xref: /linux/fs/exec.c (revision b6f5ee4d53019443fb99dd23bc08680b1244ccfa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176 	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	struct vm_area_struct *vma = bprm->vma;
204 	struct mm_struct *mm = bprm->mm;
205 	int ret;
206 
207 	/*
208 	 * Avoid relying on expanding the stack down in GUP (which
209 	 * does not work for STACK_GROWSUP anyway), and just do it
210 	 * by hand ahead of time.
211 	 */
212 	if (write && pos < vma->vm_start) {
213 		mmap_write_lock(mm);
214 		ret = expand_downwards(vma, pos);
215 		if (unlikely(ret < 0)) {
216 			mmap_write_unlock(mm);
217 			return NULL;
218 		}
219 		mmap_write_downgrade(mm);
220 	} else
221 		mmap_read_lock(mm);
222 
223 	/*
224 	 * We are doing an exec().  'current' is the process
225 	 * doing the exec and 'mm' is the new process's mm.
226 	 */
227 	ret = get_user_pages_remote(mm, pos, 1,
228 			write ? FOLL_WRITE : 0,
229 			&page, NULL);
230 	mmap_read_unlock(mm);
231 	if (ret <= 0)
232 		return NULL;
233 
234 	if (write)
235 		acct_arg_size(bprm, vma_pages(vma));
236 
237 	return page;
238 }
239 
240 static void put_arg_page(struct page *page)
241 {
242 	put_page(page);
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = vm_area_alloc(mm);
262 	if (!vma)
263 		return -ENOMEM;
264 	vma_set_anonymous(vma);
265 
266 	if (mmap_write_lock_killable(mm)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 
271 	/*
272 	 * Need to be called with mmap write lock
273 	 * held, to avoid race with ksmd.
274 	 */
275 	err = ksm_execve(mm);
276 	if (err)
277 		goto err_ksm;
278 
279 	/*
280 	 * Place the stack at the largest stack address the architecture
281 	 * supports. Later, we'll move this to an appropriate place. We don't
282 	 * use STACK_TOP because that can depend on attributes which aren't
283 	 * configured yet.
284 	 */
285 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 	vma->vm_end = STACK_TOP_MAX;
287 	vma->vm_start = vma->vm_end - PAGE_SIZE;
288 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 
291 	err = insert_vm_struct(mm, vma);
292 	if (err)
293 		goto err;
294 
295 	mm->stack_vm = mm->total_vm = 1;
296 	mmap_write_unlock(mm);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	ksm_exit(mm);
301 err_ksm:
302 	mmap_write_unlock(mm);
303 err_free:
304 	bprm->vma = NULL;
305 	vm_area_free(vma);
306 	return err;
307 }
308 
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 	return len <= MAX_ARG_STRLEN;
312 }
313 
314 #else
315 
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319 
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 		int write)
322 {
323 	struct page *page;
324 
325 	page = bprm->page[pos / PAGE_SIZE];
326 	if (!page && write) {
327 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 		if (!page)
329 			return NULL;
330 		bprm->page[pos / PAGE_SIZE] = page;
331 	}
332 
333 	return page;
334 }
335 
336 static void put_arg_page(struct page *page)
337 {
338 }
339 
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 	if (bprm->page[i]) {
343 		__free_page(bprm->page[i]);
344 		bprm->page[i] = NULL;
345 	}
346 }
347 
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 	int i;
351 
352 	for (i = 0; i < MAX_ARG_PAGES; i++)
353 		free_arg_page(bprm, i);
354 }
355 
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 		struct page *page)
358 {
359 }
360 
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 	return 0;
365 }
366 
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 	return len <= bprm->p;
370 }
371 
372 #endif /* CONFIG_MMU */
373 
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 	int err;
383 	struct mm_struct *mm = NULL;
384 
385 	bprm->mm = mm = mm_alloc();
386 	err = -ENOMEM;
387 	if (!mm)
388 		goto err;
389 
390 	/* Save current stack limit for all calculations made during exec. */
391 	task_lock(current->group_leader);
392 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 	task_unlock(current->group_leader);
394 
395 	err = __bprm_mm_init(bprm);
396 	if (err)
397 		goto err;
398 
399 	return 0;
400 
401 err:
402 	if (mm) {
403 		bprm->mm = NULL;
404 		mmdrop(mm);
405 	}
406 
407 	return err;
408 }
409 
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412 	bool is_compat;
413 #endif
414 	union {
415 		const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417 		const compat_uptr_t __user *compat;
418 #endif
419 	} ptr;
420 };
421 
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424 	const char __user *native;
425 
426 #ifdef CONFIG_COMPAT
427 	if (unlikely(argv.is_compat)) {
428 		compat_uptr_t compat;
429 
430 		if (get_user(compat, argv.ptr.compat + nr))
431 			return ERR_PTR(-EFAULT);
432 
433 		return compat_ptr(compat);
434 	}
435 #endif
436 
437 	if (get_user(native, argv.ptr.native + nr))
438 		return ERR_PTR(-EFAULT);
439 
440 	return native;
441 }
442 
443 /*
444  * count() counts the number of strings in array ARGV.
445  */
446 static int count(struct user_arg_ptr argv, int max)
447 {
448 	int i = 0;
449 
450 	if (argv.ptr.native != NULL) {
451 		for (;;) {
452 			const char __user *p = get_user_arg_ptr(argv, i);
453 
454 			if (!p)
455 				break;
456 
457 			if (IS_ERR(p))
458 				return -EFAULT;
459 
460 			if (i >= max)
461 				return -E2BIG;
462 			++i;
463 
464 			if (fatal_signal_pending(current))
465 				return -ERESTARTNOHAND;
466 			cond_resched();
467 		}
468 	}
469 	return i;
470 }
471 
472 static int count_strings_kernel(const char *const *argv)
473 {
474 	int i;
475 
476 	if (!argv)
477 		return 0;
478 
479 	for (i = 0; argv[i]; ++i) {
480 		if (i >= MAX_ARG_STRINGS)
481 			return -E2BIG;
482 		if (fatal_signal_pending(current))
483 			return -ERESTARTNOHAND;
484 		cond_resched();
485 	}
486 	return i;
487 }
488 
489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490 				       unsigned long limit)
491 {
492 #ifdef CONFIG_MMU
493 	/* Avoid a pathological bprm->p. */
494 	if (bprm->p < limit)
495 		return -E2BIG;
496 	bprm->argmin = bprm->p - limit;
497 #endif
498 	return 0;
499 }
500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501 {
502 #ifdef CONFIG_MMU
503 	return bprm->p < bprm->argmin;
504 #else
505 	return false;
506 #endif
507 }
508 
509 /*
510  * Calculate bprm->argmin from:
511  * - _STK_LIM
512  * - ARG_MAX
513  * - bprm->rlim_stack.rlim_cur
514  * - bprm->argc
515  * - bprm->envc
516  * - bprm->p
517  */
518 static int bprm_stack_limits(struct linux_binprm *bprm)
519 {
520 	unsigned long limit, ptr_size;
521 
522 	/*
523 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524 	 * (whichever is smaller) for the argv+env strings.
525 	 * This ensures that:
526 	 *  - the remaining binfmt code will not run out of stack space,
527 	 *  - the program will have a reasonable amount of stack left
528 	 *    to work from.
529 	 */
530 	limit = _STK_LIM / 4 * 3;
531 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
532 	/*
533 	 * We've historically supported up to 32 pages (ARG_MAX)
534 	 * of argument strings even with small stacks
535 	 */
536 	limit = max_t(unsigned long, limit, ARG_MAX);
537 	/* Reject totally pathological counts. */
538 	if (bprm->argc < 0 || bprm->envc < 0)
539 		return -E2BIG;
540 	/*
541 	 * We must account for the size of all the argv and envp pointers to
542 	 * the argv and envp strings, since they will also take up space in
543 	 * the stack. They aren't stored until much later when we can't
544 	 * signal to the parent that the child has run out of stack space.
545 	 * Instead, calculate it here so it's possible to fail gracefully.
546 	 *
547 	 * In the case of argc = 0, make sure there is space for adding a
548 	 * empty string (which will bump argc to 1), to ensure confused
549 	 * userspace programs don't start processing from argv[1], thinking
550 	 * argc can never be 0, to keep them from walking envp by accident.
551 	 * See do_execveat_common().
552 	 */
553 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
555 		return -E2BIG;
556 	if (limit <= ptr_size)
557 		return -E2BIG;
558 	limit -= ptr_size;
559 
560 	return bprm_set_stack_limit(bprm, limit);
561 }
562 
563 /*
564  * 'copy_strings()' copies argument/environment strings from the old
565  * processes's memory to the new process's stack.  The call to get_user_pages()
566  * ensures the destination page is created and not swapped out.
567  */
568 static int copy_strings(int argc, struct user_arg_ptr argv,
569 			struct linux_binprm *bprm)
570 {
571 	struct page *kmapped_page = NULL;
572 	char *kaddr = NULL;
573 	unsigned long kpos = 0;
574 	int ret;
575 
576 	while (argc-- > 0) {
577 		const char __user *str;
578 		int len;
579 		unsigned long pos;
580 
581 		ret = -EFAULT;
582 		str = get_user_arg_ptr(argv, argc);
583 		if (IS_ERR(str))
584 			goto out;
585 
586 		len = strnlen_user(str, MAX_ARG_STRLEN);
587 		if (!len)
588 			goto out;
589 
590 		ret = -E2BIG;
591 		if (!valid_arg_len(bprm, len))
592 			goto out;
593 
594 		/* We're going to work our way backwards. */
595 		pos = bprm->p;
596 		str += len;
597 		bprm->p -= len;
598 		if (bprm_hit_stack_limit(bprm))
599 			goto out;
600 
601 		while (len > 0) {
602 			int offset, bytes_to_copy;
603 
604 			if (fatal_signal_pending(current)) {
605 				ret = -ERESTARTNOHAND;
606 				goto out;
607 			}
608 			cond_resched();
609 
610 			offset = pos % PAGE_SIZE;
611 			if (offset == 0)
612 				offset = PAGE_SIZE;
613 
614 			bytes_to_copy = offset;
615 			if (bytes_to_copy > len)
616 				bytes_to_copy = len;
617 
618 			offset -= bytes_to_copy;
619 			pos -= bytes_to_copy;
620 			str -= bytes_to_copy;
621 			len -= bytes_to_copy;
622 
623 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624 				struct page *page;
625 
626 				page = get_arg_page(bprm, pos, 1);
627 				if (!page) {
628 					ret = -E2BIG;
629 					goto out;
630 				}
631 
632 				if (kmapped_page) {
633 					flush_dcache_page(kmapped_page);
634 					kunmap_local(kaddr);
635 					put_arg_page(kmapped_page);
636 				}
637 				kmapped_page = page;
638 				kaddr = kmap_local_page(kmapped_page);
639 				kpos = pos & PAGE_MASK;
640 				flush_arg_page(bprm, kpos, kmapped_page);
641 			}
642 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
643 				ret = -EFAULT;
644 				goto out;
645 			}
646 		}
647 	}
648 	ret = 0;
649 out:
650 	if (kmapped_page) {
651 		flush_dcache_page(kmapped_page);
652 		kunmap_local(kaddr);
653 		put_arg_page(kmapped_page);
654 	}
655 	return ret;
656 }
657 
658 /*
659  * Copy and argument/environment string from the kernel to the processes stack.
660  */
661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
662 {
663 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664 	unsigned long pos = bprm->p;
665 
666 	if (len == 0)
667 		return -EFAULT;
668 	if (!valid_arg_len(bprm, len))
669 		return -E2BIG;
670 
671 	/* We're going to work our way backwards. */
672 	arg += len;
673 	bprm->p -= len;
674 	if (bprm_hit_stack_limit(bprm))
675 		return -E2BIG;
676 
677 	while (len > 0) {
678 		unsigned int bytes_to_copy = min_t(unsigned int, len,
679 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
680 		struct page *page;
681 
682 		pos -= bytes_to_copy;
683 		arg -= bytes_to_copy;
684 		len -= bytes_to_copy;
685 
686 		page = get_arg_page(bprm, pos, 1);
687 		if (!page)
688 			return -E2BIG;
689 		flush_arg_page(bprm, pos & PAGE_MASK, page);
690 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
691 		put_arg_page(page);
692 	}
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL(copy_string_kernel);
697 
698 static int copy_strings_kernel(int argc, const char *const *argv,
699 			       struct linux_binprm *bprm)
700 {
701 	while (argc-- > 0) {
702 		int ret = copy_string_kernel(argv[argc], bprm);
703 		if (ret < 0)
704 			return ret;
705 		if (fatal_signal_pending(current))
706 			return -ERESTARTNOHAND;
707 		cond_resched();
708 	}
709 	return 0;
710 }
711 
712 #ifdef CONFIG_MMU
713 
714 /*
715  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
716  * the binfmt code determines where the new stack should reside, we shift it to
717  * its final location.  The process proceeds as follows:
718  *
719  * 1) Use shift to calculate the new vma endpoints.
720  * 2) Extend vma to cover both the old and new ranges.  This ensures the
721  *    arguments passed to subsequent functions are consistent.
722  * 3) Move vma's page tables to the new range.
723  * 4) Free up any cleared pgd range.
724  * 5) Shrink the vma to cover only the new range.
725  */
726 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
727 {
728 	struct mm_struct *mm = vma->vm_mm;
729 	unsigned long old_start = vma->vm_start;
730 	unsigned long old_end = vma->vm_end;
731 	unsigned long length = old_end - old_start;
732 	unsigned long new_start = old_start - shift;
733 	unsigned long new_end = old_end - shift;
734 	VMA_ITERATOR(vmi, mm, new_start);
735 	struct vm_area_struct *next;
736 	struct mmu_gather tlb;
737 
738 	BUG_ON(new_start > new_end);
739 
740 	/*
741 	 * ensure there are no vmas between where we want to go
742 	 * and where we are
743 	 */
744 	if (vma != vma_next(&vmi))
745 		return -EFAULT;
746 
747 	vma_iter_prev_range(&vmi);
748 	/*
749 	 * cover the whole range: [new_start, old_end)
750 	 */
751 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
752 		return -ENOMEM;
753 
754 	/*
755 	 * move the page tables downwards, on failure we rely on
756 	 * process cleanup to remove whatever mess we made.
757 	 */
758 	if (length != move_page_tables(vma, old_start,
759 				       vma, new_start, length, false, true))
760 		return -ENOMEM;
761 
762 	lru_add_drain();
763 	tlb_gather_mmu(&tlb, mm);
764 	next = vma_next(&vmi);
765 	if (new_end > old_start) {
766 		/*
767 		 * when the old and new regions overlap clear from new_end.
768 		 */
769 		free_pgd_range(&tlb, new_end, old_end, new_end,
770 			next ? next->vm_start : USER_PGTABLES_CEILING);
771 	} else {
772 		/*
773 		 * otherwise, clean from old_start; this is done to not touch
774 		 * the address space in [new_end, old_start) some architectures
775 		 * have constraints on va-space that make this illegal (IA64) -
776 		 * for the others its just a little faster.
777 		 */
778 		free_pgd_range(&tlb, old_start, old_end, new_end,
779 			next ? next->vm_start : USER_PGTABLES_CEILING);
780 	}
781 	tlb_finish_mmu(&tlb);
782 
783 	vma_prev(&vmi);
784 	/* Shrink the vma to just the new range */
785 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
786 }
787 
788 /*
789  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
790  * the stack is optionally relocated, and some extra space is added.
791  */
792 int setup_arg_pages(struct linux_binprm *bprm,
793 		    unsigned long stack_top,
794 		    int executable_stack)
795 {
796 	unsigned long ret;
797 	unsigned long stack_shift;
798 	struct mm_struct *mm = current->mm;
799 	struct vm_area_struct *vma = bprm->vma;
800 	struct vm_area_struct *prev = NULL;
801 	unsigned long vm_flags;
802 	unsigned long stack_base;
803 	unsigned long stack_size;
804 	unsigned long stack_expand;
805 	unsigned long rlim_stack;
806 	struct mmu_gather tlb;
807 	struct vma_iterator vmi;
808 
809 #ifdef CONFIG_STACK_GROWSUP
810 	/* Limit stack size */
811 	stack_base = bprm->rlim_stack.rlim_max;
812 
813 	stack_base = calc_max_stack_size(stack_base);
814 
815 	/* Add space for stack randomization. */
816 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
817 
818 	/* Make sure we didn't let the argument array grow too large. */
819 	if (vma->vm_end - vma->vm_start > stack_base)
820 		return -ENOMEM;
821 
822 	stack_base = PAGE_ALIGN(stack_top - stack_base);
823 
824 	stack_shift = vma->vm_start - stack_base;
825 	mm->arg_start = bprm->p - stack_shift;
826 	bprm->p = vma->vm_end - stack_shift;
827 #else
828 	stack_top = arch_align_stack(stack_top);
829 	stack_top = PAGE_ALIGN(stack_top);
830 
831 	if (unlikely(stack_top < mmap_min_addr) ||
832 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
833 		return -ENOMEM;
834 
835 	stack_shift = vma->vm_end - stack_top;
836 
837 	bprm->p -= stack_shift;
838 	mm->arg_start = bprm->p;
839 #endif
840 
841 	if (bprm->loader)
842 		bprm->loader -= stack_shift;
843 	bprm->exec -= stack_shift;
844 
845 	if (mmap_write_lock_killable(mm))
846 		return -EINTR;
847 
848 	vm_flags = VM_STACK_FLAGS;
849 
850 	/*
851 	 * Adjust stack execute permissions; explicitly enable for
852 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
853 	 * (arch default) otherwise.
854 	 */
855 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
856 		vm_flags |= VM_EXEC;
857 	else if (executable_stack == EXSTACK_DISABLE_X)
858 		vm_flags &= ~VM_EXEC;
859 	vm_flags |= mm->def_flags;
860 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
861 
862 	vma_iter_init(&vmi, mm, vma->vm_start);
863 
864 	tlb_gather_mmu(&tlb, mm);
865 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
866 			vm_flags);
867 	tlb_finish_mmu(&tlb);
868 
869 	if (ret)
870 		goto out_unlock;
871 	BUG_ON(prev != vma);
872 
873 	if (unlikely(vm_flags & VM_EXEC)) {
874 		pr_warn_once("process '%pD4' started with executable stack\n",
875 			     bprm->file);
876 	}
877 
878 	/* Move stack pages down in memory. */
879 	if (stack_shift) {
880 		ret = shift_arg_pages(vma, stack_shift);
881 		if (ret)
882 			goto out_unlock;
883 	}
884 
885 	/* mprotect_fixup is overkill to remove the temporary stack flags */
886 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
887 
888 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
889 	stack_size = vma->vm_end - vma->vm_start;
890 	/*
891 	 * Align this down to a page boundary as expand_stack
892 	 * will align it up.
893 	 */
894 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
895 
896 	stack_expand = min(rlim_stack, stack_size + stack_expand);
897 
898 #ifdef CONFIG_STACK_GROWSUP
899 	stack_base = vma->vm_start + stack_expand;
900 #else
901 	stack_base = vma->vm_end - stack_expand;
902 #endif
903 	current->mm->start_stack = bprm->p;
904 	ret = expand_stack_locked(vma, stack_base);
905 	if (ret)
906 		ret = -EFAULT;
907 
908 out_unlock:
909 	mmap_write_unlock(mm);
910 	return ret;
911 }
912 EXPORT_SYMBOL(setup_arg_pages);
913 
914 #else
915 
916 /*
917  * Transfer the program arguments and environment from the holding pages
918  * onto the stack. The provided stack pointer is adjusted accordingly.
919  */
920 int transfer_args_to_stack(struct linux_binprm *bprm,
921 			   unsigned long *sp_location)
922 {
923 	unsigned long index, stop, sp;
924 	int ret = 0;
925 
926 	stop = bprm->p >> PAGE_SHIFT;
927 	sp = *sp_location;
928 
929 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
930 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
931 		char *src = kmap_local_page(bprm->page[index]) + offset;
932 		sp -= PAGE_SIZE - offset;
933 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
934 			ret = -EFAULT;
935 		kunmap_local(src);
936 		if (ret)
937 			goto out;
938 	}
939 
940 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
941 	*sp_location = sp;
942 
943 out:
944 	return ret;
945 }
946 EXPORT_SYMBOL(transfer_args_to_stack);
947 
948 #endif /* CONFIG_MMU */
949 
950 /*
951  * On success, caller must call do_close_execat() on the returned
952  * struct file to close it.
953  */
954 static struct file *do_open_execat(int fd, struct filename *name, int flags)
955 {
956 	struct file *file;
957 	int err;
958 	struct open_flags open_exec_flags = {
959 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
960 		.acc_mode = MAY_EXEC,
961 		.intent = LOOKUP_OPEN,
962 		.lookup_flags = LOOKUP_FOLLOW,
963 	};
964 
965 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
966 		return ERR_PTR(-EINVAL);
967 	if (flags & AT_SYMLINK_NOFOLLOW)
968 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
969 	if (flags & AT_EMPTY_PATH)
970 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
971 
972 	file = do_filp_open(fd, name, &open_exec_flags);
973 	if (IS_ERR(file))
974 		goto out;
975 
976 	/*
977 	 * may_open() has already checked for this, so it should be
978 	 * impossible to trip now. But we need to be extra cautious
979 	 * and check again at the very end too.
980 	 */
981 	err = -EACCES;
982 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
983 			 path_noexec(&file->f_path)))
984 		goto exit;
985 
986 	err = deny_write_access(file);
987 	if (err)
988 		goto exit;
989 
990 out:
991 	return file;
992 
993 exit:
994 	fput(file);
995 	return ERR_PTR(err);
996 }
997 
998 /**
999  * open_exec - Open a path name for execution
1000  *
1001  * @name: path name to open with the intent of executing it.
1002  *
1003  * Returns ERR_PTR on failure or allocated struct file on success.
1004  *
1005  * As this is a wrapper for the internal do_open_execat(), callers
1006  * must call allow_write_access() before fput() on release. Also see
1007  * do_close_execat().
1008  */
1009 struct file *open_exec(const char *name)
1010 {
1011 	struct filename *filename = getname_kernel(name);
1012 	struct file *f = ERR_CAST(filename);
1013 
1014 	if (!IS_ERR(filename)) {
1015 		f = do_open_execat(AT_FDCWD, filename, 0);
1016 		putname(filename);
1017 	}
1018 	return f;
1019 }
1020 EXPORT_SYMBOL(open_exec);
1021 
1022 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1023 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1024 {
1025 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1026 	if (res > 0)
1027 		flush_icache_user_range(addr, addr + len);
1028 	return res;
1029 }
1030 EXPORT_SYMBOL(read_code);
1031 #endif
1032 
1033 /*
1034  * Maps the mm_struct mm into the current task struct.
1035  * On success, this function returns with exec_update_lock
1036  * held for writing.
1037  */
1038 static int exec_mmap(struct mm_struct *mm)
1039 {
1040 	struct task_struct *tsk;
1041 	struct mm_struct *old_mm, *active_mm;
1042 	int ret;
1043 
1044 	/* Notify parent that we're no longer interested in the old VM */
1045 	tsk = current;
1046 	old_mm = current->mm;
1047 	exec_mm_release(tsk, old_mm);
1048 
1049 	ret = down_write_killable(&tsk->signal->exec_update_lock);
1050 	if (ret)
1051 		return ret;
1052 
1053 	if (old_mm) {
1054 		/*
1055 		 * If there is a pending fatal signal perhaps a signal
1056 		 * whose default action is to create a coredump get
1057 		 * out and die instead of going through with the exec.
1058 		 */
1059 		ret = mmap_read_lock_killable(old_mm);
1060 		if (ret) {
1061 			up_write(&tsk->signal->exec_update_lock);
1062 			return ret;
1063 		}
1064 	}
1065 
1066 	task_lock(tsk);
1067 	membarrier_exec_mmap(mm);
1068 
1069 	local_irq_disable();
1070 	active_mm = tsk->active_mm;
1071 	tsk->active_mm = mm;
1072 	tsk->mm = mm;
1073 	mm_init_cid(mm);
1074 	/*
1075 	 * This prevents preemption while active_mm is being loaded and
1076 	 * it and mm are being updated, which could cause problems for
1077 	 * lazy tlb mm refcounting when these are updated by context
1078 	 * switches. Not all architectures can handle irqs off over
1079 	 * activate_mm yet.
1080 	 */
1081 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1082 		local_irq_enable();
1083 	activate_mm(active_mm, mm);
1084 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1085 		local_irq_enable();
1086 	lru_gen_add_mm(mm);
1087 	task_unlock(tsk);
1088 	lru_gen_use_mm(mm);
1089 	if (old_mm) {
1090 		mmap_read_unlock(old_mm);
1091 		BUG_ON(active_mm != old_mm);
1092 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1093 		mm_update_next_owner(old_mm);
1094 		mmput(old_mm);
1095 		return 0;
1096 	}
1097 	mmdrop_lazy_tlb(active_mm);
1098 	return 0;
1099 }
1100 
1101 static int de_thread(struct task_struct *tsk)
1102 {
1103 	struct signal_struct *sig = tsk->signal;
1104 	struct sighand_struct *oldsighand = tsk->sighand;
1105 	spinlock_t *lock = &oldsighand->siglock;
1106 
1107 	if (thread_group_empty(tsk))
1108 		goto no_thread_group;
1109 
1110 	/*
1111 	 * Kill all other threads in the thread group.
1112 	 */
1113 	spin_lock_irq(lock);
1114 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1115 		/*
1116 		 * Another group action in progress, just
1117 		 * return so that the signal is processed.
1118 		 */
1119 		spin_unlock_irq(lock);
1120 		return -EAGAIN;
1121 	}
1122 
1123 	sig->group_exec_task = tsk;
1124 	sig->notify_count = zap_other_threads(tsk);
1125 	if (!thread_group_leader(tsk))
1126 		sig->notify_count--;
1127 
1128 	while (sig->notify_count) {
1129 		__set_current_state(TASK_KILLABLE);
1130 		spin_unlock_irq(lock);
1131 		schedule();
1132 		if (__fatal_signal_pending(tsk))
1133 			goto killed;
1134 		spin_lock_irq(lock);
1135 	}
1136 	spin_unlock_irq(lock);
1137 
1138 	/*
1139 	 * At this point all other threads have exited, all we have to
1140 	 * do is to wait for the thread group leader to become inactive,
1141 	 * and to assume its PID:
1142 	 */
1143 	if (!thread_group_leader(tsk)) {
1144 		struct task_struct *leader = tsk->group_leader;
1145 
1146 		for (;;) {
1147 			cgroup_threadgroup_change_begin(tsk);
1148 			write_lock_irq(&tasklist_lock);
1149 			/*
1150 			 * Do this under tasklist_lock to ensure that
1151 			 * exit_notify() can't miss ->group_exec_task
1152 			 */
1153 			sig->notify_count = -1;
1154 			if (likely(leader->exit_state))
1155 				break;
1156 			__set_current_state(TASK_KILLABLE);
1157 			write_unlock_irq(&tasklist_lock);
1158 			cgroup_threadgroup_change_end(tsk);
1159 			schedule();
1160 			if (__fatal_signal_pending(tsk))
1161 				goto killed;
1162 		}
1163 
1164 		/*
1165 		 * The only record we have of the real-time age of a
1166 		 * process, regardless of execs it's done, is start_time.
1167 		 * All the past CPU time is accumulated in signal_struct
1168 		 * from sister threads now dead.  But in this non-leader
1169 		 * exec, nothing survives from the original leader thread,
1170 		 * whose birth marks the true age of this process now.
1171 		 * When we take on its identity by switching to its PID, we
1172 		 * also take its birthdate (always earlier than our own).
1173 		 */
1174 		tsk->start_time = leader->start_time;
1175 		tsk->start_boottime = leader->start_boottime;
1176 
1177 		BUG_ON(!same_thread_group(leader, tsk));
1178 		/*
1179 		 * An exec() starts a new thread group with the
1180 		 * TGID of the previous thread group. Rehash the
1181 		 * two threads with a switched PID, and release
1182 		 * the former thread group leader:
1183 		 */
1184 
1185 		/* Become a process group leader with the old leader's pid.
1186 		 * The old leader becomes a thread of the this thread group.
1187 		 */
1188 		exchange_tids(tsk, leader);
1189 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1190 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1191 		transfer_pid(leader, tsk, PIDTYPE_SID);
1192 
1193 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1194 		list_replace_init(&leader->sibling, &tsk->sibling);
1195 
1196 		tsk->group_leader = tsk;
1197 		leader->group_leader = tsk;
1198 
1199 		tsk->exit_signal = SIGCHLD;
1200 		leader->exit_signal = -1;
1201 
1202 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1203 		leader->exit_state = EXIT_DEAD;
1204 		/*
1205 		 * We are going to release_task()->ptrace_unlink() silently,
1206 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1207 		 * the tracer won't block again waiting for this thread.
1208 		 */
1209 		if (unlikely(leader->ptrace))
1210 			__wake_up_parent(leader, leader->parent);
1211 		write_unlock_irq(&tasklist_lock);
1212 		cgroup_threadgroup_change_end(tsk);
1213 
1214 		release_task(leader);
1215 	}
1216 
1217 	sig->group_exec_task = NULL;
1218 	sig->notify_count = 0;
1219 
1220 no_thread_group:
1221 	/* we have changed execution domain */
1222 	tsk->exit_signal = SIGCHLD;
1223 
1224 	BUG_ON(!thread_group_leader(tsk));
1225 	return 0;
1226 
1227 killed:
1228 	/* protects against exit_notify() and __exit_signal() */
1229 	read_lock(&tasklist_lock);
1230 	sig->group_exec_task = NULL;
1231 	sig->notify_count = 0;
1232 	read_unlock(&tasklist_lock);
1233 	return -EAGAIN;
1234 }
1235 
1236 
1237 /*
1238  * This function makes sure the current process has its own signal table,
1239  * so that flush_signal_handlers can later reset the handlers without
1240  * disturbing other processes.  (Other processes might share the signal
1241  * table via the CLONE_SIGHAND option to clone().)
1242  */
1243 static int unshare_sighand(struct task_struct *me)
1244 {
1245 	struct sighand_struct *oldsighand = me->sighand;
1246 
1247 	if (refcount_read(&oldsighand->count) != 1) {
1248 		struct sighand_struct *newsighand;
1249 		/*
1250 		 * This ->sighand is shared with the CLONE_SIGHAND
1251 		 * but not CLONE_THREAD task, switch to the new one.
1252 		 */
1253 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1254 		if (!newsighand)
1255 			return -ENOMEM;
1256 
1257 		refcount_set(&newsighand->count, 1);
1258 
1259 		write_lock_irq(&tasklist_lock);
1260 		spin_lock(&oldsighand->siglock);
1261 		memcpy(newsighand->action, oldsighand->action,
1262 		       sizeof(newsighand->action));
1263 		rcu_assign_pointer(me->sighand, newsighand);
1264 		spin_unlock(&oldsighand->siglock);
1265 		write_unlock_irq(&tasklist_lock);
1266 
1267 		__cleanup_sighand(oldsighand);
1268 	}
1269 	return 0;
1270 }
1271 
1272 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1273 {
1274 	task_lock(tsk);
1275 	/* Always NUL terminated and zero-padded */
1276 	strscpy_pad(buf, tsk->comm, buf_size);
1277 	task_unlock(tsk);
1278 	return buf;
1279 }
1280 EXPORT_SYMBOL_GPL(__get_task_comm);
1281 
1282 /*
1283  * These functions flushes out all traces of the currently running executable
1284  * so that a new one can be started
1285  */
1286 
1287 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1288 {
1289 	task_lock(tsk);
1290 	trace_task_rename(tsk, buf);
1291 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1292 	task_unlock(tsk);
1293 	perf_event_comm(tsk, exec);
1294 }
1295 
1296 /*
1297  * Calling this is the point of no return. None of the failures will be
1298  * seen by userspace since either the process is already taking a fatal
1299  * signal (via de_thread() or coredump), or will have SEGV raised
1300  * (after exec_mmap()) by search_binary_handler (see below).
1301  */
1302 int begin_new_exec(struct linux_binprm * bprm)
1303 {
1304 	struct task_struct *me = current;
1305 	int retval;
1306 
1307 	/* Once we are committed compute the creds */
1308 	retval = bprm_creds_from_file(bprm);
1309 	if (retval)
1310 		return retval;
1311 
1312 	/*
1313 	 * This tracepoint marks the point before flushing the old exec where
1314 	 * the current task is still unchanged, but errors are fatal (point of
1315 	 * no return). The later "sched_process_exec" tracepoint is called after
1316 	 * the current task has successfully switched to the new exec.
1317 	 */
1318 	trace_sched_prepare_exec(current, bprm);
1319 
1320 	/*
1321 	 * Ensure all future errors are fatal.
1322 	 */
1323 	bprm->point_of_no_return = true;
1324 
1325 	/*
1326 	 * Make this the only thread in the thread group.
1327 	 */
1328 	retval = de_thread(me);
1329 	if (retval)
1330 		goto out;
1331 
1332 	/*
1333 	 * Cancel any io_uring activity across execve
1334 	 */
1335 	io_uring_task_cancel();
1336 
1337 	/* Ensure the files table is not shared. */
1338 	retval = unshare_files();
1339 	if (retval)
1340 		goto out;
1341 
1342 	/*
1343 	 * Must be called _before_ exec_mmap() as bprm->mm is
1344 	 * not visible until then. Doing it here also ensures
1345 	 * we don't race against replace_mm_exe_file().
1346 	 */
1347 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1348 	if (retval)
1349 		goto out;
1350 
1351 	/* If the binary is not readable then enforce mm->dumpable=0 */
1352 	would_dump(bprm, bprm->file);
1353 	if (bprm->have_execfd)
1354 		would_dump(bprm, bprm->executable);
1355 
1356 	/*
1357 	 * Release all of the old mmap stuff
1358 	 */
1359 	acct_arg_size(bprm, 0);
1360 	retval = exec_mmap(bprm->mm);
1361 	if (retval)
1362 		goto out;
1363 
1364 	bprm->mm = NULL;
1365 
1366 	retval = exec_task_namespaces();
1367 	if (retval)
1368 		goto out_unlock;
1369 
1370 #ifdef CONFIG_POSIX_TIMERS
1371 	spin_lock_irq(&me->sighand->siglock);
1372 	posix_cpu_timers_exit(me);
1373 	spin_unlock_irq(&me->sighand->siglock);
1374 	exit_itimers(me);
1375 	flush_itimer_signals();
1376 #endif
1377 
1378 	/*
1379 	 * Make the signal table private.
1380 	 */
1381 	retval = unshare_sighand(me);
1382 	if (retval)
1383 		goto out_unlock;
1384 
1385 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1386 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1387 	flush_thread();
1388 	me->personality &= ~bprm->per_clear;
1389 
1390 	clear_syscall_work_syscall_user_dispatch(me);
1391 
1392 	/*
1393 	 * We have to apply CLOEXEC before we change whether the process is
1394 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1395 	 * trying to access the should-be-closed file descriptors of a process
1396 	 * undergoing exec(2).
1397 	 */
1398 	do_close_on_exec(me->files);
1399 
1400 	if (bprm->secureexec) {
1401 		/* Make sure parent cannot signal privileged process. */
1402 		me->pdeath_signal = 0;
1403 
1404 		/*
1405 		 * For secureexec, reset the stack limit to sane default to
1406 		 * avoid bad behavior from the prior rlimits. This has to
1407 		 * happen before arch_pick_mmap_layout(), which examines
1408 		 * RLIMIT_STACK, but after the point of no return to avoid
1409 		 * needing to clean up the change on failure.
1410 		 */
1411 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1412 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1413 	}
1414 
1415 	me->sas_ss_sp = me->sas_ss_size = 0;
1416 
1417 	/*
1418 	 * Figure out dumpability. Note that this checking only of current
1419 	 * is wrong, but userspace depends on it. This should be testing
1420 	 * bprm->secureexec instead.
1421 	 */
1422 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1423 	    !(uid_eq(current_euid(), current_uid()) &&
1424 	      gid_eq(current_egid(), current_gid())))
1425 		set_dumpable(current->mm, suid_dumpable);
1426 	else
1427 		set_dumpable(current->mm, SUID_DUMP_USER);
1428 
1429 	perf_event_exec();
1430 	__set_task_comm(me, kbasename(bprm->filename), true);
1431 
1432 	/* An exec changes our domain. We are no longer part of the thread
1433 	   group */
1434 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1435 	flush_signal_handlers(me, 0);
1436 
1437 	retval = set_cred_ucounts(bprm->cred);
1438 	if (retval < 0)
1439 		goto out_unlock;
1440 
1441 	/*
1442 	 * install the new credentials for this executable
1443 	 */
1444 	security_bprm_committing_creds(bprm);
1445 
1446 	commit_creds(bprm->cred);
1447 	bprm->cred = NULL;
1448 
1449 	/*
1450 	 * Disable monitoring for regular users
1451 	 * when executing setuid binaries. Must
1452 	 * wait until new credentials are committed
1453 	 * by commit_creds() above
1454 	 */
1455 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1456 		perf_event_exit_task(me);
1457 	/*
1458 	 * cred_guard_mutex must be held at least to this point to prevent
1459 	 * ptrace_attach() from altering our determination of the task's
1460 	 * credentials; any time after this it may be unlocked.
1461 	 */
1462 	security_bprm_committed_creds(bprm);
1463 
1464 	/* Pass the opened binary to the interpreter. */
1465 	if (bprm->have_execfd) {
1466 		retval = get_unused_fd_flags(0);
1467 		if (retval < 0)
1468 			goto out_unlock;
1469 		fd_install(retval, bprm->executable);
1470 		bprm->executable = NULL;
1471 		bprm->execfd = retval;
1472 	}
1473 	return 0;
1474 
1475 out_unlock:
1476 	up_write(&me->signal->exec_update_lock);
1477 	if (!bprm->cred)
1478 		mutex_unlock(&me->signal->cred_guard_mutex);
1479 
1480 out:
1481 	return retval;
1482 }
1483 EXPORT_SYMBOL(begin_new_exec);
1484 
1485 void would_dump(struct linux_binprm *bprm, struct file *file)
1486 {
1487 	struct inode *inode = file_inode(file);
1488 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1489 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1490 		struct user_namespace *old, *user_ns;
1491 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1492 
1493 		/* Ensure mm->user_ns contains the executable */
1494 		user_ns = old = bprm->mm->user_ns;
1495 		while ((user_ns != &init_user_ns) &&
1496 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1497 			user_ns = user_ns->parent;
1498 
1499 		if (old != user_ns) {
1500 			bprm->mm->user_ns = get_user_ns(user_ns);
1501 			put_user_ns(old);
1502 		}
1503 	}
1504 }
1505 EXPORT_SYMBOL(would_dump);
1506 
1507 void setup_new_exec(struct linux_binprm * bprm)
1508 {
1509 	/* Setup things that can depend upon the personality */
1510 	struct task_struct *me = current;
1511 
1512 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1513 
1514 	arch_setup_new_exec();
1515 
1516 	/* Set the new mm task size. We have to do that late because it may
1517 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1518 	 * some architectures like powerpc
1519 	 */
1520 	me->mm->task_size = TASK_SIZE;
1521 	up_write(&me->signal->exec_update_lock);
1522 	mutex_unlock(&me->signal->cred_guard_mutex);
1523 }
1524 EXPORT_SYMBOL(setup_new_exec);
1525 
1526 /* Runs immediately before start_thread() takes over. */
1527 void finalize_exec(struct linux_binprm *bprm)
1528 {
1529 	/* Store any stack rlimit changes before starting thread. */
1530 	task_lock(current->group_leader);
1531 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1532 	task_unlock(current->group_leader);
1533 }
1534 EXPORT_SYMBOL(finalize_exec);
1535 
1536 /*
1537  * Prepare credentials and lock ->cred_guard_mutex.
1538  * setup_new_exec() commits the new creds and drops the lock.
1539  * Or, if exec fails before, free_bprm() should release ->cred
1540  * and unlock.
1541  */
1542 static int prepare_bprm_creds(struct linux_binprm *bprm)
1543 {
1544 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1545 		return -ERESTARTNOINTR;
1546 
1547 	bprm->cred = prepare_exec_creds();
1548 	if (likely(bprm->cred))
1549 		return 0;
1550 
1551 	mutex_unlock(&current->signal->cred_guard_mutex);
1552 	return -ENOMEM;
1553 }
1554 
1555 /* Matches do_open_execat() */
1556 static void do_close_execat(struct file *file)
1557 {
1558 	if (!file)
1559 		return;
1560 	allow_write_access(file);
1561 	fput(file);
1562 }
1563 
1564 static void free_bprm(struct linux_binprm *bprm)
1565 {
1566 	if (bprm->mm) {
1567 		acct_arg_size(bprm, 0);
1568 		mmput(bprm->mm);
1569 	}
1570 	free_arg_pages(bprm);
1571 	if (bprm->cred) {
1572 		mutex_unlock(&current->signal->cred_guard_mutex);
1573 		abort_creds(bprm->cred);
1574 	}
1575 	do_close_execat(bprm->file);
1576 	if (bprm->executable)
1577 		fput(bprm->executable);
1578 	/* If a binfmt changed the interp, free it. */
1579 	if (bprm->interp != bprm->filename)
1580 		kfree(bprm->interp);
1581 	kfree(bprm->fdpath);
1582 	kfree(bprm);
1583 }
1584 
1585 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1586 {
1587 	struct linux_binprm *bprm;
1588 	struct file *file;
1589 	int retval = -ENOMEM;
1590 
1591 	file = do_open_execat(fd, filename, flags);
1592 	if (IS_ERR(file))
1593 		return ERR_CAST(file);
1594 
1595 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1596 	if (!bprm) {
1597 		do_close_execat(file);
1598 		return ERR_PTR(-ENOMEM);
1599 	}
1600 
1601 	bprm->file = file;
1602 
1603 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1604 		bprm->filename = filename->name;
1605 	} else {
1606 		if (filename->name[0] == '\0')
1607 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1608 		else
1609 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1610 						  fd, filename->name);
1611 		if (!bprm->fdpath)
1612 			goto out_free;
1613 
1614 		/*
1615 		 * Record that a name derived from an O_CLOEXEC fd will be
1616 		 * inaccessible after exec.  This allows the code in exec to
1617 		 * choose to fail when the executable is not mmaped into the
1618 		 * interpreter and an open file descriptor is not passed to
1619 		 * the interpreter.  This makes for a better user experience
1620 		 * than having the interpreter start and then immediately fail
1621 		 * when it finds the executable is inaccessible.
1622 		 */
1623 		if (get_close_on_exec(fd))
1624 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1625 
1626 		bprm->filename = bprm->fdpath;
1627 	}
1628 	bprm->interp = bprm->filename;
1629 
1630 	retval = bprm_mm_init(bprm);
1631 	if (!retval)
1632 		return bprm;
1633 
1634 out_free:
1635 	free_bprm(bprm);
1636 	return ERR_PTR(retval);
1637 }
1638 
1639 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1640 {
1641 	/* If a binfmt changed the interp, free it first. */
1642 	if (bprm->interp != bprm->filename)
1643 		kfree(bprm->interp);
1644 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1645 	if (!bprm->interp)
1646 		return -ENOMEM;
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL(bprm_change_interp);
1650 
1651 /*
1652  * determine how safe it is to execute the proposed program
1653  * - the caller must hold ->cred_guard_mutex to protect against
1654  *   PTRACE_ATTACH or seccomp thread-sync
1655  */
1656 static void check_unsafe_exec(struct linux_binprm *bprm)
1657 {
1658 	struct task_struct *p = current, *t;
1659 	unsigned n_fs;
1660 
1661 	if (p->ptrace)
1662 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1663 
1664 	/*
1665 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1666 	 * mess up.
1667 	 */
1668 	if (task_no_new_privs(current))
1669 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1670 
1671 	/*
1672 	 * If another task is sharing our fs, we cannot safely
1673 	 * suid exec because the differently privileged task
1674 	 * will be able to manipulate the current directory, etc.
1675 	 * It would be nice to force an unshare instead...
1676 	 */
1677 	n_fs = 1;
1678 	spin_lock(&p->fs->lock);
1679 	rcu_read_lock();
1680 	for_other_threads(p, t) {
1681 		if (t->fs == p->fs)
1682 			n_fs++;
1683 	}
1684 	rcu_read_unlock();
1685 
1686 	/* "users" and "in_exec" locked for copy_fs() */
1687 	if (p->fs->users > n_fs)
1688 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1689 	else
1690 		p->fs->in_exec = 1;
1691 	spin_unlock(&p->fs->lock);
1692 }
1693 
1694 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1695 {
1696 	/* Handle suid and sgid on files */
1697 	struct mnt_idmap *idmap;
1698 	struct inode *inode = file_inode(file);
1699 	unsigned int mode;
1700 	vfsuid_t vfsuid;
1701 	vfsgid_t vfsgid;
1702 
1703 	if (!mnt_may_suid(file->f_path.mnt))
1704 		return;
1705 
1706 	if (task_no_new_privs(current))
1707 		return;
1708 
1709 	mode = READ_ONCE(inode->i_mode);
1710 	if (!(mode & (S_ISUID|S_ISGID)))
1711 		return;
1712 
1713 	idmap = file_mnt_idmap(file);
1714 
1715 	/* Be careful if suid/sgid is set */
1716 	inode_lock(inode);
1717 
1718 	/* reload atomically mode/uid/gid now that lock held */
1719 	mode = inode->i_mode;
1720 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1721 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1722 	inode_unlock(inode);
1723 
1724 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1725 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1726 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1727 		return;
1728 
1729 	if (mode & S_ISUID) {
1730 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1731 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1732 	}
1733 
1734 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1735 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1736 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1737 	}
1738 }
1739 
1740 /*
1741  * Compute brpm->cred based upon the final binary.
1742  */
1743 static int bprm_creds_from_file(struct linux_binprm *bprm)
1744 {
1745 	/* Compute creds based on which file? */
1746 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1747 
1748 	bprm_fill_uid(bprm, file);
1749 	return security_bprm_creds_from_file(bprm, file);
1750 }
1751 
1752 /*
1753  * Fill the binprm structure from the inode.
1754  * Read the first BINPRM_BUF_SIZE bytes
1755  *
1756  * This may be called multiple times for binary chains (scripts for example).
1757  */
1758 static int prepare_binprm(struct linux_binprm *bprm)
1759 {
1760 	loff_t pos = 0;
1761 
1762 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1763 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1764 }
1765 
1766 /*
1767  * Arguments are '\0' separated strings found at the location bprm->p
1768  * points to; chop off the first by relocating brpm->p to right after
1769  * the first '\0' encountered.
1770  */
1771 int remove_arg_zero(struct linux_binprm *bprm)
1772 {
1773 	unsigned long offset;
1774 	char *kaddr;
1775 	struct page *page;
1776 
1777 	if (!bprm->argc)
1778 		return 0;
1779 
1780 	do {
1781 		offset = bprm->p & ~PAGE_MASK;
1782 		page = get_arg_page(bprm, bprm->p, 0);
1783 		if (!page)
1784 			return -EFAULT;
1785 		kaddr = kmap_local_page(page);
1786 
1787 		for (; offset < PAGE_SIZE && kaddr[offset];
1788 				offset++, bprm->p++)
1789 			;
1790 
1791 		kunmap_local(kaddr);
1792 		put_arg_page(page);
1793 	} while (offset == PAGE_SIZE);
1794 
1795 	bprm->p++;
1796 	bprm->argc--;
1797 
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(remove_arg_zero);
1801 
1802 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1803 /*
1804  * cycle the list of binary formats handler, until one recognizes the image
1805  */
1806 static int search_binary_handler(struct linux_binprm *bprm)
1807 {
1808 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1809 	struct linux_binfmt *fmt;
1810 	int retval;
1811 
1812 	retval = prepare_binprm(bprm);
1813 	if (retval < 0)
1814 		return retval;
1815 
1816 	retval = security_bprm_check(bprm);
1817 	if (retval)
1818 		return retval;
1819 
1820 	retval = -ENOENT;
1821  retry:
1822 	read_lock(&binfmt_lock);
1823 	list_for_each_entry(fmt, &formats, lh) {
1824 		if (!try_module_get(fmt->module))
1825 			continue;
1826 		read_unlock(&binfmt_lock);
1827 
1828 		retval = fmt->load_binary(bprm);
1829 
1830 		read_lock(&binfmt_lock);
1831 		put_binfmt(fmt);
1832 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1833 			read_unlock(&binfmt_lock);
1834 			return retval;
1835 		}
1836 	}
1837 	read_unlock(&binfmt_lock);
1838 
1839 	if (need_retry) {
1840 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1841 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1842 			return retval;
1843 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1844 			return retval;
1845 		need_retry = false;
1846 		goto retry;
1847 	}
1848 
1849 	return retval;
1850 }
1851 
1852 /* binfmt handlers will call back into begin_new_exec() on success. */
1853 static int exec_binprm(struct linux_binprm *bprm)
1854 {
1855 	pid_t old_pid, old_vpid;
1856 	int ret, depth;
1857 
1858 	/* Need to fetch pid before load_binary changes it */
1859 	old_pid = current->pid;
1860 	rcu_read_lock();
1861 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1862 	rcu_read_unlock();
1863 
1864 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1865 	for (depth = 0;; depth++) {
1866 		struct file *exec;
1867 		if (depth > 5)
1868 			return -ELOOP;
1869 
1870 		ret = search_binary_handler(bprm);
1871 		if (ret < 0)
1872 			return ret;
1873 		if (!bprm->interpreter)
1874 			break;
1875 
1876 		exec = bprm->file;
1877 		bprm->file = bprm->interpreter;
1878 		bprm->interpreter = NULL;
1879 
1880 		allow_write_access(exec);
1881 		if (unlikely(bprm->have_execfd)) {
1882 			if (bprm->executable) {
1883 				fput(exec);
1884 				return -ENOEXEC;
1885 			}
1886 			bprm->executable = exec;
1887 		} else
1888 			fput(exec);
1889 	}
1890 
1891 	audit_bprm(bprm);
1892 	trace_sched_process_exec(current, old_pid, bprm);
1893 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1894 	proc_exec_connector(current);
1895 	return 0;
1896 }
1897 
1898 static int bprm_execve(struct linux_binprm *bprm)
1899 {
1900 	int retval;
1901 
1902 	retval = prepare_bprm_creds(bprm);
1903 	if (retval)
1904 		return retval;
1905 
1906 	/*
1907 	 * Check for unsafe execution states before exec_binprm(), which
1908 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1909 	 * where setuid-ness is evaluated.
1910 	 */
1911 	check_unsafe_exec(bprm);
1912 	current->in_execve = 1;
1913 	sched_mm_cid_before_execve(current);
1914 
1915 	sched_exec();
1916 
1917 	/* Set the unchanging part of bprm->cred */
1918 	retval = security_bprm_creds_for_exec(bprm);
1919 	if (retval)
1920 		goto out;
1921 
1922 	retval = exec_binprm(bprm);
1923 	if (retval < 0)
1924 		goto out;
1925 
1926 	sched_mm_cid_after_execve(current);
1927 	/* execve succeeded */
1928 	current->fs->in_exec = 0;
1929 	current->in_execve = 0;
1930 	rseq_execve(current);
1931 	user_events_execve(current);
1932 	acct_update_integrals(current);
1933 	task_numa_free(current, false);
1934 	return retval;
1935 
1936 out:
1937 	/*
1938 	 * If past the point of no return ensure the code never
1939 	 * returns to the userspace process.  Use an existing fatal
1940 	 * signal if present otherwise terminate the process with
1941 	 * SIGSEGV.
1942 	 */
1943 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1944 		force_fatal_sig(SIGSEGV);
1945 
1946 	sched_mm_cid_after_execve(current);
1947 	current->fs->in_exec = 0;
1948 	current->in_execve = 0;
1949 
1950 	return retval;
1951 }
1952 
1953 static int do_execveat_common(int fd, struct filename *filename,
1954 			      struct user_arg_ptr argv,
1955 			      struct user_arg_ptr envp,
1956 			      int flags)
1957 {
1958 	struct linux_binprm *bprm;
1959 	int retval;
1960 
1961 	if (IS_ERR(filename))
1962 		return PTR_ERR(filename);
1963 
1964 	/*
1965 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1966 	 * set*uid() to execve() because too many poorly written programs
1967 	 * don't check setuid() return code.  Here we additionally recheck
1968 	 * whether NPROC limit is still exceeded.
1969 	 */
1970 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1971 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1972 		retval = -EAGAIN;
1973 		goto out_ret;
1974 	}
1975 
1976 	/* We're below the limit (still or again), so we don't want to make
1977 	 * further execve() calls fail. */
1978 	current->flags &= ~PF_NPROC_EXCEEDED;
1979 
1980 	bprm = alloc_bprm(fd, filename, flags);
1981 	if (IS_ERR(bprm)) {
1982 		retval = PTR_ERR(bprm);
1983 		goto out_ret;
1984 	}
1985 
1986 	retval = count(argv, MAX_ARG_STRINGS);
1987 	if (retval == 0)
1988 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1989 			     current->comm, bprm->filename);
1990 	if (retval < 0)
1991 		goto out_free;
1992 	bprm->argc = retval;
1993 
1994 	retval = count(envp, MAX_ARG_STRINGS);
1995 	if (retval < 0)
1996 		goto out_free;
1997 	bprm->envc = retval;
1998 
1999 	retval = bprm_stack_limits(bprm);
2000 	if (retval < 0)
2001 		goto out_free;
2002 
2003 	retval = copy_string_kernel(bprm->filename, bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 	bprm->exec = bprm->p;
2007 
2008 	retval = copy_strings(bprm->envc, envp, bprm);
2009 	if (retval < 0)
2010 		goto out_free;
2011 
2012 	retval = copy_strings(bprm->argc, argv, bprm);
2013 	if (retval < 0)
2014 		goto out_free;
2015 
2016 	/*
2017 	 * When argv is empty, add an empty string ("") as argv[0] to
2018 	 * ensure confused userspace programs that start processing
2019 	 * from argv[1] won't end up walking envp. See also
2020 	 * bprm_stack_limits().
2021 	 */
2022 	if (bprm->argc == 0) {
2023 		retval = copy_string_kernel("", bprm);
2024 		if (retval < 0)
2025 			goto out_free;
2026 		bprm->argc = 1;
2027 	}
2028 
2029 	retval = bprm_execve(bprm);
2030 out_free:
2031 	free_bprm(bprm);
2032 
2033 out_ret:
2034 	putname(filename);
2035 	return retval;
2036 }
2037 
2038 int kernel_execve(const char *kernel_filename,
2039 		  const char *const *argv, const char *const *envp)
2040 {
2041 	struct filename *filename;
2042 	struct linux_binprm *bprm;
2043 	int fd = AT_FDCWD;
2044 	int retval;
2045 
2046 	/* It is non-sense for kernel threads to call execve */
2047 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2048 		return -EINVAL;
2049 
2050 	filename = getname_kernel(kernel_filename);
2051 	if (IS_ERR(filename))
2052 		return PTR_ERR(filename);
2053 
2054 	bprm = alloc_bprm(fd, filename, 0);
2055 	if (IS_ERR(bprm)) {
2056 		retval = PTR_ERR(bprm);
2057 		goto out_ret;
2058 	}
2059 
2060 	retval = count_strings_kernel(argv);
2061 	if (WARN_ON_ONCE(retval == 0))
2062 		retval = -EINVAL;
2063 	if (retval < 0)
2064 		goto out_free;
2065 	bprm->argc = retval;
2066 
2067 	retval = count_strings_kernel(envp);
2068 	if (retval < 0)
2069 		goto out_free;
2070 	bprm->envc = retval;
2071 
2072 	retval = bprm_stack_limits(bprm);
2073 	if (retval < 0)
2074 		goto out_free;
2075 
2076 	retval = copy_string_kernel(bprm->filename, bprm);
2077 	if (retval < 0)
2078 		goto out_free;
2079 	bprm->exec = bprm->p;
2080 
2081 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2082 	if (retval < 0)
2083 		goto out_free;
2084 
2085 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2086 	if (retval < 0)
2087 		goto out_free;
2088 
2089 	retval = bprm_execve(bprm);
2090 out_free:
2091 	free_bprm(bprm);
2092 out_ret:
2093 	putname(filename);
2094 	return retval;
2095 }
2096 
2097 static int do_execve(struct filename *filename,
2098 	const char __user *const __user *__argv,
2099 	const char __user *const __user *__envp)
2100 {
2101 	struct user_arg_ptr argv = { .ptr.native = __argv };
2102 	struct user_arg_ptr envp = { .ptr.native = __envp };
2103 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2104 }
2105 
2106 static int do_execveat(int fd, struct filename *filename,
2107 		const char __user *const __user *__argv,
2108 		const char __user *const __user *__envp,
2109 		int flags)
2110 {
2111 	struct user_arg_ptr argv = { .ptr.native = __argv };
2112 	struct user_arg_ptr envp = { .ptr.native = __envp };
2113 
2114 	return do_execveat_common(fd, filename, argv, envp, flags);
2115 }
2116 
2117 #ifdef CONFIG_COMPAT
2118 static int compat_do_execve(struct filename *filename,
2119 	const compat_uptr_t __user *__argv,
2120 	const compat_uptr_t __user *__envp)
2121 {
2122 	struct user_arg_ptr argv = {
2123 		.is_compat = true,
2124 		.ptr.compat = __argv,
2125 	};
2126 	struct user_arg_ptr envp = {
2127 		.is_compat = true,
2128 		.ptr.compat = __envp,
2129 	};
2130 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2131 }
2132 
2133 static int compat_do_execveat(int fd, struct filename *filename,
2134 			      const compat_uptr_t __user *__argv,
2135 			      const compat_uptr_t __user *__envp,
2136 			      int flags)
2137 {
2138 	struct user_arg_ptr argv = {
2139 		.is_compat = true,
2140 		.ptr.compat = __argv,
2141 	};
2142 	struct user_arg_ptr envp = {
2143 		.is_compat = true,
2144 		.ptr.compat = __envp,
2145 	};
2146 	return do_execveat_common(fd, filename, argv, envp, flags);
2147 }
2148 #endif
2149 
2150 void set_binfmt(struct linux_binfmt *new)
2151 {
2152 	struct mm_struct *mm = current->mm;
2153 
2154 	if (mm->binfmt)
2155 		module_put(mm->binfmt->module);
2156 
2157 	mm->binfmt = new;
2158 	if (new)
2159 		__module_get(new->module);
2160 }
2161 EXPORT_SYMBOL(set_binfmt);
2162 
2163 /*
2164  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2165  */
2166 void set_dumpable(struct mm_struct *mm, int value)
2167 {
2168 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2169 		return;
2170 
2171 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2172 }
2173 
2174 SYSCALL_DEFINE3(execve,
2175 		const char __user *, filename,
2176 		const char __user *const __user *, argv,
2177 		const char __user *const __user *, envp)
2178 {
2179 	return do_execve(getname(filename), argv, envp);
2180 }
2181 
2182 SYSCALL_DEFINE5(execveat,
2183 		int, fd, const char __user *, filename,
2184 		const char __user *const __user *, argv,
2185 		const char __user *const __user *, envp,
2186 		int, flags)
2187 {
2188 	return do_execveat(fd,
2189 			   getname_uflags(filename, flags),
2190 			   argv, envp, flags);
2191 }
2192 
2193 #ifdef CONFIG_COMPAT
2194 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2195 	const compat_uptr_t __user *, argv,
2196 	const compat_uptr_t __user *, envp)
2197 {
2198 	return compat_do_execve(getname(filename), argv, envp);
2199 }
2200 
2201 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2202 		       const char __user *, filename,
2203 		       const compat_uptr_t __user *, argv,
2204 		       const compat_uptr_t __user *, envp,
2205 		       int,  flags)
2206 {
2207 	return compat_do_execveat(fd,
2208 				  getname_uflags(filename, flags),
2209 				  argv, envp, flags);
2210 }
2211 #endif
2212 
2213 #ifdef CONFIG_SYSCTL
2214 
2215 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2216 		void *buffer, size_t *lenp, loff_t *ppos)
2217 {
2218 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2219 
2220 	if (!error)
2221 		validate_coredump_safety();
2222 	return error;
2223 }
2224 
2225 static struct ctl_table fs_exec_sysctls[] = {
2226 	{
2227 		.procname	= "suid_dumpable",
2228 		.data		= &suid_dumpable,
2229 		.maxlen		= sizeof(int),
2230 		.mode		= 0644,
2231 		.proc_handler	= proc_dointvec_minmax_coredump,
2232 		.extra1		= SYSCTL_ZERO,
2233 		.extra2		= SYSCTL_TWO,
2234 	},
2235 };
2236 
2237 static int __init init_fs_exec_sysctls(void)
2238 {
2239 	register_sysctl_init("fs", fs_exec_sysctls);
2240 	return 0;
2241 }
2242 
2243 fs_initcall(init_fs_exec_sysctls);
2244 #endif /* CONFIG_SYSCTL */
2245 
2246 #ifdef CONFIG_EXEC_KUNIT_TEST
2247 #include "tests/exec_kunit.c"
2248 #endif
2249