1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 /* For vma exec functions. */ 82 #include "../mm/internal.h" 83 84 static int bprm_creds_from_file(struct linux_binprm *bprm); 85 86 int suid_dumpable = 0; 87 88 static LIST_HEAD(formats); 89 static DEFINE_RWLOCK(binfmt_lock); 90 91 void __register_binfmt(struct linux_binfmt * fmt, int insert) 92 { 93 write_lock(&binfmt_lock); 94 insert ? list_add(&fmt->lh, &formats) : 95 list_add_tail(&fmt->lh, &formats); 96 write_unlock(&binfmt_lock); 97 } 98 99 EXPORT_SYMBOL(__register_binfmt); 100 101 void unregister_binfmt(struct linux_binfmt * fmt) 102 { 103 write_lock(&binfmt_lock); 104 list_del(&fmt->lh); 105 write_unlock(&binfmt_lock); 106 } 107 108 EXPORT_SYMBOL(unregister_binfmt); 109 110 static inline void put_binfmt(struct linux_binfmt * fmt) 111 { 112 module_put(fmt->module); 113 } 114 115 bool path_noexec(const struct path *path) 116 { 117 return (path->mnt->mnt_flags & MNT_NOEXEC) || 118 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 119 } 120 121 #ifdef CONFIG_USELIB 122 /* 123 * Note that a shared library must be both readable and executable due to 124 * security reasons. 125 * 126 * Also note that we take the address to load from the file itself. 127 */ 128 SYSCALL_DEFINE1(uselib, const char __user *, library) 129 { 130 struct linux_binfmt *fmt; 131 struct file *file; 132 struct filename *tmp = getname(library); 133 int error = PTR_ERR(tmp); 134 static const struct open_flags uselib_flags = { 135 .open_flag = O_LARGEFILE | O_RDONLY, 136 .acc_mode = MAY_READ | MAY_EXEC, 137 .intent = LOOKUP_OPEN, 138 .lookup_flags = LOOKUP_FOLLOW, 139 }; 140 141 if (IS_ERR(tmp)) 142 goto out; 143 144 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 145 putname(tmp); 146 error = PTR_ERR(file); 147 if (IS_ERR(file)) 148 goto out; 149 150 /* 151 * Check do_open_execat() for an explanation. 152 */ 153 error = -EACCES; 154 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 155 path_noexec(&file->f_path)) 156 goto exit; 157 158 error = -ENOEXEC; 159 160 read_lock(&binfmt_lock); 161 list_for_each_entry(fmt, &formats, lh) { 162 if (!fmt->load_shlib) 163 continue; 164 if (!try_module_get(fmt->module)) 165 continue; 166 read_unlock(&binfmt_lock); 167 error = fmt->load_shlib(file); 168 read_lock(&binfmt_lock); 169 put_binfmt(fmt); 170 if (error != -ENOEXEC) 171 break; 172 } 173 read_unlock(&binfmt_lock); 174 exit: 175 fput(file); 176 out: 177 return error; 178 } 179 #endif /* #ifdef CONFIG_USELIB */ 180 181 #ifdef CONFIG_MMU 182 /* 183 * The nascent bprm->mm is not visible until exec_mmap() but it can 184 * use a lot of memory, account these pages in current->mm temporary 185 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 186 * change the counter back via acct_arg_size(0). 187 */ 188 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 189 { 190 struct mm_struct *mm = current->mm; 191 long diff = (long)(pages - bprm->vma_pages); 192 193 if (!mm || !diff) 194 return; 195 196 bprm->vma_pages = pages; 197 add_mm_counter(mm, MM_ANONPAGES, diff); 198 } 199 200 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 201 int write) 202 { 203 struct page *page; 204 struct vm_area_struct *vma = bprm->vma; 205 struct mm_struct *mm = bprm->mm; 206 int ret; 207 208 /* 209 * Avoid relying on expanding the stack down in GUP (which 210 * does not work for STACK_GROWSUP anyway), and just do it 211 * ahead of time. 212 */ 213 if (!mmap_read_lock_maybe_expand(mm, vma, pos, write)) 214 return NULL; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and 'mm' is the new process's mm. 219 */ 220 ret = get_user_pages_remote(mm, pos, 1, 221 write ? FOLL_WRITE : 0, 222 &page, NULL); 223 mmap_read_unlock(mm); 224 if (ret <= 0) 225 return NULL; 226 227 if (write) 228 acct_arg_size(bprm, vma_pages(vma)); 229 230 return page; 231 } 232 233 static void put_arg_page(struct page *page) 234 { 235 put_page(page); 236 } 237 238 static void free_arg_pages(struct linux_binprm *bprm) 239 { 240 } 241 242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 243 struct page *page) 244 { 245 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 246 } 247 248 static bool valid_arg_len(struct linux_binprm *bprm, long len) 249 { 250 return len <= MAX_ARG_STRLEN; 251 } 252 253 #else 254 255 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 256 { 257 } 258 259 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 260 int write) 261 { 262 struct page *page; 263 264 page = bprm->page[pos / PAGE_SIZE]; 265 if (!page && write) { 266 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 267 if (!page) 268 return NULL; 269 bprm->page[pos / PAGE_SIZE] = page; 270 } 271 272 return page; 273 } 274 275 static void put_arg_page(struct page *page) 276 { 277 } 278 279 static void free_arg_page(struct linux_binprm *bprm, int i) 280 { 281 if (bprm->page[i]) { 282 __free_page(bprm->page[i]); 283 bprm->page[i] = NULL; 284 } 285 } 286 287 static void free_arg_pages(struct linux_binprm *bprm) 288 { 289 int i; 290 291 for (i = 0; i < MAX_ARG_PAGES; i++) 292 free_arg_page(bprm, i); 293 } 294 295 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 296 struct page *page) 297 { 298 } 299 300 static bool valid_arg_len(struct linux_binprm *bprm, long len) 301 { 302 return len <= bprm->p; 303 } 304 305 #endif /* CONFIG_MMU */ 306 307 /* 308 * Create a new mm_struct and populate it with a temporary stack 309 * vm_area_struct. We don't have enough context at this point to set the stack 310 * flags, permissions, and offset, so we use temporary values. We'll update 311 * them later in setup_arg_pages(). 312 */ 313 static int bprm_mm_init(struct linux_binprm *bprm) 314 { 315 int err; 316 struct mm_struct *mm = NULL; 317 318 bprm->mm = mm = mm_alloc(); 319 err = -ENOMEM; 320 if (!mm) 321 goto err; 322 323 /* Save current stack limit for all calculations made during exec. */ 324 task_lock(current->group_leader); 325 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 326 task_unlock(current->group_leader); 327 328 #ifndef CONFIG_MMU 329 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 330 #else 331 err = create_init_stack_vma(bprm->mm, &bprm->vma, &bprm->p); 332 if (err) 333 goto err; 334 #endif 335 336 return 0; 337 338 err: 339 if (mm) { 340 bprm->mm = NULL; 341 mmdrop(mm); 342 } 343 344 return err; 345 } 346 347 struct user_arg_ptr { 348 #ifdef CONFIG_COMPAT 349 bool is_compat; 350 #endif 351 union { 352 const char __user *const __user *native; 353 #ifdef CONFIG_COMPAT 354 const compat_uptr_t __user *compat; 355 #endif 356 } ptr; 357 }; 358 359 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 360 { 361 const char __user *native; 362 363 #ifdef CONFIG_COMPAT 364 if (unlikely(argv.is_compat)) { 365 compat_uptr_t compat; 366 367 if (get_user(compat, argv.ptr.compat + nr)) 368 return ERR_PTR(-EFAULT); 369 370 return compat_ptr(compat); 371 } 372 #endif 373 374 if (get_user(native, argv.ptr.native + nr)) 375 return ERR_PTR(-EFAULT); 376 377 return native; 378 } 379 380 /* 381 * count() counts the number of strings in array ARGV. 382 */ 383 static int count(struct user_arg_ptr argv, int max) 384 { 385 int i = 0; 386 387 if (argv.ptr.native != NULL) { 388 for (;;) { 389 const char __user *p = get_user_arg_ptr(argv, i); 390 391 if (!p) 392 break; 393 394 if (IS_ERR(p)) 395 return -EFAULT; 396 397 if (i >= max) 398 return -E2BIG; 399 ++i; 400 401 if (fatal_signal_pending(current)) 402 return -ERESTARTNOHAND; 403 cond_resched(); 404 } 405 } 406 return i; 407 } 408 409 static int count_strings_kernel(const char *const *argv) 410 { 411 int i; 412 413 if (!argv) 414 return 0; 415 416 for (i = 0; argv[i]; ++i) { 417 if (i >= MAX_ARG_STRINGS) 418 return -E2BIG; 419 if (fatal_signal_pending(current)) 420 return -ERESTARTNOHAND; 421 cond_resched(); 422 } 423 return i; 424 } 425 426 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 427 unsigned long limit) 428 { 429 #ifdef CONFIG_MMU 430 /* Avoid a pathological bprm->p. */ 431 if (bprm->p < limit) 432 return -E2BIG; 433 bprm->argmin = bprm->p - limit; 434 #endif 435 return 0; 436 } 437 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 438 { 439 #ifdef CONFIG_MMU 440 return bprm->p < bprm->argmin; 441 #else 442 return false; 443 #endif 444 } 445 446 /* 447 * Calculate bprm->argmin from: 448 * - _STK_LIM 449 * - ARG_MAX 450 * - bprm->rlim_stack.rlim_cur 451 * - bprm->argc 452 * - bprm->envc 453 * - bprm->p 454 */ 455 static int bprm_stack_limits(struct linux_binprm *bprm) 456 { 457 unsigned long limit, ptr_size; 458 459 /* 460 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 461 * (whichever is smaller) for the argv+env strings. 462 * This ensures that: 463 * - the remaining binfmt code will not run out of stack space, 464 * - the program will have a reasonable amount of stack left 465 * to work from. 466 */ 467 limit = _STK_LIM / 4 * 3; 468 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 469 /* 470 * We've historically supported up to 32 pages (ARG_MAX) 471 * of argument strings even with small stacks 472 */ 473 limit = max_t(unsigned long, limit, ARG_MAX); 474 /* Reject totally pathological counts. */ 475 if (bprm->argc < 0 || bprm->envc < 0) 476 return -E2BIG; 477 /* 478 * We must account for the size of all the argv and envp pointers to 479 * the argv and envp strings, since they will also take up space in 480 * the stack. They aren't stored until much later when we can't 481 * signal to the parent that the child has run out of stack space. 482 * Instead, calculate it here so it's possible to fail gracefully. 483 * 484 * In the case of argc = 0, make sure there is space for adding a 485 * empty string (which will bump argc to 1), to ensure confused 486 * userspace programs don't start processing from argv[1], thinking 487 * argc can never be 0, to keep them from walking envp by accident. 488 * See do_execveat_common(). 489 */ 490 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 491 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 492 return -E2BIG; 493 if (limit <= ptr_size) 494 return -E2BIG; 495 limit -= ptr_size; 496 497 return bprm_set_stack_limit(bprm, limit); 498 } 499 500 /* 501 * 'copy_strings()' copies argument/environment strings from the old 502 * processes's memory to the new process's stack. The call to get_user_pages() 503 * ensures the destination page is created and not swapped out. 504 */ 505 static int copy_strings(int argc, struct user_arg_ptr argv, 506 struct linux_binprm *bprm) 507 { 508 struct page *kmapped_page = NULL; 509 char *kaddr = NULL; 510 unsigned long kpos = 0; 511 int ret; 512 513 while (argc-- > 0) { 514 const char __user *str; 515 int len; 516 unsigned long pos; 517 518 ret = -EFAULT; 519 str = get_user_arg_ptr(argv, argc); 520 if (IS_ERR(str)) 521 goto out; 522 523 len = strnlen_user(str, MAX_ARG_STRLEN); 524 if (!len) 525 goto out; 526 527 ret = -E2BIG; 528 if (!valid_arg_len(bprm, len)) 529 goto out; 530 531 /* We're going to work our way backwards. */ 532 pos = bprm->p; 533 str += len; 534 bprm->p -= len; 535 if (bprm_hit_stack_limit(bprm)) 536 goto out; 537 538 while (len > 0) { 539 int offset, bytes_to_copy; 540 541 if (fatal_signal_pending(current)) { 542 ret = -ERESTARTNOHAND; 543 goto out; 544 } 545 cond_resched(); 546 547 offset = pos % PAGE_SIZE; 548 if (offset == 0) 549 offset = PAGE_SIZE; 550 551 bytes_to_copy = offset; 552 if (bytes_to_copy > len) 553 bytes_to_copy = len; 554 555 offset -= bytes_to_copy; 556 pos -= bytes_to_copy; 557 str -= bytes_to_copy; 558 len -= bytes_to_copy; 559 560 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 561 struct page *page; 562 563 page = get_arg_page(bprm, pos, 1); 564 if (!page) { 565 ret = -E2BIG; 566 goto out; 567 } 568 569 if (kmapped_page) { 570 flush_dcache_page(kmapped_page); 571 kunmap_local(kaddr); 572 put_arg_page(kmapped_page); 573 } 574 kmapped_page = page; 575 kaddr = kmap_local_page(kmapped_page); 576 kpos = pos & PAGE_MASK; 577 flush_arg_page(bprm, kpos, kmapped_page); 578 } 579 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 580 ret = -EFAULT; 581 goto out; 582 } 583 } 584 } 585 ret = 0; 586 out: 587 if (kmapped_page) { 588 flush_dcache_page(kmapped_page); 589 kunmap_local(kaddr); 590 put_arg_page(kmapped_page); 591 } 592 return ret; 593 } 594 595 /* 596 * Copy and argument/environment string from the kernel to the processes stack. 597 */ 598 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 599 { 600 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 601 unsigned long pos = bprm->p; 602 603 if (len == 0) 604 return -EFAULT; 605 if (!valid_arg_len(bprm, len)) 606 return -E2BIG; 607 608 /* We're going to work our way backwards. */ 609 arg += len; 610 bprm->p -= len; 611 if (bprm_hit_stack_limit(bprm)) 612 return -E2BIG; 613 614 while (len > 0) { 615 unsigned int bytes_to_copy = min_t(unsigned int, len, 616 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 617 struct page *page; 618 619 pos -= bytes_to_copy; 620 arg -= bytes_to_copy; 621 len -= bytes_to_copy; 622 623 page = get_arg_page(bprm, pos, 1); 624 if (!page) 625 return -E2BIG; 626 flush_arg_page(bprm, pos & PAGE_MASK, page); 627 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 628 put_arg_page(page); 629 } 630 631 return 0; 632 } 633 EXPORT_SYMBOL(copy_string_kernel); 634 635 static int copy_strings_kernel(int argc, const char *const *argv, 636 struct linux_binprm *bprm) 637 { 638 while (argc-- > 0) { 639 int ret = copy_string_kernel(argv[argc], bprm); 640 if (ret < 0) 641 return ret; 642 if (fatal_signal_pending(current)) 643 return -ERESTARTNOHAND; 644 cond_resched(); 645 } 646 return 0; 647 } 648 649 #ifdef CONFIG_MMU 650 651 /* 652 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 653 * the stack is optionally relocated, and some extra space is added. 654 */ 655 int setup_arg_pages(struct linux_binprm *bprm, 656 unsigned long stack_top, 657 int executable_stack) 658 { 659 unsigned long ret; 660 unsigned long stack_shift; 661 struct mm_struct *mm = current->mm; 662 struct vm_area_struct *vma = bprm->vma; 663 struct vm_area_struct *prev = NULL; 664 unsigned long vm_flags; 665 unsigned long stack_base; 666 unsigned long stack_size; 667 unsigned long stack_expand; 668 unsigned long rlim_stack; 669 struct mmu_gather tlb; 670 struct vma_iterator vmi; 671 672 #ifdef CONFIG_STACK_GROWSUP 673 /* Limit stack size */ 674 stack_base = bprm->rlim_stack.rlim_max; 675 676 stack_base = calc_max_stack_size(stack_base); 677 678 /* Add space for stack randomization. */ 679 if (current->flags & PF_RANDOMIZE) 680 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 681 682 /* Make sure we didn't let the argument array grow too large. */ 683 if (vma->vm_end - vma->vm_start > stack_base) 684 return -ENOMEM; 685 686 stack_base = PAGE_ALIGN(stack_top - stack_base); 687 688 stack_shift = vma->vm_start - stack_base; 689 mm->arg_start = bprm->p - stack_shift; 690 bprm->p = vma->vm_end - stack_shift; 691 #else 692 stack_top = arch_align_stack(stack_top); 693 stack_top = PAGE_ALIGN(stack_top); 694 695 if (unlikely(stack_top < mmap_min_addr) || 696 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 697 return -ENOMEM; 698 699 stack_shift = vma->vm_end - stack_top; 700 701 bprm->p -= stack_shift; 702 mm->arg_start = bprm->p; 703 #endif 704 705 bprm->exec -= stack_shift; 706 707 if (mmap_write_lock_killable(mm)) 708 return -EINTR; 709 710 vm_flags = VM_STACK_FLAGS; 711 712 /* 713 * Adjust stack execute permissions; explicitly enable for 714 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 715 * (arch default) otherwise. 716 */ 717 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 718 vm_flags |= VM_EXEC; 719 else if (executable_stack == EXSTACK_DISABLE_X) 720 vm_flags &= ~VM_EXEC; 721 vm_flags |= mm->def_flags; 722 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 723 724 vma_iter_init(&vmi, mm, vma->vm_start); 725 726 tlb_gather_mmu(&tlb, mm); 727 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 728 vm_flags); 729 tlb_finish_mmu(&tlb); 730 731 if (ret) 732 goto out_unlock; 733 BUG_ON(prev != vma); 734 735 if (unlikely(vm_flags & VM_EXEC)) { 736 pr_warn_once("process '%pD4' started with executable stack\n", 737 bprm->file); 738 } 739 740 /* Move stack pages down in memory. */ 741 if (stack_shift) { 742 /* 743 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 744 * the binfmt code determines where the new stack should reside, we shift it to 745 * its final location. 746 */ 747 ret = relocate_vma_down(vma, stack_shift); 748 if (ret) 749 goto out_unlock; 750 } 751 752 /* mprotect_fixup is overkill to remove the temporary stack flags */ 753 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 754 755 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 756 stack_size = vma->vm_end - vma->vm_start; 757 /* 758 * Align this down to a page boundary as expand_stack 759 * will align it up. 760 */ 761 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 762 763 stack_expand = min(rlim_stack, stack_size + stack_expand); 764 765 #ifdef CONFIG_STACK_GROWSUP 766 stack_base = vma->vm_start + stack_expand; 767 #else 768 stack_base = vma->vm_end - stack_expand; 769 #endif 770 current->mm->start_stack = bprm->p; 771 ret = expand_stack_locked(vma, stack_base); 772 if (ret) 773 ret = -EFAULT; 774 775 out_unlock: 776 mmap_write_unlock(mm); 777 return ret; 778 } 779 EXPORT_SYMBOL(setup_arg_pages); 780 781 #else 782 783 /* 784 * Transfer the program arguments and environment from the holding pages 785 * onto the stack. The provided stack pointer is adjusted accordingly. 786 */ 787 int transfer_args_to_stack(struct linux_binprm *bprm, 788 unsigned long *sp_location) 789 { 790 unsigned long index, stop, sp; 791 int ret = 0; 792 793 stop = bprm->p >> PAGE_SHIFT; 794 sp = *sp_location; 795 796 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 797 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 798 char *src = kmap_local_page(bprm->page[index]) + offset; 799 sp -= PAGE_SIZE - offset; 800 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 801 ret = -EFAULT; 802 kunmap_local(src); 803 if (ret) 804 goto out; 805 } 806 807 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 808 *sp_location = sp; 809 810 out: 811 return ret; 812 } 813 EXPORT_SYMBOL(transfer_args_to_stack); 814 815 #endif /* CONFIG_MMU */ 816 817 /* 818 * On success, caller must call do_close_execat() on the returned 819 * struct file to close it. 820 */ 821 static struct file *do_open_execat(int fd, struct filename *name, int flags) 822 { 823 int err; 824 struct file *file __free(fput) = NULL; 825 struct open_flags open_exec_flags = { 826 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 827 .acc_mode = MAY_EXEC, 828 .intent = LOOKUP_OPEN, 829 .lookup_flags = LOOKUP_FOLLOW, 830 }; 831 832 if ((flags & 833 ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0) 834 return ERR_PTR(-EINVAL); 835 if (flags & AT_SYMLINK_NOFOLLOW) 836 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 837 if (flags & AT_EMPTY_PATH) 838 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 839 840 file = do_filp_open(fd, name, &open_exec_flags); 841 if (IS_ERR(file)) 842 return file; 843 844 /* 845 * In the past the regular type check was here. It moved to may_open() in 846 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 847 * an invariant that all non-regular files error out before we get here. 848 */ 849 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 850 path_noexec(&file->f_path)) 851 return ERR_PTR(-EACCES); 852 853 err = exe_file_deny_write_access(file); 854 if (err) 855 return ERR_PTR(err); 856 857 return no_free_ptr(file); 858 } 859 860 /** 861 * open_exec - Open a path name for execution 862 * 863 * @name: path name to open with the intent of executing it. 864 * 865 * Returns ERR_PTR on failure or allocated struct file on success. 866 * 867 * As this is a wrapper for the internal do_open_execat(), callers 868 * must call exe_file_allow_write_access() before fput() on release. Also see 869 * do_close_execat(). 870 */ 871 struct file *open_exec(const char *name) 872 { 873 struct filename *filename = getname_kernel(name); 874 struct file *f = ERR_CAST(filename); 875 876 if (!IS_ERR(filename)) { 877 f = do_open_execat(AT_FDCWD, filename, 0); 878 putname(filename); 879 } 880 return f; 881 } 882 EXPORT_SYMBOL(open_exec); 883 884 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 885 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 886 { 887 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 888 if (res > 0) 889 flush_icache_user_range(addr, addr + len); 890 return res; 891 } 892 EXPORT_SYMBOL(read_code); 893 #endif 894 895 /* 896 * Maps the mm_struct mm into the current task struct. 897 * On success, this function returns with exec_update_lock 898 * held for writing. 899 */ 900 static int exec_mmap(struct mm_struct *mm) 901 { 902 struct task_struct *tsk; 903 struct mm_struct *old_mm, *active_mm; 904 int ret; 905 906 /* Notify parent that we're no longer interested in the old VM */ 907 tsk = current; 908 old_mm = current->mm; 909 exec_mm_release(tsk, old_mm); 910 911 ret = down_write_killable(&tsk->signal->exec_update_lock); 912 if (ret) 913 return ret; 914 915 if (old_mm) { 916 /* 917 * If there is a pending fatal signal perhaps a signal 918 * whose default action is to create a coredump get 919 * out and die instead of going through with the exec. 920 */ 921 ret = mmap_read_lock_killable(old_mm); 922 if (ret) { 923 up_write(&tsk->signal->exec_update_lock); 924 return ret; 925 } 926 } 927 928 task_lock(tsk); 929 membarrier_exec_mmap(mm); 930 931 local_irq_disable(); 932 active_mm = tsk->active_mm; 933 tsk->active_mm = mm; 934 tsk->mm = mm; 935 mm_init_cid(mm, tsk); 936 /* 937 * This prevents preemption while active_mm is being loaded and 938 * it and mm are being updated, which could cause problems for 939 * lazy tlb mm refcounting when these are updated by context 940 * switches. Not all architectures can handle irqs off over 941 * activate_mm yet. 942 */ 943 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 944 local_irq_enable(); 945 activate_mm(active_mm, mm); 946 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 947 local_irq_enable(); 948 lru_gen_add_mm(mm); 949 task_unlock(tsk); 950 lru_gen_use_mm(mm); 951 if (old_mm) { 952 mmap_read_unlock(old_mm); 953 BUG_ON(active_mm != old_mm); 954 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 955 mm_update_next_owner(old_mm); 956 mmput(old_mm); 957 return 0; 958 } 959 mmdrop_lazy_tlb(active_mm); 960 return 0; 961 } 962 963 static int de_thread(struct task_struct *tsk) 964 { 965 struct signal_struct *sig = tsk->signal; 966 struct sighand_struct *oldsighand = tsk->sighand; 967 spinlock_t *lock = &oldsighand->siglock; 968 969 if (thread_group_empty(tsk)) 970 goto no_thread_group; 971 972 /* 973 * Kill all other threads in the thread group. 974 */ 975 spin_lock_irq(lock); 976 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 977 /* 978 * Another group action in progress, just 979 * return so that the signal is processed. 980 */ 981 spin_unlock_irq(lock); 982 return -EAGAIN; 983 } 984 985 sig->group_exec_task = tsk; 986 sig->notify_count = zap_other_threads(tsk); 987 if (!thread_group_leader(tsk)) 988 sig->notify_count--; 989 990 while (sig->notify_count) { 991 __set_current_state(TASK_KILLABLE); 992 spin_unlock_irq(lock); 993 schedule(); 994 if (__fatal_signal_pending(tsk)) 995 goto killed; 996 spin_lock_irq(lock); 997 } 998 spin_unlock_irq(lock); 999 1000 /* 1001 * At this point all other threads have exited, all we have to 1002 * do is to wait for the thread group leader to become inactive, 1003 * and to assume its PID: 1004 */ 1005 if (!thread_group_leader(tsk)) { 1006 struct task_struct *leader = tsk->group_leader; 1007 1008 for (;;) { 1009 cgroup_threadgroup_change_begin(tsk); 1010 write_lock_irq(&tasklist_lock); 1011 /* 1012 * Do this under tasklist_lock to ensure that 1013 * exit_notify() can't miss ->group_exec_task 1014 */ 1015 sig->notify_count = -1; 1016 if (likely(leader->exit_state)) 1017 break; 1018 __set_current_state(TASK_KILLABLE); 1019 write_unlock_irq(&tasklist_lock); 1020 cgroup_threadgroup_change_end(tsk); 1021 schedule(); 1022 if (__fatal_signal_pending(tsk)) 1023 goto killed; 1024 } 1025 1026 /* 1027 * The only record we have of the real-time age of a 1028 * process, regardless of execs it's done, is start_time. 1029 * All the past CPU time is accumulated in signal_struct 1030 * from sister threads now dead. But in this non-leader 1031 * exec, nothing survives from the original leader thread, 1032 * whose birth marks the true age of this process now. 1033 * When we take on its identity by switching to its PID, we 1034 * also take its birthdate (always earlier than our own). 1035 */ 1036 tsk->start_time = leader->start_time; 1037 tsk->start_boottime = leader->start_boottime; 1038 1039 BUG_ON(!same_thread_group(leader, tsk)); 1040 /* 1041 * An exec() starts a new thread group with the 1042 * TGID of the previous thread group. Rehash the 1043 * two threads with a switched PID, and release 1044 * the former thread group leader: 1045 */ 1046 1047 /* Become a process group leader with the old leader's pid. 1048 * The old leader becomes a thread of the this thread group. 1049 */ 1050 exchange_tids(tsk, leader); 1051 transfer_pid(leader, tsk, PIDTYPE_TGID); 1052 transfer_pid(leader, tsk, PIDTYPE_PGID); 1053 transfer_pid(leader, tsk, PIDTYPE_SID); 1054 1055 list_replace_rcu(&leader->tasks, &tsk->tasks); 1056 list_replace_init(&leader->sibling, &tsk->sibling); 1057 1058 tsk->group_leader = tsk; 1059 leader->group_leader = tsk; 1060 1061 tsk->exit_signal = SIGCHLD; 1062 leader->exit_signal = -1; 1063 1064 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1065 leader->exit_state = EXIT_DEAD; 1066 /* 1067 * We are going to release_task()->ptrace_unlink() silently, 1068 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1069 * the tracer won't block again waiting for this thread. 1070 */ 1071 if (unlikely(leader->ptrace)) 1072 __wake_up_parent(leader, leader->parent); 1073 write_unlock_irq(&tasklist_lock); 1074 cgroup_threadgroup_change_end(tsk); 1075 1076 release_task(leader); 1077 } 1078 1079 sig->group_exec_task = NULL; 1080 sig->notify_count = 0; 1081 1082 no_thread_group: 1083 /* we have changed execution domain */ 1084 tsk->exit_signal = SIGCHLD; 1085 1086 BUG_ON(!thread_group_leader(tsk)); 1087 return 0; 1088 1089 killed: 1090 /* protects against exit_notify() and __exit_signal() */ 1091 read_lock(&tasklist_lock); 1092 sig->group_exec_task = NULL; 1093 sig->notify_count = 0; 1094 read_unlock(&tasklist_lock); 1095 return -EAGAIN; 1096 } 1097 1098 1099 /* 1100 * This function makes sure the current process has its own signal table, 1101 * so that flush_signal_handlers can later reset the handlers without 1102 * disturbing other processes. (Other processes might share the signal 1103 * table via the CLONE_SIGHAND option to clone().) 1104 */ 1105 static int unshare_sighand(struct task_struct *me) 1106 { 1107 struct sighand_struct *oldsighand = me->sighand; 1108 1109 if (refcount_read(&oldsighand->count) != 1) { 1110 struct sighand_struct *newsighand; 1111 /* 1112 * This ->sighand is shared with the CLONE_SIGHAND 1113 * but not CLONE_THREAD task, switch to the new one. 1114 */ 1115 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1116 if (!newsighand) 1117 return -ENOMEM; 1118 1119 refcount_set(&newsighand->count, 1); 1120 1121 write_lock_irq(&tasklist_lock); 1122 spin_lock(&oldsighand->siglock); 1123 memcpy(newsighand->action, oldsighand->action, 1124 sizeof(newsighand->action)); 1125 rcu_assign_pointer(me->sighand, newsighand); 1126 spin_unlock(&oldsighand->siglock); 1127 write_unlock_irq(&tasklist_lock); 1128 1129 __cleanup_sighand(oldsighand); 1130 } 1131 return 0; 1132 } 1133 1134 /* 1135 * This is unlocked -- the string will always be NUL-terminated, but 1136 * may show overlapping contents if racing concurrent reads. 1137 */ 1138 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1139 { 1140 size_t len = min(strlen(buf), sizeof(tsk->comm) - 1); 1141 1142 trace_task_rename(tsk, buf); 1143 memcpy(tsk->comm, buf, len); 1144 memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len); 1145 perf_event_comm(tsk, exec); 1146 } 1147 1148 /* 1149 * Calling this is the point of no return. None of the failures will be 1150 * seen by userspace since either the process is already taking a fatal 1151 * signal (via de_thread() or coredump), or will have SEGV raised 1152 * (after exec_mmap()) by search_binary_handler (see below). 1153 */ 1154 int begin_new_exec(struct linux_binprm * bprm) 1155 { 1156 struct task_struct *me = current; 1157 int retval; 1158 1159 /* Once we are committed compute the creds */ 1160 retval = bprm_creds_from_file(bprm); 1161 if (retval) 1162 return retval; 1163 1164 /* 1165 * This tracepoint marks the point before flushing the old exec where 1166 * the current task is still unchanged, but errors are fatal (point of 1167 * no return). The later "sched_process_exec" tracepoint is called after 1168 * the current task has successfully switched to the new exec. 1169 */ 1170 trace_sched_prepare_exec(current, bprm); 1171 1172 /* 1173 * Ensure all future errors are fatal. 1174 */ 1175 bprm->point_of_no_return = true; 1176 1177 /* Make this the only thread in the thread group */ 1178 retval = de_thread(me); 1179 if (retval) 1180 goto out; 1181 /* see the comment in check_unsafe_exec() */ 1182 current->fs->in_exec = 0; 1183 /* 1184 * Cancel any io_uring activity across execve 1185 */ 1186 io_uring_task_cancel(); 1187 1188 /* Ensure the files table is not shared. */ 1189 retval = unshare_files(); 1190 if (retval) 1191 goto out; 1192 1193 /* 1194 * Must be called _before_ exec_mmap() as bprm->mm is 1195 * not visible until then. Doing it here also ensures 1196 * we don't race against replace_mm_exe_file(). 1197 */ 1198 retval = set_mm_exe_file(bprm->mm, bprm->file); 1199 if (retval) 1200 goto out; 1201 1202 /* If the binary is not readable then enforce mm->dumpable=0 */ 1203 would_dump(bprm, bprm->file); 1204 if (bprm->have_execfd) 1205 would_dump(bprm, bprm->executable); 1206 1207 /* 1208 * Release all of the old mmap stuff 1209 */ 1210 acct_arg_size(bprm, 0); 1211 retval = exec_mmap(bprm->mm); 1212 if (retval) 1213 goto out; 1214 1215 bprm->mm = NULL; 1216 1217 retval = exec_task_namespaces(); 1218 if (retval) 1219 goto out_unlock; 1220 1221 #ifdef CONFIG_POSIX_TIMERS 1222 spin_lock_irq(&me->sighand->siglock); 1223 posix_cpu_timers_exit(me); 1224 spin_unlock_irq(&me->sighand->siglock); 1225 exit_itimers(me); 1226 flush_itimer_signals(); 1227 #endif 1228 1229 /* 1230 * Make the signal table private. 1231 */ 1232 retval = unshare_sighand(me); 1233 if (retval) 1234 goto out_unlock; 1235 1236 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1237 PF_NOFREEZE | PF_NO_SETAFFINITY); 1238 flush_thread(); 1239 me->personality &= ~bprm->per_clear; 1240 1241 clear_syscall_work_syscall_user_dispatch(me); 1242 1243 /* 1244 * We have to apply CLOEXEC before we change whether the process is 1245 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1246 * trying to access the should-be-closed file descriptors of a process 1247 * undergoing exec(2). 1248 */ 1249 do_close_on_exec(me->files); 1250 1251 if (bprm->secureexec) { 1252 /* Make sure parent cannot signal privileged process. */ 1253 me->pdeath_signal = 0; 1254 1255 /* 1256 * For secureexec, reset the stack limit to sane default to 1257 * avoid bad behavior from the prior rlimits. This has to 1258 * happen before arch_pick_mmap_layout(), which examines 1259 * RLIMIT_STACK, but after the point of no return to avoid 1260 * needing to clean up the change on failure. 1261 */ 1262 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1263 bprm->rlim_stack.rlim_cur = _STK_LIM; 1264 } 1265 1266 me->sas_ss_sp = me->sas_ss_size = 0; 1267 1268 /* 1269 * Figure out dumpability. Note that this checking only of current 1270 * is wrong, but userspace depends on it. This should be testing 1271 * bprm->secureexec instead. 1272 */ 1273 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1274 !(uid_eq(current_euid(), current_uid()) && 1275 gid_eq(current_egid(), current_gid()))) 1276 set_dumpable(current->mm, suid_dumpable); 1277 else 1278 set_dumpable(current->mm, SUID_DUMP_USER); 1279 1280 perf_event_exec(); 1281 1282 /* 1283 * If the original filename was empty, alloc_bprm() made up a path 1284 * that will probably not be useful to admins running ps or similar. 1285 * Let's fix it up to be something reasonable. 1286 */ 1287 if (bprm->comm_from_dentry) { 1288 /* 1289 * Hold RCU lock to keep the name from being freed behind our back. 1290 * Use acquire semantics to make sure the terminating NUL from 1291 * __d_alloc() is seen. 1292 * 1293 * Note, we're deliberately sloppy here. We don't need to care about 1294 * detecting a concurrent rename and just want a terminated name. 1295 */ 1296 rcu_read_lock(); 1297 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name), 1298 true); 1299 rcu_read_unlock(); 1300 } else { 1301 __set_task_comm(me, kbasename(bprm->filename), true); 1302 } 1303 1304 /* An exec changes our domain. We are no longer part of the thread 1305 group */ 1306 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1307 flush_signal_handlers(me, 0); 1308 1309 retval = set_cred_ucounts(bprm->cred); 1310 if (retval < 0) 1311 goto out_unlock; 1312 1313 /* 1314 * install the new credentials for this executable 1315 */ 1316 security_bprm_committing_creds(bprm); 1317 1318 commit_creds(bprm->cred); 1319 bprm->cred = NULL; 1320 1321 /* 1322 * Disable monitoring for regular users 1323 * when executing setuid binaries. Must 1324 * wait until new credentials are committed 1325 * by commit_creds() above 1326 */ 1327 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1328 perf_event_exit_task(me); 1329 /* 1330 * cred_guard_mutex must be held at least to this point to prevent 1331 * ptrace_attach() from altering our determination of the task's 1332 * credentials; any time after this it may be unlocked. 1333 */ 1334 security_bprm_committed_creds(bprm); 1335 1336 /* Pass the opened binary to the interpreter. */ 1337 if (bprm->have_execfd) { 1338 retval = get_unused_fd_flags(0); 1339 if (retval < 0) 1340 goto out_unlock; 1341 fd_install(retval, bprm->executable); 1342 bprm->executable = NULL; 1343 bprm->execfd = retval; 1344 } 1345 return 0; 1346 1347 out_unlock: 1348 up_write(&me->signal->exec_update_lock); 1349 if (!bprm->cred) 1350 mutex_unlock(&me->signal->cred_guard_mutex); 1351 1352 out: 1353 return retval; 1354 } 1355 EXPORT_SYMBOL(begin_new_exec); 1356 1357 void would_dump(struct linux_binprm *bprm, struct file *file) 1358 { 1359 struct inode *inode = file_inode(file); 1360 struct mnt_idmap *idmap = file_mnt_idmap(file); 1361 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1362 struct user_namespace *old, *user_ns; 1363 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1364 1365 /* Ensure mm->user_ns contains the executable */ 1366 user_ns = old = bprm->mm->user_ns; 1367 while ((user_ns != &init_user_ns) && 1368 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1369 user_ns = user_ns->parent; 1370 1371 if (old != user_ns) { 1372 bprm->mm->user_ns = get_user_ns(user_ns); 1373 put_user_ns(old); 1374 } 1375 } 1376 } 1377 EXPORT_SYMBOL(would_dump); 1378 1379 void setup_new_exec(struct linux_binprm * bprm) 1380 { 1381 /* Setup things that can depend upon the personality */ 1382 struct task_struct *me = current; 1383 1384 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1385 1386 arch_setup_new_exec(); 1387 1388 /* Set the new mm task size. We have to do that late because it may 1389 * depend on TIF_32BIT which is only updated in flush_thread() on 1390 * some architectures like powerpc 1391 */ 1392 me->mm->task_size = TASK_SIZE; 1393 up_write(&me->signal->exec_update_lock); 1394 mutex_unlock(&me->signal->cred_guard_mutex); 1395 } 1396 EXPORT_SYMBOL(setup_new_exec); 1397 1398 /* Runs immediately before start_thread() takes over. */ 1399 void finalize_exec(struct linux_binprm *bprm) 1400 { 1401 /* Store any stack rlimit changes before starting thread. */ 1402 task_lock(current->group_leader); 1403 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1404 task_unlock(current->group_leader); 1405 } 1406 EXPORT_SYMBOL(finalize_exec); 1407 1408 /* 1409 * Prepare credentials and lock ->cred_guard_mutex. 1410 * setup_new_exec() commits the new creds and drops the lock. 1411 * Or, if exec fails before, free_bprm() should release ->cred 1412 * and unlock. 1413 */ 1414 static int prepare_bprm_creds(struct linux_binprm *bprm) 1415 { 1416 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1417 return -ERESTARTNOINTR; 1418 1419 bprm->cred = prepare_exec_creds(); 1420 if (likely(bprm->cred)) 1421 return 0; 1422 1423 mutex_unlock(¤t->signal->cred_guard_mutex); 1424 return -ENOMEM; 1425 } 1426 1427 /* Matches do_open_execat() */ 1428 static void do_close_execat(struct file *file) 1429 { 1430 if (!file) 1431 return; 1432 exe_file_allow_write_access(file); 1433 fput(file); 1434 } 1435 1436 static void free_bprm(struct linux_binprm *bprm) 1437 { 1438 if (bprm->mm) { 1439 acct_arg_size(bprm, 0); 1440 mmput(bprm->mm); 1441 } 1442 free_arg_pages(bprm); 1443 if (bprm->cred) { 1444 /* in case exec fails before de_thread() succeeds */ 1445 current->fs->in_exec = 0; 1446 mutex_unlock(¤t->signal->cred_guard_mutex); 1447 abort_creds(bprm->cred); 1448 } 1449 do_close_execat(bprm->file); 1450 if (bprm->executable) 1451 fput(bprm->executable); 1452 /* If a binfmt changed the interp, free it. */ 1453 if (bprm->interp != bprm->filename) 1454 kfree(bprm->interp); 1455 kfree(bprm->fdpath); 1456 kfree(bprm); 1457 } 1458 1459 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1460 { 1461 struct linux_binprm *bprm; 1462 struct file *file; 1463 int retval = -ENOMEM; 1464 1465 file = do_open_execat(fd, filename, flags); 1466 if (IS_ERR(file)) 1467 return ERR_CAST(file); 1468 1469 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1470 if (!bprm) { 1471 do_close_execat(file); 1472 return ERR_PTR(-ENOMEM); 1473 } 1474 1475 bprm->file = file; 1476 1477 if (fd == AT_FDCWD || filename->name[0] == '/') { 1478 bprm->filename = filename->name; 1479 } else { 1480 if (filename->name[0] == '\0') { 1481 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1482 bprm->comm_from_dentry = 1; 1483 } else { 1484 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1485 fd, filename->name); 1486 } 1487 if (!bprm->fdpath) 1488 goto out_free; 1489 1490 /* 1491 * Record that a name derived from an O_CLOEXEC fd will be 1492 * inaccessible after exec. This allows the code in exec to 1493 * choose to fail when the executable is not mmaped into the 1494 * interpreter and an open file descriptor is not passed to 1495 * the interpreter. This makes for a better user experience 1496 * than having the interpreter start and then immediately fail 1497 * when it finds the executable is inaccessible. 1498 */ 1499 if (get_close_on_exec(fd)) 1500 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1501 1502 bprm->filename = bprm->fdpath; 1503 } 1504 bprm->interp = bprm->filename; 1505 1506 /* 1507 * At this point, security_file_open() has already been called (with 1508 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will 1509 * stop just after the security_bprm_creds_for_exec() call in 1510 * bprm_execve(). Indeed, the kernel should not try to parse the 1511 * content of the file with exec_binprm() nor change the calling 1512 * thread, which means that the following security functions will not 1513 * be called: 1514 * - security_bprm_check() 1515 * - security_bprm_creds_from_file() 1516 * - security_bprm_committing_creds() 1517 * - security_bprm_committed_creds() 1518 */ 1519 bprm->is_check = !!(flags & AT_EXECVE_CHECK); 1520 1521 retval = bprm_mm_init(bprm); 1522 if (!retval) 1523 return bprm; 1524 1525 out_free: 1526 free_bprm(bprm); 1527 return ERR_PTR(retval); 1528 } 1529 1530 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1531 { 1532 /* If a binfmt changed the interp, free it first. */ 1533 if (bprm->interp != bprm->filename) 1534 kfree(bprm->interp); 1535 bprm->interp = kstrdup(interp, GFP_KERNEL); 1536 if (!bprm->interp) 1537 return -ENOMEM; 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(bprm_change_interp); 1541 1542 /* 1543 * determine how safe it is to execute the proposed program 1544 * - the caller must hold ->cred_guard_mutex to protect against 1545 * PTRACE_ATTACH or seccomp thread-sync 1546 */ 1547 static void check_unsafe_exec(struct linux_binprm *bprm) 1548 { 1549 struct task_struct *p = current, *t; 1550 unsigned n_fs; 1551 1552 if (p->ptrace) 1553 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1554 1555 /* 1556 * This isn't strictly necessary, but it makes it harder for LSMs to 1557 * mess up. 1558 */ 1559 if (task_no_new_privs(current)) 1560 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1561 1562 /* 1563 * If another task is sharing our fs, we cannot safely 1564 * suid exec because the differently privileged task 1565 * will be able to manipulate the current directory, etc. 1566 * It would be nice to force an unshare instead... 1567 * 1568 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS) 1569 * from another sub-thread until de_thread() succeeds, this 1570 * state is protected by cred_guard_mutex we hold. 1571 */ 1572 n_fs = 1; 1573 spin_lock(&p->fs->lock); 1574 rcu_read_lock(); 1575 for_other_threads(p, t) { 1576 if (t->fs == p->fs) 1577 n_fs++; 1578 } 1579 rcu_read_unlock(); 1580 1581 /* "users" and "in_exec" locked for copy_fs() */ 1582 if (p->fs->users > n_fs) 1583 bprm->unsafe |= LSM_UNSAFE_SHARE; 1584 else 1585 p->fs->in_exec = 1; 1586 spin_unlock(&p->fs->lock); 1587 } 1588 1589 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1590 { 1591 /* Handle suid and sgid on files */ 1592 struct mnt_idmap *idmap; 1593 struct inode *inode = file_inode(file); 1594 unsigned int mode; 1595 vfsuid_t vfsuid; 1596 vfsgid_t vfsgid; 1597 int err; 1598 1599 if (!mnt_may_suid(file->f_path.mnt)) 1600 return; 1601 1602 if (task_no_new_privs(current)) 1603 return; 1604 1605 mode = READ_ONCE(inode->i_mode); 1606 if (!(mode & (S_ISUID|S_ISGID))) 1607 return; 1608 1609 idmap = file_mnt_idmap(file); 1610 1611 /* Be careful if suid/sgid is set */ 1612 inode_lock(inode); 1613 1614 /* Atomically reload and check mode/uid/gid now that lock held. */ 1615 mode = inode->i_mode; 1616 vfsuid = i_uid_into_vfsuid(idmap, inode); 1617 vfsgid = i_gid_into_vfsgid(idmap, inode); 1618 err = inode_permission(idmap, inode, MAY_EXEC); 1619 inode_unlock(inode); 1620 1621 /* Did the exec bit vanish out from under us? Give up. */ 1622 if (err) 1623 return; 1624 1625 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1626 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1627 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1628 return; 1629 1630 if (mode & S_ISUID) { 1631 bprm->per_clear |= PER_CLEAR_ON_SETID; 1632 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1633 } 1634 1635 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1636 bprm->per_clear |= PER_CLEAR_ON_SETID; 1637 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1638 } 1639 } 1640 1641 /* 1642 * Compute brpm->cred based upon the final binary. 1643 */ 1644 static int bprm_creds_from_file(struct linux_binprm *bprm) 1645 { 1646 /* Compute creds based on which file? */ 1647 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1648 1649 bprm_fill_uid(bprm, file); 1650 return security_bprm_creds_from_file(bprm, file); 1651 } 1652 1653 /* 1654 * Fill the binprm structure from the inode. 1655 * Read the first BINPRM_BUF_SIZE bytes 1656 * 1657 * This may be called multiple times for binary chains (scripts for example). 1658 */ 1659 static int prepare_binprm(struct linux_binprm *bprm) 1660 { 1661 loff_t pos = 0; 1662 1663 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1664 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1665 } 1666 1667 /* 1668 * Arguments are '\0' separated strings found at the location bprm->p 1669 * points to; chop off the first by relocating brpm->p to right after 1670 * the first '\0' encountered. 1671 */ 1672 int remove_arg_zero(struct linux_binprm *bprm) 1673 { 1674 unsigned long offset; 1675 char *kaddr; 1676 struct page *page; 1677 1678 if (!bprm->argc) 1679 return 0; 1680 1681 do { 1682 offset = bprm->p & ~PAGE_MASK; 1683 page = get_arg_page(bprm, bprm->p, 0); 1684 if (!page) 1685 return -EFAULT; 1686 kaddr = kmap_local_page(page); 1687 1688 for (; offset < PAGE_SIZE && kaddr[offset]; 1689 offset++, bprm->p++) 1690 ; 1691 1692 kunmap_local(kaddr); 1693 put_arg_page(page); 1694 } while (offset == PAGE_SIZE); 1695 1696 bprm->p++; 1697 bprm->argc--; 1698 1699 return 0; 1700 } 1701 EXPORT_SYMBOL(remove_arg_zero); 1702 1703 /* 1704 * cycle the list of binary formats handler, until one recognizes the image 1705 */ 1706 static int search_binary_handler(struct linux_binprm *bprm) 1707 { 1708 struct linux_binfmt *fmt; 1709 int retval; 1710 1711 retval = prepare_binprm(bprm); 1712 if (retval < 0) 1713 return retval; 1714 1715 retval = security_bprm_check(bprm); 1716 if (retval) 1717 return retval; 1718 1719 read_lock(&binfmt_lock); 1720 list_for_each_entry(fmt, &formats, lh) { 1721 if (!try_module_get(fmt->module)) 1722 continue; 1723 read_unlock(&binfmt_lock); 1724 1725 retval = fmt->load_binary(bprm); 1726 1727 read_lock(&binfmt_lock); 1728 put_binfmt(fmt); 1729 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1730 read_unlock(&binfmt_lock); 1731 return retval; 1732 } 1733 } 1734 read_unlock(&binfmt_lock); 1735 1736 return -ENOEXEC; 1737 } 1738 1739 /* binfmt handlers will call back into begin_new_exec() on success. */ 1740 static int exec_binprm(struct linux_binprm *bprm) 1741 { 1742 pid_t old_pid, old_vpid; 1743 int ret, depth; 1744 1745 /* Need to fetch pid before load_binary changes it */ 1746 old_pid = current->pid; 1747 rcu_read_lock(); 1748 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1749 rcu_read_unlock(); 1750 1751 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1752 for (depth = 0;; depth++) { 1753 struct file *exec; 1754 if (depth > 5) 1755 return -ELOOP; 1756 1757 ret = search_binary_handler(bprm); 1758 if (ret < 0) 1759 return ret; 1760 if (!bprm->interpreter) 1761 break; 1762 1763 exec = bprm->file; 1764 bprm->file = bprm->interpreter; 1765 bprm->interpreter = NULL; 1766 1767 exe_file_allow_write_access(exec); 1768 if (unlikely(bprm->have_execfd)) { 1769 if (bprm->executable) { 1770 fput(exec); 1771 return -ENOEXEC; 1772 } 1773 bprm->executable = exec; 1774 } else 1775 fput(exec); 1776 } 1777 1778 audit_bprm(bprm); 1779 trace_sched_process_exec(current, old_pid, bprm); 1780 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1781 proc_exec_connector(current); 1782 return 0; 1783 } 1784 1785 static int bprm_execve(struct linux_binprm *bprm) 1786 { 1787 int retval; 1788 1789 retval = prepare_bprm_creds(bprm); 1790 if (retval) 1791 return retval; 1792 1793 /* 1794 * Check for unsafe execution states before exec_binprm(), which 1795 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1796 * where setuid-ness is evaluated. 1797 */ 1798 check_unsafe_exec(bprm); 1799 current->in_execve = 1; 1800 sched_mm_cid_before_execve(current); 1801 1802 sched_exec(); 1803 1804 /* Set the unchanging part of bprm->cred */ 1805 retval = security_bprm_creds_for_exec(bprm); 1806 if (retval || bprm->is_check) 1807 goto out; 1808 1809 retval = exec_binprm(bprm); 1810 if (retval < 0) 1811 goto out; 1812 1813 sched_mm_cid_after_execve(current); 1814 rseq_execve(current); 1815 /* execve succeeded */ 1816 current->in_execve = 0; 1817 user_events_execve(current); 1818 acct_update_integrals(current); 1819 task_numa_free(current, false); 1820 return retval; 1821 1822 out: 1823 /* 1824 * If past the point of no return ensure the code never 1825 * returns to the userspace process. Use an existing fatal 1826 * signal if present otherwise terminate the process with 1827 * SIGSEGV. 1828 */ 1829 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1830 force_fatal_sig(SIGSEGV); 1831 1832 sched_mm_cid_after_execve(current); 1833 rseq_set_notify_resume(current); 1834 current->in_execve = 0; 1835 1836 return retval; 1837 } 1838 1839 static int do_execveat_common(int fd, struct filename *filename, 1840 struct user_arg_ptr argv, 1841 struct user_arg_ptr envp, 1842 int flags) 1843 { 1844 struct linux_binprm *bprm; 1845 int retval; 1846 1847 if (IS_ERR(filename)) 1848 return PTR_ERR(filename); 1849 1850 /* 1851 * We move the actual failure in case of RLIMIT_NPROC excess from 1852 * set*uid() to execve() because too many poorly written programs 1853 * don't check setuid() return code. Here we additionally recheck 1854 * whether NPROC limit is still exceeded. 1855 */ 1856 if ((current->flags & PF_NPROC_EXCEEDED) && 1857 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1858 retval = -EAGAIN; 1859 goto out_ret; 1860 } 1861 1862 /* We're below the limit (still or again), so we don't want to make 1863 * further execve() calls fail. */ 1864 current->flags &= ~PF_NPROC_EXCEEDED; 1865 1866 bprm = alloc_bprm(fd, filename, flags); 1867 if (IS_ERR(bprm)) { 1868 retval = PTR_ERR(bprm); 1869 goto out_ret; 1870 } 1871 1872 retval = count(argv, MAX_ARG_STRINGS); 1873 if (retval < 0) 1874 goto out_free; 1875 bprm->argc = retval; 1876 1877 retval = count(envp, MAX_ARG_STRINGS); 1878 if (retval < 0) 1879 goto out_free; 1880 bprm->envc = retval; 1881 1882 retval = bprm_stack_limits(bprm); 1883 if (retval < 0) 1884 goto out_free; 1885 1886 retval = copy_string_kernel(bprm->filename, bprm); 1887 if (retval < 0) 1888 goto out_free; 1889 bprm->exec = bprm->p; 1890 1891 retval = copy_strings(bprm->envc, envp, bprm); 1892 if (retval < 0) 1893 goto out_free; 1894 1895 retval = copy_strings(bprm->argc, argv, bprm); 1896 if (retval < 0) 1897 goto out_free; 1898 1899 /* 1900 * When argv is empty, add an empty string ("") as argv[0] to 1901 * ensure confused userspace programs that start processing 1902 * from argv[1] won't end up walking envp. See also 1903 * bprm_stack_limits(). 1904 */ 1905 if (bprm->argc == 0) { 1906 retval = copy_string_kernel("", bprm); 1907 if (retval < 0) 1908 goto out_free; 1909 bprm->argc = 1; 1910 1911 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1912 current->comm, bprm->filename); 1913 } 1914 1915 retval = bprm_execve(bprm); 1916 out_free: 1917 free_bprm(bprm); 1918 1919 out_ret: 1920 putname(filename); 1921 return retval; 1922 } 1923 1924 int kernel_execve(const char *kernel_filename, 1925 const char *const *argv, const char *const *envp) 1926 { 1927 struct filename *filename; 1928 struct linux_binprm *bprm; 1929 int fd = AT_FDCWD; 1930 int retval; 1931 1932 /* It is non-sense for kernel threads to call execve */ 1933 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1934 return -EINVAL; 1935 1936 filename = getname_kernel(kernel_filename); 1937 if (IS_ERR(filename)) 1938 return PTR_ERR(filename); 1939 1940 bprm = alloc_bprm(fd, filename, 0); 1941 if (IS_ERR(bprm)) { 1942 retval = PTR_ERR(bprm); 1943 goto out_ret; 1944 } 1945 1946 retval = count_strings_kernel(argv); 1947 if (WARN_ON_ONCE(retval == 0)) 1948 retval = -EINVAL; 1949 if (retval < 0) 1950 goto out_free; 1951 bprm->argc = retval; 1952 1953 retval = count_strings_kernel(envp); 1954 if (retval < 0) 1955 goto out_free; 1956 bprm->envc = retval; 1957 1958 retval = bprm_stack_limits(bprm); 1959 if (retval < 0) 1960 goto out_free; 1961 1962 retval = copy_string_kernel(bprm->filename, bprm); 1963 if (retval < 0) 1964 goto out_free; 1965 bprm->exec = bprm->p; 1966 1967 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1968 if (retval < 0) 1969 goto out_free; 1970 1971 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1972 if (retval < 0) 1973 goto out_free; 1974 1975 retval = bprm_execve(bprm); 1976 out_free: 1977 free_bprm(bprm); 1978 out_ret: 1979 putname(filename); 1980 return retval; 1981 } 1982 1983 static int do_execve(struct filename *filename, 1984 const char __user *const __user *__argv, 1985 const char __user *const __user *__envp) 1986 { 1987 struct user_arg_ptr argv = { .ptr.native = __argv }; 1988 struct user_arg_ptr envp = { .ptr.native = __envp }; 1989 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1990 } 1991 1992 static int do_execveat(int fd, struct filename *filename, 1993 const char __user *const __user *__argv, 1994 const char __user *const __user *__envp, 1995 int flags) 1996 { 1997 struct user_arg_ptr argv = { .ptr.native = __argv }; 1998 struct user_arg_ptr envp = { .ptr.native = __envp }; 1999 2000 return do_execveat_common(fd, filename, argv, envp, flags); 2001 } 2002 2003 #ifdef CONFIG_COMPAT 2004 static int compat_do_execve(struct filename *filename, 2005 const compat_uptr_t __user *__argv, 2006 const compat_uptr_t __user *__envp) 2007 { 2008 struct user_arg_ptr argv = { 2009 .is_compat = true, 2010 .ptr.compat = __argv, 2011 }; 2012 struct user_arg_ptr envp = { 2013 .is_compat = true, 2014 .ptr.compat = __envp, 2015 }; 2016 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2017 } 2018 2019 static int compat_do_execveat(int fd, struct filename *filename, 2020 const compat_uptr_t __user *__argv, 2021 const compat_uptr_t __user *__envp, 2022 int flags) 2023 { 2024 struct user_arg_ptr argv = { 2025 .is_compat = true, 2026 .ptr.compat = __argv, 2027 }; 2028 struct user_arg_ptr envp = { 2029 .is_compat = true, 2030 .ptr.compat = __envp, 2031 }; 2032 return do_execveat_common(fd, filename, argv, envp, flags); 2033 } 2034 #endif 2035 2036 void set_binfmt(struct linux_binfmt *new) 2037 { 2038 struct mm_struct *mm = current->mm; 2039 2040 if (mm->binfmt) 2041 module_put(mm->binfmt->module); 2042 2043 mm->binfmt = new; 2044 if (new) 2045 __module_get(new->module); 2046 } 2047 EXPORT_SYMBOL(set_binfmt); 2048 2049 /* 2050 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2051 */ 2052 void set_dumpable(struct mm_struct *mm, int value) 2053 { 2054 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2055 return; 2056 2057 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2058 } 2059 2060 SYSCALL_DEFINE3(execve, 2061 const char __user *, filename, 2062 const char __user *const __user *, argv, 2063 const char __user *const __user *, envp) 2064 { 2065 return do_execve(getname(filename), argv, envp); 2066 } 2067 2068 SYSCALL_DEFINE5(execveat, 2069 int, fd, const char __user *, filename, 2070 const char __user *const __user *, argv, 2071 const char __user *const __user *, envp, 2072 int, flags) 2073 { 2074 return do_execveat(fd, 2075 getname_uflags(filename, flags), 2076 argv, envp, flags); 2077 } 2078 2079 #ifdef CONFIG_COMPAT 2080 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2081 const compat_uptr_t __user *, argv, 2082 const compat_uptr_t __user *, envp) 2083 { 2084 return compat_do_execve(getname(filename), argv, envp); 2085 } 2086 2087 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2088 const char __user *, filename, 2089 const compat_uptr_t __user *, argv, 2090 const compat_uptr_t __user *, envp, 2091 int, flags) 2092 { 2093 return compat_do_execveat(fd, 2094 getname_uflags(filename, flags), 2095 argv, envp, flags); 2096 } 2097 #endif 2098 2099 #ifdef CONFIG_SYSCTL 2100 2101 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2102 void *buffer, size_t *lenp, loff_t *ppos) 2103 { 2104 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2105 2106 if (!error) 2107 validate_coredump_safety(); 2108 return error; 2109 } 2110 2111 static const struct ctl_table fs_exec_sysctls[] = { 2112 { 2113 .procname = "suid_dumpable", 2114 .data = &suid_dumpable, 2115 .maxlen = sizeof(int), 2116 .mode = 0644, 2117 .proc_handler = proc_dointvec_minmax_coredump, 2118 .extra1 = SYSCTL_ZERO, 2119 .extra2 = SYSCTL_TWO, 2120 }, 2121 }; 2122 2123 static int __init init_fs_exec_sysctls(void) 2124 { 2125 register_sysctl_init("fs", fs_exec_sysctls); 2126 return 0; 2127 } 2128 2129 fs_initcall(init_fs_exec_sysctls); 2130 #endif /* CONFIG_SYSCTL */ 2131 2132 #ifdef CONFIG_EXEC_KUNIT_TEST 2133 #include "tests/exec_kunit.c" 2134 #endif 2135