xref: /linux/fs/exec.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59 #include "internal.h"
60 
61 int core_uses_pid;
62 char core_pattern[CORENAME_MAX_SIZE] = "core";
63 int suid_dumpable = 0;
64 
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
67 static LIST_HEAD(formats);
68 static DEFINE_RWLOCK(binfmt_lock);
69 
70 int register_binfmt(struct linux_binfmt * fmt)
71 {
72 	if (!fmt)
73 		return -EINVAL;
74 	write_lock(&binfmt_lock);
75 	list_add(&fmt->lh, &formats);
76 	write_unlock(&binfmt_lock);
77 	return 0;
78 }
79 
80 EXPORT_SYMBOL(register_binfmt);
81 
82 void unregister_binfmt(struct linux_binfmt * fmt)
83 {
84 	write_lock(&binfmt_lock);
85 	list_del(&fmt->lh);
86 	write_unlock(&binfmt_lock);
87 }
88 
89 EXPORT_SYMBOL(unregister_binfmt);
90 
91 static inline void put_binfmt(struct linux_binfmt * fmt)
92 {
93 	module_put(fmt->module);
94 }
95 
96 /*
97  * Note that a shared library must be both readable and executable due to
98  * security reasons.
99  *
100  * Also note that we take the address to load from from the file itself.
101  */
102 SYSCALL_DEFINE1(uselib, const char __user *, library)
103 {
104 	struct file *file;
105 	struct nameidata nd;
106 	char *tmp = getname(library);
107 	int error = PTR_ERR(tmp);
108 
109 	if (!IS_ERR(tmp)) {
110 		error = path_lookup_open(AT_FDCWD, tmp,
111 					 LOOKUP_FOLLOW, &nd,
112 					 FMODE_READ|FMODE_EXEC);
113 		putname(tmp);
114 	}
115 	if (error)
116 		goto out;
117 
118 	error = -EINVAL;
119 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
120 		goto exit;
121 
122 	error = -EACCES;
123 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
124 		goto exit;
125 
126 	error = inode_permission(nd.path.dentry->d_inode,
127 				 MAY_READ | MAY_EXEC | MAY_OPEN);
128 	if (error)
129 		goto exit;
130 
131 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
132 	error = PTR_ERR(file);
133 	if (IS_ERR(file))
134 		goto out;
135 
136 	fsnotify_open(file->f_path.dentry);
137 
138 	error = -ENOEXEC;
139 	if(file->f_op) {
140 		struct linux_binfmt * fmt;
141 
142 		read_lock(&binfmt_lock);
143 		list_for_each_entry(fmt, &formats, lh) {
144 			if (!fmt->load_shlib)
145 				continue;
146 			if (!try_module_get(fmt->module))
147 				continue;
148 			read_unlock(&binfmt_lock);
149 			error = fmt->load_shlib(file);
150 			read_lock(&binfmt_lock);
151 			put_binfmt(fmt);
152 			if (error != -ENOEXEC)
153 				break;
154 		}
155 		read_unlock(&binfmt_lock);
156 	}
157 	fput(file);
158 out:
159   	return error;
160 exit:
161 	release_open_intent(&nd);
162 	path_put(&nd.path);
163 	goto out;
164 }
165 
166 #ifdef CONFIG_MMU
167 
168 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
169 		int write)
170 {
171 	struct page *page;
172 	int ret;
173 
174 #ifdef CONFIG_STACK_GROWSUP
175 	if (write) {
176 		ret = expand_stack_downwards(bprm->vma, pos);
177 		if (ret < 0)
178 			return NULL;
179 	}
180 #endif
181 	ret = get_user_pages(current, bprm->mm, pos,
182 			1, write, 1, &page, NULL);
183 	if (ret <= 0)
184 		return NULL;
185 
186 	if (write) {
187 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
188 		struct rlimit *rlim;
189 
190 		/*
191 		 * We've historically supported up to 32 pages (ARG_MAX)
192 		 * of argument strings even with small stacks
193 		 */
194 		if (size <= ARG_MAX)
195 			return page;
196 
197 		/*
198 		 * Limit to 1/4-th the stack size for the argv+env strings.
199 		 * This ensures that:
200 		 *  - the remaining binfmt code will not run out of stack space,
201 		 *  - the program will have a reasonable amount of stack left
202 		 *    to work from.
203 		 */
204 		rlim = current->signal->rlim;
205 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
206 			put_page(page);
207 			return NULL;
208 		}
209 	}
210 
211 	return page;
212 }
213 
214 static void put_arg_page(struct page *page)
215 {
216 	put_page(page);
217 }
218 
219 static void free_arg_page(struct linux_binprm *bprm, int i)
220 {
221 }
222 
223 static void free_arg_pages(struct linux_binprm *bprm)
224 {
225 }
226 
227 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
228 		struct page *page)
229 {
230 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
231 }
232 
233 static int __bprm_mm_init(struct linux_binprm *bprm)
234 {
235 	int err;
236 	struct vm_area_struct *vma = NULL;
237 	struct mm_struct *mm = bprm->mm;
238 
239 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
240 	if (!vma)
241 		return -ENOMEM;
242 
243 	down_write(&mm->mmap_sem);
244 	vma->vm_mm = mm;
245 
246 	/*
247 	 * Place the stack at the largest stack address the architecture
248 	 * supports. Later, we'll move this to an appropriate place. We don't
249 	 * use STACK_TOP because that can depend on attributes which aren't
250 	 * configured yet.
251 	 */
252 	vma->vm_end = STACK_TOP_MAX;
253 	vma->vm_start = vma->vm_end - PAGE_SIZE;
254 	vma->vm_flags = VM_STACK_FLAGS;
255 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
256 	err = insert_vm_struct(mm, vma);
257 	if (err)
258 		goto err;
259 
260 	mm->stack_vm = mm->total_vm = 1;
261 	up_write(&mm->mmap_sem);
262 	bprm->p = vma->vm_end - sizeof(void *);
263 	return 0;
264 err:
265 	up_write(&mm->mmap_sem);
266 	bprm->vma = NULL;
267 	kmem_cache_free(vm_area_cachep, vma);
268 	return err;
269 }
270 
271 static bool valid_arg_len(struct linux_binprm *bprm, long len)
272 {
273 	return len <= MAX_ARG_STRLEN;
274 }
275 
276 #else
277 
278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
279 		int write)
280 {
281 	struct page *page;
282 
283 	page = bprm->page[pos / PAGE_SIZE];
284 	if (!page && write) {
285 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
286 		if (!page)
287 			return NULL;
288 		bprm->page[pos / PAGE_SIZE] = page;
289 	}
290 
291 	return page;
292 }
293 
294 static void put_arg_page(struct page *page)
295 {
296 }
297 
298 static void free_arg_page(struct linux_binprm *bprm, int i)
299 {
300 	if (bprm->page[i]) {
301 		__free_page(bprm->page[i]);
302 		bprm->page[i] = NULL;
303 	}
304 }
305 
306 static void free_arg_pages(struct linux_binprm *bprm)
307 {
308 	int i;
309 
310 	for (i = 0; i < MAX_ARG_PAGES; i++)
311 		free_arg_page(bprm, i);
312 }
313 
314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
315 		struct page *page)
316 {
317 }
318 
319 static int __bprm_mm_init(struct linux_binprm *bprm)
320 {
321 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
322 	return 0;
323 }
324 
325 static bool valid_arg_len(struct linux_binprm *bprm, long len)
326 {
327 	return len <= bprm->p;
328 }
329 
330 #endif /* CONFIG_MMU */
331 
332 /*
333  * Create a new mm_struct and populate it with a temporary stack
334  * vm_area_struct.  We don't have enough context at this point to set the stack
335  * flags, permissions, and offset, so we use temporary values.  We'll update
336  * them later in setup_arg_pages().
337  */
338 int bprm_mm_init(struct linux_binprm *bprm)
339 {
340 	int err;
341 	struct mm_struct *mm = NULL;
342 
343 	bprm->mm = mm = mm_alloc();
344 	err = -ENOMEM;
345 	if (!mm)
346 		goto err;
347 
348 	err = init_new_context(current, mm);
349 	if (err)
350 		goto err;
351 
352 	err = __bprm_mm_init(bprm);
353 	if (err)
354 		goto err;
355 
356 	return 0;
357 
358 err:
359 	if (mm) {
360 		bprm->mm = NULL;
361 		mmdrop(mm);
362 	}
363 
364 	return err;
365 }
366 
367 /*
368  * count() counts the number of strings in array ARGV.
369  */
370 static int count(char __user * __user * argv, int max)
371 {
372 	int i = 0;
373 
374 	if (argv != NULL) {
375 		for (;;) {
376 			char __user * p;
377 
378 			if (get_user(p, argv))
379 				return -EFAULT;
380 			if (!p)
381 				break;
382 			argv++;
383 			if (i++ >= max)
384 				return -E2BIG;
385 			cond_resched();
386 		}
387 	}
388 	return i;
389 }
390 
391 /*
392  * 'copy_strings()' copies argument/environment strings from the old
393  * processes's memory to the new process's stack.  The call to get_user_pages()
394  * ensures the destination page is created and not swapped out.
395  */
396 static int copy_strings(int argc, char __user * __user * argv,
397 			struct linux_binprm *bprm)
398 {
399 	struct page *kmapped_page = NULL;
400 	char *kaddr = NULL;
401 	unsigned long kpos = 0;
402 	int ret;
403 
404 	while (argc-- > 0) {
405 		char __user *str;
406 		int len;
407 		unsigned long pos;
408 
409 		if (get_user(str, argv+argc) ||
410 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
411 			ret = -EFAULT;
412 			goto out;
413 		}
414 
415 		if (!valid_arg_len(bprm, len)) {
416 			ret = -E2BIG;
417 			goto out;
418 		}
419 
420 		/* We're going to work our way backwords. */
421 		pos = bprm->p;
422 		str += len;
423 		bprm->p -= len;
424 
425 		while (len > 0) {
426 			int offset, bytes_to_copy;
427 
428 			offset = pos % PAGE_SIZE;
429 			if (offset == 0)
430 				offset = PAGE_SIZE;
431 
432 			bytes_to_copy = offset;
433 			if (bytes_to_copy > len)
434 				bytes_to_copy = len;
435 
436 			offset -= bytes_to_copy;
437 			pos -= bytes_to_copy;
438 			str -= bytes_to_copy;
439 			len -= bytes_to_copy;
440 
441 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
442 				struct page *page;
443 
444 				page = get_arg_page(bprm, pos, 1);
445 				if (!page) {
446 					ret = -E2BIG;
447 					goto out;
448 				}
449 
450 				if (kmapped_page) {
451 					flush_kernel_dcache_page(kmapped_page);
452 					kunmap(kmapped_page);
453 					put_arg_page(kmapped_page);
454 				}
455 				kmapped_page = page;
456 				kaddr = kmap(kmapped_page);
457 				kpos = pos & PAGE_MASK;
458 				flush_arg_page(bprm, kpos, kmapped_page);
459 			}
460 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
461 				ret = -EFAULT;
462 				goto out;
463 			}
464 		}
465 	}
466 	ret = 0;
467 out:
468 	if (kmapped_page) {
469 		flush_kernel_dcache_page(kmapped_page);
470 		kunmap(kmapped_page);
471 		put_arg_page(kmapped_page);
472 	}
473 	return ret;
474 }
475 
476 /*
477  * Like copy_strings, but get argv and its values from kernel memory.
478  */
479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
480 {
481 	int r;
482 	mm_segment_t oldfs = get_fs();
483 	set_fs(KERNEL_DS);
484 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
485 	set_fs(oldfs);
486 	return r;
487 }
488 EXPORT_SYMBOL(copy_strings_kernel);
489 
490 #ifdef CONFIG_MMU
491 
492 /*
493  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
494  * the binfmt code determines where the new stack should reside, we shift it to
495  * its final location.  The process proceeds as follows:
496  *
497  * 1) Use shift to calculate the new vma endpoints.
498  * 2) Extend vma to cover both the old and new ranges.  This ensures the
499  *    arguments passed to subsequent functions are consistent.
500  * 3) Move vma's page tables to the new range.
501  * 4) Free up any cleared pgd range.
502  * 5) Shrink the vma to cover only the new range.
503  */
504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
505 {
506 	struct mm_struct *mm = vma->vm_mm;
507 	unsigned long old_start = vma->vm_start;
508 	unsigned long old_end = vma->vm_end;
509 	unsigned long length = old_end - old_start;
510 	unsigned long new_start = old_start - shift;
511 	unsigned long new_end = old_end - shift;
512 	struct mmu_gather *tlb;
513 
514 	BUG_ON(new_start > new_end);
515 
516 	/*
517 	 * ensure there are no vmas between where we want to go
518 	 * and where we are
519 	 */
520 	if (vma != find_vma(mm, new_start))
521 		return -EFAULT;
522 
523 	/*
524 	 * cover the whole range: [new_start, old_end)
525 	 */
526 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
527 
528 	/*
529 	 * move the page tables downwards, on failure we rely on
530 	 * process cleanup to remove whatever mess we made.
531 	 */
532 	if (length != move_page_tables(vma, old_start,
533 				       vma, new_start, length))
534 		return -ENOMEM;
535 
536 	lru_add_drain();
537 	tlb = tlb_gather_mmu(mm, 0);
538 	if (new_end > old_start) {
539 		/*
540 		 * when the old and new regions overlap clear from new_end.
541 		 */
542 		free_pgd_range(tlb, new_end, old_end, new_end,
543 			vma->vm_next ? vma->vm_next->vm_start : 0);
544 	} else {
545 		/*
546 		 * otherwise, clean from old_start; this is done to not touch
547 		 * the address space in [new_end, old_start) some architectures
548 		 * have constraints on va-space that make this illegal (IA64) -
549 		 * for the others its just a little faster.
550 		 */
551 		free_pgd_range(tlb, old_start, old_end, new_end,
552 			vma->vm_next ? vma->vm_next->vm_start : 0);
553 	}
554 	tlb_finish_mmu(tlb, new_end, old_end);
555 
556 	/*
557 	 * shrink the vma to just the new range.
558 	 */
559 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
560 
561 	return 0;
562 }
563 
564 #define EXTRA_STACK_VM_PAGES	20	/* random */
565 
566 /*
567  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568  * the stack is optionally relocated, and some extra space is added.
569  */
570 int setup_arg_pages(struct linux_binprm *bprm,
571 		    unsigned long stack_top,
572 		    int executable_stack)
573 {
574 	unsigned long ret;
575 	unsigned long stack_shift;
576 	struct mm_struct *mm = current->mm;
577 	struct vm_area_struct *vma = bprm->vma;
578 	struct vm_area_struct *prev = NULL;
579 	unsigned long vm_flags;
580 	unsigned long stack_base;
581 
582 #ifdef CONFIG_STACK_GROWSUP
583 	/* Limit stack size to 1GB */
584 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
585 	if (stack_base > (1 << 30))
586 		stack_base = 1 << 30;
587 
588 	/* Make sure we didn't let the argument array grow too large. */
589 	if (vma->vm_end - vma->vm_start > stack_base)
590 		return -ENOMEM;
591 
592 	stack_base = PAGE_ALIGN(stack_top - stack_base);
593 
594 	stack_shift = vma->vm_start - stack_base;
595 	mm->arg_start = bprm->p - stack_shift;
596 	bprm->p = vma->vm_end - stack_shift;
597 #else
598 	stack_top = arch_align_stack(stack_top);
599 	stack_top = PAGE_ALIGN(stack_top);
600 	stack_shift = vma->vm_end - stack_top;
601 
602 	bprm->p -= stack_shift;
603 	mm->arg_start = bprm->p;
604 #endif
605 
606 	if (bprm->loader)
607 		bprm->loader -= stack_shift;
608 	bprm->exec -= stack_shift;
609 
610 	down_write(&mm->mmap_sem);
611 	vm_flags = VM_STACK_FLAGS;
612 
613 	/*
614 	 * Adjust stack execute permissions; explicitly enable for
615 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 	 * (arch default) otherwise.
617 	 */
618 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
619 		vm_flags |= VM_EXEC;
620 	else if (executable_stack == EXSTACK_DISABLE_X)
621 		vm_flags &= ~VM_EXEC;
622 	vm_flags |= mm->def_flags;
623 
624 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
625 			vm_flags);
626 	if (ret)
627 		goto out_unlock;
628 	BUG_ON(prev != vma);
629 
630 	/* Move stack pages down in memory. */
631 	if (stack_shift) {
632 		ret = shift_arg_pages(vma, stack_shift);
633 		if (ret) {
634 			up_write(&mm->mmap_sem);
635 			return ret;
636 		}
637 	}
638 
639 #ifdef CONFIG_STACK_GROWSUP
640 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #else
642 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #endif
644 	ret = expand_stack(vma, stack_base);
645 	if (ret)
646 		ret = -EFAULT;
647 
648 out_unlock:
649 	up_write(&mm->mmap_sem);
650 	return 0;
651 }
652 EXPORT_SYMBOL(setup_arg_pages);
653 
654 #endif /* CONFIG_MMU */
655 
656 struct file *open_exec(const char *name)
657 {
658 	struct nameidata nd;
659 	struct file *file;
660 	int err;
661 
662 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
663 				FMODE_READ|FMODE_EXEC);
664 	if (err)
665 		goto out;
666 
667 	err = -EACCES;
668 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
669 		goto out_path_put;
670 
671 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
672 		goto out_path_put;
673 
674 	err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
675 	if (err)
676 		goto out_path_put;
677 
678 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
679 	if (IS_ERR(file))
680 		return file;
681 
682 	fsnotify_open(file->f_path.dentry);
683 
684 	err = deny_write_access(file);
685 	if (err) {
686 		fput(file);
687 		goto out;
688 	}
689 
690 	return file;
691 
692  out_path_put:
693 	release_open_intent(&nd);
694 	path_put(&nd.path);
695  out:
696 	return ERR_PTR(err);
697 }
698 EXPORT_SYMBOL(open_exec);
699 
700 int kernel_read(struct file *file, unsigned long offset,
701 	char *addr, unsigned long count)
702 {
703 	mm_segment_t old_fs;
704 	loff_t pos = offset;
705 	int result;
706 
707 	old_fs = get_fs();
708 	set_fs(get_ds());
709 	/* The cast to a user pointer is valid due to the set_fs() */
710 	result = vfs_read(file, (void __user *)addr, count, &pos);
711 	set_fs(old_fs);
712 	return result;
713 }
714 
715 EXPORT_SYMBOL(kernel_read);
716 
717 static int exec_mmap(struct mm_struct *mm)
718 {
719 	struct task_struct *tsk;
720 	struct mm_struct * old_mm, *active_mm;
721 
722 	/* Notify parent that we're no longer interested in the old VM */
723 	tsk = current;
724 	old_mm = current->mm;
725 	mm_release(tsk, old_mm);
726 
727 	if (old_mm) {
728 		/*
729 		 * Make sure that if there is a core dump in progress
730 		 * for the old mm, we get out and die instead of going
731 		 * through with the exec.  We must hold mmap_sem around
732 		 * checking core_state and changing tsk->mm.
733 		 */
734 		down_read(&old_mm->mmap_sem);
735 		if (unlikely(old_mm->core_state)) {
736 			up_read(&old_mm->mmap_sem);
737 			return -EINTR;
738 		}
739 	}
740 	task_lock(tsk);
741 	active_mm = tsk->active_mm;
742 	tsk->mm = mm;
743 	tsk->active_mm = mm;
744 	activate_mm(active_mm, mm);
745 	task_unlock(tsk);
746 	arch_pick_mmap_layout(mm);
747 	if (old_mm) {
748 		up_read(&old_mm->mmap_sem);
749 		BUG_ON(active_mm != old_mm);
750 		mm_update_next_owner(old_mm);
751 		mmput(old_mm);
752 		return 0;
753 	}
754 	mmdrop(active_mm);
755 	return 0;
756 }
757 
758 /*
759  * This function makes sure the current process has its own signal table,
760  * so that flush_signal_handlers can later reset the handlers without
761  * disturbing other processes.  (Other processes might share the signal
762  * table via the CLONE_SIGHAND option to clone().)
763  */
764 static int de_thread(struct task_struct *tsk)
765 {
766 	struct signal_struct *sig = tsk->signal;
767 	struct sighand_struct *oldsighand = tsk->sighand;
768 	spinlock_t *lock = &oldsighand->siglock;
769 	int count;
770 
771 	if (thread_group_empty(tsk))
772 		goto no_thread_group;
773 
774 	/*
775 	 * Kill all other threads in the thread group.
776 	 */
777 	spin_lock_irq(lock);
778 	if (signal_group_exit(sig)) {
779 		/*
780 		 * Another group action in progress, just
781 		 * return so that the signal is processed.
782 		 */
783 		spin_unlock_irq(lock);
784 		return -EAGAIN;
785 	}
786 	sig->group_exit_task = tsk;
787 	zap_other_threads(tsk);
788 
789 	/* Account for the thread group leader hanging around: */
790 	count = thread_group_leader(tsk) ? 1 : 2;
791 	sig->notify_count = count;
792 	while (atomic_read(&sig->count) > count) {
793 		__set_current_state(TASK_UNINTERRUPTIBLE);
794 		spin_unlock_irq(lock);
795 		schedule();
796 		spin_lock_irq(lock);
797 	}
798 	spin_unlock_irq(lock);
799 
800 	/*
801 	 * At this point all other threads have exited, all we have to
802 	 * do is to wait for the thread group leader to become inactive,
803 	 * and to assume its PID:
804 	 */
805 	if (!thread_group_leader(tsk)) {
806 		struct task_struct *leader = tsk->group_leader;
807 
808 		sig->notify_count = -1;	/* for exit_notify() */
809 		for (;;) {
810 			write_lock_irq(&tasklist_lock);
811 			if (likely(leader->exit_state))
812 				break;
813 			__set_current_state(TASK_UNINTERRUPTIBLE);
814 			write_unlock_irq(&tasklist_lock);
815 			schedule();
816 		}
817 
818 		/*
819 		 * The only record we have of the real-time age of a
820 		 * process, regardless of execs it's done, is start_time.
821 		 * All the past CPU time is accumulated in signal_struct
822 		 * from sister threads now dead.  But in this non-leader
823 		 * exec, nothing survives from the original leader thread,
824 		 * whose birth marks the true age of this process now.
825 		 * When we take on its identity by switching to its PID, we
826 		 * also take its birthdate (always earlier than our own).
827 		 */
828 		tsk->start_time = leader->start_time;
829 
830 		BUG_ON(!same_thread_group(leader, tsk));
831 		BUG_ON(has_group_leader_pid(tsk));
832 		/*
833 		 * An exec() starts a new thread group with the
834 		 * TGID of the previous thread group. Rehash the
835 		 * two threads with a switched PID, and release
836 		 * the former thread group leader:
837 		 */
838 
839 		/* Become a process group leader with the old leader's pid.
840 		 * The old leader becomes a thread of the this thread group.
841 		 * Note: The old leader also uses this pid until release_task
842 		 *       is called.  Odd but simple and correct.
843 		 */
844 		detach_pid(tsk, PIDTYPE_PID);
845 		tsk->pid = leader->pid;
846 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
847 		transfer_pid(leader, tsk, PIDTYPE_PGID);
848 		transfer_pid(leader, tsk, PIDTYPE_SID);
849 		list_replace_rcu(&leader->tasks, &tsk->tasks);
850 
851 		tsk->group_leader = tsk;
852 		leader->group_leader = tsk;
853 
854 		tsk->exit_signal = SIGCHLD;
855 
856 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
857 		leader->exit_state = EXIT_DEAD;
858 		write_unlock_irq(&tasklist_lock);
859 
860 		release_task(leader);
861 	}
862 
863 	sig->group_exit_task = NULL;
864 	sig->notify_count = 0;
865 
866 no_thread_group:
867 	exit_itimers(sig);
868 	flush_itimer_signals();
869 
870 	if (atomic_read(&oldsighand->count) != 1) {
871 		struct sighand_struct *newsighand;
872 		/*
873 		 * This ->sighand is shared with the CLONE_SIGHAND
874 		 * but not CLONE_THREAD task, switch to the new one.
875 		 */
876 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
877 		if (!newsighand)
878 			return -ENOMEM;
879 
880 		atomic_set(&newsighand->count, 1);
881 		memcpy(newsighand->action, oldsighand->action,
882 		       sizeof(newsighand->action));
883 
884 		write_lock_irq(&tasklist_lock);
885 		spin_lock(&oldsighand->siglock);
886 		rcu_assign_pointer(tsk->sighand, newsighand);
887 		spin_unlock(&oldsighand->siglock);
888 		write_unlock_irq(&tasklist_lock);
889 
890 		__cleanup_sighand(oldsighand);
891 	}
892 
893 	BUG_ON(!thread_group_leader(tsk));
894 	return 0;
895 }
896 
897 /*
898  * These functions flushes out all traces of the currently running executable
899  * so that a new one can be started
900  */
901 static void flush_old_files(struct files_struct * files)
902 {
903 	long j = -1;
904 	struct fdtable *fdt;
905 
906 	spin_lock(&files->file_lock);
907 	for (;;) {
908 		unsigned long set, i;
909 
910 		j++;
911 		i = j * __NFDBITS;
912 		fdt = files_fdtable(files);
913 		if (i >= fdt->max_fds)
914 			break;
915 		set = fdt->close_on_exec->fds_bits[j];
916 		if (!set)
917 			continue;
918 		fdt->close_on_exec->fds_bits[j] = 0;
919 		spin_unlock(&files->file_lock);
920 		for ( ; set ; i++,set >>= 1) {
921 			if (set & 1) {
922 				sys_close(i);
923 			}
924 		}
925 		spin_lock(&files->file_lock);
926 
927 	}
928 	spin_unlock(&files->file_lock);
929 }
930 
931 char *get_task_comm(char *buf, struct task_struct *tsk)
932 {
933 	/* buf must be at least sizeof(tsk->comm) in size */
934 	task_lock(tsk);
935 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
936 	task_unlock(tsk);
937 	return buf;
938 }
939 
940 void set_task_comm(struct task_struct *tsk, char *buf)
941 {
942 	task_lock(tsk);
943 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
944 	task_unlock(tsk);
945 }
946 
947 int flush_old_exec(struct linux_binprm * bprm)
948 {
949 	char * name;
950 	int i, ch, retval;
951 	char tcomm[sizeof(current->comm)];
952 
953 	/*
954 	 * Make sure we have a private signal table and that
955 	 * we are unassociated from the previous thread group.
956 	 */
957 	retval = de_thread(current);
958 	if (retval)
959 		goto out;
960 
961 	set_mm_exe_file(bprm->mm, bprm->file);
962 
963 	/*
964 	 * Release all of the old mmap stuff
965 	 */
966 	retval = exec_mmap(bprm->mm);
967 	if (retval)
968 		goto out;
969 
970 	bprm->mm = NULL;		/* We're using it now */
971 
972 	/* This is the point of no return */
973 	current->sas_ss_sp = current->sas_ss_size = 0;
974 
975 	if (current_euid() == current_uid() && current_egid() == current_gid())
976 		set_dumpable(current->mm, 1);
977 	else
978 		set_dumpable(current->mm, suid_dumpable);
979 
980 	name = bprm->filename;
981 
982 	/* Copies the binary name from after last slash */
983 	for (i=0; (ch = *(name++)) != '\0';) {
984 		if (ch == '/')
985 			i = 0; /* overwrite what we wrote */
986 		else
987 			if (i < (sizeof(tcomm) - 1))
988 				tcomm[i++] = ch;
989 	}
990 	tcomm[i] = '\0';
991 	set_task_comm(current, tcomm);
992 
993 	current->flags &= ~PF_RANDOMIZE;
994 	flush_thread();
995 
996 	/* Set the new mm task size. We have to do that late because it may
997 	 * depend on TIF_32BIT which is only updated in flush_thread() on
998 	 * some architectures like powerpc
999 	 */
1000 	current->mm->task_size = TASK_SIZE;
1001 
1002 	/* install the new credentials */
1003 	if (bprm->cred->uid != current_euid() ||
1004 	    bprm->cred->gid != current_egid()) {
1005 		current->pdeath_signal = 0;
1006 	} else if (file_permission(bprm->file, MAY_READ) ||
1007 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1008 		set_dumpable(current->mm, suid_dumpable);
1009 	}
1010 
1011 	current->personality &= ~bprm->per_clear;
1012 
1013 	/* An exec changes our domain. We are no longer part of the thread
1014 	   group */
1015 
1016 	current->self_exec_id++;
1017 
1018 	flush_signal_handlers(current, 0);
1019 	flush_old_files(current->files);
1020 
1021 	return 0;
1022 
1023 out:
1024 	return retval;
1025 }
1026 
1027 EXPORT_SYMBOL(flush_old_exec);
1028 
1029 /*
1030  * install the new credentials for this executable
1031  */
1032 void install_exec_creds(struct linux_binprm *bprm)
1033 {
1034 	security_bprm_committing_creds(bprm);
1035 
1036 	commit_creds(bprm->cred);
1037 	bprm->cred = NULL;
1038 
1039 	/* cred_exec_mutex must be held at least to this point to prevent
1040 	 * ptrace_attach() from altering our determination of the task's
1041 	 * credentials; any time after this it may be unlocked */
1042 
1043 	security_bprm_committed_creds(bprm);
1044 }
1045 EXPORT_SYMBOL(install_exec_creds);
1046 
1047 /*
1048  * determine how safe it is to execute the proposed program
1049  * - the caller must hold current->cred_exec_mutex to protect against
1050  *   PTRACE_ATTACH
1051  */
1052 void check_unsafe_exec(struct linux_binprm *bprm, struct files_struct *files)
1053 {
1054 	struct task_struct *p = current, *t;
1055 	unsigned long flags;
1056 	unsigned n_fs, n_files, n_sighand;
1057 
1058 	bprm->unsafe = tracehook_unsafe_exec(p);
1059 
1060 	n_fs = 1;
1061 	n_files = 1;
1062 	n_sighand = 1;
1063 	lock_task_sighand(p, &flags);
1064 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1065 		if (t->fs == p->fs)
1066 			n_fs++;
1067 		if (t->files == files)
1068 			n_files++;
1069 		n_sighand++;
1070 	}
1071 
1072 	if (atomic_read(&p->fs->count) > n_fs ||
1073 	    atomic_read(&p->files->count) > n_files ||
1074 	    atomic_read(&p->sighand->count) > n_sighand)
1075 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1076 
1077 	unlock_task_sighand(p, &flags);
1078 }
1079 
1080 /*
1081  * Fill the binprm structure from the inode.
1082  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1083  *
1084  * This may be called multiple times for binary chains (scripts for example).
1085  */
1086 int prepare_binprm(struct linux_binprm *bprm)
1087 {
1088 	umode_t mode;
1089 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1090 	int retval;
1091 
1092 	mode = inode->i_mode;
1093 	if (bprm->file->f_op == NULL)
1094 		return -EACCES;
1095 
1096 	/* clear any previous set[ug]id data from a previous binary */
1097 	bprm->cred->euid = current_euid();
1098 	bprm->cred->egid = current_egid();
1099 
1100 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1101 		/* Set-uid? */
1102 		if (mode & S_ISUID) {
1103 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1104 			bprm->cred->euid = inode->i_uid;
1105 		}
1106 
1107 		/* Set-gid? */
1108 		/*
1109 		 * If setgid is set but no group execute bit then this
1110 		 * is a candidate for mandatory locking, not a setgid
1111 		 * executable.
1112 		 */
1113 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1114 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1115 			bprm->cred->egid = inode->i_gid;
1116 		}
1117 	}
1118 
1119 	/* fill in binprm security blob */
1120 	retval = security_bprm_set_creds(bprm);
1121 	if (retval)
1122 		return retval;
1123 	bprm->cred_prepared = 1;
1124 
1125 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1126 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1127 }
1128 
1129 EXPORT_SYMBOL(prepare_binprm);
1130 
1131 /*
1132  * Arguments are '\0' separated strings found at the location bprm->p
1133  * points to; chop off the first by relocating brpm->p to right after
1134  * the first '\0' encountered.
1135  */
1136 int remove_arg_zero(struct linux_binprm *bprm)
1137 {
1138 	int ret = 0;
1139 	unsigned long offset;
1140 	char *kaddr;
1141 	struct page *page;
1142 
1143 	if (!bprm->argc)
1144 		return 0;
1145 
1146 	do {
1147 		offset = bprm->p & ~PAGE_MASK;
1148 		page = get_arg_page(bprm, bprm->p, 0);
1149 		if (!page) {
1150 			ret = -EFAULT;
1151 			goto out;
1152 		}
1153 		kaddr = kmap_atomic(page, KM_USER0);
1154 
1155 		for (; offset < PAGE_SIZE && kaddr[offset];
1156 				offset++, bprm->p++)
1157 			;
1158 
1159 		kunmap_atomic(kaddr, KM_USER0);
1160 		put_arg_page(page);
1161 
1162 		if (offset == PAGE_SIZE)
1163 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1164 	} while (offset == PAGE_SIZE);
1165 
1166 	bprm->p++;
1167 	bprm->argc--;
1168 	ret = 0;
1169 
1170 out:
1171 	return ret;
1172 }
1173 EXPORT_SYMBOL(remove_arg_zero);
1174 
1175 /*
1176  * cycle the list of binary formats handler, until one recognizes the image
1177  */
1178 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1179 {
1180 	unsigned int depth = bprm->recursion_depth;
1181 	int try,retval;
1182 	struct linux_binfmt *fmt;
1183 
1184 	retval = security_bprm_check(bprm);
1185 	if (retval)
1186 		return retval;
1187 
1188 	/* kernel module loader fixup */
1189 	/* so we don't try to load run modprobe in kernel space. */
1190 	set_fs(USER_DS);
1191 
1192 	retval = audit_bprm(bprm);
1193 	if (retval)
1194 		return retval;
1195 
1196 	retval = -ENOENT;
1197 	for (try=0; try<2; try++) {
1198 		read_lock(&binfmt_lock);
1199 		list_for_each_entry(fmt, &formats, lh) {
1200 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1201 			if (!fn)
1202 				continue;
1203 			if (!try_module_get(fmt->module))
1204 				continue;
1205 			read_unlock(&binfmt_lock);
1206 			retval = fn(bprm, regs);
1207 			/*
1208 			 * Restore the depth counter to its starting value
1209 			 * in this call, so we don't have to rely on every
1210 			 * load_binary function to restore it on return.
1211 			 */
1212 			bprm->recursion_depth = depth;
1213 			if (retval >= 0) {
1214 				if (depth == 0)
1215 					tracehook_report_exec(fmt, bprm, regs);
1216 				put_binfmt(fmt);
1217 				allow_write_access(bprm->file);
1218 				if (bprm->file)
1219 					fput(bprm->file);
1220 				bprm->file = NULL;
1221 				current->did_exec = 1;
1222 				proc_exec_connector(current);
1223 				return retval;
1224 			}
1225 			read_lock(&binfmt_lock);
1226 			put_binfmt(fmt);
1227 			if (retval != -ENOEXEC || bprm->mm == NULL)
1228 				break;
1229 			if (!bprm->file) {
1230 				read_unlock(&binfmt_lock);
1231 				return retval;
1232 			}
1233 		}
1234 		read_unlock(&binfmt_lock);
1235 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1236 			break;
1237 #ifdef CONFIG_MODULES
1238 		} else {
1239 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1240 			if (printable(bprm->buf[0]) &&
1241 			    printable(bprm->buf[1]) &&
1242 			    printable(bprm->buf[2]) &&
1243 			    printable(bprm->buf[3]))
1244 				break; /* -ENOEXEC */
1245 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1246 #endif
1247 		}
1248 	}
1249 	return retval;
1250 }
1251 
1252 EXPORT_SYMBOL(search_binary_handler);
1253 
1254 void free_bprm(struct linux_binprm *bprm)
1255 {
1256 	free_arg_pages(bprm);
1257 	if (bprm->cred)
1258 		abort_creds(bprm->cred);
1259 	kfree(bprm);
1260 }
1261 
1262 /*
1263  * sys_execve() executes a new program.
1264  */
1265 int do_execve(char * filename,
1266 	char __user *__user *argv,
1267 	char __user *__user *envp,
1268 	struct pt_regs * regs)
1269 {
1270 	struct linux_binprm *bprm;
1271 	struct file *file;
1272 	struct files_struct *displaced;
1273 	int retval;
1274 
1275 	retval = unshare_files(&displaced);
1276 	if (retval)
1277 		goto out_ret;
1278 
1279 	retval = -ENOMEM;
1280 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1281 	if (!bprm)
1282 		goto out_files;
1283 
1284 	retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1285 	if (retval < 0)
1286 		goto out_free;
1287 
1288 	retval = -ENOMEM;
1289 	bprm->cred = prepare_exec_creds();
1290 	if (!bprm->cred)
1291 		goto out_unlock;
1292 	check_unsafe_exec(bprm, displaced);
1293 
1294 	file = open_exec(filename);
1295 	retval = PTR_ERR(file);
1296 	if (IS_ERR(file))
1297 		goto out_unlock;
1298 
1299 	sched_exec();
1300 
1301 	bprm->file = file;
1302 	bprm->filename = filename;
1303 	bprm->interp = filename;
1304 
1305 	retval = bprm_mm_init(bprm);
1306 	if (retval)
1307 		goto out_file;
1308 
1309 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1310 	if ((retval = bprm->argc) < 0)
1311 		goto out;
1312 
1313 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1314 	if ((retval = bprm->envc) < 0)
1315 		goto out;
1316 
1317 	retval = prepare_binprm(bprm);
1318 	if (retval < 0)
1319 		goto out;
1320 
1321 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1322 	if (retval < 0)
1323 		goto out;
1324 
1325 	bprm->exec = bprm->p;
1326 	retval = copy_strings(bprm->envc, envp, bprm);
1327 	if (retval < 0)
1328 		goto out;
1329 
1330 	retval = copy_strings(bprm->argc, argv, bprm);
1331 	if (retval < 0)
1332 		goto out;
1333 
1334 	current->flags &= ~PF_KTHREAD;
1335 	retval = search_binary_handler(bprm,regs);
1336 	if (retval < 0)
1337 		goto out;
1338 
1339 	/* execve succeeded */
1340 	mutex_unlock(&current->cred_exec_mutex);
1341 	acct_update_integrals(current);
1342 	free_bprm(bprm);
1343 	if (displaced)
1344 		put_files_struct(displaced);
1345 	return retval;
1346 
1347 out:
1348 	if (bprm->mm)
1349 		mmput (bprm->mm);
1350 
1351 out_file:
1352 	if (bprm->file) {
1353 		allow_write_access(bprm->file);
1354 		fput(bprm->file);
1355 	}
1356 
1357 out_unlock:
1358 	mutex_unlock(&current->cred_exec_mutex);
1359 
1360 out_free:
1361 	free_bprm(bprm);
1362 
1363 out_files:
1364 	if (displaced)
1365 		reset_files_struct(displaced);
1366 out_ret:
1367 	return retval;
1368 }
1369 
1370 int set_binfmt(struct linux_binfmt *new)
1371 {
1372 	struct linux_binfmt *old = current->binfmt;
1373 
1374 	if (new) {
1375 		if (!try_module_get(new->module))
1376 			return -1;
1377 	}
1378 	current->binfmt = new;
1379 	if (old)
1380 		module_put(old->module);
1381 	return 0;
1382 }
1383 
1384 EXPORT_SYMBOL(set_binfmt);
1385 
1386 /* format_corename will inspect the pattern parameter, and output a
1387  * name into corename, which must have space for at least
1388  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1389  */
1390 static int format_corename(char *corename, long signr)
1391 {
1392 	const struct cred *cred = current_cred();
1393 	const char *pat_ptr = core_pattern;
1394 	int ispipe = (*pat_ptr == '|');
1395 	char *out_ptr = corename;
1396 	char *const out_end = corename + CORENAME_MAX_SIZE;
1397 	int rc;
1398 	int pid_in_pattern = 0;
1399 
1400 	/* Repeat as long as we have more pattern to process and more output
1401 	   space */
1402 	while (*pat_ptr) {
1403 		if (*pat_ptr != '%') {
1404 			if (out_ptr == out_end)
1405 				goto out;
1406 			*out_ptr++ = *pat_ptr++;
1407 		} else {
1408 			switch (*++pat_ptr) {
1409 			case 0:
1410 				goto out;
1411 			/* Double percent, output one percent */
1412 			case '%':
1413 				if (out_ptr == out_end)
1414 					goto out;
1415 				*out_ptr++ = '%';
1416 				break;
1417 			/* pid */
1418 			case 'p':
1419 				pid_in_pattern = 1;
1420 				rc = snprintf(out_ptr, out_end - out_ptr,
1421 					      "%d", task_tgid_vnr(current));
1422 				if (rc > out_end - out_ptr)
1423 					goto out;
1424 				out_ptr += rc;
1425 				break;
1426 			/* uid */
1427 			case 'u':
1428 				rc = snprintf(out_ptr, out_end - out_ptr,
1429 					      "%d", cred->uid);
1430 				if (rc > out_end - out_ptr)
1431 					goto out;
1432 				out_ptr += rc;
1433 				break;
1434 			/* gid */
1435 			case 'g':
1436 				rc = snprintf(out_ptr, out_end - out_ptr,
1437 					      "%d", cred->gid);
1438 				if (rc > out_end - out_ptr)
1439 					goto out;
1440 				out_ptr += rc;
1441 				break;
1442 			/* signal that caused the coredump */
1443 			case 's':
1444 				rc = snprintf(out_ptr, out_end - out_ptr,
1445 					      "%ld", signr);
1446 				if (rc > out_end - out_ptr)
1447 					goto out;
1448 				out_ptr += rc;
1449 				break;
1450 			/* UNIX time of coredump */
1451 			case 't': {
1452 				struct timeval tv;
1453 				do_gettimeofday(&tv);
1454 				rc = snprintf(out_ptr, out_end - out_ptr,
1455 					      "%lu", tv.tv_sec);
1456 				if (rc > out_end - out_ptr)
1457 					goto out;
1458 				out_ptr += rc;
1459 				break;
1460 			}
1461 			/* hostname */
1462 			case 'h':
1463 				down_read(&uts_sem);
1464 				rc = snprintf(out_ptr, out_end - out_ptr,
1465 					      "%s", utsname()->nodename);
1466 				up_read(&uts_sem);
1467 				if (rc > out_end - out_ptr)
1468 					goto out;
1469 				out_ptr += rc;
1470 				break;
1471 			/* executable */
1472 			case 'e':
1473 				rc = snprintf(out_ptr, out_end - out_ptr,
1474 					      "%s", current->comm);
1475 				if (rc > out_end - out_ptr)
1476 					goto out;
1477 				out_ptr += rc;
1478 				break;
1479 			/* core limit size */
1480 			case 'c':
1481 				rc = snprintf(out_ptr, out_end - out_ptr,
1482 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1483 				if (rc > out_end - out_ptr)
1484 					goto out;
1485 				out_ptr += rc;
1486 				break;
1487 			default:
1488 				break;
1489 			}
1490 			++pat_ptr;
1491 		}
1492 	}
1493 	/* Backward compatibility with core_uses_pid:
1494 	 *
1495 	 * If core_pattern does not include a %p (as is the default)
1496 	 * and core_uses_pid is set, then .%pid will be appended to
1497 	 * the filename. Do not do this for piped commands. */
1498 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1499 		rc = snprintf(out_ptr, out_end - out_ptr,
1500 			      ".%d", task_tgid_vnr(current));
1501 		if (rc > out_end - out_ptr)
1502 			goto out;
1503 		out_ptr += rc;
1504 	}
1505 out:
1506 	*out_ptr = 0;
1507 	return ispipe;
1508 }
1509 
1510 static int zap_process(struct task_struct *start)
1511 {
1512 	struct task_struct *t;
1513 	int nr = 0;
1514 
1515 	start->signal->flags = SIGNAL_GROUP_EXIT;
1516 	start->signal->group_stop_count = 0;
1517 
1518 	t = start;
1519 	do {
1520 		if (t != current && t->mm) {
1521 			sigaddset(&t->pending.signal, SIGKILL);
1522 			signal_wake_up(t, 1);
1523 			nr++;
1524 		}
1525 	} while_each_thread(start, t);
1526 
1527 	return nr;
1528 }
1529 
1530 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1531 				struct core_state *core_state, int exit_code)
1532 {
1533 	struct task_struct *g, *p;
1534 	unsigned long flags;
1535 	int nr = -EAGAIN;
1536 
1537 	spin_lock_irq(&tsk->sighand->siglock);
1538 	if (!signal_group_exit(tsk->signal)) {
1539 		mm->core_state = core_state;
1540 		tsk->signal->group_exit_code = exit_code;
1541 		nr = zap_process(tsk);
1542 	}
1543 	spin_unlock_irq(&tsk->sighand->siglock);
1544 	if (unlikely(nr < 0))
1545 		return nr;
1546 
1547 	if (atomic_read(&mm->mm_users) == nr + 1)
1548 		goto done;
1549 	/*
1550 	 * We should find and kill all tasks which use this mm, and we should
1551 	 * count them correctly into ->nr_threads. We don't take tasklist
1552 	 * lock, but this is safe wrt:
1553 	 *
1554 	 * fork:
1555 	 *	None of sub-threads can fork after zap_process(leader). All
1556 	 *	processes which were created before this point should be
1557 	 *	visible to zap_threads() because copy_process() adds the new
1558 	 *	process to the tail of init_task.tasks list, and lock/unlock
1559 	 *	of ->siglock provides a memory barrier.
1560 	 *
1561 	 * do_exit:
1562 	 *	The caller holds mm->mmap_sem. This means that the task which
1563 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1564 	 *	its ->mm.
1565 	 *
1566 	 * de_thread:
1567 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1568 	 *	we must see either old or new leader, this does not matter.
1569 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1570 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1571 	 *	it can't fail.
1572 	 *
1573 	 *	Note also that "g" can be the old leader with ->mm == NULL
1574 	 *	and already unhashed and thus removed from ->thread_group.
1575 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1576 	 *	clear the ->next pointer, we will find the new leader via
1577 	 *	next_thread().
1578 	 */
1579 	rcu_read_lock();
1580 	for_each_process(g) {
1581 		if (g == tsk->group_leader)
1582 			continue;
1583 		if (g->flags & PF_KTHREAD)
1584 			continue;
1585 		p = g;
1586 		do {
1587 			if (p->mm) {
1588 				if (unlikely(p->mm == mm)) {
1589 					lock_task_sighand(p, &flags);
1590 					nr += zap_process(p);
1591 					unlock_task_sighand(p, &flags);
1592 				}
1593 				break;
1594 			}
1595 		} while_each_thread(g, p);
1596 	}
1597 	rcu_read_unlock();
1598 done:
1599 	atomic_set(&core_state->nr_threads, nr);
1600 	return nr;
1601 }
1602 
1603 static int coredump_wait(int exit_code, struct core_state *core_state)
1604 {
1605 	struct task_struct *tsk = current;
1606 	struct mm_struct *mm = tsk->mm;
1607 	struct completion *vfork_done;
1608 	int core_waiters;
1609 
1610 	init_completion(&core_state->startup);
1611 	core_state->dumper.task = tsk;
1612 	core_state->dumper.next = NULL;
1613 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1614 	up_write(&mm->mmap_sem);
1615 
1616 	if (unlikely(core_waiters < 0))
1617 		goto fail;
1618 
1619 	/*
1620 	 * Make sure nobody is waiting for us to release the VM,
1621 	 * otherwise we can deadlock when we wait on each other
1622 	 */
1623 	vfork_done = tsk->vfork_done;
1624 	if (vfork_done) {
1625 		tsk->vfork_done = NULL;
1626 		complete(vfork_done);
1627 	}
1628 
1629 	if (core_waiters)
1630 		wait_for_completion(&core_state->startup);
1631 fail:
1632 	return core_waiters;
1633 }
1634 
1635 static void coredump_finish(struct mm_struct *mm)
1636 {
1637 	struct core_thread *curr, *next;
1638 	struct task_struct *task;
1639 
1640 	next = mm->core_state->dumper.next;
1641 	while ((curr = next) != NULL) {
1642 		next = curr->next;
1643 		task = curr->task;
1644 		/*
1645 		 * see exit_mm(), curr->task must not see
1646 		 * ->task == NULL before we read ->next.
1647 		 */
1648 		smp_mb();
1649 		curr->task = NULL;
1650 		wake_up_process(task);
1651 	}
1652 
1653 	mm->core_state = NULL;
1654 }
1655 
1656 /*
1657  * set_dumpable converts traditional three-value dumpable to two flags and
1658  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1659  * these bits are not changed atomically.  So get_dumpable can observe the
1660  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1661  * return either old dumpable or new one by paying attention to the order of
1662  * modifying the bits.
1663  *
1664  * dumpable |   mm->flags (binary)
1665  * old  new | initial interim  final
1666  * ---------+-----------------------
1667  *  0    1  |   00      01      01
1668  *  0    2  |   00      10(*)   11
1669  *  1    0  |   01      00      00
1670  *  1    2  |   01      11      11
1671  *  2    0  |   11      10(*)   00
1672  *  2    1  |   11      11      01
1673  *
1674  * (*) get_dumpable regards interim value of 10 as 11.
1675  */
1676 void set_dumpable(struct mm_struct *mm, int value)
1677 {
1678 	switch (value) {
1679 	case 0:
1680 		clear_bit(MMF_DUMPABLE, &mm->flags);
1681 		smp_wmb();
1682 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1683 		break;
1684 	case 1:
1685 		set_bit(MMF_DUMPABLE, &mm->flags);
1686 		smp_wmb();
1687 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1688 		break;
1689 	case 2:
1690 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1691 		smp_wmb();
1692 		set_bit(MMF_DUMPABLE, &mm->flags);
1693 		break;
1694 	}
1695 }
1696 
1697 int get_dumpable(struct mm_struct *mm)
1698 {
1699 	int ret;
1700 
1701 	ret = mm->flags & 0x3;
1702 	return (ret >= 2) ? 2 : ret;
1703 }
1704 
1705 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1706 {
1707 	struct core_state core_state;
1708 	char corename[CORENAME_MAX_SIZE + 1];
1709 	struct mm_struct *mm = current->mm;
1710 	struct linux_binfmt * binfmt;
1711 	struct inode * inode;
1712 	struct file * file;
1713 	const struct cred *old_cred;
1714 	struct cred *cred;
1715 	int retval = 0;
1716 	int flag = 0;
1717 	int ispipe = 0;
1718 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1719 	char **helper_argv = NULL;
1720 	int helper_argc = 0;
1721 	char *delimit;
1722 
1723 	audit_core_dumps(signr);
1724 
1725 	binfmt = current->binfmt;
1726 	if (!binfmt || !binfmt->core_dump)
1727 		goto fail;
1728 
1729 	cred = prepare_creds();
1730 	if (!cred) {
1731 		retval = -ENOMEM;
1732 		goto fail;
1733 	}
1734 
1735 	down_write(&mm->mmap_sem);
1736 	/*
1737 	 * If another thread got here first, or we are not dumpable, bail out.
1738 	 */
1739 	if (mm->core_state || !get_dumpable(mm)) {
1740 		up_write(&mm->mmap_sem);
1741 		put_cred(cred);
1742 		goto fail;
1743 	}
1744 
1745 	/*
1746 	 *	We cannot trust fsuid as being the "true" uid of the
1747 	 *	process nor do we know its entire history. We only know it
1748 	 *	was tainted so we dump it as root in mode 2.
1749 	 */
1750 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1751 		flag = O_EXCL;		/* Stop rewrite attacks */
1752 		cred->fsuid = 0;	/* Dump root private */
1753 	}
1754 
1755 	retval = coredump_wait(exit_code, &core_state);
1756 	if (retval < 0) {
1757 		put_cred(cred);
1758 		goto fail;
1759 	}
1760 
1761 	old_cred = override_creds(cred);
1762 
1763 	/*
1764 	 * Clear any false indication of pending signals that might
1765 	 * be seen by the filesystem code called to write the core file.
1766 	 */
1767 	clear_thread_flag(TIF_SIGPENDING);
1768 
1769 	/*
1770 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1771 	 * uses lock_kernel()
1772 	 */
1773  	lock_kernel();
1774 	ispipe = format_corename(corename, signr);
1775 	unlock_kernel();
1776 	/*
1777 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1778 	 * to a pipe.  Since we're not writing directly to the filesystem
1779 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1780 	 * created unless the pipe reader choses to write out the core file
1781 	 * at which point file size limits and permissions will be imposed
1782 	 * as it does with any other process
1783 	 */
1784 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1785 		goto fail_unlock;
1786 
1787  	if (ispipe) {
1788 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1789 		if (!helper_argv) {
1790 			printk(KERN_WARNING "%s failed to allocate memory\n",
1791 			       __func__);
1792 			goto fail_unlock;
1793 		}
1794 		/* Terminate the string before the first option */
1795 		delimit = strchr(corename, ' ');
1796 		if (delimit)
1797 			*delimit = '\0';
1798 		delimit = strrchr(helper_argv[0], '/');
1799 		if (delimit)
1800 			delimit++;
1801 		else
1802 			delimit = helper_argv[0];
1803 		if (!strcmp(delimit, current->comm)) {
1804 			printk(KERN_NOTICE "Recursive core dump detected, "
1805 					"aborting\n");
1806 			goto fail_unlock;
1807 		}
1808 
1809 		core_limit = RLIM_INFINITY;
1810 
1811 		/* SIGPIPE can happen, but it's just never processed */
1812  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1813 				&file)) {
1814  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1815 			       corename);
1816  			goto fail_unlock;
1817  		}
1818  	} else
1819  		file = filp_open(corename,
1820 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1821 				 0600);
1822 	if (IS_ERR(file))
1823 		goto fail_unlock;
1824 	inode = file->f_path.dentry->d_inode;
1825 	if (inode->i_nlink > 1)
1826 		goto close_fail;	/* multiple links - don't dump */
1827 	if (!ispipe && d_unhashed(file->f_path.dentry))
1828 		goto close_fail;
1829 
1830 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1831 	   but keep the previous behaviour for now. */
1832 	if (!ispipe && !S_ISREG(inode->i_mode))
1833 		goto close_fail;
1834 	/*
1835 	 * Dont allow local users get cute and trick others to coredump
1836 	 * into their pre-created files:
1837 	 */
1838 	if (inode->i_uid != current_fsuid())
1839 		goto close_fail;
1840 	if (!file->f_op)
1841 		goto close_fail;
1842 	if (!file->f_op->write)
1843 		goto close_fail;
1844 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1845 		goto close_fail;
1846 
1847 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1848 
1849 	if (retval)
1850 		current->signal->group_exit_code |= 0x80;
1851 close_fail:
1852 	filp_close(file, NULL);
1853 fail_unlock:
1854 	if (helper_argv)
1855 		argv_free(helper_argv);
1856 
1857 	revert_creds(old_cred);
1858 	put_cred(cred);
1859 	coredump_finish(mm);
1860 fail:
1861 	return;
1862 }
1863