmput(old_mm); 735 return 0; 736 } 737 mmdrop(active_mm); 738 return 0; 739 } 740 741 /* 742 * This function makes sure the current process has its own signal table, 743 * so that flush_signal_handlers can later reset the handlers without 744 * disturbing other processes. (Other processes might share the signal 745 * table via the CLONE_SIGHAND option to clone().) 746 */ 747 static int de_thread(struct task_struct *tsk) 748 { 749 struct signal_struct *sig = tsk->signal; 750 struct sighand_struct *oldsighand = tsk->sighand; 751 spinlock_t *lock = &oldsighand->siglock; 752 struct task_struct *leader = NULL; 753 int count; 754 755 if (thread_group_empty(tsk)) 756 goto no_thread_group; 757 758 /* 759 * Kill all other threads in the thread group. 760 * We must hold tasklist_lock to call zap_other_threads. 761 */ 762 read_lock(&tasklist_lock); 763 spin_lock_irq(lock); 764 if (signal_group_exit(sig)) { 765 /* 766 * Another group action in progress, just 767 * return so that the signal is processed. 768 */ 769 spin_unlock_irq(lock); 770 read_unlock(&tasklist_lock); 771 return -EAGAIN; 772 } 773 774 /* 775 * child_reaper ignores SIGKILL, change it now. 776 * Reparenting needs write_lock on tasklist_lock, 777 * so it is safe to do it under read_lock. 778 */ 779 if (unlikely(tsk->group_leader == task_child_reaper(tsk))) 780 task_active_pid_ns(tsk)->child_reaper = tsk; 781 782 sig->group_exit_task = tsk; 783 zap_other_threads(tsk); 784 read_unlock(&tasklist_lock); 785 786 /* Account for the thread group leader hanging around: */ 787 count = thread_group_leader(tsk) ? 1 : 2; 788 sig->notify_count = count; 789 while (atomic_read(&sig->count) > count) { 790 __set_current_state(TASK_UNINTERRUPTIBLE); 791 spin_unlock_irq(lock); 792 schedule(); 793 spin_lock_irq(lock); 794 } 795 spin_unlock_irq(lock); 796 797 /* 798 * At this point all other threads have exited, all we have to 799 * do is to wait for the thread group leader to become inactive, 800 * and to assume its PID: 801 */ 802 if (!thread_group_leader(tsk)) { 803 leader = tsk->group_leader; 804 805 sig->notify_count = -1; 806 for (;;) { 807 write_lock_irq(&tasklist_lock); 808 if (likely(leader->exit_state)) 809 break; 810 __set_current_state(TASK_UNINTERRUPTIBLE); 811 write_unlock_irq(&tasklist_lock); 812 schedule(); 813 } 814 815 /* 816 * The only record we have of the real-time age of a 817 * process, regardless of execs it's done, is start_time. 818 * All the past CPU time is accumulated in signal_struct 819 * from sister threads now dead. But in this non-leader 820 * exec, nothing survives from the original leader thread, 821 * whose birth marks the true age of this process now. 822 * When we take on its identity by switching to its PID, we 823 * also take its birthdate (always earlier than our own). 824 */ 825 tsk->start_time = leader->start_time; 826 827 BUG_ON(!same_thread_group(leader, tsk)); 828 BUG_ON(has_group_leader_pid(tsk)); 829 /* 830 * An exec() starts a new thread group with the 831 * TGID of the previous thread group. Rehash the 832 * two threads with a switched PID, and release 833 * the former thread group leader: 834 */ 835 836 /* Become a process group leader with the old leader's pid. 837 * The old leader becomes a thread of the this thread group. 838 * Note: The old leader also uses this pid until release_task 839 * is called. Odd but simple and correct. 840 */ 841 detach_pid(tsk, PIDTYPE_PID); 842 tsk->pid = leader->pid; 843 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 844 transfer_pid(leader, tsk, PIDTYPE_PGID); 845 transfer_pid(leader, tsk, PIDTYPE_SID); 846 list_replace_rcu(&leader->tasks, &tsk->tasks); 847 848 tsk->group_leader = tsk; 849 leader->group_leader = tsk; 850 851 tsk->exit_signal = SIGCHLD; 852 853 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 854 leader->exit_state = EXIT_DEAD; 855 856 write_unlock_irq(&tasklist_lock); 857 } 858 859 sig->group_exit_task = NULL; 860 sig->notify_count = 0; 861 862 no_thread_group: 863 exit_itimers(sig); 864 if (leader) 865 release_task(leader); 866 867 if (atomic_read(&oldsighand->count) != 1) { 868 struct sighand_struct *newsighand; 869 /* 870 * This ->sighand is shared with the CLONE_SIGHAND 871 * but not CLONE_THREAD task, switch to the new one. 872 */ 873 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 874 if (!newsighand) 875 return -ENOMEM; 876 877 atomic_set(&newsighand->count, 1); 878 memcpy(newsighand->action, oldsighand->action, 879 sizeof(newsighand->action)); 880 881 write_lock_irq(&tasklist_lock); 882 spin_lock(&oldsighand->siglock); 883 rcu_assign_pointer(tsk->sighand, newsighand); 884 spin_unlock(&oldsighand->siglock); 885 write_unlock_irq(&tasklist_lock); 886 887 __cleanup_sighand(oldsighand); 888 } 889 890 BUG_ON(!thread_group_leader(tsk)); 891 return 0; 892 } 893 894 /* 895 * These functions flushes out all traces of the currently running executable 896 * so that a new one can be started 897 */ 898 static void flush_old_files(struct files_struct * files) 899 { 900 long j = -1; 901 struct fdtable *fdt; 902 903 spin_lock(&files->file_lock); 904 for (;;) { 905 unsigned long set, i; 906 907 j++; 908 i = j * __NFDBITS; 909 fdt = files_fdtable(files); 910 if (i >= fdt->max_fds) 911 break; 912 set = fdt->close_on_exec->fds_bits[j]; 913 if (!set) 914 continue; 915 fdt->close_on_exec->fds_bits[j] = 0; 916 spin_unlock(&files->file_lock); 917 for ( ; set ; i++,set >>= 1) { 918 if (set & 1) { 919 sys_close(i); 920 } 921 } 922 spin_lock(&files->file_lock); 923 924 } 925 spin_unlock(&files->file_lock); 926 } 927 928 char *get_task_comm(char *buf, struct task_struct *tsk) 929 { 930 /* buf must be at least sizeof(tsk->comm) in size */ 931 task_lock(tsk); 932 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 933 task_unlock(tsk); 934 return buf; 935 } 936 937 void set_task_comm(struct task_struct *tsk, char *buf) 938 { 939 task_lock(tsk); 940 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 941 task_unlock(tsk); 942 } 943 944 int flush_old_exec(struct linux_binprm * bprm) 945 { 946 char * name; 947 int i, ch, retval; 948 struct files_struct *files; 949 char tcomm[sizeof(current->comm)]; 950 951 /* 952 * Make sure we have a private signal table and that 953 * we are unassociated from the previous thread group. 954 */ 955 retval = de_thread(current); 956 if (retval) 957 goto out; 958 959 /* 960 * Make sure we have private file handles. Ask the 961 * fork helper to do the work for us and the exit 962 * helper to do the cleanup of the old one. 963 */ 964 files = current->files; /* refcounted so safe to hold */ 965 retval = unshare_files(); 966 if (retval) 967 goto out; 968 /* 969 * Release all of the old mmap stuff 970 */ 971 retval = exec_mmap(bprm->mm); 972 if (retval) 973 goto mmap_failed; 974 975 bprm->mm = NULL; /* We're using it now */ 976 977 /* This is the point of no return */ 978 put_files_struct(files); 979 980 current->sas_ss_sp = current->sas_ss_size = 0; 981 982 if (current->euid == current->uid && current->egid == current->gid) 983 set_dumpable(current->mm, 1); 984 else 985 set_dumpable(current->mm, suid_dumpable); 986 987 name = bprm->filename; 988 989 /* Copies the binary name from after last slash */ 990 for (i=0; (ch = *(name++)) != '\0';) { 991 if (ch == '/') 992 i = 0; /* overwrite what we wrote */ 993 else 994 if (i < (sizeof(tcomm) - 1)) 995 tcomm[i++] = ch; 996 } 997 tcomm[i] = '\0'; 998 set_task_comm(current, tcomm); 999 1000 current->flags &= ~PF_RANDOMIZE; 1001 flush_thread(); 1002 1003 /* Set the new mm task size. We have to do that late because it may 1004 * depend on TIF_32BIT which is only updated in flush_thread() on 1005 * some architectures like powerpc 1006 */ 1007 current->mm->task_size = TASK_SIZE; 1008 1009 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1010 suid_keys(current); 1011 set_dumpable(current->mm, suid_dumpable); 1012 current->pdeath_signal = 0; 1013 } else if (file_permission(bprm->file, MAY_READ) || 1014 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1015 suid_keys(current); 1016 set_dumpable(current->mm, suid_dumpable); 1017 } 1018 1019 /* An exec changes our domain. We are no longer part of the thread 1020 group */ 1021 1022 current->self_exec_id++; 1023 1024 flush_signal_handlers(current, 0); 1025 flush_old_files(current->files); 1026 1027 return 0; 1028 1029 mmap_failed: 1030 reset_files_struct(current, files); 1031 out: 1032 return retval; 1033 } 1034 1035 EXPORT_SYMBOL(flush_old_exec); 1036 1037 /* 1038 * Fill the binprm structure from the inode. 1039 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1040 */ 1041 int prepare_binprm(struct linux_binprm *bprm) 1042 { 1043 int mode; 1044 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1045 int retval; 1046 1047 mode = inode->i_mode; 1048 if (bprm->file->f_op == NULL) 1049 return -EACCES; 1050 1051 bprm->e_uid = current->euid; 1052 bprm->e_gid = current->egid; 1053 1054 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1055 /* Set-uid? */ 1056 if (mode & S_ISUID) { 1057 current->personality &= ~PER_CLEAR_ON_SETID; 1058 bprm->e_uid = inode->i_uid; 1059 } 1060 1061 /* Set-gid? */ 1062 /* 1063 * If setgid is set but no group execute bit then this 1064 * is a candidate for mandatory locking, not a setgid 1065 * executable. 1066 */ 1067 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1068 current->personality &= ~PER_CLEAR_ON_SETID; 1069 bprm->e_gid = inode->i_gid; 1070 } 1071 } 1072 1073 /* fill in binprm security blob */ 1074 retval = security_bprm_set(bprm); 1075 if (retval) 1076 return retval; 1077 1078 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1079 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1080 } 1081 1082 EXPORT_SYMBOL(prepare_binprm); 1083 1084 static int unsafe_exec(struct task_struct *p) 1085 { 1086 int unsafe = 0; 1087 if (p->ptrace & PT_PTRACED) { 1088 if (p->ptrace & PT_PTRACE_CAP) 1089 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1090 else 1091 unsafe |= LSM_UNSAFE_PTRACE; 1092 } 1093 if (atomic_read(&p->fs->count) > 1 || 1094 atomic_read(&p->files->count) > 1 || 1095 atomic_read(&p->sighand->count) > 1) 1096 unsafe |= LSM_UNSAFE_SHARE; 1097 1098 return unsafe; 1099 } 1100 1101 void compute_creds(struct linux_binprm *bprm) 1102 { 1103 int unsafe; 1104 1105 if (bprm->e_uid != current->uid) { 1106 suid_keys(current); 1107 current->pdeath_signal = 0; 1108 } 1109 exec_keys(current); 1110 1111 task_lock(current); 1112 unsafe = unsafe_exec(current); 1113 security_bprm_apply_creds(bprm, unsafe); 1114 task_unlock(current); 1115 security_bprm_post_apply_creds(bprm); 1116 } 1117 EXPORT_SYMBOL(compute_creds); 1118 1119 /* 1120 * Arguments are '\0' separated strings found at the location bprm->p 1121 * points to; chop off the first by relocating brpm->p to right after 1122 * the first '\0' encountered. 1123 */ 1124 int remove_arg_zero(struct linux_binprm *bprm) 1125 { 1126 int ret = 0; 1127 unsigned long offset; 1128 char *kaddr; 1129 struct page *page; 1130 1131 if (!bprm->argc) 1132 return 0; 1133 1134 do { 1135 offset = bprm->p & ~PAGE_MASK; 1136 page = get_arg_page(bprm, bprm->p, 0); 1137 if (!page) { 1138 ret = -EFAULT; 1139 goto out; 1140 } 1141 kaddr = kmap_atomic(page, KM_USER0); 1142 1143 for (; offset < PAGE_SIZE && kaddr[offset]; 1144 offset++, bprm->p++) 1145 ; 1146 1147 kunmap_atomic(kaddr, KM_USER0); 1148 put_arg_page(page); 1149 1150 if (offset == PAGE_SIZE) 1151 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1152 } while (offset == PAGE_SIZE); 1153 1154 bprm->p++; 1155 bprm->argc--; 1156 ret = 0; 1157 1158 out: 1159 return ret; 1160 } 1161 EXPORT_SYMBOL(remove_arg_zero); 1162 1163 /* 1164 * cycle the list of binary formats handler, until one recognizes the image 1165 */ 1166 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1167 { 1168 int try,retval; 1169 struct linux_binfmt *fmt; 1170 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT) 1171 /* handle /sbin/loader.. */ 1172 { 1173 struct exec * eh = (struct exec *) bprm->buf; 1174 1175 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1176 (eh->fh.f_flags & 0x3000) == 0x3000) 1177 { 1178 struct file * file; 1179 unsigned long loader; 1180 1181 allow_write_access(bprm->file); 1182 fput(bprm->file); 1183 bprm->file = NULL; 1184 1185 loader = bprm->vma->vm_end - sizeof(void *); 1186 1187 file = open_exec("/sbin/loader"); 1188 retval = PTR_ERR(file); 1189 if (IS_ERR(file)) 1190 return retval; 1191 1192 /* Remember if the application is TASO. */ 1193 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1194 1195 bprm->file = file; 1196 bprm->loader = loader; 1197 retval = prepare_binprm(bprm); 1198 if (retval<0) 1199 return retval; 1200 /* should call search_binary_handler recursively here, 1201 but it does not matter */ 1202 } 1203 } 1204 #endif 1205 retval = security_bprm_check(bprm); 1206 if (retval) 1207 return retval; 1208 1209 /* kernel module loader fixup */ 1210 /* so we don't try to load run modprobe in kernel space. */ 1211 set_fs(USER_DS); 1212 1213 retval = audit_bprm(bprm); 1214 if (retval) 1215 return retval; 1216 1217 retval = -ENOENT; 1218 for (try=0; try<2; try++) { 1219 read_lock(&binfmt_lock); 1220 list_for_each_entry(fmt, &formats, lh) { 1221 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1222 if (!fn) 1223 continue; 1224 if (!try_module_get(fmt->module)) 1225 continue; 1226 read_unlock(&binfmt_lock); 1227 retval = fn(bprm, regs); 1228 if (retval >= 0) { 1229 put_binfmt(fmt); 1230 allow_write_access(bprm->file); 1231 if (bprm->file) 1232 fput(bprm->file); 1233 bprm->file = NULL; 1234 current->did_exec = 1; 1235 proc_exec_connector(current); 1236 return retval; 1237 } 1238 read_lock(&binfmt_lock); 1239 put_binfmt(fmt); 1240 if (retval != -ENOEXEC || bprm->mm == NULL) 1241 break; 1242 if (!bprm->file) { 1243 read_unlock(&binfmt_lock); 1244 return retval; 1245 } 1246 } 1247 read_unlock(&binfmt_lock); 1248 if (retval != -ENOEXEC || bprm->mm == NULL) { 1249 break; 1250 #ifdef CONFIG_KMOD 1251 }else{ 1252 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1253 if (printable(bprm->buf[0]) && 1254 printable(bprm->buf[1]) && 1255 printable(bprm->buf[2]) && 1256 printable(bprm->buf[3])) 1257 break; /* -ENOEXEC */ 1258 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1259 #endif 1260 } 1261 } 1262 return retval; 1263 } 1264 1265 EXPORT_SYMBOL(search_binary_handler); 1266 1267 /* 1268 * sys_execve() executes a new program. 1269 */ 1270 int do_execve(char * filename, 1271 char __user *__user *argv, 1272 char __user *__user *envp, 1273 struct pt_regs * regs) 1274 { 1275 struct linux_binprm *bprm; 1276 struct file *file; 1277 unsigned long env_p; 1278 int retval; 1279 1280 retval = -ENOMEM; 1281 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1282 if (!bprm) 1283 goto out_ret; 1284 1285 file = open_exec(filename); 1286 retval = PTR_ERR(file); 1287 if (IS_ERR(file)) 1288 goto out_kfree; 1289 1290 sched_exec(); 1291 1292 bprm->file = file; 1293 bprm->filename = filename; 1294 bprm->interp = filename; 1295 1296 retval = bprm_mm_init(bprm); 1297 if (retval) 1298 goto out_file; 1299 1300 bprm->argc = count(argv, MAX_ARG_STRINGS); 1301 if ((retval = bprm->argc) < 0) 1302 goto out_mm; 1303 1304 bprm->envc = count(envp, MAX_ARG_STRINGS); 1305 if ((retval = bprm->envc) < 0) 1306 goto out_mm; 1307 1308 retval = security_bprm_alloc(bprm); 1309 if (retval) 1310 goto out; 1311 1312 retval = prepare_binprm(bprm); 1313 if (retval < 0) 1314 goto out; 1315 1316 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1317 if (retval < 0) 1318 goto out; 1319 1320 bprm->exec = bprm->p; 1321 retval = copy_strings(bprm->envc, envp, bprm); 1322 if (retval < 0) 1323 goto out; 1324 1325 env_p = bprm->p; 1326 retval = copy_strings(bprm->argc, argv, bprm); 1327 if (retval < 0) 1328 goto out; 1329 bprm->argv_len = env_p - bprm->p; 1330 1331 retval = search_binary_handler(bprm,regs); 1332 if (retval >= 0) { 1333 /* execve success */ 1334 free_arg_pages(bprm); 1335 security_bprm_free(bprm); 1336 acct_update_integrals(current); 1337 kfree(bprm); 1338 return retval; 1339 } 1340 1341 out: 1342 free_arg_pages(bprm); 1343 if (bprm->security) 1344 security_bprm_free(bprm); 1345 1346 out_mm: 1347 if (bprm->mm) 1348 mmput (bprm->mm); 1349 1350 out_file: 1351 if (bprm->file) { 1352 allow_write_access(bprm->file); 1353 fput(bprm->file); 1354 } 1355 out_kfree: 1356 kfree(bprm); 1357 1358 out_ret: 1359 return retval; 1360 } 1361 1362 int set_binfmt(struct linux_binfmt *new) 1363 { 1364 struct linux_binfmt *old = current->binfmt; 1365 1366 if (new) { 1367 if (!try_module_get(new->module)) 1368 return -1; 1369 } 1370 current->binfmt = new; 1371 if (old) 1372 module_put(old->module); 1373 return 0; 1374 } 1375 1376 EXPORT_SYMBOL(set_binfmt); 1377 1378 /* format_corename will inspect the pattern parameter, and output a 1379 * name into corename, which must have space for at least 1380 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1381 */ 1382 static int format_corename(char *corename, const char *pattern, long signr) 1383 { 1384 const char *pat_ptr = pattern; 1385 char *out_ptr = corename; 1386 char *const out_end = corename + CORENAME_MAX_SIZE; 1387 int rc; 1388 int pid_in_pattern = 0; 1389 int ispipe = 0; 1390 1391 if (*pattern == '|') 1392 ispipe = 1; 1393 1394 /* Repeat as long as we have more pattern to process and more output 1395 space */ 1396 while (*pat_ptr) { 1397 if (*pat_ptr != '%') { 1398 if (out_ptr == out_end) 1399 goto out; 1400 *out_ptr++ = *pat_ptr++; 1401 } else { 1402 switch (*++pat_ptr) { 1403 case 0: 1404 goto out; 1405 /* Double percent, output one percent */ 1406 case '%': 1407 if (out_ptr == out_end) 1408 goto out; 1409 *out_ptr++ = '%'; 1410 break; 1411 /* pid */ 1412 case 'p': 1413 pid_in_pattern = 1; 1414 rc = snprintf(out_ptr, out_end - out_ptr, 1415 "%d", task_tgid_vnr(current)); 1416 if (rc > out_end - out_ptr) 1417 goto out; 1418 out_ptr += rc; 1419 break; 1420 /* uid */ 1421 case 'u': 1422 rc = snprintf(out_ptr, out_end - out_ptr, 1423 "%d", current->uid); 1424 if (rc > out_end - out_ptr) 1425 goto out; 1426 out_ptr += rc; 1427 break; 1428 /* gid */ 1429 case 'g': 1430 rc = snprintf(out_ptr, out_end - out_ptr, 1431 "%d", current->gid); 1432 if (rc > out_end - out_ptr) 1433 goto out; 1434 out_ptr += rc; 1435 break; 1436 /* signal that caused the coredump */ 1437 case 's': 1438 rc = snprintf(out_ptr, out_end - out_ptr, 1439 "%ld", signr); 1440 if (rc > out_end - out_ptr) 1441 goto out; 1442 out_ptr += rc; 1443 break; 1444 /* UNIX time of coredump */ 1445 case 't': { 1446 struct timeval tv; 1447 do_gettimeofday(&tv); 1448 rc = snprintf(out_ptr, out_end - out_ptr, 1449 "%lu", tv.tv_sec); 1450 if (rc > out_end - out_ptr) 1451 goto out; 1452 out_ptr += rc; 1453 break; 1454 } 1455 /* hostname */ 1456 case 'h': 1457 down_read(&uts_sem); 1458 rc = snprintf(out_ptr, out_end - out_ptr, 1459 "%s", utsname()->nodename); 1460 up_read(&uts_sem); 1461 if (rc > out_end - out_ptr) 1462 goto out; 1463 out_ptr += rc; 1464 break; 1465 /* executable */ 1466 case 'e': 1467 rc = snprintf(out_ptr, out_end - out_ptr, 1468 "%s", current->comm); 1469 if (rc > out_end - out_ptr) 1470 goto out; 1471 out_ptr += rc; 1472 break; 1473 /* core limit size */ 1474 case 'c': 1475 rc = snprintf(out_ptr, out_end - out_ptr, 1476 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1477 if (rc > out_end - out_ptr) 1478 goto out; 1479 out_ptr += rc; 1480 break; 1481 default: 1482 break; 1483 } 1484 ++pat_ptr; 1485 } 1486 } 1487 /* Backward compatibility with core_uses_pid: 1488 * 1489 * If core_pattern does not include a %p (as is the default) 1490 * and core_uses_pid is set, then .%pid will be appended to 1491 * the filename. Do not do this for piped commands. */ 1492 if (!ispipe && !pid_in_pattern 1493 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1494 rc = snprintf(out_ptr, out_end - out_ptr, 1495 ".%d", task_tgid_vnr(current)); 1496 if (rc > out_end - out_ptr) 1497 goto out; 1498 out_ptr += rc; 1499 } 1500 out: 1501 *out_ptr = 0; 1502 return ispipe; 1503 } 1504 1505 static void zap_process(struct task_struct *start) 1506 { 1507 struct task_struct *t; 1508 1509 start->signal->flags = SIGNAL_GROUP_EXIT; 1510 start->signal->group_stop_count = 0; 1511 1512 t = start; 1513 do { 1514 if (t != current && t->mm) { 1515 t->mm->core_waiters++; 1516 sigaddset(&t->pending.signal, SIGKILL); 1517 signal_wake_up(t, 1); 1518 } 1519 } while ((t = next_thread(t)) != start); 1520 } 1521 1522 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1523 int exit_code) 1524 { 1525 struct task_struct *g, *p; 1526 unsigned long flags; 1527 int err = -EAGAIN; 1528 1529 spin_lock_irq(&tsk->sighand->siglock); 1530 if (!signal_group_exit(tsk->signal)) { 1531 tsk->signal->group_exit_code = exit_code; 1532 zap_process(tsk); 1533 err = 0; 1534 } 1535 spin_unlock_irq(&tsk->sighand->siglock); 1536 if (err) 1537 return err; 1538 1539 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1540 goto done; 1541 1542 rcu_read_lock(); 1543 for_each_process(g) { 1544 if (g == tsk->group_leader) 1545 continue; 1546 1547 p = g; 1548 do { 1549 if (p->mm) { 1550 if (p->mm == mm) { 1551 /* 1552 * p->sighand can't disappear, but 1553 * may be changed by de_thread() 1554 */ 1555 lock_task_sighand(p, &flags); 1556 zap_process(p); 1557 unlock_task_sighand(p, &flags); 1558 } 1559 break; 1560 } 1561 } while ((p = next_thread(p)) != g); 1562 } 1563 rcu_read_unlock(); 1564 done: 1565 return mm->core_waiters; 1566 } 1567 1568 static int coredump_wait(int exit_code) 1569 { 1570 struct task_struct *tsk = current; 1571 struct mm_struct *mm = tsk->mm; 1572 struct completion startup_done; 1573 struct completion *vfork_done; 1574 int core_waiters; 1575 1576 init_completion(&mm->core_done); 1577 init_completion(&startup_done); 1578 mm->core_startup_done = &startup_done; 1579 1580 core_waiters = zap_threads(tsk, mm, exit_code); 1581 up_write(&mm->mmap_sem); 1582 1583 if (unlikely(core_waiters < 0)) 1584 goto fail; 1585 1586 /* 1587 * Make sure nobody is waiting for us to release the VM, 1588 * otherwise we can deadlock when we wait on each other 1589 */ 1590 vfork_done = tsk->vfork_done; 1591 if (vfork_done) { 1592 tsk->vfork_done = NULL; 1593 complete(vfork_done); 1594 } 1595 1596 if (core_waiters) 1597 wait_for_completion(&startup_done); 1598 fail: 1599 BUG_ON(mm->core_waiters); 1600 return core_waiters; 1601 } 1602 1603 /* 1604 * set_dumpable converts traditional three-value dumpable to two flags and 1605 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1606 * these bits are not changed atomically. So get_dumpable can observe the 1607 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1608 * return either old dumpable or new one by paying attention to the order of 1609 * modifying the bits. 1610 * 1611 * dumpable | mm->flags (binary) 1612 * old new | initial interim final 1613 * ---------+----------------------- 1614 * 0 1 | 00 01 01 1615 * 0 2 | 00 10(*) 11 1616 * 1 0 | 01 00 00 1617 * 1 2 | 01 11 11 1618 * 2 0 | 11 10(*) 00 1619 * 2 1 | 11 11 01 1620 * 1621 * (*) get_dumpable regards interim value of 10 as 11. 1622 */ 1623 void set_dumpable(struct mm_struct *mm, int value) 1624 { 1625 switch (value) { 1626 case 0: 1627 clear_bit(MMF_DUMPABLE, &mm->flags); 1628 smp_wmb(); 1629 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1630 break; 1631 case 1: 1632 set_bit(MMF_DUMPABLE, &mm->flags); 1633 smp_wmb(); 1634 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1635 break; 1636 case 2: 1637 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1638 smp_wmb(); 1639 set_bit(MMF_DUMPABLE, &mm->flags); 1640 break; 1641 } 1642 } 1643 1644 int get_dumpable(struct mm_struct *mm) 1645 { 1646 int ret; 1647 1648 ret = mm->flags & 0x3; 1649 return (ret >= 2) ? 2 : ret; 1650 } 1651 1652 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1653 { 1654 char corename[CORENAME_MAX_SIZE + 1]; 1655 struct mm_struct *mm = current->mm; 1656 struct linux_binfmt * binfmt; 1657 struct inode * inode; 1658 struct file * file; 1659 int retval = 0; 1660 int fsuid = current->fsuid; 1661 int flag = 0; 1662 int ispipe = 0; 1663 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1664 char **helper_argv = NULL; 1665 int helper_argc = 0; 1666 char *delimit; 1667 1668 audit_core_dumps(signr); 1669 1670 binfmt = current->binfmt; 1671 if (!binfmt || !binfmt->core_dump) 1672 goto fail; 1673 down_write(&mm->mmap_sem); 1674 /* 1675 * If another thread got here first, or we are not dumpable, bail out. 1676 */ 1677 if (mm->core_waiters || !get_dumpable(mm)) { 1678 up_write(&mm->mmap_sem); 1679 goto fail; 1680 } 1681 1682 /* 1683 * We cannot trust fsuid as being the "true" uid of the 1684 * process nor do we know its entire history. We only know it 1685 * was tainted so we dump it as root in mode 2. 1686 */ 1687 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1688 flag = O_EXCL; /* Stop rewrite attacks */ 1689 current->fsuid = 0; /* Dump root private */ 1690 } 1691 1692 retval = coredump_wait(exit_code); 1693 if (retval < 0) 1694 goto fail; 1695 1696 /* 1697 * Clear any false indication of pending signals that might 1698 * be seen by the filesystem code called to write the core file. 1699 */ 1700 clear_thread_flag(TIF_SIGPENDING); 1701 1702 /* 1703 * lock_kernel() because format_corename() is controlled by sysctl, which 1704 * uses lock_kernel() 1705 */ 1706 lock_kernel(); 1707 ispipe = format_corename(corename, core_pattern, signr); 1708 unlock_kernel(); 1709 /* 1710 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1711 * to a pipe. Since we're not writing directly to the filesystem 1712 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1713 * created unless the pipe reader choses to write out the core file 1714 * at which point file size limits and permissions will be imposed 1715 * as it does with any other process 1716 */ 1717 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1718 goto fail_unlock; 1719 1720 if (ispipe) { 1721 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1722 /* Terminate the string before the first option */ 1723 delimit = strchr(corename, ' '); 1724 if (delimit) 1725 *delimit = '\0'; 1726 delimit = strrchr(helper_argv[0], '/'); 1727 if (delimit) 1728 delimit++; 1729 else 1730 delimit = helper_argv[0]; 1731 if (!strcmp(delimit, current->comm)) { 1732 printk(KERN_NOTICE "Recursive core dump detected, " 1733 "aborting\n"); 1734 goto fail_unlock; 1735 } 1736 1737 core_limit = RLIM_INFINITY; 1738 1739 /* SIGPIPE can happen, but it's just never processed */ 1740 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1741 &file)) { 1742 printk(KERN_INFO "Core dump to %s pipe failed\n", 1743 corename); 1744 goto fail_unlock; 1745 } 1746 } else 1747 file = filp_open(corename, 1748 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1749 0600); 1750 if (IS_ERR(file)) 1751 goto fail_unlock; 1752 inode = file->f_path.dentry->d_inode; 1753 if (inode->i_nlink > 1) 1754 goto close_fail; /* multiple links - don't dump */ 1755 if (!ispipe && d_unhashed(file->f_path.dentry)) 1756 goto close_fail; 1757 1758 /* AK: actually i see no reason to not allow this for named pipes etc., 1759 but keep the previous behaviour for now. */ 1760 if (!ispipe && !S_ISREG(inode->i_mode)) 1761 goto close_fail; 1762 /* 1763 * Dont allow local users get cute and trick others to coredump 1764 * into their pre-created files: 1765 */ 1766 if (inode->i_uid != current->fsuid) 1767 goto close_fail; 1768 if (!file->f_op) 1769 goto close_fail; 1770 if (!file->f_op->write) 1771 goto close_fail; 1772 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1773 goto close_fail; 1774 1775 retval = binfmt->core_dump(signr, regs, file, core_limit); 1776 1777 if (retval) 1778 current->signal->group_exit_code |= 0x80; 1779 close_fail: 1780 filp_close(file, NULL); 1781 fail_unlock: 1782 if (helper_argv) 1783 argv_free(helper_argv); 1784 1785 current->fsuid = fsuid; 1786 complete_all(&mm->core_done); 1787 fail: 1788 return retval; 1789 } 1790