xref: /linux/fs/exec.c (revision bbc90bc1bd4a63121bae9cbfafe1e1f0beaf24b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 #include <linux/coredump.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73 
74 #include <trace/events/task.h>
75 #include "internal.h"
76 
77 #include <trace/events/sched.h>
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	fsnotify_open(file);
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176   	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	int ret;
204 	unsigned int gup_flags = FOLL_FORCE;
205 
206 #ifdef CONFIG_STACK_GROWSUP
207 	if (write) {
208 		ret = expand_downwards(bprm->vma, pos);
209 		if (ret < 0)
210 			return NULL;
211 	}
212 #endif
213 
214 	if (write)
215 		gup_flags |= FOLL_WRITE;
216 
217 	/*
218 	 * We are doing an exec().  'current' is the process
219 	 * doing the exec and bprm->mm is the new process's mm.
220 	 */
221 	mmap_read_lock(bprm->mm);
222 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
223 			&page, NULL, NULL);
224 	mmap_read_unlock(bprm->mm);
225 	if (ret <= 0)
226 		return NULL;
227 
228 	if (write)
229 		acct_arg_size(bprm, vma_pages(bprm->vma));
230 
231 	return page;
232 }
233 
234 static void put_arg_page(struct page *page)
235 {
236 	put_page(page);
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = vm_area_alloc(mm);
256 	if (!vma)
257 		return -ENOMEM;
258 	vma_set_anonymous(vma);
259 
260 	if (mmap_write_lock_killable(mm)) {
261 		err = -EINTR;
262 		goto err_free;
263 	}
264 
265 	/*
266 	 * Place the stack at the largest stack address the architecture
267 	 * supports. Later, we'll move this to an appropriate place. We don't
268 	 * use STACK_TOP because that can depend on attributes which aren't
269 	 * configured yet.
270 	 */
271 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 	vma->vm_end = STACK_TOP_MAX;
273 	vma->vm_start = vma->vm_end - PAGE_SIZE;
274 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276 
277 	err = insert_vm_struct(mm, vma);
278 	if (err)
279 		goto err;
280 
281 	mm->stack_vm = mm->total_vm = 1;
282 	mmap_write_unlock(mm);
283 	bprm->p = vma->vm_end - sizeof(void *);
284 	return 0;
285 err:
286 	mmap_write_unlock(mm);
287 err_free:
288 	bprm->vma = NULL;
289 	vm_area_free(vma);
290 	return err;
291 }
292 
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295 	return len <= MAX_ARG_STRLEN;
296 }
297 
298 #else
299 
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303 
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 		int write)
306 {
307 	struct page *page;
308 
309 	page = bprm->page[pos / PAGE_SIZE];
310 	if (!page && write) {
311 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 		if (!page)
313 			return NULL;
314 		bprm->page[pos / PAGE_SIZE] = page;
315 	}
316 
317 	return page;
318 }
319 
320 static void put_arg_page(struct page *page)
321 {
322 }
323 
324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326 	if (bprm->page[i]) {
327 		__free_page(bprm->page[i]);
328 		bprm->page[i] = NULL;
329 	}
330 }
331 
332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334 	int i;
335 
336 	for (i = 0; i < MAX_ARG_PAGES; i++)
337 		free_arg_page(bprm, i);
338 }
339 
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341 		struct page *page)
342 {
343 }
344 
345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348 	return 0;
349 }
350 
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353 	return len <= bprm->p;
354 }
355 
356 #endif /* CONFIG_MMU */
357 
358 /*
359  * Create a new mm_struct and populate it with a temporary stack
360  * vm_area_struct.  We don't have enough context at this point to set the stack
361  * flags, permissions, and offset, so we use temporary values.  We'll update
362  * them later in setup_arg_pages().
363  */
364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366 	int err;
367 	struct mm_struct *mm = NULL;
368 
369 	bprm->mm = mm = mm_alloc();
370 	err = -ENOMEM;
371 	if (!mm)
372 		goto err;
373 
374 	/* Save current stack limit for all calculations made during exec. */
375 	task_lock(current->group_leader);
376 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 	task_unlock(current->group_leader);
378 
379 	err = __bprm_mm_init(bprm);
380 	if (err)
381 		goto err;
382 
383 	return 0;
384 
385 err:
386 	if (mm) {
387 		bprm->mm = NULL;
388 		mmdrop(mm);
389 	}
390 
391 	return err;
392 }
393 
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 	bool is_compat;
397 #endif
398 	union {
399 		const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 		const compat_uptr_t __user *compat;
402 #endif
403 	} ptr;
404 };
405 
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 	const char __user *native;
409 
410 #ifdef CONFIG_COMPAT
411 	if (unlikely(argv.is_compat)) {
412 		compat_uptr_t compat;
413 
414 		if (get_user(compat, argv.ptr.compat + nr))
415 			return ERR_PTR(-EFAULT);
416 
417 		return compat_ptr(compat);
418 	}
419 #endif
420 
421 	if (get_user(native, argv.ptr.native + nr))
422 		return ERR_PTR(-EFAULT);
423 
424 	return native;
425 }
426 
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432 	int i = 0;
433 
434 	if (argv.ptr.native != NULL) {
435 		for (;;) {
436 			const char __user *p = get_user_arg_ptr(argv, i);
437 
438 			if (!p)
439 				break;
440 
441 			if (IS_ERR(p))
442 				return -EFAULT;
443 
444 			if (i >= max)
445 				return -E2BIG;
446 			++i;
447 
448 			if (fatal_signal_pending(current))
449 				return -ERESTARTNOHAND;
450 			cond_resched();
451 		}
452 	}
453 	return i;
454 }
455 
456 static int count_strings_kernel(const char *const *argv)
457 {
458 	int i;
459 
460 	if (!argv)
461 		return 0;
462 
463 	for (i = 0; argv[i]; ++i) {
464 		if (i >= MAX_ARG_STRINGS)
465 			return -E2BIG;
466 		if (fatal_signal_pending(current))
467 			return -ERESTARTNOHAND;
468 		cond_resched();
469 	}
470 	return i;
471 }
472 
473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475 	unsigned long limit, ptr_size;
476 
477 	/*
478 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 	 * (whichever is smaller) for the argv+env strings.
480 	 * This ensures that:
481 	 *  - the remaining binfmt code will not run out of stack space,
482 	 *  - the program will have a reasonable amount of stack left
483 	 *    to work from.
484 	 */
485 	limit = _STK_LIM / 4 * 3;
486 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487 	/*
488 	 * We've historically supported up to 32 pages (ARG_MAX)
489 	 * of argument strings even with small stacks
490 	 */
491 	limit = max_t(unsigned long, limit, ARG_MAX);
492 	/*
493 	 * We must account for the size of all the argv and envp pointers to
494 	 * the argv and envp strings, since they will also take up space in
495 	 * the stack. They aren't stored until much later when we can't
496 	 * signal to the parent that the child has run out of stack space.
497 	 * Instead, calculate it here so it's possible to fail gracefully.
498 	 */
499 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
500 	if (limit <= ptr_size)
501 		return -E2BIG;
502 	limit -= ptr_size;
503 
504 	bprm->argmin = bprm->p - limit;
505 	return 0;
506 }
507 
508 /*
509  * 'copy_strings()' copies argument/environment strings from the old
510  * processes's memory to the new process's stack.  The call to get_user_pages()
511  * ensures the destination page is created and not swapped out.
512  */
513 static int copy_strings(int argc, struct user_arg_ptr argv,
514 			struct linux_binprm *bprm)
515 {
516 	struct page *kmapped_page = NULL;
517 	char *kaddr = NULL;
518 	unsigned long kpos = 0;
519 	int ret;
520 
521 	while (argc-- > 0) {
522 		const char __user *str;
523 		int len;
524 		unsigned long pos;
525 
526 		ret = -EFAULT;
527 		str = get_user_arg_ptr(argv, argc);
528 		if (IS_ERR(str))
529 			goto out;
530 
531 		len = strnlen_user(str, MAX_ARG_STRLEN);
532 		if (!len)
533 			goto out;
534 
535 		ret = -E2BIG;
536 		if (!valid_arg_len(bprm, len))
537 			goto out;
538 
539 		/* We're going to work our way backwords. */
540 		pos = bprm->p;
541 		str += len;
542 		bprm->p -= len;
543 #ifdef CONFIG_MMU
544 		if (bprm->p < bprm->argmin)
545 			goto out;
546 #endif
547 
548 		while (len > 0) {
549 			int offset, bytes_to_copy;
550 
551 			if (fatal_signal_pending(current)) {
552 				ret = -ERESTARTNOHAND;
553 				goto out;
554 			}
555 			cond_resched();
556 
557 			offset = pos % PAGE_SIZE;
558 			if (offset == 0)
559 				offset = PAGE_SIZE;
560 
561 			bytes_to_copy = offset;
562 			if (bytes_to_copy > len)
563 				bytes_to_copy = len;
564 
565 			offset -= bytes_to_copy;
566 			pos -= bytes_to_copy;
567 			str -= bytes_to_copy;
568 			len -= bytes_to_copy;
569 
570 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
571 				struct page *page;
572 
573 				page = get_arg_page(bprm, pos, 1);
574 				if (!page) {
575 					ret = -E2BIG;
576 					goto out;
577 				}
578 
579 				if (kmapped_page) {
580 					flush_dcache_page(kmapped_page);
581 					kunmap(kmapped_page);
582 					put_arg_page(kmapped_page);
583 				}
584 				kmapped_page = page;
585 				kaddr = kmap(kmapped_page);
586 				kpos = pos & PAGE_MASK;
587 				flush_arg_page(bprm, kpos, kmapped_page);
588 			}
589 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
590 				ret = -EFAULT;
591 				goto out;
592 			}
593 		}
594 	}
595 	ret = 0;
596 out:
597 	if (kmapped_page) {
598 		flush_dcache_page(kmapped_page);
599 		kunmap(kmapped_page);
600 		put_arg_page(kmapped_page);
601 	}
602 	return ret;
603 }
604 
605 /*
606  * Copy and argument/environment string from the kernel to the processes stack.
607  */
608 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
609 {
610 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
611 	unsigned long pos = bprm->p;
612 
613 	if (len == 0)
614 		return -EFAULT;
615 	if (!valid_arg_len(bprm, len))
616 		return -E2BIG;
617 
618 	/* We're going to work our way backwards. */
619 	arg += len;
620 	bprm->p -= len;
621 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
622 		return -E2BIG;
623 
624 	while (len > 0) {
625 		unsigned int bytes_to_copy = min_t(unsigned int, len,
626 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
627 		struct page *page;
628 		char *kaddr;
629 
630 		pos -= bytes_to_copy;
631 		arg -= bytes_to_copy;
632 		len -= bytes_to_copy;
633 
634 		page = get_arg_page(bprm, pos, 1);
635 		if (!page)
636 			return -E2BIG;
637 		kaddr = kmap_atomic(page);
638 		flush_arg_page(bprm, pos & PAGE_MASK, page);
639 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
640 		flush_dcache_page(page);
641 		kunmap_atomic(kaddr);
642 		put_arg_page(page);
643 	}
644 
645 	return 0;
646 }
647 EXPORT_SYMBOL(copy_string_kernel);
648 
649 static int copy_strings_kernel(int argc, const char *const *argv,
650 			       struct linux_binprm *bprm)
651 {
652 	while (argc-- > 0) {
653 		int ret = copy_string_kernel(argv[argc], bprm);
654 		if (ret < 0)
655 			return ret;
656 		if (fatal_signal_pending(current))
657 			return -ERESTARTNOHAND;
658 		cond_resched();
659 	}
660 	return 0;
661 }
662 
663 #ifdef CONFIG_MMU
664 
665 /*
666  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
667  * the binfmt code determines where the new stack should reside, we shift it to
668  * its final location.  The process proceeds as follows:
669  *
670  * 1) Use shift to calculate the new vma endpoints.
671  * 2) Extend vma to cover both the old and new ranges.  This ensures the
672  *    arguments passed to subsequent functions are consistent.
673  * 3) Move vma's page tables to the new range.
674  * 4) Free up any cleared pgd range.
675  * 5) Shrink the vma to cover only the new range.
676  */
677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
678 {
679 	struct mm_struct *mm = vma->vm_mm;
680 	unsigned long old_start = vma->vm_start;
681 	unsigned long old_end = vma->vm_end;
682 	unsigned long length = old_end - old_start;
683 	unsigned long new_start = old_start - shift;
684 	unsigned long new_end = old_end - shift;
685 	struct mmu_gather tlb;
686 
687 	BUG_ON(new_start > new_end);
688 
689 	/*
690 	 * ensure there are no vmas between where we want to go
691 	 * and where we are
692 	 */
693 	if (vma != find_vma(mm, new_start))
694 		return -EFAULT;
695 
696 	/*
697 	 * cover the whole range: [new_start, old_end)
698 	 */
699 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
700 		return -ENOMEM;
701 
702 	/*
703 	 * move the page tables downwards, on failure we rely on
704 	 * process cleanup to remove whatever mess we made.
705 	 */
706 	if (length != move_page_tables(vma, old_start,
707 				       vma, new_start, length, false))
708 		return -ENOMEM;
709 
710 	lru_add_drain();
711 	tlb_gather_mmu(&tlb, mm);
712 	if (new_end > old_start) {
713 		/*
714 		 * when the old and new regions overlap clear from new_end.
715 		 */
716 		free_pgd_range(&tlb, new_end, old_end, new_end,
717 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
718 	} else {
719 		/*
720 		 * otherwise, clean from old_start; this is done to not touch
721 		 * the address space in [new_end, old_start) some architectures
722 		 * have constraints on va-space that make this illegal (IA64) -
723 		 * for the others its just a little faster.
724 		 */
725 		free_pgd_range(&tlb, old_start, old_end, new_end,
726 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
727 	}
728 	tlb_finish_mmu(&tlb);
729 
730 	/*
731 	 * Shrink the vma to just the new range.  Always succeeds.
732 	 */
733 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
734 
735 	return 0;
736 }
737 
738 /*
739  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
740  * the stack is optionally relocated, and some extra space is added.
741  */
742 int setup_arg_pages(struct linux_binprm *bprm,
743 		    unsigned long stack_top,
744 		    int executable_stack)
745 {
746 	unsigned long ret;
747 	unsigned long stack_shift;
748 	struct mm_struct *mm = current->mm;
749 	struct vm_area_struct *vma = bprm->vma;
750 	struct vm_area_struct *prev = NULL;
751 	unsigned long vm_flags;
752 	unsigned long stack_base;
753 	unsigned long stack_size;
754 	unsigned long stack_expand;
755 	unsigned long rlim_stack;
756 
757 #ifdef CONFIG_STACK_GROWSUP
758 	/* Limit stack size */
759 	stack_base = bprm->rlim_stack.rlim_max;
760 
761 	stack_base = calc_max_stack_size(stack_base);
762 
763 	/* Add space for stack randomization. */
764 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
765 
766 	/* Make sure we didn't let the argument array grow too large. */
767 	if (vma->vm_end - vma->vm_start > stack_base)
768 		return -ENOMEM;
769 
770 	stack_base = PAGE_ALIGN(stack_top - stack_base);
771 
772 	stack_shift = vma->vm_start - stack_base;
773 	mm->arg_start = bprm->p - stack_shift;
774 	bprm->p = vma->vm_end - stack_shift;
775 #else
776 	stack_top = arch_align_stack(stack_top);
777 	stack_top = PAGE_ALIGN(stack_top);
778 
779 	if (unlikely(stack_top < mmap_min_addr) ||
780 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
781 		return -ENOMEM;
782 
783 	stack_shift = vma->vm_end - stack_top;
784 
785 	bprm->p -= stack_shift;
786 	mm->arg_start = bprm->p;
787 #endif
788 
789 	if (bprm->loader)
790 		bprm->loader -= stack_shift;
791 	bprm->exec -= stack_shift;
792 
793 	if (mmap_write_lock_killable(mm))
794 		return -EINTR;
795 
796 	vm_flags = VM_STACK_FLAGS;
797 
798 	/*
799 	 * Adjust stack execute permissions; explicitly enable for
800 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
801 	 * (arch default) otherwise.
802 	 */
803 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
804 		vm_flags |= VM_EXEC;
805 	else if (executable_stack == EXSTACK_DISABLE_X)
806 		vm_flags &= ~VM_EXEC;
807 	vm_flags |= mm->def_flags;
808 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
809 
810 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
811 			vm_flags);
812 	if (ret)
813 		goto out_unlock;
814 	BUG_ON(prev != vma);
815 
816 	if (unlikely(vm_flags & VM_EXEC)) {
817 		pr_warn_once("process '%pD4' started with executable stack\n",
818 			     bprm->file);
819 	}
820 
821 	/* Move stack pages down in memory. */
822 	if (stack_shift) {
823 		ret = shift_arg_pages(vma, stack_shift);
824 		if (ret)
825 			goto out_unlock;
826 	}
827 
828 	/* mprotect_fixup is overkill to remove the temporary stack flags */
829 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
830 
831 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
832 	stack_size = vma->vm_end - vma->vm_start;
833 	/*
834 	 * Align this down to a page boundary as expand_stack
835 	 * will align it up.
836 	 */
837 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
838 #ifdef CONFIG_STACK_GROWSUP
839 	if (stack_size + stack_expand > rlim_stack)
840 		stack_base = vma->vm_start + rlim_stack;
841 	else
842 		stack_base = vma->vm_end + stack_expand;
843 #else
844 	if (stack_size + stack_expand > rlim_stack)
845 		stack_base = vma->vm_end - rlim_stack;
846 	else
847 		stack_base = vma->vm_start - stack_expand;
848 #endif
849 	current->mm->start_stack = bprm->p;
850 	ret = expand_stack(vma, stack_base);
851 	if (ret)
852 		ret = -EFAULT;
853 
854 out_unlock:
855 	mmap_write_unlock(mm);
856 	return ret;
857 }
858 EXPORT_SYMBOL(setup_arg_pages);
859 
860 #else
861 
862 /*
863  * Transfer the program arguments and environment from the holding pages
864  * onto the stack. The provided stack pointer is adjusted accordingly.
865  */
866 int transfer_args_to_stack(struct linux_binprm *bprm,
867 			   unsigned long *sp_location)
868 {
869 	unsigned long index, stop, sp;
870 	int ret = 0;
871 
872 	stop = bprm->p >> PAGE_SHIFT;
873 	sp = *sp_location;
874 
875 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
876 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
877 		char *src = kmap(bprm->page[index]) + offset;
878 		sp -= PAGE_SIZE - offset;
879 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
880 			ret = -EFAULT;
881 		kunmap(bprm->page[index]);
882 		if (ret)
883 			goto out;
884 	}
885 
886 	*sp_location = sp;
887 
888 out:
889 	return ret;
890 }
891 EXPORT_SYMBOL(transfer_args_to_stack);
892 
893 #endif /* CONFIG_MMU */
894 
895 static struct file *do_open_execat(int fd, struct filename *name, int flags)
896 {
897 	struct file *file;
898 	int err;
899 	struct open_flags open_exec_flags = {
900 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
901 		.acc_mode = MAY_EXEC,
902 		.intent = LOOKUP_OPEN,
903 		.lookup_flags = LOOKUP_FOLLOW,
904 	};
905 
906 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
907 		return ERR_PTR(-EINVAL);
908 	if (flags & AT_SYMLINK_NOFOLLOW)
909 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
910 	if (flags & AT_EMPTY_PATH)
911 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
912 
913 	file = do_filp_open(fd, name, &open_exec_flags);
914 	if (IS_ERR(file))
915 		goto out;
916 
917 	/*
918 	 * may_open() has already checked for this, so it should be
919 	 * impossible to trip now. But we need to be extra cautious
920 	 * and check again at the very end too.
921 	 */
922 	err = -EACCES;
923 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
924 			 path_noexec(&file->f_path)))
925 		goto exit;
926 
927 	err = deny_write_access(file);
928 	if (err)
929 		goto exit;
930 
931 	if (name->name[0] != '\0')
932 		fsnotify_open(file);
933 
934 out:
935 	return file;
936 
937 exit:
938 	fput(file);
939 	return ERR_PTR(err);
940 }
941 
942 struct file *open_exec(const char *name)
943 {
944 	struct filename *filename = getname_kernel(name);
945 	struct file *f = ERR_CAST(filename);
946 
947 	if (!IS_ERR(filename)) {
948 		f = do_open_execat(AT_FDCWD, filename, 0);
949 		putname(filename);
950 	}
951 	return f;
952 }
953 EXPORT_SYMBOL(open_exec);
954 
955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
956     defined(CONFIG_BINFMT_ELF_FDPIC)
957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
958 {
959 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
960 	if (res > 0)
961 		flush_icache_user_range(addr, addr + len);
962 	return res;
963 }
964 EXPORT_SYMBOL(read_code);
965 #endif
966 
967 /*
968  * Maps the mm_struct mm into the current task struct.
969  * On success, this function returns with exec_update_lock
970  * held for writing.
971  */
972 static int exec_mmap(struct mm_struct *mm)
973 {
974 	struct task_struct *tsk;
975 	struct mm_struct *old_mm, *active_mm;
976 	int ret;
977 
978 	/* Notify parent that we're no longer interested in the old VM */
979 	tsk = current;
980 	old_mm = current->mm;
981 	exec_mm_release(tsk, old_mm);
982 	if (old_mm)
983 		sync_mm_rss(old_mm);
984 
985 	ret = down_write_killable(&tsk->signal->exec_update_lock);
986 	if (ret)
987 		return ret;
988 
989 	if (old_mm) {
990 		/*
991 		 * If there is a pending fatal signal perhaps a signal
992 		 * whose default action is to create a coredump get
993 		 * out and die instead of going through with the exec.
994 		 */
995 		ret = mmap_read_lock_killable(old_mm);
996 		if (ret) {
997 			up_write(&tsk->signal->exec_update_lock);
998 			return ret;
999 		}
1000 	}
1001 
1002 	task_lock(tsk);
1003 	membarrier_exec_mmap(mm);
1004 
1005 	local_irq_disable();
1006 	active_mm = tsk->active_mm;
1007 	tsk->active_mm = mm;
1008 	tsk->mm = mm;
1009 	/*
1010 	 * This prevents preemption while active_mm is being loaded and
1011 	 * it and mm are being updated, which could cause problems for
1012 	 * lazy tlb mm refcounting when these are updated by context
1013 	 * switches. Not all architectures can handle irqs off over
1014 	 * activate_mm yet.
1015 	 */
1016 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1017 		local_irq_enable();
1018 	activate_mm(active_mm, mm);
1019 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1020 		local_irq_enable();
1021 	tsk->mm->vmacache_seqnum = 0;
1022 	vmacache_flush(tsk);
1023 	task_unlock(tsk);
1024 	if (old_mm) {
1025 		mmap_read_unlock(old_mm);
1026 		BUG_ON(active_mm != old_mm);
1027 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1028 		mm_update_next_owner(old_mm);
1029 		mmput(old_mm);
1030 		return 0;
1031 	}
1032 	mmdrop(active_mm);
1033 	return 0;
1034 }
1035 
1036 static int de_thread(struct task_struct *tsk)
1037 {
1038 	struct signal_struct *sig = tsk->signal;
1039 	struct sighand_struct *oldsighand = tsk->sighand;
1040 	spinlock_t *lock = &oldsighand->siglock;
1041 
1042 	if (thread_group_empty(tsk))
1043 		goto no_thread_group;
1044 
1045 	/*
1046 	 * Kill all other threads in the thread group.
1047 	 */
1048 	spin_lock_irq(lock);
1049 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1050 		/*
1051 		 * Another group action in progress, just
1052 		 * return so that the signal is processed.
1053 		 */
1054 		spin_unlock_irq(lock);
1055 		return -EAGAIN;
1056 	}
1057 
1058 	sig->group_exec_task = tsk;
1059 	sig->notify_count = zap_other_threads(tsk);
1060 	if (!thread_group_leader(tsk))
1061 		sig->notify_count--;
1062 
1063 	while (sig->notify_count) {
1064 		__set_current_state(TASK_KILLABLE);
1065 		spin_unlock_irq(lock);
1066 		schedule();
1067 		if (__fatal_signal_pending(tsk))
1068 			goto killed;
1069 		spin_lock_irq(lock);
1070 	}
1071 	spin_unlock_irq(lock);
1072 
1073 	/*
1074 	 * At this point all other threads have exited, all we have to
1075 	 * do is to wait for the thread group leader to become inactive,
1076 	 * and to assume its PID:
1077 	 */
1078 	if (!thread_group_leader(tsk)) {
1079 		struct task_struct *leader = tsk->group_leader;
1080 
1081 		for (;;) {
1082 			cgroup_threadgroup_change_begin(tsk);
1083 			write_lock_irq(&tasklist_lock);
1084 			/*
1085 			 * Do this under tasklist_lock to ensure that
1086 			 * exit_notify() can't miss ->group_exec_task
1087 			 */
1088 			sig->notify_count = -1;
1089 			if (likely(leader->exit_state))
1090 				break;
1091 			__set_current_state(TASK_KILLABLE);
1092 			write_unlock_irq(&tasklist_lock);
1093 			cgroup_threadgroup_change_end(tsk);
1094 			schedule();
1095 			if (__fatal_signal_pending(tsk))
1096 				goto killed;
1097 		}
1098 
1099 		/*
1100 		 * The only record we have of the real-time age of a
1101 		 * process, regardless of execs it's done, is start_time.
1102 		 * All the past CPU time is accumulated in signal_struct
1103 		 * from sister threads now dead.  But in this non-leader
1104 		 * exec, nothing survives from the original leader thread,
1105 		 * whose birth marks the true age of this process now.
1106 		 * When we take on its identity by switching to its PID, we
1107 		 * also take its birthdate (always earlier than our own).
1108 		 */
1109 		tsk->start_time = leader->start_time;
1110 		tsk->start_boottime = leader->start_boottime;
1111 
1112 		BUG_ON(!same_thread_group(leader, tsk));
1113 		/*
1114 		 * An exec() starts a new thread group with the
1115 		 * TGID of the previous thread group. Rehash the
1116 		 * two threads with a switched PID, and release
1117 		 * the former thread group leader:
1118 		 */
1119 
1120 		/* Become a process group leader with the old leader's pid.
1121 		 * The old leader becomes a thread of the this thread group.
1122 		 */
1123 		exchange_tids(tsk, leader);
1124 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1125 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1126 		transfer_pid(leader, tsk, PIDTYPE_SID);
1127 
1128 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1129 		list_replace_init(&leader->sibling, &tsk->sibling);
1130 
1131 		tsk->group_leader = tsk;
1132 		leader->group_leader = tsk;
1133 
1134 		tsk->exit_signal = SIGCHLD;
1135 		leader->exit_signal = -1;
1136 
1137 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1138 		leader->exit_state = EXIT_DEAD;
1139 
1140 		/*
1141 		 * We are going to release_task()->ptrace_unlink() silently,
1142 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1143 		 * the tracer wont't block again waiting for this thread.
1144 		 */
1145 		if (unlikely(leader->ptrace))
1146 			__wake_up_parent(leader, leader->parent);
1147 		write_unlock_irq(&tasklist_lock);
1148 		cgroup_threadgroup_change_end(tsk);
1149 
1150 		release_task(leader);
1151 	}
1152 
1153 	sig->group_exec_task = NULL;
1154 	sig->notify_count = 0;
1155 
1156 no_thread_group:
1157 	/* we have changed execution domain */
1158 	tsk->exit_signal = SIGCHLD;
1159 
1160 	BUG_ON(!thread_group_leader(tsk));
1161 	return 0;
1162 
1163 killed:
1164 	/* protects against exit_notify() and __exit_signal() */
1165 	read_lock(&tasklist_lock);
1166 	sig->group_exec_task = NULL;
1167 	sig->notify_count = 0;
1168 	read_unlock(&tasklist_lock);
1169 	return -EAGAIN;
1170 }
1171 
1172 
1173 /*
1174  * This function makes sure the current process has its own signal table,
1175  * so that flush_signal_handlers can later reset the handlers without
1176  * disturbing other processes.  (Other processes might share the signal
1177  * table via the CLONE_SIGHAND option to clone().)
1178  */
1179 static int unshare_sighand(struct task_struct *me)
1180 {
1181 	struct sighand_struct *oldsighand = me->sighand;
1182 
1183 	if (refcount_read(&oldsighand->count) != 1) {
1184 		struct sighand_struct *newsighand;
1185 		/*
1186 		 * This ->sighand is shared with the CLONE_SIGHAND
1187 		 * but not CLONE_THREAD task, switch to the new one.
1188 		 */
1189 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1190 		if (!newsighand)
1191 			return -ENOMEM;
1192 
1193 		refcount_set(&newsighand->count, 1);
1194 		memcpy(newsighand->action, oldsighand->action,
1195 		       sizeof(newsighand->action));
1196 
1197 		write_lock_irq(&tasklist_lock);
1198 		spin_lock(&oldsighand->siglock);
1199 		rcu_assign_pointer(me->sighand, newsighand);
1200 		spin_unlock(&oldsighand->siglock);
1201 		write_unlock_irq(&tasklist_lock);
1202 
1203 		__cleanup_sighand(oldsighand);
1204 	}
1205 	return 0;
1206 }
1207 
1208 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1209 {
1210 	task_lock(tsk);
1211 	/* Always NUL terminated and zero-padded */
1212 	strscpy_pad(buf, tsk->comm, buf_size);
1213 	task_unlock(tsk);
1214 	return buf;
1215 }
1216 EXPORT_SYMBOL_GPL(__get_task_comm);
1217 
1218 /*
1219  * These functions flushes out all traces of the currently running executable
1220  * so that a new one can be started
1221  */
1222 
1223 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1224 {
1225 	task_lock(tsk);
1226 	trace_task_rename(tsk, buf);
1227 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1228 	task_unlock(tsk);
1229 	perf_event_comm(tsk, exec);
1230 }
1231 
1232 /*
1233  * Calling this is the point of no return. None of the failures will be
1234  * seen by userspace since either the process is already taking a fatal
1235  * signal (via de_thread() or coredump), or will have SEGV raised
1236  * (after exec_mmap()) by search_binary_handler (see below).
1237  */
1238 int begin_new_exec(struct linux_binprm * bprm)
1239 {
1240 	struct task_struct *me = current;
1241 	int retval;
1242 
1243 	/* Once we are committed compute the creds */
1244 	retval = bprm_creds_from_file(bprm);
1245 	if (retval)
1246 		return retval;
1247 
1248 	/*
1249 	 * Ensure all future errors are fatal.
1250 	 */
1251 	bprm->point_of_no_return = true;
1252 
1253 	/*
1254 	 * Make this the only thread in the thread group.
1255 	 */
1256 	retval = de_thread(me);
1257 	if (retval)
1258 		goto out;
1259 
1260 	/*
1261 	 * Cancel any io_uring activity across execve
1262 	 */
1263 	io_uring_task_cancel();
1264 
1265 	/* Ensure the files table is not shared. */
1266 	retval = unshare_files();
1267 	if (retval)
1268 		goto out;
1269 
1270 	/*
1271 	 * Must be called _before_ exec_mmap() as bprm->mm is
1272 	 * not visibile until then. This also enables the update
1273 	 * to be lockless.
1274 	 */
1275 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1276 	if (retval)
1277 		goto out;
1278 
1279 	/* If the binary is not readable then enforce mm->dumpable=0 */
1280 	would_dump(bprm, bprm->file);
1281 	if (bprm->have_execfd)
1282 		would_dump(bprm, bprm->executable);
1283 
1284 	/*
1285 	 * Release all of the old mmap stuff
1286 	 */
1287 	acct_arg_size(bprm, 0);
1288 	retval = exec_mmap(bprm->mm);
1289 	if (retval)
1290 		goto out;
1291 
1292 	bprm->mm = NULL;
1293 
1294 #ifdef CONFIG_POSIX_TIMERS
1295 	exit_itimers(me->signal);
1296 	flush_itimer_signals();
1297 #endif
1298 
1299 	/*
1300 	 * Make the signal table private.
1301 	 */
1302 	retval = unshare_sighand(me);
1303 	if (retval)
1304 		goto out_unlock;
1305 
1306 	/*
1307 	 * Ensure that the uaccess routines can actually operate on userspace
1308 	 * pointers:
1309 	 */
1310 	force_uaccess_begin();
1311 
1312 	if (me->flags & PF_KTHREAD)
1313 		free_kthread_struct(me);
1314 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1315 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1316 	flush_thread();
1317 	me->personality &= ~bprm->per_clear;
1318 
1319 	clear_syscall_work_syscall_user_dispatch(me);
1320 
1321 	/*
1322 	 * We have to apply CLOEXEC before we change whether the process is
1323 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1324 	 * trying to access the should-be-closed file descriptors of a process
1325 	 * undergoing exec(2).
1326 	 */
1327 	do_close_on_exec(me->files);
1328 
1329 	if (bprm->secureexec) {
1330 		/* Make sure parent cannot signal privileged process. */
1331 		me->pdeath_signal = 0;
1332 
1333 		/*
1334 		 * For secureexec, reset the stack limit to sane default to
1335 		 * avoid bad behavior from the prior rlimits. This has to
1336 		 * happen before arch_pick_mmap_layout(), which examines
1337 		 * RLIMIT_STACK, but after the point of no return to avoid
1338 		 * needing to clean up the change on failure.
1339 		 */
1340 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1341 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1342 	}
1343 
1344 	me->sas_ss_sp = me->sas_ss_size = 0;
1345 
1346 	/*
1347 	 * Figure out dumpability. Note that this checking only of current
1348 	 * is wrong, but userspace depends on it. This should be testing
1349 	 * bprm->secureexec instead.
1350 	 */
1351 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1352 	    !(uid_eq(current_euid(), current_uid()) &&
1353 	      gid_eq(current_egid(), current_gid())))
1354 		set_dumpable(current->mm, suid_dumpable);
1355 	else
1356 		set_dumpable(current->mm, SUID_DUMP_USER);
1357 
1358 	perf_event_exec();
1359 	__set_task_comm(me, kbasename(bprm->filename), true);
1360 
1361 	/* An exec changes our domain. We are no longer part of the thread
1362 	   group */
1363 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1364 	flush_signal_handlers(me, 0);
1365 
1366 	retval = set_cred_ucounts(bprm->cred);
1367 	if (retval < 0)
1368 		goto out_unlock;
1369 
1370 	/*
1371 	 * install the new credentials for this executable
1372 	 */
1373 	security_bprm_committing_creds(bprm);
1374 
1375 	commit_creds(bprm->cred);
1376 	bprm->cred = NULL;
1377 
1378 	/*
1379 	 * Disable monitoring for regular users
1380 	 * when executing setuid binaries. Must
1381 	 * wait until new credentials are committed
1382 	 * by commit_creds() above
1383 	 */
1384 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1385 		perf_event_exit_task(me);
1386 	/*
1387 	 * cred_guard_mutex must be held at least to this point to prevent
1388 	 * ptrace_attach() from altering our determination of the task's
1389 	 * credentials; any time after this it may be unlocked.
1390 	 */
1391 	security_bprm_committed_creds(bprm);
1392 
1393 	/* Pass the opened binary to the interpreter. */
1394 	if (bprm->have_execfd) {
1395 		retval = get_unused_fd_flags(0);
1396 		if (retval < 0)
1397 			goto out_unlock;
1398 		fd_install(retval, bprm->executable);
1399 		bprm->executable = NULL;
1400 		bprm->execfd = retval;
1401 	}
1402 	return 0;
1403 
1404 out_unlock:
1405 	up_write(&me->signal->exec_update_lock);
1406 out:
1407 	return retval;
1408 }
1409 EXPORT_SYMBOL(begin_new_exec);
1410 
1411 void would_dump(struct linux_binprm *bprm, struct file *file)
1412 {
1413 	struct inode *inode = file_inode(file);
1414 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1415 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1416 		struct user_namespace *old, *user_ns;
1417 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418 
1419 		/* Ensure mm->user_ns contains the executable */
1420 		user_ns = old = bprm->mm->user_ns;
1421 		while ((user_ns != &init_user_ns) &&
1422 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1423 			user_ns = user_ns->parent;
1424 
1425 		if (old != user_ns) {
1426 			bprm->mm->user_ns = get_user_ns(user_ns);
1427 			put_user_ns(old);
1428 		}
1429 	}
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432 
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435 	/* Setup things that can depend upon the personality */
1436 	struct task_struct *me = current;
1437 
1438 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439 
1440 	arch_setup_new_exec();
1441 
1442 	/* Set the new mm task size. We have to do that late because it may
1443 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1444 	 * some architectures like powerpc
1445 	 */
1446 	me->mm->task_size = TASK_SIZE;
1447 	up_write(&me->signal->exec_update_lock);
1448 	mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451 
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455 	/* Store any stack rlimit changes before starting thread. */
1456 	task_lock(current->group_leader);
1457 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458 	task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461 
1462 /*
1463  * Prepare credentials and lock ->cred_guard_mutex.
1464  * setup_new_exec() commits the new creds and drops the lock.
1465  * Or, if exec fails before, free_bprm() should release ->cred
1466  * and unlock.
1467  */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471 		return -ERESTARTNOINTR;
1472 
1473 	bprm->cred = prepare_exec_creds();
1474 	if (likely(bprm->cred))
1475 		return 0;
1476 
1477 	mutex_unlock(&current->signal->cred_guard_mutex);
1478 	return -ENOMEM;
1479 }
1480 
1481 static void free_bprm(struct linux_binprm *bprm)
1482 {
1483 	if (bprm->mm) {
1484 		acct_arg_size(bprm, 0);
1485 		mmput(bprm->mm);
1486 	}
1487 	free_arg_pages(bprm);
1488 	if (bprm->cred) {
1489 		mutex_unlock(&current->signal->cred_guard_mutex);
1490 		abort_creds(bprm->cred);
1491 	}
1492 	if (bprm->file) {
1493 		allow_write_access(bprm->file);
1494 		fput(bprm->file);
1495 	}
1496 	if (bprm->executable)
1497 		fput(bprm->executable);
1498 	/* If a binfmt changed the interp, free it. */
1499 	if (bprm->interp != bprm->filename)
1500 		kfree(bprm->interp);
1501 	kfree(bprm->fdpath);
1502 	kfree(bprm);
1503 }
1504 
1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1506 {
1507 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1508 	int retval = -ENOMEM;
1509 	if (!bprm)
1510 		goto out;
1511 
1512 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1513 		bprm->filename = filename->name;
1514 	} else {
1515 		if (filename->name[0] == '\0')
1516 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1517 		else
1518 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1519 						  fd, filename->name);
1520 		if (!bprm->fdpath)
1521 			goto out_free;
1522 
1523 		bprm->filename = bprm->fdpath;
1524 	}
1525 	bprm->interp = bprm->filename;
1526 
1527 	retval = bprm_mm_init(bprm);
1528 	if (retval)
1529 		goto out_free;
1530 	return bprm;
1531 
1532 out_free:
1533 	free_bprm(bprm);
1534 out:
1535 	return ERR_PTR(retval);
1536 }
1537 
1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1539 {
1540 	/* If a binfmt changed the interp, free it first. */
1541 	if (bprm->interp != bprm->filename)
1542 		kfree(bprm->interp);
1543 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1544 	if (!bprm->interp)
1545 		return -ENOMEM;
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL(bprm_change_interp);
1549 
1550 /*
1551  * determine how safe it is to execute the proposed program
1552  * - the caller must hold ->cred_guard_mutex to protect against
1553  *   PTRACE_ATTACH or seccomp thread-sync
1554  */
1555 static void check_unsafe_exec(struct linux_binprm *bprm)
1556 {
1557 	struct task_struct *p = current, *t;
1558 	unsigned n_fs;
1559 
1560 	if (p->ptrace)
1561 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1562 
1563 	/*
1564 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1565 	 * mess up.
1566 	 */
1567 	if (task_no_new_privs(current))
1568 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1569 
1570 	t = p;
1571 	n_fs = 1;
1572 	spin_lock(&p->fs->lock);
1573 	rcu_read_lock();
1574 	while_each_thread(p, t) {
1575 		if (t->fs == p->fs)
1576 			n_fs++;
1577 	}
1578 	rcu_read_unlock();
1579 
1580 	if (p->fs->users > n_fs)
1581 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1582 	else
1583 		p->fs->in_exec = 1;
1584 	spin_unlock(&p->fs->lock);
1585 }
1586 
1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1588 {
1589 	/* Handle suid and sgid on files */
1590 	struct user_namespace *mnt_userns;
1591 	struct inode *inode;
1592 	unsigned int mode;
1593 	kuid_t uid;
1594 	kgid_t gid;
1595 
1596 	if (!mnt_may_suid(file->f_path.mnt))
1597 		return;
1598 
1599 	if (task_no_new_privs(current))
1600 		return;
1601 
1602 	inode = file->f_path.dentry->d_inode;
1603 	mode = READ_ONCE(inode->i_mode);
1604 	if (!(mode & (S_ISUID|S_ISGID)))
1605 		return;
1606 
1607 	mnt_userns = file_mnt_user_ns(file);
1608 
1609 	/* Be careful if suid/sgid is set */
1610 	inode_lock(inode);
1611 
1612 	/* reload atomically mode/uid/gid now that lock held */
1613 	mode = inode->i_mode;
1614 	uid = i_uid_into_mnt(mnt_userns, inode);
1615 	gid = i_gid_into_mnt(mnt_userns, inode);
1616 	inode_unlock(inode);
1617 
1618 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1619 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1620 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1621 		return;
1622 
1623 	if (mode & S_ISUID) {
1624 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1625 		bprm->cred->euid = uid;
1626 	}
1627 
1628 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1629 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1630 		bprm->cred->egid = gid;
1631 	}
1632 }
1633 
1634 /*
1635  * Compute brpm->cred based upon the final binary.
1636  */
1637 static int bprm_creds_from_file(struct linux_binprm *bprm)
1638 {
1639 	/* Compute creds based on which file? */
1640 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1641 
1642 	bprm_fill_uid(bprm, file);
1643 	return security_bprm_creds_from_file(bprm, file);
1644 }
1645 
1646 /*
1647  * Fill the binprm structure from the inode.
1648  * Read the first BINPRM_BUF_SIZE bytes
1649  *
1650  * This may be called multiple times for binary chains (scripts for example).
1651  */
1652 static int prepare_binprm(struct linux_binprm *bprm)
1653 {
1654 	loff_t pos = 0;
1655 
1656 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1657 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1658 }
1659 
1660 /*
1661  * Arguments are '\0' separated strings found at the location bprm->p
1662  * points to; chop off the first by relocating brpm->p to right after
1663  * the first '\0' encountered.
1664  */
1665 int remove_arg_zero(struct linux_binprm *bprm)
1666 {
1667 	int ret = 0;
1668 	unsigned long offset;
1669 	char *kaddr;
1670 	struct page *page;
1671 
1672 	if (!bprm->argc)
1673 		return 0;
1674 
1675 	do {
1676 		offset = bprm->p & ~PAGE_MASK;
1677 		page = get_arg_page(bprm, bprm->p, 0);
1678 		if (!page) {
1679 			ret = -EFAULT;
1680 			goto out;
1681 		}
1682 		kaddr = kmap_atomic(page);
1683 
1684 		for (; offset < PAGE_SIZE && kaddr[offset];
1685 				offset++, bprm->p++)
1686 			;
1687 
1688 		kunmap_atomic(kaddr);
1689 		put_arg_page(page);
1690 	} while (offset == PAGE_SIZE);
1691 
1692 	bprm->p++;
1693 	bprm->argc--;
1694 	ret = 0;
1695 
1696 out:
1697 	return ret;
1698 }
1699 EXPORT_SYMBOL(remove_arg_zero);
1700 
1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1702 /*
1703  * cycle the list of binary formats handler, until one recognizes the image
1704  */
1705 static int search_binary_handler(struct linux_binprm *bprm)
1706 {
1707 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1708 	struct linux_binfmt *fmt;
1709 	int retval;
1710 
1711 	retval = prepare_binprm(bprm);
1712 	if (retval < 0)
1713 		return retval;
1714 
1715 	retval = security_bprm_check(bprm);
1716 	if (retval)
1717 		return retval;
1718 
1719 	retval = -ENOENT;
1720  retry:
1721 	read_lock(&binfmt_lock);
1722 	list_for_each_entry(fmt, &formats, lh) {
1723 		if (!try_module_get(fmt->module))
1724 			continue;
1725 		read_unlock(&binfmt_lock);
1726 
1727 		retval = fmt->load_binary(bprm);
1728 
1729 		read_lock(&binfmt_lock);
1730 		put_binfmt(fmt);
1731 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1732 			read_unlock(&binfmt_lock);
1733 			return retval;
1734 		}
1735 	}
1736 	read_unlock(&binfmt_lock);
1737 
1738 	if (need_retry) {
1739 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1740 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1741 			return retval;
1742 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1743 			return retval;
1744 		need_retry = false;
1745 		goto retry;
1746 	}
1747 
1748 	return retval;
1749 }
1750 
1751 static int exec_binprm(struct linux_binprm *bprm)
1752 {
1753 	pid_t old_pid, old_vpid;
1754 	int ret, depth;
1755 
1756 	/* Need to fetch pid before load_binary changes it */
1757 	old_pid = current->pid;
1758 	rcu_read_lock();
1759 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1760 	rcu_read_unlock();
1761 
1762 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1763 	for (depth = 0;; depth++) {
1764 		struct file *exec;
1765 		if (depth > 5)
1766 			return -ELOOP;
1767 
1768 		ret = search_binary_handler(bprm);
1769 		if (ret < 0)
1770 			return ret;
1771 		if (!bprm->interpreter)
1772 			break;
1773 
1774 		exec = bprm->file;
1775 		bprm->file = bprm->interpreter;
1776 		bprm->interpreter = NULL;
1777 
1778 		allow_write_access(exec);
1779 		if (unlikely(bprm->have_execfd)) {
1780 			if (bprm->executable) {
1781 				fput(exec);
1782 				return -ENOEXEC;
1783 			}
1784 			bprm->executable = exec;
1785 		} else
1786 			fput(exec);
1787 	}
1788 
1789 	audit_bprm(bprm);
1790 	trace_sched_process_exec(current, old_pid, bprm);
1791 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1792 	proc_exec_connector(current);
1793 	return 0;
1794 }
1795 
1796 /*
1797  * sys_execve() executes a new program.
1798  */
1799 static int bprm_execve(struct linux_binprm *bprm,
1800 		       int fd, struct filename *filename, int flags)
1801 {
1802 	struct file *file;
1803 	int retval;
1804 
1805 	retval = prepare_bprm_creds(bprm);
1806 	if (retval)
1807 		return retval;
1808 
1809 	check_unsafe_exec(bprm);
1810 	current->in_execve = 1;
1811 
1812 	file = do_open_execat(fd, filename, flags);
1813 	retval = PTR_ERR(file);
1814 	if (IS_ERR(file))
1815 		goto out_unmark;
1816 
1817 	sched_exec();
1818 
1819 	bprm->file = file;
1820 	/*
1821 	 * Record that a name derived from an O_CLOEXEC fd will be
1822 	 * inaccessible after exec.  This allows the code in exec to
1823 	 * choose to fail when the executable is not mmaped into the
1824 	 * interpreter and an open file descriptor is not passed to
1825 	 * the interpreter.  This makes for a better user experience
1826 	 * than having the interpreter start and then immediately fail
1827 	 * when it finds the executable is inaccessible.
1828 	 */
1829 	if (bprm->fdpath && get_close_on_exec(fd))
1830 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1831 
1832 	/* Set the unchanging part of bprm->cred */
1833 	retval = security_bprm_creds_for_exec(bprm);
1834 	if (retval)
1835 		goto out;
1836 
1837 	retval = exec_binprm(bprm);
1838 	if (retval < 0)
1839 		goto out;
1840 
1841 	/* execve succeeded */
1842 	current->fs->in_exec = 0;
1843 	current->in_execve = 0;
1844 	rseq_execve(current);
1845 	acct_update_integrals(current);
1846 	task_numa_free(current, false);
1847 	return retval;
1848 
1849 out:
1850 	/*
1851 	 * If past the point of no return ensure the code never
1852 	 * returns to the userspace process.  Use an existing fatal
1853 	 * signal if present otherwise terminate the process with
1854 	 * SIGSEGV.
1855 	 */
1856 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1857 		force_fatal_sig(SIGSEGV);
1858 
1859 out_unmark:
1860 	current->fs->in_exec = 0;
1861 	current->in_execve = 0;
1862 
1863 	return retval;
1864 }
1865 
1866 static int do_execveat_common(int fd, struct filename *filename,
1867 			      struct user_arg_ptr argv,
1868 			      struct user_arg_ptr envp,
1869 			      int flags)
1870 {
1871 	struct linux_binprm *bprm;
1872 	int retval;
1873 
1874 	if (IS_ERR(filename))
1875 		return PTR_ERR(filename);
1876 
1877 	/*
1878 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1879 	 * set*uid() to execve() because too many poorly written programs
1880 	 * don't check setuid() return code.  Here we additionally recheck
1881 	 * whether NPROC limit is still exceeded.
1882 	 */
1883 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1884 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1885 		retval = -EAGAIN;
1886 		goto out_ret;
1887 	}
1888 
1889 	/* We're below the limit (still or again), so we don't want to make
1890 	 * further execve() calls fail. */
1891 	current->flags &= ~PF_NPROC_EXCEEDED;
1892 
1893 	bprm = alloc_bprm(fd, filename);
1894 	if (IS_ERR(bprm)) {
1895 		retval = PTR_ERR(bprm);
1896 		goto out_ret;
1897 	}
1898 
1899 	retval = count(argv, MAX_ARG_STRINGS);
1900 	if (retval < 0)
1901 		goto out_free;
1902 	bprm->argc = retval;
1903 
1904 	retval = count(envp, MAX_ARG_STRINGS);
1905 	if (retval < 0)
1906 		goto out_free;
1907 	bprm->envc = retval;
1908 
1909 	retval = bprm_stack_limits(bprm);
1910 	if (retval < 0)
1911 		goto out_free;
1912 
1913 	retval = copy_string_kernel(bprm->filename, bprm);
1914 	if (retval < 0)
1915 		goto out_free;
1916 	bprm->exec = bprm->p;
1917 
1918 	retval = copy_strings(bprm->envc, envp, bprm);
1919 	if (retval < 0)
1920 		goto out_free;
1921 
1922 	retval = copy_strings(bprm->argc, argv, bprm);
1923 	if (retval < 0)
1924 		goto out_free;
1925 
1926 	retval = bprm_execve(bprm, fd, filename, flags);
1927 out_free:
1928 	free_bprm(bprm);
1929 
1930 out_ret:
1931 	putname(filename);
1932 	return retval;
1933 }
1934 
1935 int kernel_execve(const char *kernel_filename,
1936 		  const char *const *argv, const char *const *envp)
1937 {
1938 	struct filename *filename;
1939 	struct linux_binprm *bprm;
1940 	int fd = AT_FDCWD;
1941 	int retval;
1942 
1943 	filename = getname_kernel(kernel_filename);
1944 	if (IS_ERR(filename))
1945 		return PTR_ERR(filename);
1946 
1947 	bprm = alloc_bprm(fd, filename);
1948 	if (IS_ERR(bprm)) {
1949 		retval = PTR_ERR(bprm);
1950 		goto out_ret;
1951 	}
1952 
1953 	retval = count_strings_kernel(argv);
1954 	if (retval < 0)
1955 		goto out_free;
1956 	bprm->argc = retval;
1957 
1958 	retval = count_strings_kernel(envp);
1959 	if (retval < 0)
1960 		goto out_free;
1961 	bprm->envc = retval;
1962 
1963 	retval = bprm_stack_limits(bprm);
1964 	if (retval < 0)
1965 		goto out_free;
1966 
1967 	retval = copy_string_kernel(bprm->filename, bprm);
1968 	if (retval < 0)
1969 		goto out_free;
1970 	bprm->exec = bprm->p;
1971 
1972 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1973 	if (retval < 0)
1974 		goto out_free;
1975 
1976 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1977 	if (retval < 0)
1978 		goto out_free;
1979 
1980 	retval = bprm_execve(bprm, fd, filename, 0);
1981 out_free:
1982 	free_bprm(bprm);
1983 out_ret:
1984 	putname(filename);
1985 	return retval;
1986 }
1987 
1988 static int do_execve(struct filename *filename,
1989 	const char __user *const __user *__argv,
1990 	const char __user *const __user *__envp)
1991 {
1992 	struct user_arg_ptr argv = { .ptr.native = __argv };
1993 	struct user_arg_ptr envp = { .ptr.native = __envp };
1994 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1995 }
1996 
1997 static int do_execveat(int fd, struct filename *filename,
1998 		const char __user *const __user *__argv,
1999 		const char __user *const __user *__envp,
2000 		int flags)
2001 {
2002 	struct user_arg_ptr argv = { .ptr.native = __argv };
2003 	struct user_arg_ptr envp = { .ptr.native = __envp };
2004 
2005 	return do_execveat_common(fd, filename, argv, envp, flags);
2006 }
2007 
2008 #ifdef CONFIG_COMPAT
2009 static int compat_do_execve(struct filename *filename,
2010 	const compat_uptr_t __user *__argv,
2011 	const compat_uptr_t __user *__envp)
2012 {
2013 	struct user_arg_ptr argv = {
2014 		.is_compat = true,
2015 		.ptr.compat = __argv,
2016 	};
2017 	struct user_arg_ptr envp = {
2018 		.is_compat = true,
2019 		.ptr.compat = __envp,
2020 	};
2021 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2022 }
2023 
2024 static int compat_do_execveat(int fd, struct filename *filename,
2025 			      const compat_uptr_t __user *__argv,
2026 			      const compat_uptr_t __user *__envp,
2027 			      int flags)
2028 {
2029 	struct user_arg_ptr argv = {
2030 		.is_compat = true,
2031 		.ptr.compat = __argv,
2032 	};
2033 	struct user_arg_ptr envp = {
2034 		.is_compat = true,
2035 		.ptr.compat = __envp,
2036 	};
2037 	return do_execveat_common(fd, filename, argv, envp, flags);
2038 }
2039 #endif
2040 
2041 void set_binfmt(struct linux_binfmt *new)
2042 {
2043 	struct mm_struct *mm = current->mm;
2044 
2045 	if (mm->binfmt)
2046 		module_put(mm->binfmt->module);
2047 
2048 	mm->binfmt = new;
2049 	if (new)
2050 		__module_get(new->module);
2051 }
2052 EXPORT_SYMBOL(set_binfmt);
2053 
2054 /*
2055  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2056  */
2057 void set_dumpable(struct mm_struct *mm, int value)
2058 {
2059 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2060 		return;
2061 
2062 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2063 }
2064 
2065 SYSCALL_DEFINE3(execve,
2066 		const char __user *, filename,
2067 		const char __user *const __user *, argv,
2068 		const char __user *const __user *, envp)
2069 {
2070 	return do_execve(getname(filename), argv, envp);
2071 }
2072 
2073 SYSCALL_DEFINE5(execveat,
2074 		int, fd, const char __user *, filename,
2075 		const char __user *const __user *, argv,
2076 		const char __user *const __user *, envp,
2077 		int, flags)
2078 {
2079 	return do_execveat(fd,
2080 			   getname_uflags(filename, flags),
2081 			   argv, envp, flags);
2082 }
2083 
2084 #ifdef CONFIG_COMPAT
2085 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2086 	const compat_uptr_t __user *, argv,
2087 	const compat_uptr_t __user *, envp)
2088 {
2089 	return compat_do_execve(getname(filename), argv, envp);
2090 }
2091 
2092 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2093 		       const char __user *, filename,
2094 		       const compat_uptr_t __user *, argv,
2095 		       const compat_uptr_t __user *, envp,
2096 		       int,  flags)
2097 {
2098 	return compat_do_execveat(fd,
2099 				  getname_uflags(filename, flags),
2100 				  argv, envp, flags);
2101 }
2102 #endif
2103 
2104 #ifdef CONFIG_SYSCTL
2105 
2106 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2107 		void *buffer, size_t *lenp, loff_t *ppos)
2108 {
2109 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2110 
2111 	if (!error)
2112 		validate_coredump_safety();
2113 	return error;
2114 }
2115 
2116 static struct ctl_table fs_exec_sysctls[] = {
2117 	{
2118 		.procname	= "suid_dumpable",
2119 		.data		= &suid_dumpable,
2120 		.maxlen		= sizeof(int),
2121 		.mode		= 0644,
2122 		.proc_handler	= proc_dointvec_minmax_coredump,
2123 		.extra1		= SYSCTL_ZERO,
2124 		.extra2		= SYSCTL_TWO,
2125 	},
2126 	{ }
2127 };
2128 
2129 static int __init init_fs_exec_sysctls(void)
2130 {
2131 	register_sysctl_init("fs", fs_exec_sysctls);
2132 	return 0;
2133 }
2134 
2135 fs_initcall(init_fs_exec_sysctls);
2136 #endif /* CONFIG_SYSCTL */
2137