1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/tracehook.h> 60 #include <linux/kmod.h> 61 #include <linux/fsnotify.h> 62 #include <linux/fs_struct.h> 63 #include <linux/oom.h> 64 #include <linux/compat.h> 65 #include <linux/vmalloc.h> 66 #include <linux/io_uring.h> 67 #include <linux/syscall_user_dispatch.h> 68 #include <linux/coredump.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 int ret; 204 unsigned int gup_flags = FOLL_FORCE; 205 206 #ifdef CONFIG_STACK_GROWSUP 207 if (write) { 208 ret = expand_downwards(bprm->vma, pos); 209 if (ret < 0) 210 return NULL; 211 } 212 #endif 213 214 if (write) 215 gup_flags |= FOLL_WRITE; 216 217 /* 218 * We are doing an exec(). 'current' is the process 219 * doing the exec and bprm->mm is the new process's mm. 220 */ 221 mmap_read_lock(bprm->mm); 222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 223 &page, NULL, NULL); 224 mmap_read_unlock(bprm->mm); 225 if (ret <= 0) 226 return NULL; 227 228 if (write) 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 230 231 return page; 232 } 233 234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = vm_area_alloc(mm); 256 if (!vma) 257 return -ENOMEM; 258 vma_set_anonymous(vma); 259 260 if (mmap_write_lock_killable(mm)) { 261 err = -EINTR; 262 goto err_free; 263 } 264 265 /* 266 * Place the stack at the largest stack address the architecture 267 * supports. Later, we'll move this to an appropriate place. We don't 268 * use STACK_TOP because that can depend on attributes which aren't 269 * configured yet. 270 */ 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 272 vma->vm_end = STACK_TOP_MAX; 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 276 277 err = insert_vm_struct(mm, vma); 278 if (err) 279 goto err; 280 281 mm->stack_vm = mm->total_vm = 1; 282 mmap_write_unlock(mm); 283 bprm->p = vma->vm_end - sizeof(void *); 284 return 0; 285 err: 286 mmap_write_unlock(mm); 287 err_free: 288 bprm->vma = NULL; 289 vm_area_free(vma); 290 return err; 291 } 292 293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 294 { 295 return len <= MAX_ARG_STRLEN; 296 } 297 298 #else 299 300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 301 { 302 } 303 304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 int write) 306 { 307 struct page *page; 308 309 page = bprm->page[pos / PAGE_SIZE]; 310 if (!page && write) { 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 312 if (!page) 313 return NULL; 314 bprm->page[pos / PAGE_SIZE] = page; 315 } 316 317 return page; 318 } 319 320 static void put_arg_page(struct page *page) 321 { 322 } 323 324 static void free_arg_page(struct linux_binprm *bprm, int i) 325 { 326 if (bprm->page[i]) { 327 __free_page(bprm->page[i]); 328 bprm->page[i] = NULL; 329 } 330 } 331 332 static void free_arg_pages(struct linux_binprm *bprm) 333 { 334 int i; 335 336 for (i = 0; i < MAX_ARG_PAGES; i++) 337 free_arg_page(bprm, i); 338 } 339 340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 341 struct page *page) 342 { 343 } 344 345 static int __bprm_mm_init(struct linux_binprm *bprm) 346 { 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 348 return 0; 349 } 350 351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 352 { 353 return len <= bprm->p; 354 } 355 356 #endif /* CONFIG_MMU */ 357 358 /* 359 * Create a new mm_struct and populate it with a temporary stack 360 * vm_area_struct. We don't have enough context at this point to set the stack 361 * flags, permissions, and offset, so we use temporary values. We'll update 362 * them later in setup_arg_pages(). 363 */ 364 static int bprm_mm_init(struct linux_binprm *bprm) 365 { 366 int err; 367 struct mm_struct *mm = NULL; 368 369 bprm->mm = mm = mm_alloc(); 370 err = -ENOMEM; 371 if (!mm) 372 goto err; 373 374 /* Save current stack limit for all calculations made during exec. */ 375 task_lock(current->group_leader); 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 377 task_unlock(current->group_leader); 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ 430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 456 static int count_strings_kernel(const char *const *argv) 457 { 458 int i; 459 460 if (!argv) 461 return 0; 462 463 for (i = 0; argv[i]; ++i) { 464 if (i >= MAX_ARG_STRINGS) 465 return -E2BIG; 466 if (fatal_signal_pending(current)) 467 return -ERESTARTNOHAND; 468 cond_resched(); 469 } 470 return i; 471 } 472 473 static int bprm_stack_limits(struct linux_binprm *bprm) 474 { 475 unsigned long limit, ptr_size; 476 477 /* 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 479 * (whichever is smaller) for the argv+env strings. 480 * This ensures that: 481 * - the remaining binfmt code will not run out of stack space, 482 * - the program will have a reasonable amount of stack left 483 * to work from. 484 */ 485 limit = _STK_LIM / 4 * 3; 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 487 /* 488 * We've historically supported up to 32 pages (ARG_MAX) 489 * of argument strings even with small stacks 490 */ 491 limit = max_t(unsigned long, limit, ARG_MAX); 492 /* 493 * We must account for the size of all the argv and envp pointers to 494 * the argv and envp strings, since they will also take up space in 495 * the stack. They aren't stored until much later when we can't 496 * signal to the parent that the child has run out of stack space. 497 * Instead, calculate it here so it's possible to fail gracefully. 498 */ 499 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 500 if (limit <= ptr_size) 501 return -E2BIG; 502 limit -= ptr_size; 503 504 bprm->argmin = bprm->p - limit; 505 return 0; 506 } 507 508 /* 509 * 'copy_strings()' copies argument/environment strings from the old 510 * processes's memory to the new process's stack. The call to get_user_pages() 511 * ensures the destination page is created and not swapped out. 512 */ 513 static int copy_strings(int argc, struct user_arg_ptr argv, 514 struct linux_binprm *bprm) 515 { 516 struct page *kmapped_page = NULL; 517 char *kaddr = NULL; 518 unsigned long kpos = 0; 519 int ret; 520 521 while (argc-- > 0) { 522 const char __user *str; 523 int len; 524 unsigned long pos; 525 526 ret = -EFAULT; 527 str = get_user_arg_ptr(argv, argc); 528 if (IS_ERR(str)) 529 goto out; 530 531 len = strnlen_user(str, MAX_ARG_STRLEN); 532 if (!len) 533 goto out; 534 535 ret = -E2BIG; 536 if (!valid_arg_len(bprm, len)) 537 goto out; 538 539 /* We're going to work our way backwords. */ 540 pos = bprm->p; 541 str += len; 542 bprm->p -= len; 543 #ifdef CONFIG_MMU 544 if (bprm->p < bprm->argmin) 545 goto out; 546 #endif 547 548 while (len > 0) { 549 int offset, bytes_to_copy; 550 551 if (fatal_signal_pending(current)) { 552 ret = -ERESTARTNOHAND; 553 goto out; 554 } 555 cond_resched(); 556 557 offset = pos % PAGE_SIZE; 558 if (offset == 0) 559 offset = PAGE_SIZE; 560 561 bytes_to_copy = offset; 562 if (bytes_to_copy > len) 563 bytes_to_copy = len; 564 565 offset -= bytes_to_copy; 566 pos -= bytes_to_copy; 567 str -= bytes_to_copy; 568 len -= bytes_to_copy; 569 570 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 571 struct page *page; 572 573 page = get_arg_page(bprm, pos, 1); 574 if (!page) { 575 ret = -E2BIG; 576 goto out; 577 } 578 579 if (kmapped_page) { 580 flush_dcache_page(kmapped_page); 581 kunmap(kmapped_page); 582 put_arg_page(kmapped_page); 583 } 584 kmapped_page = page; 585 kaddr = kmap(kmapped_page); 586 kpos = pos & PAGE_MASK; 587 flush_arg_page(bprm, kpos, kmapped_page); 588 } 589 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 590 ret = -EFAULT; 591 goto out; 592 } 593 } 594 } 595 ret = 0; 596 out: 597 if (kmapped_page) { 598 flush_dcache_page(kmapped_page); 599 kunmap(kmapped_page); 600 put_arg_page(kmapped_page); 601 } 602 return ret; 603 } 604 605 /* 606 * Copy and argument/environment string from the kernel to the processes stack. 607 */ 608 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 609 { 610 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 611 unsigned long pos = bprm->p; 612 613 if (len == 0) 614 return -EFAULT; 615 if (!valid_arg_len(bprm, len)) 616 return -E2BIG; 617 618 /* We're going to work our way backwards. */ 619 arg += len; 620 bprm->p -= len; 621 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 622 return -E2BIG; 623 624 while (len > 0) { 625 unsigned int bytes_to_copy = min_t(unsigned int, len, 626 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 627 struct page *page; 628 char *kaddr; 629 630 pos -= bytes_to_copy; 631 arg -= bytes_to_copy; 632 len -= bytes_to_copy; 633 634 page = get_arg_page(bprm, pos, 1); 635 if (!page) 636 return -E2BIG; 637 kaddr = kmap_atomic(page); 638 flush_arg_page(bprm, pos & PAGE_MASK, page); 639 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 640 flush_dcache_page(page); 641 kunmap_atomic(kaddr); 642 put_arg_page(page); 643 } 644 645 return 0; 646 } 647 EXPORT_SYMBOL(copy_string_kernel); 648 649 static int copy_strings_kernel(int argc, const char *const *argv, 650 struct linux_binprm *bprm) 651 { 652 while (argc-- > 0) { 653 int ret = copy_string_kernel(argv[argc], bprm); 654 if (ret < 0) 655 return ret; 656 if (fatal_signal_pending(current)) 657 return -ERESTARTNOHAND; 658 cond_resched(); 659 } 660 return 0; 661 } 662 663 #ifdef CONFIG_MMU 664 665 /* 666 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 667 * the binfmt code determines where the new stack should reside, we shift it to 668 * its final location. The process proceeds as follows: 669 * 670 * 1) Use shift to calculate the new vma endpoints. 671 * 2) Extend vma to cover both the old and new ranges. This ensures the 672 * arguments passed to subsequent functions are consistent. 673 * 3) Move vma's page tables to the new range. 674 * 4) Free up any cleared pgd range. 675 * 5) Shrink the vma to cover only the new range. 676 */ 677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 678 { 679 struct mm_struct *mm = vma->vm_mm; 680 unsigned long old_start = vma->vm_start; 681 unsigned long old_end = vma->vm_end; 682 unsigned long length = old_end - old_start; 683 unsigned long new_start = old_start - shift; 684 unsigned long new_end = old_end - shift; 685 struct mmu_gather tlb; 686 687 BUG_ON(new_start > new_end); 688 689 /* 690 * ensure there are no vmas between where we want to go 691 * and where we are 692 */ 693 if (vma != find_vma(mm, new_start)) 694 return -EFAULT; 695 696 /* 697 * cover the whole range: [new_start, old_end) 698 */ 699 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 700 return -ENOMEM; 701 702 /* 703 * move the page tables downwards, on failure we rely on 704 * process cleanup to remove whatever mess we made. 705 */ 706 if (length != move_page_tables(vma, old_start, 707 vma, new_start, length, false)) 708 return -ENOMEM; 709 710 lru_add_drain(); 711 tlb_gather_mmu(&tlb, mm); 712 if (new_end > old_start) { 713 /* 714 * when the old and new regions overlap clear from new_end. 715 */ 716 free_pgd_range(&tlb, new_end, old_end, new_end, 717 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 718 } else { 719 /* 720 * otherwise, clean from old_start; this is done to not touch 721 * the address space in [new_end, old_start) some architectures 722 * have constraints on va-space that make this illegal (IA64) - 723 * for the others its just a little faster. 724 */ 725 free_pgd_range(&tlb, old_start, old_end, new_end, 726 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 727 } 728 tlb_finish_mmu(&tlb); 729 730 /* 731 * Shrink the vma to just the new range. Always succeeds. 732 */ 733 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 734 735 return 0; 736 } 737 738 /* 739 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 740 * the stack is optionally relocated, and some extra space is added. 741 */ 742 int setup_arg_pages(struct linux_binprm *bprm, 743 unsigned long stack_top, 744 int executable_stack) 745 { 746 unsigned long ret; 747 unsigned long stack_shift; 748 struct mm_struct *mm = current->mm; 749 struct vm_area_struct *vma = bprm->vma; 750 struct vm_area_struct *prev = NULL; 751 unsigned long vm_flags; 752 unsigned long stack_base; 753 unsigned long stack_size; 754 unsigned long stack_expand; 755 unsigned long rlim_stack; 756 757 #ifdef CONFIG_STACK_GROWSUP 758 /* Limit stack size */ 759 stack_base = bprm->rlim_stack.rlim_max; 760 761 stack_base = calc_max_stack_size(stack_base); 762 763 /* Add space for stack randomization. */ 764 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 765 766 /* Make sure we didn't let the argument array grow too large. */ 767 if (vma->vm_end - vma->vm_start > stack_base) 768 return -ENOMEM; 769 770 stack_base = PAGE_ALIGN(stack_top - stack_base); 771 772 stack_shift = vma->vm_start - stack_base; 773 mm->arg_start = bprm->p - stack_shift; 774 bprm->p = vma->vm_end - stack_shift; 775 #else 776 stack_top = arch_align_stack(stack_top); 777 stack_top = PAGE_ALIGN(stack_top); 778 779 if (unlikely(stack_top < mmap_min_addr) || 780 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 781 return -ENOMEM; 782 783 stack_shift = vma->vm_end - stack_top; 784 785 bprm->p -= stack_shift; 786 mm->arg_start = bprm->p; 787 #endif 788 789 if (bprm->loader) 790 bprm->loader -= stack_shift; 791 bprm->exec -= stack_shift; 792 793 if (mmap_write_lock_killable(mm)) 794 return -EINTR; 795 796 vm_flags = VM_STACK_FLAGS; 797 798 /* 799 * Adjust stack execute permissions; explicitly enable for 800 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 801 * (arch default) otherwise. 802 */ 803 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 804 vm_flags |= VM_EXEC; 805 else if (executable_stack == EXSTACK_DISABLE_X) 806 vm_flags &= ~VM_EXEC; 807 vm_flags |= mm->def_flags; 808 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 809 810 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 811 vm_flags); 812 if (ret) 813 goto out_unlock; 814 BUG_ON(prev != vma); 815 816 if (unlikely(vm_flags & VM_EXEC)) { 817 pr_warn_once("process '%pD4' started with executable stack\n", 818 bprm->file); 819 } 820 821 /* Move stack pages down in memory. */ 822 if (stack_shift) { 823 ret = shift_arg_pages(vma, stack_shift); 824 if (ret) 825 goto out_unlock; 826 } 827 828 /* mprotect_fixup is overkill to remove the temporary stack flags */ 829 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 830 831 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 832 stack_size = vma->vm_end - vma->vm_start; 833 /* 834 * Align this down to a page boundary as expand_stack 835 * will align it up. 836 */ 837 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 838 #ifdef CONFIG_STACK_GROWSUP 839 if (stack_size + stack_expand > rlim_stack) 840 stack_base = vma->vm_start + rlim_stack; 841 else 842 stack_base = vma->vm_end + stack_expand; 843 #else 844 if (stack_size + stack_expand > rlim_stack) 845 stack_base = vma->vm_end - rlim_stack; 846 else 847 stack_base = vma->vm_start - stack_expand; 848 #endif 849 current->mm->start_stack = bprm->p; 850 ret = expand_stack(vma, stack_base); 851 if (ret) 852 ret = -EFAULT; 853 854 out_unlock: 855 mmap_write_unlock(mm); 856 return ret; 857 } 858 EXPORT_SYMBOL(setup_arg_pages); 859 860 #else 861 862 /* 863 * Transfer the program arguments and environment from the holding pages 864 * onto the stack. The provided stack pointer is adjusted accordingly. 865 */ 866 int transfer_args_to_stack(struct linux_binprm *bprm, 867 unsigned long *sp_location) 868 { 869 unsigned long index, stop, sp; 870 int ret = 0; 871 872 stop = bprm->p >> PAGE_SHIFT; 873 sp = *sp_location; 874 875 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 876 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 877 char *src = kmap(bprm->page[index]) + offset; 878 sp -= PAGE_SIZE - offset; 879 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 880 ret = -EFAULT; 881 kunmap(bprm->page[index]); 882 if (ret) 883 goto out; 884 } 885 886 *sp_location = sp; 887 888 out: 889 return ret; 890 } 891 EXPORT_SYMBOL(transfer_args_to_stack); 892 893 #endif /* CONFIG_MMU */ 894 895 static struct file *do_open_execat(int fd, struct filename *name, int flags) 896 { 897 struct file *file; 898 int err; 899 struct open_flags open_exec_flags = { 900 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 901 .acc_mode = MAY_EXEC, 902 .intent = LOOKUP_OPEN, 903 .lookup_flags = LOOKUP_FOLLOW, 904 }; 905 906 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 907 return ERR_PTR(-EINVAL); 908 if (flags & AT_SYMLINK_NOFOLLOW) 909 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 910 if (flags & AT_EMPTY_PATH) 911 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 912 913 file = do_filp_open(fd, name, &open_exec_flags); 914 if (IS_ERR(file)) 915 goto out; 916 917 /* 918 * may_open() has already checked for this, so it should be 919 * impossible to trip now. But we need to be extra cautious 920 * and check again at the very end too. 921 */ 922 err = -EACCES; 923 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 924 path_noexec(&file->f_path))) 925 goto exit; 926 927 err = deny_write_access(file); 928 if (err) 929 goto exit; 930 931 if (name->name[0] != '\0') 932 fsnotify_open(file); 933 934 out: 935 return file; 936 937 exit: 938 fput(file); 939 return ERR_PTR(err); 940 } 941 942 struct file *open_exec(const char *name) 943 { 944 struct filename *filename = getname_kernel(name); 945 struct file *f = ERR_CAST(filename); 946 947 if (!IS_ERR(filename)) { 948 f = do_open_execat(AT_FDCWD, filename, 0); 949 putname(filename); 950 } 951 return f; 952 } 953 EXPORT_SYMBOL(open_exec); 954 955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 956 defined(CONFIG_BINFMT_ELF_FDPIC) 957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 958 { 959 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 960 if (res > 0) 961 flush_icache_user_range(addr, addr + len); 962 return res; 963 } 964 EXPORT_SYMBOL(read_code); 965 #endif 966 967 /* 968 * Maps the mm_struct mm into the current task struct. 969 * On success, this function returns with exec_update_lock 970 * held for writing. 971 */ 972 static int exec_mmap(struct mm_struct *mm) 973 { 974 struct task_struct *tsk; 975 struct mm_struct *old_mm, *active_mm; 976 int ret; 977 978 /* Notify parent that we're no longer interested in the old VM */ 979 tsk = current; 980 old_mm = current->mm; 981 exec_mm_release(tsk, old_mm); 982 if (old_mm) 983 sync_mm_rss(old_mm); 984 985 ret = down_write_killable(&tsk->signal->exec_update_lock); 986 if (ret) 987 return ret; 988 989 if (old_mm) { 990 /* 991 * If there is a pending fatal signal perhaps a signal 992 * whose default action is to create a coredump get 993 * out and die instead of going through with the exec. 994 */ 995 ret = mmap_read_lock_killable(old_mm); 996 if (ret) { 997 up_write(&tsk->signal->exec_update_lock); 998 return ret; 999 } 1000 } 1001 1002 task_lock(tsk); 1003 membarrier_exec_mmap(mm); 1004 1005 local_irq_disable(); 1006 active_mm = tsk->active_mm; 1007 tsk->active_mm = mm; 1008 tsk->mm = mm; 1009 /* 1010 * This prevents preemption while active_mm is being loaded and 1011 * it and mm are being updated, which could cause problems for 1012 * lazy tlb mm refcounting when these are updated by context 1013 * switches. Not all architectures can handle irqs off over 1014 * activate_mm yet. 1015 */ 1016 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1017 local_irq_enable(); 1018 activate_mm(active_mm, mm); 1019 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1020 local_irq_enable(); 1021 tsk->mm->vmacache_seqnum = 0; 1022 vmacache_flush(tsk); 1023 task_unlock(tsk); 1024 if (old_mm) { 1025 mmap_read_unlock(old_mm); 1026 BUG_ON(active_mm != old_mm); 1027 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1028 mm_update_next_owner(old_mm); 1029 mmput(old_mm); 1030 return 0; 1031 } 1032 mmdrop(active_mm); 1033 return 0; 1034 } 1035 1036 static int de_thread(struct task_struct *tsk) 1037 { 1038 struct signal_struct *sig = tsk->signal; 1039 struct sighand_struct *oldsighand = tsk->sighand; 1040 spinlock_t *lock = &oldsighand->siglock; 1041 1042 if (thread_group_empty(tsk)) 1043 goto no_thread_group; 1044 1045 /* 1046 * Kill all other threads in the thread group. 1047 */ 1048 spin_lock_irq(lock); 1049 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1050 /* 1051 * Another group action in progress, just 1052 * return so that the signal is processed. 1053 */ 1054 spin_unlock_irq(lock); 1055 return -EAGAIN; 1056 } 1057 1058 sig->group_exec_task = tsk; 1059 sig->notify_count = zap_other_threads(tsk); 1060 if (!thread_group_leader(tsk)) 1061 sig->notify_count--; 1062 1063 while (sig->notify_count) { 1064 __set_current_state(TASK_KILLABLE); 1065 spin_unlock_irq(lock); 1066 schedule(); 1067 if (__fatal_signal_pending(tsk)) 1068 goto killed; 1069 spin_lock_irq(lock); 1070 } 1071 spin_unlock_irq(lock); 1072 1073 /* 1074 * At this point all other threads have exited, all we have to 1075 * do is to wait for the thread group leader to become inactive, 1076 * and to assume its PID: 1077 */ 1078 if (!thread_group_leader(tsk)) { 1079 struct task_struct *leader = tsk->group_leader; 1080 1081 for (;;) { 1082 cgroup_threadgroup_change_begin(tsk); 1083 write_lock_irq(&tasklist_lock); 1084 /* 1085 * Do this under tasklist_lock to ensure that 1086 * exit_notify() can't miss ->group_exec_task 1087 */ 1088 sig->notify_count = -1; 1089 if (likely(leader->exit_state)) 1090 break; 1091 __set_current_state(TASK_KILLABLE); 1092 write_unlock_irq(&tasklist_lock); 1093 cgroup_threadgroup_change_end(tsk); 1094 schedule(); 1095 if (__fatal_signal_pending(tsk)) 1096 goto killed; 1097 } 1098 1099 /* 1100 * The only record we have of the real-time age of a 1101 * process, regardless of execs it's done, is start_time. 1102 * All the past CPU time is accumulated in signal_struct 1103 * from sister threads now dead. But in this non-leader 1104 * exec, nothing survives from the original leader thread, 1105 * whose birth marks the true age of this process now. 1106 * When we take on its identity by switching to its PID, we 1107 * also take its birthdate (always earlier than our own). 1108 */ 1109 tsk->start_time = leader->start_time; 1110 tsk->start_boottime = leader->start_boottime; 1111 1112 BUG_ON(!same_thread_group(leader, tsk)); 1113 /* 1114 * An exec() starts a new thread group with the 1115 * TGID of the previous thread group. Rehash the 1116 * two threads with a switched PID, and release 1117 * the former thread group leader: 1118 */ 1119 1120 /* Become a process group leader with the old leader's pid. 1121 * The old leader becomes a thread of the this thread group. 1122 */ 1123 exchange_tids(tsk, leader); 1124 transfer_pid(leader, tsk, PIDTYPE_TGID); 1125 transfer_pid(leader, tsk, PIDTYPE_PGID); 1126 transfer_pid(leader, tsk, PIDTYPE_SID); 1127 1128 list_replace_rcu(&leader->tasks, &tsk->tasks); 1129 list_replace_init(&leader->sibling, &tsk->sibling); 1130 1131 tsk->group_leader = tsk; 1132 leader->group_leader = tsk; 1133 1134 tsk->exit_signal = SIGCHLD; 1135 leader->exit_signal = -1; 1136 1137 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1138 leader->exit_state = EXIT_DEAD; 1139 1140 /* 1141 * We are going to release_task()->ptrace_unlink() silently, 1142 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1143 * the tracer wont't block again waiting for this thread. 1144 */ 1145 if (unlikely(leader->ptrace)) 1146 __wake_up_parent(leader, leader->parent); 1147 write_unlock_irq(&tasklist_lock); 1148 cgroup_threadgroup_change_end(tsk); 1149 1150 release_task(leader); 1151 } 1152 1153 sig->group_exec_task = NULL; 1154 sig->notify_count = 0; 1155 1156 no_thread_group: 1157 /* we have changed execution domain */ 1158 tsk->exit_signal = SIGCHLD; 1159 1160 BUG_ON(!thread_group_leader(tsk)); 1161 return 0; 1162 1163 killed: 1164 /* protects against exit_notify() and __exit_signal() */ 1165 read_lock(&tasklist_lock); 1166 sig->group_exec_task = NULL; 1167 sig->notify_count = 0; 1168 read_unlock(&tasklist_lock); 1169 return -EAGAIN; 1170 } 1171 1172 1173 /* 1174 * This function makes sure the current process has its own signal table, 1175 * so that flush_signal_handlers can later reset the handlers without 1176 * disturbing other processes. (Other processes might share the signal 1177 * table via the CLONE_SIGHAND option to clone().) 1178 */ 1179 static int unshare_sighand(struct task_struct *me) 1180 { 1181 struct sighand_struct *oldsighand = me->sighand; 1182 1183 if (refcount_read(&oldsighand->count) != 1) { 1184 struct sighand_struct *newsighand; 1185 /* 1186 * This ->sighand is shared with the CLONE_SIGHAND 1187 * but not CLONE_THREAD task, switch to the new one. 1188 */ 1189 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1190 if (!newsighand) 1191 return -ENOMEM; 1192 1193 refcount_set(&newsighand->count, 1); 1194 memcpy(newsighand->action, oldsighand->action, 1195 sizeof(newsighand->action)); 1196 1197 write_lock_irq(&tasklist_lock); 1198 spin_lock(&oldsighand->siglock); 1199 rcu_assign_pointer(me->sighand, newsighand); 1200 spin_unlock(&oldsighand->siglock); 1201 write_unlock_irq(&tasklist_lock); 1202 1203 __cleanup_sighand(oldsighand); 1204 } 1205 return 0; 1206 } 1207 1208 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1209 { 1210 task_lock(tsk); 1211 /* Always NUL terminated and zero-padded */ 1212 strscpy_pad(buf, tsk->comm, buf_size); 1213 task_unlock(tsk); 1214 return buf; 1215 } 1216 EXPORT_SYMBOL_GPL(__get_task_comm); 1217 1218 /* 1219 * These functions flushes out all traces of the currently running executable 1220 * so that a new one can be started 1221 */ 1222 1223 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1224 { 1225 task_lock(tsk); 1226 trace_task_rename(tsk, buf); 1227 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1228 task_unlock(tsk); 1229 perf_event_comm(tsk, exec); 1230 } 1231 1232 /* 1233 * Calling this is the point of no return. None of the failures will be 1234 * seen by userspace since either the process is already taking a fatal 1235 * signal (via de_thread() or coredump), or will have SEGV raised 1236 * (after exec_mmap()) by search_binary_handler (see below). 1237 */ 1238 int begin_new_exec(struct linux_binprm * bprm) 1239 { 1240 struct task_struct *me = current; 1241 int retval; 1242 1243 /* Once we are committed compute the creds */ 1244 retval = bprm_creds_from_file(bprm); 1245 if (retval) 1246 return retval; 1247 1248 /* 1249 * Ensure all future errors are fatal. 1250 */ 1251 bprm->point_of_no_return = true; 1252 1253 /* 1254 * Make this the only thread in the thread group. 1255 */ 1256 retval = de_thread(me); 1257 if (retval) 1258 goto out; 1259 1260 /* 1261 * Cancel any io_uring activity across execve 1262 */ 1263 io_uring_task_cancel(); 1264 1265 /* Ensure the files table is not shared. */ 1266 retval = unshare_files(); 1267 if (retval) 1268 goto out; 1269 1270 /* 1271 * Must be called _before_ exec_mmap() as bprm->mm is 1272 * not visibile until then. This also enables the update 1273 * to be lockless. 1274 */ 1275 retval = set_mm_exe_file(bprm->mm, bprm->file); 1276 if (retval) 1277 goto out; 1278 1279 /* If the binary is not readable then enforce mm->dumpable=0 */ 1280 would_dump(bprm, bprm->file); 1281 if (bprm->have_execfd) 1282 would_dump(bprm, bprm->executable); 1283 1284 /* 1285 * Release all of the old mmap stuff 1286 */ 1287 acct_arg_size(bprm, 0); 1288 retval = exec_mmap(bprm->mm); 1289 if (retval) 1290 goto out; 1291 1292 bprm->mm = NULL; 1293 1294 #ifdef CONFIG_POSIX_TIMERS 1295 exit_itimers(me->signal); 1296 flush_itimer_signals(); 1297 #endif 1298 1299 /* 1300 * Make the signal table private. 1301 */ 1302 retval = unshare_sighand(me); 1303 if (retval) 1304 goto out_unlock; 1305 1306 /* 1307 * Ensure that the uaccess routines can actually operate on userspace 1308 * pointers: 1309 */ 1310 force_uaccess_begin(); 1311 1312 if (me->flags & PF_KTHREAD) 1313 free_kthread_struct(me); 1314 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1315 PF_NOFREEZE | PF_NO_SETAFFINITY); 1316 flush_thread(); 1317 me->personality &= ~bprm->per_clear; 1318 1319 clear_syscall_work_syscall_user_dispatch(me); 1320 1321 /* 1322 * We have to apply CLOEXEC before we change whether the process is 1323 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1324 * trying to access the should-be-closed file descriptors of a process 1325 * undergoing exec(2). 1326 */ 1327 do_close_on_exec(me->files); 1328 1329 if (bprm->secureexec) { 1330 /* Make sure parent cannot signal privileged process. */ 1331 me->pdeath_signal = 0; 1332 1333 /* 1334 * For secureexec, reset the stack limit to sane default to 1335 * avoid bad behavior from the prior rlimits. This has to 1336 * happen before arch_pick_mmap_layout(), which examines 1337 * RLIMIT_STACK, but after the point of no return to avoid 1338 * needing to clean up the change on failure. 1339 */ 1340 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1341 bprm->rlim_stack.rlim_cur = _STK_LIM; 1342 } 1343 1344 me->sas_ss_sp = me->sas_ss_size = 0; 1345 1346 /* 1347 * Figure out dumpability. Note that this checking only of current 1348 * is wrong, but userspace depends on it. This should be testing 1349 * bprm->secureexec instead. 1350 */ 1351 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1352 !(uid_eq(current_euid(), current_uid()) && 1353 gid_eq(current_egid(), current_gid()))) 1354 set_dumpable(current->mm, suid_dumpable); 1355 else 1356 set_dumpable(current->mm, SUID_DUMP_USER); 1357 1358 perf_event_exec(); 1359 __set_task_comm(me, kbasename(bprm->filename), true); 1360 1361 /* An exec changes our domain. We are no longer part of the thread 1362 group */ 1363 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1364 flush_signal_handlers(me, 0); 1365 1366 retval = set_cred_ucounts(bprm->cred); 1367 if (retval < 0) 1368 goto out_unlock; 1369 1370 /* 1371 * install the new credentials for this executable 1372 */ 1373 security_bprm_committing_creds(bprm); 1374 1375 commit_creds(bprm->cred); 1376 bprm->cred = NULL; 1377 1378 /* 1379 * Disable monitoring for regular users 1380 * when executing setuid binaries. Must 1381 * wait until new credentials are committed 1382 * by commit_creds() above 1383 */ 1384 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1385 perf_event_exit_task(me); 1386 /* 1387 * cred_guard_mutex must be held at least to this point to prevent 1388 * ptrace_attach() from altering our determination of the task's 1389 * credentials; any time after this it may be unlocked. 1390 */ 1391 security_bprm_committed_creds(bprm); 1392 1393 /* Pass the opened binary to the interpreter. */ 1394 if (bprm->have_execfd) { 1395 retval = get_unused_fd_flags(0); 1396 if (retval < 0) 1397 goto out_unlock; 1398 fd_install(retval, bprm->executable); 1399 bprm->executable = NULL; 1400 bprm->execfd = retval; 1401 } 1402 return 0; 1403 1404 out_unlock: 1405 up_write(&me->signal->exec_update_lock); 1406 out: 1407 return retval; 1408 } 1409 EXPORT_SYMBOL(begin_new_exec); 1410 1411 void would_dump(struct linux_binprm *bprm, struct file *file) 1412 { 1413 struct inode *inode = file_inode(file); 1414 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1415 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1416 struct user_namespace *old, *user_ns; 1417 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1418 1419 /* Ensure mm->user_ns contains the executable */ 1420 user_ns = old = bprm->mm->user_ns; 1421 while ((user_ns != &init_user_ns) && 1422 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1423 user_ns = user_ns->parent; 1424 1425 if (old != user_ns) { 1426 bprm->mm->user_ns = get_user_ns(user_ns); 1427 put_user_ns(old); 1428 } 1429 } 1430 } 1431 EXPORT_SYMBOL(would_dump); 1432 1433 void setup_new_exec(struct linux_binprm * bprm) 1434 { 1435 /* Setup things that can depend upon the personality */ 1436 struct task_struct *me = current; 1437 1438 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1439 1440 arch_setup_new_exec(); 1441 1442 /* Set the new mm task size. We have to do that late because it may 1443 * depend on TIF_32BIT which is only updated in flush_thread() on 1444 * some architectures like powerpc 1445 */ 1446 me->mm->task_size = TASK_SIZE; 1447 up_write(&me->signal->exec_update_lock); 1448 mutex_unlock(&me->signal->cred_guard_mutex); 1449 } 1450 EXPORT_SYMBOL(setup_new_exec); 1451 1452 /* Runs immediately before start_thread() takes over. */ 1453 void finalize_exec(struct linux_binprm *bprm) 1454 { 1455 /* Store any stack rlimit changes before starting thread. */ 1456 task_lock(current->group_leader); 1457 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1458 task_unlock(current->group_leader); 1459 } 1460 EXPORT_SYMBOL(finalize_exec); 1461 1462 /* 1463 * Prepare credentials and lock ->cred_guard_mutex. 1464 * setup_new_exec() commits the new creds and drops the lock. 1465 * Or, if exec fails before, free_bprm() should release ->cred 1466 * and unlock. 1467 */ 1468 static int prepare_bprm_creds(struct linux_binprm *bprm) 1469 { 1470 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1471 return -ERESTARTNOINTR; 1472 1473 bprm->cred = prepare_exec_creds(); 1474 if (likely(bprm->cred)) 1475 return 0; 1476 1477 mutex_unlock(¤t->signal->cred_guard_mutex); 1478 return -ENOMEM; 1479 } 1480 1481 static void free_bprm(struct linux_binprm *bprm) 1482 { 1483 if (bprm->mm) { 1484 acct_arg_size(bprm, 0); 1485 mmput(bprm->mm); 1486 } 1487 free_arg_pages(bprm); 1488 if (bprm->cred) { 1489 mutex_unlock(¤t->signal->cred_guard_mutex); 1490 abort_creds(bprm->cred); 1491 } 1492 if (bprm->file) { 1493 allow_write_access(bprm->file); 1494 fput(bprm->file); 1495 } 1496 if (bprm->executable) 1497 fput(bprm->executable); 1498 /* If a binfmt changed the interp, free it. */ 1499 if (bprm->interp != bprm->filename) 1500 kfree(bprm->interp); 1501 kfree(bprm->fdpath); 1502 kfree(bprm); 1503 } 1504 1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1506 { 1507 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1508 int retval = -ENOMEM; 1509 if (!bprm) 1510 goto out; 1511 1512 if (fd == AT_FDCWD || filename->name[0] == '/') { 1513 bprm->filename = filename->name; 1514 } else { 1515 if (filename->name[0] == '\0') 1516 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1517 else 1518 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1519 fd, filename->name); 1520 if (!bprm->fdpath) 1521 goto out_free; 1522 1523 bprm->filename = bprm->fdpath; 1524 } 1525 bprm->interp = bprm->filename; 1526 1527 retval = bprm_mm_init(bprm); 1528 if (retval) 1529 goto out_free; 1530 return bprm; 1531 1532 out_free: 1533 free_bprm(bprm); 1534 out: 1535 return ERR_PTR(retval); 1536 } 1537 1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1539 { 1540 /* If a binfmt changed the interp, free it first. */ 1541 if (bprm->interp != bprm->filename) 1542 kfree(bprm->interp); 1543 bprm->interp = kstrdup(interp, GFP_KERNEL); 1544 if (!bprm->interp) 1545 return -ENOMEM; 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(bprm_change_interp); 1549 1550 /* 1551 * determine how safe it is to execute the proposed program 1552 * - the caller must hold ->cred_guard_mutex to protect against 1553 * PTRACE_ATTACH or seccomp thread-sync 1554 */ 1555 static void check_unsafe_exec(struct linux_binprm *bprm) 1556 { 1557 struct task_struct *p = current, *t; 1558 unsigned n_fs; 1559 1560 if (p->ptrace) 1561 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1562 1563 /* 1564 * This isn't strictly necessary, but it makes it harder for LSMs to 1565 * mess up. 1566 */ 1567 if (task_no_new_privs(current)) 1568 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1569 1570 t = p; 1571 n_fs = 1; 1572 spin_lock(&p->fs->lock); 1573 rcu_read_lock(); 1574 while_each_thread(p, t) { 1575 if (t->fs == p->fs) 1576 n_fs++; 1577 } 1578 rcu_read_unlock(); 1579 1580 if (p->fs->users > n_fs) 1581 bprm->unsafe |= LSM_UNSAFE_SHARE; 1582 else 1583 p->fs->in_exec = 1; 1584 spin_unlock(&p->fs->lock); 1585 } 1586 1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1588 { 1589 /* Handle suid and sgid on files */ 1590 struct user_namespace *mnt_userns; 1591 struct inode *inode; 1592 unsigned int mode; 1593 kuid_t uid; 1594 kgid_t gid; 1595 1596 if (!mnt_may_suid(file->f_path.mnt)) 1597 return; 1598 1599 if (task_no_new_privs(current)) 1600 return; 1601 1602 inode = file->f_path.dentry->d_inode; 1603 mode = READ_ONCE(inode->i_mode); 1604 if (!(mode & (S_ISUID|S_ISGID))) 1605 return; 1606 1607 mnt_userns = file_mnt_user_ns(file); 1608 1609 /* Be careful if suid/sgid is set */ 1610 inode_lock(inode); 1611 1612 /* reload atomically mode/uid/gid now that lock held */ 1613 mode = inode->i_mode; 1614 uid = i_uid_into_mnt(mnt_userns, inode); 1615 gid = i_gid_into_mnt(mnt_userns, inode); 1616 inode_unlock(inode); 1617 1618 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1619 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1620 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1621 return; 1622 1623 if (mode & S_ISUID) { 1624 bprm->per_clear |= PER_CLEAR_ON_SETID; 1625 bprm->cred->euid = uid; 1626 } 1627 1628 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1629 bprm->per_clear |= PER_CLEAR_ON_SETID; 1630 bprm->cred->egid = gid; 1631 } 1632 } 1633 1634 /* 1635 * Compute brpm->cred based upon the final binary. 1636 */ 1637 static int bprm_creds_from_file(struct linux_binprm *bprm) 1638 { 1639 /* Compute creds based on which file? */ 1640 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1641 1642 bprm_fill_uid(bprm, file); 1643 return security_bprm_creds_from_file(bprm, file); 1644 } 1645 1646 /* 1647 * Fill the binprm structure from the inode. 1648 * Read the first BINPRM_BUF_SIZE bytes 1649 * 1650 * This may be called multiple times for binary chains (scripts for example). 1651 */ 1652 static int prepare_binprm(struct linux_binprm *bprm) 1653 { 1654 loff_t pos = 0; 1655 1656 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1657 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1658 } 1659 1660 /* 1661 * Arguments are '\0' separated strings found at the location bprm->p 1662 * points to; chop off the first by relocating brpm->p to right after 1663 * the first '\0' encountered. 1664 */ 1665 int remove_arg_zero(struct linux_binprm *bprm) 1666 { 1667 int ret = 0; 1668 unsigned long offset; 1669 char *kaddr; 1670 struct page *page; 1671 1672 if (!bprm->argc) 1673 return 0; 1674 1675 do { 1676 offset = bprm->p & ~PAGE_MASK; 1677 page = get_arg_page(bprm, bprm->p, 0); 1678 if (!page) { 1679 ret = -EFAULT; 1680 goto out; 1681 } 1682 kaddr = kmap_atomic(page); 1683 1684 for (; offset < PAGE_SIZE && kaddr[offset]; 1685 offset++, bprm->p++) 1686 ; 1687 1688 kunmap_atomic(kaddr); 1689 put_arg_page(page); 1690 } while (offset == PAGE_SIZE); 1691 1692 bprm->p++; 1693 bprm->argc--; 1694 ret = 0; 1695 1696 out: 1697 return ret; 1698 } 1699 EXPORT_SYMBOL(remove_arg_zero); 1700 1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1702 /* 1703 * cycle the list of binary formats handler, until one recognizes the image 1704 */ 1705 static int search_binary_handler(struct linux_binprm *bprm) 1706 { 1707 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1708 struct linux_binfmt *fmt; 1709 int retval; 1710 1711 retval = prepare_binprm(bprm); 1712 if (retval < 0) 1713 return retval; 1714 1715 retval = security_bprm_check(bprm); 1716 if (retval) 1717 return retval; 1718 1719 retval = -ENOENT; 1720 retry: 1721 read_lock(&binfmt_lock); 1722 list_for_each_entry(fmt, &formats, lh) { 1723 if (!try_module_get(fmt->module)) 1724 continue; 1725 read_unlock(&binfmt_lock); 1726 1727 retval = fmt->load_binary(bprm); 1728 1729 read_lock(&binfmt_lock); 1730 put_binfmt(fmt); 1731 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1732 read_unlock(&binfmt_lock); 1733 return retval; 1734 } 1735 } 1736 read_unlock(&binfmt_lock); 1737 1738 if (need_retry) { 1739 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1740 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1741 return retval; 1742 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1743 return retval; 1744 need_retry = false; 1745 goto retry; 1746 } 1747 1748 return retval; 1749 } 1750 1751 static int exec_binprm(struct linux_binprm *bprm) 1752 { 1753 pid_t old_pid, old_vpid; 1754 int ret, depth; 1755 1756 /* Need to fetch pid before load_binary changes it */ 1757 old_pid = current->pid; 1758 rcu_read_lock(); 1759 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1760 rcu_read_unlock(); 1761 1762 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1763 for (depth = 0;; depth++) { 1764 struct file *exec; 1765 if (depth > 5) 1766 return -ELOOP; 1767 1768 ret = search_binary_handler(bprm); 1769 if (ret < 0) 1770 return ret; 1771 if (!bprm->interpreter) 1772 break; 1773 1774 exec = bprm->file; 1775 bprm->file = bprm->interpreter; 1776 bprm->interpreter = NULL; 1777 1778 allow_write_access(exec); 1779 if (unlikely(bprm->have_execfd)) { 1780 if (bprm->executable) { 1781 fput(exec); 1782 return -ENOEXEC; 1783 } 1784 bprm->executable = exec; 1785 } else 1786 fput(exec); 1787 } 1788 1789 audit_bprm(bprm); 1790 trace_sched_process_exec(current, old_pid, bprm); 1791 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1792 proc_exec_connector(current); 1793 return 0; 1794 } 1795 1796 /* 1797 * sys_execve() executes a new program. 1798 */ 1799 static int bprm_execve(struct linux_binprm *bprm, 1800 int fd, struct filename *filename, int flags) 1801 { 1802 struct file *file; 1803 int retval; 1804 1805 retval = prepare_bprm_creds(bprm); 1806 if (retval) 1807 return retval; 1808 1809 check_unsafe_exec(bprm); 1810 current->in_execve = 1; 1811 1812 file = do_open_execat(fd, filename, flags); 1813 retval = PTR_ERR(file); 1814 if (IS_ERR(file)) 1815 goto out_unmark; 1816 1817 sched_exec(); 1818 1819 bprm->file = file; 1820 /* 1821 * Record that a name derived from an O_CLOEXEC fd will be 1822 * inaccessible after exec. This allows the code in exec to 1823 * choose to fail when the executable is not mmaped into the 1824 * interpreter and an open file descriptor is not passed to 1825 * the interpreter. This makes for a better user experience 1826 * than having the interpreter start and then immediately fail 1827 * when it finds the executable is inaccessible. 1828 */ 1829 if (bprm->fdpath && get_close_on_exec(fd)) 1830 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1831 1832 /* Set the unchanging part of bprm->cred */ 1833 retval = security_bprm_creds_for_exec(bprm); 1834 if (retval) 1835 goto out; 1836 1837 retval = exec_binprm(bprm); 1838 if (retval < 0) 1839 goto out; 1840 1841 /* execve succeeded */ 1842 current->fs->in_exec = 0; 1843 current->in_execve = 0; 1844 rseq_execve(current); 1845 acct_update_integrals(current); 1846 task_numa_free(current, false); 1847 return retval; 1848 1849 out: 1850 /* 1851 * If past the point of no return ensure the code never 1852 * returns to the userspace process. Use an existing fatal 1853 * signal if present otherwise terminate the process with 1854 * SIGSEGV. 1855 */ 1856 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1857 force_fatal_sig(SIGSEGV); 1858 1859 out_unmark: 1860 current->fs->in_exec = 0; 1861 current->in_execve = 0; 1862 1863 return retval; 1864 } 1865 1866 static int do_execveat_common(int fd, struct filename *filename, 1867 struct user_arg_ptr argv, 1868 struct user_arg_ptr envp, 1869 int flags) 1870 { 1871 struct linux_binprm *bprm; 1872 int retval; 1873 1874 if (IS_ERR(filename)) 1875 return PTR_ERR(filename); 1876 1877 /* 1878 * We move the actual failure in case of RLIMIT_NPROC excess from 1879 * set*uid() to execve() because too many poorly written programs 1880 * don't check setuid() return code. Here we additionally recheck 1881 * whether NPROC limit is still exceeded. 1882 */ 1883 if ((current->flags & PF_NPROC_EXCEEDED) && 1884 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1885 retval = -EAGAIN; 1886 goto out_ret; 1887 } 1888 1889 /* We're below the limit (still or again), so we don't want to make 1890 * further execve() calls fail. */ 1891 current->flags &= ~PF_NPROC_EXCEEDED; 1892 1893 bprm = alloc_bprm(fd, filename); 1894 if (IS_ERR(bprm)) { 1895 retval = PTR_ERR(bprm); 1896 goto out_ret; 1897 } 1898 1899 retval = count(argv, MAX_ARG_STRINGS); 1900 if (retval < 0) 1901 goto out_free; 1902 bprm->argc = retval; 1903 1904 retval = count(envp, MAX_ARG_STRINGS); 1905 if (retval < 0) 1906 goto out_free; 1907 bprm->envc = retval; 1908 1909 retval = bprm_stack_limits(bprm); 1910 if (retval < 0) 1911 goto out_free; 1912 1913 retval = copy_string_kernel(bprm->filename, bprm); 1914 if (retval < 0) 1915 goto out_free; 1916 bprm->exec = bprm->p; 1917 1918 retval = copy_strings(bprm->envc, envp, bprm); 1919 if (retval < 0) 1920 goto out_free; 1921 1922 retval = copy_strings(bprm->argc, argv, bprm); 1923 if (retval < 0) 1924 goto out_free; 1925 1926 retval = bprm_execve(bprm, fd, filename, flags); 1927 out_free: 1928 free_bprm(bprm); 1929 1930 out_ret: 1931 putname(filename); 1932 return retval; 1933 } 1934 1935 int kernel_execve(const char *kernel_filename, 1936 const char *const *argv, const char *const *envp) 1937 { 1938 struct filename *filename; 1939 struct linux_binprm *bprm; 1940 int fd = AT_FDCWD; 1941 int retval; 1942 1943 filename = getname_kernel(kernel_filename); 1944 if (IS_ERR(filename)) 1945 return PTR_ERR(filename); 1946 1947 bprm = alloc_bprm(fd, filename); 1948 if (IS_ERR(bprm)) { 1949 retval = PTR_ERR(bprm); 1950 goto out_ret; 1951 } 1952 1953 retval = count_strings_kernel(argv); 1954 if (retval < 0) 1955 goto out_free; 1956 bprm->argc = retval; 1957 1958 retval = count_strings_kernel(envp); 1959 if (retval < 0) 1960 goto out_free; 1961 bprm->envc = retval; 1962 1963 retval = bprm_stack_limits(bprm); 1964 if (retval < 0) 1965 goto out_free; 1966 1967 retval = copy_string_kernel(bprm->filename, bprm); 1968 if (retval < 0) 1969 goto out_free; 1970 bprm->exec = bprm->p; 1971 1972 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1973 if (retval < 0) 1974 goto out_free; 1975 1976 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1977 if (retval < 0) 1978 goto out_free; 1979 1980 retval = bprm_execve(bprm, fd, filename, 0); 1981 out_free: 1982 free_bprm(bprm); 1983 out_ret: 1984 putname(filename); 1985 return retval; 1986 } 1987 1988 static int do_execve(struct filename *filename, 1989 const char __user *const __user *__argv, 1990 const char __user *const __user *__envp) 1991 { 1992 struct user_arg_ptr argv = { .ptr.native = __argv }; 1993 struct user_arg_ptr envp = { .ptr.native = __envp }; 1994 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1995 } 1996 1997 static int do_execveat(int fd, struct filename *filename, 1998 const char __user *const __user *__argv, 1999 const char __user *const __user *__envp, 2000 int flags) 2001 { 2002 struct user_arg_ptr argv = { .ptr.native = __argv }; 2003 struct user_arg_ptr envp = { .ptr.native = __envp }; 2004 2005 return do_execveat_common(fd, filename, argv, envp, flags); 2006 } 2007 2008 #ifdef CONFIG_COMPAT 2009 static int compat_do_execve(struct filename *filename, 2010 const compat_uptr_t __user *__argv, 2011 const compat_uptr_t __user *__envp) 2012 { 2013 struct user_arg_ptr argv = { 2014 .is_compat = true, 2015 .ptr.compat = __argv, 2016 }; 2017 struct user_arg_ptr envp = { 2018 .is_compat = true, 2019 .ptr.compat = __envp, 2020 }; 2021 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2022 } 2023 2024 static int compat_do_execveat(int fd, struct filename *filename, 2025 const compat_uptr_t __user *__argv, 2026 const compat_uptr_t __user *__envp, 2027 int flags) 2028 { 2029 struct user_arg_ptr argv = { 2030 .is_compat = true, 2031 .ptr.compat = __argv, 2032 }; 2033 struct user_arg_ptr envp = { 2034 .is_compat = true, 2035 .ptr.compat = __envp, 2036 }; 2037 return do_execveat_common(fd, filename, argv, envp, flags); 2038 } 2039 #endif 2040 2041 void set_binfmt(struct linux_binfmt *new) 2042 { 2043 struct mm_struct *mm = current->mm; 2044 2045 if (mm->binfmt) 2046 module_put(mm->binfmt->module); 2047 2048 mm->binfmt = new; 2049 if (new) 2050 __module_get(new->module); 2051 } 2052 EXPORT_SYMBOL(set_binfmt); 2053 2054 /* 2055 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2056 */ 2057 void set_dumpable(struct mm_struct *mm, int value) 2058 { 2059 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2060 return; 2061 2062 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2063 } 2064 2065 SYSCALL_DEFINE3(execve, 2066 const char __user *, filename, 2067 const char __user *const __user *, argv, 2068 const char __user *const __user *, envp) 2069 { 2070 return do_execve(getname(filename), argv, envp); 2071 } 2072 2073 SYSCALL_DEFINE5(execveat, 2074 int, fd, const char __user *, filename, 2075 const char __user *const __user *, argv, 2076 const char __user *const __user *, envp, 2077 int, flags) 2078 { 2079 return do_execveat(fd, 2080 getname_uflags(filename, flags), 2081 argv, envp, flags); 2082 } 2083 2084 #ifdef CONFIG_COMPAT 2085 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2086 const compat_uptr_t __user *, argv, 2087 const compat_uptr_t __user *, envp) 2088 { 2089 return compat_do_execve(getname(filename), argv, envp); 2090 } 2091 2092 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2093 const char __user *, filename, 2094 const compat_uptr_t __user *, argv, 2095 const compat_uptr_t __user *, envp, 2096 int, flags) 2097 { 2098 return compat_do_execveat(fd, 2099 getname_uflags(filename, flags), 2100 argv, envp, flags); 2101 } 2102 #endif 2103 2104 #ifdef CONFIG_SYSCTL 2105 2106 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2107 void *buffer, size_t *lenp, loff_t *ppos) 2108 { 2109 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2110 2111 if (!error) 2112 validate_coredump_safety(); 2113 return error; 2114 } 2115 2116 static struct ctl_table fs_exec_sysctls[] = { 2117 { 2118 .procname = "suid_dumpable", 2119 .data = &suid_dumpable, 2120 .maxlen = sizeof(int), 2121 .mode = 0644, 2122 .proc_handler = proc_dointvec_minmax_coredump, 2123 .extra1 = SYSCTL_ZERO, 2124 .extra2 = SYSCTL_TWO, 2125 }, 2126 { } 2127 }; 2128 2129 static int __init init_fs_exec_sysctls(void) 2130 { 2131 register_sysctl_init("fs", fs_exec_sysctls); 2132 return 0; 2133 } 2134 2135 fs_initcall(init_fs_exec_sysctls); 2136 #endif /* CONFIG_SYSCTL */ 2137